FN Thomson Reuters Web of Science™
VR 1.0
PT J
AU Chen, Y
   Qiu, JH
   Chen, FQ
   Liu, SL
AF Chen, Yang
   Qiu, Jianhua
   Chen, Fuquan
   Liu, Shunli
TI Migration of neural precursor cells derived from olfactory bulb in
   cochlear nucleus exposed to an augmented acoustic environment
SO HEARING RESEARCH
LA English
DT Article
DE stem cells; olfactory bulb; cochlear nucleus; neuron; transplantation;
   augmented acoustic environment
ID ADULT MAMMALIAN BRAIN; EMBRYONIC STEM-CELLS; PROGENITOR CELLS;
   SUBVENTRICULAR ZONE; NEURONAL DIFFERENTIATION; PROLONGED EXPOSURE;
   AUDITORY FUNCTION; C57BL/6J MICE; HEARING-LOSS; DBA/2J MICE
AB The regeneration of the auditory neural system remains a challenge in hearing restoration. Acoustic signals may induce a site-specific cell replacement in the auditory system. This hypothesis was tested with grafted implantation of neural precursor cells (NPCs) along the cochlear nucleus in the adult host followed by an augmented acoustic stimulation. NPCs were obtained from the olfactory bulbs at embryonic day 14-16 and were transplanted into the inside border of cochlear nucleus. The labeled cells survived at least 2 weeks, verified by Hoechst 33342 fluorescence, and by immunostaining for a neuronal marker. In some cases NPCs had migrated directionally to the root of the auditory nerve. This observation demonstrates the survival and migration of NPCs from the olfactory bulb (013) along the adult auditory nerve in an augmented acoustic environment following implantation. (c) 2006 Published by Elsevier B.V.
C1 Fourth Mil Med Univ, Dept Otolaryngol, Xijing Hosp, Xian 710032, Peoples R China.
RP Qiu, JH (reprint author), Fourth Mil Med Univ, Dept Otolaryngol, Xijing Hosp, Xian 710032, Peoples R China.
EM qiujh@fmmu.edu.cn
CR Bjorklund A, 2003, LANCET NEUROL, V2, P437, DOI 10.1016/S1474-4422(03)00442-3
   Blesch A, 2002, BRAIN RES BULL, V57, P833, DOI 10.1016/S0361-9230(01)00774-2
   Doetsch F, 1996, P NATL ACAD SCI USA, V93, P14895, DOI 10.1073/pnas.93.25.14895
   Dziewczapolski G, 2003, EXP NEUROL, V183, P653, DOI 10.1016/S0014-4886(03)00212-7
   Fricker RA, 1999, J NEUROSCI, V19, P5990
   GAGE FH, 1995, P NATL ACAD SCI USA, V92, P11879, DOI 10.1073/pnas.92.25.11879
   Garcia-Verdugo J, 1998, J NEUROBIOL, V36, P234, DOI 10.1002/(SICI)1097-4695(199808)36:2<234::AID-NEU10>3.0.CO;2-E
   Gritti A, 2002, J NEUROSCI, V22, P437
   Harkany T, 2004, J NEUROCHEM, V88, P1229, DOI 10.1046/j.1471-4159.2003.02243.x
   Herrera DG, 1999, ANN NEUROL, V46, P867, DOI 10.1002/1531-8249(199912)46:6<867::AID-ANA9>3.0.CO;2-Z
   Hu ZQ, 2004, BRAIN RES, V1026, P68, DOI 10.1016/j.brainres.2004.08.013
   LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
   Lim DA, 1997, P NATL ACAD SCI USA, V94, P14832, DOI 10.1073/pnas.94.26.14832
   LOIS C, 1994, SCIENCE, V264, P1145, DOI 10.1126/science.8178174
   MURAOKA K, 2006, EXP NEUROL
   Reynolds BA, 1996, DEV BIOL, V175, P1, DOI 10.1006/dbio.1996.0090
   Richardson RM, 2005, MOL CELL NEUROSCI, V28, P674, DOI 10.1016/j.mcn.2004.11.013
   Richardson RM, 2005, BRAIN RES, V1032, P11, DOI 10.1016/j.brainres.2004.10.043
   Rochefort C, 2002, J NEUROSCI, V22, P2679
   ROUSSELOT P, 1995, J COMP NEUROL, V351, P51, DOI 10.1002/cne.903510106
   RYALS BM, 1989, HEARING RES, V43, P81, DOI 10.1016/0378-5955(89)90061-0
   Storch Alexander, 2002, Curr Opin Investig Drugs, V3, P774
   Sugaya K, 2001, MED HYPOTHESES, V57, P697, DOI 10.1054/mehy.2001.1424
   Suhonen JO, 1996, NATURE, V383, P624, DOI 10.1038/383624a0
   Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0
   Vicario-Abejon C, 2003, J NEUROSCI, V23, P895
   Wagner J, 1999, NAT BIOTECHNOL, V17, P653
   Weyer A, 2003, J NEUROSCI RES, V73, P400, DOI 10.1002/jnr.10655
   Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5
   Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9
   Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065
   Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3
   Willson R, 2001, TRANSPORTATION, V28, P1, DOI 10.1023/A:1005247430522
   Zhang RL, 2003, NEUROSCIENCE, V116, P373, DOI 10.1016/S0306-4522(02)00696-6
NR 34
TC 10
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 3
EP 10
DI 10.1016/j.heares.2006.11.014
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900002
PM 17467207
ER

PT J
AU Polimeni, M
   Prigioni, I
   Russo, G
   Calzi, D
   Gioglio, L
AF Polimeni, Mariarosa
   Prigioni, Ivo
   Russo, Giancarlo
   Calzi, Daniela
   Gioglio, Luciana
TI Plasma membrane Ca2+-ATPase isoforms in frog crista ampullaris:
   Identification of PMCA1 and PMCA2 specific splice variants
SO HEARING RESEARCH
LA English
DT Article
DE frog; semicircular canal; crista ampullaris; hair cells; calcium pump;
   isozymes
ID VESTIBULAR HAIR-CELLS; MECHANOELECTRICAL-TRANSDUCTION; CALCIUM-PUMP;
   CA-ATPASE; NA+-CA2+ EXCHANGE; ION CHANNELS; GUINEA-PIG; ADAPTATION;
   CURRENTS; STEREOCILIA
AB Ca2+ ions play a pivotal role in inner ear hair cells as they are involved from the mechano-electrical transduction to the transmitter release. Most of the Ca2+ that enters into hair cells via mechano-transduction and voltage-gated channels is extruded by the plasma membrane Ca2+-ATPases (PMCAs) that operate in both apical and basal cellular compartments. Here, we determined the identity and distribution of PMCA isoforms in frog crista ampullaris: we showed that PMCA1, PMCA2 and PMCA3 are expressed, while PMCA4 appears to be negligible. We also identify PMCA1bx, PMCA2av and PMCA2bv as the major splice variants produced from PMCA1 and PMCA2 genes. PMCA2av appears to be the major Ca2+-pump operating at the apical pole of the cell, even if PMCA1b is also expressed in the stereocilia. PMCA1bx is, instead, the principal PMCA of hair cell basolateral compartment, where it is expressed together with PMCA2 (probably PMCA2bv) and PMCA3.
   Frog crista ampullaris hair cells lack a Na/Ca exchanger, therefore PMCAs are the only mechanism of Ca2+ extrusion. The coexpression of specific isozymes in the different cellular compartments responds to the need of a fine regulation of both basal and dynamic Ca2+ levels at the apical and basal pole of the cell. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Pavia, Dipartimento Med Sperimentale, Sez Anat Umana Normale, I-27100 Pavia, Italy.
   Univ Pavia, Dipartimento Sci Fisiol Farmacol Cellulari & Mol, I-27100 Pavia, Italy.
RP Polimeni, M (reprint author), Univ Pavia, Dipartimento Med Sperimentale, Sez Anat Umana Normale, Via Forlanini 8, I-27100 Pavia, Italy.
EM polimeni@unipv.it; prigioi@unipv.it; gianca@unipv.it; dcalzi@libero.it;
   lucy@unipv.it
RI Polimeni, Mariarosa/B-6036-2012
CR BENAIM G, 1995, BIOCHEM J, V306, P299
   Boyer C, 1999, EUR J NEUROSCI, V11, P1955, DOI 10.1046/j.1460-9568.1999.00618.x
   Boyer C, 2001, J NEUROSCI, V21, P2640
   CARAFOLI E, 1994, FASEB J, V8, P993
   Caride AJ, 1996, BIOCHEM J, V316, P353
   Chicka MC, 2003, J BIOL CHEM, V278, P18464, DOI 10.1074/jbc.M301482200
   CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369
   Crouch JJ, 1996, HEARING RES, V101, P55, DOI 10.1016/S0378-5955(96)00132-3
   DEMARCO SJ, 2001, J BIOL CHEM, V276, P21590
   DETALAMONI NT, 1993, P NATL ACAD SCI USA, V90, P11949, DOI 10.1073/pnas.90.24.11949
   Dumont RA, 2001, J NEUROSCI, V21, P5066
   EATOCK RA, 1987, J NEUROSCI, V7, P2821
   Elwess NL, 1997, J BIOL CHEM, V272, P17981, DOI 10.1074/jbc.272.29.17981
   Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809
   FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P553
   Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4
   GARCIA ML, 1999, FRONT BIOSCI, V4, P869
   Gioglio L, 1998, NEUROREPORT, V9, P1309, DOI 10.1097/00001756-199805110-00010
   GIOGLIO L, 1995, ARCH HISTOL CYTOL, V58, P1, DOI 10.1679/aohc.58.1
   Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005
   Hendricson AW, 2002, HEARING RES, V172, P99, DOI 10.1016/S0378-5955(02)00519-1
   Hillman D.E., 1976, P452
   Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
   IKEDA K, 1992, PFLUG ARCH EUR J PHY, V420, P493, DOI 10.1007/BF00374624
   KEETON TP, 1993, J BIOL CHEM, V268, P2740
   Lelli A, 2003, J NEUROSCI, V23, P6894
   Lumpkin EA, 1998, J NEUROSCI, V18, P6300
   Lumpkin EA, 1997, P NATL ACAD SCI USA, V94, P10997, DOI 10.1073/pnas.94.20.10997
   Martini M, 2002, EUR J NEUROSCI, V16, P1647, DOI 10.1046/j.1460-9568.2002.02234x
   MASETTO S, 1994, J NEUROPHYSIOL, V72, P443
   Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208
   PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4
   Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1
   Polimeni M, 1996, MECH DEVELOP, V54, P107, DOI 10.1016/0925-4773(95)00465-3
   Prigioni I, 1992, J Vestib Res, V2, P31
   PRIGIONI I, 1990, HEARING RES, V46, P253, DOI 10.1016/0378-5955(90)90006-B
   Ricci AJ, 2000, J NEUROSCI, V20, P7131
   Ricci AJ, 1998, J NEUROSCI, V18, P8261
   Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x
   ROBERTS WM, 1990, J NEUROSCI, V10, P3664
   Rossi ML, 2006, EUR J NEUROSCI, V23, P1775, DOI 10.1111/j.1460-9568.2006.04708.x
   Spassova M, 2001, J PHYSIOL-LONDON, V535, P689, DOI 10.1111/j.1469-7793.2001.00689.x
   STAUFFER TP, 1995, J BIOL CHEM, V270, P12184
   Strehler EE, 2001, PHYSIOL REV, V81, P21
   Sugihara I, 1996, J PHYSIOL-LONDON, V495, P665
   Tucker T, 1995, NEURON, V15, P1323, DOI 10.1016/0896-6273(95)90011-X
   Verpy E, 2000, NAT GENET, V26, P51
   Wood JD, 2004, JARO-J ASSOC RES OTO, V5, P99, DOI 10.1007/s10162-003-4022-1
   Yamoah EN, 1998, J NEUROSCI, V18, P610
NR 49
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 11
EP 21
DI 10.1016/j.heares.2006.12.016
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900003
PM 17336006
ER

PT J
AU Sneary, MG
   Lewis, ER
AF Sneary, Michael G.
   Lewis, Edwin R.
TI Tuning properties of turtle auditory nerve fibers: Evidence for
   suppression and adaptation
SO HEARING RESEARCH
LA English
DT Article
DE turtle ear; auditory nerve fibers; Wiener-kernel analysis; suppression;
   high-order tuning
ID WIENER-KERNEL ANALYSIS; COCHLEAR HAIR-CELLS; TEMPORAL RECEPTIVE-FIELD;
   INNER-EAR FUNCTION; GAUSSIAN-NOISE; SINGLE UNITS; RESPONSES; BULLFROG;
   INHIBITION; EXCITATION
AB Second-order reverse correlation (second-order Wiener-kernel analysis) was carried out between spike responses in single afferent units from the basilar papilla of the red-eared turtle and band limited white noise auditory stimuli. For units with best excitatory frequencies (BEFs) below approximately 500 Hz, the analysis revealed suppression similar to that observed previously in anuran amphibians. For units with higher BEFs, the analysis revealed de response with narrow-band tuning centered about the BEF, combined with broad-band ac response at lower frequencies. For all units, the analysis revealed the relative timing and tuning of excitation and various forms of inhibitory or suppressive effects. (c) 2007 Elsevier B.V. All rights reserved.
C1 San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA.
   Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA.
RP Sneary, MG (reprint author), San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA.
EM msneary@email.sjsu.edu
CR Adrian ED, 1938, PROC R SOC SER B-BIO, V125, P435, DOI 10.1098/rspb.1938.0036
   ART JJ, 1984, J PHYSIOL-LONDON, V356, P525
   ART JJ, 1984, J PHYSIOL-LONDON, V356, P507
   CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653
   CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377
   CRAWFORD AC, 1981, J PHYSIOL-LONDON, V315, P317
   DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704
   DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561
   EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P167
   EGGERMONT JJ, 1983, HEARING RES, V10, P191, DOI 10.1016/0378-5955(83)90053-9
   EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R
   EGGERMONT JJ, 1983, HEARING RES, V10, P167, DOI 10.1016/0378-5955(83)90052-7
   EVANS EF, 1989, COCHLEAR MECH STRUCT, P241
   FAY RR, 1990, HEARING RES, V48, P93, DOI 10.1016/0378-5955(90)90201-Y
   FAY RR, 1986, AUDITORY FREQUENCY S, P137
   FENG AS, 1975, J COMP PHYSIOL, V100, P221
   FETTIPLACE R, 1978, PROC R SOC SER B-BIO, V203, P209, DOI 10.1098/rspb.1978.0101
   FRISHKOP.LS, 1968, PR INST ELECTR ELECT, V56, P969, DOI 10.1109/PROC.1968.6448
   FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676
   FRISHKOPF LS, 1964, J ACOUST SOC AM, V36, P1016, DOI 10.1121/1.2143197
   HERMES DJ, 1981, HEARING RES, V5, P147, DOI 10.1016/0378-5955(81)90043-5
   HILL KG, 1989, HEARING RES, V39, P37, DOI 10.1016/0378-5955(89)90080-4
   HOLTON T, 1980, HEARING RES, V2, P21, DOI 10.1016/0378-5955(80)90014-3
   LEWIS ER, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P163
   Lewis ER, 2002, HEARING RES, V174, P206, DOI 10.1016/S0378-5955(02)00695-0
   Lewis ER, 2002, HEARING RES, V171, P13, DOI 10.1016/S0378-5955(02)00290-3
   LEWIS ER, 1988, BIOPHYS J, V53, P441
   LEWIS ER, 1986, AUDITORY FREQUENCY S, P129
   Lewis Edwin R, 2004, Hear Res, V189, P120, DOI 10.1016/S0378-5955(03)00406-4
   LEWIS ER, 1990, LECT NOTES BIOMATH, V87, P139
   LEWIS ER, 2002, J ACOUST SOC AM, V112, P2229
   MANLEY GA, 1985, J COMP PHYSIOL A, V157, P161, DOI 10.1007/BF01350025
   MANLEY GA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P561
   Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W
   Patterson W. C., 1966, J AUD RES, V6, P453
   Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004
   RUPERT A, 1963, J NEUROPHYSIOL, V26, P449
   SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947
   SNEARY MG, 1988, J COMP NEUROL, V276, P588, DOI 10.1002/cne.902760411
   SNEARY MG, 1989, COCHLEAR MECH, P235
   TEMCHIN AN, 1988, J COMP PHYSIOL A, V163, P99, DOI 10.1007/BF00612001
   vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8
   vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X
   VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009
   WOLODKIN G, 1997, DIVERSITY AUDITORY M, P104
   WOLODKIN GJ, 1996, THESIS U CALIFORNIA
   Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2
   YAMADA WY, 1997, THESIS U CALIFORNIA
   YU XY, 1991, THESIS U CALIFORNIA
NR 49
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 22
EP 30
DI 10.1016/j.heares.2006.12.014
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900004
PM 17331685
ER

PT J
AU Friedland, DR
   Eernisse, R
   Popper, P
AF Friedland, David R.
   Eernisse, Rebecca
   Popper, Paul
TI Potassium channel gene expression in the rat cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE cochlear nucleus; gene expression; SAGE; potassium channels; Kv3.2;
   Kir7.1
ID RETINAL-PIGMENT EPITHELIUM; K+ CHANNEL; DIFFERENTIAL EXPRESSION; SERIAL
   ANALYSIS; DOMINANT DEAFNESS; ALPHA-SUBUNITS; NERVOUS-SYSTEM; OCTOPUS
   CELLS; FAST-SPIKING; NEURONS
AB Potassium channels play a critical role in defining the electrophysiological properties accounting for the unique response patterns of auditory neurons. Serial analysis of gene expression (SAGE), microarrays, RT-PCR, and real-time RT-PCR were used to generate a broad profile of potassium channel expression in the rat cochlear nucleus. This study identified mRNAs for 51 different potassium channel subunits or channel interacting proteins. The relative expression levels of 27 of these transcripts among the AVCN, PVCN, and DCN were determined by real-time RT-PCR. Four potassium channel transcripts showed substantial levels of differential expression. Kcnc2 was expressed more than 15-fold higher in the DCN as compared to AVCN and PVCN. In contrast, Kcnj13 had an approximate 10-fold higher expression in AVCN and PVCN than in DCN. Two subunits that modify the activity of other channels were inversely expressed between ventral and dorsal divisions. Kcns1 was over 15-fold higher in DCN than AVCN or PVCN, while Kcns3 was about 25-fold higher in AVCN than in DCN. The expression patterns of potassium channels in the subdivisions of the cochlear nucleus provide a basis for understanding the electrophysiological mechanisms which sub-serve central auditory processing and provide targets for further investigations into neural plastic changes that occur with hearing loss. (c) 2007 Elsevier B.V. All rights reserved.
C1 Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA.
RP Friedland, DR (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA.
EM dfriedla@mcw.edu
CR Atzori M, 2000, NAT NEUROSCI, V3, P791
   Audic S, 1997, GENOME RES, V7, P986
   Bal R, 2001, J NEUROPHYSIOL, V86, P2299
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004
   Coetzee WA, 1999, ANN NY ACAD SCI, V868, P233, DOI 10.1111/j.1749-6632.1999.tb11293.x
   Halum SL, 2004, OTOL NEUROTOL, V25, P587, DOI 10.1097/00129492-200407000-00028
   Hasselblatt M, 2006, AM J SURG PATHOL, V30, P66, DOI 10.1097/01.pas.0000176430.88702.e0
   Hernandez-Pineda R, 1999, J NEUROPHYSIOL, V82, P1512
   HOLT AG, 2006, HEAR RES
   Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045
   Kerschensteiner D, 2003, J BIOL CHEM, V278, P18154, DOI 10.1074/jbc.M213117200
   Kerschensteiner D, 1999, BIOPHYS J, V77, P248, DOI 10.1016/S0006-3495(99)76886-4
   Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333
   Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199
   Krapivinsky G, 1998, NEURON, V20, P995, DOI 10.1016/S0896-6273(00)80480-8
   Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5
   Lau D, 2000, J NEUROSCI, V20, P9071
   Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279
   Lien CC, 2002, J PHYSIOL-LONDON, V538, P405, DOI 10.1013/jphysiol.2001.013066
   Macica CM, 2003, J NEUROSCI, V23, P1133
   Margulies EH, 2000, BIOINFORMATICS, V16, P650, DOI 10.1093/bioinformatics/16.7.650
   Margulies EH, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.12.e60
   McDonald AJ, 2006, NEUROSCIENCE, V138, P537, DOI 10.1016/j.neuroscience.2005.11.047
   Miller C., 2000, GENOME BIOL, V1
   Muller PY, 2002, BIOTECHNIQUES, V32, P1372
   Nakamura N, 1999, BIOCHEM J, V342, P329, DOI 10.1042/0264-6021:3420329
   Perney TM, 1997, J COMP NEUROL, V386, P178
   Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200
   Richardson FC, 2000, HEARING RES, V147, P21, DOI 10.1016/S0378-5955(00)00117-9
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3083, DOI 10.1152/jn.00126.2002
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002
   Salinas M, 1997, J BIOL CHEM, V272, P24371, DOI 10.1074/jbc.272.39.24371
   Shepard AR, 1999, AM J PHYSIOL-CELL PH, V277, pC412
   Shimura M, 2001, J PHYSIOL-LONDON, V531, P329, DOI 10.1111/j.1469-7793.2001.0329i.x
   Stocker M, 1998, BIOCHEM BIOPH RES CO, V248, P927, DOI 10.1006/bbrc.1998.9072
   SUZUKI N, 2003, REC RES DEV MACROMOL, V7, P63
   Talley EM, 2001, J NEUROSCI, V21, P7491
   VELCULESCU VE, 1995, SCIENCE, V270, P484, DOI 10.1126/science.270.5235.484
   WEISER M, 1994, J NEUROSCI, V14, P949
   Wu J, 2004, J MEMBRANE BIOL, V197, P179, DOI 10.1007/s00232-004-0652-4
   Yang DL, 2003, INVEST OPHTH VIS SCI, V44, P3178, DOI 10.1167/iovs.02-1189
   ZOU A, 2003, CELL PHYSL, V285, pC1356
NR 44
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 31
EP 43
DI 10.1016/j.heares.2007.01.024
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900005
PM 17346910
ER

PT J
AU Harris, KC
   Mills, JH
   Dubno, JR
AF Harris, Kelly C.
   Mills, John H.
   Dubno, Judy R.
TI Electrophysiologic correlates of intensity discrimination in cortical
   evoked potentials of younger and older adults
SO HEARING RESEARCH
LA English
DT Article
DE aging and cortical potentials; auditory evoked potentials; aging and
   intensity discrimination
ID EVENT-RELATED POTENTIALS; AGE-RELATED-CHANGES; AMPLITUDE-MODULATED
   STIMULI; RAT INFERIOR COLLICULUS; PRIMARY AUDITORY-CORTEX; HEARING-LOSS;
   NEURAL REPRESENTATION; MISMATCH NEGATIVITY; FREQUENCY; RESPONSES
AB When measured behaviorally, older adults with normal hearing have poorer intensity discrimination thresholds than younger adults, but only at lower frequencies. Poor intensity discrimination at lower but not higher frequencies for older adults can be associated with an age-related decline in temporal processing. The current study was designed to assess age-related effects on intensity discrimination at 500 and 3000 Hz using the cortical auditory evoked potential, N1-P2. Subjects were 10 younger and 10 older adults with normal hearing. The N1-P2 was elicited by an intensity. increase in an otherwise continuous pure tone presented at 70 dB SPL. Intensity increments ranged from 0 dB to 5 dB at 500 Hz and from 0 dB to 8 dB at 3000 Hz in l-dB steps. Intensity discrimination threshold was defined as the smallest intensity change needed to evoke an N1-P2 response. Consistent with behavioral measures, N1-P2 response thresholds were significantly higher for older subjects than younger subjects at 500 Hz but did not differ significantly at 3000 Hz. In addition, NI and P2 latencies for older subjects were significantly prolonged at 500 Hz, but not at 3000 Hz. As intensity increments increased above threshold, amplitudes tended to be larger in older than in younger subjects, however, these differences were not statistically significant. In older subjects, response latencies and amplitudes were significantly larger at 500 Hz than at 3000 Hz. In younger subjects, response latencies and amplitudes were similar across frequency. Similar intensity discrimination thresholds and age-related differences for behavioral measures and evoked potentials support the notion that the N1-P2 measures reflect the physiological detection of intensity change which in turn relates to intensity discrimination. A possible explanation for the decreased intensity discrimination at low frequencies, and enhanced amplitudes with prolonged latencies in older subjects is an age-related decline in inhibitory control within the central auditory nervous system. (c) 2007 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA.
RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,POB 250550, Charleston, SC 29425 USA.
EM harriskc@musc.edu
CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9
   *AM NAT STAND I, 1996, S361996 ANSI AM NAT
   Anderer P, 1996, ELECTROEN CLIN NEURO, V99, P458, DOI 10.1016/S0013-4694(96)96518-9
   ANTINORO F, 1969, J ACOUST SOC AM, V46, P1433, DOI 10.1121/1.1911881
   ARLINGER SD, 1979, SCAND AUDIOL, P229
   ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W
   BARRETT G, 1987, ELECTROEN CLIN NEURO, V66, P409, DOI 10.1016/0013-4694(87)90210-0
   BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z
   Boettcher FA, 2001, HEARING RES, V153, P32, DOI 10.1016/S0378-5955(00)00255-0
   Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7
   Boutros NN, 2000, INT PSYCHOGERIATR, V12, P513, DOI 10.1017/S1041610200006621
   BROWN WS, 1983, ELECTROEN CLIN NEURO, V55, P277, DOI 10.1016/0013-4694(83)90205-5
   Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5
   Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9
   CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5
   CHRISTOPHERSON LA, 1992, J SPEECH HEAR RES, V35, P929
   Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444
   FLORENTINE M, 1983, J ACOUST SOC AM, V74, P1375, DOI 10.1121/1.390162
   FLORENTINE M, 1993, J ACOUST SOC AM, V94, P2575, DOI 10.1121/1.407369
   GIARD MH, 1995, J COGNITIVE NEUROSCI, V7, P133, DOI 10.1162/jocn.1995.7.2.133
   Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74
   Harkrider AW, 2005, CLIN NEUROPHYSIOL, V116, P2153, DOI 10.1016/j.clinph.2005.05.016
   He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127
   HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N
   HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2
   HUMES LE, 1991, J SPEECH HEAR RES, V34, P686
   Humes L E, 1996, J Am Acad Audiol, V7, P161
   JACOBSON GP, 1992, EAR HEARING, V13, P300, DOI 10.1097/00003446-199210000-00007
   JERGER J, 1970, ARCHIV OTOLARYNGOL, V91, P433
   Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016
   KNIGHT RT, 1990, ELECTROEN CLIN NEURO, V77, P225, DOI 10.1016/0168-5597(90)90041-B
   LAFFONT F, 1989, Neurophysiologie Clinique, V19, P15, DOI 10.1016/S0987-7053(89)80081-4
   Ling LL, 2005, NEUROSCIENCE, V132, P1103, DOI 10.1016/j.neuroscience.2004.12.043
   Martin BA, 1999, EAR HEARING, V20, P33, DOI 10.1097/00003446-199902000-00004
   Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556
   MCCANDLE.GA, 1970, J SPEECH HEAR RES, V13, P624
   MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5
   Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F
   MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Ostroff JM, 1998, EAR HEARING, V19, P290, DOI 10.1097/00003446-199808000-00004
   PAAVILAINEN P, 1991, ELECTROEN CLIN NEURO, V78, P466, DOI 10.1016/0013-4694(91)90064-B
   PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2
   Pekkonen E, 1996, EXP AGING RES, V22, P171, DOI 10.1080/03610739608254005
   PFEFFERBAUM A, 1980, ELECTROEN CLIN NEURO, V49, P266, DOI 10.1016/0013-4694(80)90221-7
   PFEIFFER E, 1975, J AM GERIATR SOC, V23, P433
   PICTON TW, 1984, PSYCHOPHYSIOLOGY, V21, P312, DOI 10.1111/j.1469-8986.1984.tb02941.x
   Rao SM, 2001, NAT NEUROSCI, V4, P317, DOI 10.1038/85191
   Schroeder MM, 1995, ANN NY ACAD SCI, V769, P399, DOI 10.1111/j.1749-6632.1995.tb38155.x
   Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1
   Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5
   Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7
   TURNER CW, 1982, J SPEECH HEAR RES, V25, P34
   Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001
   Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103
   WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5
   Woods D L, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P102
   WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P297, DOI 10.1016/0168-5597(86)90008-0
   WOODS DL, 1992, ELECTROEN CLIN NEURO, V84, P456, DOI 10.1016/0168-5597(92)90033-8
   Wunderlich JL, 2001, J ACOUST SOC AM, V109, P1526, DOI 10.1121/1.1349184
NR 60
TC 20
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 58
EP 68
DI 10.1016/j.heares.2007.01.021
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900007
PM 17344001
ER

PT J
AU Razak, KA
   Fuzessery, ZM
AF Razak, Khaleel A.
   Fuzessery, Zoltan M.
TI Development of functional organization of the pallid bat auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE development; auditory cortex; feature maps; binaural selectivity; pallid
   bat; tonotopy
ID INTERAURAL INTENSITY DIFFERENCES; PASSIVE SOUND LOCALIZATION; INFERIOR
   COLLICULUS; BINAURAL ORGANIZATION; ANTROZOUS-PALLIDUS; RECEPTIVE-FIELDS;
   RESPONSE SELECTIVITY; CORTICAL-NEURONS; CAT; SENSITIVITY
AB The primary auditory cortex is characterized by a tonotopic map and a clustered organization of binaural properties. The factors involved in the development of overlain representation of these two properties are unclear. We addressed this issue in the auditory cortex of the pallid bat. The adult pallid bat cortex contains a systematic relationship between best frequency (BF) and binaural properties. Most neurons with BF < 30 kHz are binaurally inhibited (EO/I), while most neurons with BF > 30 kHz are monaural (EO). As in other species, binaural properties are clustered. The EO/I cluster contains a systematic map of interaural intensity difference (IID) sensitivity. We asked if these properties are present at the time the bat acquires its full audible range (postnatal day [P] 15). Tonotopy, relationship between BF and binaural properties, and the map of IID sensitivity are adult-like at P15. However, binaural facilitation is only observed in pups older than P25. Frequency selectivity shows a BF-dependent sharpening during development. Thus, overlain representation of binaural properties and tonotopy in the pallid bat cortex is remarkably adult-like at an age when the full audible range is first present, suggesting an experience-independent development of overlapping feature maps. (c) 2007 Elsevier B.V. All rights reserved.
C1 Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA.
RP Fuzessery, ZM (reprint author), Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA.
EM zmf@uwyo.edu
CR BELL GP, 1982, BEHAV ECOL SOCIOBIOL, V10, P217, DOI 10.1007/BF00299688
   BLATCHLEY BJ, 1990, J NEUROPHYSIOL, V64, P582
   Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003
   BROWN P, 1976, Z TIERPSYCHOL, V41, P34
   BROWN PE, 1978, J COMP PHYSIOL, V126, P169
   BRUGGE JF, 1985, J ACOUST SOC AM, V78, P353, DOI 10.1121/1.392498
   BRUGGE JF, 1988, HEARING RES, V34, P127, DOI 10.1016/0378-5955(88)90100-1
   Carrasco MM, 2005, J NEUROPHYSIOL, V94, P1962, DOI 10.1152/jn.00166.2005
   Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102
   Chapman B, 1999, J NEUROBIOL, V41, P18, DOI 10.1002/(SICI)1097-4695(199910)41:1<18::AID-NEU4>3.0.CO;2-V
   CLEMENTS M, 1978, DEV PSYCHOBIOL, V11, P505, DOI 10.1002/dev.420110514
   Crowley JC, 2002, CURR OPIN NEUROBIOL, V12, P104, DOI 10.1016/S0959-4388(02)00297-0
   Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309
   Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139
   FOX K, 1996, PROG BRAIN RES, V108, P218
   Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5
   FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061
   FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073
   FUZESSERY ZM, 1991, J NEUROSCI METH, V36, P45, DOI 10.1016/0165-0270(91)90136-N
   HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812
   IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0
   IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570
   Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133
   KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756
   KELLY JB, 1994, J NEUROPHYSIOL, V71, P904
   Liu W, 1997, J COMP PHYSIOL A, V181, P599, DOI 10.1007/s003590050143
   MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3
   MOORE DR, 1980, EXP BRAIN RES, V38, P103
   MOORE DR, 1979, ACTA OTO-LARYNGOL, V87, P434, DOI 10.3109/00016487909126447
   Mrsic-Flogel TD, 2003, NAT NEUROSCI, V6, P981, DOI 10.1038/nn1108
   NAEGELE JR, 1988, J COMP NEUROL, V277, P593, DOI 10.1002/cne.902770411
   Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003
   Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004
   Razak KA, 2002, J NEUROPHYSIOL, V87, P72
   Razak KA, 2000, NEUROREPORT, V11, P2919, DOI 10.1097/00001756-200009110-00018
   Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006
   Razak KA, 1999, J NEUROPHYSIOL, V81, P1438
   RAZAK KA, 2006, J COMP NEUROL, V500, P322
   Read HL, 2002, CURR OPIN NEUROBIOL, V12, P433, DOI 10.1016/S0959-4388(02)00342-2
   REALE RA, 1986, J NEUROPHYSIOL, V56, P663
   Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F
   Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3
   Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142
   Velenovsky DS, 2003, J NEUROSCI, V23, P308
   Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
NR 45
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 69
EP 81
DI 10.1016/j.heares.2007.01.020
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900008
PM 17321705
ER

PT J
AU Hall, IC
   Hurley, LM
AF Hall, Ian C.
   Hurley, Laura M.
TI The serotonin releaser fenfluramine alters the auditory responses of
   inferior colliculus neurons
SO HEARING RESEARCH
LA English
DT Article
DE fenfluramine; serotonin; serotonin receptor; inferior colliculus;
   neuromodulation
ID DORSAL RAPHE NUCLEUS; RAT PREFRONTAL CORTEX; GUINEA-PIG BRAIN; COCHLEAR
   NUCLEUS; 5-HYDROXYTRYPTAMINE SEROTONIN; EXTRACELLULAR SEROTONIN;
   FUNCTIONAL-ORGANIZATION; MODULATES RESPONSES; RECEPTORS; SYSTEM
AB Local direct application of the neuromodulator serotonin strongly influences auditory response properties of neurons in the inferior colliculus (IC), but endogenous stores of serotonin may be released in a distinct spatial or temporal pattern. To explore this issue, the serotonin releaser fenfluramine was iontophoretically applied to extracellularly recorded neurons in the IC of the Mexican free-tailed bat (Tadarida brasiliensis). Fenfluramine mimicked the effects of serotonin on spike count and first spike latency in most neurons, and its effects could be blocked by co-application of serotonin receptor antagonists, consistent with fenfluramine-evoked serotonin release. Responses to fenfluramine did not vary during single applications or across multiple applications, suggesting that fenfluramine did not deplete serotonin stores. A predicted gradient in the effects of fenfluramine with scrotonin fiber density was not observed, but neurons with fenfluramine-evoked increases in latency occurred at relatively greater recording depths compared to other neurons with similar characteristic frequencies. These findings support the conclusion that there may be spatial differences in the effects of exogenous and endogenous sources of serotonin, but that other factors such as the identities and locations of serotonin receptors are also likely to play a role in determining the dynamics of serotonergic effects. (c) 2007 Elsevier B.V. All rights reserved.
C1 Indiana Univ, Dept Biol, Bloomington, IN 47405 USA.
RP Hall, IC (reprint author), Indiana Univ, Dept Biol, 1001 E 3rd St,342 Jordan Hall, Bloomington, IN 47405 USA.
EM ichall@indiana.edu; lhurley@indiana.edu
CR Amargos-Bosch M, 2004, CEREB CORTEX, V14, P281, DOI 10.1093/cercor/bhg128
   AUERBACH SB, 1989, BRAIN RES, V499, P281, DOI 10.1016/0006-8993(89)90776-2
   Baumann MH, 2000, ANN NY ACAD SCI, V914, P172
   Baumann MH, 2001, NEUROPSYCHOPHARMACOL, V24, P492, DOI 10.1016/S0893-133X(00)00221-9
   Beique JC, 2004, J PHYSIOL-LONDON, V556, P739, DOI 10.1113/j.physiol.2003.051284
   Blakely RD, 2000, CURR OPIN NEUROBIOL, V10, P328, DOI 10.1016/S0959-4388(00)00088-X
   BRUCKNER S, 1995, HEARING RES, V86, P1, DOI 10.1016/0378-5955(95)00048-9
   Bunin MA, 1998, J NEUROSCI, V18, P4854
   CARBONI E, 1989, NEUROSCIENCE, V32, P637, DOI 10.1016/0306-4522(89)90285-6
   CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106
   Cobb WS, 2003, J NEUROCHEM, V84, P576, DOI 10.1046/j.1471-4159.2003.01546.x
   Consolo S, 1996, J PHARMACOL EXP THER, V277, P823
   Cornea-Hebert V, 1999, J COMP NEUROL, V409, P187, DOI 10.1002/(SICI)1096-9861(19990628)409:2<187::AID-CNE2>3.0.CO;2-P
   Cransac H, 1998, HEARING RES, V118, P151, DOI 10.1016/S0378-5955(98)00031-8
   EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H
   Ehret G, 2003, NEUROREPORT, V14, P1365, DOI 10.1097/01.wnr.0000078545.07662.85
   Fletcher A, 1996, BEHAV BRAIN RES, V73, P337
   Foehring RC, 2002, J NEUROSCI, V22, P8238
   Hage SR, 2003, EUR J NEUROSCI, V18, P2301, DOI 10.1046/j.1460-9568.2003.02945.x
   HARLAN R, 2000, ARO ABSTR, V23, P113
   HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2
   Heidmann DEA, 1998, NEUROPHARMACOLOGY, V37, P1621, DOI 10.1016/S0028-3908(98)00070-7
   HOYER D, 1994, PHARMACOL REV, V46, P157
   HURLEY L, 2001, J COMP NEUROL, V435, P77
   Hurley LM, 2005, J NEUROSCI, V25, P7876, DOI 10.1523/JNEUROSCI.1178-05.2005
   Hurley LM, 1999, J NEUROSCI, V19, P8071
   Hurley LM, 2001, J NEUROPHYSIOL, V85, P828
   Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007
   HURLEY LM, 2006, J NEUROPHYSIOL
   Hurley LM, 2005, J COMP PHYSIOL A, V191, P535, DOI 10.1007/s00359-005-0623-y
   IRVINE DRF, 1992, MAMMALIAN AUDITORY P, V2, P153
   Itzhak Y, 2006, PHARMACOL THERAPEUT, V109, P246, DOI 10.1016/j.pharmthera.2005.08.004
   JACOBS BL, 1978, BRAIN RES, V147, P149, DOI 10.1016/0006-8993(78)90779-5
   Jen P, 2006, BRAIN RES, V1091, P207, DOI 10.1016/j.brainres.2006.01.055
   Kaiser A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P71, DOI 10.1007/978-1-4419-8712-9_7
   Kirifides ML, 2001, J COMP NEUROL, V435, P325, DOI 10.1002/cne.1033
   KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H
   LAFERRERE B, 1989, BRAIN RES, V504, P258, DOI 10.1016/0006-8993(89)91365-6
   Liu JX, 2003, HEARING RES, V175, P45, DOI 10.1016/S0378-5955(02)00708-6
   Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6
   Marsh RA, 2002, J NEUROSCI, V22, P10449
   Mooney RD, 1996, PROG BRAIN RES, V112, P57
   Morales Marisela, 1998, Journal of Comparative Neurology, V402, P385
   Nielsen K, 2006, SYNAPSE, V59, P270, DOI 10.1002/syn.20240
   OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104
   Oliver DL, 1992, MAMMALIAN AUDITORY P, P168
   Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059
   Pobbe RLH, 2005, PSYCHOPHARMACOLOGY, V183, P314, DOI 10.1007/s00213-005-0196-z
   Pollak GD, 2003, TRENDS NEUROSCI, V26, P33, DOI 10.1016/S0166-2236(02)00009-7
   Rothman RB, 2003, J PHARMACOL EXP THER, V305, P1191, DOI 10.1124/jpet.103.049684
   Rothman RB, 1999, CIRCULATION, V100, P869
   ROWLAND NE, 1986, PROG NEUROBIOL, V27, P13, DOI 10.1016/0301-0082(86)90011-0
   Sakai K, 2001, EUR J NEUROSCI, V13, P103, DOI 10.1046/j.1460-9568.2001.01364.x
   Santana N, 2004, CEREB CORTEX, V14, P1100, DOI 10.1093/cercor/bhh070
   Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106
   SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1
   SCHWARTZ D, 1989, BRAIN RES, V482, P261, DOI 10.1016/0006-8993(89)91189-X
   Sheibani V, 2006, BRAIN RES BULL, V68, P430, DOI 10.1016/j.brainresbull.2005.09.017
   Tao R, 2002, EUR J PHARMACOL, V445, P69, DOI 10.1016/S0014-2999(02)01751-X
   THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9
   TO ZP, 1995, BRIT J PHARMACOL, V115, P107
   van der Stelt HM, 2005, BIOL PSYCHIAT, V57, P1061, DOI 10.1016/j.biopsych.2004.12.040
   VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305
   Vilaro MT, 2005, J COMP NEUROL, V484, P418, DOI 10.1002/cne.20447
   WATERHOUSE BD, 1990, BRAIN RES, V514, P276, DOI 10.1016/0006-8993(90)91422-D
   WATERHOUSE BD, 1986, BRAIN RES BULL, V17, P507, DOI 10.1016/0361-9230(86)90218-2
   WENSTRUP JJ, 1985, HEARING RES, V17, P191, DOI 10.1016/0378-5955(85)90021-8
   WENSTRUP JJ, 1986, J NEUROSCI, V6, P962
   YUAN XB, 2003, NAT CELL BIOL, V5, P1
   ZOOK JM, 1985, J COMP NEUROL, V237, P307, DOI 10.1002/cne.902370303
   Zwiers MP, 2004, J NEUROSCI, V24, P4145, DOI 10.1523/JNEUROSCI.0199-04.2004
NR 71
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 82
EP 94
DI 10.1016/j.heares.2007.01.023
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900009
PM 17339086
ER

PT J
AU Zhi, M
   Ratnanather, JT
   Ceyhan, E
   Popel, AS
   Brownell, WE
AF Zhi, Man
   Ratnanather, J. Tilak
   Ceyhan, Elvan
   Popel, Aleksander S.
   Brownell, William E.
TI Hypotonic swelling of salicylate-treated cochlear outer hair cells
SO HEARING RESEARCH
LA English
DT Article
DE hydraulic conductivity; extracisternal space; subsurface cisterna
ID GUINEA-PIG COCHLEA; LATERAL WALL; PLASMA-MEMBRANE; HYDRAULIC
   CONDUCTIVITY; WATER PERMEABILITY; BENDING STIFFNESS; ELASTIC-MODULI;
   MOTOR PROTEIN; ELECTROMOTILITY; MODEL
AB The outer hair cell (OHC) is a hydrostat with a low hydraulic conductivity of P-f = 3 x 10(-4) cm/s across the plasma membrane (PM) and subsurface cisterna that make up the OHC's lateral wall. The SSC is structurally and functionally a transport barrier in normal cells that is known to be disrupted by salicylate. The effect of sodium salicylate on P-f is determined from osmotic experiments in which isolated, control and salicylate-treated OHCs were exposed to hypotonic solutions in a constant flow chamber. The value of P-f = 3.5 +/- 0.5 x 10(-4) cm/s (mean +/- s.c.m., n = 34) for salicylate-treated OHCs was not significantly different from P-f = 2.4 +/- 0.3 x 10(-4) cm/s (mean +/- s.e.m., n = 31) for untreated OHCs (p =.3302). Thus Pf is determined by the PM and is unaffected by salicylate treatment. The ratio of longitudinal strain to radial strain epsilon(z)/epsilon(c) = -0.76 for salicylate-treated OHCs was significantly smaller (P = .0 143) from -0.72 for untreated OHCs, and is also independent of the magnitude of the applied osmotic challenge. Salicylate-treated OHCs took longer to attain a steady-state volume which is larger than that for untreated OHCs and increased in volume by 8-15% prior to hypotonic perfusion unlike sodium alpha-ketoglutarate-treated OHCs. It is suggested that depolymerization of cytoskeletal proteins and/or glycogen may be responsible for the large volume increase in salicylate-treated OHCs as well as the different responses to different modes of application of the hypotonic solution. (c) 2007 Elsevier B.V. All rights reserved.
C1 Johns Hopkins Univ, Ctr Imaging Sci, Whitaker Biomed Engn Inst, Baltimore, MD 21218 USA.
   Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, Houston, TX 77030 USA.
   Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA.
   Koc Univ, Dept Math, TR-34450 Istanbul, Turkey.
RP Ratnanather, JT (reprint author), Johns Hopkins Univ, Ctr Imaging Sci, Whitaker Biomed Engn Inst, Clark 301,3400 N Charles St, Baltimore, MD 21218 USA.
EM tilak@cis.jhu.edu
RI Ratnanather, J. Tilak/A-3362-2010
OI Ratnanather, J. Tilak/0000-0002-8631-489X
CR Belyantseva IA, 2000, J NEUROSCI, V20, P8996
   Box G. E. P., 1994, TIME SERIES ANAL
   Brownell WE, 2001, ANNU REV BIOMED ENG, V3, P169, DOI 10.1146/annurev.bioeng.3.1.169
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   BROWNELL WE, 2002, INNER EAR BIOL BASIC, P25
   BROWNELL WE, 1994, ACTIVE HEARING, P167
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   BROWNELL WE, 1999, VOLTA REV, V99, P9
   BROWNELL WE, 2006, VERTEBRATE HAIR CELL, P313
   BROWNELL WE, 1982, HEARING RES, V6, P335, DOI 10.1016/0378-5955(82)90064-8
   Chambard JM, 2003, J PHYSIOL-LONDON, V550, P667, DOI 10.1113/jphysiol.2003.039321
   Chertoff M. E., 1994, AM J PHYSIOL, V266, P467
   CRIST JR, 1993, HEARING RES, V69, P194, DOI 10.1016/0378-5955(93)90107-C
   DALLOS P, 1992, J NEUROSCI, V12, P4575
   DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066
   DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4
   Ermilov SA, 2005, J NEUROPHYSIOL, V94, P2105, DOI 10.1152/jn.00414.2005
   GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025
   Hallworth R, 1997, HEARING RES, V114, P204, DOI 10.1016/S0378-5955(97)00167-6
   Holley M. C., 1996, COCHLEA, P386
   HOLM S, 1979, SCAND J STAT, V6, P65
   IWASA KH, 1991, NEUROSCI LETT, V133, P171, DOI 10.1016/0304-3940(91)90562-8
   Kakehata S, 2000, Auris Nasus Larynx, V27, P349, DOI 10.1016/S0385-8146(00)00081-X
   Kakehata S, 1996, J NEUROSCI, V16, P4881
   Krylov AV, 2001, J GEN PHYSIOL, V118, P333, DOI 10.1085/jgp.118.4.333
   Le Grimellec C, 2002, J COMP NEUROL, V451, P62, DOI 10.1002/cne.10338
   Lue AJC, 1999, HEARING RES, V135, P163, DOI 10.1016/S0378-5955(99)00102-1
   Manlys BFJ, 1994, MULTIVARIATE STAT ME
   Marrink SJ, 2001, J AM CHEM SOC, V123, P8638, DOI 10.1021/ja0159618
   MONGAN E, 1973, JAMA-J AM MED ASSOC, V226, P142, DOI 10.1001/jama.226.2.142
   Morimoto N, 2002, AM J PHYSIOL-CELL PH, V282, pC1076, DOI 10.1152/ajpcell.00210.2001
   MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483
   Oghalai JS, 1998, J NEUROSCI, V18, P48
   Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
   Patuzzi R., 1996, COCHLEA, P186
   POLLICE PA, 1993, HEARING RES, V70, P187, DOI 10.1016/0378-5955(93)90157-V
   Raphael RM, 1999, BIOPHYS J, V76, pA273
   Raphael RM, 2000, BIOPHYS J, V78, P2844
   Ratnanather JT, 1996, J ACOUST SOC AM, V99, P1025, DOI 10.1121/1.414631
   Ratnanather JT, 1996, HEARING RES, V96, P33
   Ratnanather JT, 2000, J MATH BIOL, V40, P372, DOI 10.1007/s002850050185
   RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309
   Rybalchenko V, 2003, J PHYSIOL-LONDON, V547, P873, DOI 10.1113/jphysiol.2002.036434
   SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403
   SLEPECKY NB, 1992, J NEUROCYTOL, V21, P374, DOI 10.1007/BF01191705
   Snyder KV, 2003, SENSORS AND SENSING IN BIOLOGY AND ENGINEERING, P71
   Spector AA, 1998, J ACOUST SOC AM, V103, P1007, DOI 10.1121/1.421217
   Spector AA, 2005, ANN BIOMED ENG, V33, P991, DOI 10.1007/s10439-005-5749-0
   STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E
   Thode H. C., 2002, TESTING NORMALITY
   TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739
   Zar JH, 1984, BIOSTATISTICAL ANAL
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   Zhou Y, 2005, BIOPHYS J, V89, P1789, DOI 10.1529/biophysj.104.054510
NR 54
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 95
EP 104
DI 10.1016/j.heares.2007.02.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900010
PM 17400411
ER

PT J
AU Zheng, Y
   Baek, JH
   Smith, PF
   Darlington, CL
AF Zheng, Yiwen
   Baek, Jean-Ha
   Smith, Paul F.
   Darlington, Cynthia L.
TI Cannabinoid receptor down-regulation in the ventral cochlear nucleus in
   a salicylate model of tinnitus
SO HEARING RESEARCH
LA English
DT Article
DE tinnitus; cochlear nucleus; salicylate; cannabinoid receptors; rat
ID UNILATERAL VESTIBULAR DEAFFERENTATION; LOCALIZATION; ACTIVATION; SYSTEM;
   BRAIN; RATS
AB Cannabinoid CB1 receptors have not been systematically investigated in the brainstem cochlear nucleus, nor have they been investigated in relation to tinnitus. Using immunohistochemistry and cell counting, we showed that a large number of neurons in the rat cochlear nucleus possess cannabinoid CB1 receptors. Following salicylate injections that induced the behavioural manifestations of tinnitus, the number of principal neurons in the ventral cochlear nucleus expressing CB1 receptors significantly decreased, while the number of CB1-positive principal neurons in the dorsal cochlear nucleus did not change significantly. These results suggest that CB I receptors in the cochlear nucleus may be important for auditory function and that a down-regulation of CB I receptors in the ventral cochlear nucleus may be related to the development of tinnitus. (c) 2007 Elsevier B.V. All rights reserved.
C1 Univ Otago, Dept Pharmacol & Toxicol, Sch Med Sci, Dunedin, New Zealand.
RP Smith, PF (reprint author), Univ Otago, Dept Pharmacol & Toxicol, Sch Med Sci, POB 913, Dunedin, New Zealand.
EM paul.smith@stonebow.otago.ac.nz
CR Ashton JC, 2004, BRAIN RES, V1021, P264, DOI 10.1016/j.brainres.2004.06.065
   BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302
   Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
   Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
   Glass M, 1997, NEUROSCIENCE, V77, P299, DOI 10.1016/S0306-4522(96)00428-9
   GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229
   HERKENHAM M, 1991, J NEUROSCI, V11, P563
   JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811
   Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   Leterrier C, 2004, J BIOL CHEM, V279, P36013, DOI 10.1074/jbc.M403990200
   Leterrier C, 2006, J NEUROSCI, V26, P3141, DOI 10.1523/JNEUROSCI.5437-05.2006
   Lutz B, 2004, BIOCHEM PHARMACOL, V68, P1691, DOI 10.1016/j.bcp.2004.07.007
   Meredith S, 1999, J REPROD FERTIL, V117, P339, DOI 10.1530/jrf.0.1170339
   Moller A R, 2000, J Am Acad Audiol, V11, P115
   OORSCHOT DE, 1994, PROG NEUROBIOL, V44, P233, DOI 10.1016/0301-0082(94)90040-X
   Parnes SM, 1997, EUR ARCH OTO-RHINO-L, V254, P406, DOI 10.1007/BF02439968
   Paxinos G., 1998, RAT BRAIN STEREOTAXI
   Sato K, 1998, MICROSC RES TECHNIQ, V41, P217
   Simpson JJ, 1999, TRENDS PHARMACOL SCI, V20, P12, DOI 10.1016/S0165-6147(98)01281-4
   Wallace MJ, 2003, J PHARMACOL EXP THER, V307, P129, DOI 10.1124/jpet.103.051920
   Winer BJ, 1991, STAT PRINCIPLES EXPT
   Zhang R, 2005, BRAIN RES, V1037, P107, DOI 10.1016/j.brainres.2005.01.018
NR 23
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 105
EP 111
DI 10.1016/j.heares.2007.01.028
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900011
PM 17376618
ER

PT J
AU He, WX
   Nuttall, AL
   Ren, TY
AF He, Wenxuan
   Nuttall, Alfred L.
   Ren, Tianying
TI Two-tone distortion at different longitudinal locations on the basilar
   membrane
SO HEARING RESEARCH
LA English
DT Article
DE basilar membrane; traveling wave; otoacoustic emission; distortion
   products; laser interferometer
ID PRODUCT OTOACOUSTIC EMISSIONS; GUINEA-PIG; MAMMALIAN COCHLEA; INNER-EAR;
   RESPONSES; PRESSURE; 2F1-F2; PROPAGATION; F2-F1; WAVE
AB When listening to two tones at frequency f(1) and f(2) (f(2) > f(1)), one can hear pitches not only at f(1) and f(2) but also at distortion frequencies f(2)-f(1),(n + 1)f(1) - nf(2), and (n + 1)f(2) - nf(1) (n = 1,2,3...). Such two-tone distortion products (DPs) also can be measured in the car canal using a sensitive microphone. These ear-generated sounds are called otoacoustic emissions (OAEs). In spite of the common applications of OAEs, the mechanisms by which these emissions travel out of the cochlea remain unclear. In a recent study, the basilar membrane (BM) vibration at 2f(1) - f(2) was measured as a function of the longitudinal location, using a scanning laser interferometer. The data indicated a forward traveling wave and no measurable backward wave. However, this study had a relatively high noise floor and high stimulus intensity. In the current study, the noise floor of the BM measurement was significantly decreased by using reflective beads on the BM, and the vibration was measured at relatively low intensities at more than one longitudinal location. The results show that the DP phase at a basal location leads the phase at an apical location. The data indicate that the emission travels along the BM from base to apex as a forward traveling wave, and no backward traveling wave was detected under the current experimental conditions. (c) 2007 Elsevier B.V. All rights reserved.
C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol & Head & Neck Surg, Portland, OR 97239 USA.
   Xi An Jiao Tong Univ, Dept Otolaryngol, Hosp 1, Sch Med, Xian 710061, Shaanxi, Peoples R China.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Xi An Jiao Tong Univ, Sch Med, Dept Physiol, Xian 710061, Peoples R China.
   Shanghai Jiao Tong Univ, Dept Otolaryngol, Renji Hosp, Shanghai 200030, Peoples R China.
RP Ren, TY (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol & Head & Neck Surg, Portland, OR 97239 USA.
EM rent@ohsu.edu
CR Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x
   Cooper C, 1999, CHEM ENG-NEW YORK, V106, P64
   Cooper NP, 1997, J NEUROPHYSIOL, V78, P261
   COOPER NP, 2004, ASS RES OT 27 MIDW R, P342
   Dong W, 2005, J ACOUST SOC AM, V117, P2999, DOI 10.1121/1.1880812
   GIBIAN GL, 1982, HEARING RES, V6, P35, DOI 10.1016/0378-5955(82)90006-5
   GOLDSTEI.JL, 1968, PR INST ELECTR ELECT, V56, P981, DOI 10.1109/PROC.1968.6449
   GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   HALL JL, 1972, J ACOUST SOC AM, V51, P1863, DOI 10.1121/1.1913045
   KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
   KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
   KHANNA SM, 1989, ACTA OTO-LARYNGOL, P69
   KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297
   KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162
   Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197
   LONSBURYMARTIN BL, 1991, J SPEECH HEAR RES, V34, P964
   Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4
   MARCHAND P, 1983, REV SCI INSTRUM, V54, P1034, DOI 10.1063/1.1137498
   NARAYAN SS, 1998, ASS RES OT 21 MIDW R, P181
   NUTTALL AL, 1990, LECT NOTES BIOMATH, V87, P288
   NUTTALL AL, 1990, J ACOUST SOC AM, V87, P782, DOI 10.1121/1.398890
   Olson ES, 1999, NATURE, V402, P526, DOI 10.1038/990092
   Probst R, 1990, Adv Otorhinolaryngol, V44, P1
   Ren TY, 2004, NAT NEUROSCI, V7, P333, DOI 10.1038/nn1216
   Ren TY, 2006, J NEUROPHYSIOL, V96, P2785, DOI 10.1152/jn.00374.2006
   Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699
   RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2
   ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0
   ROBLES L, 1992, MECH BIOPHYSICS HEAR, P304
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Robles L, 1997, J NEUROPHYSIOL, V77, P2385
   Ruggeri ZM, 2004, J THROMB HAEMOST, V2, P2, DOI 10.1111/j.1538-7836.2003.00523.x
   Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
   SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303
   Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867
   SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152
   Tubis A, 2000, J ACOUST SOC AM, V107, P2112, DOI 10.1121/1.428493
   Vetesnik A, 2006, ORL J OTO-RHINO-LARY, V68, P347, DOI 10.1159/000095277
   WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8
NR 40
TC 21
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 112
EP 122
DI 10.1016/j.heares.2007.01.026
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900012
PM 17353104
ER

PT J
AU Chapla, ME
   Nowacek, DP
   Rommel, SA
   Sadler, VM
AF Chapla, Marie E.
   Nowacek, Douglas P.
   Rommel, Sentiel A.
   Sadler, Valerie M.
TI CT scans and 3D reconstructions of Florida manatee (Trichechus manatus
   latirostris) heads and ear bones
SO HEARING RESEARCH
LA English
DT Article
DE manatee; computerized tomography; tissue density; ear anatomy; hearing
ID TYMPANIC MEMBRANE VIBRATIONS; MIDDLE-EAR; SOUND-VELOCITY; SPERM-WHALE;
   TISSUES; SIRENIA; HEARING; MECHANICS; LIPIDS
AB The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m(3)) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (P < 0.05). The squamosal bone was significantly less dense than the other bones of the head (p < 0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. (c) 2007 Elsevier B.V. All rights reserved.
C1 Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96822 USA.
   Univ N Carolina, Wilmington, NC 28403 USA.
   Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA.
   Florida Vet Specialists & Canc Treatment Ctr, Tampa, FL 33614 USA.
   Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, Marine Mammal Pathobiol Lab, St Petersburg, FL 33711 USA.
RP Chapla, ME (reprint author), Pacific Isl Fisheries Sci Ctr, 2570 Dole St, Honolulu, HI 96822 USA.
EM marie.chapla@noaa.gov; nowacek@ocean.fsu.edu; rommels@uncw.edu
CR Ames AL, 2002, COMP BIOCHEM PHYS B, V132, P625, DOI 10.1016/S1096-4959(02)00082-9
   Aroyan J. L., 1996, THESIS U CALIFORNIA
   Brekhovskikh L. M., 1990, ACOUSTICS LAYERED ME
   BULLOCK TH, 1982, J COMP PHYSIOL, V148, P547
   Caldwell DK, 1985, HDB MARINE MAMMALS, V3, P33
   CHAPLA ME, 2003, 15 BIENN MAR MAMM C
   CHEN CT, 1977, J ACOUST SOC AM, V62, P1129, DOI 10.1121/1.381646
   DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8
   Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2
   DOMNING D, 1978, ACTA AMAZON S1, V8
   DOMNING DP, 1991, MAR MAMMAL SCI, V7, P331, DOI 10.1111/j.1748-7692.1991.tb00111.x
   Domning Daryl P., 2001, P151
   Fawcett DW, 1942, AM J ANAT, V71, P271, DOI 10.1002/aja.1000710206
   FAY JP, 1999, P INT S REC DEV AUD, P3
   Fischer A, 2005, Z GESCHICHTSWISS, V53, P365
   Fleischer G, 1978, EVOLUTIONARY PRINCIP
   FLEWELLEN CG, 1978, DEEP-SEA RES, V25, P269, DOI 10.1016/0146-6291(78)90592-1
   FRASER F. C., 1960, BULL BRIT MUS [NAT HIST] ZOOL, V7, P1
   Gerstein ER, 1999, J ACOUST SOC AM, V105, P3575, DOI 10.1121/1.424681
   Goodpaster BH, 2000, ANN NY ACAD SCI, V904, P18
   Goold JC, 2000, J MAR BIOL ASSOC UK, V80, P535, DOI 10.1017/S002531540000223X
   HARTLINE PH, 1971, J EXP BIOL, V54, P349
   Hemila S, 1999, HEARING RES, V133, P82, DOI 10.1016/S0378-5955(99)00055-6
   Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39
   HENSON PW, 1987, PHYS SCI MED, V10, P162
   Henwood SM, 1999, CLIN CT TECHNIQUES P
   HETHERINGTON TE, 1982, J EXP BIOL, V98, P49
   International Commission on Radiation Units and Measurements [ICRU], 1998, 61 ICRU
   Kak A. C., 1988, PRINCIPLES COMPUTERI
   Kastak D, 1998, J ACOUST SOC AM, V103, P2216, DOI 10.1121/1.421367
   KETTEN DR, 1992, MARINE MAMMAL SENSORY SYSTEMS, P77
   KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050
   Kinsler L., 2000, FUNDAMENTALS ACOUSTI, Vfourth
   Kirikae I., 1960, STRUCTURE FUNCTION M
   KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4
   LENHARDT M L, 1983, Journal of Auditory Research, V23, P119
   LENHARDT M L, 1982, Journal of Auditory Research, V22, P153
   Lim D J, 1968, Acta Otolaryngol, V66, P515, DOI 10.3109/00016486809126316
   Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286
   Mast T. D., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1336896
   Merchant SN, 1997, AM J OTOL, V18, P139
   NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8
   Nummela S, 1999, HEARING RES, V133, P71, DOI 10.1016/S0378-5955(99)00054-4
   Pilson M. E. Q, 1998, INTRO CHEM SEA
   Popper AN, 2000, FISH RES, V46, P15, DOI 10.1016/S0165-7836(00)00129-6
   Rommel S, 2000, ANAT REC, V259, P41
   Shrapnell HJ, 1832, LONDON MED GAZ, V10, P120
   Soldevilla MS, 2005, J EXP BIOL, V208, P2319, DOI 10.1242/jeb.01624
   VARANASI U, 1971, BIOCHIM BIOPHYS ACTA, V231, P415, DOI 10.1016/0005-2760(71)90158-5
   Wever EG, 1954, PHYSL ACOUSTICS
   Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0
   WOODARD HQ, 1986, BRIT J RADIOL, V59, P1209
NR 52
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 123
EP 135
DI 10.1016/j.heares.2007.01.029
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900013
PM 17420106
ER

PT J
AU Ries, DT
AF Ries, Dennis T.
TI The influence of noise type and level upon stochastic resonance in human
   audition
SO HEARING RESEARCH
LA English
DT Article
DE stochastic resonance; threshold; hearing; noise; auditory
ID MECHANOELECTRICAL TRANSDUCTION; INFORMATION; THRESHOLD; CRAYFISH;
   SYSTEMS; SIGNAL
AB The present study examined the extent to which noise type and fine differentiations in noise level produced improvements in auditory threshold via the mechanism of stochastic resonance. Participants' thresholds for a sinusoidal signal (2.0 kHz) were estimated using a three interval forced choice task. These measures were obtained in quiet, in the presence of Gaussian noise, and in the presence of uniform (flat spectrum, zero-mean amplitude distribution) noise. The noises were presented at several levels from audible to inaudible (0.0 to -35.0 dB/Hz). The present results show that thresholds improved by a small, but significant, amount for noise levels just below subjects' thresholds and that these improvements are not due solely to a simple summation of power between the signal and the noise. In addition, a subset of subjects showed larger and significant threshold increases at very low noise levels (-30.0 to -35.0 dB/Hz). The outcomes suggest that either Gaussian or uniform noise produces equivalent threshold improvements, SR may already be nearly optimized in persons with normal hearing, and that the maximum benefit possible from SR occurs over a narrow range of noise levels. (c) 2007 Elsevier B.V. All rights reserved.
C1 Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W221, Athens, OH 45701 USA.
RP Ries, DT (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W221, Athens, OH 45701 USA.
EM ries@ohio.edu
CR Behnam SE, 2003, HEARING RES, V186, P91, DOI 10.1016/S0378-5955(03)00307-1
   Bibikov NG, 2002, HEARING RES, V173, P21, DOI 10.1016/S0378-5955(02)00456-2
   ChapeauBlondeau F, 1997, PHYS LETT A, V232, P41, DOI 10.1016/S0375-9601(97)00350-2
   DOUGLASS JK, 1993, NATURE, V365, P337, DOI 10.1038/365337a0
   Ehrenberger K, 1999, ACTA OTO-LARYNGOL, V119, P166
   Guz SA, 2000, PHYS LETT A, V274, P104, DOI 10.1016/S0375-9601(00)00547-8
   Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597
   Jaramillo F, 2000, CHAOS SOLITON FRACT, V11, P1869, DOI 10.1016/S0960-0779(99)00123-X
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Longtin A, 2000, CHAOS SOLITON FRACT, V11, P1835, DOI 10.1016/S0960-0779(99)00120-4
   Morse RP, 1999, HEARING RES, V133, P107, DOI 10.1016/S0378-5955(99)00062-3
   Morse RP, 1999, HEARING RES, V133, P120, DOI 10.1016/S0378-5955(99)00063-5
   Moss F, 2004, CLIN NEUROPHYSIOL, V115, P267, DOI 10.1016/j.clinph.2003.09.014
   STOCKS NG, 2001, PHYS REV, DOI ARTN 041114
   Stocks NG, 2000, PHYS REV LETT, V84, P2310, DOI 10.1103/PhysRevLett.84.2310
   STOCKS NG, 1995, NUOVO CIMENTO D, V17, P925, DOI 10.1007/BF02451850
   WIESENFELD K, 1995, NATURE, V373, P33, DOI 10.1038/373033a0
   Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6
NR 18
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 136
EP 143
DI 10.1016/j.heares.2007.01.027
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900014
PM 17350775
ER

PT J
AU Meyer, K
   Rouiller, EM
   Loquet, G
AF Meyer, K.
   Rouiller, E. M.
   Loquet, G.
TI Direct comparison between properties of adaptation of the auditory nerve
   and the ventral cochlear nucleus in response to repetitive clicks
SO HEARING RESEARCH
LA English
DT Article
DE auditory evoked potentials; brainstem; click; rat; unanaesthetized
ID SHORT-TERM ADAPTATION; BRAIN-STEM IMPLANT; BUSHY CELL AXONS; NEURAL
   ADAPTATION; FIBER RESPONSES; HORSERADISH-PEROXIDASE; ACOUSTIC STIMULI;
   GUINEA-PIG; LONG-TERM; CAT
AB The present study was designed to complete two previous reports [Loquet, G., Rouiller, E.M., 2002. Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat. Hear. Res. 171, 72-81; Loquet, G., Meyer, K., Rouiller, E.M., 2003. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat. Exp. Brain Res. 153, 436-442] on neural adaptation properties in the auditory system of the rat. Again, auditory near-field evoked potentials (ANEPs) were recorded in response to 250-ms trains of clicks from an electrode chronically implanted in the ventral cochlear nucleus (VCN). Up to now, our interest had focused on the adaptive behavior of the first one (N-1) of the two negative ANEP components. A re-examination of our data for the second negative component (N-2) was now undertaken. Results show that the adaptation time course observed for N-2 displayed the same three-stage pattern previously reported for NJ. Similarly, adaptation became more pronounced and occurred faster as stimulus intensity and/or repetition rate were increased. Based on latency data which suggest NJ and N2 to be mainly due to the activity of auditory-nerve (AN) fibers and cochlear nucleus neurons, respectively, it was concluded that neural adaptation assessed by gross-potentials was similar in the AN and VCN. This finding is meaningful in the context of our search to restore normal adaptation phenomena via electro-auditory hearing with an auditory brainstem implant on the same lines as our work in cochlear implants. (c) 2007 Elsevier B.V. All rights reserved.
C1 Univ Fribourg, Dept Med, Unit Physiol, CH-1700 Fribourg, Switzerland.
RP Loquet, G (reprint author), Univ Fribourg, Dept Med, Unit Physiol, Chemin Musee 5, CH-1700 Fribourg, Switzerland.
EM gerard.loquet@unifr.ch
CR ABBAS PJ, 1984, J ACOUST SOC AM, V75, P1541, DOI 10.1121/1.390825
   ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405
   Bourk TR, 1976, THESIS MIT CAMBRIDGE
   BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302
   BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826
   CANT NB, 1979, NEUROSCIENCE, V4, P1909, DOI 10.1016/0306-4522(79)90065-4
   CHIMENTO TC, 1990, J ACOUST SOC AM, V88, P857, DOI 10.1121/1.399735
   CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296
   CHIMENTO TC, 1992, HEARING RES, V62, P131, DOI 10.1016/0378-5955(92)90178-P
   EGGERMON.JJ, 1973, AUDIOLOGY, V12, P193
   EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8
   EVANS EF, 1975, HDB SENSORY PHYSL, V2, P1
   FELDMAN ML, 1969, J COMP NEUROL, V137, P267, DOI 10.1002/cne.901370303
   FitzGerald JV, 2001, HEARING RES, V159, P85, DOI 10.1016/S0378-5955(01)00325-2
   FRIAUF E, 1988, EXP BRAIN RES, V73, P263
   GORGA MP, 1981, J ACOUST SOC AM, V70, P1310, DOI 10.1121/1.387145
   HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
   Haenggeli A, 1998, AUDIOLOGY, V37, P353
   HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083
   HUANG CM, 1981, ELECTROEN CLIN NEURO, V52, P394, DOI 10.1016/0013-4694(81)90021-3
   HUANG CM, 1980, CLIN NEUROPHYSIOL, V49, P15
   Javel E, 1996, J ACOUST SOC AM, V99, P1040, DOI 10.1121/1.414633
   Kiang NYS, 1965, RES MONOGRAPH, V35
   KIANG NYS, 1965, ANN OTO RHINOL LARYN, V74, P463
   Loquet G, 2004, AUDIOL NEURO-OTOL, V9, P144, DOI 10.1159/000077266
   Loquet G, 2003, EXP BRAIN RES, V153, P436, DOI 10.1007/s00221-003-1689-9
   Loquet G, 2002, HEARING RES, V171, P72, DOI 10.1016/S0378-5955(02)00394-5
   McMahon CM, 2004, HEARING RES, V190, P75, DOI 10.1016/S0378-5955(03)00403-9
   MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8
   MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812
   MOLLER AR, 1981, EXP BRAIN RES, V43, P93
   MOLLER AR, 1981, BRAIN RES, V207, P184
   MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x
   OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
   OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103
   Otto SR, 2002, J NEUROSURG, V96, P1063, DOI 10.3171/jns.2002.96.6.1063
   Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6
   PEAKE WT, 1962, J ACOUST SOC AM, V34, P571, DOI 10.1121/1.1918170
   PEAKE WT, 1962, J ACOUST SOC AM, V34, P562, DOI 10.1121/1.1918169
   PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220
   RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408
   RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5
   Romand R, 1997, CENTRAL AUDITORY SYS, P97
   ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203
   Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3
   ROUILLER EM, 1986, J COMP NEUROL, V249, P261, DOI 10.1002/cne.902490210
   RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304
   Schwartz MS, 2003, STEREOT FUNCT NEUROS, V81, P110, DOI 10.1159/000075113
   SHAW NA, 1990, EXP BRAIN RES, V79, P217
   SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
   SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305
   SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305
   SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260
   SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098
   SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166
   Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
   WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7
   Wilson B. S., 1997, AM J OTOL, V18, P30
   YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8
NR 59
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 144
EP 155
DI 10.1016/j.heares.2007.02.002
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900015
PM 17391881
ER

PT J
AU Anderson, LA
   Wallace, MN
   Palmer, AR
AF Anderson, L. A.
   Wallace, M. N.
   Palmer, A. R.
TI Identification of subdivisions in the medial geniculate body of the
   guinea pig
SO HEARING RESEARCH
LA English
DT Article
DE auditory thalamus; cytochrome oxidase; acetylcholinesterase; frequency
   response area; characteristic frequency
ID CYTOCHROME-OXIDASE ACTIVITY; DORSAL COCHLEAR NUCLEUS; AUDITORY THALAMUS;
   RESPONSE PROPERTIES; FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION;
   SINGLE UNITS; PARVALBUMIN-IMMUNOREACTIVITY; INFERIOR COLLICULUS; VENTRAL
   DIVISION
AB The accurate and reliable identification of subdivisions within the auditory thalamus is important for future studies of this nucleus. However, in the guinea pig, there has been no agreement on the number or nomenclature of subdivisions within the main nucleus of the auditory thalamus, the medial geniculate body (MGB). Thus, we assessed three staining methods in the guinea pig MGB and concluded that cytochrome oxidase (CYO) histochemistry provides a clear and reliable method for defining MGB subdivisions. By combining CYO with acetylcbolinesterase staining and extensive physiological mapping we defined five separate divisions, all of which respond to auditory stimuli. Coronal sections stained for CYO revealed a moderate to darkly-stained oval core. This area (the ventral MGB) contained a high proportion (61%) of V-shaped tuning curves and a tonotopic organisation of characteristic frequencies. It was surrounded by four smaller areas that contained darkly stained somata but had a paler neuropil. These areas, the dorsolateral and suprageniculate (which together form the dorsal MGB), the medial MGB and the shell MGB, did not have any discernable tonotopic frequency gradient and contained a smaller proportion of V-shaped tuning curves. This suggests that CYO permits the identification of core and belt areas within the guinea pig MGB. (c) 2007 Elsevier B.V. All rights reserved.
C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England.
RP Anderson, LA (reprint author), Ctr Auditory Res, 332 Grays Inn Rd, London WC1X 8EE, England.
EM lucy.anderson@ucl.ac.uk
CR AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275
   AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365
   ANDERSON LA, 2005, EUR J NEUROSCI, V24, P491
   BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414
   BUCHWALD J, 1987, AUDITORY PATHWAY STR, P319
   BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511
   CAJAL SR, 1995, HISTOLOGY NERVOUS SY, V2, P234
   CALFORD MB, 1983, J NEUROSCI, V3, P2350
   CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013
   CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9
   COVENAS R, 1991, ARCH ITAL BIOL, V129, P199
   Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3
   CRUIKSHANK SJ, 1992, BEHAV NEUROSCI, V106, P471, DOI 10.1037/0735-7044.106.3.471
   Davis KA, 1999, SHOCK, V11, P1, DOI 10.1097/00024382-199906001-00004
   DEBIASI S, 1994, J COMP NEUROL, V348, P556, DOI 10.1002/cne.903480406
   DERIBAUPIERRE F, 1997, CENTRAL AUDITORY SYS
   De Venecia RK, 1998, J COMP NEUROL, V400, P349
   DEVENECIA RK, 1995, J COMP NEUROL, V359, P595, DOI 10.1002/cne.903590407
   Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X
   EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5
   EVANS EF, 1973, EXP BRAIN RES, V17, P402
   GONZALEZLIMA F, 1994, NEUROSCIENCE, V63, P559, DOI 10.1016/0306-4522(94)90550-9
   GONZALEZLIMA F, 1994, BRAIN RES, V660, P34, DOI 10.1016/0006-8993(94)90836-2
   Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6
   Halverson HE, 2006, BEHAV NEUROSCI, V120, P880, DOI 10.1037/0735-7044.120.4.880
   He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002
   He JF, 2001, J NEUROSCI, V21, P8672
   Jones EG, 1985, THALAMUS
   MOLINARI M, 1995, J COMP NEUROL, V362, P171, DOI 10.1002/cne.903620203
   MOREL A, 1987, EXP BRAIN RES, V69, P24
   MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312
   MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109
   MOREST DK, 1965, J ANAT, V99, P143
   MOREST DK, 1964, J ANAT, V98, P611
   OLIVER DL, 1978, J COMP NEUROL, V182, P423, DOI 10.1002/cne.901820305
   OLIVER DL, 1978, J COMP NEUROL, V182, P459, DOI 10.1002/cne.901820306
   Olucha-Bordonau FE, 2004, J CHEM NEUROANAT, V28, P147, DOI 10.1016/j.jchemneu.2004.05.010
   OTTERSEN OP, 1979, J COMPUT NEUROL, V187, P147
   PHILLIPS DP, 1991, NEUROBIOLOGY HEARING, P335
   Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152
   Rapisarda C, 1977, Arch Sci Biol (Bologna), V61, P1
   REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
   REDIES H, 1991, EXP BRAIN RES, V86, P384
   RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3
   ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5
   Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3
   RUTKOWSKI RG, 2000, THESIS U NOTTINGHAM
   SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750
   TARLOV EC, 1966, J COMP NEUROL, V126, P403, DOI 10.1002/cne.901260304
   Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
   Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z
   WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5
   WINER JA, 1988, J COMP NEUROL, V274, P422, DOI 10.1002/cne.902740310
   WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202
   WONGRILEY M, 1979, BRAIN RES, V171, P1
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
NR 56
TC 28
Z9 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 156
EP 167
DI 10.1016/j.heares.2007.02.005
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900016
PM 17399924
ER

PT J
AU Brozoski, TJ
   Ciobanu, L
   Bauer, CA
AF Brozoski, Thomas J.
   Ciobanu, Luisa
   Bauer, Carol A.
TI Central neural activity in rats with tinnitus evaluated with
   manganese-enhanced magnetic resonance imaging (MEMRI)
SO HEARING RESEARCH
LA English
DT Article
DE tinnitus; CNS activity; MEMRI; animal model; plasticity
ID DORSAL COCHLEAR NUCLEUS; INFERIOR COLLICULUS; AUDITORY-CORTEX; INDUCE
   TINNITUS; INTENSE SOUND; SINGLE UNITS; ANIMAL-MODEL; GUINEA-PIG; CAT;
   MANIPULATIONS
AB The pathophysiology of tinnitus, the perception of sound in the absence of acoustic stimulation, is largely unknown, although several lines of research implicate long-term neuroplastic loss of inhibition. The evidence to date suggests that the neuroplastic alterations are likely to be found in multiple brain structures. The present study used manganese-enhanced magnetic resonance imaging (MEMRI) to assess the pattern of neural activity in the central auditory pathway of rats with psychophysical evidence of chronic acoustic-exposure-induced tinnitus. Manganese, an activity-dependent paramagnetic contrast agent, accumulates in active neurons through voltage-gated calcium channels, primarily at synapses, and serves as both a structural and functional indicator. Comparison images were obtained from normal subjects exposed to external tinnitus-like sound, and from tinnitus subjects treated with vigabatrin, a GABA agonist shown to eliminate the psychophysical evidence of tinnitus in rats. MEMRI indicated: (1) In rats with evidence of tinnitus, activity was generally elevated in the auditory brainstem, with significant elevation in the cerebellar parallocculus, the posterior ventral cochlear nucleus, and the inferior colliculus; in general forebrain structures showed decreased activity, although MEMRI may be a less sensitive indicator of forebrain activity than brainstem activity; (2) in normal rats exposed to a tinnitus-like sound, a similar pattern of elevated brainstem activity and decreased forebrain activity was evident, with the notable exception of the paraflocculus, where artificial tinnitus had no effect and (3) vigabatrin, decreased brainstem activity to control levels, in rats with prior evidence of tinnitus, and decreased forebrain activity to below control levels. It was concluded that chronic tinnitus in rats is associated with focal activity elevation in the auditory brainstem and increased activity in the paraflocculus that may be unique to tinnitus. (c) 2007 Published by Elsevier B.V.
C1 So Illinois Univ, SOM, Div Otolaryngol, Springfield, IL 62794 USA.
   Univ Illinois, Beckman Inst Adv Sci & Technol, Biomed Imaging Ctr, Urbana, IL 61801 USA.
RP Brozoski, TJ (reprint author), So Illinois Univ, SOM, Div Otolaryngol, 801 N Rutledge St,Rm 3205,POB 19629, Springfield, IL 62794 USA.
EM tbrozoski@siumed.edu
RI Ciobanu, Luisa/E-7331-2014
OI Ciobanu, Luisa/0000-0001-6932-6859
CR AITKIN LM, 1975, J NEUROPHYSIOL, V38, P418
   Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058
   ARGENCE M, 2006, NEUROSCIENCE
   AZIZI SA, 1985, EXP BRAIN RES, V59, P36
   BAUER CA, J NEUROSCIENCE RES
   Bauer CA, 2001, JARO, V2, P54
   BERLINER KI, 1992, AM J OTOL, V13, P13
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
   Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2
   Chuang KH, 2006, MAGN RESON MED, V55, P604, DOI 10.1002/mrm.20797
   DAVIS A, 2000, TINNITUS HDB, P13
   Dobie RA, 1999, LARYNGOSCOPE, V109, P1202, DOI 10.1097/00005537-199908000-00004
   Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
   EVERED D, 1981, TINNITUS CIBA PHARM
   GACEK RR, 1973, EXP NEUROL, V41, P101, DOI 10.1016/0014-4886(73)90183-0
   HUANG CM, 1982, BRAIN RES, V244, P1, DOI 10.1016/0006-8993(82)90897-6
   JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391
   Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
   Kaltenbach JA, 2006, HEARING RES, V216, P224, DOI 10.1016/j.heares.2006.01.002
   Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
   LAUTERBUR PC, 1973, NATURE, V242, P190, DOI 10.1038/242190a0
   Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
   LOCKWOOD AH, 1998, NEUROLOGY, V50
   Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
   Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5
   Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058
   Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
   Nondahl David M, 2002, J Am Acad Audiol, V13, P323
   Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
   Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
   Pautler Robia G, 2006, Methods Mol Med, V124, P365
   Paxinos G., 1998, RAT BRAIN STEREOTAXI
   PLEWNIA C, 2006, DOSE DEPENDENT ATTEN
   Roels H, 1997, ARCH TOXICOL, V71, P223, DOI 10.1007/s002040050380
   Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
   Shulman A, 1999, Int Tinnitus J, V5, P92
   Silva AC, 2004, NMR BIOMED, V17, P532, DOI 10.1002/nbm.945
   Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
   Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2
   Yu X, 2005, NAT NEUROSCI, V8, P961, DOI 10.1038/nn1477
   Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4
NR 42
TC 59
Z9 64
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 168
EP 179
DI 10.1016/j.heares.2007.02.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900017
PM 17382501
ER

PT J
AU Rejali, D
   Lee, VA
   Abrashkin, KA
   Humayun, N
   Swiderski, DL
   Raphael, Y
AF Rejali, Darius
   Lee, Valerie A.
   Abrashkin, Karen A.
   Humayun, Nousheen
   Swiderski, Donald L.
   Raphael, Yehoash
TI Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion
   neurons
SO HEARING RESEARCH
LA English
DT Article
DE guinea pig; adenovirus vector; nerve protection; ex vivo gene therapy;
   BDNF
ID HAIR CELL LOSS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; INNER-EAR;
   IN-VIVO; DEGENERATION; SURVIVAL; STIMULATION; CULTURE
AB Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival. (c) 2007 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Sch Med, Ann Arbor, MI 48109 USA.
   Univ Hosp Warwickshire & Coventry NHS Trust, Coventry CV2 2DX, W Midlands, England.
   Univ Texas, Hlth Sci Ctr, San Antonio, TX USA.
RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Sch Med, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM Yoash@umich.edu
CR BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342
   Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
   CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5
   Cohen NL, 1997, OTOLARYNG HEAD NECK, V117, P214, DOI 10.1016/S0194-5998(97)70176-1
   COHEN NL, 1993, NEW ENGL J MED, V328, P233, DOI 10.1056/NEJM199301283280403
   El-Hakim Hamdy, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P102
   ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
   FAYAD J, 1991, ANN OTO RHINOL LARYN, V100, P807
   Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7
   GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909
   Geers Ann, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P127
   Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
   Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000
   IWATA H, 1989, DIABETES, V38, P224
   Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
   Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381
   Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001
   LEAKEJONES PA, 1983, ANN NY ACAD SCI, V405, P203, DOI 10.1111/j.1749-6632.1983.tb31634.x
   Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
   Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
   Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
   Osberger Mary Joe, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P62
   PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
   Richardson RT, 2007, BIOMATERIALS, V28, P513, DOI 10.1016/j.biomaterials.2006.09.008
   Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9
   Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
   SUTTON D, 1983, ANN OTO RHINOL LARYN, V92, P53
   Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
   Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
NR 31
TC 57
Z9 62
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 180
EP 187
DI 10.1016/j.heares.2007.02.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900018
PM 17416474
ER

PT J
AU Lutkenhoner, B
   Klein, JS
AF Lutkenhoener, Bernd
   Klein, Jan-Stefan
TI Auditory evoked field at threshold
SO HEARING RESEARCH
LA English
DT Article
DE intensity coding; temporal integration; auditory cortex; auditory evoked
   field; magnetoencephalography; multiple-look model
ID NERVE 1ST-SPIKE LATENCY; TEMPORAL INTEGRATION; MAGNETIC-FIELDS; ABSOLUTE
   THRESHOLD; COMPUTER-MODEL; HUMAN-BRAIN; GUINEA-PIG; INTENSITY; CORTEX;
   FIBERS
AB Auditory evoked responses are widely used for estimating electrophysiological thresholds, but the relationships to psychophysical thresholds are not necessarily straightforward. Among the aspects that are not well understood is the near-threshold intensity dependence of the evoked response. Here, we investigated wave N100m of the auditory evoked field. The stimulus was a 1-kHz tone with an effective duration of about 110 ms. Up to 10 dB above the psychophysical threshold, the level was varied in steps of 2 dB; further measurements were done at 15, 20, 30, and 40 dB SL. Lower levels were presented with higher probability, to partially compensate for the expected signal-to-noise ratio reduction with decreasing level. The latency of the N100m could be characterized as a transmission delay and an integration time. The level dependence of the latter was consistent with the assumption of an almost perfectly operating sound-pressure integrator. The N 100m amplitude increased roughly linearly with the level in dB (thus, as a logarithmic function of intensity), showing signs of saturation at higher levels. (c) 2007 Elsevier B.V. All rights reserved.
C1 Munster Univ Hosp, ENT Clin, Sect Expt Audiol, Munster, Germany.
RP Lutkenhoner, B (reprint author), Munster Univ Hosp, ENT Clin, Sect Expt Audiol, Munster, Germany.
EM Lutkenh@uni-muenster.de
CR ALGOM D, 1984, CONTRIBUTIONS SENSOR, V8, P131
   BAK CK, 1985, ELECTROEN CLIN NEURO, V61, P141, DOI 10.1016/0013-4694(85)91053-3
   Biermann S, 2000, J NEUROPHYSIOL, V84, P2426
   Eddins AC, 1998, HEARING RES, V119, P135, DOI 10.1016/S0378-5955(98)00035-5
   Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X
   Eggermont J J, 1974, Acta Otolaryngol Suppl, V316, P39
   ELBERLING C, 1987, J ACOUST SOC AM, V81, P115, DOI 10.1121/1.395019
   ELBERLING C, 1981, SCAND AUDIOL, V10, P203, DOI 10.3109/01050398109076182
   ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201
   Elberling C., 2007, AUDITORY EVOKED POTE, P102
   Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002
   FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B
   Gage NM, 2000, NEUROREPORT, V11, P2723, DOI 10.1097/00001756-200008210-00023
   GARNER WR, 1947, J ACOUST SOC AM, V19, P808, DOI 10.1121/1.1916625
   GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951
   Hari R, 1990, ADV AUDIOL, V6, P222
   Heil P, 2001, J NEUROSCI, V21, P7404
   Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100
   Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
   Hoppe U, 2001, SCAND AUDIOL, V30, P119, DOI 10.1080/010503901300112239
   HUGHES JW, 1946, PROC R SOC SER B-BIO, V133, P486, DOI 10.1098/rspb.1946.0026
   Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281
   JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325
   Klug A, 2000, HEARING RES, V148, P107, DOI 10.1016/S0378-5955(00)00146-5
   Krishna BS, 2006, J ACOUST SOC AM, V120, P591, DOI 10.1121/1.2213569
   Krishna B.S., 2006, J ACOUST SOC AM, V120, P591
   LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
   Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1
   Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132
   Lutkenhoner B, 2007, AUDITORY EVOKED POTE, P546
   Lutkenhoner B, 2003, NEUROIMAGE, V18, P58, DOI 10.1006/nimg.2002.1325
   Lutkenhoner B, 2006, NEUROIMAGE, V30, P927, DOI 10.1016/jneuroimiage.2005.10.034
   Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790
   MAKELA JP, 2007, AUDITORY EVOKED POTE, P525
   MARSHALL L, 1986, J SPEECH HEAR RES, V29, P82
   Marshall L., 1991, J GERONTOL, V46, P67
   Martin BA, 2007, AUDITORY EVOKED POTE, P482
   McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x
   Meddis R, 2006, J ACOUST SOC AM, V119, P406, DOI 10.1121/1.2139628
   Meddis R, 2006, J ACOUST SOC AM, V120, P1192, DOI 10.1121/1.2221413
   Moore BCJ, 2003, J PHONETICS, V31, P563, DOI 10.1016/S0095-4470(03)00011-1
   Moran John E., 1993, Brain Topography, V5, P229, DOI 10.1007/BF01128990
   Morita T, 2003, CLIN NEUROPHYSIOL, V114, P851, DOI 10.1016/S1388-2457(03)00033-6
   OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298
   PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781
   Ross B, 1999, AUDIOL NEURO-OTOL, V4, P12, DOI 10.1159/000013816
   Stapells D R, 2002, HDB CLIN AUDIOLOGY, P378
   Stufflebeam SM, 1998, NEUROREPORT, V9, P91, DOI 10.1097/00001756-199801050-00018
   VERSNEL H, 1992, HEARING RES, V59, P138, DOI 10.1016/0378-5955(92)90111-Y
   VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953
   WILLIAMSON S J, 1991, Brain Topography, V4, P169, DOI 10.1007/BF01132773
   WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E
   Zwislocki J., 1965, HDB MATH PSYCHOL, VIII, P1
NR 53
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 188
EP 200
DI 10.1016/j.heares.2007.02.011
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900019
PM 17434696
ER

PT J
AU Lee, JH
   Heo, JH
   Kim, CH
   Chang, SO
   Kim, CS
   Oh, SH
AF Lee, Jun Ho
   Heo, Jeong-Hwa
   Kim, Chang-Hee
   Chang, Sun O.
   Kim, Chong-Sun
   Oh, Seung-Ha
TI Changes in P2Y(4) receptor expression in rat cochlear outer sulcus cells
   during development
SO HEARING RESEARCH
LA English
DT Article
DE voltage-sensitive vibrating probe; purinergic receptor; outer sulcus
   cell; inner ear; endolymph
ID 5'-TRIPHOSPHATE-GATED ION-CHANNEL; STRIAL MARGINAL CELLS; INNER-EAR;
   EPITHELIAL-CELLS; P2X RECEPTORS; K+ SECRETION; GUINEA-PIG; TRIPHOSPHATE
   DIPHOSPHOHYDROLASE-1; ADENOSINE 5'-TRIPHOSPHATE; PHARMACOLOGICAL
   PROFILES
AB Extracellular adenosine triphosphate (ATP) released from cellular sources plays an important role in variety of the cochlear physiologic processes. The primary purinergic receptor subtype in the cochlea is the P2X(2) receptor, which is a subtype of P2X receptor. This receptor appears to mediate a protective decrease in the electrical driving force in response to acoustic overstimulation. Outer sulcus cells (OSCs) in the cochlear lateral wall appear to maintain an adequate K+ concentration in the cochlear endolymph in response to varying intensities of auditory stimulation. However, little is known about developing OSCs. The purpose of this study was to investigate subtypes of purinergic receptors in developing rat OSCs using a voltage-sensitive vibrating probe. Results showed that only two P2 receptors (P2Y(4) and P2X(2)) contributed to the regulation of short circuit currents in neonatal OSCs'. ATP increased cation absorption via apical nonselective cation channels after activating P2Y4 receptors in early neonatal OSCs. P2Y4 expression rapidly declined postnatally and reached near adult levels on postnatal day 14. P2X(2) was co-expressed with P2Y4 in early neonatal OSCs. Temporal changes in P2Y4 during OSC development might be involved in the establishment of the endolymphatic ion composition needed for normal auditory transduction and/or specific cellular differentiation. (c) 2007 Elsevier B.V. All rights reserved.
C1 Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, Seoul 110744, South Korea.
RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, 28 Yeongon Dong, Seoul 110744, South Korea.
EM junlee@snu.ac.kr; amaranthh@paran.com; tatsuya@freechal.com;
   suno@snu.ac.kr; chongkim@plaza.snu.ac.kr; shaoh@snu.ac.kr
RI Oh, Seung Ha/J-5540-2012
CR Anniko M, 1985, Acta Otolaryngol Suppl, V421, P10
   Boeynaems JM, 2005, SEMIN THROMB HEMOST, V31, P139, DOI 10.1055/s-2005-869519
   Bogdanov YD, 1998, BRIT J PHARMACOL, V124, P428, DOI 10.1038/sj.bjp.0701880
   Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5
   Cavaliere F, 2005, NEUROBIOL DIS, V18, P100, DOI 10.1016/j.nbd.2004.09.001
   Chiba T, 2001, J MEMBRANE BIOL, V184, P101, DOI 10.1007/s00232-001-0079-0
   Chiba T, 2000, J MEMBRANE BIOL, V174, P167, DOI 10.1007/s002320001041
   Communi D, 1999, BRIT J PHARMACOL, V128, P1199, DOI 10.1038/sj.bjp.0702909
   COUTINHOSILVA R, 2005, LIVER PHYSL, V288, pG1024
   Freeman Sharon, 1999, Journal of Basic and Clinical Physiology and Pharmacology, V10, P173
   FRELIN C, 1987, KIDNEY INT, V32, P785, DOI 10.1038/ki.1987.277
   GRIERSON JP, 1995, BRIT J PHARMACOL, V115, P11
   Harada H, 2000, KIDNEY INT, V57, P949, DOI 10.1046/j.1523-1755.2000.00911.x
   Harper S, 1998, BRIT J PHARMACOL, V124, P703, DOI 10.1038/sj.bjp.0701895
   Housley GD, 1998, J COMP NEUROL, V393, P403
   Housley GD, 2000, CLIN EXP PHARMACOL P, V27, P575, DOI 10.1046/j.1440-1681.2000.03314.x
   HUANG LC, 2005, CELL BIOL, P1
   IKEDA K, 1995, CELL CALCIUM, V18, P89, DOI 10.1016/0143-4160(95)90000-4
   Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0
   Khakh BS, 2001, PHARMACOL REV, V53, P107
   Lee JH, 2001, J NEUROSCI, V21, P9168
   Lee JH, 2003, NEUROSCIENCE, V119, P3, DOI 10.1016/S0306-4522(03)00104-0
   Lee JH, 2006, HEARING RES, V219, P66, DOI 10.1016/j.heares.2006.05.011
   LIZUKA K, 1999, BRIT J PHARMACOL, V128, P925
   Marcus Daniel C., 1996, Keio Journal of Medicine, V45, P301
   Marcus Daniel C, 2005, Cell Commun Signal, V3, P13, DOI 10.1186/1478-811X-3-13
   MARCUS DC, 1994, BIOPHYS J, V66, P1939
   Marcus DC, 1999, HEARING RES, V134, P48, DOI 10.1016/S0378-5955(99)00074-X
   Marunaka Y, 1996, PFLUG ARCH EUR J PHY, V431, P748, DOI 10.1007/BF02253839
   MORI N, 1987, ACTA OTO-LARYNGOL, V104, P66, DOI 10.3109/00016488709109048
   Munoz DJB, 1999, HEARING RES, V138, P56, DOI 10.1016/S0378-5955(99)00151-3
   Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10
   MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3
   Murthy KS, 1998, J BIOL CHEM, V273, P4695, DOI 10.1074/jbc.273.8.4695
   Nicholas RA, 1996, MOL PHARMACOL, V50, P224
   Nikolic P, 2003, AUDIOL NEURO-OTOL, V8, P28, DOI 10.1159/000067891
   Nikolic P, 2001, Brain Res Dev Brain Res, V126, P173
   North RA, 2000, ANNU REV PHARMACOL, V40, P563, DOI 10.1146/annurev.pharmtox.40.1.563
   Pintor Jesus, 2000, Trends in Pharmacological Sciences, V21, P453, DOI 10.1016/S0165-6147(00)01566-2
   PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D
   Ralevic V, 1998, PHARMACOL REV, V50, P413
   Sage CL, 2002, J MEMBRANE BIOL, V185, P103, DOI 10.1007/s00232-001-0116-z
   SMITH RJ, 1990, J PHARMACOL EXP THER, V253, P688
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   Thorne PR, 2004, JARO-J ASSOC RES OTO, V5, P58, DOI 10.1007/s10162-003-4003-4
   Vlajkovic SM, 2004, NEUROSCIENCE, V126, P763, DOI 10.1016/j.neuroscience.2004.04.023
   Vlajkovic S M, 1999, Brain Res Mol Brain Res, V73, P85
   Vlajkovic SM, 2002, HEARING RES, V170, P127, DOI 10.1016/S0378-5955(02)00460-4
   von Kugelgen I, 2006, PHARMACOL THERAPEUT, V110, P415, DOI 10.1016/j.pharmthera.2005.08.014
   Wang JCC, 2003, NEUROREPORT, V14, P817, DOI 10.1097/01.wnr.0000067784.69995.47
   Wangemann P, 1996, AUDIT NEUROSCI, V2, P187
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   Wangemann P, 2000, J MEMBRANE BIOL, V175, P191, DOI 10.1007/s002320001067
   WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1
   Wildman SS, 2003, BRIT J PHARMACOL, V140, P1177, DOI 10.1038/sj.bjp.0705544
   Xiang ZH, 2005, DEV BRAIN RES, V156, P147, DOI 10.1016/j.devbraines.2005.02.015
   Yamakuni H, 2002, J NEUROIMMUNOL, V129, P43, DOI 10.1016/S0165-5728(02)00179-0
   Yamasaki M, 2000, ORL J OTO-RHINO-LARY, V62, P241, DOI 10.1159/000027753
   Yeh TH, 1997, HEARING RES, V109, P1, DOI 10.1016/S0378-5955(97)00030-0
   YEH TH, 1998, AM J PHYSIOL, V274, pC556
   Zhao HB, 2005, P NATL ACAD SCI USA, V102, P18724, DOI 10.1073/pnas.0506481102
NR 61
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 201
EP 211
DI 10.1016/j.heares.2007.02.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900020
PM 17433586
ER

PT J
AU Felix, RA
   Portfors, CV
AF Felix, Richard A., II
   Portfors, Christine V.
TI Excitatory, inhibitory and facilitatory frequency response areas in the
   inferior colliculus of hearing impaired mice
SO HEARING RESEARCH
LA English
DT Article
DE inferior colliculus; spectral integration; presbycusis; mouse; hearing
ID COMBINATION-SENSITIVE NEURONS; BAT PTERONOTUS-PARNELLII; PRIMARY
   AUDITORY-CORTEX; MOUSTACHED BAT; SPECTRAL INTEGRATION; TONOTOPIC
   ORGANIZATION; COCHLEAR NUCLEUS; COMMUNICATION CALLS; SPEECH RECOGNITION;
   CORTICAL-NEURONS
AB Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57B1/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech. (c) 2007 Elsevier B.V. All rights reserved.
C1 Washington State Univ, Sch Biol Sci, Vancouver, WA 98686 USA.
RP Portfors, CV (reprint author), Washington State Univ, Sch Biol Sci, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
EM Portfors@vancouver.wsu.edu
CR BRANT LJ, 1990, J ACOUST SOC AM, V88, P813, DOI 10.1121/1.399731
   Brosch M, 1999, J NEUROPHYSIOL, V82, P1542
   Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X
   CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675
   DEBOER E, 1987, ANNU REV PSYCHOL, V38, P181, DOI 10.1146/annurev.psych.38.1.181
   Di Palma F, 2001, GENE, V281, P31, DOI 10.1016/S0378-1119(01)00761-2
   Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786
   Ehret G., 1997, CENTRAL AUDITORY SYS
   Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019
   Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
   FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P333
   Geissler DB, 2002, P NATL ACAD SCI USA, V99, P9021, DOI 10.1073/pnas.122606499
   GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276
   HARRISON RV, 1982, HEARING RES, V6, P303, DOI 10.1016/0378-5955(82)90062-4
   Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   HENRY KR, 1978, ACTA OTO-LARYNGOL, V86, P366, DOI 10.3109/00016487809107515
   Hequembourg S, 2001, JARO, V2, P118
   Hirsh IJ, 1996, ANNU REV PSYCHOL, V47, P461, DOI 10.1146/annurev.psych.47.1.461
   Humes L E, 1991, J Am Acad Audiol, V2, P59
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   KAAS JH, 1983, ANNU REV NEUROSCI, V6, P325, DOI 10.1146/annurev.ne.06.030183.001545
   KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637
   Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001
   Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327
   Leroy SA, 2000, J NEUROSCI, V20, P8533
   LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418
   LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6
   Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002
   LIPPE W, 1983, SCIENCE, V219, P514, DOI 10.1126/science.6823550
   MARGOLIASH D, 1992, J NEUROSCI, V12, P4309
   Marsh RA, 2006, J NEUROPHYSIOL, V95, P88, DOI 10.1152/jn.00634.2005
   MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1
   MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X
   Moore B. C. J., 1993, HUMAN PSYCHOPHYSICS, P56
   Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
   NYBY J, 1983, AUDITORY PSYCHOBIOLO, P98
   Nyby JG, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P3
   Ohl FW, 1997, P NATL ACAD SCI USA, V94, P9440, DOI 10.1073/pnas.94.17.9440
   Ohlemiller KK, 1996, NEUROREPORT, V7, P1749, DOI 10.1097/00001756-199607290-00011
   Paxinos G, 2001, MOUSE BRAIN STEREOTA
   Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11
   Portfors CV, 2005, INFERIOR COLLICULUS, P411, DOI 10.1007/0-387-27083-3_14
   Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057
   Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031
   PORTFORS CV, 2004, ADV STUDY ECHOLOCATI, P141
   Portfors CV, 2001, HEARING RES, V151, P95, DOI 10.1016/S0378-5955(00)00214-8
   Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3
   Portfors CV, 2004, AN ACAD BRAS CIENC, V76, P253, DOI 10.1590/S0001-37652004000200010
   Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326
   RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330
   Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8
   SCHOONHOVEN R, 1994, J ACOUST SOC AM, V95, P2104, DOI 10.1121/1.408672
   SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284
   SHNERSON A, 1979, EXP BRAIN RES, V37, P373
   STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106
   Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
   STRICKLAND EA, 1994, J ACOUST SOC AM, V95, P497, DOI 10.1121/1.408343
   SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944
   SUGA N, 1978, SCIENCE, V200, P778, DOI 10.1126/science.644320
   SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207
   WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593
   Wenstrup J. J., 2001, J NEUROSCI, V21, P1
   WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329
   Willot JF, 1991, ACTA OTOLARYNGOL S, V476, P153
   WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3
   Willott J. F., 1991, AGING AUDITORY SYSTE
   Willott JF, 1997, J COMP NEUROL, V385, P405
   WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391
   WILLOTT JF, 1985, J COMP NEUROL, V22, P545
   WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9
   Young E. D., 2002, INTEGRATIVE FUNCTION, P160
NR 74
TC 21
Z9 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2007
VL 228
IS 1-2
BP 212
EP 229
DI 10.1016/j.heares.2007.02.009
PG 18
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 174QP
UT WOS:000246957900021
PM 17412539
ER

PT J
AU Kros, CJ
AF Kros, Corne J.
TI How to build an inner hair cell: Challenges for regeneration
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE inner hair cell; development; regeneration; ion channel; exocytosis
ID COCHLEAR NUCLEUS NEURONS; NICOTINIC CHOLINERGIC-RECEPTOR; GUINEA-PIG
   COCHLEA; POTASSIUM CURRENTS; MOUSE COCHLEA; DEVELOPMENTAL EXPRESSION;
   POSTNATAL-DEVELOPMENT; CA(V)1.3 CHANNELS; SUPPORTING CELLS; IONIC
   CURRENTS
AB During their development inner hair cells (IHCs), the primary sensory receptors in the mammalian cochlea, undergo a meticulously orchestrated series of changes in the expression of ion channels and in their presynaptic function. This review considers what we currently know about these changes in IHCs of mice and rats, which start hearing 10-12 days after birth. Just after terminal mitosis the IHCs are electrically quiescent and functionally isolated, expressing only small and slow outward K+ currents in their basolateral membranes. By the first postnatal week the cells have acquired inward Ca2+ and Na+ currents that enable them to fire spontaneous action potentials at a time when the cochlea can not yet be stimulated by sound. These action potentials may be essential for normal development and survival of the IHCs themselves and of the afferent nerve fibres that synapse with them. At the onset of hearing the transition to a functionally mature sensory receptor comes about by the expression of a large and fast BK current, I-K,(f), a KCNQ4 current, I-K,I-n,I- and by changes in the exocytotic machinery. Some implications of this complex developmental programme for the ideal of hair-cell regeneration in the mature mammalian cochlea are discussed. (C) 2007 Elsevier B.V. All rights reserved.
C1 Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England.
RP Kros, CJ (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England.
EM c.j.kros@sussex.ac.uk
CR ANNIKO M, 1983, AM J OTOLARYNG, V4, P375, DOI 10.1016/S0196-0709(83)80043-X
   Beutner D, 2001, J NEUROSCI, V21, P4593
   Brandt A, 2003, J NEUROSCI, V23, P10832
   Brandt A, 2005, J NEUROSCI, V25, P11577, DOI 10.1523/JNEUROSCI.3411-05.2005
   BRYANT JE, 2003, ASS RES OTOLARYNGOL
   Chen P, 1999, DEVELOPMENT, V126, P1581
   COHEN I, 1985, INT REV NEUROBIOL, V27, P299, DOI 10.1016/S0074-7742(08)60560-7
   Correia MJ, 2001, ANN NY ACAD SCI, V942, P228
   Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x
   Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798
   Geleoc GSG, 2004, J NEUROSCI, V24, P11148, DOI 10.1523/JNEUROSCI.2662-04.2004
   Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366
   Glueckert R, 2003, HEARING RES, V178, P95, DOI 10.1016/S0378-5955(03)00054-6
   Goodyear RJ, 2006, VERTEBRATE HAIR CELL, P20
   Goutman JD, 2005, J PHYSIOL-LONDON, V566, P49, DOI 10.1113/jphysiol.2005.087460
   Hafidi A, 2005, NEUROSCIENCE, V130, P475, DOI 10.1016/j.neuroscience.2004.09.038
   Helyer RJ, 2005, AUDIOL NEURO-OTOL, V10, P22, DOI 10.1159/000081545
   HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73
   Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
   JOHNSON SL, 2005, J PHYSL, V557, P613
   Kirkwood NK, 1997, BRIT J AUDIOL, V31, P86
   KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263
   Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401
   Kros CJ, 1996, COCHLEA, P318
   Kurima K, 2002, NAT GENET, V30, P277, DOI 10.1038/ng842
   Li HW, 2003, P NATL ACAD SCI USA, V100, P13495, DOI 10.1073/pnas.2334503100
   Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
   LOWENHEIM H, 1999, P NATL ACAD SCI USA, V96, P4086
   Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661
   Marcotti W, 2003, J PHYSIOL-LONDON, V548, P383, DOI 10.1113/jphysiol.2002.034801
   Marcotti W, 1999, PFLUG ARCH EUR J PHY, V439, P113, DOI 10.1007/s004240051134
   Marcotti W, 2003, J PHYSIOL-LONDON, V552, P743, DOI 10.1113/jphysiol.2003.043612
   Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x
   Marcotti W, 2004, J PHYSIOL-LONDON, V557, P613, DOI 10.1113/jphysiol.2003.060137
   Marcotti W, 2004, J PHYSIOL-LONDON, V560, P691, DOI 10.1113/jphysiol.2004.072868
   Masetto S, 1997, INT J DEV NEUROSCI, V15, P387, DOI 10.1016/S0736-5748(96)00099-8
   Masetto S, 1997, J NEUROPHYSIOL, V78, P1913
   Michna M, 2003, J PHYSIOL-LONDON, V553, P747, DOI 10.1013//jphysiol.2003.053256
   Moody WJ, 2005, PHYSIOL REV, V85, P883, DOI 10.1152/physrev.00017.2004
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6
   Oliver D, 2003, J NEUROSCI, V23, P2141
   Oliver D, 2006, J NEUROSCI, V26, P6181, DOI 10.1523/JNEUROSCI.1047-06.2006
   Oliver D, 1997, PFLUG ARCH EUR J PHY, V434, P772, DOI 10.1007/s004240050464
   PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
   Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1
   Plazas PV, 2005, J NEUROSCI, V25, P10905, DOI 10.1523/JNEUROSCI.3805-05.2005
   Pujol R., 1998, DEV AUDITORY SYSTEM, P146
   Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
   SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942
   SOKOLOWSKI BHA, 1993, DEV BIOL, V155, P134, DOI 10.1006/dbio.1993.1013
   Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714
   Thurm H, 2005, J PHYSIOL-LONDON, V569, P137, DOI 10.1113/jphysiol.2005.094680
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   Vreugde S, 2002, NAT GENET, V30, P257, DOI 10.1038/ng848
   WALSH EJ, 1988, HEARING RES, V36, P233, DOI 10.1016/0378-5955(88)90065-2
   WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7
   White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
NR 58
TC 12
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 3
EP 10
DI 10.1016/j.heares.2006.12.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900002
PM 17258412
ER

PT J
AU Warchol, ME
AF Warchol, Mark E.
TI Characterization of supporting cell phenotype in the avian inner ear:
   Implications for sensory regeneration
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE utricle; vestibular; development; tectorin; cadherin; cProx1; PAX2;
   GATA3
ID MOUSE VESTIBULAR EPITHELIA; SERUM-FREE CULTURE; HAIR-CELLS; E-CADHERIN;
   BETA-CATENIN; ADHESION MOLECULES; TECTORIAL MEMBRANE; PROGENITOR CELLS;
   DEVELOPING ORGAN; GAP-JUNCTIONS
AB The avian inner ear possesses a remarkable capacity for the regeneration of sensory receptors after acoustic trauma or ototoxicity. Most replacement hair cells are created by renewed cell division within the sensory epithelium, although some new hair cells may also arise through nonmitotic mechanisms. Current data indicate that epithelial supporting cells play an essential role in regeneration, by serving as progenitor cells. In order to become progenitors, however, supporting cells may need to undergo partial dedifferentiation. In this review, I describe molecules that are expressed by supporting cells in the avian ear. Although a number of these molecules are likely to be critical to the maintenance of the supporting cell phenotype, we presently know very little about phenotypic changes in supporting cells during the early phase of regeneration. (C) 2006 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
   Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA.
RP Warchol, ME (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave,Box 8115, St Louis, MO 63110 USA.
EM warcholm@ent.wustl.edu
CR Adam J, 1998, DEVELOPMENT, V125, P4645
   Ahmed ZM, 2003, HUM MOL GENET, V12, P3215, DOI 10.1093/hmg/ddg358
   Amoureux MC, 2000, J NEUROSCI, V20, P3631
   Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339
   Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
   Bermingham-McDonogh O, 2001, DEV BIOL, V238, P247, DOI 10.1006/dbio.2001.0412
   Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7
   Chen P, 1999, DEVELOPMENT, V126, P1581
   Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1
   Croix B.S., 1998, J CELL BIOL, V142, P557
   Crossin KL, 2000, DEV DYNAM, V218, P260, DOI 10.1002/(SICI)1097-0177(200006)218:2<260::AID-DVDY3>3.0.CO;2-9
   DRESSLER GR, 1992, P NATL ACAD SCI USA, V89, P1179, DOI 10.1073/pnas.89.4.1179
   Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916
   GALLIN WJ, 1983, P NATL ACAD SCI-BIOL, V80, P1038, DOI 10.1073/pnas.80.4.1038
   Goodyear RJ, 2002, J NEUROBIOL, V53, P212, DOI 10.1002/neu.10097
   Groves AK, 2000, DEVELOPMENT, V127, P3489
   Hackett L, 2002, EXP CELL RES, V278, P19, DOI 10.1006/excr.2002.5574
   HATTA K, 1986, NATURE, V320, P447, DOI 10.1038/320447a0
   Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150
   Heller S, 1998, P NATL ACAD SCI USA, V95, P11400, DOI 10.1073/pnas.95.19.11400
   Hutson MR, 1999, J NEUROCYTOL, V28, P795, DOI 10.1023/A:1007057719025
   Jagger DJ, 2006, J NEUROSCI, V26, P1260, DOI 10.1523/JNEUROSCI.4278-05.2006
   Jones JM, 2006, J NEUROSCI, V26, P550, DOI 10.1523/JNEUROSCI.3859-05.2006
   JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330
   Karcavich RE, 2005, DEV DYNAM, V232, P609, DOI 10.1002/dvdy.20273
   Kellie S, 2004, J CELL SCI, V117, P609, DOI 10.1242/jcs.00879
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   KILLICK R, 1992, HEARING RES, V64, P21, DOI 10.1016/0378-5955(92)90165-J
   Kim TS, 2002, NEUROSCI LETT, V329, P173, DOI 10.1016/S0304-3940(02)00657-2
   Kim TS, 2005, HEARING RES, V205, P201, DOI 10.1016/j.heares.2005.03.017
   Kruger RP, 1999, J NEUROSCI, V19, P4815
   KRUSHEL LA, 1995, P NATL ACAD SCI USA, V92, P4323, DOI 10.1073/pnas.92.10.4323
   Lampugnani MG, 2003, J CELL BIOL, V161, P793, DOI 10.1083/jcb.200209019
   Lanford PJ, 1999, NAT GENET, V21, P289
   Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088
   Legan PK, 2005, NAT NEUROSCI, V8, P1035, DOI 10.1038/nn1496
   LEGAN PK, 2000, NEURON, V28, P272
   Li HW, 2004, J COMP NEUROL, V477, P1, DOI 10.1002/cne.20190
   Li HW, 2004, J NEUROBIOL, V60, P61, DOI 10.1002/neu.20013
   Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
   Matsui JI, 2005, DRUG DISCOV TODAY, V10, P1307, DOI 10.1016/S1359-6446(05)03577-4
   Matsui JI, 2000, JARO, V1, P46, DOI 10.1007/s101620010005
   Nickel R, 2006, J NEUROSCI, V26, P6190, DOI 10.1523/KNEUROSCI.1116-06.2006
   Oesterle EC, 1997, J COMP NEUROL, V380, P262, DOI 10.1002/(SICI)1096-9861(19970407)380:2<262::AID-CNE8>3.0.CO;2-1
   Oesterle EC, 1999, J NEUROCYTOL, V28, P877, DOI 10.1023/A:1007074222659
   Oesterle EC, 2000, J COMP NEUROL, V424, P307, DOI 10.1002/1096-9861(20000821)424:2<307::AID-CNE9>3.0.CO;2-M
   Orsulic S, 1999, J CELL SCI, V112, P1237
   RAPHAEL Y, 1988, DEV BIOL, V128, P222, DOI 10.1016/0012-1606(88)90284-9
   RICHARDSON GP, 1987, DEV BIOL, V119, P217, DOI 10.1016/0012-1606(87)90223-5
   ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H
   Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642
   Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
   SIMMONNEAU L, 2003, J COMP NEUROL, V459, P113
   Stockinger A, 2001, J CELL BIOL, V154, P1185, DOI 10.1083/jcb.200104036
   Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714
   Stone JS, 2003, J COMP NEUROL, V460, P487, DOI 10.1002/cne.10662
   Stone JS, 2004, DEV DYNAM, V230, P597, DOI 10.1002/dvdy.20087
   Stone JS, 1999, DEVELOPMENT, V126, P961
   TAKEICHI M, 1995, CURR OPIN CELL BIOL, V7, P619, DOI 10.1016/0955-0674(95)80102-2
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   WARCHOL ME, 1993, HEARING RES, V71, P28, DOI 10.1016/0378-5955(93)90018-V
   WARCHOL ME, J COMP NEUROL
   WARCHOL ME, 2006, ASS RES OTOLARYNGOL
   WARCHOL ME, 1995, NEUROREPORT, V6, P981, DOI 10.1097/00001756-199505090-00008
   Warchol ME, 2002, J NEUROSCI, V22, P2607
   Warchol ME, 1999, J NEUROCYTOL, V28, P889, DOI 10.1023/A:1007026306730
   WHITLON DS, 1990, J NEUROCYTOL, V19, P970, DOI 10.1007/BF01186824
   Whitlon DS, 1999, J NEUROCYTOL, V28, P955, DOI 10.1023/A:1007038609456
   WHITLON DS, 1993, J NEUROCYTOL, V22, P1030, DOI 10.1007/BF01235747
NR 69
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 11
EP 18
DI 10.1016/j.heares.2006.08.014
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900003
PM 17081713
ER

PT J
AU Ruel, J
   Wang, J
   Rebillard, G
   Eybalin, M
   Lloyd, R
   Pujol, R
   Puel, JL
AF Ruel, Jerome
   Wang, Jing
   Rebillard, Guy
   Eybalin, Michel
   Lloyd, Ruth
   Pujol, Remy
   Puel, Jean-Luc
TI Physiology, pharmacology and plasticity at the inner hair cell synaptic
   complex
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE ribbon synapses; glutamate; AMPA; NMDA; lateral efferent; dopamine;
   cochlea
ID GUINEA-PIG COCHLEA; GLUTAMATE-ASPARTATE TRANSPORTER; SPIRAL GANGLION
   NEURONS; AUDITORY-NERVE ACTIVITY; AMINO-ACID TRANSPORTER; HIGH-AFFINITY;
   RAT COCHLEA; KAINIC ACID; EXCITOTOXIC INJURY; AFFERENT SYNAPSES
AB This report summarizes recent neuropharmacological data at the IHC afferent/efferent synaptic complex: the type of Glu receptors and transporter involved and the modulation of this fast synaptic transmission by the lateral efferents. Neuropharmacological data were obtained by coupling the recording of cochlear potentials and single unit of the auditory nerve with intra-cochlear applications of drugs (multi-barrel pipette). We also describe the IHC afferent/efferent functioning in pathological conditions. After acoustic trauma or ischemia, acute disruption of IHC-auditory dendrite synapses are seen. However, a re-growth of the nerve fibres and a re-afferentation of the IHC were completely done 5 days after injury. During this synaptic repair, multiple presynaptic bodies were commonly found, either linked to the membrane or "floating" in ectopic positions. In the meantime, the lateral efferents directly contact the IHCs. The demonstration that NMDA receptors blockade delayed the re-growth of neurites suggests a neurotrophic role of NMDA receptors in pathological conditions. (C) 2006 Elsevier B.V. All rights reserved.
C1 Hop St Eloi, INSERM U583, INM, F-34091 Montpellier 5, France.
   Univ Montpellier 1, F-34006 Montpellier, France.
RP Puel, JL (reprint author), Hop St Eloi, INSERM U583, INM, 80 Ave Augustin Fliche,BP 74103, F-34091 Montpellier 5, France.
EM puel@montp.inserm.fr
CR Arriza JL, 1997, P NATL ACAD SCI USA, V94, P4155, DOI 10.1073/pnas.94.8.4155
   BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5
   Bleakman R, 1996, Mol Pharmacol, V49, P581
   CHAUDIEU I, 1991, NEUROSCI LETT, V131, P263, DOI 10.1016/0304-3940(91)90629-8
   CHOI DW, 1994, PROG BRAIN RES, V100, P47
   dAldin CG, 1997, INT J DEV NEUROSCI, V15, P619, DOI 10.1016/S0736-5748(96)00116-5
   Danbolt NC, 2001, PROG NEUROBIOL, V65, P1, DOI 10.1016/S0301-0082(00)00067-8
   EYBALIN M, 1987, BRAIN RES, V418, P189, DOI 10.1016/0006-8993(87)90979-6
   EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FAIRMAN WA, 1995, NATURE, V375, P599, DOI 10.1038/375599a0
   FELIX D, 1992, HEARING RES, V64, P1, DOI 10.1016/0378-5955(92)90163-H
   FELIX D, 1990, EUR ARCH OTO-RHINO-L, V248, P1, DOI 10.1007/BF00634769
   Furness DN, 1997, EUR J NEUROSCI, V9, P1961, DOI 10.1111/j.1460-9568.1997.tb00763.x
   Gaborjan A, 1999, NEUROSCIENCE, V90, P131, DOI 10.1016/S0306-4522(98)00461-8
   GILLOYZAGA P, 1990, EUR ARCH OTO-RHINO-L, V248, P40, DOI 10.1007/BF00634780
   Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796
   Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003
   Halmos G, 2005, NEUROSCIENCE, V132, P801, DOI 10.1016/j.neuroscience.2005.01.023
   HUNTERDUVAR IM, 1977, SCAN ELECTRON MICROS, V11, P421
   JANSSEN R, 1991, BRAIN RES, V552, P255, DOI 10.1016/0006-8993(91)90090-I
   JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7
   KANAI Y, 1992, NATURE, V360, P467, DOI 10.1038/360467a0
   Khimich D, 2005, NATURE, V434, P889, DOI 10.1038/nature03418
   Ladrech S, 2003, HEARING RES, V186, P85, DOI 10.1016/S0378-5955(03)00302-2
   Le Prell CG, 2001, PHYSL EAR, P575
   Le Prell CG, 2005, JARO-J ASSOC RES OTO, V6, P48, DOI 10.1007/s10162-004-5009-2
   Le Prell CG, 2003, JARO, V4, P276, DOI 10.1007/s10162-002-3018-6
   LI HS, 1994, HEARING RES, V78, P235, DOI 10.1016/0378-5955(94)90029-9
   LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X
   McMahon CM, 2004, HEARING RES, V190, P75, DOI 10.1016/S0378-5955(03)00403-9
   MerchanPerez A, 1996, J COMP NEUROL, V371, P208, DOI 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6
   MULDERS WH, 2006, EXP BRAIN RES
   Mulders WHAM, 2005, J CHEM NEUROANAT, V30, P230, DOI 10.1016/j.jchemneu.2005.09.005
   NAKAGAWA T, 1991, J NEUROPHYSIOL, V65, P715
   Namura S, 2002, NEUROSCI LETT, V324, P117, DOI 10.1016/S0304-3940(02)00193-3
   Oestreicher E, 1997, HEARING RES, V107, P46, DOI 10.1016/S0378-5955(97)00023-3
   Peng BG, 2003, NEUROSCI LETT, V343, P21, DOI 10.1016/S0304-3940(03)00296-9
   PERKINS RE, 1975, J COMP NEUROL, V163, P129, DOI 10.1002/cne.901630202
   PINES G, 1992, NATURE, V360, P464, DOI 10.1038/360464a0
   PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U
   PUEL JL, 1993, NOISE MAN 93, P136
   PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209
   Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
   PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67
   PUJOL R, 1979, NEUROSCI LETT, V15, P995
   PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819
   PUJOL R, 1997, SPRINGER HDB AUDITOR, V12, P146
   PUJOL R, 1992, 29 WIRKSH INN EAR BI
   PUJOL R, 1978, J COMP NEUROL, V177, P529, DOI 10.1002/cne.901770311
   Pujol R, 1991, NOISE INDUCED HEARIN, P196
   PUJOL R, 1992, NEUROREPORT, V3, P299, DOI 10.1097/00001756-199204000-00002
   PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1
   PUJOL R, 1992, TINNITUS 91, P103
   Rebillard G, 2003, EUR J NEUROSCI, V17, P83, DOI 10.1046/j.1460-9568.2003.02429.x
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x
   Ruel J, 2000, NEUROPHARMACOLOGY, V39, P1959, DOI 10.1016/S0028-3908(00)00069-1
   Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x
   Ruel J, 2006, J NEUROCHEM, V97, P190, DOI 10.1111/j.1471-4159.2006.03722.x
   Ruel J, 2002, CNS DRUG REV, V8, P235
   SAHLEY TL, 1994, EAR HEARING, V15, P422, DOI 10.1097/00003446-199412000-00003
   Seal RP, 1999, ANNU REV PHARMACOL, V39, P431, DOI 10.1146/annurev.pharmtox.39.1.431
   Sims KD, 1999, CRIT REV NEUROBIOL, V13, P169
   SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
   STOPP P, 1982, NEW PERSPECTIVES NOI, P331
   STOPP P, 1983, HEARING RES, V59, P241
   STORCK T, 1992, P NATL ACAD SCI USA, V89, P10955, DOI 10.1073/pnas.89.22.10955
   Sun W, 2001, NEUROREPORT, V12, P803, DOI 10.1097/00001756-200103260-00037
   TANAKA K, 1993, NEUROSCI LETT, V159, P183, DOI 10.1016/0304-3940(93)90829-A
   Tanaka T, 2000, J NUCL SCI TECHNOL, V37, P1
   Wang GJ, 1998, EUR J NEUROSCI, V10, P2523, DOI 10.1046/j.1460-9568.1998.00256.x
   Zheng XY, 1999, J COMP NEUROL, V406, P72
NR 73
TC 49
Z9 51
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 19
EP 27
DI 10.1016/j.heares.2006.08.017
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900004
PM 17079104
ER

PT J
AU Tsonis, PA
AF Tsonis, Panagiotis A.
TI Regeneration via transdifferentiation: The lens and hair cells
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE regeneration; transdifferentiation; lens; hair cells
ID SENSORY EPITHELIA; HEARING; EXPRESSION; INDUCTION; BALANCE
AB Tissue repair and regeneration is mediated by mainly two strategies, the one employing the services of reserve cells and the other via transdifferentiation of already differentiated somatic cells. In this mini-review some issues of transdifferentiation will be presented, especially as they pertain to regeneration and induction of lens and hair cells in several animal models. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Dayton, Dept Biol, Dayton, OH 45469 USA.
   Univ Dayton, Ctr Tissue Regenerat & Engn, Dayton, OH 45469 USA.
RP Tsonis, PA (reprint author), Univ Dayton, Dept Biol, 300 Coll Pk, Dayton, OH 45469 USA.
EM panagiotis.tsonis@notes.udayton.edu
CR Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722
   Beck CW, 2003, DEV CELL, V5, P429, DOI 10.1016/S1534-5807(03)00233-8
   DELRIOTSONIS K, 1995, P NATL ACAD SCI USA, V92, P5092
   Del Rio-Tsonis K, 1999, INVEST OPHTH VIS SCI, V40, P2039
   Del Rio-Tsonis K, 1998, DEV DYNAM, V213, P140, DOI 10.1002/(SICI)1097-0177(199809)213:1<140::AID-AJA14>3.0.CO;2-6
   DelRioTsonis K, 1997, P NATL ACAD SCI USA, V94, P13701, DOI 10.1073/pnas.94.25.13701
   Del Rio-Tsonis K, 2003, DEV DYNAM, V226, P211, DOI 10.1002/dvdy.10224
   Grogg MW, 2005, NATURE, V438, P858, DOI 10.1038/nature04175
   Han MJ, 2003, DEVELOPMENT, V130, P5123, DOI 10.1242/dev.00710
   Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150
   Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
   Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
   Matsui JI, 2005, J REHABIL RES DEV, V42, P187, DOI 10.1682/JRRD.2005.01.0008
   Oliver G, 1996, MECH DEVELOP, V60, P233, DOI 10.1016/S0925-4773(96)00632-6
   Stocum D. L., 1995, WOUND REPAIR REGENER
   Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714
   Taylor RR, 2005, J COMP NEUROL, V484, P105, DOI 10.1002/cne.20450
   Tsonis PA, 2004, INT J DEV BIOL, V48, P975, DOI 10.1387/ijdb.041867pt
   Tsonis PA, 2000, DEV DYNAM, V219, P588, DOI 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1082>3.0.CO;2-H
   Tsonis P.A., 1996, LIMB REGENERATION
   Tsonis PA, 2000, DEV BIOL, V221, P273, DOI 10.1006/dbio.2000.9667
NR 21
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 28
EP 31
DI 10.1016/j.heares.2006.06.011
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900005
PM 16942849
ER

PT J
AU Holley, MC
   Kneebone, A
   Milo, M
AF Holley, M. C.
   Kneebone, A.
   Milo, M.
TI Information for gene networks in inner ear development: A study centered
   on the transcription factor gata2
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE cell lines; oligonucleotide arrays; gMOS; cochlea; gene networks; gata2
ID CELL-LINES; OLIGONUCLEOTIDE ARRAYS; EXPRESSION; DIFFERENTIATION; MODEL;
   PRECURSORS; GENOMICS; INHIBIT; MUSCLE; MOUSE
AB The search for molecular mechanisms to stimulate sensory regeneration in the mammalian inner ear is commonly based upon developmental studies. This has revealed many genes that regulate the differentiation of sensory cells. A major challenge is to place these genes into the context of functional networks that describe developmental processes more fully and increase the chances of identifying useful therapeutic targets. We used a novel approach to identify genes that are functionally related to the transcription factor gata2. Temporal profiles of gene expression were derived from three conditionally immortal cell lines and clustered to those of gata2 by applying the gamma model for oligonucleotide signals, a statistical method that allows quantitative analysis of oligonucleotide array data. We derived an objective list of 28 genes that clustered with gata2 in all three cell lines. A number of these genes have known functional links with gata2. Genes encoding CCAAT/enhancer binding proteins (C/EBP) and signal transducer and activation of transcription 3 (Stat3) are especially interesting as they are known to bind gata proteins directly. The results provide strong evidence that our experimental approach can reveal functional relationships between genes that regulate fundamental processes in the differentiation of sensory cells in the inner ear. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Sheffield, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England.
RP Holley, MC (reprint author), Univ Sheffield, Dept Biomed Sci, Addison Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England.
EM m.c.holley@shefac.uk; a.kneebone@sheffield.ac.uk; m.milo@sheffield.ac.uk
CR Benchoua A, 2006, MOL BIOL CELL, V17, P1652, DOI 10.1091/mbc.E05-07-0607
   Blackshaw S, 2002, CURR OPIN NEUROBIOL, V12, P110, DOI 10.1016/S0959-4388(02)00298-2
   Ezoe S, 2005, J BIOL CHEM, V280, P13163, DOI 10.1074/jbc.M413461200
   Forge A, 1998, J COMP NEUROL, V397, P69
   Granot Z, 2002, ENDOCR RES, V28, P375, DOI 10.1081/ERC-120016812
   Irizarry RA, 2003, NUCLEIC ACIDS RES, V31, pe15
   Ishiko E, 2005, J BIOL CHEM, V280, P4929, DOI 10.1074/jbc.M406788200
   JAT PS, 1991, P NATL ACAD SCI USA, V88, P5096, DOI 10.1073/pnas.88.12.5096
   Lawoko-Kerali G, 2004, DEV DYNAM, V231, P801, DOI 10.1002/dvdy.20187
   Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006
   Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088
   Levine M, 2005, P NATL ACAD SCI USA, V102, P4936, DOI 10.1073/pnas.0408031102
   Li C, 2001, P NATL ACAD SCI USA, V98, P31, DOI 10.1073/pnas.011404098
   Lilley CJ, 2004, PLANT BIOTECHNOL J, V2, P3, DOI 10.1046/j.1467-7652.2003.00037.x
   LIU JJ, 2006, OTOL NEUROTOL, V27, P416
   Lockhart DJ, 2000, NATURE, V405, P827, DOI 10.1038/35015701
   Milo M, 2003, BIOCHEM SOC T, V31, P1510
   Moore ML, 2001, J BIOL CHEM, V276, P1026, DOI 10.1074/jbc.M009352200
   Naef F., 2002, GENOME BIOL, V3
   Nardelli J, 1999, DEV BIOL, V210, P305, DOI 10.1006/dbio.1999.9278
   Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186
   Nicholl AJ, 2005, EUR J NEUROSCI, V22, P343, DOI 10.1111/j.1460-9568.2005.04213.x
   Pena P, 1995, BIOCHEM J, V312, P887
   Rivolta MN, 2002, GENOME RES, V12, P1091, DOI 10.1101/gr.225602
   Rivolta MN, 2002, J NEUROBIOL, V53, P306, DOI 10.1002/neu.10111
   Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595
   RIZZUTO R, 1989, J BIOL CHEM, V264, P10595
   Robert-Moreno A, 2005, DEVELOPMENT, V132, P1117, DOI 10.1242/dev.01660
   Ruan YJ, 2004, TRENDS BIOTECHNOL, V22, P23, DOI 10.1016/j.tibtech.2003.11.002
   Schlitt T, 2005, FEBS LETT, V579, P1859, DOI 10.1016/j.febslet.2005.01.073
   Sheng GJ, 1999, MECH DEVELOP, V87, P213, DOI 10.1016/S0925-4773(99)00150-1
   Shirihai OS, 2000, EMBO J, V19, P2492, DOI 10.1093/emboj/19.11.2492
   Tong Q, 2005, MOL CELL BIOL, V25, P706, DOI 10.1128/MCB.25.2.706-715.2005
   Zhang L, 2003, NAT BIOTECHNOL, V21, P818, DOI 10.1038/nbt836
   Zhou YY, 2002, BMC BIOINFORMATICS, V3, DOI 10.1186/1471-2105-3-3
NR 35
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 32
EP 40
DI 10.1016/j.heares.2006.04.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900006
PM 16797894
ER

PT J
AU Batts, SA
   Raphael, Y
AF Batts, Shelley A.
   Raphael, Yehoash
TI Transdifferentiation and its applicability for inner ear therapy
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE transdifferentiation; regeneration; conversion; cochlea; stem cell; hair
   cell; supporting cell; deafness; gene therapy
ID HAIR CELL REGENERATION; AVIAN AUDITORY EPITHELIUM; PLURIPOTENT
   STEM-CELLS; ACOUSTIC TRAUMA; SUPPORTING CELLS; PROGENITOR CELLS;
   GENE-EXPRESSION; CHICK COCHLEA; GUINEA-PIGS; IN-VIVO
AB During normal development, cells divide, then differentiate to adopt their individual form and function in an organism. Under most circumstances, mature cells cannot transdifferentiate, changing their fate to adopt a different form and function. Because differentiated cells cannot usually divide, the repair of injuries as well as regeneration largely depends on the activation of stem cell reserves. The mature cochlea is an exception among epithelial cell layers in that it lacks stem cells. Consequently, the sensory hair cells that receive sound information cannot be replaced, and their loss results in permanent hearing impairment. The lack of a spontaneous cell replacement mechanism in the organ of Corti, the mammalian auditory sensory epithelium, has led researchers to investigate circumstances in which transdifferentiation does occur. The hope is that this information can be used to design therapies to replace lost hair cells and restore impaired hearing in humans. (C) 2006 Elsevier B.V. All rights reserved.
C1 Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
RP Raphael, Y (reprint author), Kresge Hearing Res Inst, Dept Otolaryngol, MSRB-3,Room 9301, Ann Arbor, MI 48109 USA.
EM Yoash@umich.edu
CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3
   Amemiya K, 2004, BIOCHEM BIOPH RES CO, V316, P1, DOI 10.1016/j.bbrc.2004.01.172
   Armstrong L, 2006, STEM CELLS, V24, P805, DOI 10.1634/stemcells.2005-0350
   Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722
   Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
   Brero A, 2006, CURR TOP MICROBIOL, V301, P21
   Chen P, 1999, DEVELOPMENT, V126, P1581
   Chen SB, 2004, J AM CHEM SOC, V126, P410, DOI 10.1021/ja037390k
   Cornell RA, 2005, SEMIN CELL DEV BIOL, V16, P663, DOI 10.1016/j.semcdb.2005.06.009
   CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
   COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1
   FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
   Gruh I, 2006, CIRCULATION, V113, P1326, DOI 10.1161/CIRCULATIONAHA.105.559005
   Gurdon JB, 2004, BIOSCIENCE REP, V24, P545, DOI 10.1007/s10540-005-2744-5
   HASHINO E, 1993, J CELL SCI, V105, P23
   Horb ME, 2003, CURR BIOL, V13, P105, DOI 10.1016/S0960-9822(02)01434-3
   Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
   Kablar B, 2000, DEVELOPMENT, V127, P1627
   Kageyama R, 2005, EXP CELL RES, V306, P343, DOI 10.1016/j.yexcr.2005.03.015
   Kawamoto K, 2003, J NEUROSCI, V23, P4395
   Kee BL, 2005, CURR TOP MICROBIOL, V290, P15
   KEIHOFF G, 2006, EUR J CELL BIOL, V85, P11
   Kondo T, 2005, P NATL ACAD SCI USA, V102, P4789, DOI 10.1073/pnas.0408239102
   Krabbe C, 2005, APMIS, V113, P831, DOI 10.1111/j.1600-0463.2005.apm_3061.x
   Lardon J, 2005, DIFFERENTIATION, V73, P278, DOI 10.1111/j.1432-0436.2005.00030.x
   Levenson JM, 2006, CELL MOL LIFE SCI
   Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
   Lian GW, 2006, EXP HEMATOL, V34, P348, DOI 10.1016/j.exphem.2005.12.004
   Liu Y, 2003, J CELL BIOCHEM, V88, P29, DOI 10.1002/jcb.10281
   Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
   Mitashov VI, 1997, INT J DEV BIOL, V41, P893
   Park KS, 2006, AM J RESP CELL MOL, V34, P151, DOI 10.1165/rcmb.2005-0332OC
   RAJENDRA S, 2006, J CLIN PATHOL
   RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727
   RAPHAEL Y, 1994, HEARING RES, V80, P53, DOI 10.1016/0378-5955(94)90008-6
   Roberson DW, 1996, AUDIT NEUROSCI, V2, P195
   Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271
   ROYBON L, 2006, STEM CELLS
   RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
   Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642
   Samson SL, 2006, TRENDS ENDOCRIN MET, V17, P92, DOI 10.1016/j.tem.2006.02.002
   Santos KF, 2005, BRAZ J MED BIOL RES, V38, P1531, DOI 10.1590/S0100-879X2005001000010
   Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6
   Slack Jonathan M W, 2004, J Biol, V3, P10, DOI 10.1186/jbiol8
   Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004
   STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106
   STROEVA OG, 1983, INT REV CYTOL, V83, P221, DOI 10.1016/S0074-7696(08)61689-7
   Thorgeirsson SS, 2006, HEPATOLOGY, V43, P2, DOI 10.1002/hep.21015
   Tsonis PA, 2004, MOL INTERV, V4, P81, DOI 10.1124/mi.4.2.4
   Udani VM, 2006, STEM CELLS DEV, V15, P1, DOI 10.1089/scd.2006.15.1
   VANDENBERGH DJ, 1989, NEURON, V3, P507, DOI 10.1016/0896-6273(89)90209-2
   WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285
   Welikson RE, 2006, J MOL CELL CARDIOL, V40, P520, DOI 10.1016/j.yjmcc.2006.01.009
   White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
   Wilmut I, 1997, NATURE, V385, P810, DOI 10.1038/385810a0
   WONG NA, 2006, J CLIN PATHOL, V59, P560
   Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349
   ZAPPIA JJ, 1989, HEARING RES, V40, P29, DOI 10.1016/0378-5955(89)90096-8
   Zheng JL, 2000, NAT NEUROSCI, V3, P580
NR 59
TC 8
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 41
EP 47
DI 10.1016/j.heares.2006.08.015
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900007
PM 17070000
ER

PT J
AU Martinez-Monedero, R
   Oshima, K
   Heller, S
   Edge, ASB
AF Martinez-Monedero, Rodrigo
   Oshima, Kazuo
   Heller, Stefan
   Edge, Albert S. B.
TI The potential role of endogenous stem cells in regeneration of the inner
   ear
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE stem cells; hair cells; spiral ganglion; regeneration
ID NEURAL PROGENITOR CELLS; PANCREATIC BETA-CELLS; HAIR-CELLS; COCHLEAR
   NERVE; AUDITORY NEUROPATHY; SUPPORTING CELLS; SPIRAL GANGLION; ACOUSTIC
   TRAUMA; HEARING-LOSS; DEGENERATION
AB Stem cells in various mammalian organs retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack of spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming ability in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether the tissue retains cells with the capacity for regeneration. (C) 2007 Elsevier B.V. All rights reserved.
C1 Massachusetts Eye & Ear Infirm, Tillotson Unit Cell Biol, Eaton Peabody Lab, Boston, MA 02114 USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
   Harvard Univ, Div Hlth Sci & Technol, Program Speech & Hearing Biosci, Cambridge, MA 02139 USA.
   MIT, Cambridge, MA 02139 USA.
   Stanford Univ, Sch Med, Dept Otolaryngol HNS & Mol Cellular Physiol, Stanford, CA 94305 USA.
RP Edge, ASB (reprint author), Massachusetts Eye & Ear Infirm, Tillotson Unit Cell Biol, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM albert_edge@meei.harvard.edu
CR Alonso L, 2003, GENE DEV, V17, P1189, DOI 10.1101/gad.1086903
   Bixby S, 2002, NEURON, V35, P643, DOI 10.1016/S0896-6273(02)00825-5
   Bonner-Weir S, 2005, NAT BIOTECHNOL, V23, P857, DOI 10.1038/nbt1115
   Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310
   Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4
   CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
   Dor Y, 2004, NATURE, V429, P41, DOI 10.1038/nature02520
   Fausto N, 2004, HEPATOLOGY, V39, P1477, DOI 10.1002/hep.20214
   FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
   Gage FH, 2002, J NEUROSCI, V22, P612
   Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Horner PJ, 2002, J NEUROCYTOL, V31, P469, DOI 10.1023/A:1025739630398
   Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
   KELLEY MW, 1995, J NEUROSCI, V15, P3013
   Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
   LAMBERT PR, 1994, LARYNGOSCOPE, V104, P701
   Li HW, 2004, TRENDS MOL MED, V10, P309, DOI 10.1016/j.molmed.2004.05.008
   Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006
   Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232
   MCMAHAN UJ, 1990, COLD SH Q B, V55, P407
   Montcouquiol M, 2001, J NEUROSCI, V21, P974
   Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
   Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3
   Pasterkamp RJ, 1998, J NEUROSCI, V18, P9962
   Puel JL, 1997, ACTA OTO-LARYNGOL, V117, P214, DOI 10.3109/00016489709117773
   Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005
   REYNOLDS BA, 1992, SCIENCE, V255, P1707, DOI 10.1126/science.1553558
   Rubart M, 2006, ANNU REV PHYSIOL, V68, P29, DOI 10.1146/annurev.physiol.68.040104.124530
   RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101
   Sekiya T, 2003, NEUROSURGERY, V52, P900, DOI 10.1227/01.NEU.0000053509.98561.16
   Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741
   Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1
   Urbanek K, 2005, P NATL ACAD SCI USA, V102, P8692, DOI 10.1073/pnas.0500169102
   Varga R, 2003, J MED GENET, V40, P45, DOI 10.1136/jmg.40.1.45
   WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285
   Weissman IL, 2000, CELL, V100, P157, DOI 10.1016/S0092-8674(00)81692-X
   White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849
   Zheng JL, 2000, NAT NEUROSCI, V3, P580
   ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 42
TC 20
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 48
EP 52
DI 10.1016/j.heares.2006.12.015
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900008
PM 17321086
ER

PT J
AU Praetorius, M
   Baker, K
   Brough, DE
   Plinkert, P
   Staecker, H
AF Praetorius, Mark
   Baker, Kim
   Brough, Douglas E.
   Plinkert, Peter
   Staecker, Hinrich
TI Pharmacodynamics of adenovector distribution within the inner ear
   tissues of the mouse
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE gene therapy; cochlea; vestibular; adenovirus; perilymph; drug delivery;
   inner ear
ID MEDIATED GENE-TRANSFER; CELLS IN-VIVO; GUINEA-PIG; ADENOASSOCIATED
   VIRUS; TRANSGENE EXPRESSION; HAIR-CELLS; VECTOR; ADENOVIRUS; COCHLEA;
   THERAPY
AB Recent studies have demonstrated that delivery of genes to the inner ear can achieve a variety of effects ranging from support of auditory neuron survival to protection and restoration of hair cells, demonstrating the utility of vector based gene delivery. Translation of these findings to useful experimental systems or even clinical applications requires a detailed understanding of the pharmacokinetics of gene delivery in the inner ear. Ideal gene delivery systems will employ a well tolerated vector which efficiently transduces the appropriate target cells within a tissue, but spare non-target structures. Adenovectors based on serotype 5 (Ad 5) are commonly used vectors, are easy to construct and have a long track record of efficacious gene transfer in the inner ear. In this study we demonstrate that distribution of Ads vector occurs in a basal to apical gradient with rapid distribution of vector to the vestibule after delivery via a round window cochleostomy. Transduction of the vector and expression of the delivered transgene occurs by 10 min post vector delivery. At 24 h post delivery only 16% of vector that was initially detectable within the inner ear by quantitative PCR remained. Perilymph sampling was used to determine that vector concentrations in perilymph peaked at 30 min post delivery and then declined rapidly. Understanding these basic distribution patterns and parameters for delivery are important for the design of gene delivery vectors and vital for modeling dose responses to achieve safe efficacious delivery of a therapeutic agent. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA.
   Univ Heidelberg, Med Ctr, Dept Otolaryngol, D-6900 Heidelberg, Germany.
   Univ Maryland, Med Ctr, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21201 USA.
   GenVec Inc, Gaithersburg, MD USA.
RP Staecker, H (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd,MS 3010, Kansas City, KS 66160 USA.
EM hstaecker@kumc.edu
CR Alemany R, 2000, J GEN VIROL, V81, P2605
   Dinh AT, 2005, BIOPHYS J, V89, P1574, DOI 10.1529/biophysj.105.059477
   Einfeld DA, 2002, CURR OPIN MOL THER, V4, P444
   Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545
   Kawamoto K., 2001, NOISE HEALTH, V3, P37
   Lalwani AK, 1996, GENE THER, V3, P588
   Luebke AE, 2001, GENE THER, V8, P789, DOI 10.1038/sj.gt.3301445
   Plontke SKR, 2003, HEARING RES, V182, P34, DOI 10.1016/S0378-5955(03)00138-2
   Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026
   Praetorius M, 2003, ORL J OTO-RHINO-LARY, V65, P211, DOI 10.1159/000073117
   Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157
   Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X
   Salt A N, 1987, Adv Otorhinolaryngol, V37, P11
   Salt AN, 1998, HEARING RES, V123, P137, DOI 10.1016/S0378-5955(98)00106-3
   Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140
   Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P157
   Stone IM, 2005, MOL THER, V11, P843, DOI 10.1016/j.ymthe.2005.02.005
   Suomalainen M, 1999, J CELL BIOL, V144, P657, DOI 10.1083/jcb.144.4.657
   Tomanin R, 2004, CURR GENE THER, V4, P357
   Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526
NR 20
TC 10
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 53
EP 58
DI 10.1016/j.heares.2006.07.002
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900009
PM 17081711
ER

PT J
AU Takeda-Nakazawa, H
   Harada, N
   Shen, J
   Kubo, N
   Zenner, HP
   Yamashita, T
AF Takeda-Nakazawa, Hiroko
   Harada, Narinobu
   Shen, Jing
   Kubo, Nobuo
   Zenner, Hans-Peter
   Yamashita, Toshio
TI Hyposmotic stimulation-induced nitric oxide production in outer hair
   cells of the guinea pig cochlea
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A
   Challenge in regeneration
CY SEP   17, 2005
CL Tubingen, GERMANY
DE cochlea; DAF-2 DA; hypotonic stimulation; nitric oxide; outer hair cell;
   transient receptor potential vanilloid 4
ID INDUCED CA2+ MOBILIZATION; RABBIT PROXIMAL TUBULE; MICE LACKING TRPV4;
   ENDOTHELIAL-CELLS; INNER-EAR; INTRACELLULAR CALCIUM; K+ CHANNELS;
   ACTIVATION; SYNTHASE; ATP
AB Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-N-G-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca 2+](i)) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4 alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+](i) increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism. (C) 2006 Elsevier B.V. All rights reserved.
C1 Kansai Med Univ, Hearing Res Lab, Dept Otolaryngol, Moriguchi, Osaka 5708507, Japan.
   Harada Ear Inst, Higashiosaka, Osaka 5770816, Japan.
   Univ Tubingen, Dept Otolaryngol, D-72076 Tubingen, Germany.
RP Harada, N (reprint author), Kansai Med Univ, Hearing Res Lab, Dept Otolaryngol, Fumizonocho 10-15, Moriguchi, Osaka 5708507, Japan.
EM hrd@wood.odn.ne.jp
CR Ahern GP, 1999, J PHYSIOL-LONDON, V520, P165, DOI 10.1111/j.1469-7793.1999.00165.x
   ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   Baylor SM, 2000, NEWS PHYSIOL SCI, V15, P19
   BREER H, 1993, TRENDS NEUROSCI, V1, P5
   Brette F, 2000, AM J PHYSIOL-HEART C, V279, pH1963
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   Cho H, 1997, ACTA OTO-LARYNGOL, V117, P545, DOI 10.3109/00016489709113435
   Clementi E, 1997, TRENDS PHARMACOL SCI, V18, P266
   Cudeiro J, 1999, TRENDS NEUROSCI, V22, P109, DOI 10.1016/S0166-2236(98)01299-5
   Dedkova EN, 2002, J PHYSIOL-LONDON, V539, P77, DOI 10.1013/jphysiol.2001.013258
   DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6
   DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558
   DULON D, 1992, AM J OTOL, V13, P108
   DULON D, 1990, J NEUROSCI, V10, P1388
   ERNST A, 1994, BRAIN RES, V636, P153, DOI 10.1016/0006-8993(94)90191-0
   Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914
   GARTHWAITE J, 1995, ANNU REV PHYSIOL, V57, P683, DOI 10.1146/annurev.ph.57.030195.003343
   Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3
   GRIFFITH OW, 1995, ANNU REV PHYSIOL, V57, P707, DOI 10.1146/annurev.ph.57.030195.003423
   Guler AD, 2002, J NEUROSCI, V22, P6408
   HARADA N, 1994, ACTA OTO-LARYNGOL, V114, P510, DOI 10.3109/00016489409126095
   HARADA N, 1993, BRAIN RES, V613, P205
   Heinrich UR, 2000, BRAIN RES, V885, P6, DOI 10.1016/S0006-8993(00)02833-X
   JERRY RA, 1995, J ACOUST SOC AM, V98, P2000, DOI 10.1121/1.413318
   Kalinec F, 2000, J BIOL CHEM, V275, P28000
   KAWAHARA K, 1991, AM J PHYSIOL, V260, pF27
   Kimura C, 2000, BIOCHEM BIOPH RES CO, V274, P736, DOI 10.1006/bbrc.2000.3205
   Kimura C, 2004, J PHYSIOL-LONDON, V554, P721, DOI 10.1113/jphysiol.2003.057059
   KLIS SFL, 1994, HEARING RES, V75, P114, DOI 10.1016/0378-5955(94)90062-0
   Kojima H, 1998, ANAL CHEM, V70, P2446, DOI 10.1021/ac9801723
   KONISHI M, 1988, BIOPHYS J, V54, P1089
   Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4
   Light DB, 2003, J CELL SCI, V116, P101, DOI 10.1242/jcs.00202
   Lin S, 2000, J BIOL CHEM, V275, P17979, DOI 10.1074/jbc.275.24.17979
   Liu RS, 2002, J AM SOC NEPHROL, V13, P2688, DOI 10.1097/01.ASN.0000033275.17169.67
   MCARTY NA, 1991, J MEMBRANE BIOL, V123, P149
   Michel O, 1999, HEARING RES, V133, P1, DOI 10.1016/S0378-5955(99)00049-0
   Mizuno A, 2003, AM J PHYSIOL-CELL PH, V285, pC96, DOI 10.1152/ajpcell.00559.2002
   Mizuno O, 2000, BRIT J PHARMACOL, V130, P1140, DOI 10.1038/sj.bjp.0703420
   Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658
   Okada Y, 1990, Neurosci Res Suppl, V12, pS5, DOI 10.1016/0921-8696(90)90004-M
   O'Neil RG, 2005, PFLUG ARCH EUR J PHY, V451, P193, DOI 10.1007/s00424-005-1424-4
   Prast H, 2001, PROG NEUROBIOL, V64, P51, DOI 10.1016/S0301-0082(00)00044-7
   ROSS PE, 1995, J GEN PHYSIOL, V106, P415, DOI 10.1085/jgp.106.3.415
   Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z
   Shen J, 2005, EUR J NEUROSCI, V21, P2912, DOI 10.1111/j.1460-9568.2005.04135.x
   Shen J, 2003, NEUROSCI LETT, V337, P135, DOI 10.1016/S0304-3940(02)01320-4
   Shen J, 2006, BRAIN RES, V1081, P101, DOI 10.1016/j.brainres.2005.12.129
   Shen J, 2006, NEUROREPORT, V17, P135, DOI 10.1097/01.wnr.0000199459.16789.75
   Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9
   Shin JH, 1997, FEBS LETT, V415, P299, DOI 10.1016/S0014-5793(97)01144-7
   Strotmann R, 2000, NAT CELL BIOL, V2, P695
   SUZUKI M, 1990, AM J PHYSIOL, V258, pF690
   Suzuki M, 2003, J BIOL CHEM, V278, P22664, DOI 10.1074/jbc.M302561200
   Sziklai I, 1997, ACTA OTO-LARYNGOL, V117, P222, DOI 10.3109/00016489709117775
   Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P28, DOI 10.1080/000164800760370792
   Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P460, DOI 10.1080/000164801300366589
   Takumida M, 2002, CURR OPIN NEUROL, V15, P11, DOI 10.1097/00019052-200202000-00003
   TANIGUCHI J, 1989, AM J PHYSIOL, V257, pF347
   UBL J, 1988, PFLUG ARCH EUR J PHY, V412, P551, DOI 10.1007/BF00582547
   Watanabe H, 2002, J BIOL CHEM, V277, P13569, DOI 10.1074/jbc.M200062200
   WELLING PA, 1990, AM J PHYSIOL, V258, pF951
   Xia Y, 1998, J BIOL CHEM, V273, P25804, DOI 10.1074/jbc.273.40.25804
   YANG XC, 1989, SCIENCE, V243, P1068, DOI 10.1126/science.2466333
   Yukawa H, 2005, NEUROSCIENCE, V130, P485, DOI 10.1016/j.neuroscience.2004.09.037
   ZENNER HP, 1994, EUR ARCH OTO-RHINO-L, V251, P143
   ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8
   ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1
   Zsombok A, 2000, NEUROSCI LETT, V295, P85, DOI 10.1016/S0304-3940(00)01606-2
NR 69
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2007
VL 227
IS 1-2
SI SI
BP 59
EP 70
DI 10.1016/j.heares.2006.09.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 169ZP
UT WOS:000246630900010
PM 17092670
ER

PT J
AU Price, GR
AF Price, G. Richard
TI Predicting mechanical damage to the organ of Corti
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE auditory hazard; impulse noise; AHAAH; hazard model; auditory damage;
   pharmacological intervention
ID IMPULSE NOISE; HEARING-LOSS; CORDLESS TELEPHONES; HAZARD; EAR; MODEL;
   DISPLACEMENT; FREQUENCY; INTENSITY; EXPOSURE
AB The potential for pharmacological intervention to ameliorate the effects of exposure to intense auditory stimulation is a truly exciting possibility. In theory, the effects of intense stimulation could be primarily a function of mechanical stress and its sequelae or possibly metabolic exhaustion. Conceivably, specific pharmacological therapies might be more effective following different types of insult, depending on the loss mechanism(s) involved. The Auditory Hazard Assessment Algorithm for the Human (AHAAH), a first-principles mathematical model for the ear, has been developed specifically to predict hazard at high intensities based on basilar membrane displacement. Validation studies have proven it to be accurate in rating risk for the human ear. AHAAH is available for download on the Internet. In the present context it was used to propose analytic stimuli that would help to elucidate the loss mechanisms and also to identify exposures for the clinician that should be considered as sufficiently hazardous to warrant potential pharmacological intervention either before or after the exposure. (C) 2006 Elsevier B.V. All rights reserved.
C1 AH Anal, Charlestown, MD 21914 USA.
RP Price, GR (reprint author), AH Anal, POB 368,125 Conestoga St, Charlestown, MD 21914 USA.
EM AHAnalysis@comcast.net
CR *ANSI ASA, 1996, S3441996 ANSI ASA
   Bohnke F, 1998, IEEE T BIO-MED ENG, V45, P1227, DOI 10.1109/10.720200
   BOLZ EA, 1972, ACTA OTO-LARYNGOL, V73, P10, DOI 10.3109/00016487209138188
   BRASHER PF, 1969, INT AUDIOL, V8, P579, DOI 10.3109/05384916909070228
   Brinkmann H., 2000, TM00I008 TNO, P6
   Cai H., 2002, SIAM Journal on Applied Mathematics, V63, DOI 10.1137/S0036139901388957
   DALLOS PJ, 1964, J ACOUST SOC AM, V36, P2175, DOI 10.1121/1.1919340
   Djupesland G., 1965, INT AUDIOL, V4, P34, DOI 10.3109/05384916509070162
   Djupesland G, 1964, ACTA OTO-LARYNGOL, V188, P287
   GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
   HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
   HAMERNIK RP, 1988, J ACOUST SOC AM, V84, P941, DOI 10.1121/1.396663
   HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052
   Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006
   *ISO, 1999, 1851 ISO
   JOHNSON DL, 1990, DIRECT DETERMINATION, V3
   Kolston PJ, 1999, P NATL ACAD SCI USA, V96, P3676, DOI 10.1073/pnas.96.7.3676
   MARSHALL L, 1975, J SPEECH HEAR DISORD, V40, P320
   MATTOX DE, 1997, 12 MIDW M ASS RES OT, P200
   ORCHIK DJ, 1987, OTOLARYNG HEAD NECK, V96, P30
   ORCHIK DJ, 1985, CLIN PEDIATR, V24, P688
   Pang X-D, 1986, PERIPHERAL AUDITORY, P36
   PATTERSON JJ, 1994, 9446 USAARL US ARM A
   Pfander F., 1975, KNALLTRAUMA
   PLONTKE S, 2004, GMS CURR TOP OTORHIN, V3
   Plontke SKR, 2002, EUR ARCH OTO-RHINO-L, V259, P247, DOI 10.1007/s00405-002-0451-4
   Price G. R., 2006, SAE 2005 T J PASSENG, VV114-6
   PRICE GR, 1976, J ACOUST SOC AM, V60, P886, DOI 10.1121/1.381169
   Price GR, 1999, J ACOUST SOC AM, V106, P2629, DOI 10.1121/1.428092
   PRICE GR, 1989, J ACOUST SOC AM, V86, P2185, DOI 10.1121/1.398479
   PRICE GR, 1974, J ACOUST SOC AM, V56, P195, DOI 10.1121/1.1903253
   PRICE GR, 2003, WEAPON NOISE EXPOSUR
   PRICE GR, 1998, P ICA ASA, V103, P1145
   PRICE GR, 2003, IMPULSE NOISE CAT CO
   PRICE GR, 1996, J ACOUST SOC AM, V100, P2674, DOI 10.1121/1.416935
   PRICE GR, 1998, INT C BIOL EFF NOIS, V2, P725
   PRICE GR, 2003, NIOSH NHCA IMP NOIS
   PRICE GR, 1986, J ACOUST SOC AM, V80, P1076, DOI 10.1121/1.393849
   PRICE GR, 1991, J ACOUST SOC AM, V90, P219, DOI 10.1121/1.401291
   PRICE GR, 1972, J ACOUST SOC AM, V51, P552, DOI 10.1121/1.1912877
   RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547
   ROYSTER JD, 24 ANN NHCA HEAR CON
   SCHUMAIER SG, 1986, TRIAL, V22, P32
   SINGLETON GT, 1984, ANN OTO RHINOL LARYN, V93, P565
   Steele CR, 2005, INT J SOLIDS STRUCT, V42, P5887, DOI 10.1016/j.ijsolstr.2005.03.056
   *USACHPPM, 2005, COMMUNICATION
   WEVER EG, 1942, J EXP PSYCHOL, V31, P40
   Wiener F M, 1966, Acta Otolaryngol, V61, P255, DOI 10.3109/00016486609127062
   YONOVITZ A, 1976, ACTA OTO-LARYNGOL, V82, P11, DOI 10.3109/00016487609120857
NR 49
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 5
EP 13
DI 10.1016/j.heares.2006.08.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000002
PM 16978813
ER

PT J
AU Chen, GD
   Zhao, HB
AF Chen, Guang-Di
   Zhao, Hong-Bo
TI Effects of intense noise exposure on the outer hair cell plasma membrane
   fluidity
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE outer hair cell; plasma membrane lateral diffusion; noise-induced
   hearing loss; FRAP; cochlear amplifier
ID AUDITORY SENSORY CELLS; INDUCED HEARING-LOSS; LIPID-PEROXIDATION;
   NITRIC-OXIDE; GUINEA-PIG; FLUORESCENCE RECOVERY; MICROSOMAL MEMBRANE;
   COCHLEAR AMPLIFIER; RADICAL GENERATION; OXIDATIVE DAMAGE
AB Outer hair cells (OHCs) play an important role in cochlear amplification via their length changes (electromotility). A noise-induced cochlear amplification loss leading to a permanent threshold shift (PTS) was observed without a significant hair cell loss in rats [Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9.]. Since motor proteins are inserted in the OHC lateral membrane, any change in the OHC plasma membrane may result in a loss of OHC electromotility, leading to a loss of cochlear amplification. In this study, the lateral diffusion in the OHC plasma membrane was determined in vitro in guinea pigs by fluorescent recovery after photobleaching (FRAP) after an in vivo noise exposure. The lateral diffusion in the OHC plasma membrane demonstrated a length-dependence, which increased as OHC length increased. A reduction in the lateral diffusion was observed in those OHCs with lengths of 50-70 mu m after exposure to an 8-kHz octave band noise at 110 dB SPL for 3h. This membrane fluidity change was associated with the selective PTS at frequencies around 8 kHz. The reduction of the lateral diffusion in the OHC lateral wall indicated that noise could impair the micromechanics of the OHC lateral wall and might consequently impair OHC electromotility to induce threshold shift. (C) 2006 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   Univ Kentucky, Med Ctr, Div Otolaryngol, Lexington, KY USA.
RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM gchen7@buffalo.edu
CR AXELROD D, 1976, BIOPHYS J, V16, P1055
   Balasubramanian SV, 1997, J PHARM SCI, V86, P199, DOI 10.1021/js9602756
   Belyantseva IA, 2000, J NEUROSCI, V20, part. no.
   BJORKMAN DJ, 1994, ALCOHOL CLIN EXP RES, V18, P560, DOI 10.1111/j.1530-0277.1994.tb00910.x
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   BRUCH RC, 1983, BIOCHIM BIOPHYS ACTA, V733, P216, DOI 10.1016/0005-2736(83)90525-4
   Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6
   Chen CH, 1998, ARCH BIOCHEM BIOPHYS, V351, P135, DOI 10.1006/abbi.1997.0543
   Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X
   Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016
   CHOI JH, 1995, FREE RADICAL BIO MED, V18, P133, DOI 10.1016/0891-5849(94)00106-T
   COOPER RA, 1978, J SUPRAMOL STR CELL, V8, P413, DOI 10.1002/jss.400080404
   COURJAULTGAUTIER F, 1995, KIDNEY INT, V47, P1048, DOI 10.1038/ki.1995.151
   DALLOS P, 1992, J NEUROSCI, V12, P4575
   DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0
   Dallos P, 2000, JARO-J ASSOC RES OTO, V1, P283, DOI 10.1007/s101620010048
   DANNHOF BJ, 1991, NATURWISSENSCHAFTEN, V78, P570, DOI 10.1007/BF01134454
   ENGELKE M, 1992, PHARMACOL TOXICOL, V71, P343
   ENGELKE M, 1993, XENOBIOTICA, V23, P71
   Feder TJ, 1996, BIOPHYS J, V70, P2767
   Gale JE, 1997, NATURE, V389, P63, DOI 10.1038/37968
   Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4
   Guo Y, 2001, Lin Chuang Er Bi Yan Hou Ke Za Zhi, V15, P26
   HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549
   He DZZ, 2003, J NEUROSCI, V23, P9089
   He DZZ, 1999, P NATL ACAD SCI USA, V96, P8223, DOI 10.1073/pnas.96.14.8223
   HEIPIEPER HJ, 1994, APPL ENVIRON MICROB, V60, P4440
   HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0
   HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268
   Imai K, 2000, BIOL PHARM BULL, V23, P415
   IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094
   Iwasa KH, 1997, BIOPHYS J, V73, P546
   KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671
   Karbownik M, 2000, INT J BIOCHEM CELL B, V32, P1045, DOI 10.1016/S1357-2725(00)00056-X
   Ladha S, 1996, BIOPHYS J, V71, P1364
   Lee HJ, 1999, J PHARM SCI, V88, P976, DOI 10.1021/js990114c
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24
   Mecocci P, 1997, MOL CHEM NEUROPATHOL, V31, P53, DOI 10.1007/BF02815160
   Muriel P, 2000, NITRIC OXIDE-BIOL CH, V4, P333, DOI 10.1006/niox.2000.0285
   Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658
   Oghalai JS, 1999, HEARING RES, V135, P19, DOI 10.1016/S0378-5955(99)00077-5
   Oghalai JS, 1998, J NEUROSCI, V18, P48
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   OHYASHIKI T, 1986, BIOCHIM BIOPHYS ACTA, V861, P311, DOI 10.1016/0005-2736(86)90433-5
   Rao DB, 2001, HEARING RES, V161, P113, DOI 10.1016/S0378-5955(01)00366-5
   Remy-Kristensen A, 2000, MOL MEMBR BIOL, V17, P95
   Santos-Sacchi J, 1998, NEUROSCI LETT, V256, P155, DOI 10.1016/S0304-3940(98)00788-5
   Shi XR, 2002, HEARING RES, V164, P49
   STICKNEY JA, 1989, TOXICOLOGY, V58, P155, DOI 10.1016/0300-483X(89)90005-X
   SU Z, 1993, CHUNG KAO YAO LI HSU, V14, P393
   Tolomeo JA, 1996, BIOPHYS J, V71, P421
   Tsuda K, 2000, BIOCHEM BIOPH RES CO, V275, P946, DOI 10.1006/bbrc.2000.3408
   WU XM, 1993, ENDOCRINOLOGY, V133, P491, DOI 10.1210/en.133.2.491
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   YGUERABIDE J, 1982, BIOPHYS J, V40, P69
   Zhao HB, 1999, NATURE, V399, P359
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   Zheng J, 2003, MAMM GENOME, V14, P87, DOI 10.1007/s00335-002-2227-y
   Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032
NR 63
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 14
EP 21
DI 10.1016/j.heares.2006.06.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000003
PM 16870367
ER

PT J
AU Le Prell, CG
   Yamashita, D
   Minami, SB
   Yamasoba, T
   Miller, JM
AF Le Prell, Colleen G.
   Yamashita, Daisuke
   Minami, Shujiro B.
   Yamasoba, Tatsuya
   Miller, Josef M.
TI Mechanisms of noise-induced hearing loss indicate multiple methods of
   prevention
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE noise; hearing loss; antioxidant; cochlea; cell death
ID GUINEA-PIG COCHLEA; TEMPORARY THRESHOLD SHIFT; HAIR CELL-DEATH; FAS
   LIGAND TRANSCRIPTION; FIBROBLAST-GROWTH-FACTOR; SPIRAL GANGLION NEURONS;
   VITAMIN-A-DEFICIENCY; INTENSE AUDITORY-STIMULATION; GENTAMICIN-INDUCED
   COCHLEAR; CISPLATIN-INDUCED APOPTOSIS
AB Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Karolinska Inst, Ctr Hearing & Commun, Stockholm, Sweden.
   Keio Univ Hosp, Dept Otolaryngol, Shinjuku Ku, Tokyo 1608582, Japan.
   Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138655, Japan.
RP Le Prell, CG (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM colleeng@umich.edu
CR Agostinho P, 2003, EUR J NEUROSCI, V17, P1189, DOI 10.1046/j.1460-9568.2003.02546.x
   Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114
   Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   Alam SA, 2001, LARYNGOSCOPE, V111, P528, DOI 10.1097/00005537-200103000-00026
   Almeida S, 2004, NEUROBIOL DIS, V17, P435, DOI 10.1016/j.nbd.204.07.002
   ALTURA BM, 1992, J APPL PHYSIOL, V72, P194
   Aminpour S, 2005, OTOL NEUROTOL, V26, P602, DOI 10.1097/01.mao.0000178121.28365.0d
   Attias J, 2004, CLIN OTOLARYNGOL, V29, P635, DOI 10.1111/j.1365-2273.2004.00866.x
   ATTIAS J, 1994, AM J OTOLARYNG, V15, P26, DOI 10.1016/0196-0709(94)90036-1
   Attias Joseph, 2003, Journal of Basic and Clinical Physiology and Pharmacology, V14, P119
   AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0
   AXELSSON A, 1981, NEW PERSPECTIVES NOI, P49
   BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L
   Berthier A, 2004, CELL DEATH DIFFER, V11, P897, DOI 10.1038/sj.cdd.4401434
   Bertolaso L, 2001, AUDIOLOGY, V40, P327
   BIESALSKI HK, 1990, J NUTR, V120, P726
   Biswas G, 2005, GENE, V354, P132, DOI 10.1016/j.gene.2005.03.028
   Biswas RS, 2001, MOL CELL BIOCHEM, V225, P7, DOI 10.1023/A:1012203110027
   BOHNE BA, 1992, LARYNGOSCOPE, V102, P693, DOI 10.1288/00005537-199206000-00017
   Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9
   BRANIS M, 1988, HEARING RES, V33, P137, DOI 10.1016/0378-5955(88)90026-3
   Campbell Kathleen, 2003, J Am Acad Audiol, V14, P121, DOI 10.3766/jaaa.14.3.2
   Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144
   Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   CARDOSO SM, 2005, BRAIN RES, V19
   Caro AA, 2003, J BIOL CHEM, V278, P33866, DOI 10.1074/jbc.M300408200
   Cassandro E, 2003, ACTA OTO-LARYNGOL, V123, P802, DOI 10.1080/00016480310005138
   Cevette Michael J, 2003, J Am Acad Audiol, V14, P202
   Chen YS, 2005, HEARING RES, V203, P94, DOI 10.1016/j.heares.2004.12.006
   Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6
   Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63
   CHOLE RA, 1976, LARYNGOSCOPE, V86, P445, DOI 10.1288/00005537-197603000-00014
   Chong ZZ, 2004, ANTIOXID REDOX SIGN, V6, P277, DOI 10.1089/152308604322899341
   Christians U, 2004, BRIT J PHARMACOL, V143, P388, DOI 10.1038/sj.bjp.0705939
   Claes J, 2000, Acta Otolaryngol Suppl, V544, P34
   Corbacella E, 2004, HEARING RES, V197, P11, DOI 10.1016/j.heares.2004.03.012
   COYLE JT, 1993, SCIENCE, V262, P689, DOI 10.1126/science.7901908
   Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   Curtis LM, 1995, HEARING RES, V92, P120, DOI 10.1016/0378-5955(95)00207-3
   David EA, 2002, J OTOLARYNGOL, V31, P304, DOI 10.2310/7070.2002.34330
   DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368
   Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E
   Dehne N, 2000, HEARING RES, V143, P162, DOI 10.1016/S0378-5955(00)00036-8
   de la Monte SM, 2000, CELL MOL LIFE SCI, V57, P1471, DOI 10.1007/PL00000630
   Derekoy FS, 2004, LARYNGOSCOPE, V114, P1775, DOI 10.1097/00005537-200410000-00019
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
   Ding DL, 2002, JARO, V3, P68, DOI 10.1007/s101620020004
   Dolder M, 2001, BIOL SIGNAL RECEPT, V10, P93
   Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005
   Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
   DUVALL AJ, 1987, ARCH OTOLARYNGOL, V113, P1066
   DYKENS JA, 1987, J NEUROCHEM, V49, P1222, DOI 10.1111/j.1471-4159.1987.tb10014.x
   Eldadah BA, 2000, J NEUROTRAUM, V17, P811, DOI 10.1089/neu.2000.17.811
   El Idrissi A, 1999, J NEUROSCI, V19, P9459
   Erin N, 2003, NEUROSCIENCE, V117, P541, DOI 10.1016/S0306-4522(02)00933-8
   Erin N, 2003, NEUROSCIENCE, V117, P557, DOI 10.1016/S0306-4522(02)00934-X
   Eshraghi AA, 2006, ANAT REC PART A, V288A, P473, DOI 10.1002/ar.a.20305
   Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
   Feske S, 2003, BIOCHEM BIOPH RES CO, V311, P1117, DOI 10.1016/j.bbrc.2003.09.174
   Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6
   Fischer U, 2003, CELL DEATH DIFFER, V10, P76, DOI 10.1038/sj.cdd.4401160
   Fridberger A, 1996, ACTA OTO-LARYNGOL, V116, P17, DOI 10.3109/00016489609137707
   Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127
   Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778
   GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2
   GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0
   Gilgun-Sherki Y, 2003, J MOL NEUROSCI, V21, P1, DOI 10.1385/JMN:21:1:1
   Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2
   Glazner GW, 2000, EXP NEUROL, V161, P442, DOI 10.1006/exnr.1999.7242
   Gooch JL, 2004, J BIOL CHEM, V279, P15561, DOI 10.1074/jbc.M308759200
   Grosskreutz CL, 2005, EXP EYE RES, V80, P681, DOI 10.1016/j.exer.2004.11.017
   Guitton MJ, 2004, ACTA OTO-LARYNGOL, V124, P411, DOI 10.1080/00016480310000665
   GUNTHER T, 1989, AM J OTOL, V10, P36
   Ha JS, 2006, NEUROSCI LETT, V393, P165, DOI 10.1016/j.neulet.2005.09.056
   Halliwell B, 1998, FREE RADICALS BIOL M, V3rd
   HAMERNIK RP, 1974, ARCH OTOLARYNGOL, V99, P118
   HAMERNIK RP, 1974, J ACOUST SOC AM, V55, P117, DOI 10.1121/1.1928141
   Hanson JB, 2003, INT J PEDIATR OTORHI, V67, P585, DOI 10.1016/S0165-5876(03)00035-1
   HARADA N, 1994, ACTA OTO-LARYNGOL, V114, P609, DOI 10.3109/00016489409126113
   Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009
   Hart S. L., 1996, BUSINESS STRATEGY EN, V5, P30, DOI DOI 10.1002/(SICI)1099-0836(199603
   Haupt H, 2002, MAGNESIUM RES, V15, P17
   HAUPT H, 2003, J OTORHINOLARYNGOL R, V65, P134
   HAWKINS JE, 1976, ACTA OTO-LARYNGOL, V81, P337, DOI 10.3109/00016487609119971
   HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001
   HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903
   He LM, 2003, NEUROSCIENCE, V116, P325, DOI 10.1016/S0306-4522(02)00568-7
   HEINRICH UR, 2005, BRAIN RES, V1, P85
   Heinrich UR, 1999, ORL J OTO-RHINO-LARY, V61, P321, DOI 10.1159/000027693
   Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
   Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3
   HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36
   Holscher C, 2005, REV NEUROSCIENCE, V16, P181
   Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L
   Hou FX, 2003, HEARING RES, V179, P1, DOI 10.1016/S0378-5955(03)00065-0
   Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006
   Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Huang CS, 2001, CANCER RES, V61, P8051
   Huang TJ, 2002, DIABETOLOGIA, V45, P560, DOI 10.1007/s00125-002-0785-x
   Huang W, 2005, P NATL ACAD SCI USA, V102, P12242, DOI 10.1073/pnas.0505138102
   HUNTERDU.IM, 1973, J ACOUST SOC AM, V54, P1179, DOI 10.1121/1.1914364
   HUNTERDU.IM, 1972, J ACOUST SOC AM, V52, P1181, DOI 10.1121/1.1913230
   HUNTERDU.IM, 1974, J ACOUST SOC AM, V55, P795, DOI 10.1121/1.1914602
   Ibarretxe G, 2006, GLIA, V53, P201, DOI 10.1002/glia.20267
   ISING H, 1982, ARCH OTO-RHINO-LARYN, V236, P139, DOI 10.1007/BF00454034
   James AL, 2001, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD001873
   JANSSEN R, 1991, BRAIN RES, V552, P255, DOI 10.1016/0006-8993(91)90090-I
   Jayanthi S, 2005, P NATL ACAD SCI USA, V102, P868, DOI 10.1073/pnas.0404990102
   Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
   JOACHIMS Z, 1983, J ACOUST SOC AM, V74, P104, DOI 10.1121/1.389726
   Joachims Z, 1993, Schriftenr Ver Wasser Boden Lufthyg, V88, P503
   Kalivendi SV, 2005, BIOCHEM J, V389, P527
   Kalkanis JG, 2004, LARYNGOSCOPE, V114, P538, DOI 10.1097/00005537-200403000-00028
   Kawamoto K, 2003, MOL THER, V7, P484, DOI 10.1016/S1525-0016(03)00058-3
   Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
   Kim MJ, 2002, P NATL ACAD SCI USA, V99, P9870, DOI 10.1073/pnas.152336999
   Kirkland RA, 2003, ANTIOXID REDOX SIGN, V5, P589, DOI 10.1089/152308603770310257
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5
   KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0
   Labbe D, 2005, HEARING RES, V202, P21, DOI 10.1016/j.heares.2004.10.002
   Ladrech S, 2004, J COMP NEUROL, V477, P149, DOI 10.1002/cne.20252
   LAFONCAZAL M, 1993, NATURE, V364, P535, DOI 10.1038/364535a0
   LAFONCAZAL M, 1993, NEUROPHARMACOLOGY, V32, P1259, DOI 10.1016/0028-3908(93)90020-4
   Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8
   Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X
   Lamm K, 1999, ANN NY ACAD SCI, V884, P233, DOI 10.1111/j.1749-6632.1999.tb08645.x
   Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6
   Lassus P, 2002, SCIENCE, V297, P1352, DOI 10.1126/science.1074721
   Lautermann J, 1996, ARCH OTOLARYNGOL, V122, P837
   Lawner BE, 1997, INT J DEV NEUROSCI, V15, P601, DOI 10.1016/S0736-5748(96)00115-3
   Le HN, 2002, EXPERT OPIN BIOL TH, V2, P151, DOI 10.1517/14712598.2.2.151
   Le Prell CG, 2001, PHYSL EAR, P575
   LEFEBVRE PP, 1992, ACTA OTO-LARYNGOL, V112, P288
   LEFEBVRE PP, 1991, BRAIN RES, V567, P306, DOI 10.1016/0006-8993(91)90809-A
   Le Prell CG, 2004, J ACOUST SOC AM, V116, P1044, DOI 10.1121/1.1772395
   LEPRELL CG, 2006, IN PRESS J ACOUST SO, V120
   Levine M, 1996, P NATL ACAD SCI USA, V93, P3704, DOI 10.1073/pnas.93.8.3704
   Lewen A, 2000, J NEUROTRAUM, V17, P871, DOI 10.1089/neu.2000.17.871
   LI J, 2002, MOL CELL BIOCHEM, V235, P161
   LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294
   LIPSCOMB DM, 1973, LARYNGOSCOPE, V83, P259, DOI 10.1288/00005537-197302000-00008
   LIPTON SA, 1993, NATURE, V364, P626, DOI 10.1038/364626a0
   LOHLE E, 1985, PATHOL RES PRACT, V179, P560
   LOHLE E, 1980, ARCH OTO-RHINO-LARYN, V229, P45, DOI 10.1007/BF00453751
   LONGMIRE AW, 1994, BIOCHEM PHARMACOL, V47, P1173, DOI 10.1016/0006-2952(94)90389-1
   Lopez-Ganzalez MA, 2000, J PINEAL RES, V28, P73, DOI 10.1034/j.1600-079X.2001.280202.x
   Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029
   Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   Mano A, 2004, CIRCULATION, V110, P317, DOI 10.1161/01.CIR.0000135599.33787.CA
   Marzella PL, 1997, NEUROREPORT, V8, P1641, DOI 10.1097/00001756-199705060-00017
   Matsui JI, 2003, J NEUROSCI, V23, P6111
   Matsui JI, 2002, J NEUROSCI, V22, P1218
   Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054
   Matsunobu T, 2004, NEUROSCIENCE, V123, P1037, DOI 10.1016/j.neuroscience.2003.10.022
   Matteucci A, 2005, EXP BRAIN RES, V167, P641, DOI 10.1007/s00221-005-0068-0
   Mattson MP, 2000, NAT REV MOL CELL BIO, V1, P120, DOI 10.1038/35040009
   McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011
   McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031
   McFadden SL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P489
   Miller JM, 2006, OTOL JPN, V16, P139
   Miller Josef M., 1996, P95
   MILLER JM, UNPUB DELAYED NEUROT
   MILLER JM, 2003, ABS ASS RES OTOLARYN, V26, P248
   Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061
   MINAMI S, 2005, ABS ASS RES OTOLARYN, V28, P131
   MINAMI S, ABS ASS RES OTOLARYN
   Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267
   MINAMI SB, UNPUB CREATINE TEMPO
   Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008
   Morioka M, 1999, PROG NEUROBIOL, V58, P1, DOI 10.1016/S0301-0082(98)00073-2
   Morrow JD, 1996, BIOCHEM PHARMACOL, V51, P1, DOI 10.1016/0006-2952(95)02072-1
   Morrow JD, 1997, PROG LIPID RES, V36, P1, DOI 10.1016/S0163-7827(97)00001-5
   MORROW JD, 1990, P NATL ACAD SCI USA, V87, P9383, DOI 10.1073/pnas.87.23.9383
   Mou K, 1997, J COMP NEUROL, V386, P529
   Mulroy MJ, 1998, HEARING RES, V115, P93, DOI 10.1016/S0378-5955(97)00181-0
   Muzio M, 1998, J BIOL CHEM, V273, P2926, DOI 10.1074/jbc.273.5.2926
   Nagashima R, 2005, J PHARMACOL SCI, V99, P301, DOI 10.1254/jphs.CPJ05004X
   Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2
   Nakano H, 2000, ELECTR ENG JPN, V131, P1, DOI 10.1002/(SICI)1520-6416(200006)131:4<1::AID-EEJ1>3.0.CO;2-0
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Nicotera TM, 1999, ABS ASS RES OTOLARYN, V22, P159
   Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32
   NOGUCHI N, 1992, BIOCHEM PHARMACOL, V44, P39, DOI 10.1016/0006-2952(92)90035-H
   Nottingham S, 2002, EXP NEUROL, V177, P242, DOI 10.1006/exnr.2002.7975
   Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   Okuda T, 2005, AURIS NASUS LARYNX, V32, P33, DOI 10.1016/j.anl.2004.11.006
   Orrenius S, 2003, NAT REV MOL CELL BIO, V4, P552, DOI 10.1038/nrm1150
   Pasqualetti Massimo, 2001, TheScientificWorldJOURNAL, V1, P916
   Perez N, 1997, EUR ARCH OTO-RHINO-L, V254, P329, DOI 10.1007/BF02630725
   PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Pirvola U, 1997, J NEUROBIOL, V33, P1019, DOI 10.1002/(SICI)1097-4695(199712)33:7<1019::AID-NEU11>3.0.CO;2-A
   PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0
   Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U
   PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209
   PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67
   PUTTFARCKEN PS, 1993, BRAIN RES, V624, P223, DOI 10.1016/0006-8993(93)90081-W
   QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
   QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3
   QUIRK WS, 1995, AM J OTOL, V16, P322
   Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7
   Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X
   RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L
   Rivera A, 2005, J BIOL CHEM, V280, P29346, DOI 10.1074/jbc.M504852200
   Roberts LJ, 1997, BBA-LIPID LIPID MET, V1345, P121, DOI 10.1016/S0005-2760(96)00162-2
   ROBERTS LJ, 1994, ANN NY ACAD SCI, V744, P237, DOI 10.1111/j.1749-6632.1994.tb52741.x
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   Robertson JD, 2002, J BIOL CHEM, V277, P29803, DOI 10.1074/jbc.M204185200
   Romeo G, 1985, Acta Vitaminol Enzymol, V7 Suppl, P85
   Rybak LP, 2000, AM J OTOL, V21, P513
   SANTI PA, OTOLARYNGOLOGY, V86
   Satoh H, 2002, LARYNGOSCOPE, V112, P1627, DOI 10.1097/00005537-200209000-00019
   Scarpidis U, 2003, OTOL NEUROTOL, V24, P409, DOI 10.1097/00129492-200305000-00011
   Scheibe F, 2000, EUR ARCH OTO-RHINO-L, V257, P10, DOI 10.1007/PL00007505
   SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281
   Scheibe F, 2002, MAGNESIUM RES, V15, P27
   Schinder AF, 1996, J NEUROSCI, V16, P6125
   Seidman M, 2003, OTOLARYNG HEAD NECK, V129, P463, DOI 10.1016/S0194-5998(03)01586-9
   Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428
   Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818
   SHAH SB, 1995, AM J OTOL, V16, P310
   Shi XR, 2003, HEARING RES, V177, P43, DOI 10.1016/S0378-5955(02)00796-7
   Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8
   Shi YG, 2004, CELL, V117, P855, DOI 10.1016/j.cell.2004.06.007
   SHIBASAKI F, 1995, J CELL BIOL, V131, P735, DOI 10.1083/jcb.131.3.735
   Shibasaki F, 1997, NATURE, V386, P728, DOI 10.1038/386728a0
   Shirwany NA, 1998, AM J OTOL, V19, P230
   Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9
   Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4
   Shou Y, 2004, BIOCHEM J, V379, P805, DOI 10.1042/BJ20031107
   Simizu S, 2000, JPN J CANCER RES, V91, P706
   So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011
   Sommer D, 2002, ARCH BIOCHEM BIOPHYS, V404, P271, DOI 10.1016/S0003-9861(02)00242-4
   SPICER SS, 1992, J HISTOCHEM CYTOCHEM, V40, P185
   SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
   Springer JE, 2000, J NEUROSCI, V20, P7246
   Srivastava RK, 1999, J EXP MED, V190, P253, DOI 10.1084/jem.190.2.253
   Stracher A, 1999, ANN NY ACAD SCI, V884, P52, DOI 10.1111/j.1749-6632.1999.tb08635.x
   Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4
   Sugahara K, 2004, ORL J OTO-RHINO-LARY, V66, P80, DOI 10.1159/000077800
   Sugahara K, 2001, NEUROREPORT, V12, P3299, DOI 10.1097/00001756-200110290-00030
   Summers WK, 2004, J ALZHEIMERS DIS, V6, P651
   Sun GY, 2005, MOL NEUROBIOL, V31, P27, DOI 10.1385/MN:31:1-3:027
   Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9
   Takahashi T, 2002, J NEUROCHEM, V83, P1441, DOI 10.1046/j.1471-4159.2002.01251.x
   Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
   Tang W, 2001, Int Tinnitus J, V7, P4
   Tastekin A, 2005, BRAIN DEV-JPN, V27, P570, DOI 10.1016/j.braindev.2005.02.006
   TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
   Tenenbaum L., 2002, Current Gene Therapy, V2, P451, DOI 10.2174/1566523023347661
   Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2
   Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5
   Thomas M, 2004, CURR PHARM DESIGN, V10, P679, DOI 10.2174/1381612043453162
   THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9
   Uchino H, 2002, NEUROBIOL DIS, V10, P219, DOI 10.1006/nbdi.2002.0514
   Uemaetomari I, 2005, HEARING RES, V209, P86, DOI 10.1016/j.heares.2005.06.010
   Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6
   VANDEWATER TR, 2005, ABS ASS RES OTOLARYN, V28, P16
   Wang H, 2006, J NEUROCHEM, V96, P694, DOI 10.1111/j.1471-4159.2005.03572.x
   Wang HG, 1999, SCIENCE, V284, P339, DOI 10.1126/science.284.5412.339
   Wang J, 1999, NEUROREPORT, V10, P811, DOI 10.1097/00001756-199903170-00027
   Wang J, 2003, J NEUROSCI, V23, P8596
   Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
   Watabe M, 2004, J PHARMACOL EXP THER, V311, P948, DOI 10.1124/jpet.104.071381
   Watanabe K, 2003, AURIS NASUS LARYNX, V30, P219, DOI 10.1016/S0385-8146(03)00049-X
   Wei X, 2005, NEUROSCIENCE, V131, P513, DOI 10.1016/j.neuroscience.2004.11.014
   Weijl NI, 2004, EUR J CANCER, V40, P1713, DOI 10.1016/j.ejca.2004.02.029
   Weiss RG, 2005, P NATL ACAD SCI USA, V102, P808, DOI 10.1073/pnas.0408962102
   White RJ, 1996, J NEUROSCI, V16, P5688
   Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239
   YAMANE H, 2004, ACTA OTOLARYNGOL S, V554, P6
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   YAMASHITA D, 2005, ABS ASS RES OTOLARYN, V28, P201
   Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
   Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
   Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7
   Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047
   Yamasoba T., 2001, NOISE INDUCED HEARIN, P73
   YAMATO M, 1998, T SOC BIOMATER, V21, P82
   Yang L, 2004, NEUROSCI LETT, V357, P73, DOI 10.1016/j.neulet.2003.12.032
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
   Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
   Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
   YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
   Yukawa H, 2005, NEUROSCIENCE, V130, P485, DOI 10.1016/j.neuroscience.2004.09.037
   Zhai SQ, 2004, ACTA OTO-LARYNGOL, V124, P124, DOI 10.1080/00016480310015939
   Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0
   Zhou JZ, 2000, ACTA PHARMACOL SIN, V21, P156
   Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166
   Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008
   ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I
NR 311
TC 106
Z9 112
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 22
EP 43
DI 10.1016/j.heares.2006.10.006
PG 22
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000004
PM 17141991
ER

PT J
AU Kil, J
   Pierce, C
   Tran, H
   Gu, R
   Lynch, ED
AF Kil, Jonathan
   Pierce, Carol
   Tran, Huy
   Gu, Rende
   Lynch, Eric D.
TI Ebselen treatment reduces noise induced hearing loss via the mimicry and
   induction of glutathione peroxidase
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE hearing; noise; glutathione peroxidase; ebselen; otoprotection;
   presbycusis
ID NITRIC-OXIDE SYNTHASE; LIPID-PEROXIDATION; ACOUSTIC TRAUMA;
   FREE-RADICALS; COCHLEA; ANTIOXIDANT; EXPRESSION; EXPOSURE; OXYGEN; RAT
AB Previous studies indicate that noise induced hearing loss (NIHL) involves a decrease in glutathione peroxidase (GPx) activity and a subsequent loss of outer hair cells (OHC). However, the cellular localization of this GPx decrease and the link to OHC loss are still poorly understood. In this report, we examined the cellular localization of GPx (GPx1, GPx 3 and GPx 4) in F-344 rat before and after noise exposure and after oral treatment with ebselen, a small molecule mimic of GPx activity. Results indicate that GPx1 is the major isoform within the cochlea and is highly expressed in cells of the organ of Corti, spiral ganglia, stria vascularis, and spiral ligament. Within 5h of noise exposure (4h at 113 dB, 4-16 kHz), significant OHC loss was already apparent in regions coincident with the 816 kHz region of the cochlea. In addition, the stria vascularis exhibited significant edema or swelling and a decrease in GPx1 immunoreactivity or fluorescent intensity. Treatment with ebselen (4 mg/kg p.o.) before and immediately after noise exposure reduced both OHC loss and the swelling of the stria vascularis typically observed within 5h post-noise exposure. Interestingly, GPx1 levels increased in the stria vascularis after noise and ebselen treatment vs noise and vehicle-only treatment, and exceeded baseline no noise control levels. These data indicate that ebselen acts to prevent the acute loss of OHCs and reduces the acute swelling of the stria vascularis by two potential mechanisms: one, as a ROS/RNS scavenger through its intrinsic GPx activity, and two, as a stimulator of GPx1 expression or activity. This latter mechanism may be due to the preservation of endogenous GPx I from ROS/RNS induced degradation and/or the stimulation of GPx1 expression or activity. (C) 2006 Elsevier B.V. All rights reserved.
C1 Sound Pharmaceut Inc, Res & Dev, Seattle, WA 98103 USA.
RP Kil, J (reprint author), Sound Pharmaceut Inc, Res & Dev, 4010 Stone Way N Suite 120, Seattle, WA 98103 USA.
EM jkil@soundpharmaceuticals.com
CR Bosch-Morell F, 2002, FREE RADICAL BIO MED, V33, P669, DOI 10.1016/S0891-5849(02)00954-1
   Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764
   Gladilin S, 2000, ARCH BIOCHEM BIOPHYS, V380, P237, DOI 10.1006/abbi.2000.1943
   Hattori R, 1996, JPN J PHARMACOL, V72, P191, DOI 10.1254/jjp.72.191
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Hoshida S, 1997, J PHARMACOL EXP THER, V281, P1471
   Jung CH, 2002, BIOCHEM BIOPH RES CO, V291, P550, DOI 10.1006/bbrc.2002.6477
   Kowaltowski AJ, 1998, J BIOL CHEM, V273, P12766, DOI 10.1074/jbc.273.21.12766
   Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029
   Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0
   Masumoto Hiroshi, 1996, FEBS Letters, V398, P179
   MULLER A, 1988, BIOCHEM PHARMACOL, V37, P1103, DOI 10.1016/0006-2952(88)90517-5
   Namura S, 2001, STROKE, V32, P1906
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   NOGUCHI N, 1994, BBA-LIPID LIPID MET, V1213, P176, DOI 10.1016/0005-2760(94)90024-8
   NOGUCHI N, 1992, BIOCHEM PHARMACOL, V44, P39, DOI 10.1016/0006-2952(92)90035-H
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3
   Ramakrishnan N, 1996, BIOCHEM PHARMACOL, V51, P1443, DOI 10.1016/0006-2952(96)00084-6
   SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
   Shi XR, 2002, HEARING RES, V164, P49
   Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8
   WENDEL A, 1984, BIOCHEM PHARMACOL, V33, P3241, DOI 10.1016/0006-2952(84)90084-4
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   YAMASOBA T, 2005, NEUROSCI LETT, V395, P18
   Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X
   ZEMBOWICZ A, 1993, J PHARMACOL EXP THER, V267, P1112
   Zhao R, 2002, P NATL ACAD SCI USA, V99, P8579, DOI 10.1073/pnas.122061399
NR 30
TC 22
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 44
EP 51
DI 10.1016/j.heares.2006.08.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000005
PM 17030476
ER

PT J
AU Shen, HY
   Zhang, BP
   Shin, JH
   Lei, DB
   Du, Y
   Gao, X
   Wang, QJ
   Ohlemiller, KK
   Piccirillo, J
   Bao, JX
AF Shen, Haiyan
   Zhang, Baoping
   Shin, June-Ho
   Lei, Debin
   Du, Yafei
   Gao, Xiang
   Wang, Qiuju
   Ohlemiller, Kevin K.
   Piccirillo, Jay
   Bao, Jianxin
TI Prophylactic and therapeutic functions of T-type calcium blockers
   against noise-induced hearing loss
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE noise-induced hearing loss; mouse; T-type calcium channel;
   trimethadione; ethosuximide
ID PERMANENT THRESHOLD SHIFT; SPIRAL GANGLION NEURONS; GUINEA-PIG COCHLEA;
   CHANNEL BLOCKER; AUDITORY-SYSTEM; MOUSE COCHLEA; HAIR-CELLS; INJURY;
   EAR; MECHANISMS
AB Cochlear noise injury is the second most frequent cause of sensorineural hearing loss, after aging. Because calcium dysregulation is a widely recognized contributor to noise injury, we examined the potential of calcium channel blockers to reduce noise-induced hearing loss (NIHL) in mice. We focused on two T-type calcium blockers, trimethadione and ethosuximide, which are anti-epileptics approved by the Food and Drug Administration. Young C57BL/6 mice of either gender were divided into three groups: a 'prevention' group receiving the blocker via drinking water before noise exposure; a 'treatment' group receiving the blocker via drinking water after noise exposure; and controls receiving noise alone. Trimethadione significantly reduced NIHL when applied before noise exposure, as determined by auditory brainstem recording. Both ethosuximide and trimethadione were effective in reducing NIHL when applied after noise exposure. Results were influenced by gender, with males generally receiving greater benefit than females. Quantitation of hair cell and neuronal density suggested that preservation of outer hair cells could account for the observed protection. Immunocytochemistry and RT-PCR suggested that this protection involves direct action of T-type blockers on al subunits comprising one or more Ca,3 calcium channel types in the cochlea. Our findings provide a basis for clinical studies testing T-type calcium blockers both to prevent and treat NIHL. (C) 2007 Elsevier B.V. All rights reserved.
C1 Washington Univ, Ctr Aging, Dept Otolaryngol, St Louis, MO 63110 USA.
   Nanjing Univ, Model Anim Res Ctr, Nanjing 210061, Peoples R China.
   Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol, Beijing 100853, Peoples R China.
RP Bao, JX (reprint author), Washington Univ, Ctr Aging, Dept Otolaryngol, 4560 Clayton Ave, St Louis, MO 63110 USA.
EM jbao@wustl.edu
CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005
   Boettcher FA, 1996, LARYNGOSCOPE, V106, P772, DOI 10.1097/00005537-199606000-00020
   Boettcher FA, 1998, HEARING RES, V121, P139, DOI 10.1016/S0378-5955(98)00075-6
   Page JC, 2002, MIL MED, V167, P48
   CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309
   Davis R R, 2003, Noise Health, V5, P19
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   Errington AC, 2005, CURR TOP MED CHEM, V5, P15, DOI 10.2174/1568026053386872
   Farooqui AA, 2004, NEUROCHEM RES, V29, P1961, DOI 10.1007/s11064-004-6871-3
   Fligor BJ, 2004, EAR HEARING, V25, P513, DOI 10.1097/00003446-200412000-00001
   Fuchs PA, 1996, CURR OPIN NEUROBIOL, V6, P514, DOI 10.1016/S0959-4388(96)80058-4
   GAGNON PM, 2006, HEAR RES
   Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005
   Hansen MR, 2003, J NEUROSCI RES, V72, P169, DOI 10.1002/jnr.10551
   Heinrich UR, 1997, EUR ARCH OTO-RHINO-L, V254, P223, DOI 10.1007/BF00874093
   Henderson D., 2003, NOISE HLTH, V3, P33
   Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
   Henderson D, 1998, Scand Audiol Suppl, V48, P63
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   HUNTERDU.IM, 1972, J ACOUST SOC AM, V52, P1181, DOI 10.1121/1.1913230
   Ison JR, 1997, HEARING RES, V106, P179, DOI 10.1016/S0378-5955(96)00216-X
   Kochegarov AA, 2003, CELL CALCIUM, V33, P145, DOI 10.1016/S0143-4160(02)00239-7
   Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
   Lacinova L, 2000, GEN PHYSIOL BIOPHYS, V19, P121
   Layton MG, 2005, J MOL NEUROSCI, V27, P225, DOI 10.1385/JMN:27:02:225
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   LEPRELL CG, 2006, HEAR RES
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4
   Luer MS, 1996, PHARMACOTHERAPY, V16, P830
   Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0
   Mills JH, 1999, ANN NY ACAD SCI, V884, P381, DOI 10.1111/j.1749-6632.1999.tb08656.x
   Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267
   Morley B J, 1998, Brain Res Mol Brain Res, V53, P78
   Niedzielski AS, 1997, AUDIOL NEURO-OTOL, V2, P79
   Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
   Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017
   Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
   Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2
   Perez-Reyes E, 1998, J BIOENERG BIOMEMBR, V30, P313, DOI 10.1023/A:1021981420839
   Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
   Quaranta A, 1998, Scand Audiol Suppl, V48, P75
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307
   Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143
   Serra MR, 2005, INT J AUDIOL, V44, P65, DOI 10.1080/14992020400030010
   SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
   Snutch T P, 1992, Curr Opin Neurobiol, V2, P247, DOI 10.1016/0959-4388(92)90111-W
   So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011
   Sullivan PG, 2004, J BIOENERG BIOMEMBR, V36, P353, DOI 10.1023/B:JOBB.0000041767.30992.19
   Toescu EC, 2004, TRENDS NEUROSCI, V27, P614, DOI 10.1016/j.tins.2004.07.010
   Triggle DJ, 2006, CURR PHARM DESIGN, V12, P443, DOI 10.2174/138161206775474503
   Yunker AMR, 2003, J BIOENERG BIOMEMBR, V35, P533, DOI 10.1023/B:JOBB.0000008024.77488.48
   Zipfel GJ, 2000, J NEUROTRAUM, V17, P857, DOI 10.1089/neu.2000.17.857
NR 56
TC 29
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 52
EP 60
DI 10.1016/j.heares.2006.12.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000006
PM 17291698
ER

PT J
AU Canlon, B
   Meltser, I
   Johansson, P
   Tahera, Y
AF Canlon, Barbara
   Meltser, Inna
   Johansson, Peter
   Tahera, Yeasmin
TI Glucocorticoid receptors modulate auditory sensitivity to acoustic
   trauma
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE auditory brainstern response; cochlea; corticosterone; glucocorticoid
   receptor; NF-kappa B; I kappa B; sprial ganglion neurons; hearing loss;
   stress
ID NF-KAPPA-B; SENSORINEURAL HEARING-LOSS; PITUITARY-ADRENOCORTICAL AXIS;
   INNER-EAR; MESSENGER-RNA; GUINEA-PIGS; HAIR-CELLS; IN-VITRO;
   NEUROTROPHIC FACTOR; RESTRAINT STRESS
AB Glucocorticoids are widely used to treat different hearing disorders yet the exact mechanisms of glucocorticoid action on the inner ear are not known. The inner ear of both humans and experimental animals demonstrate an abundance of glucocorticoid receptors (GRs) in both neuronal and non-neuronal tissues. In this review, we discuss how activation of the hypothalamic-pituitary-adrenal axis can directly modulate hearing sensitivity. Recent findings indicate that several factors define the responsiveness of the peripheral auditory system to glucocorticoids including the concentration of agonist, availability of the GR, and the activation of GR and NF-KB. These findings will further our understanding of individual glucocorticoid responsiveness to steroid treatment, and will help improve the development of pharmaceuticals to selectively target GR in the inner ear for individuals with increased sensitivity to acoustic trauma. (C) 2006 Elsevier B.V. All rights reserved.
C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Von Eulers Vag 8, S-17177 Stockholm, Sweden.
EM barbara.canlon@ki.se
CR Albensi BC, 2000, SYNAPSE, V35, P151
   Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253
   Almawi WY, 2002, HEMATOL ONCOL, V20, P17, DOI 10.1002/hon.684
   ARON DC, 2004, BASIC CLIN ENDOCRINO, P363
   Au PYB, 2005, ONCOGENE, V24, P3196, DOI 10.1038/sj.onc.1208516
   BEATO M, 1995, CELL, V83, P851, DOI 10.1016/0092-8674(95)90201-5
   BOHN MC, 1994, ANN NY ACAD SCI, V746, P243
   BROWN HM, 1972, BRIT MED J, V1, P585
   Burow A, 2005, BRAIN RES, V1062, P63, DOI 10.1016/j.brainres.2005.09.031
   Campeau S, 2000, J COMP NEUROL, V423, P474
   Canlon B, 2003, EUR J NEUROSCI, V17, P2035, DOI 10.1046/j.1460-9568.2003.02641.x
   Clark AR, 2003, CURR OPIN PHARMACOL, V3, P404, DOI 10.1016/S1471-4892(03)00073-0
   Curtis LM, 1995, HEARING RES, V92, P120, DOI 10.1016/0378-5955(95)00207-3
   d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x
   De Bosscher K, 2003, ENDOCR REV, V24, P488, DOI 10.1210/er.2002-0006
   De Bosscher K, 2000, P NATL ACAD SCI USA, V97, P3919, DOI 10.1073/pnas.97.8.3919
   De Kloet ER, 2004, ANN NY ACAD SCI, V1018, P1, DOI 10.1196/annals.1296.001
   DEKLOET ER, 1987, PSYCHONEUROENDOCRINO, V12, P83, DOI 10.1016/0306-4530(87)90040-0
   de Kloet ER, 1999, TRENDS NEUROSCI, V22, P422, DOI 10.1016/S0166-2236(99)01438-1
   Dodson Kelley M, 2004, Ear Nose Throat J, V83, P394
   Dodson KM, 2004, OTOLARYNG CLIN N AM, V37, P991, DOI 10.1016/j.otc.2004.03.003
   Doyle KJ, 2004, OTOL NEUROTOL, V25, P1034, DOI 10.1097/00129492-200411000-00031
   Hansson AC, 2000, EUR J NEUROSCI, V12, P2918, DOI 10.1046/j.1460-9568.2000.00185.x
   Harris JP, 2003, JAMA-J AM MED ASSOC, V290, P1875, DOI 10.1001/jama.290.14.1875
   Heim C, 2000, JAMA-J AM MED ASSOC, V284, P592, DOI 10.1001/jama.284.5.592
   Hess A, 2002, BRAIN RES, V956, P236, DOI 10.1016/S0006-8993(02)03545-X
   Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
   Kassel O, 2001, EMBO J, V20, P7108, DOI 10.1093/emboj/20.24.7108
   Konig HG, 2005, J CELL BIOL, V168, P1077, DOI 10.1083/jcb.200407027
   Kratsovnik E, 2005, J MOL NEUROSCI, V26, P27, DOI 10.1385/JMN:26:03:27
   Krstic MD, 1997, MOL CELL BIOL, V17, P3947
   Kyriakis JM, 2001, PHYSIOL REV, V81, P807
   Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X
   Lawrence T, 2001, NAT MED, V7, P1291, DOI 10.1038/nm1201-1291
   Li DP, 2000, J BIOL CHEM, V275, P26058, DOI 10.1074/jbc.M004502200
   Li QT, 2002, NAT REV IMMUNOL, V2, P725, DOI 10.1038/nri910
   Lipsky RH, 2001, J NEUROCHEM, V78, P254, DOI 10.1046/j.1471-4159.2001.00386.x
   MANGELSDORF DJ, 1995, CELL, V83, P835, DOI 10.1016/0092-8674(95)90199-X
   Marchetti L, 2004, J BIOL CHEM, V279, P32869, DOI 10.1074/jbc.M311766200
   Marini AM, 2004, RESTOR NEUROL NEUROS, V22, P121
   Masuda H, 2006, UROLOGY, V67, P435, DOI 10.1016/j.urology.2005.08.052
   MASUDA M, 2005, BRAIN RES, V88, P585
   MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585
   McEwen BS, 1998, NEW ENGL J MED, V338, P171
   Meller E, 2003, BRAIN RES, V979, P57, DOI 10.1016/S0006-8993(03)02866-X
   MIESFELD R, 1984, NATURE, V312, P779, DOI 10.1038/312779a0
   Morgan ET, 2002, TOXICOLOGY, V181, P207, DOI 10.1016/S0300-483X(02)00283-4
   Mori A, 1997, BLOOD, V89, P2891
   Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008
   MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664
   MUCHNIK C, 1992, HEARING RES, V58, P101, DOI 10.1016/0378-5955(92)90013-D
   MUNCK A, 1984, ENDOCR REV, V5, P25
   Nagy I, 2005, JARO-J ASSOC RES OTO, V6, P260, DOI 10.1007/s10162-005-0006-7
   Nakamori Y, 2005, J TRAUMA, V59, P308, DOI 10.1097/01.ta.0000185265.63887.5f
   Nankova B B, 1998, Stress, V2, P289
   Paz Z, 2004, AUDIOL NEURO-OTOL, V9, P363, DOI 10.1159/000081409
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Pruett SB, 2003, INT IMMUNOPHARMACOL, V3, P1, DOI 10.1016/S1567-5769(02)00081-4
   Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X
   RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N
   RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L
   RAY A, 1994, P NATL ACAD SCI USA, V91, P752, DOI 10.1073/pnas.91.2.752
   Ridder S, 2005, J NEUROSCI, V25, P6243, DOI 10.1523/JNEUROSCI.0736-05.2005
   Sapolsky RM, 2000, NEUROBIOL DIS, V7, P540, DOI 10.1006/nbdi.2000.0350
   Schaaf MJM, 1997, J NEUROSCI RES, V48, P334, DOI 10.1002/(SICI)1097-4547(19970515)48:4<334::AID-JNR5>3.0.CO;2-C
   SCHRECK R, 1992, J EXP MED, V175, P1181, DOI 10.1084/jem.175.5.1181
   Sheppard KA, 1998, J BIOL CHEM, V273, P29291, DOI 10.1074/jbc.273.45.29291
   Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
   Smoak KA, 2004, MECH AGEING DEV, V125, P697, DOI 10.1016/j.mad.2004.06.010
   Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644
   Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
   Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825
   Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
   TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E
   TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
   Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5
   Tsigos C, 2002, J PSYCHOSOM RES, V53, P865, DOI 10.1016/S0022-3999(02)00429-4
   vanRaaij MTM, 1997, NEUROENDOCRINOLOGY, V65, P200, DOI 10.1159/000127273
   Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
   WEINER DK, 1991, J RHEUMATOL, V18, P748
   Widen C, 2003, BIOCHEM J, V373, P211, DOI 10.1042/BJ20030175
   Xiao QL, 2005, BIOCHEM J, V388, P913, DOI 10.1042/BJ20041739
   Yamamoto Y, 2004, TRENDS BIOCHEM SCI, V29, P72, DOI 10.1016/j.tibs.2003.12.003
   Yang JT, 2005, EXP NEUROL, V192, P437, DOI 10.1016/j.expneurol.2004.12.023
   Yoshida N, 1999, J NEUROSCI, V19, P10116
   Zhou A, 2003, ONCOGENE, V22, P2054, DOI 10.1038/sj.onc.1206262
NR 86
TC 37
Z9 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 61
EP 69
DI 10.1016/j.heares.2006.05.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000007
PM 16843624
ER

PT J
AU Coleman, JKM
   Littlesunday, C
   Jackson, R
   Meyer, T
AF Coleman, John K. M.
   Littlesunday, Cherllynn
   Jackson, Ronald
   Meyer, Thomas
TI AM-111 protects against permanent hearing loss from impulse noise trauma
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE impulse noise; acute acoustic trauma; noise-induced hearing loss;
   apoptosis; JNK
ID HAIR CELL-DEATH; ACOUSTIC TRAUMA; SODIUM HYALURONATE; EXPOSURE;
   CHINCHILLA; PREVENTION; INHIBITORS; APOPTOSIS; COCHLEA; SYSTEM
AB The otoprotective peptide AM-111, a cell-permeable inhibitor of JNK mediated apoptosis, was tested for its efficacy as a rescue agent following impulse noise trauma. Single dose administrations of AM-111 at 1 h or 4 h post-impulse noise exposure (155 dB peak SPL) via systemic or local routes were evaluated with a total of 48 chinchillas. The animals received the compound either by IP injection or locally onto the round window membrane (hyaluronic acid gel formulation or Osmotic mini-pump). Efficacy was determined by auditory brainstem responses (ABR) as well as cytocochleograms. Three weeks after impulse noise exposure, permanent threshold shifts (PTS) were significantly lower for AM-111 treated ears compared to controls, regardless of the drug administration route and the time point of drug delivery. Even the treatments which started 4h post-noise exposure, reduced hearing loss in the 2-8 kHz range compared to controls by up to 16-25 dB to a PTS as low as 6-17 dB, demonstrating significant protection against permanent hearing loss from impulse noise trauma. These findings suggest a key role for JNK mediated cochlear sensory cell death from oxidative stress. (C) 2006 Elsevier B.V. All rights reserved.
C1 Lab Auris SAS, F-34830 Clapiers, France.
   USN, Med Ctr San Diego, Naval Med Ctr Spatial Orientat Ctr, San Diego, CA 92134 USA.
RP Meyer, T (reprint author), Lab Auris SAS, Ave Europe, F-34830 Clapiers, France.
EM thomas.meyer@aurismedical.com
CR Bogoyevitch MA, 2004, BBA-PROTEINS PROTEOM, V1697, P89, DOI 10.1016/j.bbapap.2003.11.016
   Bonny C, 2001, DIABETES, V50, P77, DOI 10.2337/diabetes.50.1.77
   Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6
   d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x
   FAY RR, 1988, HEARING RES, V34, P295, DOI 10.1016/0378-5955(88)90009-3
   Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009
   HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   HU BH, 2003, HAIR CELL DEV REGENE, V24, P111
   Kelly RM, 1999, DRUG DEV IND PHARM, V25, P15, DOI 10.1081/DDC-100102137
   Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
   Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007
   MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Plontke S., 2004, CURR TOP OTORHINOLAR, V3, pDoc06
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   Quaranta A, 1998, Scand Audiol Suppl, V48, P75
   Selivanova O, 2003, LARYNGO RHINO OTOL, V82, P235, DOI 10.1055/s-2003-38937
   Wang J, 2003, J NEUROSCI, V23, P8596
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
   Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
NR 29
TC 30
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 70
EP 78
DI 10.1016/j.heares.2006.05.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000008
PM 16839720
ER

PT J
AU Gagnon, PM
   Simmons, DD
   Bao, JX
   Lei, DB
   Ortmann, AJ
   Ohlemiller, KK
AF Gagnon, Patricia M.
   Simmons, Dwayne D.
   Bao, Jianxin
   Lei, Debin
   Ortmann, Amanda J.
   Ohlemiller, Kevin K.
TI Temporal and genetic influences on protection against noise-induced
   hearing loss by hypoxic preconditioning in mice
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE cochlea; organ of corti; stria vascularis; HIF-1 alpha; hypoxia;
   protection; C57BL/6; CBA
ID ISCHEMIC TOLERANCE; ACOUSTIC INJURY; INNER-EAR; TRANSCRIPTION FACTOR;
   MOUSE; COCHLEA; ERYTHROPOIETIN; STRESS; BRAIN; NEUROPROTECTION
AB The protective benefits of hypoxic preconditioning (HPC) against permanent noise-induced hearing loss (NIHL) were investigated in mice. Hypoxia induced by exposure to 8% O-2 for 4 h conferred significant protection against damaging broadband noise delivered 2448 h later in male and female CBA/J (CBA) and CBA/CaJ mice. No protection was found in C57BL/6 (136) mice, their B6.CAST-Cdh23(CAST) (B6.CAST) congenics, or in CBAxB6 F1 hybrid mice over the same interval, suggesting that the potential for HPC depends on one or a few autosomal recessive alleles carried by CBA-related strains, and is not influenced by the Cdh23 locus. Protection against NIHL in CBA mice was associated with significant up-regulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) within the organ of Corti, not found in B6.CAST. In both CBA and B6.CAST mice, some hypoxia-noise intervals shorter than 24 h were associated with exacerbation of NIHL. Cellular cascades underlying the early exacerbation of NIHL by hypoxia are therefore common to both strains, and not mechanistically linked to later protection. Elucidation of the events that underlie HPC, and how these are impacted by genetics, may lead to pharmacologic approaches to mimic HPC, and may help identify individuals with elevated risk of NIHL. (C) 2006 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
   Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO USA.
RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA.
EM kohlemiller@wustl.edu
CR Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301
   Atochin DN, 2003, STROKE, V34, P1299, DOI 10.1161/01.STR.0000066870.70976.57
   Bernaudin M, 2002, J BIOL CHEM, V277, P39728, DOI 10.1074/jbc.M204619200
   Bruick RK, 2003, GENE DEV, V17, P2614, DOI 10.1101/gad.1145503
   Caye-Thomasen P, 2005, HEARING RES, V203, P21, DOI 10.1016/j.heares.2004.11.017
   Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8
   Chung JW, 2004, NEUROREPORT, V15, P2353, DOI 10.1097/00001756-200410250-00010
   Cowen RL, 2004, CANCER RES, V64, P1396, DOI 10.1158/0008-5472.CAN-03-2698
   Das DK, 2003, ARCH BIOCHEM BIOPHYS, V420, P305, DOI 10.1016/j.abb.2003.09.023
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7
   Eisen A, 2004, ATHEROSCLEROSIS, V172, P201, DOI 10.1016/S0021-9150(03)00238-7
   Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
   FANDREY J, 2004, AM J PHYSIOL-REG I, V286, P977
   Fechter LD, 2004, J TOXICOL ENV HEAL A, V67, P727, DOI 10.1080/15287390490428206
   Finkel T, 1999, J LEUKOCYTE BIOL, V65, P337
   Gidday JM, 2006, NAT REV NEUROSCI, V7, P437, DOI 10.1038/nrn1927
   HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903
   Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
   HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410
   Huang JZ, 2004, MOL CANCER THER, V3, P335
   ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   LEPRELL CG, 2006, HEARING RES, V226, P22
   Li H S, 1992, Scand Audiol Suppl, V36, P1
   Michel O, 2001, HEARING RES, V155, P175, DOI 10.1016/S0378-5955(01)00262-3
   Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061
   Monge A, 2006, LARYNGOSCOPE, V116, P312, DOI 10.1097/01.mlg.0000199400.08550.3f
   NIOSH, 2001, DHHS NIOSH PUBL, V2001-113
   Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
   Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32
   OHLEMILLER KK, 2002, ABST ASSN RES OTOLAR, V25, P67
   Ohlemiller Kevin K., 2003, Seminars in Hearing, V24, P123
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   ORTMANN AJ, 2004, ABSTR ASS RES OTOLAR, V27, P168
   Pasupathy S, 2005, EUR J VASC ENDOVASC, V29, P106, DOI 10.1016/j.ejvs.2004.11.005
   Prass K, 2003, STROKE, V34, P1981, DOI 10.1161/01.STR.0000080381.76409.B2
   QUIRK WS, 1995, AM J OTOL, V16, P322
   Ran RQ, 2005, DEV NEUROSCI-BASEL, V27, P87, DOI 10.1159/000085979
   Rauca C, 2000, BRAIN RES, V868, P147, DOI 10.1016/S0006-8993(00)02388-X
   Ravati A, 2001, J NEUROCHEM, V78, P909, DOI 10.1046/j.1471-4159.2001.00463.x
   Rhee SG, 1999, EXP MOL MED, V31, P53
   Samoszuk MK, 2004, J HISTOCHEM CYTOCHEM, V52, P837, DOI 10.1369/jha.4B6248.2004.
   SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307
   SAUNDERS JC, 1980, NEW PERSPECTIVES NOI, P229
   SHEN H, 2006, HEARING RES, V226, P52
   Siren AL, 2001, EUR ARCH PSY CLIN N, V251, P179, DOI 10.1007/s004060170038
   SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
   Sommerschild HT, 2002, ACTA ANAESTH SCAND, V46, P123, DOI 10.1034/j.1399-6576.2002.460202.x
   Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9
   Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1
   Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5
   Yoshida N, 1999, J NEUROSCI, V19, P10116
   Zhu YL, 2006, EXP EYE RES, V82, P153, DOI 10.1016/j.exer.2005.06.005
   Zhu YL, 2002, INVEST OPHTH VIS SCI, V43, P1903
   ZWEMER ZF, IN PRESS J APPL PHYS
NR 59
TC 12
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 79
EP 91
DI 10.1016/j.heares.2006.09.006
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000009
PM 17107766
ER

PT J
AU Campbell, KCM
   Meech, RP
   Klemens, JJ
   Gerberi, MT
   Dyrstad, SSW
   Larsen, DL
   Mitchell, DL
   El-Aziz, M
   Verhulst, SJ
   Hughes, LF
AF Campbell, Kathleen C. M.
   Meech, Robert P.
   Klemens, James J.
   Gerberi, Michael T.
   Dyrstad, Sara S. W.
   Larsen, Deb L.
   Mitchell, Diana L.
   El-Aziz, Mohammed
   Verhulst, Steven J.
   Hughes, Larry F.
TI Prevention of noise- and drug-induced hearing loss with D-methionine
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE D-methionine; otoprotection; protection; ototoxicity; hearing loss;
   cisplatin; noise-induced hearing loss; aminoglycosides
ID VESTIBULAR SENSORY CELLS; CISPLATIN-INDUCED DAMAGE; ROUND WINDOW
   APPLICATION; AUDITORY HAIR-CELLS; OTOTOXICITY IN-VIVO; AMINO-ACIDS;
   NITRIC-OXIDE; GUINEA-PIG; INDUCED NEPHROTOXICITY; THIOETHER SUPPRESSION
AB A number of otoprotective agents are currently being investigated. Various types of agents have been found in animal studies to protect against hearing loss induced by cisplatin, carboplatin, aminoglycosides, or noise exposure. For over a decade we have been investigating D-methionine (D-met) as an otoprotective agent. Studies in our laboratory and others around the world have documented D-met's otoprotective action, in a variety of species, against a variety of ototoxic insults including cisplatin-, carboplatin-, aminoglycoside- and noise-induced auditory threshold elevations and cochlear hair cell loss. For cisplatin-induced ototoxicity, protection of the stria vascularis has also been documented. Further D-met has an excellent safety profile. D-Met may act as both a direct and indirect antioxidant. In this report, we provide the results of three experiments, expanding findings in D-met protection in three of our translational research areas: protection from platinum based chemotherapy-, aminoglycoside- and noise-induced hearing loss. These experiments demonstrate oral D-Met protection against cisplatin-induced ototoxicity, D-Met protection against amikacin-induced ototoxicity, and D-met rescue from permanent noise-induced hearing loss when D-Met is initiated 1 h after noise exposure. These studies demonstrate some of the animal experiments needed as steps to translate a protective agent from bench to bedside. (C) 2006 Elsevier B.V. All rights reserved.
C1 So Illinois Univ, Sch Med, Springfield, IL 62794 USA.
   Univ Chicago, Chicago, IL 60637 USA.
RP Campbell, KCM (reprint author), So Illinois Univ, Sch Med, Springfield, IL 62794 USA.
EM kcampbell@siumed.edu
CR AKIYOSHI M, 1978, J ANTIMICROB CHEMOTH, V4, P69
   Amsallem P, 1985, Ann Otolaryngol Chir Cervicofac, V102, P365
   Baker D. H., 1994, Amino acids in farm animal nutrition., P37
   BENEVENG.NJ, 1974, J AGR FOOD CHEM, V22, P2, DOI 10.1021/jf60191a036
   BLOM HJ, 1989, CLIN SCI, V76, P43
   BOBBIN RP, 1995, HEARING RES, V87, P49, DOI 10.1016/0378-5955(95)00077-H
   Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41
   BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8
   BRUMETT RE, 1978, LOTOTOXICITE COMPARE, P3849
   BRUMMETT RE, 1977, P W PHARMACOL SOC, V20, P449
   Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   CAMPBELL KCM, 2003, 1296 ASS RES
   Campbell MLH, 2003, IPPOLOGIA, V14, P3
   CAPARROS MG, 1992, J BACTERIOL, V147, P5549
   CHENG PW, 2006, TOXICOL APPL PHARM, V18
   Cheng PW, 2005, HEARING RES, V205, P102, DOI 10.1016/j.heares.2005.03.008
   COHEN HP, 1958, J NUTR, V64, P555
   COLEMAN JKM, 2002, 861 ASS RES OT
   DANIEL RG, 1969, J NUTR, V99, P299
   DEEGAN PM, 1994, TOXICOLOGY, V89, P1, DOI 10.1016/0300-483X(94)90128-7
   DEEGAN PM, 1994, TOXICOLOGY, V25, P1
   Di Rocco A, 1998, NEUROLOGY, V51, P266
   Fernandez-Checa JC, 1998, SEMIN LIVER DIS, V18, P389, DOI 10.1055/s-2007-1007172
   Friedman M, 1999, J AGR FOOD CHEM, V47, P3457, DOI 10.1021/jf990080u
   Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778
   Ghibelli L, 1998, FASEB J, V12, P479
   GILLISSEN G, 1991, ZBL BAKT-INT J MED M, V275, P223
   Herr L, 2001, INF DIS SOC AM C SAN, P457
   HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503
   JONES MM, 1989, ANTICANCER RES, V9, P1937
   JONES MM, 1991, TOXICOLOGY, V68, P227, DOI 10.1016/0300-483X(91)90072-9
   JONES MM, 1991, ANTICANCER RES, V11, P449
   KAJI H, 1987, RES COMMUN CHEM PATH, V56, P101
   KIES C, 1975, J NUTR, V105, P809
   KLAVINS JV, 1963, ARCH PATHOL, V75, P661
   KLAVINS JV, 1965, ARCH PATHOL, V79, P600
   Klemens James J, 2003, J Am Acad Audiol, V14, P134
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   Kopke RD, 1997, AM J OTOL, V18, P559
   Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299
   Kroning R, 2000, CANCER CHEMOTH PHARM, V45, P43, DOI 10.1007/PL00006741
   Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8
   Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3
   Lockwood DS, 2000, AUDIOL NEURO-OTOL, V5, P263, DOI 10.1159/000013890
   Lu SC, 1998, SEMIN LIVER DIS, V18, P331, DOI 10.1055/s-2007-1007168
   MELVIK JE, 1987, INORG CHIM A-BIOINOR, V137, P115, DOI 10.1016/S0020-1693(00)87128-5
   MEYER GJ, 1985, EUR J NUCL MED, V10, P373
   MILLER SE, 1990, INORG CHIM ACTA, V173, P53, DOI 10.1016/S0020-1693(00)91054-5
   MONTEAGUDO FS, 1986, S AFR MED J, V60, P279
   MURAMATS.K, 1971, J NUTR, V101, P1117
   Nishida I, 1996, ORL J OTO-RHINO-LARY, V58, P68
   NRC, 1980, REC DIET ALL
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Ohtani I, 1984, Gan To Kagaku Ryoho, V11, P2400
   Ohtani I, 1984, Nihon Jibiinkoka Gakkai Kaiho, V87, P833
   PRINTEN KJ, 1979, AM J CLIN NUTR, V32, P1200
   Reser D, 1999, NEUROTOXICOLOGY, V20, P731
   ROSE WC, 1955, J BIOL CHEM, V215, P101
   RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100
   SATO K, 1983, CLIN THER, V4, P488
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9
   STEGINK LD, 1986, J NUTR, V116, P1185
   STEKOL JA, 1962, J NUTR, V77, P81
   Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P346
   Takumida M, 2002, ORL J OTO-RHINO-LARY, V64, P143, DOI 10.1159/000057794
   Takumida M, 2003, ACTA OTO-LARYNGOL, V123, P8, DOI 10.1080/0036554021000028078
   VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G
   WALSER M, 1973, J CLIN INVEST, V52, P678, DOI 10.1172/JCI107229
   Wecke J, 1992, APMIS Suppl, V30, P32
   Wimmer C, 2004, OTOL NEUROTOL, V25, P33, DOI 10.1097/00129492-200401000-00007
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
   Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X
   1991, DRUG FACTS COMPARISO, P2115
   1997, WHO EXPERT COMMITTEE
NR 78
TC 85
Z9 90
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 92
EP 103
DI 10.1016/j.heares.2006.11.012
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000010
PM 17224251
ER

PT J
AU Coleman, JKM
   Kopke, RD
   Liu, J
   Ge, X
   Harper, EA
   Jones, GE
   Cater, TL
   Jackson, RL
AF Coleman, J. K. M.
   Kopke, R. D.
   Liu, J.
   Ge, X.
   Harper, E. A.
   Jones, G. E.
   Cater, T. L.
   Jackson, R. L.
TI Pharmacological rescue of noise induced hearing loss using
   N-acetylcysteine and acetyl-L-carnitine
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE acoustic trauma; N-acetylcysteine; acetyl-L-eysteine; antioxidant; hair
   cells; chinchilla; noise; rescue of hearing
ID CELL-DEATH; OXIDATIVE STRESS; HAIR-CELLS; EXPOSURE; APOPTOSIS;
   GLUTATHIONE; CHINCHILLA; ELEVATION; DEFENSES; COCHLEA
AB Despite the use of hearing protection devices (HPDs) and engineering changes designed to improve workspaces, noise-induced hearing loss continues to be one of the most common and expensive disabilities in the US military. Many service members suffer acoustic trauma due to improper use of HPDs, sound levels exceeding the protective capacity of the HPDs, or by unexpected, injurious exposures. In these cases, there is no definitive treatment for the hearing loss. This study investigated the use of the pharmacological agents N-acetylcysteine and acetyl-L-carnitine after acoustic trauma to treat cochlear injury. N-Acetylcysteine is an antioxidant and acetyl-L-carnitine a compound that maintains mitochondrial bio-energy and integrity. N-Acetylcysteine and acetyl-L-carnitine, respectively, significantly reduced permanent threshold shifts and hair cell loss compared to saline-treated animals when given I and 4 h post-noise exposure. It may be possible to obtain a greater therapeutic effect using these agents in combination or at higher doses or for a longer period of time to address the secondary oxidative events occurring 7-10 days after acute noise exposure. Published by Elsevier B.V.
C1 USN, Med Ctr, Dept Otolaryngol, Dept Def Spatial Orientat Ctr, San Diego, CA 92134 USA.
   Hough Ear Inst, Oklahoma City, OK USA.
RP Jackson, RL (reprint author), USN, Med Ctr, Dept Otolaryngol, Dept Def Spatial Orientat Ctr, San Diego, CA 92134 USA.
EM rjackson@nmcsd.med.navy.mil
CR ATTIAS J, 1994, AM J OTOLARYNG, V15, P26, DOI 10.1016/0196-0709(94)90036-1
   Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9
   CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2
   COLEMAN JKM, IN PRESS HEAR RES
   Coling DE, 2003, FREE RADICAL BIO MED, V34, P873, DOI 10.1016/S0891-5849(02)01439-9
   d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x
   De Rosa SC, 2000, EUR J CLIN INVEST, V30, P915, DOI 10.1046/j.1365-2362.2000.00736.x
   Eilers A, 1999, BIOCHEM SOC T, V27, P790
   Fischel-Ghodsian N, 2004, MITOCHONDRION, V4, P675, DOI 10.1016/j.mito.2004.07.040
   Flottorp G, 1991, Scand Audiol Suppl, V34, P123
   GARYZA G, 1990, DRUGS EXP CLIN RES, V101, P106
   Hart AM, 2004, AIDS, V18, P1549, DOI 10.1097/01.aids.0000131354.14408.fb
   Hu Bo Hua, 2003, Seminars in Hearing, V24, P111
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503
   Kaufman LR, 2005, J OCCUP ENVIRON MED, V47, P212, DOI 10.1097/01.jom.0000155710.28289.0e
   Kim J, 2005, IND HEALTH, V43, P567, DOI 10.2486/indhealth.43.567
   KOMJATHY DA, 1998, MIDW M ASS RES OT ST
   Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
   Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   Kopke RD, 1997, AM J OTOL, V18, P559
   KOPKE RD, 2006, OTOLARYNGOLOGY BASIC, P395
   Kroemer G, 2000, NAT MED, V6, P513, DOI 10.1038/74994
   Kroemer G, 1999, BIOCH SOC S, V66, P1
   Kruman I, 1997, J NEUROSCI, V17, P5089
   Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X
   Lataye R, 2005, Noise Health, V7, P49
   Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4
   Lenaz G, 1998, BIOFACTORS, V8, P195
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   PETTEGREW JW, 1995, NEUROBIOL AGING, V16, P1, DOI 10.1016/0197-4580(95)80001-8
   Poderoso Juan Jose, 2000, Biofactors, V11, P43
   Rovig GW, 2004, MIL MED, V169, P429
   SALVIOLI G, 1994, DRUG EXP CLIN RES, V20, P169
   SCHULZ TY, 2004, HEAR HLTH, V20, P3
   Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4
   Thal LJ, 2000, NEUROLOGY, V55, P805
   Weibel E. R., 1979, STEREOLOGICAL METHOD, V1, P101
   WOLGEMUTH KS, 1995, MIL MED, V160, P219
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
   Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
   2005, MARINE CORPS LESSONS
NR 48
TC 35
Z9 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 104
EP 113
DI 10.1016/j.heares.2006.08.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000011
PM 17023129
ER

PT J
AU Kopke, RD
   Jackson, RL
   Coleman, JKM
   Liu, JZ
   Bielefeld, EC
   Balough, BJ
AF Kopke, Richard D.
   Jackson, Ronald L.
   Coleman, John K. M.
   Liu, Jianzhong
   Bielefeld, Eric C.
   Balough, Ben J.
TI NAC for noise: From the bench top to the clinic
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE NAC; NIHL; acute acoustic trauma; hearing loss; treatment
ID INDUCED HEARING-LOSS; TEMPORARY THRESHOLD SHIFT; GUINEA-PIG COCHLEA;
   ACETYL-L-CYSTEINE; FREE-RADICAL SCAVENGER; MAP KINASE ACTIVATION; ORAL
   MAGNESIUM INTAKE; N-ACETYLCYSTEINE NAC; OUTER HAIR-CELLS; ACOUSTIC
   TRAUMA
AB Noise-induced hearing loss (NIHL) is an important etiology of deafness worldwide. Hearing conservation programs are in place and have reduced the prevalence of NIHL, but this disorder is still far too common. Occupational and recreational pursuits expose people to loud noise and ten million persons in the US have some degree of noise-induced hearing impairment. It is estimated that 50 million in the US and 600 million people worldwide are exposed to noise hazards occupationally. Noise deafness is still an important and frequent cause of battlefield injury in the US military. A mainstay of hearing conservation programs is personal mechanical hearing protection devices which are helpful but have inherent limitations. Research has shown that oxidative stress plays an important role in noise-induced cochlear injury resulting in the discovery that a number of antioxidant and cell death inhibiting compounds can ameliorate deafness associated with acoustic trauma. This article reviews one such compound, N-acetylcysteine (NAC), in terms of its efficacy in reducing hearing loss in a variety of animal models of acute acoustic trauma and hypothesizes what its therapeutic mechanisms of action might be based on the known actions of NAC. Early clinical trials with NAC are mentioned. (C) 2006 Elsevier B.V. All rights reserved.
C1 Hough Ear Inst, Oklahoma City, OK 73112 USA.
   Univ Oklahoma, Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK 73190 USA.
   Univ Oklahoma, Hlth Sci Ctr, Dept Otolaryngol, Oklahoma City, OK 73190 USA.
   Oklahoma Med Res Fdn, Oklahoma City, OK 73104 USA.
   Naval Med Ctr, Dept Defense Spatial Orientat Ctr, San Diego, CA 92134 USA.
   SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Kopke, RD (reprint author), Hough Ear Inst, 3400 NW 56th St, Oklahoma City, OK 73112 USA.
EM rkopke@houghearinstitute.com; rjackson@nmcsd.med.navy.mil;
   jkcoleman@nmcsd.med.navy.mil; jliu@houghearinstitute.com;
   ecb2@buffalo.edu; bjbalough@nmcsd.med.navy.mil
CR ARUOMA OI, 1989, FREE RADICAL BIO MED, V6, P593, DOI 10.1016/0891-5849(89)90066-X
   Attias J, 2004, CLIN OTOLARYNGOL, V29, P635, DOI 10.1111/j.1365-2273.2004.00866.x
   ATTIAS J, 1994, AM J OTOLARYNG, V15, P26, DOI 10.1016/0196-0709(94)90036-1
   Baker DH, 2006, J NUTR, V136, p1670S
   Beckett WS, 2000, J OCCUP ENVIRON MED, V42, P806, DOI 10.1097/00043764-200008000-00008
   BIELEFELD EC, IN PRESS ACTA OTOLAR
   Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283
   Bohnker BK, 2002, MIL MED, V167, P132
   CAMPBELL KCM, 2003, ASS RES OTOLARYNGOL, V26, P166
   Canlon B, 1988, Scand Audiol Suppl, V27, P1
   Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3
   Cocco T, 2005, FREE RADICAL BIO MED, V38, P796, DOI 10.1016/j.freeradbiomed.2004.11.034
   COLEMAN JKM, 2006, HEARING RES
   Cotgreave I A, 1997, Adv Pharmacol, V38, P205
   COTGREAVE IA, 1987, BIOPHARM DRUG DISPOS, V8, P377, DOI 10.1002/bdd.2510080408
   Cuadrado A, 2003, J BIOL CHEM, V278, P241, DOI 10.1074/jbc.M201010200
   De Flora S, 2001, CARCINOGENESIS, V22, P999, DOI 10.1093/carcin/22.7.999
   De Rosa SC, 2000, EUR J CLIN INVEST, V30, P915, DOI 10.1046/j.1365-2362.2000.00736.x
   Diao Ming-Fang, 2003, Shengli Xuebao, V55, P672
   Dickey DT, 2005, J PHARMACOL EXP THER, V314, P1052, DOI 10.1124/jpet.105.087601
   Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005
   Erbas H, 2004, PHARMACOL RES, V50, P523, DOI 10.1016/j.phrs.2004.04.005
   Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
   Franklin J, 2003, BMC MUSCULOSKELET DI, V4, DOI 10.1186/1471-2474-4-6
   GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7
   Grattagliano I, 2004, EXP GERONTOL, V39, P1323, DOI 10.1016/j.exger.2004.06.001
   Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009
   Hashimoto S, 2001, BRIT J PHARMACOL, V132, P270, DOI 10.1038/sj.bjp.0703787
   HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052
   HENDERSON D, 1995, OCCUP MED, V10, P513
   Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
   Henderson D., 2001, NOISE HEALTH, V3, P33
   HENDERSON D, 1994, HEARING RES, V76, P101, DOI 10.1016/0378-5955(94)90092-2
   Henderson D., 1999, NOISE HEALTH, V2, P53
   HENDLER SS, 2001, ACETYLCYSTEINE PDR N, P11
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   Himi T, 2003, J NEUROSCI RES, V71, P679, DOI 10.1002/jnr.10510
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Hong Sae-Yong, 2005, Korean Journal of Internal Medicine, V20, P217
   Hou FX, 2003, HEARING RES, V179, P1, DOI 10.1016/S0378-5955(03)00065-0
   Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5
   HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503
   Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1
   Khan M, 2004, J NEUROSCI RES, V76, P519, DOI 10.1002/jnr.20087
   Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
   Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
   KOPKE R, 2004, ASS RES OTOLARYNGOL, V27, P231
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   KOPKE RD, 2005, HEARING HLTH, V21, P26
   Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5
   Kyaw M, 2004, J PHARMACOL SCI, V95, P483, DOI 10.1254/jphs.SC0040061
   Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8
   Landen D, 2004, J OCCUP ENVIRON HYG, V1, P532, DOI 10.1080/15459620490476503
   Landon P, 2005, AM J IND MED, V47, P364, DOI 10.1002/ajim.20152
   Lee JY, 2004, FREE RADICAL BIO MED, V37, P539, DOI 10.1016/j.freeradbiomed.2004.05.011
   LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156
   LIM DJ, 1979, OTOLARYNG CLIN N AM, V12, P493
   LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294
   Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0
   Matuszczak Y, 2005, MUSCLE NERVE, V32, P633, DOI 10.1002/mus.20385
   MCEVOY GK, 2005, ACETYLYCYSTEINE AM H
   Menor C, 2004, J PHARMACOL EXP THER, V311, P668, DOI 10.1124/jpet.104.069286
   MILLER LF, 1983, SEMIN ONCOL, V10, P76
   Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267
   Neely MD, 2000, FREE RADICAL BIO MED, V29, P1028, DOI 10.1016/S0891-5849(00)00411-1
   Neitzel R, 2005, J OCCUP ENVIRON HYG, V2, P227, DOI [10.1080/15459620590932154, 10.1080/15456920590932154]
   Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223
   Nicotera TM, 2004, AUDIOL NEURO-OTOL, V9, P353, DOI 10.1159/000081284
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Park SW, 2004, NEUROSCI LETT, V363, P243, DOI 10.1016/j.neulet.2004.03.072
   Penugonda S, 2005, BRAIN RES, V1056, P132, DOI 10.1016/j.brianres.2005.07.032
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Poderoso Juan Jose, 2000, Biofactors, V11, P43
   PRICE GR, 2005, INT S PHARM STRAT PR
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819
   Quadrilatero J, 2004, BIOCHEM BIOPH RES CO, V319, P894, DOI 10.1016/j.bbrc.2004.05.068
   Ritter C, 2004, CRIT CARE MED, V32, P2079, DOI 10.1097/01.CMM.0000142699.54266.D9
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   Ruel J, 2005, NEUROREPORT, V16, P1087, DOI 10.1097/00001756-200507130-00011
   Seidman M, 2003, OTOLARYNG HEAD NECK, V129, P463, DOI 10.1016/S0194-5998(03)01586-9
   Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143
   Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8
   Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9
   Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1
   SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
   Sugahara K, 2001, NEUROREPORT, V12, P3299, DOI 10.1097/00001756-200110290-00030
   Sunami K, 1999, ACTA OTO-LARYNGOL, V119, P671
   Takemoto T, 2004, EUR J PHARMACOL, V487, P113, DOI 10.1016/j.ejphar.2004.01.019
   Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
   Wang Q, 2003, SPECTROSC SPECT ANAL, V23, P859
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Wiklund O, 1996, ATHEROSCLEROSIS, V119, P99, DOI 10.1016/0021-9150(95)05635-1
   WOLGEMUTH KS, 1995, MIL MED, V160, P219
   Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
   Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7
   Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
   Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
   Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4
   Zafarullah M, 2003, CELL MOL LIFE SCI, V60, P6, DOI 10.1007/s000180300001
   Zhuravskii SG, 2004, B EXP BIOL MED+, V137, P98, DOI 10.1023/B:BEBM.0000024398.96907.85
NR 119
TC 67
Z9 74
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 114
EP 125
DI 10.1016/j.heares.2006.10.008
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000012
PM 17184943
ER

PT J
AU Ding, DL
   Jiang, HY
   Wang, P
   Salvi, R
AF Ding, Dalian
   Jiang, Haiyan
   Wang, Ping
   Salvi, Richard
TI Cell death after co-administration of cisplatin and ethacrynic acid
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE cisplatin; ethacrynic acid; caspase; TRADD; hair cells; chinchilla
ID VESTIBULAR HAIR-CELLS; INDUCED APOPTOSIS; CASPASE ACTIVATION; PROTECTS
   COCHLEAR; STRIA VASCULARIS; ANIMAL-MODEL; OTOTOXICITY; RECEPTOR; NOISE;
   CHINCHILLAS
AB Ethacrynic acid (EA) significantly enhances the ototoxic effects of cisplatin. To gain insights into the mechanisms underlying Cis/EA ototoxicity, cochleas were labeled with several apoptotic markers. Cis/EA treatment caused extensive outer hair cell (OHC) and inner hair cell (IHC) damage; OHC lesions decreased from the base towards apex of the cochlea whereas the IHC lesion was relatively constant (25-60%) along the length of the cochlea. Propidium iodide labeled OHC nuclei appeared relatively normal at 6 h post-treatment, were condensed and fragmented at 12 h post-treatment and were frequently missing 48 h post-treatment. Initiator caspase 8, associated with membrane death receptors, and TRADD, a protein that recruits caspase 8, were present in OHC at 6 h post-treatment. Caspase 8 labeling increased from 6 to 24 It, but was largely absent at 48 h post-treatment. Executioner caspase 3 and caspase 6, which lie downstream of caspase 8, were expressed in OHC 12-24 h post-treatment. Initiator caspase 9, associated with mitochondrial damage, was only expressed at low levels at 48 h post-treatment. These results suggest that the rapid onset of Cis/EA induced programmed cell death is initiated by membrane death receptors associated with TRADD and caspase 8. (C) 2006 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Salvi, R (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA.
EM salvi@buffalo.edu
CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   Amstad PA, 2001, BIOTECHNIQUES, V31, P608
   ANNIKO M, 1978, ACTA OTO-LARYNGOL, V85, P349, DOI 10.3109/00016487809121463
   Aubert A, 1990, Ann Otolaryngol Chir Cervicofac, V107 Suppl 1, P28
   Bratton SB, 2000, EXP CELL RES, V256, P27, DOI 10.1006/excr.2000.4835
   CHINNAIYAN AM, 1995, CELL, V81, P505, DOI 10.1016/0092-8674(95)90071-3
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   Ding D, 2001, AUDITORY PSYCHOBIOLO, P189
   Ding D, 2002, HEARING RES, V173, P1, DOI 10.1016/S0378-5955(02)00585-3
   Ding DL, 2003, HEARING RES, V185, P90, DOI 10.1016/S0378-5955(03)00258-2
   Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
   Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x
   Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2
   FORGE A, 1981, ACTA OTO-LARYNGOL, V92, P439, DOI 10.3109/00016488109133283
   GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Hofstetter P, 1997, AUDIOLOGY, V36, P301
   HSU HL, 1995, CELL, V81, P495, DOI 10.1016/0092-8674(95)90070-5
   Kalkanis JG, 2004, LARYNGOSCOPE, V114, P538, DOI 10.1097/00005537-200403000-00028
   KOMUNE S, 1981, ARCH OTOLARYNGOL, V107, P594
   Krajewski S, 1999, P NATL ACAD SCI USA, V96, P5752, DOI 10.1073/pnas.96.10.5752
   Lucas JH, 1998, J NEUROPATH EXP NEUR, V57, P937, DOI 10.1097/00005072-199810000-00006
   McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011
   McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6
   Minami SB, 2004, HEARING RES, V198, P137, DOI 10.1016/j.heares.2004.07.016
   RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0
   RYBAK LP, 1993, OTOLARYNG CLIN N AM, V26, P829
   Samali A, 1999, CELL DEATH DIFFER, V6, P495, DOI 10.1038/sj.cdd.4400520
   WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771
   Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581
   Zhang M, 2002, HEARING RES, V169, P56, DOI 10.1016/S0378-5955(02)00339-8
   Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0
NR 34
TC 27
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 129
EP 139
DI 10.1016/j.heares.2006.07.015
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000013
PM 16978814
ER

PT J
AU Coling, DE
   Ding, DL
   Young, R
   Lis, M
   Stofko, E
   Blumenthal, KM
   Salvi, RJ
AF Coling, Donald E.
   Ding, Dalian
   Young, Rebeccah
   Lis, Maciej
   Stofko, Elizabeth
   Blumenthal, Kenneth M.
   Salvi, Richard J.
TI Proteomic analysis of cisplatin-induced cochlear damage: Methods and
   early changes in protein expression
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE proteomics; cochlea; inner ear; cisplatin; stress response; DIGE; MALDI;
   mass spectrometry; peptide mass fingerprint; nucleobindin; Hspa5; Grp78;
   BiP; Grp58; Pdia3; Rnh1; Rasl12; Hnrpc; Ptpdc1; calreticulin; Edf1;
   Tuba6; Rassf5
ID CALCIUM-BINDING PROTEIN; HEAT-SHOCK-PROTEIN; SENSORINEURAL HEARING-LOSS;
   VESTIBULAR HAIR-CELLS; ENDOPLASMIC-RETICULUM; RAT COCHLEA; GUINEA-PIG;
   DISULFIDE-ISOMERASE; INDUCED APOPTOSIS; IN-VIVO
AB To identify early changes in protein expression associated with cisplatin ototoxicity, we used two dimensional-difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometry to analyze proteins from P3 rat cochleae that were cultured for 3 h with or without 1 mM cisplatin. Replicate analysis of fluorescent images from six gels revealed significant (p < 0.01) cisplatin-induced changes (greater than 1.5-fold) in expression of 22 cochlear proteins. These include increases in the expression of five proteins, four of which were identified as nucleobindin 1, a nuclear calcium signaling and, homeostasis protein (2.1-fold), heterogeneous nuclear ribonucleoprotein C, an RNA processing protein (1.8-fold), a 55 kDa protein that is either endothelial differentiation-related factor 1 or alpha-6 tubulin (1.7-fold), and calreticulin, a calcium binding chaperone of the endoplasmic reticulum (ER, 1.6-fold). The expression of 17 proteins was significantly (p < 0.01) decreased by greater than 1.5-fold. These include ribonuclease/ angiogenin inhibitor 1 (1.6-fold), RAS-like, family 12 (predicted), ras association (RaIGDS/AF-6) domain family 5 (4.5-fold), homologous the RAS family of GTPase signaling proteins (2.4-fold), and Protein tyrosine phosphatase domain containing 1 (predicted, 6.1-fold). We identified seven cochlear proteins with either smaller (1.2-1.5-fold) or less significant (p < 0.05) cisplatin-induced changes in expression. Notably, heat shock 70 kDa protein 5 (Hspa5, Grp78, and BiP), an ER chaperone protein involved in stress response, decreased 1.7-fold. We observed changes consistent with phosphorylation in the level of isoforms of another ER stress-induced protein, glucose-regulated protein Grp58. Changes in cisplatin-induced protein expression are discussed with respect to known or hypothesized functions of the identified proteins. (C) 2007 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Med, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Biochem, Buffalo, NY 14214 USA.
RP Coling, DE (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA.
EM dcoling@buffalo.edu
CR Abu-Surrah AS, 2006, CURR MED CHEM, V13, P1337, DOI 10.2174/092986706776872970
   ANNIKO M, 1986, AM J OTOLARYNG, V7, P276, DOI 10.1016/S0196-0709(86)80050-3
   Ballif BA, 1996, P NATL ACAD SCI USA, V93, P5544, DOI 10.1073/pnas.93.11.5544
   BILLINGS PB, 1995, ANN OTO RHINOL LARYN, V104, P181
   Boulassel MR, 2000, CLIN OTOLARYNGOL, V25, P535, DOI 10.1046/j.1365-2273.2000.00416.x
   Cao MY, 1996, FASEB J, V10, P1635
   Clauser KR, 1999, ANAL CHEM, V71, P2871, DOI 10.1021/ac9810516
   COLING DE, 1991, HEARING RES, V57, P113, DOI 10.1016/0378-5955(91)90080-S
   COMIS SD, 1986, J LARYNGOL OTOL, V100, P1375, DOI 10.1017/S0022215100101161
   Corbacella E, 2004, HEARING RES, V197, P11, DOI 10.1016/j.heares.2004.03.012
   DECHESNE CJ, 1992, HEARING RES, V59, P195, DOI 10.1016/0378-5955(92)90116-5
   DILLER KR, 2006, ANN REV BIOMED ENG
   Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
   DonellaDeana A, 1996, EUR J BIOCHEM, V235, P18, DOI 10.1111/j.1432-1033.1996.00018.x
   Fialka I, 1999, ELECTROPHORESIS, V20, P331, DOI 10.1002/(SICI)1522-2683(19990201)20:2<331::AID-ELPS331>3.0.CO;2-A
   GASTEIGER E, 2005, PROTEIN IDENTIFICAT
   Gibbs RA, 2004, NATURE, V428, P493, DOI 10.1038/nature02426
   Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5
   Hamstra DA, 2006, CANCER RES, V66, P7482, DOI 10.1158/0008-5472.CAN-06-1405
   HARRIS JP, 1990, LARYNGOSCOPE, V100, P516
   Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009
   Henzl MT, 2001, HEARING RES, V157, P100, DOI 10.1016/S0378-5955(01)00285-4
   Hetz C, 2005, J NEUROSCI, V25, P2793, DOI 10.1523/JNEUROSCI.4090-04.2005
   HINOJOSA R, 1995, AM J OTOL, V16, P731
   Hong SH, 2004, CANCER RES, V64, P5504, DOI 10.1158/0008-5472.CAN-04-0077
   Ikezono T, 2001, BBA-MOL BASIS DIS, V1535, P258, DOI 10.1016/S0925-4439(00)00101-0
   Jia Z, 2004, AM J PHYSIOL-RENAL, V287, pF1113, DOI 10.1152/ajprenal.00138.2004
   Kattapuram T, 2005, J BIOL CHEM, V280, P15340, DOI 10.1074/jbc.M500214200
   Kaufman RJ, 1999, GENE DEV, V13, P1211, DOI 10.1101/gad.13.10.1211
   LAURELL G, 1991, J OTOLARYNGOL, V20, P158
   LEE AS, 1981, J CELL PHYSIOL, V106, P119, DOI 10.1002/jcp.1041060113
   LIM HH, 1993, HEARING RES, V69, P146
   Lin P, 1998, J CELL BIOL, V141, P1515, DOI 10.1083/jcb.141.7.1515
   Lin P, 1999, J CELL BIOL, V145, P279, DOI 10.1083/jcb.145.2.279
   Lindquist JA, 2001, FASEB J, V15, P1448, DOI 10.1096/fj.00-0720fje
   Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034
   Lokich J, 2001, CANCER INVEST, V19, P756, DOI 10.1081/CNV-100106152
   Mandic A, 2003, J BIOL CHEM, V278, P9100, DOI 10.1074/jbc.M210284200
   Mariotti M, 2000, J BIOL CHEM, V275, P24047, DOI 10.1074/jbc.M001928200
   Mayer MP, 2005, CELL MOL LIFE SCI, V62, P670, DOI 10.1007/s00018-004-4464-6
   MAZZARELLA RA, 1994, ARCH BIOCHEM BIOPHYS, V308, P454, DOI 10.1006/abbi.1994.1064
   McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0
   MIURA K, 1992, BIOCHEM BIOPH RES CO, V187, P375, DOI 10.1016/S0006-291X(05)81503-7
   MIURA K, 1994, BIOCHEM BIOPH RES CO, V199, P1388, DOI 10.1006/bbrc.1994.1384
   MOCHIZUKI N, 1995, FEBS LETT, V373, P155, DOI 10.1016/0014-5793(95)01031-9
   MUNRO S, 1986, CELL, V46, P291, DOI 10.1016/0092-8674(86)90746-4
   MYERS MW, 1992, LARYNGOSCOPE, V102, P981
   Nothwang HG, 2003, MOL BRAIN RES, V116, P59, DOI 10.1016/S0169-328X(03)00234-1
   Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146
   PAPPIN DJC, 1993, CURR BIOL, V3, P327, DOI 10.1016/0960-9822(93)90195-T
   Park HR, 2004, J NATL CANCER I, V96, P1300, DOI 10.1093/jnci/djh243
   Park HR, 2002, TETRAHEDRON LETT, V43, P6941, DOI 10.1016/S0040-4039(02)01624-6
   Petersson U, 2004, BONE, V34, P949, DOI 10.1016/j.bone.2004.01.019
   RIBARI O, 1983, ACTA OTO-LARYNGOL, V95, P580, DOI 10.3109/00016488309139446
   Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X
   SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001
   Siddik ZH, 2003, ONCOGENE, V22, P7265, DOI 10.1038/sj.onc.1206933
   Somogyi E, 2004, CALCIFIED TISSUE INT, V74, P366, DOI 10.1007/s00223-003-0146-x
   STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467
   Sun Q, 1998, BBA-PROTEIN STRUCT M, V1384, P405, DOI 10.1016/S0167-4838(97)00198-2
   Taggart R.T., 2001, NOISE HEALTH, V3, P1
   Taguchi T, 2005, CONTRIB NEPHROL, V148, P107
   Taniguchi N, 2000, J BIOL CHEM, V275, P31674, DOI 10.1074/jbc.M005103200
   THALMANN I, 1992, HEARING RES, V63, P37, DOI 10.1016/0378-5955(92)90071-T
   THALMANN I, 1980, ARCH OTO-RHINO-LARYN, V226, P123, DOI 10.1007/BF00455126
   Tulub AA, 2001, INT J BIOL MACROMOL, V28, P191, DOI 10.1016/S0141-8130(00)00159-8
   Wang S, 2006, BIOCHEMISTRY-MOSCOW+, V71, P520, DOI 10.1134/S0006297906050087
   WINSKY L, 1989, P NATL ACAD SCI USA, V86, P10139, DOI 10.1073/pnas.86.24.10139
   WINSKY L, 1989, BRAIN RES, V493, P136, DOI 10.1016/0006-8993(89)91008-1
   YAO XF, 1995, HEARING RES, V86, P183, DOI 10.1016/0378-5955(95)00069-G
   Yoho ER, 1997, HEARING RES, V104, P47, DOI 10.1016/S0378-5955(96)00183-9
   Zhai L, 2005, EXP CELL RES, V305, P244, DOI 10.1016/j.yexcr.2005.01.002
   Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0
   Zhu Wei, 2003, Lin Chuang Er Bi Yan Hou Ke Za Zhi, V17, P220
   Zimmermann R, 1998, BIOL CHEM, V379, P275
NR 75
TC 29
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 140
EP 156
DI 10.1016/j.heares.2006.12.017
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000014
PM 17321087
ER

PT J
AU Rybak, LP
   Whitworth, CA
   Mukherjea, D
   Rarakumar, V
AF Rybak, Leonard P.
   Whitworth, Craig A.
   Mukherjea, Debashree
   Rarakumar, Vickram
TI Mechanisms of cisplatin-induced ototoxicity and prevention
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE cisplatin; reactive oxygen species; apoptosis; NADPH; oxidase
ID INDUCED HEARING-LOSS; HIGH-DOSE CISPLATIN; ROUND WINDOW APPLICATION;
   SPIRAL GANGLION NEURONS; APOPTOTIC CELL-DEATH; AUDITORY HAIR-CELLS;
   SODIUM THIOSULFATE; D-METHIONINE; STRIA VASCULARIS; N-ACETYLCYSTEINE
AB Cisplatin is a widely used chemotherapeutic agent to treat malignant disease. Unfortunately, ototoxicity occurs in a large percentage of patients treated with higher dose regimens. In animal studies and in human temporal bone investigations, several areas of the cochlea are damaged, including outer hair cells in the basal turn, spiral ganglion cells and the stria vascularis, resulting in hearing impairment. The mechanisms appear to involve the production of reactive oxygen species (ROS), which can trigger cell death. Approaches to chemoprevention include the administration of antioxidants to protect against ROS at an early stage in the ototoxic pathways and the application of agents that act further downstream in the cell death cascade to prevent apoptosis and hearing loss. This review summarizes recent data that shed new light on the mechanisms of cisplatin ototoxicity and its prevention. (C) 2006 Elsevier B.V. All rights reserved.
C1 So Illinois Univ, Sch Med, Div Otolaryngol, Dept Surg, Springfield, IL 62794 USA.
   So Illinois Univ, Dept Pharmacol, Carbondale, IL 62901 USA.
RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol, Dept Surg, POB 19653, Springfield, IL 62794 USA.
EM lrybak@siumed.edu; cwhitworth@siu-med.edu; dmukherjea@siumed.edu;
   vramkumar@siumed.edu
CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   BANFI B, 2004, J BIOL CHEM, V277, P39739
   Blakley BW, 2002, LARYNGOSCOPE, V112, P1997, DOI 10.1097/00005537-200211000-00016
   Bortner CD, 1998, BIOCHEM PHARMACOL, V56, P1549, DOI 10.1016/S0006-2952(98)00225-1
   Boven E, 2002, EUR J CANCER, V38, P1148, DOI 10.1016/S0959-8049(02)00036-9
   Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
   Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144
   Chen WC, 2006, CANCER, V106, P820, DOI 10.1002/cncr.21683
   Chen XW, 2001, MOL THER, V3, P958, DOI 10.1006/mthe.2001.0334
   Choe WT, 2004, OTOL NEUROTOL, V25, P910, DOI 10.1097/00129492-200411000-00009
   Church MW, 2004, JARO-J ASSOC RES OTO, V5, P227, DOI 10.1007/s10162-004-4011-z
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2
   Cloven NG, 2000, ANTICANCER RES, V20, P4205
   Cooper LB, 2006, OTOL NEUROTOL, V27, P484, DOI 10.1097/00129492-200606000-00009
   DEEGAN PM, 1994, TOXICOLOGY, V89, P1, DOI 10.1016/0300-483X(94)90128-7
   Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171
   Deveraux QL, 1997, NATURE, V388, P300
   DEWOSKIN RS, 1992, TOXICOL APPL PHARM, V112, P182, DOI 10.1016/0041-008X(92)90186-V
   Dickey DT, 2005, J PHARMACOL EXP THER, V314, P1052, DOI 10.1124/jpet.105.087601
   Drottar M, 2006, LARYNGOSCOPE, V116, P292, DOI 10.1097/01.mlg.0000197630.85208.36
   Ekborn A, 2004, LARYNGOSCOPE, V114, P1660, DOI 10.1097/00005537-200409000-00030
   Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0
   Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2
   He Q, 2000, BIOCHEMISTRY-US, V39, P14426, DOI 10.1021/bi001700j
   Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5
   Hughes FM, 1997, J BIOL CHEM, V272, P30567, DOI 10.1074/jbc.272.48.30567
   Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
   JONES MM, 1989, ANTICANCER RES, V9, P1937
   Kelly TC, 2003, HEARING RES, V186, P10, DOI 10.1016/S0378-5955(03)00303-4
   Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037
   Knight KRG, 2005, J CLIN ONCOL, V23, P8588, DOI 10.1200/JCO.2004.00.5355
   Kopke RD, 1997, AM J OTOL, V18, P559
   Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299
   Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6
   Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006
   Laurell G, 2002, HEARING RES, V173, P198, DOI 10.1016/S0378-5955(02)00613-5
   Lee JE, 2004, ORL J OTO-RHINO-LARY, V66, P111, DOI 10.1159/000079329
   Lee JE, 2004, ACTA OTO-LARYNGOL, V124, P1131, DOI 10.1080/00016480410017521
   Li GM, 2002, LAB INVEST, V82, P585, DOI 10.1038/labinvest.3780453
   Li GM, 2006, NEUROTOXICOLOGY, V27, P22, DOI 10.1016/j.neuro.2005.05.010
   Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3
   Li Y, 2004, EUR J CANCER, V40, P2445, DOI 10.1016/j.ejca.2003.08.009
   Liang F, 2005, NEUROSCIENCE, V135, P263, DOI 10.1016/j.neuroscience.2005.05.055
   Lynch ED, 2005, ANTI-CANCER DRUG, V16, P569, DOI 10.1097/00001813-200506000-00013
   Lynch ED, 2005, HEARING RES, V201, P81, DOI 10.1016/j.heares.2004.08.002
   Maeno E, 2000, P NATL ACAD SCI USA, V97, P9487, DOI 10.1073/pnas.140216197
   Marina N, 2005, CANCER, V104, P841, DOI 10.1002/cncr.21218
   MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228
   Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6
   MELVIK JE, 1987, INORG CHIM A-BIOINOR, V137, P115, DOI 10.1016/S0020-1693(00)87128-5
   Mukherjea D, 2006, NEUROSCIENCE, V139, P733, DOI 10.1016/j.neuroscience.2005.12.044
   Muldoon LL, 2000, CLIN CANCER RES, V6, P309
   Nagy I, 2005, JARO-J ASSOC RES OTO, V6, P260, DOI 10.1007/s10162-005-0006-7
   Ohndorf UM, 1999, NATURE, V399, P708
   PIGEOLET E, 1990, MECH AGEING DEV, V51, P283, DOI 10.1016/0047-6374(90)90078-T
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   Reser D, 1999, NEUROTOXICOLOGY, V20, P731
   Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X
   Rybak LP, 2000, AM J OTOL, V21, P513
   Sastry J, 2005, PEDIATR HEMAT ONCOL, V22, P441, DOI 10.1080/08880010590964381
   SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759
   Sies H, 2000, FREE RADICAL BIO MED, V28, P1451, DOI 10.1016/S0891-5849(00)00253-7
   Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0
   So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011
   So HS, 2006, CELL DEATH DIFFER, V13, P1763, DOI 10.1038/sj.cdd.4401863
   Somani S.M., 2001, ANN NEUROSCI, V8, P101
   Tao LH, 2000, TOXICOL SCI, V54, P399, DOI 10.1093/toxsci/54.2.399
   Dickey DT, 2004, HEARING RES, V193, P25, DOI 10.1016/j.heares.2004.02.007
   Thomas JP, 2006, MOL PHARMACOL, V70, P23, DOI 10.1124/mol.106.022244
   Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9
   van Ruijven MWM, 2005, HEARING RES, V203, P112, DOI 10.1016/j.heares.2004.12.007
   van Ruijven MWM, 2005, HEARING RES, V205, P241, DOI 10.1016/j.heares.2005.03.023
   Viallet NR, 2006, J OTOLARYNGOL, V35, P19, DOI 10.2310/7070.2005.3067
   Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581
   Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1
   Watanabe K, 2003, AURIS NASUS LARYNX, V30, P219, DOI 10.1016/S0385-8146(03)00049-X
   Watanabe KI, 2002, ANTICANCER RES, V22, P4081
   Whitworth CA, 2004, BIOCHEM PHARMACOL, V67, P1801, DOI 10.1016/j.bcp.2004.01.010
   Wimmer C, 2004, OTOL NEUROTOL, V25, P33, DOI 10.1097/00129492-200401000-00007
   Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119
   Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0
NR 82
TC 171
Z9 183
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 157
EP 167
DI 10.1016/j.heares.2006.09.015
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000015
PM 17113254
ER

PT J
AU Eshraghi, AA
   Wang, J
   Adil, E
   He, J
   Zine, A
   Bublik, M
   Bonny, C
   Puel, JL
   Balkany, TJ
   Van de Water, TR
AF Eshraghi, Adrien A.
   Wang, Jing
   Adil, Eelam
   He, Jiao
   Zine, Azel
   Bublik, Michael
   Bonny, Christophe
   Puel, Jean-Luc
   Balkany, Thomas J.
   Van de Water, Thomas R.
TI Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss
   induced by both electrode insertion trauma and neomycin ototoxicity
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE hearing loss; electrode insertion trauma; aminoglycoside ototoxicity;
   otoprotection; JNK signaling; hair cells; apoptosis; D-JNKI-1 peptide
   (AM-111)
ID COCHLEAR IMPLANTATION TRAUMA; HAIR CELL-DEATH; FORMATION IN-VITRO;
   GENTAMICIN OTOTOXICITY; CHINCHILLA COCHLEA; CASPASE ACTIVATION; INDUCED
   APOPTOSIS; FREE-RADICALS; AMINOGLYCOSIDE; PROTECTS
AB Neomycin ototoxicity and electrode insertion trauma both involve activation of the mitogen activated protein kinase (MAPK)/c-Jun-N-terminal kinase (JNK) cell death signal cascade. This article discusses mechanisms of cell death on a cell biology level (e.g. necrosis and apoptosis) and proposes the blocking of JNK signaling as a therapeutic approach for preventing the development of a permanent hearing loss that can be initiated by either neomycin ototoxicity or electrode insertion trauma. Blocking of JNK molecules incorporates the use of a peptide inhibitor (i.e. D-JNKI-1), which is specific for all three isoforms of JNK and has been demonstrated to prevent loss of hearing following either electrode insertion trauma or loss of both hearing and hair cells following exposure to an ototoxic level of neomycin. We present previously unpublished results that control for the effect of perfusate washout of aminoglycoside antibiotic by perfusion of the scala tympani with an inactive form of D-JNKI-1 peptide, i.e. JNKI-1(mut) peptide, which was not presented in the original J. Neurosci. article that tested locally delivered D-JNKI-1 peptide against both noise- and neomycin-induced hearing loss (i.e. Wang, J., Van De Water, T.R., Bonny, C., de Ribaupierre, F., Puel, J.L., Zinc, A. 2003a. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J. Neurosci. 23, 8596-8607). D-JNKI-1 is a cell permeable peptide that blocks JNK signaling at the level of the three JNK molecular isoforms, which when blocked prevents the increases in hearing thresholds and the loss of auditory hair cells. This unique therapeutic approach may have clinical application for preventing: (1) hearing loss caused by neomycin ototoxicity; and (2) the progressive component of electrode insertion trauma-induced hearing loss. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Miami, Miller Sch Med, Dept Otolaryngol, Ear Inst,Cochlear Implant Res Program, Miami, FL 33136 USA.
   Univ Montpellier 1, INSERM, U583, Montpellier, EU, France.
   Univ Lausanne, CH-1015 Lausanne, Switzerland.
RP Van de Water, TR (reprint author), Univ Miami, Miller Sch Med, Dept Otolaryngol, Ear Inst,Cochlear Implant Res Program, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA.
EM tvandewater@med.miami.edu
CR Balkany TJ, 2005, LARYNGOSCOPE, V115, P1543, DOI 10.1097/01.mlg.0000173169.45262.ae
   Bonny C, 2001, DIABETES, V50, P77, DOI 10.2337/diabetes.50.1.77
   Bosch-Morell F, 1999, FREE RADICAL BIO MED, V26, P1383, DOI 10.1016/S0891-5849(98)00335-9
   Boyce M, 2006, CELL DEATH DIFFER, V13, P363, DOI 10.1038/sj.cdd.4401817
   Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1
   Camandola S, 2000, J NEUROCHEM, V74, P159, DOI 10.1046/j.1471-4159.2000.0740159.x
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6
   Dickens M, 1997, SCIENCE, V277, P693, DOI 10.1126/science.277.5326.693
   Dietrich WD, 1996, ADV NEUROL, V71, P177
   Do K, 2004, INT CONGR SER, V1273, P167, DOI 10.1016/j.ics.2004.08.025
   Eshraghi AA, 2006, ANAT REC PART A, V288A, P473, DOI 10.1002/ar.a.20305
   Eshraghi AA, 2006, OTOL NEUROTOL, V27, P504, DOI 10.1097/00129492-200606000-00012
   Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005
   Eshraghi A A, 2004, Cochlear Implants Int, V5, P71, DOI 10.1002/cii.127
   Eshraghi AA, 2005, OTOL NEUROTOL, V26, P442, DOI 10.1097/01.mao.0000169791.53201.e1
   Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   Guzman J, 2006, ACTA OTO-LARYNGOL, V126, P685, DOI 10.1080/00016480500492018
   Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006
   Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
   KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   Leist M, 2001, NAT REV MOL CELL BIO, V2, P1
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   Ray SK, 2002, J NEUROSCI RES, V69, P197, DOI 10.1002/jnr.10265
   Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
   RUIZ J, OTOLARYNGOLOGY HNS
   Schacht J, 1999, ANN NY ACAD SCI, V884, P125
   Seidman Michael D, 2003, Ear Nose Throat J, V82, P276
   Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428
   Sha SH, 1999, LAB INVEST, V79, P807
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2
   Sperandio S, 2004, CELL DEATH DIFFER, V11, P1066, DOI 10.1038/sj.cdd.4401465
   Van De Water TR, 2004, OTOL NEUROTOL, V25, P627, DOI 10.1097/00129492-200407000-00035
   Wang AM, 2003, ANTIMICROB AGENTS CH, V47, P1836, DOI 10.1128/AAC.47.6.1836-1841.2003
   Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581
   Wang J, 2003, J NEUROSCI, V23, P8596
   YAMASHITA D, 2004, BRAIN RES, V1019, P2001
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
   Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4
   Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166
NR 48
TC 51
Z9 53
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 168
EP 177
DI 10.1016/j.heares.2006.09.008
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000016
PM 17098385
ER

PT J
AU Chen, Y
   Huang, WG
   Zha, DJ
   Qiu, JH
   Wang, JL
   Sha, SH
   Schacht, J
AF Chen, Yang
   Huang, Wei-Guo
   Zha, Ding-Jun
   Qiu, Jian-Hua
   Wang, Jin-Ling
   Sha, Su-Hua
   Schacht, Jochen
TI Aspirin attenuates gentamicin ototoxicity: From the laboratory to the
   clinic
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE aminoglycosides; ototoxicity; antioxidant therapy; salicylate
ID HAIR CELL-DEATH; PIG IN-VIVO; AMINOGLYCOSIDE-INDUCED OTOTOXICITY;
   INDUCED HEARING-LOSS; CYSTIC-FIBROSIS; IRON CHELATORS; INDUCED COCHLEAR;
   TOXICITY; PROTECTS; THERAPY
AB This article reviews recent advances in the protection from the adverse auditory or vestibular side effects associated with antibacterial treatment with aminoglycoside antibiotics. Compelling evidence from animal models suggests that reactive oxygen species are part of the initial mechanisms that trigger apoptotic and necrotic cell death in the inner car. Consequently, antioxidants protect against aminoglycoside-induced hearing loss in animals and, importantly, they do so without compromising drug serum levels or antibacterial efficacy. While clinical studies have long confirmed the ototoxicity of aminoglycosides in human, a trial on protection was only recently reported (Sha, S.-H., Qiu, J.-H., Schacht, J., 2006. Aspirin attenuates gentamicin-induced hearing loss. New Engl. J. Med. 354, 1856-1857). Based on the finding that salicylate afforded protection in animals, the efficacy of aspirin (acetyl salicylate) was tested in a randomized double-blind placebo-controlled study in patients receiving gentamicin for acute infections. Fourteen of 106 patients (13%) met the criterion of hearing loss in the placebo group while only 3/89 (3%) were affected in the aspirin group (p = 0.013). Aspirin did not influence gentamicin serum levels or the course of therapy. These results indicate that therapeutic protection from aminoglycoside ototoxicity may be extrapolated from animal models to the clinic. Furthermore, medications as common as aspirin can significantly attenuate the risk of gentamicin-induced hearing loss. (C) 2006 Elsevier B.V. All rights reserved.
C1 Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol, Xian, Peoples R China.
   Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Schacht, J (reprint author), Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol, Xian, Peoples R China.
EM schacht@umich.edu
CR BROUET G, 1959, Rev Tuberc Pneumol (Paris), V23, P949
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023
   Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6
   DOMENICO P, 1993, J INFECT DIS, V168, P766
   Fausti SA, 1999, EAR HEARING, V20, P497, DOI 10.1097/00003446-199912000-00005
   FEE WE, 1980, LARYNGOSCOPE, V40, P1
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0
   HINSHAW HC, 1945, P STAFF M MAYO CLIN, V20, P313
   Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
   Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
   Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392
   KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9
   Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
   LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A
   LERNER SA, 1986, AM J MED, V80, P98, DOI 10.1016/0002-9343(86)90486-9
   Lesniak W, 2005, CHEM RES TOXICOL, V18, P357, DOI 10.1021/tx0496946
   MOORE RD, 1984, J INFECT DIS, V149, P23
   Mulheran M, 2001, ANTIMICROB AGENTS CH, V45, P2502, DOI 10.1128/AAC.45.9.2502-2509.2001
   MULHERIN D, 1991, IRISH J MED SCI, V160, P173, DOI 10.1007/BF02961666
   Muller E, 1998, J INFECT DIS, V177, P501
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   Ramsey BW, 1999, NEW ENGL J MED, V340, P23, DOI 10.1056/NEJM199901073400104
   Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X
   Schatz A, 1944, P SOC EXP BIOL MED, V55, P66
   SEWESTER CS, 1994, DRUG FACTS COMPARISO, P1191
   Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X
   Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428
   Sha SH, 1999, LAB INVEST, V79, P807
   Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818
   Song BB, 1997, J PHARMACOL EXP THER, V282, P369
   Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9
   Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2
   Wang J, 2003, J NEUROSCI, V23, P8596
   *WHO, 2005, GLOB TUB CONTR SURV, V5
   Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
NR 38
TC 56
Z9 65
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 178
EP 182
DI 10.1016/j.heares.2006.05.008
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000017
PM 16844331
ER

PT J
AU Yamasoba, T
   Someya, S
   Yamada, C
   Weindruch, R
   Prolla, TA
   Tanokura, M
AF Yamasoba, Tatsuya
   Someya, Shinichi
   Yamada, Chikako
   Weindruch, Richard
   Prolla, Tomas A.
   Tanokura, Masaru
TI Role of mitochondrial dysfunction and mitochondrial DNA mutations in
   age-related hearing loss
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE presbycusis; mitochondrial DNA; aging; germanium; cochlea
ID GENE-EXPRESSION PROFILE; DIETARY RESTRICTION; CALORIC RESTRICTION;
   TEMPORAL BONE; OLD RATS; MOLECULAR-MECHANISMS; COCHLEAR PATHOLOGY;
   OXIDATIVE DAMAGE; POINT MUTATION; MICE
AB Mitochondrial DNA (mtDNA) mutations/deletions are considered to be associated with the development of age-related hearing loss (AHL). We assessed the role of accumulation of mtDNA mutations in the development of AHL using Polg(D257A) knock-in mouse, which exhibited increased spontaneous mtDNA mutation rates during aging and showed accelerated aging primarily due to increased apoptosis. They exhibited moderate hearing loss and degeneration of the hair cells, spiral ganglion cells and stria vascularis by 9 month of age, while wild-type animals did not. We next examined if mitochondrial damage induced by systemic application of germanium dioxide caused progressive hearing loss and cochlear damage. Guinea pigs and mice given germanium dioxide exhibited degeneration of the muscles and kidney and developed hearing loss due to degeneration of cochlear tissues, including the stria vascularis. Calorie restriction, which causes a metabolic shift toward increased energy metabolism in some organs, has been shown to attenuate AHL and age-related cochlear degeneration and to lower quantity of mtDNA deletions in the cochlea of mammals. Together these findings indicate that decreased energy metabolism due to accumulation of mtDNA mutations/deletions and decline of respiratory chain function play an important role in the manifestation of AHL. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Tokyo, Dept Otolaryngol, Tokyo 1138665, Japan.
   Univ Tokyo, Dept Head & Neck Surg, Tokyo 1138665, Japan.
   Univ Tokyo, Dept Appl Biol Chem, Tokyo, Japan.
   Univ Wisconsin, Dept Genet & Med Genet, Madison, WI 53706 USA.
   Univ Wisconsin, Madison, WI 53706 USA.
   Vet Adm Geriatr Res Educ & Clin Ctr, Madison, WI USA.
RP Yamasoba, T (reprint author), Univ Tokyo, Dept Otolaryngol, Hongo 7-3-1, Tokyo 1138665, Japan.
EM tyamasoba-tky@umin.ac.jp
CR Araki T, 2004, SCIENCE, V305, P1010, DOI 10.1126/science.1098014
   Bai U, 1997, AM J OTOL, V18, P449
   Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196
   CORRALDEBRINSKI M, 1992, NAT GENET, V2, P324, DOI 10.1038/ng1292-324
   CORTOPASSI GA, 1990, NUCLEIC ACIDS RES, V18, P6927, DOI 10.1093/nar/18.23.6927
   FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4
   Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5
   Fischel-Ghodsian N, 2004, MITOCHONDRION, V4, P675, DOI 10.1016/j.mito.2004.07.040
   Guarente L, 2005, CELL, V120, P473, DOI 10.1016/j.cell.2005.01.029
   GUY BC, 1999, MITOCHRONDRIA CELL D
   Hadley EC, 2005, CELL, V120, P557, DOI 10.1016/j.cell.2005.01.030
   Hagen TM, 1998, P NATL ACAD SCI USA, V95, P9562, DOI 10.1073/pnas.95.16.9562
   Hagen TM, 1999, FASEB J, V13, P411
   HATTORI K, 1991, AM HEART J, V121, P1735, DOI 10.1016/0002-8703(91)90020-I
   HENRY KR, 1986, AUDIOLOGY, V25, P329
   HIGUCHI I, 1989, ACTA NEUROPATHOL, V79, P300
   Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960
   Johnson KR, 2001, NAT GENET, V27, P191, DOI 10.1038/84831
   Keithley EM, 2001, HEARING RES, V157, P93, DOI 10.1016/S0378-5955(01)00281-7
   Khaidakov M, 2003, MUTAT RES-FUND MOL M, V526, P1, DOI 10.1016/S0027-5107(03)00010-1
   Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125
   Lee CK, 2000, NAT GENET, V25, P294
   Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390
   Li Xiaodong, 2001, Chinese Medical Sciences Journal, V16, P157
   LINDSAY JR, 1976, ARCH OTOLARYNGOL, V102, P747
   Liu JK, 2002, P NATL ACAD SCI USA, V99, P2356, DOI 10.1073/pnas.261709299
   Mattson MP, 2003, J NEUROCHEM, V84, P417, DOI 10.1046/j.1471-4159.2003.01586.x
   Melov S, 1997, NUCLEIC ACIDS RES, V25, P974, DOI 10.1093/nar/25.5.974
   Nakada K, 2004, BIOCHEM BIOPH RES CO, V323, P175, DOI 10.1016/j.bbrc.2004.08.073
   PARK JC, 1990, HEARING RES, V48, P275, DOI 10.1016/0378-5955(90)90067-Y
   Pickles JO, 2004, AUDIOL NEURO-OTOL, V9, P23, DOI 10.1159/000074184
   SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
   Seidman MD, 2002, AGEING RES REV, V1, P331, DOI 10.1016/S1568-1637(02)00004-1
   Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003
   Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4
   SOHAL RS, 1994, MECH AGEING DEV, V74, P121, DOI 10.1016/0047-6374(94)90104-X
   SOMEYA S, 2006, IN PRESS NEUROBIOL A
   SWEET RJ, 1988, AUDIOLOGY, V27, P305
   Takahashi K, 2003, LARYNGOSCOPE, V113, P1362, DOI 10.1097/00005537-200308000-00018
   Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517
   Trifunovic A, 2005, P NATL ACAD SCI USA, V102, P17993, DOI 10.1073/pnas.0508886102
   Vaziri H, 2001, CELL, V107, P149, DOI 10.1016/S0092-8674(01)00527-X
   Wallace DC, 2001, AM J MED GENET, V106, P71, DOI 10.1002/ajmg.1393
   Weindruch R, 2001, J GERONTOL A-BIOL, V56, P20
   WEINDRUCH R, 1988, RETARDATION AGING DI
   WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F
   WU CM, 1992, MUSCLE NERVE, V15, P1258, DOI 10.1002/mus.880151107
   Yamasoba T, 1996, LARYNGOSCOPE, V106, P49, DOI 10.1097/00005537-199601000-00010
   Yamasoba T, 2002, NEUROMUSCULAR DISORD, V12, P506, DOI 10.1016/S0960-8966(01)00329-7
   Yamasoba T, 2006, NEUROSCI LETT, V395, P18, DOI 10.1016/j.neulet.2005.10.045
   Yamasoba T, 1999, NEUROLOGY, V52, P1705
   Yueh B, 2003, JAMA-J AM MED ASSOC, V289, P1976, DOI 10.1001/jama.289.15.1976
NR 52
TC 44
Z9 49
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 185
EP 193
DI 10.1016/j.heares.2006.06.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000018
PM 16870370
ER

PT J
AU Le, T
   Keithley, EM
AF Le, Tima
   Keithley, Elizabeth M.
TI Effects of antioxidants on the aging inner ear
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE cochlea; beagle dogs; auditory neurons; stria vascularis
ID ALPHA-LIPOIC ACID; ACETYL-L-CARNITINE; NEURONAL SIGNAL-TRANSDUCTION;
   QUIET-AGED GERBILS; HAIR CELL LOSS; OXIDATIVE DAMAGE; HEARING-LOSS; OLD
   RATS; SUPEROXIDE-DISMUTASE; VITAMIN-E
AB Age-related cochlear structural changes include the degeneration of sensory, neural cells and the stria vascularis. The hypothesis that cellular degeneration results from exposure to oxidative products of respiration was tested by supplementing aged dogs with a diet high in antioxidants and mitochondrial metabolites and by genetically modifying the expression level of the antioxidant, manganese superoxide dismutase (SOD) in mice. Aged dogs received either a high antioxidant diet or a normal, control diet for the last 3 years of their life. Cellular measures were compared among the two aged groups (10-15 years) and young dogs. Both aged groups had cellular degeneration relative to young dogs, but the animals fed the antioxidant diet showed less degeneration at the base and apex than the control-diet group. Transgenic mice, heterozygous null for SOD2 produce only half as much enzyme as a normal mouse. These mice showed no increase in the amount of hearing loss relative to the background strain. A diet containing antioxidants reduced the magnitude of cochlear degeneration. Genetic reduction of one antioxidant, however, did not increase the magnitude of hearing loss in aging mice. A reduction in one enzyme seems to be compensated while the addition of a complex of factors is effective. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif San Diego, La Jolla, CA 92093 USA.
RP Keithley, EM (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA.
CR Arivazhagan P, 2002, J NUTR BIOCHEM, V13, P619, DOI 10.1016/S0955-2863(02)00217-6
   Arivazhagan P, 2001, CHEM-BIOL INTERACT, V138, P189, DOI 10.1016/S0009-2797(01)00268-X
   Barja G, 2004, TRENDS NEUROSCI, V27, P595, DOI 10.1016/j.tins.2004.07.005
   Byrka-Owczarek K, 2004, J PEDIATR SURG, V39, P1226, DOI 10.1016/j.jpedsurg.2004.04.009
   Conte V, 2004, J NEUROCHEM, V90, P758, DOI 10.1111/j.1471-4159.2004.02560.x
   Cotman CW, 2002, NEUROBIOL AGING, V23, P809, DOI 10.1016/S0197-4580(02)00073-8
   Cottrell D A, 2000, Curr Opin Clin Nutr Metab Care, V3, P473, DOI 10.1097/00075197-200011000-00009
   Devi SA, 2004, NEUROBIOL AGING, V25, P501, DOI 10.1016/S0197-4580(03)00112-X
   Engström H, 1967, J Laryngol Otol, V81, P687, DOI 10.1017/S0022215100067657
   Farr SA, 2003, J NEUROCHEM, V84, P1173, DOI 10.1046/j.0022-3042.2003.01580.x
   FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4
   Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7
   Guild SR, 1921, ANAT REC, V22, P141
   Hagen TM, 2002, P NATL ACAD SCI USA, V99, P1870, DOI 10.1073/pnas.261708898
   Hagen TM, 1999, FASEB J, V13, P411
   HARMAN D, 1956, J GERONTOL, V11, P298
   Head E, 2002, J NEUROCHEM, V82, P375, DOI 10.1046/j.1471-4159.2002.00969.x
   Heaton PR, 2002, J NUTR, V132, p1720S
   Hellstrom LI, 1996, J ACOUST SOC AM, V100, P3275, DOI 10.1121/1.417211
   Ingham NJ, 1999, ACTA OTO-LARYNGOL, V119, P42
   Joseph JA, 1999, J NEUROSCI, V19, P8114
   Joseph JA, 1998, J NEUROSCI, V18, P8047
   Rani PJA, 2002, J GERONTOL A-BIOL, V57, pB134
   Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009
   Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
   KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X
   KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306
   KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2
   KNOWLES K, 1989, J VET MED A, V36, P188
   Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   Liu JK, 2002, P NATL ACAD SCI USA, V99, P1876, DOI 10.1073/pnas.261709098
   Liu JK, 2002, P NATL ACAD SCI USA, V99, P2356, DOI 10.1073/pnas.261709299
   McFadden SL, 2001, AUDIOLOGY, V40, P313
   McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4
   McFadden SL, 1999, J COMP NEUROL, V413, P101
   MECOCCI P, 1993, ANN NEUROL, V34, P609, DOI 10.1002/ana.410340416
   Milgram NW, 2004, EXP GERONTOL, V39, P753, DOI 10.1016/j.exger.2004.01.007
   Milgram NW, 2002, NEUROBIOL AGING, V23, P737, DOI 10.1016/S0197-4580(02)00020-9
   MIQUEL J, 1980, EXP GERONTOL, V15, P575, DOI 10.1016/0531-5565(80)90010-8
   Nakamura M, 1997, TRANSPLANT INT, V10, P89, DOI 10.1111/j.1432-2277.1997.tb00547.x
   NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981
   Sastre J, 2003, FREE RADICAL BIO MED, V35, P1, DOI 10.1016/S0891-5849(03)00184-9
   Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653
   SCHUKNECHT HF, 1993, PATHOLOGY EAR, P416
   SEMSEI I, 1991, MECH AGEING DEV, V58, P13, DOI 10.1016/0047-6374(91)90116-H
   SEMSEI I, 1989, BIOCHEM BIOPH RES CO, V164, P620, DOI 10.1016/0006-291X(89)91505-2
   Sener G, 2004, J CARDIOVASC PHARM, V43, P698
   SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771
   SHIMADA A, 1988, J VET MED SCI, V61, P41
   Shimizu MHM, 2004, EXP GERONTOL, V39, P825, DOI 10.1016/j.exger.2004.02.009
   Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
   SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527
   Willott J. F., 1991, AGING AUDITORY SYSTE
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 55
TC 33
Z9 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 194
EP 202
DI 10.1016/j.heares.2006.04.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000019
PM 16843623
ER

PT J
AU Davis, RR
   Kuo, MW
   Stanton, SG
   Canlon, B
   Krieg, E
   Alagramam, KN
AF Davis, Rickie R.
   Kuo, Ming-Wen
   Stanton, Susan G.
   Canlon, Barbara
   Krieg, Edward
   Alagramam, Kumar N.
TI N-Acetyl L-cysteine does not protect against premature age-related
   hearing loss in C57BL/6J mice: A pilot study
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE presbycusis; age-related; hearing loss; mouse; reactive oxygen species;
   cochleogram; auditory brainstem response
ID MOUSE; STRAINS; CELLS
AB A compound capable of preventing age-related hearing loss would be very useful in an aging population. N-acetyl-L-cysteine (L-NAC) has been shown to be protective against noise exposure, a condition that leads to increased oxidative stress. Not withstanding environmental factors, there is evidence that age-related hearing loss (AHL) in the mouse is linked to more than one genetic loci and, by extension, in humans. Our hypothesis is that AHL defect results in increased sensitivity to oxidative stress and L-NAC would be able to protect the hearing of a mouse model of pre-mature AHL, the C57BL/6J (136) mouse strain. L-NAC was added to the regular water bottle of B6 mice (experimental group) and available ad lib. The other group received normal tap water. Hearing was tested monthly by the ability to generate the auditory brainstem response (ABR). After the final ABR test, mice were sacrificed by an overdose of Avertin, ears were harvested and hair cell loss was quantified. There was no difference in ABR thresholds or in histopathology between the control group and the group receiving L-NAC in their drinking water. In contrast to the protective effects Of L-NAC against noise-induced hearing loss, the lack of protective effect in this study may be due to (i) the dosage level; (ii) the duration of treatment; (iii) the biochemical mechanisms underlying age-induced hearing loss; or (iv) how the mouse metabolizes L-NAC. (C) 2006 Elsevier B.V. All rights reserved.
C1 NIOSH, Hearing Loss Prevent Team, Engn & Phys Hazard Branch, Div Appl Res & Technol, Cincinnati, OH 45226 USA.
   Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA.
   Univ Cincinnati, Ctr Med, Coll Allied Hlth Sci, Dept Commun Sci & Disorders, Cincinnati, OH 45221 USA.
   Karolinska Inst, Dept Physiol & Pharmacol, S-10401 Stockholm, Sweden.
   Case Western Reserve Univ, HNS, Dept Otolaryngol, Cleveland, OH 44106 USA.
RP Davis, RR (reprint author), NIOSH, Hearing Loss Prevent Team, Engn & Phys Hazard Branch, Div Appl Res & Technol, C-27,Columbia Pjwy, Cincinnati, OH 45226 USA.
EM rrd1@cdc.gov
RI Davis, Rickie/A-3186-2008
CR Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   FERRARI G, 1995, J NEUROSCI, V15, P2857
   Kopke R.D., 2005, INT S PHARM STRAT PR
   Kopke RD, 2001, NOISE INDUCED HEARIN, P231
   Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5
   Marzullo L, 2005, CURR OPIN PEDIATR, V17, P239, DOI 10.1097/01.mop.0000152622.05168.9e
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   NOLTE ML, 2005, THESIS U CINCINNATI
   Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6
   Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9
   SMILKSTEIN MJ, 1989, ENGL J MED, V320, P1417
   Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
   Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593
   YAN CYI, 1995, J BIOL CHEM, V270, P26827
NR 15
TC 14
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 203
EP 208
DI 10.1016/j.heares.2006.07.003
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000020
PM 16930891
ER

PT J
AU Trune, DR
   Kempton, JB
   Harrison, AR
   Wobig, JL
AF Trune, Dennis R.
   Kempton, J. Beth
   Harrison, Andrew R.
   Wobig, John L.
TI Glucocorticoid impact on cochlear function and systemic side effects in
   autoimmune CIMRL-Fas(1pr) and normal C3H/HeJ mice
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE autoimmune hearing loss; C3MRL-Fas(lpr) autoimmune mice; C3H/HeJ mice;
   prednisolone; systemic lupus erythematosus; steroid side effects
ID SENSORINEURAL HEARING-LOSS; NF-KAPPA-B; LUPUS-ERYTHEMATOSUS PATIENTS;
   INNER-EAR; STEROID TREATMENT; MENIERES-DISEASE; GUINEA-PIG; AUDITORY
   FUNCTION; MOUSE; DEXAMETHASONE
AB Glucocorticoids are effective in reversing hearing loss, but their severe side effects limit long term management of many ear disorders. A clearer understanding of these side effects is critical for prolonged therapeutic control of hearing and vestibular dysfunction. Therefore, this study characterized the impact of the glucocorticoid prednisolone on cochlear dysfunction and systemic organ systems in C3.MRL-Fas(lpr). autoimmune mice and their normal C3H/HeJ parent strain. Following 3 months of treatment, autoimmune mice had better auditory thresholds and improved hematocrits, anti-nuclear antibodies, and immune complexes. Steroid treatment also lowered body and spleen weights, both of which rise with systemic autoimmune disease. Steroid treatment of the normal C3H/HeJ mice significantly elevated their blood hematocrits and lowered their body and spleen weights to abnormal levels. Thus, systemic autoimmune disease and its related hearing loss in C3.MRL-Fas(lpr) mice are steroid-responsive, but normal hemopoiesis and organ functions can be significantly compromised. This mouse model may be useful for studies of the detrimental side effects of steroid treatments for hearing loss. (C) 2006 Elsevier B.V. All rights reserved.
C1 Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
   Oregon Hlth & Sci Univ, Dept Ophthalmol, Portland, OR 97201 USA.
RP Trune, DR (reprint author), Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM truned@ohsu.edu
CR Adams JC, 2002, OTOL NEUROTOL, V23, P316, DOI 10.1097/00129492-200205000-00015
   Alexiou C, 1998, ARCH OTOLARYNGOL, V124, P1260
   Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253
   Almawi WY, 2002, J MOL ENDOCRINOL, V28, P69, DOI 10.1677/jme.0.0280069
   ANDONOPOULOS AP, 1995, CLIN EXP RHEUMATOL, V13, P137
   Arnold W, 2005, AUDIOL NEURO-OTOL, V10, P53, DOI 10.1159/000082575
   Baeuerle PA, 1996, CELL, V87, P13, DOI 10.1016/S0092-8674(00)81318-5
   Baldwin AS, 1996, ANNU REV IMMUNOL, V14, P649, DOI 10.1146/annurev.immunol.14.1.649
   Barrs DM, 2004, OTOLARYNG CLIN N AM, V37, P955, DOI 10.1016/j.otc.2004.03.004
   Chen CY, 2003, OTOL NEUROTOL, V24, P728, DOI 10.1097/00129492-200309000-00006
   DICKINS JRE, 1990, AM J OTOL, V11, P51
   Dodson KM, 2004, OTOLARYNG CLIN N AM, V37, P991, DOI 10.1016/j.otc.2004.03.003
   Doyle KJ, 2004, OTOL NEUROTOL, V25, P1034, DOI 10.1097/00129492-200411000-00031
   GILKESON GS, 1989, CLIN IMMUNOL IMMUNOP, V53, P460, DOI 10.1016/0090-1229(89)90008-1
   GRANDIS JR, 1993, AM J OTOL, V14, P183
   Hargunani CA, 2006, OTOL NEUROTOL, V27, P564, DOI 10.1097/00129492-200606000-00021
   HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308
   Herr BD, 2005, OTOLARYNG HEAD NECK, V132, P527, DOI 10.1016/j.otohns.2004.09.138
   HILGER JA, 1950, ANN OTO RHINOL LARYN, V59, P1102
   Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3
   Hoffer ME, 2004, OTOLARYNG CLIN N AM, V37, P1053, DOI 10.1016/j.otc.2004.04.005
   HUGHES GB, 1993, HEAD NECK SURG OTOLA, P1833
   HUGHES GB, 1983, LARYNGOSCOPE, V93, P410
   Jimenez-Alonson J, 2002, J LARYNGOL OTOL, V116, P746
   Kastanioudakis I, 2002, J LARYNGOL OTOL, V116, P103
   KELLEY VE, 1985, CLIN IMMUNOL IMMUNOP, V37, P220, DOI 10.1016/0090-1229(85)90153-9
   Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X
   Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657
   Ma W, 2004, J IMMUNOL, V172, P318
   MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585
   Mitchell CR, 1999, AUDIOL NEURO-OTOL, V4, P80, DOI 10.1159/000013824
   Murphy E. D., 1978, Genetic control of autoimmune disease. Proceedings of the workshop on the genetic control of autoimmune disease held in Bloomfield Hills, Michigan, USA, on July 10-12, 1978., P207
   Nadel D M, 1996, Ear Nose Throat J, V75, P502
   O-Uchi Toshiaki, 1993, Auris Nasus Larynx, V20, P79
   PARNES LS, 1999, LARYNGOSCOPE S, V91, P1
   Rauch SD, 2004, OTOLARYNG CLIN N AM, V37, P1061, DOI 10.1016/j.otc.2004.04.004
   Sekiya T, 2001, HEARING RES, V151, P125, DOI 10.1016/S0378-5955(00)00219-7
   SHA WC, 1995, CELL, V80, P321, DOI 10.1016/0092-8674(95)90415-8
   Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
   SHIMMER BP, 1996, GOODMAN GILMANS PHAR, P1459
   Silverstein H, 2004, OTOLARYNG CLIN N AM, V37, P1019, DOI 10.1016/j.otc.2004.04.002
   Sismanis A, 1997, OTOLARYNG HEAD NECK, V116, P146, DOI 10.1016/S0194-5998(97)70316-4
   Sperling NM, 1998, OTOLARYNG HEAD NECK, V118, P762, DOI 10.1016/S0194-5998(98)70265-7
   Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9
   Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
   Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
   Trune DR, 1996, HEARING RES, V96, P41, DOI 10.1016/0378-5955(96)00017-2
   TRUNE DR, 2006, MED OTOLOGY NEUROTOL, P21
   Trune DR, 1999, HEARING RES, V137, P160, DOI 10.1016/S0378-5955(99)00147-1
   Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4
   Trune DR, 2006, HEARING RES, V212, P22, DOI 10.1016/j.heares.2005.10.006
   Trune DR, 1999, HEARING RES, V137, P167, DOI 10.1016/S0378-5955(99)00148-3
   Trune DR, 1996, HEARING RES, V95, P57, DOI 10.1016/0378-5955(96)00018-4
   Trune DR, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P505
   TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7
   WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0
   WILSON WR, 1980, ARCH OTOLARYNGOL, V106, P772
   Yamamoto Y, 2001, J CLIN INVEST, V107, P135, DOI 10.1172/JCI11914
NR 58
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 209
EP 217
DI 10.1016/j.heares.2006.09.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000021
PM 17098384
ER

PT J
AU Robinson, SK
   Viirre, ES
   Stein, MB
AF Robinson, Shannon K.
   Viirre, Erik S.
   Stein, Murray B.
TI Antidepressant therapy in tinnitus
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE tinnitus; antidepressants
ID PSYCHIATRIC DIAGNOSES; SUBJECTIVE TINNITUS; AMITRIPTYLINE; IMIPRAMINE;
   TRIAL; DISORDERS; NORTRIPTYLINE; ASSOCIATION; COMORBIDITY; VENLAFAXINE
AB Objective: Review the literature on the co-morbidity of depression and anxiety with tinnitus. Briefly consider proposed mechanisms by which antidepressants might be helpful for tinnitus, including treatment of co-morbid depression and anxiety and a more direct serotonergic mechanism of tinnitus. Survey the literature on antidepressants and tinnitus including tinnitus reported as a side effect of antidepressants (phenelzine, amitriptyline, protriptyline, doxepin, imipramine, fluoxetine, trazadone, bupropion, venlafaxine), tinnitus associated with withdrawal of antidepressants (venlafaxine and sertraline) and antidepressants as a treatment for tinnitus (case reports-fluoxetine and paroxetine, retrospective reviews - imipramine and selective serotonin reuptake inhibitors, single blind trials of amitriptyline and double blind placebo controlled trials of trimipramine, nortriptyline, paroxetine and sertraline). Provide suggestions on future directions, specifically replication of prior studies and a dose finding study of paroxetine for the treatment of tinnitus. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif San Diego, Sch Med, Vet Adm San Diego Healthcare Syst, Dept Psychiat, La Jolla, CA 92161 USA.
   Univ Calif San Diego, Dept Surg, Div Otolaryngol Head & Neck Surg, San Diego, CA 92039 USA.
   Univ Calif San Diego, Vet Adm San Diego Healthcare Syst, Sch Med, Dept Psychiat, San Diego, CA 92039 USA.
   Univ Calif San Diego, Vet Adm San Diego Healthcare Syst, Sch Med, Dept Family & Prevent Med, San Diego, CA 92039 USA.
RP Robinson, SK (reprint author), Univ Calif San Diego, Sch Med, Vet Adm San Diego Healthcare Syst, Dept Psychiat, La Jolla, CA 92161 USA.
EM skrobinson@ucsd.edu; eviirre@ucsd.edu; mstein@ucsd.edu
CR AHMAD S, 1995, AM FAM PHYSICIAN, V51, P1830
   Andersson Gerhard, 2000, Scandinavian Journal of Behaviour Therapy, V29, P57
   ATTIAS J, 1993, AUDIOLOGY, V32, P205
   Bayar N, 2001, J OTOLARYNGOL, V30, P300, DOI 10.2310/7070.2001.19597
   Begg C, 1996, JAMA-J AM MED ASSOC, V276, P637, DOI 10.1001/jama.276.8.637
   Christensen RC, 2001, OTOLARYNG HEAD NECK, V125, P436, DOI 10.1067/mhn.2001.118688
   DOBIE RA, 1993, AM J OTOL, V14, P18
   EVANS DL, 1981, J CLIN PSYCHOPHARM, V1, P404
   Farah A, 1996, AM J PSYCHIAT, V153, P576
   FEDER R, 1990, J CLIN PSYCHIAT, V51, P85
   FEIGHNER JP, 1985, J CLIN PSYCHIAT, V46, P369
   First M. B., 1998, STRUCTURED CLIN INTE
   Folmer R. L., 2002, BMC EAR NOSE THROAT, V2, P3, DOI DOI 10.1186/1472-6815-2-3
   FOLMER RL, 2002, USE SELECTIVE SEROTO
   Gallinat J, 2003, NEUROPSYCHOPHARMACOL, V28, P530, DOI 10.1038/sj.npp.1300042
   GLASS RM, 1981, J CLIN PSYCHOPHARM, V1, P152
   *GLAX SMITH KLIN, 2002, PROD INF PAX
   GOLDEN RN, 1987, J CLIN PSYCHIAT, V48, P496
   GOLDEN RN, 1983, SOUTHERN MED J, V76, P1204
   HARRIS A, 2006, TINNITUS TODAY, V31, P9
   HARROPGRIFFITHS J, 1987, J PSYCHOSOM RES, V31, P613, DOI 10.1016/0022-3999(87)90040-7
   Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16
   HOLGERS KM, 1999, PSYCHIAT PROFILE TIN
   Holgers KM, 2000, AUDIOLOGY, V39, P284
   Humma LM, 1999, ANN PHARMACOTHER, V33, P305, DOI 10.1345/aph.18206
   KESSLER RC, 1994, ARCH GEN PSYCHIAT, V51, P8
   KOSHES RJ, 1992, PSYCHOSOMATICS, V33, P341
   LAIRD LK, 1989, J CLIN PSYCHIAT, V50, P146
   LEITER FL, 1995, BIOL PSYCHIAT, V38, P694, DOI 10.1016/0006-3223(95)00311-8
   Lewinsohn PM, 1999, J ABNORM PSYCHOL, V108, P483, DOI 10.1037/0021-843X.108.3.483
   LOCKWOOD AH, 2004, TINNITUS THEORY MANA, P255
   Marciano E, 2003, INT J AUDIOL, V42, P4, DOI 10.3109/14992020309056079
   MIHAIL RC, 1988, ANN OTO RHINOL LARYN, V97, P120
   MILES SW, 1980, NEW ZEAL MED J, V92, P66
   *PFIZ INC, 2006, PROD INF ZOL SERT
   Podoshin L, 1995, INT TINNITUS J, V1, P54
   RACY J, 1980, AM J PSYCHIAT, V137, P854
   Robinson SK, 2005, PSYCHOSOM MED, V67, P981, DOI 10.1097/01.psy.0000188479.04891.74
   Robinson SK, 2004, TINNITUS THEORY MANA, P278
   SETTLE EC, 1991, J CLIN PSYCHIAT, V52, P352
   SHEA JJ, 1981, ANN OTO RHINOL LARYN, V90, P601
   Shemen L, 1998, OTOLARYNG HEAD NECK, V118, P421, DOI 10.1016/S0194-5998(98)70332-8
   Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9
   SIMPSON RB, 1988, J OTOLARYNGOL, V17, P325
   SPITZER RL, 1995, JAMA-J AM MED ASSOC, V274, P1511, DOI 10.1001/jama.274.19.1511
   SULLIVAN M, 1993, ARCH INTERN MED, V153, P2251, DOI 10.1001/archinte.153.19.2251
   SULLIVAN MD, 1989, ANN OTO RHINOL LARYN, V98, P867
   SULLIVAN MD, 1988, GEN HOSP PSYCHIAT, V10, P285, DOI 10.1016/0163-8343(88)90037-0
   TANDON R, 1987, J CLIN PSYCHIAT, V48, P109
   WEISSMAN MM, 1991, PSYCHIAT DISORDERS A
   *WYETH, 2004, PROD INF SURM TRIM
   Zoger S, 2001, AUDIOLOGY, V40, P133
   Zoger S, 2006, J CLIN PSYCHOPHARM, V26, P32, DOI 10.1097/01.jcp.0000195111.86650.19
   ZOGER S, 2002, PSYCHIAT PROFILE TIN
   2006, TINNITUS TODAY, V31, P22
NR 55
TC 26
Z9 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 221
EP 231
DI 10.1016/j.heares.2006.08.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000022
PM 16973315
ER

PT J
AU Kaltenbach, JA
   Zhang, JS
AF Kaltenbach, James A.
   Zhang, Jinsheng
TI Intense sound-induced plasticity in the dorsal cochlear nucleus of rats:
   Evidence for cholinergic receptor upregulation
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE dorsal cochlear nucleus; noise exposure; carbachol; atropine;
   plasticity; tinnitus
ID SPONTANEOUS NEURAL ACTIVITY; PRIMARY AUDITORY-CORTEX; INDUCED
   HEARING-LOSS; HAIR CELL LOSS; INFERIOR COLLICULUS; ACOUSTIC TRAUMA;
   BRAIN-STEM; GUINEA-PIG; INDUCED HYPERACTIVITY; SYNAPTIC ENDINGS
AB Previous studies in a number of species have demonstrated that spontaneous activity in the dorsal cochlear nucleus (DCN) becomes elevated following exposure to intense sound. This condition of hyperactivity has aroused considerable interest because it may represent an important neural correlate of tinnitus. There is some evidence that neurons in the superficial DCN, such as cartwheel, stellate and fusiform cells, may contribute to the level of hyperactivity induced by intense sound, although the relative importance of these different cell types is unknown. In the present study, we sought to determine the effect of intense sound exposure on multiunit spontaneous activity both at the DCN surface and in the fusiform. cell layer and to examine the influence of cholinergic input to DCN circuits on the level of activity in the fusiform cell layer. Rats were studied in two groups, one of which had been exposed to a continuous intense sound (10 kHz 127 dB SPL) for 4 h while the other group served as unexposed controls. Between 30 and 52 days post-exposure, recordings of multiunit activity were performed at the DCN surface as well as in the middle of the fusiform cell layer. Changes in fusiform cell layer activity were also studied in response to superficial applications of the cholinergic agonist, carbachol, either alone or following pre-application of the cholinergic antagonist, atropine. The results demonstrated that multiunit spontaneous activity in the rat DCN was generally much higher in both control and exposed animals relative to that which has been observed in other species. This activity was significantly higher at the DCN surface of sound-exposed animals than that of controls. In contrast, hyperactivity could not be demonstrated in the fusiform cell layer of sound-exposed animals. Carbachol administration most commonly caused suppression of fusiform cell layer activity. However, this suppression was considerably stronger in the DCN of sound-exposed animals than in controls. These findings suggest that, hyperactivity at the DCN surface of exposed rats may arise as a consequence of more highly activated neurons in the molecular layer, such as cartwheel and/or stellate cells, and that the lack of hyperactivity in the fusiform cell layer may be the result of inhibition of fusiform cells by these inhibitory interneurons. Although this finding does not rule out fusiform cells as possible sources of hyperactivity in other species, or even in the rat after short post-exposure recovery periods, the enhanced sensitivity of the fusiform cell layer to cholinergic stimulation suggests that in the rat, at least after prolonged post-exposure recovery periods, increased inhibition of activity in this layer by more superficially located neurons may result from an upregulation of receptors for cholinergic input. This upregulation may be greater in rats than in other species due to the relatively heavy cholinergic input that exists in the cochlear nucleus of this species. (C) 2006 Elsevier B.V. All rights reserved.
C1 Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Detroit, MI 48201 USA.
RP Kaltenbach, JA (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Detroit, MI 48201 USA.
EM jkalten@med.wayne.edu
CR ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288
   Barrs DM, 1984, J LARYNGOL OTOL S, V9, P287
   Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3
   Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   CHEN KJ, 1995, HEARING RES, V89, P137, DOI 10.1016/0378-5955(95)00131-6
   CHEN KJ, 1994, HEARING RES, V77, P168
   Dandy W, 1941, SURG GYNECOL OBSTET, V72, P421
   Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
   Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
   Gardner G., 1984, J LARYNGOL OTOL S9, V9, P311
   GEORGE RN, 1989, J SPEECH HEAR RES, V32, P366
   Golding NL, 1996, J NEUROSCI, V16, P2208
   Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
   House J W, 1981, Ciba Found Symp, V85, P204
   Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016
   JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391
   Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706
   JIN YM, 2006, HEAR RES
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach J.A., 2002, ABS ASS RES OTOLARYN, V25
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
   Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   KALTENBACH JA, 2006, HEAR RES
   Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
   Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212
   Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
   Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5
   Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750
   LOEB M, 1967, J ACOUST SOC AM, V43, P453
   Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
   Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5
   MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208
   Melamed SB, 2000, AUDIOLOGY, V39, P24
   Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
   MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106
   Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963
   Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
   Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8
   Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6
   OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206
   Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
   SILVERSTEIN H, 1976, LARYNGOSCOPE, V86, P1777
   WALLER HJ, 1994, J NEUROPHYSIOL, V71, P467
   Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1
   WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029
   WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X
   Wu JL, 2003, HEARING RES, V176, P80, DOI 10.1016/S0378-5955(02)00747-5
   Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
   Zhang JS, 2000, HEARING RES, V140, P7, DOI 10.1016/S0378-5955(99)00181-1
   Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
   Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4
   ZHANG S, 1994, J NEUROPHYSIOL, V71, P914
NR 57
TC 33
Z9 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 232
EP 243
DI 10.1016/j.heares.2006.07.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000023
PM 16914276
ER

PT J
AU Yang, G
   Lobarinas, E
   Zhang, LY
   Turner, J
   Stolzberg, D
   Salvi, R
   Sun, W
AF Yang, Guang
   Lobarinas, Edward
   Zhang, Liyan
   Turner, Jeremy
   Stolzberg, Daniel
   Salvi, Richard
   Sun, Wei
TI Salicylate induced tinnitus: Behavioral measures and neural activity in
   auditory cortex of awake rats
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Pharmcological Strategies for Prevention and Treatment of
   Hearing Loss and Tinnitus
CY OCT   12, 2005
CL Niagara Falls, CANADA
SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command
DE salicylate; tinnitus; auditory cortex; spontaneous activity; behavior;
   startle reflex; field potential
ID DORSAL COCHLEAR NUCLEUS; INFERIOR COLLICULUS; ANIMAL-MODEL; OTOTOXICITY;
   NEURONS; CISPLATIN; RESPONSES; SOUND; ISOFLURANE; FREQUENCY
AB Neurophysiological studies of salicylate-induced tinnitus have generally been carried out under anesthesia, a condition that abolishes the perception of tinnitus and depresses neural activity. To overcome these limitations, measurement of salicylate induced tinnitus were obtained from rats using schedule induced polydipsia avoidance conditioning (SIPAC) and gap pre-pulse inhibition of acoustic startle (GPIAS). Both behavioral measures indicated that tinnitus was present after treatment with 150 and 250 mg/kg of salicylate; measurements with GPIAS indicated that the pitch of the tinnitus was near 16 kHz. Chronically implanted microwire electrode arrays were used to monitor the local field potentials and spontaneous discharge rate from multiunit clusters in the auditory cortex of awake rats before and after treatment with 150 mg/kg of salicylate. The amplitude of the local field potential elicited with 60 dB SPL tone bursts increased significantly 2 h after salicylate treatment particularly at 16-20 kHz; frequencies associated with the tinnitus pitch. Field potential amplitudes had largely recovered 1-2 days post-salicylate when behavioral results showed that tinnitus was absent. The mean spontaneous spike recorded from the same multiunit cluster pre- and post-salicylate decreased from 22 spikes/s before treatment to 14 spikes/s 2 h post-salicylate and recovered I day post-treatment. These preliminary physiology data suggest that salicylate induced tinnitus is associated with sound evoked hyperactivity in auditory cortex and spontaneous hypoactivity. (C) 2006 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   YueYang Hosp, Dept Otolaryngol, Shanghai, Peoples R China.
   So Illinois Univ, Sch Med, Dept Surg Otolaryngol & Pharmacol, Carbondale, IL 62901 USA.
RP Sun, W (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
EM weisun@buffalo.edu
CR Astl J, 1996, AUDIOLOGY, V35, P335
   ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288
   AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819
   AXELSSON A, 1987, ACTA OTO-LARYNGOL, V104, P225, DOI 10.3109/00016488709107322
   Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003
   Bauer CA, 2001, JARO, V2, P54
   BRIEN JA, 1993, DRUG SAFETY, V9, P143, DOI 10.2165/00002018-199309020-00006
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   Cooper J C Jr, 1994, J Am Acad Audiol, V5, P37
   DAY RO, 1989, BRIT J CLIN PHARMACO, V28, P695
   Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
   EVANS EF, 1973, EXP BRAIN RES, V17, P402
   EVANS EF, 1964, J PHYSIOL-LONDON, V179, P238
   Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454
   Evans E F, 1981, Ciba Found Symp, V85, P108
   Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062
   GERHARZ EW, 1995, BRIT J UROL, V76, P479, DOI 10.1111/j.1464-410X.1995.tb07750.x
   Guitton MJ, 2003, J NEUROSCI, V23, P3944
   Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
   HORIKAWA J, 1988, P JPN ACAD B-PHYS, V64, P260, DOI 10.2183/pjab.64.260
   JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391
   JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811
   JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202
   JASTREBOFF PJ, 1994, AM J OTOL, V15, P19
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858
   LOBARINAS E, ACTA OTOLARYNGOL S
   Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X
   LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600
   Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003
   Manabe Y, 1998, Nihon Jibiinkoka Gakkai Kaiho, V101, P807
   MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X
   Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X
   MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483
   Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6
   PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66
   Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3
   Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3
   SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
   Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591
   Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
   TYLER RS, 1985, P 13 WORLD C OT NEW, V1
   Verbny YI, 2005, ANESTHESIOLOGY, V102, P962, DOI 10.1097/00000542-200505000-00015
   ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4
NR 44
TC 94
Z9 104
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2007
VL 226
IS 1-2
BP 244
EP 253
DI 10.1016/j.heares.2006.06.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 162UW
UT WOS:000246116000024
PM 16904853
ER

PT J
AU Cooper, HR
   Roberts, B
AF Cooper, Huw R.
   Roberts, Brian
TI Auditory stream segregation of tone sequences in cochlear implant
   listeners
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Implantable Auditory Prostheses
CY AUG, 2005
CL Asilomar, CA
DE auditory grouping; stream segregation; pitch discrimination; cochlear
   implants
ID SPEECH RECOGNITION; GAP DETECTION; HEARING; PERCEPTION; FREQUENCY;
   STIMULATION; PATTERNS; MUSIC
AB Previous claims that auditory stream segregation occurs in cochlear implant listeners are based on limited evidence. In experiment 1, eight listeners heard tones presented in a 30-s repeating ABA-sequence, with frequencies matching the centre frequencies of the implant's 22 electrodes. Tone A always stimulated electrode I I (centre of the array); tone B stimulated one of the others. Tone repetition times (TRTs) from 50 to 200 ms were used. Listeners reported when they heard one or two streams. The proportion of time that each sequence was reported as segregated was consistently greater with increased electrode separation. However, TRT had no significant effect, and the perceptual reversals typical of normal-hearing listeners rarely occurred. The results may reflect channel discrimination rather than stream segregation. In experiment 2, six listeners performed a pitch-ranking task using tone pairs (reference = electrode 11). Listeners reported which tone was higher in pitch (or brighter in timbre) and their confidence in the pitch judgement. Similarities were observed in the individual pattern of results for reported segregation and pitch discrimination. Many implant listeners may show little or no sign of automatic stream segregation owing to the reduced perceptual space within which sounds can differ from one another. (c) 2006 Elsevier B.V. All rights reserved.
C1 Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England.
   Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England.
RP Cooper, HR (reprint author), Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England.
EM cooperhr@aston.ac.uk
CR ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257
   BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380
   BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163
   Bregman AS., 1990, AUDITORY SCENE ANAL
   CHATTERJEE M, 2002, J ACOUST SOC AM, V111, P2429
   Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777
   CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
   Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320
   Cusack R, 2004, HEARING RES, V193, P95, DOI 10.1016/j.heares.2004.03.009
   Cusack R, 2000, PERCEPT PSYCHOPHYS, V62, P1112, DOI 10.3758/BF03212092
   Cusack R, 1999, PERCEPTION, V28, P1281, DOI 10.1068/p2804
   Fu Q., 2004, JARO-J ASSOC RES OTO, V6, P19
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Grose JH, 2001, J ACOUST SOC AM, V109, P1587, DOI 10.1121/1.1354983
   Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772
   Hong RS, 2006, J ACOUST SOC AM, V120, P360, DOI 10.1121/1.2204450
   Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663
   Moore BC, 2005, SPRINGER HDB AUDITOR
   Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
   NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317
   Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538
   Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784
   Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003
   Throckmorton CS, 2002, J ACOUST SOC AM, V112, P285, DOI 10.1121/1.1482073
   van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
   WARREN RM, 1969, SCIENCE, V164, P586, DOI 10.1126/science.164.3879.586
NR 28
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 11
EP 24
DI 10.1016/j.heares.2006.11.010
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000002
PM 17257790
ER

PT J
AU Thomassen, HA
   Gea, S
   Maas, S
   Bout, RG
   Dirckx, JJJ
   Decraemer, WF
   Povel, GDE
AF Thomassen, Henri A.
   Gea, Stefan
   Maas, Steve
   Bout, Ron G.
   Dirckx, Joris J. J.
   Decraemer, Willem F.
   Povel, G. David E.
TI Do Swiftlets have an ear for echolocation? The functional morphology of
   Swiftlets' middle ears
SO HEARING RESEARCH
LA English
DT Article
DE echolocation; Swiftlet; middle ear; modelling; mu CT; 3D reconstruction
ID CAVE SWIFTLETS; GREY SWIFTLET; CLICKS; SENSITIVITY; OILBIRD; HEARING
AB The Oilbird and many Swiftlet species are unique among birds for their ability to echolocate. Echolocaters may benefit from improved hearing sensitivity. Therefore, morphological adaptations to echolocation might be present in echolocating birds' middle ears. We studied the functional morphology of the tympano-ossicular chain of seven specimens of four echolocating Swiftlet species and one specimen each of five non-echolocating species. Three dimensional (31)) reconstructions were made from micro-Computer-Tomographic (mu CT) scans. The reconstructions were used in functional morphological analyses and model calculations. A two dimensional (21)) rigid rod model with fixed rotational axes was developed to study footplate output-amplitudes and to describe how changes in the arrangement of the tympano-ossicular chain affect its function. A 3D finite element model was used to predict ossicular-chain movement and to investigate the justification of the 2D approach. No morphological adaptations towards echolocation were found in the middle-ear lever system or in the mass impedance of the middle ear. A wide range of middle-ear configurations result in maximum output-amplitudes and all investigated species are congruent with these predicted best configurations. Echolocation is unlikely to depend on adaptations in the middle ear tympano-ossicular chain. (c) 2006 Elsevier B.V. All rights reserved.
C1 Leiden Univ, Inst Biol Leiden, Sect Evolutionary Morphol, NL-2300 RA Leiden, Netherlands.
   Univ Antwerp, Dept Phys, Lab Biomed Phys, B-2020 Antwerp, Belgium.
RP Thomassen, HA (reprint author), Leiden Univ, Inst Biol Leiden, Sect Evolutionary Morphol, POB 9516, NL-2300 RA Leiden, Netherlands.
EM h.thomassen@biology.leidenuniv.nl
CR Bradbury JW, 1998, PRINCIPLES ANIMAL CO
   Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x
   Dryden I. L., 1998, STAT SHAPE ANAL, P83
   FENTON M B, 1975, Biotropica, V7, P1, DOI 10.2307/2989792
   FULLARD JH, 1993, BIOTROPICA, V25, P334, DOI 10.2307/2388791
   Gaudin E P, 1968, Acta Otolaryngol, V65, P316, DOI 10.3109/00016486809120971
   GRIFFIN DR, 1953, P NATL ACAD SCI USA, V39, P884, DOI 10.1073/pnas.39.8.884
   GRIFFIN DR, 1982, BEHAV ECOL SOCIOBIOL, V10, P119, DOI 10.1007/BF00300171
   GRIFFIN DR, 1970, BIOL BULL, V139, P495, DOI 10.2307/1540368
   Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073
   KONISHI M, 1979, SCIENCE, V204, P425, DOI 10.1126/science.441731
   KUHNE R, 1985, FORM FUNCTION BIRDS, V3, P227
   MEDWAY L, 1967, ANIM BEHAV, V15, P416, DOI 10.1016/0003-3472(67)90038-3
   NORBERG RA, 1978, PHILOS T ROY SOC B, V282, P325, DOI 10.1098/rstb.1978.0014
   Pohlman AG, 1921, J MORPHOL, V35, P229
   Price JJ, 2004, J AVIAN BIOL, V35, P135
   PYE JD, 1980, ANIMAL SONAR SYSTEMS
   RELKIN EM, 1988, PHYSL EAR
   Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699
   SAUNDERS JC, 2000, COMP HEARING BIRDS R
   SAUNDERS JC, 1985, HEARING RES, V18, P253, DOI 10.1016/0378-5955(85)90042-5
   SCHWARTZKOPFF J, 1952, Z VERGL PHYSIOL, V34, P46, DOI 10.1007/BF00298942
   SCHWARTZKOPFF J, 1957, Z MORPHOLOGIE OKOLOG, V45, P365
   Smyth D. M., 1979, THESIS J COOK U N QU
   SMYTH DM, 1983, IBIS, V125, P339, DOI 10.1111/j.1474-919X.1983.tb03119.x
   Starck J.M., 1992, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V122, P287
   SUTHERS RA, 1985, J COMP PHYSIOL A, V156, P243, DOI 10.1007/BF00610867
   SUTHERS RA, 1982, J COMP PHYSIOL, V148, P457
   Thomassen HA, 2006, BIOL J LINN SOC, V88, P631, DOI 10.1111/j.1095-8312.2006.00648.x
   Thomassen HA, 2005, MOL PHYLOGENET EVOL, V37, P264, DOI 10.1016/j.ympev.2005.05.010
   Thomassen HA, 2004, IBIS, V146, P173, DOI 10.1111/j.1474-919X.2004.00237.x
NR 31
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 25
EP 37
DI 10.1016/j.heares.2006.11.013
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000003
PM 17229537
ER

PT J
AU Stainsby, TH
   Moore, BCJ
AF Stainsby, Thomas H.
   Moore, Brian C. J.
TI The effects of hearing loss on growth-of-masking functions for
   sinusoidal and complex-tone maskers with differing phase spectra
SO HEARING RESEARCH
LA English
DT Article
DE growth-of-masking (GOM) functions; forward masking; compression;
   suppression; sensorineural hearing loss; linear temporal integrator
ID BASILAR-MEMBRANE NONLINEARITY; TEMPORAL INTEGRATION; IMPAIRED SUBJECTS;
   NORMALLY HEARING; COMPONENT PHASE; AUDITORY-SYSTEM; TUNING CURVES; DEAD
   REGIONS; SIGNAL DELAY; COMPRESSION
AB Growth-of-masking (GOM) functions in forward masking (0-ms masker-signal delay) were measured for normally hearing (NH) and hearing-impaired (HI) listeners using as maskers complex tones (harmonies 1-40, 100-Hz fundamental frequency) with components starting in cosine or random phase, and on-frequency sinusoids. The signal was a 20-ms sinusoid, usually with a frequency of I or 2 kHz. It is argued that differences in the slopes of the GOM functions for the random- and cosine-phase maskers provide a measure of the strength of compression in the cochlea. For the NH listeners and some of the HI listeners, the slopes were significantly greater for the random-than for the cosine-phase maskers, and for these listeners the slopes for the complex-tone maskers were less than for the sinusoidal maskers. For the remaining HI listeners, the slopes of the GOM functions were similar for all masker types. It is argued that these listeners had almost complete loss of cochlear compression. The GOM functions for the sinusoidal maskers had slopes between 0.45 and 0.78 and were typically in the range 0.6-0.7. The finding of slopes below one for listeners in whom cochlear compression was probably absent is not consistent with linear-integrator models of forward masking. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Stainsby, TH (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM ths22@cam.ac.uk
RI Moore, Brian/I-5541-2012
CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959
   BACON SP, 1985, J ACOUST SOC AM, V78, P1220, DOI 10.1121/1.392890
   BILSEN FA, 1973, ACUSTICA, V28, P60
   Brosch M, 1997, J NEUROPHYSIOL, V77, P923
   Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324
   Cheatham MA, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P1, DOI 10.1007/0-387-27045-0_1
   FESTEN JM, 1977, PSYCHOPHYSICS PHYSL
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   Gockel H, 2003, J ACOUST SOC AM, V114, P978, DOI 10.1121/1.1593065
   JESTEADT W, 1982, J ACOUST SOC AM, V71, P950, DOI 10.1121/1.387576
   KIDD G, 1984, J ACOUST SOC AM, V75, P937, DOI 10.1121/1.390558
   Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Meddis R, 2005, J ACOUST SOC AM, V117, P3787, DOI 10.1121/1.1893426
   Moore B., 1998, COCHLEAR HEARING LOS
   Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087
   MOORE BCJ, 1983, J ACOUST SOC AM, V73, P1249, DOI 10.1121/1.389273
   Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN
   Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89
   Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552
   Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108
   MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Moore BCJ, 2004, HEARING RES, V192, P90, DOI 10.1016/j.heares.2004.02.001
   Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133
   MUNSON WA, 1947, J ACOUST SOC AM, V19, P584, DOI 10.1121/1.1916525
   MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586
   Oxenham AJ, 2001, J ACOUST SOC AM, V109, P732, DOI 10.1121/1.1336501
   Oxenham AJ, 1997, MODELING SENSORINEURAL HEARING LOSS, P273
   Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3676, DOI 10.1121/1.418328
   OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376
   Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
   OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0
   PENNER MJ, 1980, J ACOUST SOC AM, V67, P617, DOI 10.1121/1.383885
   PENNER MJ, 1980, J ACOUST SOC AM, V67, P608, DOI 10.1121/1.383938
   PENNER MJ, 1972, J ACOUST SOC AM, V52, P1661, DOI 10.1121/1.1913300
   PENNER MJ, 1978, J ACOUST SOC AM, V63, P195, DOI 10.1121/1.381712
   Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294
   Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348
   Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898
   RUGGERO MA, 1994, AUDIOLOGY, V33, P131
   SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260
   WIDIN GP, 1979, J ACOUST SOC AM, V66, P388, DOI 10.1121/1.383673
   ZWISLOCKI J, 1959, J ACOUST SOC AM, V31, P9, DOI 10.1121/1.1907619
   ZWISLOCK.JJ, 1969, J ACOUST SOC AM, V46, P431, DOI 10.1121/1.1911708
   ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276
NR 48
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 38
EP 49
DI 10.1016/j.heares.2006.12.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000004
PM 17293068
ER

PT J
AU Harding, GW
   Bohne, BA
AF Harding, Gary W.
   Bohne, Barbara A.
TI Distribution of focal lesions in the chinchilla organ of Corti following
   exposure to a 4-kHz or a 0.5-kHz octave band of noise
SO HEARING RESEARCH
LA English
DT Article
DE noise; organ of Corti; focal lesions; chinchilla
ID THRESHOLD SHIFTS; RETICULAR LAMINA; FREE-RADICALS; COCHLEA; DAMAGE;
   DEGENERATION; VIBRATION; TEMPORARY; HEARING; LEVEL
AB An octave band of noise (OBN) delivers fairly uniform acoustic energy over a specific range of frequencies. Above and below this range, energy is at least 30 dB SPL less than that within the OBN. When the ear is exposed to an OBN, hair-cell loss often occurs outside the octave band. The frequency location of hair-cell loss is evident when the percent distance from the apex of focal lesions is analyzed. Focal lesions involve substantial loss of outer hair cells (OHCs) only, inner hair cells (IHCs) only, or both OHCs and IHCs (i.e., combined lesions) in a specific region of the organ of Corti (OC). Data sets were assembled from our permanent collection of noise-exposed chinchillas as follows: (1) the sum of exposure duration and recovery time was less than or equal to I I d; (2) the exposure level was less than or equal to 108 dB SPL; and (3) focal lesions were less than 1.5 turn in length. The data sets included a variety of exposures ranging from high-level, short duration to moderate-level, moderate duration. The center of each focal lesion was expressed as percent distance from the OC apex. Means, standard deviations and medians were calculated for focal-lesion size resulting from exposure to a 4-kHz or a 0.5-kHz OBN. Histograms were then constructed from the percent-location data using 2.0% bins. For the 4-kHz OBN, 5% of the lesions were in the apical half of the OC and 95% were in the basal half. The mean lesion size was 1.68% of total OC length for OHC and combined focal lesions and 0.42% for IHC focal lesions. Most OHC and combined lesions occurred in the 5-7-kHz region, at and just above the upper edge of the OBN. Clusters of lesions were also found around 8 and 12 kHz. A cluster was present at and just below the lower edge of the OBN, as well as another in the 1.5-kHz region. For the 0.5-kHz OBN, 34% of the lesions were in the apical half of the OC and 66% were in the basal half. The mean lesion size was 0.93% for OHC and combined focal lesions and 0.32% for IHC focal lesions. OHC and combined focal-lesion distribution showed clusters at 0.25, 0.75 and 1.5 kHz in the apical half of the OC. In the basal half, the distribution of focal lesions was similar to that seen with the 4-kHz OBN (r = 0.54). With both OBNs, most IHC focal lesions occurred in the basal half of the OC. High resolution power spectrum analysis of each OBN and non-invasive tests for harmonics and distortion products in a chinchilla were performed to look for exposure energy above and below the OBN. No energy was found that could explain the OC damage. (c) 2007 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA.
EM hardingg@ent.wustl.edu
RI Bohne, Barbara/A-9113-2008
OI Bohne, Barbara/0000-0003-3874-7620
CR *AC SOC AM, 2006, ETH PRINC AC SOC AM
   Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X
   Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283
   Bohne BA, 2000, AM J OTOL, V21, P505
   BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9
   BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9
   BOHNE BA, 1972, LARYNGOSCOPE, V82, P1
   BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8
   BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711
   Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1
   CARDER HM, 1972, J SPEECH HEAR RES, V15, P603
   CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1
   CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906
   ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688
   Fried M P, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P285
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961
   Howard MA, 2003, J ACOUST SOC AM, V114, P279, DOI 10.1121/1.1577555
   JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294
   LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
   MAJNO G, 1996, CELLS TISSUES DIS PR, P182
   MCGILL TJI, 1976, LARYNGOSCOPE, V86, P1293, DOI 10.1288/00005537-197609000-00001
   MILLER JD, 1974, J ACOUST SOC AM, V56, P729, DOI 10.1121/1.1903322
   MILLS JH, 1973, J SPEECH HEAR RES, V16, P426
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2
   RHODE WS, 1980, J ACOUST SOC AM, V67, P1696, DOI 10.1121/1.384296
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   TAYLOR W, 1965, J ACOUST SOC AM, V38, P113, DOI 10.1121/1.1909580
   VONBISMARCK G, 1967, THESIS MIT CAMBRIDGE
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104
NR 34
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 50
EP 59
DI 10.1016/j.heares.2006.12.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000005
PM 17291699
ER

PT J
AU Coco, A
   Epp, SB
   Fallon, JB
   Xu, J
   Millard, RE
   Shepherd, RK
AF Coco, Anne
   Epp, Stephanie B.
   Fallon, James B.
   Xu, Jin
   Millard, Rodney E.
   Shepherd, Robert K.
TI Does cochlear implantation and electrical stimulation affect residual
   hair cells and spiral ganglion neurons?
SO HEARING RESEARCH
LA English
DT Article
DE neural degeneration; auditory nerve; deafness; electrical stimulation;
   cochlear implant; electric acoustic stimulation
ID SENSORINEURAL HEARING-LOSS; DEAFENED GUINEA-PIG; AUDITORY-NERVE;
   ACOUSTIC STIMULATION; INNER-EAR; SURVIVAL; CATS; DEPOLARIZATION;
   DEGENERATION; PATHOLOGY
AB Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n = 4) or severe (n = 4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (P < 0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. (c) 2006 Elsevier B.V. All rights reserved.
C1 Bion Ear Inst, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
   Royal Victorian Eye & Ear Hosp, Melbourne, Vic 3002, Australia.
RP Shepherd, RK (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM rshepherd@bionicear.org
RI Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Fallon,
   James/B-6383-2014
CR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012
   Black R C, 1983, Acta Otolaryngol Suppl, V399, P5
   BOGGESS WJ, 1989, LARYNGOSCOPE, V99, P1002
   BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8
   Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P40
   ELVERLAND HH, 1980, ACTA OTO-LARYNGOL, V90, P360, DOI 10.3109/00016488009131737
   Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244
   Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012
   GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909
   Hansen MR, 2001, J NEUROSCI, V21, P2256
   Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
   HARTMANN R, 1984, ADV AUDIOL, V1, P18
   HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311
   Hegarty JL, 1997, J NEUROSCI, V17, P1959
   Huang CQ, 1999, IEEE T BIO-MED ENG, V46, P461, DOI 10.1109/10.752943
   HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O
   Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0
   Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023
   LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
   Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
   LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J
   LEAKE PA, 1995, HEARING RES, V82, P65
   Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836
   MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593
   Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4
   Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X
   Moxon E. C., 1971, NEURAL MECH RESPONSE
   NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
   NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y
   RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U
   RIZER FM, 1988, OTOLARYNG HEAD NECK, V98, P203
   Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676
   SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377
   SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7
   Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25
   Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
   Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564
   Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19
   Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1
   SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7
   Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76
   Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004
   Tan J, 2006, AM J PATHOL, V169, P528, DOI 10.2353/ajpath.2006.060122
   TERAYAMA Y, 1977, ACTA OTO-LARYNGOL, V83, P291, DOI 10.3109/00016487709128848
   VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
   von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
   WALSH EJ, 1986, J ACOUST SOC AM, V79, P725, DOI 10.1121/1.393462
   White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X
   Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
   YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
NR 52
TC 53
Z9 56
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 60
EP 70
DI 10.1016/j.heares.2006.12.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000006
PM 17258411
ER

PT J
AU Blauwkamp, MN
   Beyer, LA
   Kabara, L
   Takemura, K
   Buck, T
   King, WM
   Dolan, DF
   Barald, KF
   Raphael, Y
   Koenig, RJ
AF Blauwkamp, Marsha N.
   Beyer, Lisa A.
   Kabara, Lisa
   Takemura, Keiji
   Buck, Timothy
   King, W. M.
   Dolan, David F.
   Barald, Kate F.
   Raphael, Yehoash
   Koenig, Ronald J.
TI The role of bone morphogenetic protein 4 in inner ear development and
   function
SO HEARING RESEARCH
LA English
DT Article
DE hair cells; neuronal processes; stereocilia; semicircular canals; mouse;
   vestibulo-collic reflex (VCR); auditory brainstem response (ABR)
ID BONE-MORPHOGENETIC PROTEIN-4; HAIR-CELL STEREOCILIA; SENSORY EPITHELIA;
   NERVOUS-SYSTEM; DEAFNESS DFNB3; MUTANT MICE; MYOSIN XV; NULL MICE;
   MOUSE; GENERATION
AB Bone Morphogenetic Protein 4 (BMP4) is a member of the TGF-beta superfamily and is known to be important for the normal development of many tissues and organs, including the inner ear. Bmp4 homozygous null mice die as embryos, but Bmp4 heterozygous null (Bmp4(+'-)) mice are viable and some adults exhibit a circling phenotype, suggestive of an inner ear defect. To understand the role of BMP4 in inner ear development and function, we have begun to study C57BL/6 Bmp4(+/-) mice. Quantitative testing of the vestibulocollic reflex, which helps maintain head stability, demonstrated that Bmp4(+/-) mice that exhibit circling behavior have a poor response in the yaw axis, consistent with semicircular canal dysfunction. Although the hair cells of the ampullae were grossly normal, the stereocilia were greatly reduced in number. Auditory brainstem responses showed that Bmp4(+/-) mice have elevated hearing thresholds and immunohistochemical staining demonstrated decreased numbers of neuronal processes in the organ of Corti. Thus Bmp4(+/-) mice have structural and functional deficits in the inner ear. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Mol & Cellular Biol Program, Ann Arbor, MI 48109 USA.
   Univ Michigan, Dept Internal Med, Div Endocrinol Diabet & Metab, Ann Arbor, MI 48109 USA.
   Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA.
   Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.
   Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48106 USA.
RP Blauwkamp, MN (reprint author), Univ Michigan, Mol & Cellular Biol Program, 2966 Taubman Med Lib, Ann Arbor, MI 48109 USA.
EM mousman@med.umich.edu; lbeyer@umich.edu; lkabara@umich.edu;
   takemura@umich.edu; bucktimo@umich.edu; wmking@umich.edu;
   ddolan@umich.edu; kfbarald@umich.edu; yoash@umich.edu; rkoenig@umich.edu
CR Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729
   Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339
   Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
   Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443
   Bianchi LM, 1998, EXP NEUROL, V150, P98, DOI 10.1006/exnr.1997.6774
   Chang W, 2002, DEV BIOL, V251, P380, DOI 10.1006/dbio.2002.0822
   Chang WS, 1999, DEV BIOL, V216, P369, DOI 10.1006/dbio.1999.9457
   De Robertis EM, 2004, ANNU REV CELL DEV BI, V20, P285, DOI 10.1146/annurev.cellbio.20.011403.154124
   DUDLEY AT, 1995, GENE DEV, V9, P2795, DOI 10.1101/gad.9.22.2795
   Dunn NR, 1997, DEV BIOL, V188, P235, DOI 10.1006/dbio.1997.8664
   Gerlach LM, 2000, DEVELOPMENT, V127, P45
   Gerlach-Bank LM, 2004, DEV DYNAM, V229, P219, DOI 10.1002/dvdy.10414
   Goldstein AM, 2005, MECH DEVELOP, V122, P821, DOI 10.1016/j.mod.2005.03.003
   Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
   Hogan B L, 1996, Harvey Lect, V92, P83
   Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9
   JONES CM, 1991, DEVELOPMENT, V111, P531
   Jones JM, 2006, J NEUROSCI, V26, P550, DOI 10.1523/JNEUROSCI.3859-05.2006
   Karolyi IJ, 2003, HUM MOL GENET, V12, P2797, DOI 10.1093/hmg/ddg308
   Kim WY, 2001, DEVELOPMENT, V128, P417
   Li HW, 2005, BMC DEV BIOL, V5, DOI 10.1186/1471-213X-5-16
   Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976
   Liu AM, 2005, NAT REV NEUROSCI, V6, P945, DOI 10.1038/nrn1805
   LUO G, 1995, GENE DEV, V9, P2808, DOI 10.1101/gad.9.22.2808
   Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017
   Morsli H, 1998, J NEUROSCI, V18, P3327
   Nakayama T, 2000, CELL MOL LIFE SCI, V57, P943, DOI 10.1007/PL00000736
   Oh SH, 1996, J NEUROSCI, V16, P6463
   Oxburgh L, 2005, DEV BIOL, V286, P637, DOI 10.1016/j.ydbio.2005.08.024
   Pujades C, 2006, DEV BIOL, V292, P55, DOI 10.1016/j.ydbio.2006.01.001
   Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067
   Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1
   Salam AA, 2000, AM J HUM GENET, V66, P1984, DOI 10.1086/302931
   Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
   Takemura K, 2005, EXP BRAIN RES, V167, P103, DOI 10.1007/s00221-005-0030-1
   Thompson DL, 2003, MOL CELL BIOL, V23, P2277, DOI 10.1128/MCB.23.7.2277-2286.2003
   Tiveron MC, 2003, DEV BIOL, V260, P46, DOI 10.1016/S0012-1606(03)00213-6
   Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447
   Wijgerde M, 2005, DEV BIOL, V286, P149, DOI 10.1016/j.ydbio.2005.07.016
   WINNIER G, 1995, GENE DEV, V9, P2105, DOI 10.1101/gad.9.17.2105
   Wyatt S, 1998, Brain Res Mol Brain Res, V55, P254
   Zhang HB, 1996, DEVELOPMENT, V122, P2977
   Zheng LL, 2000, CELL, V102, P377, DOI 10.1016/S0092-8674(00)00042-8
NR 43
TC 15
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 71
EP 79
DI 10.1016/j.heares.2006.12.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000007
PM 17275231
ER

PT J
AU Kulesza, RJ
AF Kulesza, Randy J., Jr.
TI Cyto architecture of the human superior olivary complex: Medial and
   lateral superior olive
SO HEARING RESEARCH
LA English
DT Article
DE auditory; hearing; stereology; brainstem
ID INTERAURAL TIME SENSITIVITY; CALCIUM-BINDING PROTEINS; AUDITORY
   BRAIN-STEM; INFERIOR COLLICULUS; SOUND LOCALIZATION; COCHLEAR NUCLEUS;
   TRAPEZOID BODY; FINE-STRUCTURE; TONAL STIMULI; GUINEA-PIG
AB The superior olivary complex is a group of brainstem nuclei involved in hearing and includes the medial superior olive (MSO) and the lateral superior olive (LSO), surrounded by periolivary cell groups. The structure and functional roles of the MSO and LSO have been the subject of many investigations in laboratory animals and it has largely been assumed that these findings are directly transferable to humans. However, little is known conclusively regarding the detailed organization of the human superior olivary complex. The goal of this study is to provide a detailed analysis of the cytoarchitecture of the human MSO and LSO. Results from the examination of eight human brainstems confirm the existence of a conserved MSO and provide evidence of a prominent and highly ordered LSO. Unbiased stereological estimates of neuronal number indicate approximately 15,500 neurons in the MSO and 5600 neurons in the LSO. Additionally, a three-dimensional model of the MSO and LSO was constructed and provides evidence that the human LSO is composed of medial and lateral segments. Finally, an analysis of neuronal morphology, in Nisst stained and Golgi impregnated tissue, provides evidence of multiple neuronal classes within each nucleus and further that these neurons demonstrate a precise geometric arrangement (depending on the nucleus) that is suggestive of isofrequency laminae. (c) 2006 Elsevier B.V. All rights reserved.
C1 Lake Erie Coll Osteopath Med, Auditory Res Ctr, Erie, PA 16509 USA.
RP Kulesza, RJ (reprint author), Lake Erie Coll Osteopath Med, Auditory Res Ctr, 1858 W Grandview Blvd, Erie, PA 16509 USA.
EM rkulesza@lecom.edu
CR ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108
   ASCHOFF A, 1988, EXP BRAIN RES, V71, P252
   Bazwinsky I, 2005, J ANAT, V207, P745, DOI 10.1111/j.1469-7580.2005.00491.x
   Bazwinsky R, 2003, J COMP NEUROL, V456, P292, DOI 10.1002/cne.10526
   CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308
   CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108
   FRIEDLAND DR, 2005, J NEUROSCI METH, V150, P90
   GALAMBOS R, 1959, AM J PHYSIOL, V197, P527
   GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210
   Glendenning KK, 1998, BRAIN BEHAV EVOLUT, V51, P59, DOI 10.1159/000006530
   GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4
   GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
   Gundersen H. J., 1987, J MICROSC-OXFORD, V147, P3
   GUNDERSEN HJG, 1988, APMIS, V96, P857
   HARRISON JM, 1974, FED PROC, V33, P1901
   Heffner R. S., 1990, COMP PERCEPTION, VI, P285
   INIGUEZ C, 1985, J NEUROSCI METH, V13, P77, DOI 10.1016/0165-0270(85)90045-7
   IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105
   KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643
   Konigsmark BW, 1970, CONT RES METHODS NEU, P315
   Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X
   KUWABARA N, 1991, J COMP NEUROL, V314, P684, DOI 10.1002/cne.903140405
   LINDSEY BG, 1975, J COMP NEUROL, V160, P81, DOI 10.1002/cne.901600106
   MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4
   Moore JK, 2000, MICROSC RES TECHNIQ, V51, P403, DOI 10.1002/1097-0029(20001115)51:4<403::AID-JEMT8>3.0.CO;2-Q
   MOORE TL, 1971, AM J DIG DIS, V16, P1, DOI 10.1007/BF02233781
   Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J
   Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3
   RICHTER EA, 1983, AM J ANAT, V168, P157, DOI 10.1002/aja.1001680205
   SANES DH, 1990, J NEUROSCI, V10, P3494
   SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403
   Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402
   SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409
   Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117
   SCHWARTZ IR, 1977, NEUROSCIENCE, V2, P81, DOI 10.1016/0306-4522(77)90070-7
   SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
   SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302
   SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668
   STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303
   STROMINGER NL, 1976, J COMP NEUROL, V170, P485, DOI 10.1002/cne.901700407
   Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X
   Thompson CK, 2005, J COMP NEUROL, V481, P276, DOI 10.1002/cne.20381
   TSUCHITA.C, 1966, J NEUROPHYSIOL, V29, P684
   van Adel BA, 1998, BEHAV NEUROSCI, V112, P432, DOI 10.1037/0735-7044.112.2.432
   Warr W. B., 1982, CONTRIB SENS PHYSIOL, V7, P1
   YIN TCT, 1990, J COMP NEUROL, V295, P438, DOI 10.1002/cne.902950308
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
   ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103
NR 50
TC 25
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 80
EP 90
DI 10.1016/j.heares.2006.12.006
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000008
PM 17250984
ER

PT J
AU Junius, D
   Riedel, H
   Kollmeier, B
AF Junius, Dirk
   Riedel, Helmut
   Kollmeier, Birger
TI The influence of externalization and spatial cues on the generation of
   auditory brainstem responses and middle latency responses
SO HEARING RESEARCH
LA English
DT Article
DE auditory brainstem response; middle latency response; binaural
   difference potential; interaural level difference; interaural time
   difference; virtual acoustics; externalization
ID INTERAURAL TIME DIFFERENCES; BINAURAL INTERACTION COMPONENT;
   EVOKED-POTENTIALS; SOUND LOCALIZATION; CORTICAL MECHANISMS; ELEVATION
   CUES; LATERALIZATION; CORTEX; INTENSITY; FREQUENCY
AB The effect of externalization and spatial cues on the generation of auditory brainstem responses (ABRs) and middle latency responses (MLRs) was investigated in this study. Most previous evoked potential studies used click stimuli with variations of interaural time (ITDs) and interaural level differences (ILDs) which merely led to a lateralization of sound inside the subject's head. In contrast, in the present study potentials were elicited by a virtual acoustics stimulus paradigm with 'natural' spatial cues and compared to responses to a diotic, non-externalized reference stimulus. Spatial sound directions were situated on the horizontal plane (corresponding to variations in ITD, ILD, and spectral cues) or the midsagittal plane (variation of spectral cues only). An optimized chirp was used which had proven to be advantageous over the click since it compensates for basilar membrane dispersion. ABRs and MLRs were recorded from 32 scalp electrodes and both binaural potentials (B) and binaural difference potentials (BD, i.e., the difference between binaural and summed monaural responses) were investigated. The amplitudes of B and BD to spatial stimuli were not higher than those to the diotic reference. ABR amplitudes decreased and latencies increased with increasing laterality of the sound source. A rotating dipole source exhibited characteristic patterns in dependence on the stimulus laterality. For the MLR data, stimulus laterality was reflected in the latency of component N.. In addition, dipole source analysis revealed a systematic magnitude increase for the dipole contralateral to the azimuthal position of the sound source. For the variation of elevation, the right dipole source showed a stronger activation for stimuli away from the horizontal plane. The results indicate that at the level of the brainstem and primary auditory cortex binaural interaction is mostly affected by interaural cues (ITD, ILD). Potentials evoked by stimuli with natural combinations of ITD, ILD, and spectral cues were not larger than those elicited by diotic chirps. (c) 2007 Elsevier B.V. All rights reserved.
C1 Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
RP Junius, D (reprint author), Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
EM djunius@uni-oldenburg.de
CR BLAUERT J, 1997, RAUMLICHES HOREN, V2
   Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825
   CUFFIN BN, 1979, ELECTROEN CLIN NEURO, V47, P132
   Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438
   DEIBER MP, 1989, NEUROLOGY, V39, P806
   ERWIN R, 1986, ELECTROEN CLIN NEURO, V65, P383, DOI 10.1016/0168-5597(86)90017-1
   Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523
   FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802
   GARDNER WG, 1995, J ACOUST SOC AM, V97, P3907, DOI 10.1121/1.412407
   GENUIT K, 1984, THESIS RWTH AACHEN
   GERULL G, 1984, AUDIOLOGY, V23, P265
   Granzow M., 2001, Zeitschrift fur Audiologie, V40
   Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784
   HOTH S, 1986, AUDIOLOGY, V25, P248
   ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6
   Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1
   JEWETT DL, 1987, ELECTROEN CLIN NEURO, V68, P323, DOI 10.1016/0168-5597(87)90012-8
   JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517
   JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K
   Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397
   LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U
   MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z
   MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1
   MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470
   MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031
   Mills A. W., 1972, F MODERN AUDITORY TH, V2, P301
   OTTEN J, 2001, THESIS C VONOSSIETZK
   Palomaki KJ, 2005, COGNITIVE BRAIN RES, V24, P364, DOI 10.1016/j.cogbrainres.2005.02.013
   Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7
   PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2
   Polyakov A, 2003, INT J AUDIOL, V42, P140, DOI 10.3109/14992020309090423
   Polyakov A, 2003, EAR HEARING, V24, P143, DOI 10.1097/01.AUD.0000058109.44006.47
   Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3
   Pratt H, 1997, HEARING RES, V108, P1, DOI 10.1016/S0378-5955(97)00033-6
   PRATT H, 1983, ELECTROEN CLIN NEURO, V56, P682, DOI 10.1016/0013-4694(83)90036-6
   REALE RA, 1990, J NEUROPHYSIOL, V64, P1247
   Riedel H, 2002, HEARING RES, V169, P85, DOI 10.1016/S0378-5955(02)00342-8
   Riedel H., 2001, Zeitschrift fur Audiologie, V40
   Riedel Helmut, 2003, Z Med Phys, V13, P75
   Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8
   Rupp A, 2002, HEARING RES, V174, P19, DOI 10.1016/S0378-5955(02)00614-7
   SAMS M, 1993, HEARING RES, V67, P89, DOI 10.1016/0378-5955(93)90236-T
   SCHERG M, 1991, AKUSTISCHE EVOZIERTE
   Scherg M., 1990, ADV AUDIOL, V6, P40
   Sharbrough F., 1991, J CLIN NEUROPHYSIOL, V8, P200
   Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805
   Wightman F, 2005, ACTA ACUST UNITED AC, V91, P429
   Woodworth R. S., 1938, EXPT PSYCHOL
   WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572
NR 51
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 91
EP 104
DI 10.1016/j.heares.2006.12.008
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000009
PM 17270375
ER

PT J
AU Stenfelt, S
AF Stenfelt, Stefan
TI Simultaneous cancellation of air and bone conduction tones at two
   frequencies: Extension of the famous experiment by von Bekesy
SO HEARING RESEARCH
LA English
DT Article
DE bone conduction; cancellation experiment; basilar membrane stimulation
ID SOUND
AB Cancellation experiments between air conduction (AC) and bone conduction (BC) tones were conducted at two frequencies (0.7 and 1.1 kHz) and three levels (40, 50, and 60 dB HL) in three subjects. The tests were divided into three categories: (1) single tone cancellation, (2) simultaneous cancellation of two tones, and (3) cancellation of one tone while a disturbing tone was present. In total, each subject performed twelve cancellation tasks. The hypothesis is that the AC and BC sound transmission behaves as linear systems and they both excite the basilar membrane in the cochlea similarly. The cancellation results are presented as the deviations from this hypothesis; except for a few larger deviations, the intrasubject deviations were generally less than 0.5 dB and 5 degrees. The results from all three test categories indicate that the hypothesis of linear transmission systems and similarity of cochlear stimulation by AC and BC holds. However, due to the subjects' limited ability to conduct optimal cancellation and to imperfect methodology and equipment, the small deviations from perfectly linear cancellation that were observed do neither conclusively prove nor refute the possibility of small differences in the cochlear processing of AC and BC sound. Nonetheless, it is clear that if such differences in the processing of the two stimuli exist, they are small in magnitude. (c) 2006 Elsevier B.V. All rights reserved.
C1 Linkoping Univ Hosp, Div Tech Audiol, Dept Neurosci & Locomot, SE-58185 Linkoping, Sweden.
RP Stenfelt, S (reprint author), Linkoping Univ Hosp, Div Tech Audiol, Dept Neurosci & Locomot, SE-58185 Linkoping, Sweden.
EM stefan.stenfelt@inr.liu.se
RI Stenfelt, Stefan/J-9363-2013
OI Stenfelt, Stefan/0000-0003-3350-8997
CR [Anonymous], 1994, 3893 ISO
   [Anonymous], 1998, 3891 ISO
   Beattie RC, 1998, SCAND AUDIOL, V27, P120, DOI 10.1080/010503998420360
   Hakansson B, 1996, J ACOUST SOC AM, V99, P2239
   Hakansson BEV, 2003, J ACOUST SOC AM, V113, P818, DOI 10.1121/1.1536633
   JAHN AF, 1982, AM J OTOLARYNG, V3, P133, DOI 10.1016/S0196-0709(82)80044-6
   KAPTEYN TS, 1983, J ACOUST SOC AM, V74, P1297, DOI 10.1121/1.390048
   KAPTEYN TS, 1980, ARCH OTO-RHINO-LARYN, V228, P199, DOI 10.1007/BF00454228
   KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081
   Lowy K, 1942, J ACOUST SOC AM, V14, P156, DOI 10.1121/1.1916212
   Purcell D, 1998, EAR HEARING, V19, P362, DOI 10.1097/00003446-199810000-00003
   Rossi G, 1988, Scand Audiol Suppl, V29, P1
   Stenfelt S, 2002, HEARING RES, V167, P1, DOI 10.1016/S0378-5955(01)00407-5
   Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606
   Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
   TASAKI I, 1952, J ACOUST SOC AM, V24, P502, DOI 10.1121/1.1906928
   von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111
   WEVER EG, 1952, ANN OTO RHINOL LARYN, V61, P824
   Wever EG, 1954, PHYSL ACOUSTICS
NR 19
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 105
EP 116
DI 10.1016/j.heares.2006.12.009
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000010
PM 17270374
ER

PT J
AU Sussman, E
   Wong, R
   Horvath, J
   Winkler, I
   Wang, W
AF Sussman, E.
   Wong, R.
   Horvath, J.
   Winkler, I.
   Wang, W.
TI The development of the perceptual organization of sound by frequency
   separation in 5-11-year-old children
SO HEARING RESEARCH
LA English
DT Article
DE auditory stream segregation; frequency discrimination; children;
   development; perception
ID AUDITORY STREAM SEGREGATION; TONE SEQUENCES; SCENE ANALYSIS; INFANTS;
   CORTEX; ADULTS; DISCRIMINATION; SENSITIVITY; INTEGRATION; THRESHOLDS
AB The analysis of the auditory scene begins from the moment we hear sounds, making it possible for the infant to distinguish the mother's voice from other sounds in the environment. The purpose of the study was to determine, in two experiments, whether the frequency separation threshold, at which the perception of a mixture of sounds turns from being perceived as one stream to two streams, differs between two groups of school-aged children (ages 5-8 and 9-11 years) and adults. The results show a developmental course for the perception of auditory streams that is not simply dependent upon frequency discrimination. This suggests that maturation of the stream segregation process follows a longer developmental course than maturation of simple feature discrimination. The data indicate that the ability to hear distinct sound streams in the environment takes time to develop and becomes sharpened with experience and maturity. (c) 2007 Elsevier B.V. All rights reserved.
C1 Albert Einstein Coll Med, Dept Neurosci, Kennedy Ctr, Bronx, NY 10461 USA.
   Albert Einstein Coll Med, Dept Otorhinolaryngol Head & Neck Surg, Kennedy Ctr, Bronx, NY 10461 USA.
   Hungarian Acad Sci, Inst Psychol, Budapest, Hungary.
   Univ Helsinki, Cognit Brain Res Unit, Helsinki, Finland.
   CUNY, Grad Ctr, Dept Speech & Hearing Sci, New York, NY 10021 USA.
RP Sussman, E (reprint author), Albert Einstein Coll Med, Dept Neurosci, Kennedy Ctr, Room 925,1410 Pelham Pkwy S, Bronx, NY 10461 USA.
EM esussman@aecom.yu.edu
RI Winkler, Istvan/A-7659-2008; Horvath, Janos/B-6477-2012
OI Winkler, Istvan/0000-0002-3344-6151; Horvath, Janos/0000-0003-0147-4518
CR Allen P, 1996, J ACOUST SOC AM, V100, P1043, DOI 10.1121/1.416290
   Berg KM, 2000, PERCEPT PSYCHOPHYS, V62, P868, DOI 10.3758/BF03206928
   BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380
   Bregman AS., 1990, AUDITORY SCENE ANAL
   Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115
   CLIFTON RK, 1981, CHILD DEV, V52, P833, DOI 10.1111/j.1467-8624.1981.tb03121.x
   DEMANY L, 1982, INFANT BEHAV DEV, V5, P261, DOI 10.1016/S0163-6383(82)80036-2
   Fassbender C., 1993, AUDITORY GROUPING SE
   Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015
   Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0
   Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3
   McAdams S, 1997, J ACOUST SOC AM, V102, P2945, DOI 10.1121/1.420349
   Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039
   MORRONGIELLO BA, 1987, J EXP CHILD PSYCHOL, V44, P413, DOI 10.1016/0022-0965(87)90043-9
   MUIR D, 1979, CHILD DEV, V50, P31
   Nelken I, 2003, BIOL CYBERN, V89, P397, DOI 10.1007/s00422-003-0445-3
   Newman RS, 1996, PERCEPT PSYCHOPHYS, V58, P1145, DOI 10.3758/BF03207548
   NOZZA RJ, 1984, J SPEECH HEAR RES, V27, P613
   Rose MM, 2005, HEARING RES, V204, P16, DOI 10.1016/j.heares.2004.12.004
   RUBEN RJ, 1992, ACTA OTO-LARYNGOL, V112, P192
   SCHNEIDER W, 1988, BEHAV RES METH INSTR, V20, P206, DOI 10.3758/BF03203833
   SINNOTT JM, 1983, INFANT BEHAV DEV, V6, P3, DOI 10.1016/S0163-6383(83)80003-4
   Sussman E, 2001, HEARING RES, V153, P108, DOI 10.1016/S0378-5955(00)00261-6
   Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312]
   THOMPSON NC, 1999, J SPEECH HEAR RES, V42, P10681
   Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122
   TREHUB SE, 1980, J EXP CHILD PSYCHOL, V29, P282, DOI 10.1016/0022-0965(80)90020-X
   van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
   VANNOORDEN LPAS, 1977, J ACOUST SOC AM, V61, P1041, DOI 10.1121/1.381388
   WERNER LA, 1992, CHILD DEV, V63, P260, DOI 10.1111/j.1467-8624.1992.tb01625.x
   Whitfield IC, 1967, AUDITORY PATHWAY
   WIGHTMAN F, 1989, CHILD DEV, V60, P611, DOI 10.1111/j.1467-8624.1989.tb02742.x
   Winkler I., 2003, P NATL ACAD SCI USA, V100, P1182
NR 33
TC 25
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 117
EP 127
DI 10.1016/j.heares.2006.12.013
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000011
PM 17300890
ER

PT J
AU Harding, GW
   Bohne, BA
   Lee, SC
   Salt, AN
AF Harding, Gary W.
   Bohne, Barbara A.
   Lee, Steve C.
   Salt, Alec N.
TI Effect of infrasound on cochlear damage from exposure to a 4 kHz octave
   band of noise
SO HEARING RESEARCH
LA English
DT Article
DE infrasound; noise; histopathology; ABR; DPOAE; chinchilla
ID ABR THRESHOLD SHIFTS; DPOAE LEVEL SHIFTS; HISTOPATHOLOGICAL DAMAGE;
   CHINCHILLA-COCHLEA; TYMPANIC-MEMBRANE; MIDDLE-EAR; CELL LOSS; TEMPORARY;
   MICROSCOPY
AB Infrasound (i.e., < 20Hz for humans; < 100 Hz for chinchillas) is not audible, but exposure to high-levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100dB SPL and a 4kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24 h. For each animal, the tympanic membrane (TM) in one car was perforated (similar to 1 mm(2)) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10-21 dB DPOAE LS from 0.6 to 2 kHz. The infrasound exposure alone resulted in a 10-20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4 kHz OBN alone at 108 dB produced a 10-50 dB ABR TS for 0.5-12 kHz, a 10-60 dB DPOAE LS for 0.6-16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4 kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4 kHz OBN alone. Exposure to only the 4 kHz OBN at 86 dB produces a 10-40 dB ABR TS for 3-12 kHz and 10-30 dB DPOAE LS for 3-8 kHz but little or no OHC loss in the middle of the first turn. No differences were found in the functional and hair-cell losses from exposure to the 4 kHz OBN at 86 dB in the presence or absence of infrasound. We hypothesize that exposure to infrasound and an intense 4 kHz OBN increases cochlear damage because the large fluid movements from infrasound cause more intermixing of cochlear fluids through the damaged reticular lamina. Simultaneous infrasound and a moderate 4 kHz OBN did not increase cochlear damage because the reticular lamina rarely breaks down during this moderate level exposure. (c) 2007 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
EM hardingg@ent.wustl.edu
RI Bohne, Barbara/A-9113-2008
OI Bohne, Barbara/0000-0003-3874-7620
CR AHMAD M, 2002, HEARING RES, V175, P82
   Alves-Pereira M, 2007, PROG BIOPHYS MOL BIO, V93, P256, DOI 10.1016/j.pbiomolbio.2006.07.011
   Bohne BA, 2000, AM J OTOL, V21, P505
   BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9
   BOHNE BA, 1972, LARYNGOSCOPE, V82, P1
   Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41
   BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85
   BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285
   Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004
   BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X
   CARDER HM, 1972, J SPEECH HEAR RES, V15, P603
   CLARK WW, 1987, J ACOUST SOC AM, V81, P1093, DOI 10.1121/1.394629
   ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688
   Harding GW, 2004, HEARING RES, V196, P94, DOI 10.1016/j.heares.2004.03.011
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961
   Hatzopoulos S, 2002, HEARING RES, V170, P12, DOI 10.1016/S0378-5955(02)00448-3
   HUMES LE, 2006, NOISE MILITARY SERVI, P163
   KOPKE RD, 2005, HEAR HLTH        FAL, P26
   LeBourgeois H W 3rd, 2000, Ear Nose Throat J, V79, P610
   Leventhall G, 2007, PROG BIOPHYS MOL BIO, V93, P130, DOI 10.1016/j.pbiomolbio.2006.07.006
   LIM DJ, 1982, ACTA OTO-LARYNGOL, V94, P213, DOI 10.3109/00016488209128907
   MILLS JH, 1973, J SPEECH HEAR RES, V16, P426
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Salt AN, 1999, J ACOUST SOC AM, V106, P847, DOI 10.1121/1.427101
   Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7
   VONGIERKE HE, 1976, HDB SENSORY PHYSL AU, P585
   Voss SE, 2001, ACTA OTO-LARYNGOL, V121, P169
NR 28
TC 4
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2007
VL 225
IS 1-2
BP 128
EP 138
DI 10.1016/j.heares.2007.01.016
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 149HE
UT WOS:000245137000012
PM 17300889
ER

PT J
AU Shi, XR
   Nuttall, AL
AF Shi, Xiaorui
   Nuttall, Alfred L.
TI Expression of adhesion molecular proteins in the cochlear lateral wall
   of normal and PARP-1 mutant mice
SO HEARING RESEARCH
LA English
DT Article
DE ICAM-1; PECAM-1; P-sclectin; leukocyte emigration; spiral ligament;
   stria vascularis
ID POLY(ADP-RIBOSE) POLYMERASE; BLOOD-FLOW; REPERFUSION INJURY; STRIA
   VASCULARIS; ACOUSTIC TRAUMA; CELL INJURY; LOUD SOUND; E-SELECTIN;
   INNER-EAR; KAPPA-B
AB Sound can damage peripheral cochlear function through a number of mechanisms, and emerging evidence suggests that inflammation may be one of them. Using immunohistochemistry and poly (ADP-ribose) polymerase-1 (PARP-1) mutant mice, we tested whether PARP-1 contributes to loud-sound induced cochlear lateral wall damage by triggering inflammatory effects, including upregulating intercellular adhesion molecule-1 (ICAM-1), P-selectin and platelet-endothelial cell-adhesion molecule-1 (PECAM-1). In control conditions, we found that there was no detectable poly-ADP-ribose (PAR) in the marginal cells and microvessels. ICAM-1 was expressed only at low levels in the vessels of the stria vascularis and the spiral ligament. P-selectin and PECAM-1 were barely detected and only in the vessels of the spiral ligament. Following loud-sound exposure, PAR was detected in numbers of marginal cells and some vessels of the spiral ligament. Also, an elevated expression of ICAM-1 was demonstrated in some vessels of the stria vascularis and spiral ligament. Increased expression of P-selectin and PECAM-1 were mainly located in the vessels of the spiral ligament, while increased populations of non-migrated and migrated leukocytes were observed in the area of the spiral ligament. However, neither increased expression of adhesion proteins nor increased population of leukocytes, were observed in the PARP-1 knockout mouse. We thus conclude that loud-sound stress activates the expression of adhesion molecular proteins in the lateral wall and that PARP-1 modulates inflammation-linked protein expression and leukocyte migration. (c) 2006 Elsevier B.V. All rights reserved.
C1 Oregon Hlth Sci Univ, Dept Otolaryngol & Head & Neck Surg, Oregon Hearing Res Ctr NRC04, Portland, OR 97239 USA.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Shanghai Jiao Tong Univ, Renji Hosp, Dept Otolaryngol, Shanghai 200030, Peoples R China.
RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol & Head & Neck Surg, Oregon Hearing Res Ctr NRC04, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97239 USA.
EM nuttall@ohsu.edu
CR Bohórquez Jorge, 2005, J Neural Eng, V2, P1, DOI 10.1088/1741-2560/2/2/001
   Chiarugi A, 2002, TRENDS PHARMACOL SCI, V23, P122, DOI 10.1016/S0165-6147(00)01902-7
   Cuzzocrea S, 2002, EUR CYTOKINE NETW, V13, P285
   deMurcia JM, 1997, P NATL ACAD SCI USA, V94, P7303, DOI 10.1073/pnas.94.14.7303
   Devalaraja-Narashimha K, 2005, PHARMACOL RES, V52, P44, DOI 10.1016/j.phrs.2005.02.022
   DISCOLO C, 2004, NOIS INJ MECH P 27 A
   Erdelyi K, 2005, CELL MOL LIFE SCI, V62, P751, DOI 10.1007/s00018-004-4506-0
   Fiorillo C, 2002, FREE RADICAL RES, V36, P79, DOI 10.1080/10715760290001326
   Goldwyn BG, 1997, LARYNGOSCOPE, V107, P1112, DOI 10.1097/00005537-199708000-00019
   Guo YK, 2005, HEARING RES, V208, P54, DOI 10.1016/j.heares.2005.05.010
   Hakuba N, 2005, NEUROREPORT, V16, P1545
   HASHIMOTO S, 2004, NOISE INJURY MECHANI
   Hassa PO, 2002, CELL MOL LIFE SCI, V59, P1534, DOI 10.1007/s00018-002-8527-2
   Herceg Z, 2001, MUTAT RES-FUND MOL M, V477, P97, DOI 10.1016/S0027-5107(01)00111-7
   Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
   HULTCRANTZ E, 1987, AM J OTOLARYNG, V8, P16, DOI 10.1016/S0196-0709(87)80014-5
   Jiang ZD, 2005, EUR J PEDIATR, V164, P84, DOI 10.1007/s00431-0047-1569-8
   Kaplan J, 2005, SHOCK, V23, P233, DOI 10.1097/01.shk.0000151026.30624.ef
   Khandoga A, 2002, HEPATOLOGY, V36, p209A
   Kuokkanen J, 1997, Acta Otolaryngol Suppl, V529, P80
   LAMM K, 1999, COCHLEAR PHARM NOISE, P150
   Le'Negrate G, 2000, J CELL BIOL, V150, P1479, DOI 10.1083/jcb.150.6.1479
   Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061
   Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9
   NUTTALL AL, 1987, HEARING RES, V27, P121, DOI 10.1016/0378-5955(87)90013-X
   NUTTALL AL, 2002, ASS RES OT MIDW M ST
   NUTTALL AL, 1999, NOISE HLTH, V5, P17
   Olanders K, 2002, SHOCK, V18, P86, DOI 10.1097/00024382-200207000-00016
   OMELCHENKO IA, 2005, ASS RES OT MIDW M NE
   PAGE CL, 1998, BIOCHEM BIOPH RES CO, V243, P451, DOI 10.1006/bbrc.1998.8113
   Pahl HL, 1999, ONCOGENE, V18, P6853, DOI 10.1038/sj.onc.1203239
   Piconi L, 2004, J THROMB HAEMOST, V2, P1453, DOI 10.1111/j.1538-7836.2004.00835.x
   QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3
   Scalia R, 1998, J LEUKOCYTE BIOL, V64, P163
   SEIDMAN MD, 1999, MECH ALTERATIONS MIC, P226
   Sharp C, 2001, INFLAMMATION, V25, P157, DOI 10.1023/A:1011032313445
   SHI XR, 2002, SOC NEUR M SAN DIEG
   Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8
   Siemiatkowski A, 2002, INTENS CARE MED, V28, pS174
   Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
   Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006
   Tempera I, 2005, J CELL PHYSIOL, V205, P387, DOI 10.1002/jcp.20414
   THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481
   ULEHLOVA L, 1983, ARCH OTO-RHINO-LARYN, V237, P133, DOI 10.1007/BF00463612
   VIRAG L, 2004, MED SCI MONITOR, V10, DOI UNSP BR77-BR83
   Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51
   WANTANABE K, 2002, ANTICANCER RES, V22, P4081
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Zingarelli B, 1998, CIRC RES, V83, P85
   Zingarelli B, 1999, SHOCK, V11, P13, DOI 10.1097/00024382-199906001-00045
NR 51
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 1
EP 14
DI 10.1016/j.heares.2006.10.011
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300001
PM 17184942
ER

PT J
AU Coffin, AB
   Dabdoub, A
   Kelley, MW
   Popper, AN
AF Coffin, Allison B.
   Dabdoub, Alain
   Kelley, Matthew W.
   Popper, Arthur N.
TI Myosin VI and VIIa distribution among inner ear epithelia in diverse
   fishes
SO HEARING RESEARCH
LA English
DT Article
DE teleost; hearing; hair cell; saccule; utricle; lagena; myosin
ID SENSORY HAIR-CELLS; NONSYNDROMIC HEARING-LOSS; SNELLS-WALTZER MICE;
   UNCONVENTIONAL MYOSIN; HEREDITARY DEAFNESS; STRUCTURAL INTEGRITY;
   CROSS-LINKS; MUTATIONS; STEREOCILIA; ZEBRAFISH
AB Unconventional myosins are critical motor proteins in the vertebrate inner ear. Mutations in any one of at least six different myosins can lead to human hereditary deafness, but the precise functions of these proteins in the ear are unknown. This study uses a comparative approach to better understand the role of myosins VI and VIIa in vertebrate ears by examining protein distribution for these two myosins in the ears of evolutionarily diverse fishes and the aquatic clawed toad Xenopus laevis. Both myosins are expressed in the inner ears of all species examined in this study. Myo7a localizes to hair cells, particularly the actin-rich hair bundle, in all species studied. Myo6 also localizes to hair cells, but its distribution differs between species and end organs. Myo6 is found in hair bundles of most fish and frog epithelia examined here but not in anterior and posterior utricular hair bundles of American shad. These results show that myo7a distribution is highly conserved in diverse vertebrates and suggest functional conservation as well. The finding of myo6 in fish and Xenopus hair bundles, however, suggests a novel role for this protein in anamniotic hair cells. The lack of myo6 in specific American shad utricular hair bundles indicates a unique quality of these cells among fishes, perhaps relating to ultrasound detection capability that is found in this species. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
   Natl Inst Deafness & Other Commun Disorders, Sect Dev Neurosci, NIH, Bethesda, MD 20892 USA.
   Univ Maryland, Neurosci & Cognit Sci Program, College Pk, MD 20742 USA.
   Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA.
RP Coffin, AB (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada.
EM coffina@biology.queensu.ca; dabdouba@nidcd.nih.gov;
   kelleymt@nidcd.nih.gov; apopper@umd.edu
CR Ahmed ZM, 2003, AM J HUM GENET, V72, P1315, DOI 10.1086/375122
   Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729
   AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369
   Belyantseva IA, 2003, P NATL ACAD SCI USA, V100, P13958, DOI 10.1073/pnas.2334417100
   Belyantseva IA, 2003, TRENDS MOL MED, V9, P458, DOI 10.1016/j.molmed.2003.09.008
   Berg JS, 2001, MOL BIOL CELL, V12, P780
   Blaxter J. H. S., 1981, HEARING SOUND COMMUN, P39
   Burighel P, 2003, J COMP NEUROL, V461, P236, DOI 10.1002/cne.10666
   Coffin A., 2004, EVOLUTION VERTEBRATE, P55
   COFFIN AB, 2005, THESIS U MARYLAND CO
   Cryns K, 2004, AUDIOL NEURO-OTOL, V9, P2, DOI 10.1159/000074183
   DENTON EJ, 1979, J MAR BIOL ASSOC UK, V59, P27
   Donaudy F, 2003, AM J HUM GENET, V72, P1571, DOI 10.1086/375654
   DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641
   Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189
   Evans AL, 2000, NAT GENET, V24, P424
   Fay R. R., 1988, HEARING VERTEBRATES
   Fay R.R., 1985, P291
   Friedman TB, 1999, AM J MED GENET, V89, P147, DOI 10.1002/(SICI)1096-8628(19990924)89:3<147::AID-AJMG5>3.0.CO;2-6
   FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3
   GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0
   GILLESPIE PG, 1993, NEURON, V11, P581, DOI 10.1016/0896-6273(93)90071-X
   HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815
   Hasson T, 2003, J CELL SCI, V116, P3453, DOI 10.1242/jcs.00669
   HASSON T, 1994, J CELL BIOL, V127, P425, DOI 10.1083/jcb.127.2.425
   Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
   Hedges SB, 2002, SCIENCE, V297, P1283
   Higgs DM, 2003, J ACOUST SOC AM, V113, P1145, DOI 10.1121/1.1536185
   HOSHINO T, 1975, ACTA OTO-LARYNGOL, V80, P43, DOI 10.3109/00016487509121299
   HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845
   JACOBS RA, 1990, COLD SH Q B, V55, P547
   Kappler JA, 2004, P NATL ACAD SCI USA, V101, P13056, DOI 10.1073/pnas.0405224101
   Karolyi IJ, 2003, HUM MOL GENET, V12, P2797, DOI 10.1093/hmg/ddg308
   Kros CJ, 2002, NAT NEUROSCI, V5, P41, DOI 10.1038/nn784
   Ladich F., 2004, EVOLUTION VERTEBRATE, P95
   Lalwani AK, 2000, AM J HUM GENET, V67, P1121
   Lanford PJ, 2000, HEARING RES, V143, P1, DOI 10.1016/S0378-5955(00)00015-0
   Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976
   Liu XZ, 1997, NAT GENET, V17, P268, DOI 10.1038/ng1197-268
   Loomis PA, 2003, J CELL BIOL, V163, P1045, DOI 10.1083/jcb.200309093
   Lovell JM, 2005, COMP BIOCHEM PHYS A, V142, P286, DOI 10.1016/j.cbpa.2005.07.018
   LOWENSTEIN O, 1964, NATURE, V204, P197, DOI 10.1038/204197b0
   Lu Z, 2004, J COMP PHYSIOL A, V190, P923, DOI 10.1007/s00359-004-0550-3
   Mann DA, 2005, BIOL LETT-UK, V1, P158, DOI 10.1098/rsbl.2004.0241
   Mann DA, 2001, J ACOUST SOC AM, V109, P3048, DOI 10.1121/1.1368406
   Mann DA, 1998, J ACOUST SOC AM, V104, P562, DOI 10.1121/1.423255
   Mann DA, 1997, NATURE, V389, P341, DOI 10.1038/38636
   Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156
   Meyer M, 2004, ABST ASS RES OTOLARY, V27, P325
   MEYER M, 2005, EXPLORING ORIGIN VER
   Nelson JS, 1994, FISHES WORLD, V3
   NEUGEBAUER DC, 1984, J NEUROCYTOL, V13, P797, DOI 10.1007/BF01148494
   Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9
   Popper Arthur N., 2003, P3, DOI 10.1007/978-0-387-22628-6_1
   Popper A.N., 1999, COMP HEARING FISH AM, P43
   POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821
   POPPER AN, 1981, J COMP PHYSIOL, V144, P27
   POPPER AN, 1982, AM ZOOL, V22, P311
   POPPER AN, 1987, BRAIN BEHAV EVOLUT, V30, P43, DOI 10.1159/000118637
   Probst FJ, 1998, SCIENCE, V280, P1444, DOI 10.1126/science.280.5368.1444
   Seiler C, 2004, DEV BIOL, V272, P328, DOI 10.1016/j.ydbio.2004.05.004
   Self T, 1999, DEV BIOL, V214, P331, DOI 10.1006/dbio.1999.9424
   Self T, 1998, DEVELOPMENT, V125, P557
   Sellers JR, 2000, BBA-MOL CELL RES, V1496, P3, DOI 10.1016/S0167-4889(00)00005-7
   Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484
   TILNEY LG, 1983, J CELL BIOL, V96, P822, DOI 10.1083/jcb.96.3.822
   Walsh T, 2002, P NATL ACAD SCI USA, V99, P7518, DOI 10.1073/pnas.102091699
   Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447
   Warner CL, 2003, EMBO J, V22, P569, DOI 10.1093/emboj/cdg055
   Weber E. H., 1820, AURE AUDITU HOMINIS
   Weil D, 1995, Nature, V374, P60
   Wells AL, 1999, NATURE, V401, P505
   Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123
   YAN HY, 1992, J COMP PHYSIOL A, V171, P105
NR 74
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 15
EP 26
DI 10.1016/j.heares.2006.11.004
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300002
PM 17204383
ER

PT J
AU Skjonsberg, A
   Halsey, K
   Ulfendahl, M
   Dolan, DF
AF Skjonsberg, Asa
   Halsey, Karin
   Ulfendahl, Mats
   Dolan, David F.
TI Exploring efferent-mediated DPOAE adaptation in three different guinea
   pig strains
SO HEARING RESEARCH
LA English
DT Article
DE hearing; heterozygotes; noise resistance; age; presbyacousis
ID PRODUCT OTOACOUSTIC EMISSIONS; INDUCED HEARING-LOSS; OLIVOCOCHLEAR
   REFLEX; ACOUSTIC TRAUMA; MICE; AGE; SUSCEPTIBILITY; PROTECTION;
   RESISTANCE; INJURY
AB The aims of this study were to explore the correlation between DPOAE adaptation magnitude in three different guinea pig strains to examine if the genetic component affects the DPOAE adaptation magnitude. It was also to investigate the correlation between strains with certain characteristics i.e. reduced susceptibility to noise, and early onset of age-dependent hearing loss and the DPOAE adaptation magnitude. The animals were anaesthetized and the 2f1 - f2 DPOAE (f1 = 8 kHz, and f2/f1 = 1.2) adaptation was established with a minimum of 144 combinations of f1;f2 where f1 was held fixed and f2 was varied in 1 dB or 0.4 dB steps. The DPOAE adaptation magnitude was defined as the difference between maximum positive level and the maximum negative level. ABRs were conducted at different age-groups (at 4, 6.3, and 12.5 kHz) to evaluate the progress of hearing thresholds by age. There was a significant difference between strains regarding the hearing loss at one year of age. There was no significant difference in DPOAE adaptation magnitude between strains included in this study and from this we conclude that the DPOAE adaptation magnitude is not a predictor for the susceptibility to noise trauma, or early onset of age-dependent hearing loss, using the methods described in this paper. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Stockholm, Karolinska Hosp, Karolinska Inst, Ctr Hearing & Commun Res,Dept Clin Neurosci, SE-17176 Stockholm, Sweden.
   Univ Stockholm, Karolinska Hosp, Dept Otolaryngol, SE-17176 Stockholm, Sweden.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Skjonsberg, A (reprint author), Univ Stockholm, Karolinska Hosp, Karolinska Inst, Ctr Hearing & Commun Res,Dept Clin Neurosci, Bldg M1.00, SE-17176 Stockholm, Sweden.
EM asa.skjonsberg@ki.se; khalsey@umich.edu; mats.ulfendahl@ki.se;
   ddolan@umich.edu
CR Brown MC, 2003, EXP BRAIN RES, V153, P491, DOI 10.1007/s00221-003-1679-y
   Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007
   Christensen K, 2001, J AM GERIATR SOC, V49, P1512, DOI 10.1046/j.1532-5415.2001.4911245.x
   Kirk EC, 2003, JARO-J ASSOC RES OTO, V4, P445
   Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013
   Guinan Jr J.J., 1996, COCHLEA, P435
   Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010
   Heinonen-Guzejev M, 2005, TWIN RES HUM GENET, V8, P245, DOI 10.1375/1832427054253112
   Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
   JIN Z, 2006, HEAR RES
   Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
   KEITHLEY EM, 2005, HEAR RES
   Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
   Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066
   LI HS, 1994, J OTORHINOLARYNGOL R, V56, P61
   Maison SF, 2002, J NEUROSCI, V22, P10838
   Maison SF, 2000, J NEUROSCI, V20, P4701
   Morrell CH, 1996, J ACOUST SOC AM, V100, P1949, DOI 10.1121/1.417906
   PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231
   Piatto Vânia B., 2005, Rev. Bras. Otorrinolaringol., V71, P216, DOI 10.1590/S0034-72992005000200016
   PYE A, 1987, ARCH OTO-RHINO-LARYN, V243, P411, DOI 10.1007/BF00464654
   Rehm HL, 2003, EAR HEARING, V24, P270, DOI 10.1097/01.AUD.0000079806.73761.C8
   ROSENHALL U, 1987, SCAND AUDIOL, V16, P211, DOI 10.3109/01050398709074943
   Skjonsberg A, 2005, AUDIOL NEURO-OTOL, V10, P323, DOI 10.1159/000087349
   SKJONSBERG A, UNPUB AUGMENTED OTOT
   Zennaro O, 1998, ACTA OTO-LARYNGOL, V118, P681
   Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2
NR 29
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 27
EP 33
DI 10.1016/j.heares.2006.11.008
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300003
PM 17224252
ER

PT J
AU Ohlemiller, KK
   Gagnon, PM
AF Ohlemiller, Kevin K.
   Gagnon, Patricia M.
TI Genetic dependence of cochlear cells and structures injured by noise
SO HEARING RESEARCH
LA English
DT Article
DE stria vascularis; spiral ligament; spiral limbus; endocochlear
   potential; fibrocytes; C57BL/6; CBA/J; melanin
ID INDUCED HEARING-LOSS; PRODUCT OTOACOUSTIC EMISSIONS; PERMANENT THRESHOLD
   SHIFT; SPONTANEOUSLY HYPERTENSIVE RATS; CHLOROQUINE-TREATED RED;
   GUINEA-PIG COCHLEA; ACOUSTIC TRAUMA; STRIA-VASCULARIS; INNER-EAR; MOUSE
   COCHLEA
AB The acute and permanent effects of a single damaging noise exposure were compared in CBA/J, C57BL/6 (B6), and closely related strains of mice. Two hours of broadband noise (4-45 kHz) at 110 dB SPL led to temporary reduction in the endocochlear potential (EP) of CBA/J and CBA/CaJ (CBA) mice and acute cellular changes in cochlear stria vascularis and spiral ligament. For the same exposure, 136 mice showed no EP reduction and little of the pathology seen in CBA. Eight weeks after exposure, all mice showed a normal EP, but only CBA mice showed injury and cell loss in cochlear lateral wall, despite the fact that B6 sustained larger permanent threshold shifts. Examination of noise injury in B6 congenics carrying alternate alleles of genes encoding otocadherin (Cdh23), agouti protein, and tyrosinase (albinism) indicated that none of these loci can account for the strain differences observed. Examination of CBAxB6 F1 mice and N2 backcross mice to B6 further indicated that susceptibility to noise-related EP reduction and associated cell pathology are inherited in an autosomal dominant manner, and are established by one or a few large effect quantitative trait loci. Findings support a common genetic basis for an entire constellation of noise-related cochlear pathologies in cochlear lateral wall and spiral limbus. Even within species, cellular targets of acute and permanent cochlear noise injury may vary with genetic makeup. (c) 2006 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave, St Louis, MO 63110 USA.
EM kohlemiller@wustl.edu
CR AXELSSON A, 1983, ACTA OTO-LARYNGOL, V96, P215, DOI 10.3109/00016488309132894
   BARRENAS M-L, 1991, British Journal of Audiology, V25, P303, DOI 10.3109/03005369109076602
   Barrenas ML, 2000, AUDIOLOGY, V39, P238
   Barrenas ML, 1997, AUDIOLOGY, V36, P187
   BEAGLEY HA, 1965, ACTA OTOLARYNGOL, V60, P437, DOI 10.3109/00016486509127027
   BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8
   Borg E, 1995, Scand Audiol Suppl, V40, P1
   BORG E, 1982, HEARING RES, V8, P117, DOI 10.1016/0378-5955(82)90070-3
   Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007
   CONLEE JW, 1988, ACTA OTO-LARYNGOL, V106, P64, DOI 10.3109/00016488809107372
   COVELL WP, 1953, J COMP NEUROL, V99, P43, DOI 10.1002/cne.900990104
   Davis R R, 2003, Noise Health, V5, P19
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   DUVALL AJ, 1974, ANN OTO RHINOL LARYN, V83, P498
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   FREDELIUS L, 1987, HEARING RES, V30, P157, DOI 10.1016/0378-5955(87)90133-X
   Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004
   HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8
   HAMERS FPT, 2002, AUDIOL NEURO-OTOL, V8, P305
   HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4
   HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903
   HEGMANN JP, 1981, BEHAV GENET, V11, P103, DOI 10.1007/BF01065621
   HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410
   Hequembourg S, 2001, JARO, V2, P118
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
   Hoya N, 2004, NEUROREPORT, V15, P1597, DOI 10.1097/01.wnr.0000133226.94662.80
   IDE M, 1990, Auris Nasus Larynx, V17, P1
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021
   JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002
   JOHNSSON LG, 1976, ANN OTO RHINOL LARYN, V85, P725
   KANNO H, 1993, ACTA OTO-LARYNGOL, V113, P26, DOI 10.3109/00016489309135762
   KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H
   Kozel PJ, 2002, HEARING RES, V164, P231, DOI 10.1016/S0378-5955(01)00420-8
   Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4
   Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X
   LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   Liberman MC, 1982, NEW PERSPECTIVES NOI, P105
   LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
   Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061
   Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152
   Morizane I, 2005, NEUROREPORT, V16, P799, DOI 10.1097/00001756-200505310-00004
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   OHLEMILLER KK, 2003, ABSTR ASS RES OTOLAR, V26, P268
   Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   Okamoto Y, 2005, AUDIOL NEURO-OTOL, V10, P220, DOI 10.1159/000084843
   ORTMANN AJ, 2004, ABSTR ASS RES OTOLAR, V27, P168
   Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
   Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   SALT AN, 1987, LARYNGOSCOPE, V97, P984
   Salvi R., 1982, NEW PERSPECTIVES NOI, P165
   SANDULACHE R, 1994, GENETICS, V137, P1079
   SANTI PA, 1978, OTOLARYNG HEAD NECK, V86, P354
   SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307
   SAUNDERS JC, 1980, NEW PERSPECTIVES NOI, P229
   Schmiedt RA, 2002, J NEUROSCI, V22, P9643
   SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1
   SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
   Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9
   Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006
   SPOENDLI.H, 1973, ACTA OTO-LARYNGOL, V75, P220, DOI 10.3109/00016487309139699
   SYKA J, 1981, HEARING RES, V4, P287, DOI 10.1016/0378-5955(81)90013-7
   TACHEUCHI S, 2000, BIOPHYS J, V79, P2572
   Todt I, 1999, PFLUG ARCH EUR J PHY, V438, P865, DOI 10.1007/s004240051117
   ULEHLOVA L, 1983, ARCH OTO-RHINO-LARYN, V237, P133, DOI 10.1007/BF00463612
   Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017
   Voisey J, 2002, PIGM CELL RES, V15, P10, DOI 10.1034/j.1600-0749.2002.00039.x
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Wangemann P., 1996, COCHLEA, P130
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   WARD WD, 1982, NEW PERSPECTIVES NOI, P423
   WARD WD, 1971, ANN OTO RHINOL LARYN, V80, P881
   Wolters FLC, 2003, HEARING RES, V179, P53, DOI 10.1016/S0378-5955(03)00080-7
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Yamasoba T, 2006, NEUROSCI LETT, V395, P18, DOI 10.1016/j.neulet.2005.10.045
   Yamasoba T, 2003, NEUROSCI LETT, V347, P171, DOI 10.1016/S0304-3940(03)00675-X
   Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5
   ZUMGOTTESBERGE AMM, 1988, PIGM CELL RES, V1, P238
NR 86
TC 29
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 34
EP 50
DI 10.1016/j.heares.2006.11.005
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300004
PM 17175124
ER

PT J
AU McCullough, BJ
   Adams, JC
   Shilling, DJ
   Feeney, MP
   Sie, KCY
   Tempel, BL
AF McCullough, Brendan J.
   Adams, Joe C.
   Shilling, Dustin J.
   Feeney, M. Patrick
   Sie, Kathleen C. Y.
   Tempel, Bruce L.
TI 3p-syndrome defines a hearing loss locus in 3p25.3
SO HEARING RESEARCH
LA English
DT Article
DE 3p-syndrome.; hearing loss; ATP2B2; PMCA2; deafwaddler
ID ENDOLYMPHATIC SAC TUMORS; HAIR-CELL STEREOCILIA; HIPPEL-LINDAU-DISEASE;
   CONNEXIN 26 GENE; DEAFWADDLER MICE; KNOCKOUT MICE; SHORT ARM; DELETION;
   MUTATIONS; DEAFNESS
AB Deletions affecting the terminal end of chromosome 3p result in a characteristic set of clinical features termed 3p- syndrome. Bilateral, sensorineural hearing loss (SNHL) has been found in some but not all cases, suggesting the possibility that it is due to loss of a critical gene in band 3p25. To date, no genetic locus in this region has been shown to cause human hearing loss. However, the ATP2B2 gene is located in 3p25.3, and haploinsufficiency of the mouse homolog results in SNHL with similar severity. We compared auditory test results with fine deletion mapping in seven previously unreported 3p- syndrome patients and identified a 1.38 Mb region in 3p25.3 in which deletions were associated with moderate to severe, bilateral SNHL. This novel hearing loss locus contains 18 genes, including ATP2B2. ATP2B2 encodes the plasma membrane calcium pump PMCA2. We used immunohistochemistry in human cochlear sections to show that PMCA2 is located in the stereocilia of hair cells, suggesting its function in the auditory system is conserved between humans and mice. Although other genes in this region remain candidates, we conclude that haploinsufficiency of ATP2B2 is the most likely cause of SNHL in 3p- syndrome. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
   Univ Washington, Sch Med, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
   Univ Washington, Sch Med, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
   Childrens Hosp & Reg Med Ctr, Seattle, WA 98105 USA.
RP Tempel, BL (reprint author), Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA.
EM brenmcc@u.washington.edu; Joe_Adams@meei.harvard.edu;
   dustinj@u.washington.edu; pfeeney@u.washington.edu;
   Kathleen.Sie@seattlechildrens.org; bltempel@u.washington.edu
CR Angeloni D, 1999, AM J MED GENET, V86, P482, DOI 10.1002/(SICI)1096-8628(19991029)86:5<482::AID-AJMG15>3.0.CO;2-L
   Benini D, 1999, EUR J PEDIATR, V158, P955, DOI 10.1007/s004310051256
   Choung YH, 2002, LARYNGOSCOPE, V112, P1667, DOI 10.1097/00005537-200209000-00026
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Drumheller T, 1996, J MED GENET, V33, P842, DOI 10.1136/jmg.33.10.842
   Dumont RA, 2001, J NEUROSCI, V21, P5066
   Duno M, 2004, HUM GENET, V115, P459, DOI 10.1007/s00439-004-1174-y
   Fernandez T, 2004, AM J HUM GENET, V74, P1286, DOI 10.1086/421474
   Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828
   Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4
   HIGGINBOTTOM MC, 1982, J MED GENET, V19, P71, DOI 10.1136/jmg.19.1.71
   Hinney A, 2002, J CLIN ENDOCR METAB, V87, P2716, DOI 10.1210/jc.87.6.2716
   Holt JR, 2000, P NATL ACAD SCI USA, V97, P11730, DOI 10.1073/pnas.97.22.11730
   Houghtaling S, 2003, GENE DEV, V17, P2021, DOI 10.1101/gad.1103403
   Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7
   Kenneson A, 2002, GENET MED, V4, P258, DOI 10.1097/01.GIM.0000020750.60733.CA
   Kleinjan DA, 2005, AM J HUM GENET, V76, P8, DOI 10.1086/426833
   Kleymenova E, 2004, CARCINOGENESIS, V25, P309, DOI 10.1093/carcin/bgh017
   Kudo T, 2000, AM J MED GENET, V90, P141, DOI 10.1002/(SICI)1096-8628(20000117)90:2<141::AID-AJMG10>3.0.CO;2-G
   Lonser RR, 2004, NEW ENGL J MED, V350, P2481, DOI 10.1056/NEJMoa040666
   Lumpkin EA, 1998, J NEUROSCI, V18, P6300
   Ma RLZ, 2002, SCIENCE, V297, P620, DOI 10.1126/science.1072810
   Manski TJ, 1997, JAMA-J AM MED ASSOC, V277, P1461, DOI 10.1001/jama.277.18.1461
   McCullough BJ, 2004, HEARING RES, V195, P90, DOI 10.1016/j.heares.2004.05.003
   Megerian CA, 2002, OTOL NEUROTOL, V23, P378, DOI 10.1097/00129492-200205000-00026
   Merla G, 2006, AM J HUM GENET, V79, P332, DOI 10.1086/506371
   NARAHARA K, 1990, AM J MED GENET, V35, P269, DOI 10.1002/ajmg.1320350225
   NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023
   PHIPPS ME, 1994, HUM MOL GENET, V3, P903, DOI 10.1093/hmg/3.6.903
   RAMER JC, 1989, AM J MED GENET, V33, P108, DOI 10.1002/ajmg.1320330115
   Robinson SW, 2003, AM J HUM GENET, V72, P1047, DOI 10.1086/374319
   Santangelo Susan L, 2005, Ophthalmic Genet, V26, P61, DOI 10.1080/13816810490967944
   Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899
   Street VA, 1998, NAT GENET, V19, P390
   Wood JD, 2004, JARO-J ASSOC RES OTO, V5, P99, DOI 10.1007/s10162-003-4022-1
   Wortley KE, 2004, P NATL ACAD SCI USA, V101, P8227, DOI 10.1073/pnas.0402763101
   Yamoah EN, 1998, J NEUROSCI, V18, P610
NR 39
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 51
EP 60
DI 10.1016/j.heares.2006.11.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300005
PM 17208398
ER

PT J
AU Pouyatos, B
   Gearhart, C
   Nelson-Miller, A
   Fulton, S
   Fechter, L
AF Pouyatos, Benoit
   Gearhart, Caroline
   Nelson-Miller, Alisa
   Fulton, Sherry
   Fechter, Laurence
TI Oxidative stress pathways in the potentiation of noise-induced hearing
   loss by acrylonitrile
SO HEARING RESEARCH
LA English
DT Article
DE acrylonitrile; L-N acetylcysteine; sodium thiosulfate; 4-methylpyrazole;
   noise; hearing loss; hair cell loss; ototoxicity; reactive oxygen
   species; oxidative stress; glutathione; cyanide; superoxide dismutase
ID SUPEROXIDE-DISMUTASE; IMPULSE NOISE; COCHLEAR FUNCTION; CARBON-MONOXIDE;
   FREE-RADICALS; GLUTATHIONE; PROTECTION; OXYGEN; SUSCEPTIBILITY; EXPOSURE
AB We hypothesize that the disruption of antioxidant defenses is a key mechanism whereby chemical contaminants can potentiate noise-induced hearing loss (NIHL). This hypothesis was tested using acrylonitrile (ACN), a widely used industrial chemical whose metabolism is associated with glutathione (GSH) depletion and cyanide (CN) generation. CN, in turn, can inhibit Cu/Zn superoxide dismutase (SOD). We have shown previously that ACN potentiates NIHL, even with noise exposure approaching permissible occupational levels. However, the relative involvement of GSH depletion and/or CN production in this potentiation is still unknown. In this study, we altered these metabolic pathways pharmacologically in order to further delineate the role of specific antioxidants in the protection of the cochlea. We investigated the effects of sodium thiosulfate (STS), a CN inhibitor, 4-methylpyrazole (4MP), a drug that blocks CN generation by competing with CYP2E1, and L-N-acetylcysteine (L-NAC), a pro-GSH drug, in order to distinguish between GSH depletion and CN production as the mechanism responsible for potentiation of NIHL by ACN. Long-Evans rats were exposed to an octave-band noise (97 dB SPL, 4 h/day, 5 days) and ACN (50 mg/kg). Separate pre-treatments with STS (150 mg/kg), 4MP (100 mg/kg) and L-NAC (4 x 400 mg/kg) all dramatically reduced blood CN levels, but Only L-NAC significantly protected GSH levels in both the liver and the cochlea. Concurrently, only L-NAC treatment decreased the auditory loss and hair cell loss resulting from ACN + noise, suggesting that GSH is involved in the protection of the cochlea against reactive oxygen species generated by moderate noise levels. On the other hand, CN does not seem to be involved in this potentiation. Published by Elsevier B.V.
C1 Jerry L Pettis Mem Vet Adm Med Ctr, Dept Vet Affairs Med Ctr, Loma Linda, CA 92357 USA.
RP Pouyatos, B (reprint author), Jerry L Pettis Mem Vet Adm Med Ctr, Dept Vet Affairs Med Ctr, 11201 Benton St, Loma Linda, CA 92357 USA.
EM benoit.pouyatos@med.va.gov
CR BASELT RC, 1988, CYANIDEANALYTICAL PR, P100
   BREEN PH, 1995, TOXICOL APPL PHARM, V134, P229, DOI 10.1006/taap.1995.1188
   Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007
   Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8
   Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005
   Fechter LD, 2004, JARO-J ASSOC RES OTO, V5, P90, DOI 10.1007/s10162-003-4028-8
   Fechter LD, 2003, TOXICOL SCI, V75, P117, DOI 10.1093/toxsci/kfg169
   FEIERMAN DE, 1986, BIOCHEM J, V239, P671
   FELDSTEIN M, 1954, J LAB CLIN MED, V44, P166
   Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x
   IARC, 2000, IARC MON EV CARC RIS, P1
   KIRSCHNER EM, 1996, CHEM ENG NEWS   0410, P10
   Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   Leng G, 2002, TOXICOL LETT, V134, P209, DOI 10.1016/S0378-4274(02)00191-1
   Lopez-Gonzalez MA, 1999, HEARING RES, V136, P165, DOI 10.1016/S0378-5955(99)00122-7
   MARTIN GK, 2006, CURR PROTOCOLS NEU S, V34, DOI UNSP 8.21C.1
   Mazzon E, 2001, EUR J PHARMACOL, V424, P75, DOI 10.1016/S0014-2999(01)01130-X
   MCFADDEN D, 1986, NATO ASI A, V111, P114
   MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8
   Pouyatos B, 2005, TOXICOL APPL PHARM, V204, P46, DOI 10.1016/j.taap.2004.08.015
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   Sorbi S, 2000, CLIN NEUROPHARMACOL, V23, P114, DOI 10.1097/00002826-200003000-00010
   *SRI, 1984, ACR CHEM EC HDB ORG
   Tawackoli W, 2001, NEUROTOXICOL TERATOL, V23, P157, DOI 10.1016/S0892-0362(01)00135-0
   Thier R, 2000, ARCH TOXICOL, V74, P184, DOI 10.1007/s002040000109
   TIETZE F, 1969, ANAL BIOCHEM, V27, P502, DOI 10.1016/0003-2697(69)90064-5
   VESEY CJ, 1985, ANESTHESIOLOGY, V62, P415, DOI 10.1097/00000542-198504000-00008
   WEISIGER RA, 1973, J BIOL CHEM, V248, P3582
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
NR 39
TC 12
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 61
EP 74
DI 10.1016/j.heares.2006.11.009
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300006
PM 17222524
ER

PT J
AU Luo, H
   Boemio, A
   Gordon, M
   Poeppel, D
AF Luo, Huan
   Boemio, Anthony
   Gordon, Michael
   Poeppel, David
TI The perception of FM sweeps by Chinese and English listeners
SO HEARING RESEARCH
LA English
DT Article
DE tone language; temporal threshold; FM identification; FM discrimination;
   signal detection; bias; FM direction selectivity
ID PRIMARY AUDITORY-CORTEX; STEADY-STATE RESPONSES; TEMPORAL-ORDER
   JUDGMENTS; FREQUENCY-MODULATION; LANGUAGE EXPERIENCE;
   AMPLITUDE-MODULATION; SIGNAL-DETECTION; VISUAL-STIMULI; TONES;
   DISCRIMINATION
AB Frequency-modulated (FM) signals are an integral acoustic component of ecologically natural sounds and are analyzed effectively in the auditory systems of humans and animals. Linearly frequency-modulated tone sweeps were used here to evaluate two questions. First, how rapid a sweep can listeners accurately perceive? Second, is there an effect of native language insofar as the language (phonology) is differentially associated with processing of FM signals? Speakers of English and Mandarin Chinese were tested to evaluate whether being a speaker of a tone language altered the perceptual identification of non-speech tone sweeps. In two psychophysical studies, we demonstrate that Chinese subjects perform better than English subjects in FM direction identification, but not in an FM discrimination task, in which English and Chinese speakers show similar detection thresholds of approximately 20 ms duration. We suggest that the better FM direction identification in Chinese subjects is related to their experience with FM direction analysis in the tone-language environment, even though supra-segmental tonal variation occurs over a longer time scale. Furthermore, the observed common discrimination temporal threshold across two language groups supports the conjecture that processing auditory signals at durations of similar to 20 ms constitutes a fundamental auditory perceptual threshold. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Maryland, Neurosci & Cognit Sci Program, College Pk, MD 20742 USA.
   Univ Maryland, Dept Biol, College Pk, MD 20742 USA.
   Univ Maryland, Dept Linguist, College Pk, MD 20742 USA.
RP Luo, H (reprint author), Univ Maryland, Neurosci & Cognit Sci Program, 1401 Marine Mount Hall, College Pk, MD 20742 USA.
EM luohuan@gmail.com
CR Boemio A, 2005, NAT NEUROSCI, V8, P389, DOI 10.1038/nn1409
   COLLINS MJ, 1978, J ACOUST SOC AM, V63, P469, DOI 10.1121/1.381738
   Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438
   Dimitrijevic A, 2001, EAR HEARING, V22, P100, DOI 10.1097/00003446-200104000-00003
   DOOLEY GJ, 1988, J ACOUST SOC AM, V84, P1332, DOI 10.1121/1.397222
   DORFMAN DD, 1968, PSYCHOMETRIKA, V33, P117, DOI 10.1007/BF02289677
   Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567
   Edwards BW, 1997, J ACOUST SOC AM, V101, P1010, DOI 10.1121/1.418024
   EDWARDS BW, 1994, J ACOUST SOC AM, V96, P733, DOI 10.1121/1.411440
   EDWARDS BW, 1994, J ACOUST SOC AM, V95, P1510, DOI 10.1121/1.408538
   Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743
   EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9
   Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3
   Gandour J, 2002, BRAIN LANG, V83, P268, DOI 10.1016/S0093-934X(02)00033-0
   Gandour J, 1998, NEUROREPORT, V9, P2115
   GANDOUR J, 2000, J COGNITIVE NEUROSCI, V12, P1
   Gordon M., 2002, Acoustics Research Letters Online, V3, DOI 10.1121/1.1429653
   HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7
   HIRSH IJ, 1959, J ACOUST SOC AM, V31, P759, DOI 10.1121/1.1907782
   Howie John M., 1976, ACOUSTICAL STUDIES M
   Hsieh L, 2001, BRAIN LANG, V76, P227, DOI 10.1006/brln.2000.2382
   John MS, 2002, EAR HEARING, V23, P106, DOI 10.1097/00003446-200204000-00004
   John MS, 2001, AUDIOL NEURO-OTOL, V6, P12, DOI 10.1159/000046805
   Kanabus M, 2002, ACTA NEUROBIOL EXP, V62, P263
   Klein D, 2001, NEUROIMAGE, V13, P646, DOI 10.1006/nimg.2000.0738
   Krishna C, 2005, CRIT REV BIOTECHNOL, V25, P1, DOI 10.1080/07388550590925383
   Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7
   LEE L, 1993, PERCEPT PSYCHOPHYS, V53, P157, DOI 10.3758/BF03211726
   Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001
   LIBERMAN AM, 1956, J EXP PSYCHOL, V52, P127, DOI 10.1037/h0041240
   LUO H, 2006, J NEUROPHYSIOL
   Madden JP, 1997, J ACOUST SOC AM, V102, P2920, DOI 10.1121/1.420346
   MAISTE A, 1989, EAR HEARING, V10, P153, DOI 10.1097/00003446-198906000-00003
   MAKELA JP, 1987, HEARING RES, V27, P257, DOI 10.1016/0378-5955(87)90007-4
   MENDELSON JR, 1993, EXP BRAIN RES, V94, P65
   Michalewski HJ, 2005, CLIN NEUROPHYSIOL, V116, P669, DOI 10.1016/j.clinph.2004.09.027
   Miller J, 2004, PERCEPT PSYCHOPHYS, V66, P563, DOI 10.3758/BF03194901
   MOORE BCJ, 1992, J ACOUST SOC AM, V92, P3119, DOI 10.1121/1.404208
   Moore BCJ, 1997, INTRO PSYCHOL HEARIN
   PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560
   Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316
   Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3
   ROSENBLITH WA, 1953, J ACOUST SOC AM, V25, P980, DOI 10.1121/1.1907230
   Rupp A, 2002, HEARING RES, V174, P19, DOI 10.1016/S0378-5955(02)00614-7
   SCHOUTEN MEH, 1986, PERCEPT PSYCHOPHYS, V40, P359, DOI 10.3758/BF03203028
   SCHOUTEN MEH, 1985, PERCEPT PSYCHOPHYS, V37, P369, DOI 10.3758/BF03211361
   SCHOUTEN MEH, 1989, PERCEPT PSYCHOPHYS, V46, P235, DOI 10.3758/BF03208084
   Scott S, 2004, INT J PSYCHOL, V39, P387
   STAGRAY JR, 1992, J SPEECH HEAR RES, V35, P1406
   SUGA N, 1968, J PHYSIOL-LONDON, V198, P51
   SWETS J, 1982, PSYCHOPHYSIOLOGY, V19, P300
   WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655
   Wong PCM, 2004, J NEUROSCI, V24, P9153, DOI 10.1523/JNEUROSCI.2225-04.2004
   Xu YS, 2006, HUM BRAIN MAPP, V27, P173, DOI 10.1002/hbm.20176
   Zampini M, 2005, ACTA PSYCHOL, V118, P277, DOI 10.1016/j.actpsy.2004.10.017
NR 55
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 75
EP 83
DI 10.1016/j.heares.2006.11.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300007
PM 17207949
ER

PT J
AU Sellick, PM
   Kirk, DL
   Patuzzi, R
   Robertson, D
AF Sellick, P. M.
   Kirk, D. L.
   Patuzzi, R.
   Robertson, D.
TI Does BAPTA leave outer hair cell transduction channels closed?
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; endolymphatic potential; cochlear microphonic; outer hair
   cells; BAPTA; tip links; stereocilia; mechanotransduction
ID TIP LINKS; MECHANOELECTRICAL TRANSDUCTION; MECHANICAL TRANSDUCTION;
   COCHLEAR POTENTIALS; 4-AMINOPYRIDINE; STEREOCILIA; EMISSIONS
AB The calcium chelator BAPTA was iontophoresed into the scala media of the second turn of the guinea pig cochlea. This produced a reduction in low frequency cochlear microphonic (CM) measured in scala media and an elevation of the cochlear action potential (CAP) threshold that lasted for the duration of the experiment. Using two pipettes, one filled with KCl and the other KCl and BAPTA (50, 20 and 5 mM) it was possible to observe the effect of passing current through one electrode while measuring the endolymphatic, potential (EP) with the other. The results demonstrated that current passed via the BAPTA pipette caused a sustained increase in EP of 8.2, 12.9 and 7.8 mV in the three animals used. This increase coincided with the decrease in low frequency CM that indicated a causal connection between the two. In a second series of experiments, pipettes with larger tips were inserted into scala media in the first cochlear turn and BAPTA was allowed to diffuse from the pipette. The results confirmed the relationship between EP increase and the fall of scala media CM. One interpretation of these results is that lowering the Ca2+ concentration of endolymph with BAPTA inhibits mechano-electrical transduction in outer hair cells (OHCs) and leaves the hair cell transduction channels in a closed state, thus increasing the resistance across OHCs and increasing the EP. These findings are consistent with a model of hair cell transduction in which tension on stereo cilia opens the transduction channels. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Western Australia, Sch Biomed Biomol & Chem Sci, Auditory Lab, Discipline Physiol, Nedlands, WA 6009, Australia.
RP Sellick, PM (reprint author), Univ Western Australia, Sch Biomed Biomol & Chem Sci, Auditory Lab, Discipline Physiol, Nedlands, WA 6009, Australia.
EM psellick@cyllene.uwa.edu.au
CR ASSAD JA, 1992, J NEUROSCI, V12, P3291
   ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X
   DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
   Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1
   Gale JE, 2001, J NEUROSCI, V21, P7013
   Gillespie PG, 2001, NATURE, V413, P194, DOI 10.1038/35093011
   Goodyear RJ, 2005, J COMP NEUROL, V485, P75, DOI 10.1002/cne.20513
   Goodyear RJ, 2003, J NEUROSCI, V23, P4878
   Kirk DL, 2001, HEARING RES, V161, P99, DOI 10.1016/S0378-5955(01)00363-X
   Kirk DL, 1998, AUDIOL NEURO-OTOL, V3, P21, DOI 10.1159/000013776
   KONISHI T, 1971, J ACOUST SOC AM, V49, P1762, DOI 10.1121/1.1912579
   KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4
   MEYER J, 2005, HEAR RES, V20
   Meyer J, 1998, J NEUROSCI, V18, P6748
   Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7
   PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7
   Patuzzi RB, 1999, HEARING RES, V133, P155, DOI 10.1016/S0378-5955(99)00067-2
   PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8
   PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H
   Robles L, 2001, PHYSIOL REV, V81, P1305
   SELLICK PM, 2005, HEARING RES, V20, pR20
   Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010
   Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469
NR 23
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 84
EP 92
DI 10.1016/j.heares.2006.11.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300008
PM 17222995
ER

PT J
AU Vigneault-MacLean, BK
   Hall, SE
   Phillips, DP
AF Vigneault-MacLean, Bronwyn K.
   Hall, Susan E.
   Phillips, Dennis P.
TI The effects of lateralized adaptors on lateral position judgements of
   tones within and across frequency channels
SO HEARING RESEARCH
LA English
DT Article
DE sound lateralization; hemifield model; psychophysics; interaural time
   difference; selective adaptation
ID PRIMARY AUDITORY-CORTEX; SOUND-LOCALIZATION; CAT; NEURONS; SENSITIVITY;
   LOCATION; LEVEL; NOISE; SPACE; TIME
AB Two experiments examined the effect of highly lateralized adaptor tone pulses on the perceived intracranial location of subsequent test tones. In Experiment 1, adaptor tones of each of two frequencies, highly lateralized to opposite sides by a quarter-period interaural time difference (ITD), were found to shift the perceived intracranial location of test tones of each adaptor frequency away from the side of the adaptor. The shift in perceived location was seen for all test tone ITDs with the same sign as the adaptor tone, and sometimes extended to include test tones with small ITDs favoring the opposite ear. The generality of the effect across test tone ITDs of the same sign as the adaptor suggests that the human auditory lateralization system is built of two (left, right) hemifield-tuned azimuthal channels, and that perceived lateral location depends on the relative outputs of those two channels. In Experiment 2, the perceived location of test tones lateralized by ITD was studied in the same listeners at each of the same two frequencies, but after selective adaptation with tone pulses of only one frequency and laterality. The perceived lateral position of test tones with the same frequency as that of the adaptor underwent the same changes as seen in Experiment 1. The perceived lateral position of test tones of the nonadapted frequency usually shifted weakly in the opposite direction, i.e., in the direction expected if the second adaptor from Experiment 1 had actually been present. These data have implications both for the processes mediating selective adaptation using contingent stimuli, and for the azimuthal tuning of auditory spatial channels in man. (c) 2006 Elsevier B.V. All rights reserved.
C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada.
RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, 1355 Oxford St, Halifax, NS B3H 4J1, Canada.
EM dennis.phillips@dal.ca
RI Phillips, Dennis/A-6496-2011
CR Barlow H. B., 1990, VISION CODING EFFICI, P363
   Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037
   Brugge JF, 1996, J NEUROSCI, V16, P4420
   Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843
   CLAREY JC, 1995, J NEUROPHYSIOL, V74, P961
   Frisby J. P., 1980, SEEING ILLUSION BRAI
   JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
   JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
   KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
   MOLLON J, 1974, New Scientist, V61, P479
   Phillips D P, 2003, J Am Acad Audiol, V14, P518, DOI 10.3766/jaaa.14.9.7
   PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9
   Phillips DP, 2006, HEARING RES, V211, P96, DOI 10.1016/j.heares.2005.10.005
   PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245
   Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001]
   RAJAN R, 1990, J NEUROPHYSIOL, V64, P872
   SCHIANO JL, 1986, J ACOUST SOC AM, V79, P1563, DOI 10.1121/1.393683
   SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462
   SIEGEL S, 1992, J EXP PSYCHOL GEN, V121, P79, DOI 10.1037//0096-3445.121.1.79
   Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078
   TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648
   YOST WA, 1981, J ACOUST SOC AM, V70, P397, DOI 10.1121/1.386775
   ZHANG J, 2005, J NEUROPHYSIOL, V94, P2262
NR 25
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 93
EP 100
DI 10.1016/j.heares.2006.12.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300009
PM 17223297
ER

PT J
AU Gleich, O
   Kittel, MC
   Kiump, GM
   Strutz, J
AF Gleich, Otto
   Kittel, Malte C.
   Kiump, Georg M.
   Strutz, Juergen
TI Temporal integration in the gerbil: The effects of age, hearing loss and
   temporally unmodulated and modulated speech-like masker noises
SO HEARING RESEARCH
LA English
DT Article
DE presbyacusis; psychoacoustic testing; psychometric function;
   simultaneous masking; response latency; comodulation masking release
ID AUDITORY-NERVE FIBERS; COMODULATION MASKING RELEASE; SIGNAL DURATION;
   GUINEA-PIG; MERIONES-UNGUICULATUS; MONGOLIAN GERBIL; COCHLEAR NUCLEUS;
   PURE-TONES; CAT; THRESHOLDS
AB We characterized temporal integration for 2 kHz pure tones with durations between 10 and 1000 ms in young, normal hearing old and old gerbils with a small hearing loss. Thresholds determined in silence increased for durations below 300 ms and were on average more than 10 dB higher for the 10 ms signal than asymptotic thresholds for the long signals. The amount of temporal integration tended to be less in gerbils with hearing loss. Threshold determination was repeated in the same individuals in the presence of speech-like unmodulated and modulated masking noises. Threshold shift due to the maskers was inversely related to the threshold in silence resulting in a reduced inter-individual variability of thresholds in both masking conditions. Thresholds differed systematically between both masker types in a duration dependent fashion. For long signal durations (300 and 1000 ms) thresholds were on average 2 dB lower and for the 10 ms signal 1.9 dB higher in the presence of the modulated masker. These differences in threshold obtained with the two maskers were significant. One hypothesis is that long signals can be detected in the troughs of the modulated masker, while peaks interfere with the detection of short signals. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany.
   Univ Oldenburg, Inst Biol & Umweltwissensch, AG Zoophysiol & Verhalten, D-26111 Oldenburg, Germany.
RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany.
EM otto.gleich@klinik.uni-regensburg.de; Malte.Kittel@astrazeneca.com;
   Georg.Klump@uni-oldenburg.de; juergen.strutz@klinik.uni-regensburg.de
CR BARU AV, 1971, SENSORY PROCESSES NE, P265
   BROWN CH, 1986, J ACOUST SOC AM, V79, P1058, DOI 10.1121/1.393378
   Buus S., 2001, JARO-J ASSOC RES OTO, V3, P120
   BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652
   CLACK TD, 1966, J ACOUST SOC AM, V40, P1140, DOI 10.1121/1.1910199
   CLARK WW, 1986, SENSORINEURAL HEARIN, P59
   Eddins AC, 1998, HEARING RES, V119, P135, DOI 10.1016/S0378-5955(98)00035-5
   CLOCK AE, 1993, HEARING RES, V71, P37, DOI 10.1016/0378-5955(93)90019-W
   COSTALUPES JA, 1983, HEARING RES, V9, P43, DOI 10.1016/0378-5955(83)90133-8
   COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326
   CRANFORD JL, 1977, BRAIN RES, V136, P559, DOI 10.1016/0006-8993(77)90081-6
   DAI H, 2000, PHYSL PSYCHOPHYSICAL, P51
   Dreschler WA, 2001, AUDIOLOGY, V40, P148
   EHRET G, 1976, J ACOUST SOC AM, V59, P1421, DOI 10.1121/1.381030
   Fay R. R., 1988, HEARING VERTEBRATES
   FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964
   GEISLER CD, 1980, HEARING RES, V3, P317
   GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726
   Gleich Otto, 2006, Hear Res, V220, P27, DOI 10.1016/j.heares.2006.06.014
   Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74
   Gleissner M, 2000, J PERINAT MED, V28, P104, DOI 10.1515/JPM.2000.013
   GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951
   GREEN DM, 1966, SIGNAL DETECTION THE
   HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005
   Hamann I, 2004, JARO-J ASSOC RES OTO, V5, P49, DOI 10.1007/s10162-003-3041-2
   Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9
   HEIL P, 2004, P NAT ACAD SCI, V100, P6151
   Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
   HENDERSO.D, 1969, J ACOUST SOC AM, V46, P474, DOI 10.1121/1.1911714
   Kittel M, 2002, HEARING RES, V164, P69, DOI 10.1016/S0378-5955(01)00411-7
   KITTEL M, 2003, P 28 GOTT NEUR C 5 M, P1021
   Lam CF, 1996, J ACOUST SOC AM, V99, P3689, DOI 10.1121/1.414966
   LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
   MANLEY GA, 1976, J PHYSIOL-LONDON, V258, P323
   MCGILL WJ, 1967, J MATH PSYCHOL, V4, P351, DOI 10.1016/0022-2496(67)90030-2
   Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839
   Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4
   PENNER MJ, 1986, J SPEECH HEAR RES, V29, P400
   PENNER MJ, 1972, J MATH PSYCHOL, V9, P186
   PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781
   SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9
   SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734
   SOLECKI JM, 1990, J ACOUST SOC AM, V88, P779, DOI 10.1121/1.399727
   STELMACH GE, 1992, HUM FACTORS, V34, P53
   Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013
   Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426
   VELLUTI RA, 1994, HEARING RES, V72, P19, DOI 10.1016/0378-5955(94)90200-3
   Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1
   Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101
   WALL L G, 1981, Journal of Auditory Research, V21, P29
   WATSON CS, 1972, J ACOUST SOC AM, V52, P633, DOI 10.1121/1.1913153
   WATSON CS, 1969, J ACOUST SOC AM, V46, P989, DOI 10.1121/1.1911819
   WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E
   Zar JH, 1984, BIOSTATISTICAL ANAL
   Zwicker E, 1999, PSYCHOACOUSTICS FACT
NR 55
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2007
VL 224
IS 1-2
BP 101
EP 114
DI 10.1016/j.heares.2006.12.002
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 139JE
UT WOS:000244427300010
PM 17223296
ER

PT J
AU Huang, J
   Yang, ZG
   Ping, JL
   Liu, X
   Wu, XH
   Li, L
AF Huang, Juan
   Yang, Zhigang
   Ping, Junli
   Liu, Xian
   Wu, Xihong
   Li, Liang
TI The influence of the perceptual or fear learning on rats' prepulse
   inhibition induced by changes in the correlation between two spatially
   separated noise sounds
SO HEARING RESEARCH
LA English
DT Article
DE acoustic startle; prepulse inhibition; sound correlation; fear
   conditioning; perceptual learning
ID ACOUSTIC STARTLE RESPONSE; REFLEX MODIFICATION; ATTENTIONAL MODULATION;
   GAP DETECTION; INFERIOR COLLICULUS; BACKGROUND-NOISE; TEMPORAL ACUITY;
   ANIMAL-MODEL; DISCRIMINATION; EYEBLINK
AB Perceptually grouping a sound source with its reflections and separating them from irrelevant background noise sounds need computation of sound correlations and are critical for identifying and localizing the sound source in a complex acoustic environment. Using the prepulse inhibition of the acoustic startle reflex (ASR) as a measure, the present study investigated whether rats are able to detect correlation changes between sounds from different spatial locations. The results show that the rat's ASR amplitude was suppressed when the startle-eliciting stimulus was preceded by either an uncorrelated noise fragment or an anti-phase noise fragment that was embedded in two identical (correlated) but spatially separated noises. Suppression of the ASR amplitude increased as the duration of the noise fragment increased from 5 ms to 40 ms. The suppressive effect was also progressively enhanced after rats underwent successive testing sessions. Moreover, an enhanced suppression of the ASR amplitude was observed after rats were exposed to footshock that was precisely paired with a 100-ms correlation-change fragment. The results indicate that rats are able to detect the correlation change between sounds from two separated spatial locations, and the detection can be facilitated by both perceptual learning and emotional learning. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada.
   Peking Univ, Speech & Hearing Res Ctr, Natl Key Lab Machine Percept, Dept Psychol, Beijing 100871, Peoples R China.
RP Li, L (reprint author), Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada.
EM liangli@pku.edu.cn
CR ABEL SM, 2004, APPL ACOUST, V65
   Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897
   Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8
   Barsz K, 1998, HEARING RES, V115, P13, DOI 10.1016/S0378-5955(97)00173-1
   Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857
   Bohmelt AH, 1999, INT J PSYCHOPHYSIOL, V32, P239, DOI 10.1016/S0167-8760(99)00019-7
   BRAFF DL, 1990, ARCH GEN PSYCHIAT, V47, P181
   Carlson S, 1996, HEARING RES, V99, P168, DOI 10.1016/S0378-5955(96)00098-6
   CROFTON KM, 1990, PSYCHOBIOLOGY, V18, P467
   DAWSON ME, 1993, J ABNORM PSYCHOL, V102, P633, DOI 10.1037//0021-843X.102.4.633
   DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034
   Fendt M, 2001, PSYCHOPHARMACOLOGY, V156, P216, DOI 10.1007/s002130100794
   Filion DL, 2003, BIOL PSYCHOL, V64, P283, DOI 10.1016/S0301-0511(03)00077-2
   FILION DL, 1993, BIOL PSYCHOL, V35, P185, DOI 10.1016/0301-0511(93)90001-O
   FILION DL, 1994, PSYCHOPHYSIOLOGY S, V31, pS46
   GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821
   GEWIRTZ JC, 1995, BEHAV NEUROSCI, V109, P388, DOI 10.1037//0735-7044.109.3.388
   GIBSON JJ, 1955, PSYCHOL REV, V62, P32, DOI 10.1037/h0048826
   GRAHAM FK, 1975, PSYCHOPHYSIOLOGY, V12, P238, DOI 10.1111/j.1469-8986.1975.tb01284.x
   Hazlett EA, 2001, BIOL PSYCHIAT, V50, P281, DOI 10.1016/S0006-3223(01)01094-0
   Heekeren K, 2004, NEUROPSYCHOBIOLOGY, V49, P88, DOI 10.1159/000076416
   HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175
   ISON JR, 1983, PSYCHOL BULL, V94, P3, DOI 10.1037/0033-2909.94.1.3
   Ison JR, 2000, HEARING RES, V145, P169, DOI 10.1016/S0378-5955(00)00088-5
   Jennings PD, 1996, PSYCHOPHYSIOLOGY, V33, P148, DOI 10.1111/j.1469-8986.1996.tb02118.x
   KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R
   Landis C, 1939, STARTLE PATTERN
   Leitner DS, 1997, PSYCHOPHARMACOLOGY, V134, P213, DOI 10.1007/s002130050444
   Leitner DS, 1997, PERCEPT PSYCHOPHYS, V59, P774, DOI 10.3758/BF03206023
   Li L, 2003, CHINESE SCI BULL, V48, P2031, DOI 10.1360/03wc0209
   Li L, 2002, HEARING RES, V168, P98, DOI 10.1016/S0378-5955(02)00356-8
   Li L, 1998, PHYSIOL BEHAV, V65, P133, DOI 10.1016/S0031-9384(98)00143-7
   MUSSATWHITLOW BJ, 1997, PSYCHOPHYSIOLOGY S, V34, pS66
   Norris CM, 1996, PSYCHOBIOLOGY, V24, P160
   PERLSTEIN WM, 1993, PSYCHOPHYSIOLOGY, V30, P347, DOI 10.1111/j.1469-8986.1993.tb02056.x
   Plappert CF, 2004, BEHAV BRAIN RES, V152, P403, DOI 10.1016/j.bbr.2003.10.025
   Plappert CF, 2006, BEHAV NEUROSCI, V120, P16, DOI 10.1037/0735-7044.120.1.16
   POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852
   REIJMERS LGJE, 1994, BRAIN RES, V661, P174
   SABERI K, 1990, J ACOUST SOC AM, V87, P1732, DOI 10.1121/1.399422
   Sakai M, 2005, BEHAV NEUROSCI, V119, P961, DOI 10.1037/0735-7044.119.4.961
   Schell AM, 2000, PSYCHOPHYSIOLOGY, V37, P409, DOI 10.1017/S0048577200981757
   SCHELL AM, 1995, PSYCHOPHYSIOLOGY, V32, P266, DOI 10.1111/j.1469-8986.1995.tb02955.x
   SIKES RW, 1992, J NEUROPHYSIOL, V68, P1720
   Thorne GL, 2005, INT J PSYCHOPHYSIOL, V56, P121, DOI 10.1016/j.ijpsycho.2004.11.006
   Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188
   VILLANUEVA L, 1989, J NEUROPHYSIOL, V61, P391
   Wright BA, 1997, J NEUROSCI, V17, P3956
   Wright BA, 2001, P NATL ACAD SCI USA, V98, P12307, DOI 10.1073/pnas.211220498
   WU MF, 1984, J EXP PSYCHOL ANIM B, V10, P221
   YOUNG JS, 1983, J ACOUST SOC AM, V73, P1686, DOI 10.1121/1.389391
   ZOU D, 2006, IN PRESS NEUROPHARMA
NR 52
TC 9
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 1
EP 10
DI 10.1016/j.heares.2006.09.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500001
PM 17098386
ER

PT J
AU Bielefeld, EC
   Henderson, D
AF Bielefeld, Eric C.
   Henderson, Donald
TI Influence of sympathetic fibers on noise-induced hearing loss in the
   chinchilla
SO HEARING RESEARCH
LA English
DT Article
DE superior cervical ganglion; noise; DPOAE; cochlea; sympathetic
ID COCHLEAR BLOOD-FLOW; OTOACOUSTIC EMISSIONS; ACOUSTIC TRAUMA; CERVICAL
   SYMPATHECTOMY; ADRENERGIC INNERVATION; THRESHOLD SHIFT; GUINEA-PIG; EAR;
   STIMULATION; GANGLION
AB The influence of the sympathetic efferent fibers on cochlear susceptibility to noise-induced hearing loss is still an open question. In the current study, we explore the effects of unilateral and bilateral Superior Cervical Ganglion (SCG) ablation in the chinchilla on hearing loss from noise exposure, as measured with inferior colliculus (IC) evoked potentials, distortion product otoacoustic emissions (DPOAE), and outer hair cell (OHC) loss. The SCG was isolated at the level of the bifurcation of the carotid artery and removed unilaterally in 15 chinchillas. Another eight chinchillas underwent bilateral ablation. Twelve animals were employed as sham controls. Noise exposure was a 4 kHz octave band noise for I It at 110 dB SPL. Results showed improved recovery of DPOAE amplitudes after noise exposure in ears that underwent SCGectomy, as well as lower evoked potential threshold shifts relative to sham controls. Effects of SCGectomy on OHC loss were small. Results of the study suggest that sympathetic fibers do exert some influence on susceptibility to noise, but the influence may not be a major one. (c) 2006 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Bielefeld, EC (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM ecb2@buffalo.edu
RI Bielefeld, Eric/D-2015-2012
CR Amonoo-Kuofi HS, 1999, CLIN ANAT, V12, P345, DOI 10.1002/(SICI)1098-2353(1999)12:5<345::AID-CA5>3.0.CO;2-L
   BORG E, 1982, ACTA PHYSIOL SCAND, V115, P281, DOI 10.1111/j.1748-1716.1982.tb07077.x
   BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566
   DENSERT O, 1974, ACTA OTO-LARYNGOL, V77, P185, DOI 10.3109/00016487409124616
   DENSERT O, 1974, ACTA OTO-LARYNGOL, V78, P345, DOI 10.3109/00016487409126365
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009
   HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321
   HILDESHEIMER M, 1991, HEARING RES, V51, P49, DOI 10.1016/0378-5955(91)90006-U
   Hildesheimer M, 2002, HEARING RES, V163, P46, DOI 10.1016/S0378-5955(01)00371-9
   Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   HULTCRANTZ E, 1982, ACTA OTO-LARYNGOL, V94, P439, DOI 10.3109/00016488209128932
   Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
   KEMP DT, 1990, EAR HEARING, V11, P93
   KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
   LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M
   Laurikainen EA, 1997, HEARING RES, V105, P141, DOI 10.1016/S0378-5955(96)00198-0
   LEE AH, 1985, HEARING RES, V19, P127, DOI 10.1016/0378-5955(85)90116-9
   Le Prell CG, 2003, JARO, V4, P276, DOI 10.1007/s10162-002-3018-6
   PICKLES JO, 1979, ACTA OTO-LARYNGOL, V87, P69, DOI 10.3109/00016487909126388
   REN TY, 1993, ACTA OTO-LARYNGOL, V113, P146, DOI 10.3109/00016489309135783
   SHIBAMORI Y, 1994, BRAIN RES, V646, P223, DOI 10.1016/0006-8993(94)90082-5
   SNYDER DL, 1994, LAB ANIMAL, V23, P42
   Spoendlin H, 1966, Acta Otolaryngol, V61, P423
   Spoendlin H, 1981, Adv Otorhinolaryngol, V27, P1
   Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8
   Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2
   Zheng XY, 2000, HEARING RES, V144, P187, DOI 10.1016/S0378-5955(00)00065-4
NR 29
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 11
EP 19
DI 10.1016/j.heares.2006.09.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500002
PM 17092669
ER

PT J
AU Didyk, LA
   Dirckx, JJJ
   Bogdanov, VB
   Lysenko, VA
   Gorgo, YP
AF Didyk, L. A.
   Dirckx, J. J. J.
   Bogdanov, V. B.
   Lysenko, V. A.
   Gorgo, Yu. P.
TI The mechanical reaction of the pars flaccida of the eardrum to rapid air
   pressure oscillations modeling different levels of atmospheric
   disturbances
SO HEARING RESEARCH
LA English
DT Article
DE middle ear; tympanic membrane; pars flaccida; mechanical reactions;
   rapid pressure fluctuations
ID MIDDLE-EAR PRESSURE; TYMPANIC MEMBRANE; GERBIL; SYSTEM
AB Atmospheric pressure fluctuations (APF) might induce mechanical effects in the pars flaccida (PF) of the eardrum. To clarify these effects, different kinds of pressure oscillations (PO), chosen within the range of naturally occurring APF, were applied to the middle ears (ME) of gerbils. The linear displacement of the PF during a PO in the ME was measured by laser interferometry. The compliance of the PF to PO was calculated as the ratio of the amplitude of a PF oscillation to the amplitude of a PO. The displacement of the PF traced the PO in the entire range of frequencies (from 10 mHz to 200 mHz) and amplitudes (from 10 Pa to 110 Pal applied to the ME. Moreover, the PF is found to be displaced by pressure pulses of a few pascals only using a PO with a complex shape. The differences found in the compliance of the PF due to PO with low (less than 20 Pal and high (more than 90 Pa) amplitude point out that the mechanism of pressure regulation in the ME through the mechanical reaction of the PF in gerbil ears is better adapted to ordinary levels of natural APF than to extraordinary levels. The implications of these findings for the physiology of the human ME with respect to adaptation to natural APF are discussed. (c) 2006 Elsevier B.V. All rights reserved.
C1 Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine.
   Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium.
   Taras Shevchenko Natl Univ, Dept Biol, UA-01033 Kiev, Ukraine.
RP Didyk, LA (reprint author), Natl Acad Sci Ukraine, Inst Phys, Pr Nauki 46, UA-03028 Kiev, Ukraine.
EM didyk@iop.kiev.ua; Joris.Dirckx@ua.ac.be; vlabogd@yahoo.com;
   lysenko_v@yahoo.com; yugorgo@ukr.net
CR Ars B., 2003, FIBROCARTILAGINOUS E, P57
   Bedard AJ, 2000, PHYS TODAY, V53, P32, DOI 10.1063/1.883019
   Bert P., 1878, PRESSION BAROMETRIQU
   BULL G, 1988, Z METEOROL, V38, P265
   Delyukov A, 1999, INT J BIOMETEOROL, V43, P31, DOI 10.1007/s004840050113
   Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2
   DIRCKX JJJ, 2003, FIBOCARTILAGINOUS EU, P113
   EDEN AR, 1990, LARYNGOSCOPE, V100, P67
   Esteve D, 2003, FIBROCARTILAGINOUS E, P159
   Esteve D, 2001, J FR ORL, V50, P223
   GANNON PJ, 1994, ARCH OTOLARYNGOL, V120, P1382
   Gossard E. E., 1975, WAVES ATMOSPHERE ATM
   GREEN JE, 1968, J ACOUST SOC AM, V44, P1456, DOI 10.1121/1.1911286
   HECHT CS, 1993, LARYNGOSCOPE, V103, P1218
   HELLSTROM S, 2004, INT S MIDDL EAR PRES, P14
   HELLSTROM S, 1983, ACTA PHYSIOL SCAND, V118, P337, DOI 10.1111/j.1748-1716.1983.tb07280.x
   Kompanets V S, 1968, Voen Med Zh, V6, P61
   LEE CY, 2001, HEARING RES, P146
   LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176
   Lumley J, 1964, STRUCTURE ATMOSPHERI
   MEZERNITSKY PG, 1934, MED METEOROLOGY BRIE
   MOLVAER OI, 1978, ACTA OTO-LARYNGOL, V85, P24, DOI 10.3109/00016487809121419
   NAGAI T, 1989, ARCH OTO-RHINO-LARYN, V246, P210, DOI 10.1007/BF00453664
   NAGAI T, 1989, ARCH OTORHINOLARYNGO, V245, P169
   RICHNER H, 1978, INT J BIOMETEOROL, V22, P242, DOI 10.1007/BF01552805
   ROCKLEY TJ, 1992, ACTA OTO-LARYNGOL, V112, P816, DOI 10.3109/00016489209137479
   Sade J, 1997, ACTA OTO-LARYNGOL, V117, P289, DOI 10.3109/00016489709117789
   Sade J, 2001, OTOL NEUROTOL, V22, P133
   SCHRAPNEL HJ, 1832, LONDON MED GAZ, V10, P120
   STENFORS LE, 1979, ACTA OTO-LARYNGOL, V88, P395, DOI 10.3109/00016487909137184
   Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6
   Vladimirskiĭ B M, 1982, Probl Kosm Biol, V43, P174
NR 32
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 20
EP 28
DI 10.1016/j.heares.2006.09.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500003
PM 17098387
ER

PT J
AU Santurette, S
   Dau, T
AF Santurette, Sebastien
   Dau, Torsten
TI Binaural pitch perception in normal-hearing and hearing-impaired
   listeners
SO HEARING RESEARCH
LA English
DT Article
DE binaural pitch; hearing impairment; melody recognition; spectral and
   temporal resolution; auditory modeling
ID AUDITORY FILTER SHAPES; DICHOTIC PITCHES; EDGE PITCH; LEVEL DIFFERENCES;
   HUGGINS PITCH; GAP DETECTION; NOISE; SENSATION; DECAY; TIME
AB The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural-pitch perception and performance in measures of spectral and temporal resolution. Reduced frequency discrimination appeared to be linked to poorer melody recognition skills. Reduced frequency selectivity was also found to impede the perception of binaural-pitch stimuli. Overall, binaural-pitch stimuli might be very useful tools within clinical diagnostics for detecting specific deficiencies in the auditory system. (c) 2006 Elsevier B.V. All rights reserved.
C1 Tech Univ Denmark, Orsted DTU, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark.
RP Dau, T (reprint author), Tech Univ Denmark, Orsted DTU, Ctr Appl Hearing Res, DTU Bygning 352,Orsteda Plads, DK-2800 Lyngby, Denmark.
EM ses@oersted.dtu.dk; tda@oersted.dtu.dk
RI Santurette, Sebastien/B-6872-2009
OI Santurette, Sebastien/0000-0002-6868-5734
CR Akeroyd MA, 2000, J ACOUST SOC AM, V108, P316, DOI 10.1121/1.429467
   Akeroyd MA, 2001, J ACOUST SOC AM, V110, P1498, DOI 10.1121/1.1390336
   CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628
   Culling JF, 1999, HEARING RES, V127, P143, DOI 10.1016/S0378-5955(98)00193-2
   Culling JF, 1998, J ACOUST SOC AM, V103, P3509, DOI 10.1121/1.423059
   Dougherty RF, 1998, NEUROREPORT, V9, P3001, DOI 10.1097/00001756-199809140-00015
   DURLACH NI, 1960, J ACOUST SOC AM, V32, P1075, DOI 10.1121/1.1908315
   Fisher LD, 1993, BIOSTATISTICS METHOD
   FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   Hartmann W. M., 1984, J ACOUST SOC AM, V75, pS22
   Hartmann WM, 2001, J ACOUST SOC AM, V109, P294, DOI 10.1121/1.1331680
   Hartmann WM, 2003, J ACOUST SOC AM, V114, P3317, DOI 10.1121/1.1624072
   HARTMANN WM, 1984, J ACOUST SOC AM, V75, P528, DOI 10.1121/1.390486
   HARTMANN WM, 1993, J ACOUST SOC AM, V93, P3400, DOI 10.1121/1.405695
   Julesz B., 1971, FDN CYCLOPEAN PERCEP
   KLEIN MA, 1981, J ACOUST SOC AM, V70, P51, DOI 10.1121/1.386581
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005
   MEDDIS R, 1990, J ACOUST SOC AM, V87, P1813, DOI 10.1121/1.399379
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914
   PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652
   PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456
   PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297
   PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946
   RAATGEVER J, 1986, J ACOUST SOC AM, V80, P429, DOI 10.1121/1.394039
   SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181
   Shamma S, 2001, TRENDS COGN SCI, V5, P340, DOI 10.1016/S1364-6613(00)01704-6
   SHAMMA SA, 1989, J ACOUST SOC AM, V86, P989, DOI 10.1121/1.398734
   Slaney M., 1998, 1998010 INT RES CORP
   YOST WA, 1991, J ACOUST SOC AM, V89, P838, DOI 10.1121/1.1894644
   Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004
   ZHANG PX, 2004, J ACOUST SOC AM, V115, P2534
NR 34
TC 22
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 29
EP 47
DI 10.1016/j.heares.2006.09.013
PG 19
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500004
PM 17107767
ER

PT J
AU Guiraud, J
   Gallego, S
   Arnold, L
   Boyle, P
   Truy, E
   Collet, L
AF Guiraud, Jeanne
   Gallego, Stephane
   Arnold, Laure
   Boyle, Patrick
   Truy, Eric
   Collet, Lionel
TI Effects of auditory pathway anatomy and deafness characteristics? (1):
   On electrically evoked auditory brainstem responses
SO HEARING RESEARCH
LA English
DT Article
DE EABR latencies; tonotopy; cochlear implant; deafness characteristics
ID COCHLEAR IMPLANT USERS; SPEECH PROCESSING STRATEGIES; GUINEA-PIG;
   ELECTRODE DISCRIMINATION; CURRENT DISTRIBUTIONS; CHANNEL INTERACTION;
   OPERATING RANGES; DIFFERENT SITES; PITCH RANKING; CURRENT LEVEL
AB The purpose of this study was to distinguish the effects of different parameters on latencies of wave IIIe, wave Ve, and interpeak interval IIIe-Ve of electrical auditory brainstem responses (EABRs). EABRs were recorded from all the intra-cochlear electrodes in eight adult HiRes90K (R) cochlear implant users. The relationship between latencies and stimulation sites in the cochlea was characterized to assess activity along the auditory pathway. Audiograms before implantation, psychophysics at first fitting and duration of deafness were used to describe the influence of deafness on latencies. A decreasing baso-apical latency gradient was found for waves IIIe and Ve, while the interpeak interval IIIe-Ve remained the same along the electrode array. Electrical stimulation enabling to stimulate various parts of the cochlea at the same time, this could indicate an anatomical way of compensating for the delay the acoustic wave takes to reach the cochlea apex in a non-implanted ear. However, psychophysical levels were also found to increase at the cochlear base showing that the latency gradient could result from an increasing gradient of neural degeneration toward the base. Correlations of EABR latencies with psychophysics, audiometric data and duration of deafness show that factors linked to deafness have indeed an influence on EABR latencies. The possible explanations for the latency shift observed, whether they are anatomical and/or pathological, are exposed. (c) 2006 Elsevier B.V. All rights reserved.
C1 Edouard Herriot Univ Hosp, Dept Audiol & Otorhinolaryngol, F-69437 Lyon, France.
   Univ Lyon 1, Neurosci & Sensorial Syst Lab, CNRS, UMR 5020, F-69003 Lyon, France.
   Edouard Herriot Univ Hosp, Dept Otolaryngol Head & Neck Surg, F-69437 Lyon, France.
   Dept Clin Res, Cambridge CB2 5LD, England.
RP Guiraud, J (reprint author), Edouard Herriot Univ Hosp, Dept Audiol & Otorhinolaryngol, 5 Pl Arsonval, F-69437 Lyon, France.
EM jeanne_guiraud@hotmail.com; sgallego@hotmail.fr; laurea@abionics.fr;
   patrickb@abionics.fr; eric.truy@chu-lyon.fr; lionel.collet@chu-lyon.fr
CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W
   ABBAS PJ, 1990, USE MASKING EABR EVA
   Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
   ABBAS PJ, 1988, HEARING RES, V36, P153, DOI 10.1016/0378-5955(88)90057-3
   ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198
   ALLUM JHJ, 1990, SCAND AUDIOL, V19, P263, DOI 10.3109/01050399009070782
   BLACK R, 1980, J ACOUST SOC AM, V67, P686
   BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x
   Blamey P, 1996, Audiol Neurootol, V1, P293
   BRIMACOMBE JA, 1984, AUDIOLOGY, V23, P321
   BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006
   BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716
   BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554
   Cohen L T, 1996, Audiol Neurootol, V1, P265
   Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
   Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741
   Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449
   FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519
   Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002
   Firszt JB, 2003, EAR HEARING, V24, P184, DOI 10.1097/01.AUD.0000061230.58992.9A
   Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   Gallego S, 1996, ACTA OTO-LARYNGOL, V116, P228, DOI 10.3109/00016489609137830
   Gallego S, 1997, ACTA OTO-LARYNGOL, V117, P164, DOI 10.3109/00016489709117761
   GALLEGO S, 1999, ELECTROENCEPHALOGR C, V108, P521
   GARDI JN, 1985, COCHLEAR IMPLANTS, P351
   Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4
   Gordon KA, 2006, AUDIOL NEURO-OTOL, V11, P7, DOI 10.1159/000088851
   GORGA MP, 1988, J SPEECH HEAR RES, V31, P87
   GYO K, 1980, ACTA OTO-LARYNGOL, V90, P25, DOI 10.3109/00016488009131694
   HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U
   Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711
   HERMANN B, 1990, 2 INT COCHL IMPL S I, P57
   HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139
   Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273
   JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681
   Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313
   Lafon JC, 1964, TEST PHONETIQUE MESU
   LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
   LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203
   LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732
   LUSTED HS, 1984, LARYNGOSCOPE, V94, P878
   MASON SM, 1993, ADV OTO-RHINO-LARYNG, V48, P136
   MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475
   McKay CM, 1999, HEARING RES, V136, P159, DOI 10.1016/S0378-5955(99)00121-5
   Miller CA, 2003, HEARING RES, V175, P200
   MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M
   MOLLER A, 1985, AUDITORY BRAINSTEM R
   MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4
   Morgan DL, 2001, MUSCLE NERVE, V24, P372, DOI 10.1002/1097-4598(200103)24:3<372::AID-MUS1008>3.0.CO;2-7
   MORRIS D, 1999, C IMPL AUD PROSTH AU
   Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022
   NAGEL D, 1974, ARCH OTO-RHINO-LARYN, V206, P293, DOI 10.1007/BF00460282
   NicolasPuel C, 1996, HEARING RES, V100, P181, DOI 10.1016/0378-5955(96)00112-8
   OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9
   OTTE J, 1978, LARYNGOSCOPE, V88, P1231
   PFINGST BE, 1980, ANN OTO RHINOL LARYN, V89, P1
   Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6
   Pfingst BE, 1999, HEARING RES, V134, P105, DOI 10.1016/S0378-5955(99)00079-9
   PFINGST BE, 1984, ARCH OTOLARYNGOL, V110, P140
   Propst EJ, 2006, LARYNGOSCOPE, V116, P317, DOI 10.1097/01.mlg.0000199401.26626.4b
   RATTAY F, 1987, J THEOR BIOL, V125, P339, DOI 10.1016/S0022-5193(87)80066-8
   SCHMIDT JM, 1985, ACTA OTO-LARYNGOL, V99, P14, DOI 10.3109/00016488509119140
   SHALLOP JK, 1990, EAR HEARING, V11, P5, DOI 10.1097/00003446-199002000-00004
   SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6
   SIMMONS FB, 1983, ANN NY ACAD SCI, V405, P422, DOI 10.1111/j.1749-6632.1983.tb31656.x
   SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7
   SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937
   SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61
   STARR A, 1979, ANN OTO RHINOL LARYN, V88, P550
   Thai-Van H, 2002, ANN OTO RHINOL LARYN, V111, P1008
   Truy E, 1998, LARYNGOSCOPE, V108, P554, DOI 10.1097/00005537-199804000-00017
   VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X
   VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
   Vasconcelos Belmiro Cavalcanti do Egito, 2003, Pesqui Odontol Bras, V17, P126
   Wable J, 2001, AUDIOLOGY, V40, P265
   WALSH SM, 1982, HEARING RES, V7, P281, DOI 10.1016/0378-5955(82)90041-7
   WARING MD, 1992, LARYNGOSCOPE, V102, P1293, DOI 10.1288/00005537-199211000-00017
   WARING MD, 1995, EVOKED POTENTIAL, V96, P338, DOI 10.1016/0168-5597(95)00022-K
   YLIKOSKI J, 1974, ACTA OTO-LARYNGOL, P23
   ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D
   Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401
NR 82
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 48
EP 60
DI 10.1016/j.heares.2006.09.014
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500005
PM 17157463
ER

PT J
AU Bohne, BA
   Harding, GW
   Lee, SC
AF Bohne, Barbara A.
   Harding, Gary W.
   Lee, Steve C.
TI Death pathways in noise-damaged outer hair cells
SO HEARING RESEARCH
LA English
DT Article
DE cell-death pathways; noise damage; chinchilla; histopathology
ID CHINCHILLA COCHLEA; INTENSE NOISE; INDUCED APOPTOSIS; EXPOSURE;
   MICROSCOPY; MORPHOLOGY; ONCOSIS; LENGTH; ORGAN; CORTI
AB Using morphological criteria, death pathways in outer hair cells (OHCs) were determined in chinchilla organs of Corti that had been exposed to a high- or moderate-level octave band of noise (OBN) centered at either 0.5 or 4-kHz. The specimens were part of our large collection of plastic-embedded flat preparations of chinchilla cochleae. Three death pathways were identified: (1) oncotic - swollen, pale-staining cell with a swollen nucleus, (2) apoptotic - shrunken, dark-staining cell with a pyknotic nucleus and (3) a newly defined third pathway - no basolateral plasma membrane but cellular debris arranged in the shape of an intact OHC with a nucleus deficient in nucleoplasm. To minimize the secondary loss of OHCs from the entrance of endolymph into the organ of Corti, the specimens used for quantitative analysis of death pathways had the following characteristics: (1) the level to which they were exposed was less than or equal to 95 dB SPL. (2) the exposure duration was 6-216 h, (3) fixation for microscopic examination took place in vivo 1-2 h post-exposure and (4) there were no focal OHC lesions in the organs of Corti. Fifty-eight noise-exposed cochleae met these criteria. In these specimens, degenerating and missing OHCs were classified as to which death pathway the cells had followed or were following. Nine non-noise-exposed cochleae were also evaluated for OHC death pathways. The number of OHCs following the third death pathway was significantly greater in the noise-exposed cochleae than the non-noise-exposed cochleae for total exposure energies greater than those produced by 75 dB SPL for 216 h to a 0.5-kHz OBN and 57 dB SPL for 48 h to a 4-kHz OBN. In cochleae exposed to either octave band, OHCs dying by oncosis or apoptosis were uncommon. (c) 2006 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Bohne, BA (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave, St Louis, MO 63110 USA.
EM bohneb@ent.wustl.edu
RI Bohne, Barbara/A-9113-2008
OI Bohne, Barbara/0000-0003-3874-7620
CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X
   BEAGLEY HA, 1965, ACTA OTOLARYNGOL, V60, P437, DOI 10.3109/00016486509127027
   Ben-Sasson S. A., 1995, CELL DEATH DIFFER, P29
   Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283
   Bohne BA, 2000, AM J OTOL, V21, P505
   BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9
   BOHNE BA, 1972, LARYNGOSCOPE, V82, P1
   BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85
   BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285
   BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X
   BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711
   BURSCH W, 1990, CARCINOGENESIS, V11, P847, DOI 10.1093/carcin/11.5.847
   CLARKE PGH, 1990, ANAT EMBRYOL, V181, P195
   COVELL WP, 1963, AMRLTDR6299
   Cummings MC, 1997, AM J SURG PATHOL, V21, P88, DOI 10.1097/00000478-199701000-00010
   Fried M P, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P285
   Han WJ, 2006, HEARING RES, V211, P85, DOI 10.1016/j.heares.2005.10.004
   HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4
   Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6
   Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Jugdutt BI, 2005, MOL CELL BIOCHEM, V270, P177, DOI 10.1007/s11010-005-4507-9
   KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33
   Kitanaka C, 1999, CELL DEATH DIFFER, V6, P508, DOI 10.1038/sj.cdd.4400526
   KRESSEL M, 1994, CELL TISSUE RES, V278, P549
   Labat-Moleur F, 1998, J HISTOCHEM CYTOCHEM, V46, P327
   Majno G., 1996, CELLS TISSUES DIS PR, P175
   MAJNO G, 1995, AM J PATHOL, V146, P3
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Nishizaki K, 1999, HEARING RES, V130, P131, DOI 10.1016/S0378-5955(99)00002-7
   RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313
   SCHMITT NC, 2004, MIDW RES M ASS RES O, P132
   SCHWEICH.JU, 1973, TERATOLOGY, V7, P253, DOI 10.1002/tera.1420070306
   Slepecky N. B., 1996, COCHLEA, P44
   Wangemann P., 1996, COCHLEA, P130
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
NR 37
TC 31
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 61
EP 70
DI 10.1016/j.heares.2006.10.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500006
PM 17141990
ER

PT J
AU Aizawa, N
   Eggermont, JJ
AF Aizawa, Naotaka
   Eggermont, Jos J.
TI Mild noise-induced hearing loss at young age affects temporal modulation
   transfer functions in adult cat primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE cat; auditory cortex; single unit clusters; noise trauma; temporal
   modulation transfer functions
ID RECEPTOR ORGAN DAMAGE; VOICE ONSET TIME; INFERIOR COLLICULUS; COCHLEAR
   NUCLEUS; AMPLITUDE-MODULATION; RESPONSES; INHIBITION; TRAUMA;
   REPRESENTATIONS; POTENTIALS
AB Kittens were exposed for 2 h to a 1/3rd octave band of noise centered at 5 kHz and at 120 dB SPL. After the exposure, they were kept in a quiet room for at least 4 weeks, and until they were mature. The noise-exposed cats showed on average 16.5 dB higher ABR thresholds and 13.2 dB higher thresholds at the characteristic frequency (CF) than the control cats for frequencies between 4 and 16 kHz. The frequency-tuning curve bandwidth at 20 dB above threshold was significantly increased compared to controls in the CF region of the hearing loss. In noise-exposed cats, temporal modulation-transfer functions (tMTFs) to amplitude-modulated (AM) noise, but not to periodic click trains, showed a marked increase for modulation frequencies (MFs) below 6 Hz. The vectorstrength in noise-exposed cats increased for all modulation frequencies below 32 Hz for neurons with a CF in the range of the hearing loss. The tMTFs for AMnoise in the noise-exposed group were less band-pass compared to the controls, and in that sense the mild hearing loss could be considered as effectively reducing the central activation in the same way as a reduced sound pressure level. Effects of reduced central inhibition are visible in the broadening of frequency-tuning curves, and in the increased limiting rates for AMnoise. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada.
   Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada.
RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada.
EM eggermon@ucalgary.ca
CR Aizawa N, 2006, JARO-J ASSOC RES OTO, V7, P71, DOI 10.1007/s10162-005-0026-3
   Backoff PM, 1999, HEARING RES, V134, P77, DOI 10.1016/S0378-5955(99)00071-4
   BACON SP, 1985, AUDIOLOGY, V24, P117
   Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003
   Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5
   Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1
   Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743
   EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76
   EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9
   Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309
   Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305
   Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006
   EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227
   Fisher N. I., 1993, STAT ANAL CIRCULAR D
   FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
   Koch U, 1998, J NEUROPHYSIOL, V80, P71
   Krishna BS, 2000, J NEUROPHYSIOL, V84, P255
   Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737
   Lu T, 2000, J NEUROPHYSIOL, V84, P236
   MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542
   Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177
   Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7
   Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
   Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
   Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171
   REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1
   Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283
   Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   SZCZEPANIAK WS, 1995, ANN OTO RHINOL LARYN, V104, P399
   Tomita M, 2004, HEARING RES, V193, P39, DOI 10.1016/j.heares.2004.03.002
NR 31
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 71
EP 82
DI 10.1016/j.heares.2006.09.016
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500007
PM 17123758
ER

PT J
AU Wagner, W
   Heppelmann, G
   Muller, J
   Janssen, T
   Zenner, HP
AF Wagner, W.
   Heppelmann, G.
   Mueller, J.
   Janssen, T.
   Zenner, H. -P.
TI Olivocochlear reflex effect on human distortion product otoacoustic
   emissions is largest at frequencies with distinct fine structure dips
SO HEARING RESEARCH
LA English
DT Article
DE olivocochlear efferents; olivocochlear bundle; olivocochlear reflex;
   contralateral suppression; otoacoustic emissions; distortion products
ID CONTRALATERAL SOUND STIMULATION; COCHLEAR MICROMECHANICAL PROPERTIES;
   MEDIAL EFFERENT SYSTEM; BROAD-BAND NOISE; ACOUSTIC STIMULATION; RAPID
   ADAPTATION; TIME-COURSE; GUINEA-PIG; HUMAN EAR; SUPPRESSION
AB Activity of the medial olivocochlear efferents can be inferred by measuring the change of the level of distortion product otoacoustic emissions (DPOAE) during ipsilateral or contralateral acoustic stimulation, the so-called medial olivocochlear reflex (MOCR). A limitation of this measurement strategy, however, is the distinct variability of MOCR values depending on DPOAE primary tone levels and frequency, which makes selection of the stimulus parameters difficult.
   The objective of this study was to evaluate the dependence of MOCR values on DPOAE fine structure in humans. MOCR during contralateral acoustic stimulation was measured at frequencies with distinct non-monotonicity ("dip") in the DPOAE fine structure, and in frequencies with flat fine structure. One hundred and twenty one different primary tone level combinations were used (L-1 = 50-60 dB SPL, L-2 = 35-45 dB SPL, 1 dB steps). The measurement was repeated on another day.
   The major findings were: (1) Largest MOCR effects can be found in frequencies which exhibit a distinct dip in DPOAE fine structure. (2) Primary tone levels have a critical influence on the magnitude of the MOCR effect. MOCR changes of up to 23 dB following a L, change of only I dB were observed. Averages of the maximum MOCR change per I dB step were in the 3-5 dB-range. Both findings can be interpreted in the light of the DPOAE two-generator model [Heitmann, J., Waldmann, B., Schnitzler, H.U., Plinkert, P.K., Zenner, H.P. 1998. Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure - evidence for a secondary generator. Journal of the Acoustical Society of America 103, 1527-1531].
   According to the present results we propose, that assessing MOCR specifically at frequencies with a distinct dip in the DPOAE fine structure, in combination with fine variation of the stimulus tone levels, allows for a more targeted search for maximum MOCR effects. Future studies must show if this approach can contribute to the further clarification of the physiological roles of the olivocochlear efferents. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Tubingen, Dept Otorhinolaryngol, Tubingen Hearing Res Ctr, D-72076 Tubingen, Germany.
   Tech Univ Munich, Dept Otorhinolaryngol, D-8000 Munich, Germany.
RP Wagner, W (reprint author), Univ Tubingen, Dept Otorhinolaryngol, Tubingen Hearing Res Ctr, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany.
EM w.wagner@med.uni-tuebingen.de
CR Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4
   Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923
   CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8
   COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E
   Dhar S, 2004, EAR HEARING, V25, P573, DOI 10.1097/00003446-200412000-00006
   Di Girolamo S, 2001, HEARING RES, V162, P80, DOI 10.1016/S0378-5955(01)00370-7
   GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424
   GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732
   Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3
   Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010
   Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290
   James AL, 2002, CLIN OTOLARYNGOL, V27, P106, DOI 10.1046/j.1365-2273.2002.00541.x
   Janssen T, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P498, DOI 10.1142/9789812704931_0068
   Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767
   KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7
   Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066
   Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
   Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047
   Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6
   Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956
   Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7
   Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286
   Luebke AE, 2002, J NEUROSCI, V22, P4241
   Maison SF, 2000, J NEUROSCI, V20, P4701
   Meinke DK, 2005, HEARING RES, V208, P89, DOI 10.1016/j.heares.2005.05.004
   MOULIN A, 1992, ACTA OTO-LARYNGOL, V112, P210
   Moulin A, 1998, NEUROREPORT, V9, P3741, DOI 10.1097/00001756-199811160-00031
   MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K
   Muller J, 2005, J ACOUST SOC AM, V118, P3747, DOI 10.1121/1.2109127
   Murugasu E, 1996, J NEUROSCI, V16, P325
   Nieschalk M, 1997, HNO, V45, P378, DOI 10.1007/s001060050113
   PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410
   RAJAN R, 1995, J NEUROPHYSIOL, V74, P598
   Relkin EM, 2005, JARO-J ASSOC RES OTO, V6, P119, DOI 10.1007/s10162-004-5047-9
   Sasaki N, 2000, TOHOKU J EXP MED, V191, P71, DOI 10.1620/tjem.191.71
   Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2
   Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
   Sliwinska-Kowalska M, 2002, INT J AUDIOL, V41, P113
   Timpe-Syverson G K, 1999, J Am Acad Audiol, V10, P371
   VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724
   Wagner W, 2005, LARYNGOSCOPE, V115, P2021, DOI 10.1097/01.MLG.0000181463.16591.A7
   WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
   WHITEHEAD ML, 1991, HEARING RES, V51, P55, DOI 10.1016/0378-5955(91)90007-V
   WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235
   WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P1130, DOI 10.1121/1.412226
   Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X
   WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002
NR 47
TC 21
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 83
EP 92
DI 10.1016/j.heares.2006.10.001
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500008
PM 17137736
ER

PT J
AU Dravis, C
   Wu, T
   Chumley, MJ
   Yokoyama, N
   Wei, SN
   Wu, DK
   Marcus, DC
   Henkemeyer, M
AF Dravis, Christopher
   Wu, Tao
   Chumley, Michael J.
   Yokoyama, Nobuhiko
   Wei, Shiniu
   Wu, Doris K.
   Marcus, Daniel C.
   Henkemeyer, Mark
TI EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular
   endolymph
SO HEARING RESEARCH
LA English
DT Article
DE Ephrin-B2; EphB2; receptor tyrosine kinase; vestibular epithelium; dark
   cells; transitional cells; endolymph; potassium; ionic homeostasis
ID RECEPTOR TYROSINE KINASE; CRYSTAL-STRUCTURE; STRIA VASCULARIS; DARK
   CELLS; INNER-EAR; AUTOPHOSPHORYLATION SITE; TRANSEPITHELIAL VOLTAGE;
   TRANSMEMBRANE LIGANDS; TRANSPORT MECHANISMS; COMMISSURAL AXONS
AB The ability to transport cations and anions across epithelia is critical for the regulation of pH, ionic homeostasis, and volume of extracellular fluids. Although the transporters and channels that facilitate ion and water movement across cell membranes are well known, the molecular mechanisms and signal transduction events that regulate these activities remain poorly understood. The Eph family of receptor tyrosine kinases and their membrane-anchored ephrin ligands are well known to transduce bidirectional signals that control axon guidance and other cell migration/adhesion events during development. However, these molecules are also expressed in non-motile epithelial cells, including EphB2 in K+-secreting vestibular dark cells and ephrin-B2 in the adjacent transitional cells of the inner ear. Consistent with these expression patterns, mice with cytoplasmic domain mutations that interfere with EphB2 forward signaling or ephrin-B2 reverse signaling exhibit a hyperactive circling (waltzing) locomotion associated with a decreased amount of endolymph fluid that normally fills the vestibular labyrinth. Endolymph is unusual as an extracellular fluid in that it is normally high in K+ and low in Na+. Direct measurement of this fluid in live animals revealed significant decreases in K+ concentration and endolymphatic potential in both EphB2 and ephrin-B2 mutant mice. Our findings provide evidence that bidirectional signaling mediated by B-subclass Ephs and ephrins controls the production and ionic homeostasis of endolymph fluid and thereby provide the first evidence that these molecules can control the activities of mature epithelial cells. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Texas, SW Med Ctr, Ctr Dev Biol, Dallas, TX 75390 USA.
   Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA.
   Natl Inst Deafness & Commun Disorders, Mol Biol Lab, Rockville, MD 20850 USA.
RP Henkemeyer, M (reprint author), Univ Texas, SW Med Ctr, Ctr Dev Biol, Dallas, TX 75390 USA.
EM mark.henkemeyer@utsouthwestern.edu
CR Bergemann AD, 1998, ONCOGENE, V16, P471, DOI 10.1038/sj.onc.1201557
   Bissonnette JP, 1996, J COMP NEUROL, V368, P620, DOI 10.1002/(SICI)1096-9861(19960513)368:4<620::AID-CNE12>3.0.CO;2-L
   Borgnia M, 1999, ANNU REV BIOCHEM, V68, P425, DOI 10.1146/annurev.biochem.68.1.425
   BRAMBILLA R, 1995, EMBO J, V14, P3116
   Bruckner K, 1997, SCIENCE, V275, P1640, DOI 10.1126/science.275.5306.1640
   Buchert M, 1999, J CELL BIOL, V144, P361, DOI 10.1083/jcb.144.2.361
   Casey JR, 1998, BIOCHEM CELL BIOL, V76, P709, DOI 10.1139/bcb-76-5-709
   Contractor A, 2002, SCIENCE, V296, P1864, DOI 10.1126/science.1069081
   Cowan CA, 2004, DEV BIOL, V271, P263, DOI 10.1016/j.ydbio.2004.03.026
   Cowan CA, 2002, TRENDS CELL BIOL, V12, P339, DOI 10.1016/S0962-8924(02)02317-6
   Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5
   Cowan CA, 2001, NATURE, V413, P174, DOI 10.1038/35093123
   Dalva MB, 2000, CELL, V103, P945, DOI 10.1016/S0092-8674(00)00197-5
   Davis MJ, 2001, AM J PHYSIOL-HEART C, V281, pH1835
   DAVIS S, 1994, SCIENCE, V266, P816, DOI 10.1126/science.7973638
   Davy A, 2005, DEV DYNAM, V232, P1, DOI 10.1002/dvdy.20200
   DEEN PMT, 1998, CURR OPIN CELL BIOL, V10
   Dravis C, 2004, DEV BIOL, V271, P272, DOI 10.1016/j.ydbio.2004.03.027
   Dubyak GR, 2004, ADV PHYSIOL EDUC, V28, P143, DOI 10.1152/advan.00046.2004
   Ellis C, 1996, ONCOGENE, V12, P1727
   Flanagan JG, 1997, CELL, V90, P403
   Flanagan JG, 1998, ANNU REV NEUROSCI, V21, P309, DOI 10.1146/annurev.neuro.21.1.309
   Frisen J, 1999, EMBO J, V18, P5159, DOI 10.1093/emboj/18.19.5159
   Gale NW, 1996, NEURON, V17, P9, DOI 10.1016/S0896-6273(00)80276-7
   Gale NW, 1996, ONCOGENE, V13, P1343
   Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004
   Grunwald IC, 2001, NEURON, V32, P1027, DOI 10.1016/S0896-6273(01)00550-5
   HANKS SK, 1988, SCIENCE, V241, P42, DOI 10.1126/science.3291115
   Henderson JT, 2001, NEURON, V32, P1041, DOI 10.1016/S0896-6273(01)00553-0
   Henkemeyer M, 1996, CELL, V86, P35, DOI 10.1016/S0092-8674(00)80075-6
   Himanen JP, 2004, NAT NEUROSCI, V7, P501, DOI 10.1038/nn1237
   Himanen JP, 1998, NATURE, V396, P486
   Himanen JP, 2001, NATURE, V414, P933, DOI 10.1038/414933a
   Hock B, 1998, ONCOGENE, V17, P255, DOI 10.1038/sj.onc.1201907
   Hockley D, 1998, JAVA REP, V3, P6
   Holland SJ, 1996, NATURE, V383, P722, DOI 10.1038/383722a0
   Hollander E, 1997, CNS SPECTRUMS, V2, P16
   Jentsch TJ, 2004, NAT CELL BIOL, V6, P1039, DOI 10.1038/ncb1104-1039
   Jentsch TJ, 2005, J CLIN INVEST, V115, P2039, DOI 10.1172/JCI25470
   Kass RS, 2005, J CLIN INVEST, V115, P1986, DOI 10.1172/JCI26011
   Kitajiri S, 2004, HEARING RES, V187, P25, DOI 10.1016/S0378-5955(03)00338-1
   Kitajiri SI, 2004, J CELL SCI, V117, P5087, DOI 10.1242/jcs.01393
   Kullander K, 2002, NAT REV MOL CELL BIO, V3, P475, DOI 10.1038/nrm856
   Lu Q, 2001, CELL, V105, P69, DOI 10.1016/S0092-8674(01)00297-5
   MARCUS DC, 1994, HEARING RES, V73, P101, DOI 10.1016/0378-5955(94)90287-9
   Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403
   MARCUS DC, 1994, AM J PHYSIOL, V267, pC857
   Morsli H, 1998, J NEUROSCI, V18, P3327
   Orioli D, 1996, EMBO J, V15, P6035
   Pasquale EB, 2005, NAT REV MOL CELL BIO, V6, P462, DOI 10.1038/nrm1662
   SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M
   Stapleton D, 1999, NAT STRUCT BIOL, V6, P44
   Stein E, 1998, J BIOL CHEM, V273, P1303, DOI 10.1074/jbc.273.3.1303
   Strupp M, 2001, CURR OPIN NEUROL, V14, P11, DOI 10.1097/00019052-200102000-00003
   Takasu MA, 2002, SCIENCE, V295, P491, DOI 10.1126/science.1065983
   TANAKA M, 2005, EMBO J
   TANAKA M, 2005, J BIOL CHEM
   Thanos CD, 1999, SCIENCE, V283, P833, DOI 10.1126/science.283.5403.833
   Torres R, 1998, NEURON, V21, P1453, DOI 10.1016/S0896-6273(00)80663-7
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1
   Wangemann P, 2002, AUDIOL NEURO-OTOL, V7, P199, DOI 10.1159/000063736
   WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6
   Wybenga-Groot LE, 2001, CELL, V106, P745, DOI 10.1016/S0092-8674(01)00496-2
   Zisch AH, 1998, ONCOGENE, V16, P2657, DOI 10.1038/sj.onc.1201823
NR 67
TC 23
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 93
EP 104
DI 10.1016/j.heares.2006.10.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500009
PM 17158005
ER

PT J
AU Palmer, AR
   Liu, LF
   Shackleton, TM
AF Palmer, Alan R.
   Liu, Liang-fa
   Shackleton, Trevor M.
TI Changes in interaural time sensitivity with interaural level differences
   in the inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
DE interaural time differences; interaural level differences; inferior
   colliculus
ID SUPERIOR OLIVARY COMPLEX; FREQUENCY SOUND LOCALIZATION; AUDITORY-NERVE
   FIBERS; CENTRAL NUCLEUS; TEMPORAL DISPARITIES; BINAURAL INTERACTION;
   MAMMALIAN COCHLEA; PHASE-LOCKING; SINGLE TONES; GUINEA-PIG
AB We measured interaural time difference (ITD) sensitivity of 72 cells in the inferior colliculus of the anaesthetised guinea pig as a function of frequency and interaural level difference (ILD). For many units there was a "null" frequency, where varying the ILD made no difference to the position of the peak of the ITD sensitivity. This null frequency was not necessarily at the characteristic frequency (CF): it occurred at CF in less than a third of the neurons for which we had sufficient data (14/50). Equally often, the null occurred below (15/50) and less often, above CF (8/50). The remaining (13/50) neurons showed clear phase changes, but these were erratic or parallel and no null could be attributed. In 33 of the 37 neurons with an identifiable null frequency, the peak ITD moved towards the recording side with increasing ILD, for frequencies above the null, and away for frequencies below the null. The changes in ITD sensitivity expressed as phase were maximally about 0.2-0.3 cycles. Many of the changes in response phase with ILD are in the same direction and magnitude as changes in the phase locking with sound level in auditory nerve fibres. Thus, these changes in phase sensitivity at the basilar membrane and auditory nerve are maintained through to ITD tuning in the IC. This is consistent with a coincidence detection mechanism. However, some of the more complex phenomena which we observe are consistent with convergence at the IC. (c) 2006 Elsevier B.V. All rights reserved.
C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England.
   Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100853, Peoples R China.
RP Palmer, AR (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England.
EM alan.palmer@ihr.mrc.ac.uk; liangfa-liu@hotmail.com;
   trevor.shackleton@ihr.mrc.ac.uk
CR ALLEN JB, 1983, J ACOUST SOC AM, V73, P2071, DOI 10.1121/1.389575
   ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474
   Batra R, 1997, J NEUROPHYSIOL, V78, P1237
   Batra R, 1997, J NEUROPHYSIOL, V78, P1222
   BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410
   BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511
   BUUNEN TJF, 1978, J ACOUST SOC AM, V64, P772, DOI 10.1121/1.382042
   CAIRD D, 1983, EXP BRAIN RES, V52, P385
   CARNEY LH, 1994, HEARING RES, V76, P31, DOI 10.1016/0378-5955(94)90084-1
   CASE SM, 2005, J NEUROSCI, V25, P7575
   CROW G, 1978, J ACOUST SOC AM, V64, P493, DOI 10.1121/1.381999
   ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117
   Evans EF, 1977, PSYCHOPHYSICS PHYSL, P185
   GLEICH O, 1988, HEARING RES, V32, P81, DOI 10.1016/0378-5955(88)90148-7
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1585, DOI 10.1121/1.2143590
   HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5
   Jeffress L. A., 1948, J COMP PHYSIOL PSYCH, V61, P468
   JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
   Kiang NYS, 1965, ACTA OTOLARYNG STOCK, V59, P186, DOI 10.3109/00016486509124552
   KLINKE R, 1980, EXP BRAIN RES, V38, P137
   KUWADA S, 1983, J NEUROPHYSIOL, V50, P981
   KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   McAlpine D, 1996, HEARING RES, V97, P136
   McAlpine D, 1998, J NEUROSCI, V18, P6026
   McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
   NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203
   Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
   Palmer AR, 2005, INFERIOR COLLICULUS, P377, DOI 10.1007/0-387-27083-3_13
   PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
   Palmer AR, 2004, CURR OPIN NEUROBIOL, V14, P457, DOI 10.1016/j.conb.2004.06.001
   PATUZZI R, 1988, PHYSIOL REV, V68, P1009
   RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569
   Robles L, 2001, PHYSIOL REV, V81, P1305
   ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407
   Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744
   RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
   SCHWEIZER H, 1981, J COMP NEUROL, V201, P25, DOI 10.1002/cne.902010104
   Shackleton TM, 2003, J NEUROSCI, V23, P716
   SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668
   YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
NR 46
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 105
EP 113
DI 10.1016/j.heares.2006.10.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500010
PM 17141992
ER

PT J
AU Pichora-Fuller, MK
   Schneider, BA
   MacDonald, E
   Pass, HE
   Brown, S
AF Pichora-Fuller, M. Kathleen
   Schneider, Bruce A.
   MacDonald, Ewen
   Pass, Hollis E.
   Brown, Sasha
TI Temporal jitter disrupts speech intelligibility: A simulation of
   auditory aging
SO HEARING RESEARCH
LA English
DT Article
DE aging; temporal jitter; neural synchrony; speech intelligibility; word
   identification
ID AGE-RELATED-CHANGES; MASKING-LEVEL DIFFERENCES; NORMAL-HEARING;
   FREQUENCY-SELECTIVITY; OLD ADULTS; NOISE; YOUNG; DISCRIMINATION;
   ENVELOPE; INTENSITY
AB We disrupted periodicity cues by temporally jittering the speech signal to explore how such distortion might affect word identification. Jittering distorts the fine structure of the speech signal with negligible alteration of either its long-term spectral or amplitude envelope characteristics. In Experiment 1, word identification in noise was significantly reduced in young, normal-hearing adults when sentences were temporally jittered at frequencies below 1.2 kHz. The accuracy of the younger adults in identifying jittered speech in noise was similar to that found previously for older adults with good audiograms when they listened to intact speech in noise. In Experiment 2, to rule out the possibility that the reductions in word identification were due to spectral distortion, we also tested a simulation of cochlear hearing loss that produced spectral distortion equivalent to that produced by jittering, but this simulation had significantly less temporal distortion than was produced by jittering. There was no significant reduction in the accuracy of word identification when only the frequency region below 1.2 kHz was spectrally distorted. Hence, it is the temporal distortion rather than the spectral distortion of the low-frequency components that disrupts word identification. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Toronto, Dept Psychol, Mississauga, ON L5L 1C6, Canada.
   Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada.
   Univ British Columbia, Sch Audiol & Speech Sci, Vancouver, BC V6T 1Z3, Canada.
RP Pichora-Fuller, MK (reprint author), Univ Toronto, Dept Psychol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
EM kpfuller@utm.utoronto.ca
RI MacDonald, Ewen/B-8841-2013
CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751
   Alain C, 2001, J ACOUST SOC AM, V109, P2211, DOI 10.1121/1.1367243
   ALLEN JB, 1977, IEEE T ACOUST SPEECH, V25, P235, DOI 10.1109/TASSP.1977.1162950
   BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3
   BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640
   BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176
   BILGER RC, 1984, J SPEECH HEAR RES, V27, P32
   Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7
   Divenyi P. L., 1999, CURRENT OPINION OTOL, V7, P282, DOI 10.1097/00020840-199910000-00012
   DRULLMAN R, 1995, J ACOUST SOC AM, V98, P1796, DOI 10.1121/1.413378
   DRULLMAN R, 1995, J ACOUST SOC AM, V97, P585, DOI 10.1121/1.413112
   Dubno JR, 2000, J ACOUST SOC AM, V107, P538, DOI 10.1121/1.428322
   Durlach N.I., 1972, F MODERN AUDITORY TH, P371
   Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183
   Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   Gates George A, 2003, J Am Acad Audiol, V14, P574, DOI 10.3766/jaaa.14.10.6
   Grose J H, 1996, J Am Acad Audiol, V7, P168
   He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127
   HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N
   HUMES LE, 1988, J ACOUST SOC AM, V83, P188, DOI 10.1121/1.396420
   HUMES LE, 1991, J ACOUST SOC AM, V90, P1933, DOI 10.1121/1.401673
   Humes L E, 1996, J Am Acad Audiol, V7, P161
   MILLS JH, IN PRESS SEM HEAR
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   Moore BCJ, 2003, J PHONETICS, V31, P563, DOI 10.1016/S0095-4470(03)00011-1
   MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925
   PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652
   KATHLEEN M, 1991, J SPEECH HEAR RES, V34, P1410
   PICHORAFULLER MK, 1992, J ACOUST SOC AM, V91, P2129, DOI 10.1121/1.403673
   PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282
   Pichora-Fuller MK, 1998, PERCEPT PSYCHOPHYS, V60, P1197, DOI 10.3758/BF03206169
   Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11
   PICHORAFULLER MK, 1999, J ACOUST SOC AM, V105, P1345, DOI 10.1121/1.426381
   RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4
   Schneider B. A., 1997, J SPEECH LANGUAGE PA, V21, P111
   Schneider BA, 2000, HDB AGING COGNITION, P155
   Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002
   Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294
   TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950
   TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813
   VONGPAISAL T, IN PRESS J SPEECH LA
   Wingfield A, 1996, J Am Acad Audiol, V7, P175
   Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031
NR 44
TC 57
Z9 58
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 114
EP 121
DI 10.1016/j.heares.2006.10.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500011
PM 17157462
ER

PT J
AU Gleich, O
   Hamann, I
   Kittel, MC
   Klump, GM
   Strutz, J
AF Gleich, Otto
   Hamann, Ingo
   Kittel, Malte C.
   Klump, Georg M.
   Strutz, Juergen
TI Forward masking in gerbils: The effect of age
SO HEARING RESEARCH
LA English
DT Article
DE presbyacusis; aging; peripheral hearing loss; central hearing loss;
   psychoacoustic testing; temporal processing
ID NORMAL-HEARING; GAP DETECTION; OLDER-ADULTS; PSYCHOMETRIC FUNCTIONS;
   MERIONES-UNGUICULATUS; INFERIOR COLLICULUS; SPEECH RECOGNITION; TEMPORAL
   ACUITY; AUDITORY-NERVE; CBA MOUSE
AB We investigated forward masking in 21 gerbils as a function of age (5-47 months) using 400 ms maskers at 40 dB SPL and a 20 ms, 2.85 kHz probe presented 2.5 ins after the masker. Elevated thresholds for the unmasked probe were only observed in animals older than 3 years. Unmasked thresholds showed no significant age-dependent hearing loss in animals below 3 years of age. In these animals without peripheral hearing loss, we found a significant age-dependent increase of masker-induced threshold shift. A regression analysis revealed that threshold shift increased from 23 dB in I year old gerbils to 37 dB in 3 year old animals. Increased forward masking in these animals with no sign of peripheral hearing loss points to a central processing deficit. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany.
   Univ Oldenburg, AG Zoophysiol & Verhalten, FB 7, D-26111 Oldenburg, Germany.
RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany.
EM otto.gleich@klinik.uni-regensburg.de; ingo-kva@online.no;
   Malte.Kittel@astrazeneca.com; Georg.Klump@uni-oldenburg.de;
   juergen.strutz@klinik.uni-regensburg.de
CR AREHART KH, 1990, J SPEECH HEAR RES, V33, P433
   BARGONES JY, 1995, J ACOUST SOC AM, V98, P99, DOI 10.1121/1.414446
   Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8
   Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7
   CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5
   Dooling RJ, 2001, HEARING RES, V152, P159, DOI 10.1016/S0378-5955(00)00249-5
   Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611
   Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421
   EGAN JP, 1969, PERCEPT PSYCHOPHYS, V6, P209, DOI 10.3758/BF03207019
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   Gleich Otto, 2006, Hear Res, V220, P27, DOI 10.1016/j.heares.2006.06.014
   Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74
   GREEN DM, 1966, SIGNAL DETECTION THE
   Hamann I, 2004, JARO-J ASSOC RES OTO, V5, P49, DOI 10.1007/s10162-003-3041-2
   Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9
   HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083
   Ison JR, 2003, J ACOUST SOC AM, V114, P522, DOI 10.1121/1.1577553
   Lam CF, 1996, J ACOUST SOC AM, V99, P3689, DOI 10.1121/1.414966
   Moore B. C. J., 1989, INTRO PSYCHOL HEARIN
   MOORE BCJ, 1983, J ACOUST SOC AM, V73, P1249, DOI 10.1121/1.389273
   MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752
   Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5
   Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205
   Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446
   Sommers MS, 1998, J ACOUST SOC AM, V103, P1067, DOI 10.1121/1.421220
   Sumner CJ, 2003, J ACOUST SOC AM, V113, P893, DOI 10.1121/1.1515777
   Walton J, 1999, HEARING RES, V127, P86, DOI 10.1016/S0378-5955(98)00175-0
   Walton JP, 1998, J NEUROSCI, V18, P2764
   WATSON CS, 1972, J ACOUST SOC AM, V52, P633, DOI 10.1121/1.1913153
   YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8
   Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8
NR 31
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 122
EP 128
DI 10.1016/j.heares.2006.11.001
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500012
PM 17158007
ER

PT J
AU Frederiksen, BL
   Caye-Thomasen, P
   Lund, SP
   Wagner, N
   Asal, K
   Olsen, NV
   Thomsen, J
AF Frederiksen, Birgitte Lidegaard
   Caye-Thomasen, Per
   Lund, Soren Peter
   Wagner, Niels
   Asal, Korhan
   Olsen, Niels Vidiendal
   Thomsen, Jens
TI Does erythropoietin augment noise induced hearing loss?
SO HEARING RESEARCH
LA English
DT Article
DE EPO; NIHL; inner ear; auditory function; guinea pigs; rats; blood flow
ID CENTRAL-NERVOUS-SYSTEM; BLOOD-FLOW; INNER-EAR; PLEIOTROPIC FUNCTIONS;
   CA2+ MOBILIZATION; IN-VITRO; RECEPTOR; NEUROPROTECTION; EXPRESSION;
   ISCHEMIA
AB Noise-induced hearing loss may result from excessive release of glutamate, nitrogen oxide and reactive oxygen species. The effects of these factors on the inner ear may potentially be prevented or reduced by erythropoietin (EPO), as indicated by previously demonstrated neuro-protective effects of EPO upon damage to the central nervous system and the retina. This paper reports three separate trials, conducted to investigate the hypothesis that noise-induced hearing loss is prevented or reduced by erythropoietin. The trials employed three different modes of drug application, different administration time windows and different rodent species.
   In trial 1, guinea pigs were exposed to 110 dB SPL, 4-20 kHz wide band noise (WBN) for 8 h. EPO was administered to the round window membrane 24 h after noise exposure, either sustained by pump for a week or by single dose middle ear instillation. In trial 2, rats were exposed to 105 dB SPL, 4-20 kHz WBN for 8 h. EPO was administered by single dose middle ear instillation I or 14 h after noise exposure. In trial 3, rats were exposed to 105 dB SPL, 4-20 kHz WBN for 8 or 3 x 8 h. EPO was injected intraperitoneally I h before noise exposure. Oto-acoustic emissions and auditory brainstem responses (at 16 kHz) were recorded before and after noise exposure in all trials. The noise exposure induced a hearing loss in all animals. In trial 1, no recovery and no improvement of hearing occurred in any treatment group. In trial 2 and 3, a partial hearing recovery was seen. However, the hearing loss of the EPO treated animals was significantly worse than controls in trial 2. In trial 3, the hearing of the EPO treated animals exposed for 3 x 8 h was significantly worse than controls. Thus, surprisingly, the results from 2 of the 3 present trials indicate that erythropoietin may in fact augment noise-induced hearing loss. This is contradictory to the beneficial effect of EPO reported by the vast majority of studies on stressed neural tissues. EPO administration may alter the blood flow dynamics of the cochlear vascular bed during or after noise exposure, by a potential induction of vasoconstriction. This may be the cause of the surprising findings. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Copenhagen, Gentofte Hosp, Dept Otorhinolaryngol Head & Neck Surg, DK-2900 Hellerup, Denmark.
   Natl Inst Occupat Hlth, AMI, Copenhagen, Denmark.
   Univ Copenhagen Hosp, Dept Neuroanaesthesia, DK-2100 Copenhagen, Denmark.
RP Caye-Thomasen, P (reprint author), Univ Copenhagen, Gentofte Hosp, Dept Otorhinolaryngol Head & Neck Surg, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark.
EM peca@gentoftehosp.kbhamt.dk
CR BodeBoger SM, 1996, KIDNEY INT, V50, P1255, DOI 10.1038/ki.1996.435
   Brines ML, 2000, P NATL ACAD SCI USA, V97, P10526, DOI 10.1073/pnas.97.19.10526
   Buemi M, 2003, J NEUROPATH EXP NEUR, V62, P228
   Caye-Thomasen P, 2005, HEARING RES, V203, P21, DOI 10.1016/j.heares.2004.11.017
   CAYETHOMASEN P, 2004, AUDIOL MED, V2, P174, DOI 10.1080/16513860410018006
   CERAMI A, 2002, NEPHROL DIAL TRANS S, V1, P8
   Chattopadhyay A, 2000, BIOCHEM PHARMACOL, V59, P419, DOI 10.1016/S0006-2952(99)00277-4
   Digicaylioglu M, 2001, NATURE, V412, P641, DOI 10.1038/35088074
   Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7
   Grimm C, 2002, NAT MED, V8, P718, DOI 10.1038/nm723
   Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3
   Ishikawa A, 1999, UROL RES, V27, P312
   Johnson KL, 1998, ACTA OTO-LARYNGOL, V118, P660
   Junk AK, 2002, P NATL ACAD SCI USA, V99, P10659, DOI 10.1073/pnas.152321399
   JUUL S, 2002, ACTA PAEDIATR, V438, P36
   Juul SE, 1998, PEDIATR RES, V43, P40, DOI 10.1203/00006450-199801000-00007
   Kawakami M, 2001, J BIOL CHEM, V276, P39469, DOI 10.1074/jbc.M105832200
   Latoni J, 1996, ACTA OTO-LARYNGOL, V116, P388, DOI 10.3109/00016489609137862
   Marrero MB, 1998, KIDNEY INT, V53, P1259, DOI 10.1046/j.1523-1755.1998.00887.x
   Marti HH, 2000, NEWS PHYSIOL SCI, V15, P225
   Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061
   Morakkabati N, 1996, EXP HEMATOL, V24, P392
   Morishita E, 1997, NEUROSCIENCE, V76, P105
   Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
   QUIRK WS, 1995, AM J OTOL, V16, P322
   Rasmussen AN, 2005, INT J AUDIOL, V44, P237, DOI 10.1080/14992020500057640
   Renzi MJ, 2002, MOL BRAIN RES, V104, P86, DOI 10.1016/S0169-328X(02)00323-6
   SANAKA M, 1998, P NATL ACAD SCI USA, V95, P4635
   Sasaki R, 2001, NEWS PHYSIOL SCI, V16, P110
   Sasaki R, 2003, INTERNAL MED, V42, P142, DOI 10.2169/internalmedicine.42.142
   Scherer EQ, 2001, J MEMBRANE BIOL, V182, P183, DOI 10.1007/s00232-001-0041-1
   Shingo T, 2001, J NEUROSCI, V21, P9733
   Siren AL, 2001, EUR ARCH PSY CLIN N, V251, P179, DOI 10.1007/s004060170038
   Springborg JB, 2002, BRIT J PHARMACOL, V135, P823, DOI 10.1038/sj.bjp.0704521
   UMEMURA K, 1993, EUR ARCH OTO-RHINO-L, V250, P342
   Wu XC, 1999, EXP PHYSIOL, V84, P917
NR 36
TC 6
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2007
VL 223
IS 1-2
BP 129
EP 137
DI 10.1016/j.heares.2006.11.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 132LO
UT WOS:000243944500013
PM 17158006
ER

PT J
AU Kluk, K
   Moore, BCJ
AF Kluk, Karolina
   Moore, Brian C. J.
TI Dead regions in the cochlea and enhancement of frequency discrimination:
   Effects of audiogram slope, unilateral versus bilateral loss, and
   hearing-aid use
SO HEARING RESEARCH
LA English
DT Article
DE dead regions; cortical plasticity; frequency discrimination;
   reorganisation
ID PSYCHOPHYSICAL TUNING CURVES; LOUDNESS PERCEPTION; CORTICAL
   REORGANIZATION; IMPAIRED TEENAGERS; LOCAL IMPROVEMENT; DIFFERENCE
   LIMENS; PITCH PERCEPTION; AUDITORY-SYSTEM; ORGAN DAMAGE; LOSS CUTOFF
AB Following a restricted lesion of the cochlea, which produces a "dead region" (DR), animal experiments have revealed an increase in the cortical representation of frequencies just below the edge frequency (f(e)) of the DR. This may result ill improved difference limens for frequency (DLFs) just below f(e), In previous studies to assess this, the value off, was not determined precisely. We measured DLFs using human subjects with DRs for whom the values of f(e) had been determined precisely using psychophysical tuning curves. To prevent use of loudness cues, stimuli for the measurement of DLFs had a mean level falling along an equal-loudness contour and levels were roved over a 12-dB range. DLFs were measured for thirteen subjects with a DR in at least one ear. Almost all subjects with bilateral hearing loss exhibited enhanced DLFs near f(e), consistent with cortical reorganisation. This Occurred for subjects whose audiograms had both steep and shallow slopes, regardless of hearing aid use, and for two subjects with low-frequency DRs. One subject with a high-frequency DR in one ear and good hearing in the other ear showed all enhanced DLF in her better ear. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Kluk, K (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM kk278@cam.ac.uk
RI Moore, Brian/I-5541-2012
CR Amitay S, 2005, PERCEPT PSYCHOPHYS, V67, P691, DOI 10.3758/BF03193525
   Buus S, 2002, JARO-J ASSOC RES OTO, V3, P120, DOI 10.1007/s101620010084
   Delhommeau K, 2005, JARO-J ASSOC RES OTO, V6, P171, DOI 10.1007/s10162-005-5055-4
   Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9
   EVANS EF, 1978, AUDIOLOGY, V17, P369
   Florentine M, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P30, DOI 10.1007/0-387-27045-0_5
   FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021
   Gabriel D, 2006, HEARING RES, V213, P49, DOI 10.1016/j.heares.2005.12.007
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   Goldstein J.L., 1977, PSYCHOPHYSICS PHYSL, P337
   Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804
   Huss M, 2005, J ACOUST SOC AM, V117, P3841, DOI 10.1121/1.1920167
   Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400
   KLUK K, IN PRESS INT J AUDIO
   Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003
   Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005
   McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
   Micheyl C, 1998, J ACOUST SOC AM, V104, P1039, DOI 10.1121/1.423322
   MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640
   Moore B. C. J., 2005, PITCH NEURAL CODING, P234
   Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
   Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102
   Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
   MOORE BCJ, 1974, J ACOUST SOC AM, V55, P359, DOI 10.1121/1.1914512
   Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321
   MOORE BCJ, 1973, J ACOUST SOC AM, V54, P888, DOI 10.1121/1.1914343
   MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752
   MOORE BCJ, 2002, SOUND FDN EARLY AMPL, P153
   Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89
   Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839
   Moore BCJ, 2003, INT J AUDIOL, V42, P465, DOI 10.3109/14992020309081516
   Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
   Munro KJ, 2005, INT J AUDIOL, V44, P470, DOI 10.1080/14992020500145783
   NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579
   PARSONS CH, 2006, P AUSTR NEUR SOC, V16, P28
   Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
   Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786
   Rajan R, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P224
   Rajan R, 1998, J COMP NEUROL, V399, P35
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23
   SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
   SEK A, 2005, INT J AUDIOL, P408
   Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649
   SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275
   Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9
   Thai-Van H, 2004, REV NEUROPSYCHOL, V14, P5
   Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044
   Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228
   THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888
   Vestergaard MD, 2003, INT J AUDIOL, V42, P249, DOI 10.3109/14992020309078344
   VICKERS D, 2005, P BRIT SOC AUD SHORT, P32
   Vogten LL, 1974, FACTS MODELS HEARING, P142
NR 57
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 1
EP 15
DI 10.1016/j.heares.2006.06.020
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300001
PM 17071031
ER

PT J
AU Moore, BCJ
   Glasberg, BR
   Hopkins, K
AF Moore, Brian C. J.
   Glasberg, Brian R.
   Hopkins, Kathryn
TI Frequency discrimination of complex tones by hearing-impaired subjects:
   Evidence for loss of ability to use temporal fine structure
SO HEARING RESEARCH
LA English
DT Article
DE pitch; temporal fine structure; hearing impairment; frequency
   discrimination; phase sensitivity
ID MODULATION RATE DISCRIMINATION; AUDITORY FILTER SHAPES;
   AMPLITUDE-MODULATION; UNRESOLVED HARMONICS; PITCH PERCEPTION;
   PHASE-LOCKING; NERVE FIBERS; HAIR-CELLS; GUINEA-PIG; LISTENERS
AB For normally hearing subjects, thresholds for discriminating the fundamental frequency (F0) of a complex tone, F0DLs, increase when the number of the lowest harmonic, N, is above eight. A previous study showed that F0DLs were affected by component phase for N above 7, and it was argued that the increase in F0DLs with increasing N reflects a loss of temporal fine structure information. Here, subjects with moderate hearing loss were tested in a similar experiment. F0DLs were measured for tones with three successive harmonics, added in cosine or alternating phase. The center frequency was 2000 Hz. N was varied by changing the mean F0. A background noise was used to mask combination tones. F was roved across trials and N was roved by +/- 1, to reduce use of excitation pattern cues. F0DLs were smaller for cosine than for alternating phase for four out of six subjects, and this occurred once N exceeded 5. 111 contrast to the result for normally hearing subjects, F0DLs decreased with increasing N. Performance was much worse than obtained for normally hearing subjects at the same center frequency, suggesting that most of the hearing-impaired subjects had a poor ability to use temporal fine structure information. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM bcjm@cam.ac.uk
RI Hopkins, Kathryn/E-2203-2012; Moore, Brian/I-5541-2012
CR Arehart KH, 1999, J ACOUST SOC AM, V106, P993, DOI 10.1121/1.427111
   AREHART KH, 1994, J ACOUST SOC AM, V95, P3574, DOI 10.1121/1.409975
   BACON SP, 1992, J SPEECH HEAR RES, V35, P642
   Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146
   Bernstein JGW, 2005, J ACOUST SOC AM, V117, P3816, DOI 10.1121/1.1904268
   Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
   CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971
   FORMBY C, 1986, AUDIOLOGY, V25, P10
   FREYMAN RL, 1987, J SPEECH HEAR RES, V30, P28
   Fullgrabe C, 2003, J ACOUST SOC AM, V113, P49, DOI 10.1121/1.1523383
   GIBSON L, 1970, 89M AC SOC AM, P63
   Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522
   GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   Gockel H, 2006, J ACOUST SOC AM, V120, P957, DOI 10.1121/1.2211408
   Grant KW, 1998, J ACOUST SOC AM, V104, P1051, DOI 10.1121/1.423323
   Hall JW, 2003, J ACOUST SOC AM, V113, P986, DOI 10.1121/1.1532004
   HARRISON RV, 1979, ARCH OTO-RHINO-LARYN, V224, P71, DOI 10.1007/BF00455226
   Hoekstra A., 1977, PSYCHOPHYSICS PHYSL, P263
   HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297
   HOUTSMA AJM, 1978, J ACOUST SOC AM, V66, P88
   HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873
   JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639
   JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
   Kaernbach C, 2001, J ACOUST SOC AM, V110, P1039, DOI 10.1121/1.1381535
   Lacher-Fougere S, 2005, J ACOUST SOC AM, V118, P2519, DOI 10.1121/1.2032747
   Lacher-Fougere S, 1998, AUDIOLOGY, V37, P109
   LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156
   Lemanska J., 2002, Archives of Acoustics, V27
   LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   LORENZI C, UNPUB SPEECH PERCEPT
   Moore B., 1998, COCHLEAR HEARING LOS
   Moore B. C. J., 2005, PITCH NEURAL CODING, P234
   Moore B. C. J., 1976, BRIT J AUDIOL, V10, P17, DOI 10.3109/03005367609078803
   Moore B. C. J., 1988, BASIC ISSUES HEARING, P421
   MOORE BCJ, 1977, PSYCHOPHYSICS PHYSL, P349
   MOORE BCJ, 1979, Q J EXP PSYCHOL, V31, P229, DOI 10.1080/14640747908400722
   Moore BCJ, 2002, J ACOUST SOC AM, V111, P327, DOI 10.1121/1.1424871
   Moore BCJ, 2006, J ACOUST SOC AM, V119, P480, DOI 10.1121/1.2139070
   MOORE BCJ, 1990, ADV AUDIOL, P187
   MOORE BCJ, 1993, J ACOUST SOC AM, V93, P452, DOI 10.1121/1.405625
   MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Moore BCJ, 2006, J ACOUST SOC AM, V120, P934, DOI 10.1121/1.2216906
   MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641
   Moore GA, 2003, J ACOUST SOC AM, V113, P977, DOI 10.1121/1.1536631
   Moore RA, 2001, BMC INFECT DIS, V1, part. no., DOI 10.1186/1471-2334-1-3
   Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101
   Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852
   PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
   PATTERSON RD, 1987, J ACOUST SOC AM, V82, P1560, DOI 10.1121/1.395146
   Pick G., 1977, PSYCHOPHYSICS PHYSL, P273
   PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256
   PLOMP R, 1968, J ACOUST SOC AM, V43, P764, DOI 10.1121/1.1910894
   Renken R, 2004, J ACOUST SOC AM, V115, P2257, DOI 10.1121/1.690076
   ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
   ROSEN S, 1987, PSYCHOPHYSICS SPEECH, P481
   Rosen S., 1986, FREQUENCY SELECTIVIT, P373
   ROSENS, 1986, AUDITORY FREQUENCY S, P419
   RUGGERO MA, 1994, AUDIOLOGY, V33, P131
   SCHNEIDER G, 1992, ENDOCYT CELL RES, V9, P1
   SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
   SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
   Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
   WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4
NR 67
TC 30
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 16
EP 27
DI 10.1016/j.heares.2006.08.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300002
PM 17030477
ER

PT J
AU Vautrin, J
   Travo, C
   Boyer, C
   Venteo, S
   Favre, D
   Dechesne, CJ
AF Vautrin, Jean
   Travo, Cecile
   Boyer, Catherine
   Venteo, Stephanie
   Favre, Daniel
   Dechesne, Claude J.
TI Ocsyn and mitochondrial-canalicular complexes in vestibular hair cells
SO HEARING RESEARCH
LA English
DT Article
DE inner ear; sensory cells; mitochondria; canalicular reticulum; rat;
   guinea pig; confocal microscopy
ID SYNAPTOPHYSIN EXPRESSION; CA2+ HOMEOSTASIS; CUTICULAR PLATE; END-ORGANS;
   PROTEIN; IMMUNOREACTIVITY; MICROTUBULES; ORGANIZATION; TRANSPORT;
   GANGLION
AB Ocsyn. a syntaxin-interacting protein characterized by Safieddine et al. [Safieddine, S., Ly, C.D., Wang Y.-X., Kachar, B., Petralia, R.S., Wenthold, R.J., 2002. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol. Cell. Neurosci., 20, 343-353] in the guinea pig organ of Corti was primarily identified in organelles located at the subapical region of inner hair cells. They proposed that in cochlear inner hair cells, ocsyn was involved in protein trafficking associated to recycling endosomes. Ocsyn happens to be highly homologous to syntabulin with an almost identical syntaxin-binding domain. Syntabulin is believed to attach syntaxin-containing vesicles to kinesin for their axonal transport along microtubules. The present study shows the distribution of ocsyn in guinea pig and rat vestibular hair cells using immunocytochemistry and confocal microscopy. Ocsyn was characterized by intense immunolabeled spots distributed exclusively in type I and 11 vestibular hair cells. The subcuticular region under the cuticular plate exhibited particularly densely packed spots. In the neck region of the sensory cells, where microtubules are abundant, there was no colocalization of ocsyn and alpha-tubulin. Ocsyn labeled spots were also present in the medial and basal hair cell regions, particularly in the supranuclear and infranuclear regions. Mitochondria are particularly numerous in these three regions (subcuticular, supranuclear and infranuclear). Double labeling of ocsyri and cytochrome c showed that ocsyn was present in the same zones that mitochondria. This, together with the great similarity of ocsyn and syntabulin, suggest that, akin to syntabulin, ocsyn is involved in addressing organelles. We propose that ocsyn is involved in the formation of the canalicular-mitochondrial complexes depicted by Spicer et al. [Spicer, S.S., Thomopoulos, G.N., Schulte, B.A., 1999. Novel membranous structures in apical and basal compartments of inner hear cells. J. Comp. Neurol., 409, 424-437]. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Montpellier 2, LIRDEF, F-34095 Montpellier 5, France.
   Univ Montpellier 2, INSERM, U343, F-34095 Montpellier, France.
   INSERM, U583, INM, F-34091 Montpellier 5, France.
RP Dechesne, CJ (reprint author), Univ Montpellier 2, LIRDEF, CC 077,Pl Bataillon, F-34095 Montpellier 5, France.
EM Jean.Vautrin@univ-montp2.fr; cecile.travo@montp.inserm.fr;
   c.boyer@univ-montp2.fr; venteo@univ-montp2.fr; favre@univ-montp2.fr;
   claudejd@univ-montp2.fr
CR Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8
   Boyer C, 2001, J NEUROSCI, V21, P2640
   Budd SL, 1996, J NEUROCHEM, V66, P403
   Cunningham CD, 2000, HEARING RES, V143, P69, DOI 10.1016/S0378-5955(00)00022-8
   Dechesne CJ, 1997, DEV BRAIN RES, V99, P103, DOI 10.1016/S0165-3806(96)00216-7
   DECHESNE CJ, 1987, ACTA OTO-LARYNGOL, V103, P18, DOI 10.3109/00016488709134693
   DECHESNE CJ, 1995, AUDIT NEUROSCI, V1, P341
   DESMADRYL G, 1992, EXP BRAIN RES, V89, P105
   Eybalin M, 2002, EUR J NEUROSCI, V15, P1409, DOI 10.1046/j.1460-9568.2002.01978.x
   FAVRE D, 1983, ACTA OTO-LARYNGOL, V96, P15, DOI 10.3109/00016488309132870
   Griesinger CB, 2004, EUR J NEUROSCI, V20, P41, DOI 10.1111/j.1460-9568.2004.03452.x
   Gunter TE, 2000, CELL CALCIUM, V28, P285, DOI 10.1054/ceca.2000.0168
   Holstein GR, 2005, EXP BRAIN RES, V162, P287, DOI 10.1007/s00221-004-2194-5
   HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503
   JAEGER RG, 1994, HEARING RES, V77, P207, DOI 10.1016/0378-5955(94)90268-2
   Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0
   Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267
   Richardson GP, 1997, J NEUROSCI, V17, P9506
   Ruttiger L, 2004, P NATL ACAD SCI USA, V101, P12922, DOI 10.1073/pnas.0402660101
   Safieddine S, 2002, MOL CELL NEUROSCI, V20, P343, DOI 10.1006/mcne.2002.1120
   Safieddine S, 1999, EUR J NEUROSCI, V11, P803, DOI 10.1046/j.1460-9568.1999.00487.x
   SCARFONE E, 1991, J NEUROSCI, V11, P1173
   Spicer SS, 1999, J COMP NEUROL, V409, P424
   Su QN, 2004, NAT CELL BIOL, V6, P941, DOI 10.1038/ncb1169
   WERTH JL, 1994, J NEUROSCI, V14, P348
   Zhai RG, 2004, NAT CELL BIOL, V6, P918, DOI 10.1038/ncb1004-918
NR 26
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 28
EP 34
DI 10.1016/j.heares.2006.07.017
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300003
PM 17045436
ER

PT J
AU Hoffman, LF
   Ross, MD
   Varelas, J
   Jones, SM
   Jones, TA
AF Hoffman, Larry F.
   Ross, Muriel D.
   Varelas, Joseph
   Jones, Sherri M.
   Jones, Timothy A.
TI Afferent synapses are present in utricular hair cells from
   otoconia-deficient mice
SO HEARING RESEARCH
LA English
DT Article
DE head-tilt; synaptic ribbon; labyrinth; gravity orientation; vestibular
ID MORPHOLOGICAL-CHANGES; RIBBON SYNAPSES; FINE-STRUCTURE; MUTANT MICE;
   GUINEA-PIG; MOUSE; ORGAN; CORTI; CAT; WEIGHTLESSNESS
AB The head tilt mouse (het/het, abbr. het) is a naturally occurring mutant whose salient phenotypic traits include the complete absence of otocoina in both the utricle and saccule. Cursory histologic evaluation has indicated that the neuroepithelia exhibit a normal appearance. Though evidence exists indicating that utricular function is severely if not completely compromised in these animals, it is not yet known whether afferent synapses exist within utricular hair cells of otoconia-deficient mutants. The absence of synapses would be suggestive of a trophic relationship between stimulus-evoked hair cell activation and the afferent synapse. To address this question, we have conducted an ultrastructural survey of utricular sensory epithelia from confirmed het mice. The specific objective was to determine whether utricular hair Cells Made Synaptic contact with afferent neurons. We found that both type I and 11 hair cells from utricles of het mice exhibited afferent synapses that were found at numerous sites distributed throughout the Utricle. These results indicate that afferent synapses within vestibular hair cells do not critically depend upon stimulus-evoked activity. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Los Angeles, CA 90095 USA.
   Univ Calif Los Angeles, David Geffen Sch Med, Brain Res Inst, Los Angeles, CA 90095 USA.
   Univ New Mexico, Hlth Sci Ctr, Dept Neurosci, Albuquerque, NM 87131 USA.
   NASA, Ames Res Ctr, BioVIS Technol Ctr, Moffett Field, CA 94035 USA.
   E Carolina Univ, Dept Commun Sci & Disorders, Sch Allied Hlth Sci, Greenville, NC 27858 USA.
RP Hoffman, LF (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Box 951624, Los Angeles, CA 90095 USA.
EM lfh@ucla.edu
CR ADES HW, 1965, ROLE VESTIBULAR ORGA, P23
   Bergstrom RA, 1998, GENETICS, V150, P815
   BUSH G, 2002, VESTIBULOOCULAR REFL
   DEOL MS, 1966, J EMBRYOL EXP MORPH, V16, P543
   FAVRE D, 1986, ANAT EMBRYOL, V175, P69, DOI 10.1007/BF00315457
   FAVRE D, 1979, J NEUROCYTOL, V8, P765, DOI 10.1007/BF01206675
   Harrod CG, 2003, BRAIN RES, V972, P75, DOI 10.1016/S0006-8993(03)02505-8
   HEYWOOD P, 1976, ACTA OTO-LARYNGOL, V82, P359, DOI 10.3109/00016487609120920
   HOFFMAN L, 2000, ABS ASS RES OTOLARYN, V23, P168
   Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087
   Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8
   Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008
   Lane PW, 1987, MOUSE NEWS LETT, V77, P129
   Lenzi D, 1999, J NEUROSCI, V19, P119
   LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6
   Lim D, 1978, VESTIBULAR MECH HLTH, P195
   Lysakowski A, 1997, J COMP NEUROL, V389, P419, DOI 10.1002/(SICI)1096-9861(19971222)389:3<419::AID-CNE5>3.0.CO;2-3
   Lysakowski A, 1999, ANN NY ACAD SCI, V871, P422, DOI 10.1111/j.1749-6632.1999.tb09209.x
   MBIENE JP, 1988, ANAT EMBRYOL, V177, P331, DOI 10.1007/BF00315841
   Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X
   Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504
   PARK JC, 1987, HEARING RES, V28, P87, DOI 10.1016/0378-5955(87)90156-0
   Ross MD, 2000, ACTA OTO-LARYNGOL, V120, P490, DOI 10.1080/000164800750045983
   Ross M D, 1993, J Vestib Res, V3, P241
   Ross M D, 1994, Acta Otolaryngol Suppl, V516, P1
   Ross MD, 1997, J COMP NEUROL, V379, P333, DOI 10.1002/(SICI)1096-9861(19970317)379:3<333::AID-CNE2>3.0.CO;2-4
   ROSS MD, 1985, AVIAT SPACE ENVIR MD, V56, P338
   SAITO K, 1980, J ULTRA MOL STRUCT R, V71, P222, DOI 10.1016/S0022-5320(80)90108-2
   Schmitz F, 2006, P NATL ACAD SCI USA, V103, P2926, DOI 10.1073/pnas.0510060103
   SIEGEL JH, 1981, BRAIN RES, V220, P188, DOI 10.1016/0006-8993(81)90224-9
   SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942
   Sweet H, 1980, MOUSE NEWS LETT, V63, P19
   TRUNE D R, 1983, Journal of Neurogenetics, V1, P53, DOI 10.3109/01677068309107072
   VEENHOF VB, 1969, VERHANDELINGEN, V58, P1
   vonGersdorff H, 1996, NEURON, V16, P1221, DOI 10.1016/S0896-6273(00)80148-8
NR 35
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 35
EP 42
DI 10.1016/j.heares.2006.05.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300004
PM 17023128
ER

PT J
AU Vetesnik, A
   Nobili, R
AF Vetesnik, A.
   Nobili, R.
TI The approximate scaling law of the cochlea box model
SO HEARING RESEARCH
LA English
DT Article
DE cochlea amplifier; scaling law; local covariance; distributed parameter
   control
ID BASILAR-MEMBRANE STIFFNESS; PHYSICAL PRINCIPLES; MOSSBAUER TECHNIQUE;
   AUDITORY PHYSICS; HEARING THEORY; MOTION
AB The hydrodynamic box-model of the cochlea is reconsidered here for the primary-V Purpose of studying in detail the approximate scaling law that governs tonotopic responses in the frequency domain. "Scaling law" here means that any two Solutions representing waveforms elicited by tones of equal amplitudes differ only by a complex factor depending on frequency. It is shown that this property holds with excellent approximation almost all along the basilar membrane (BM) length. with the exception of small region adjacent to the BM base. The analytical expression of the approximate law is explicitly given and compared to numerical solutions carried Out On a virtually exact implementation of the model. It differs significantly from that derived by Sondhi in 1978, which suffers from an inaccuracy in the hyperbolic approximation of the exact Green's function. Since the cochleae of mammals do not exhibit the scaling properties of the box model, the subject presented here may appear to be just an academic exercise. The results Of our study, however. are significant in that a more general scaling law should hold for real cochleae. To support this hypothesis, an argument related to the problem of cochlear amplifier-gain stabilization is advanced. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Padua, Dept Phys G Galilei, I-35131 Padua, Italy.
   Univ Tubingen, Dept Otolaryngol, D-72076 Tubingen, Germany.
RP Nobili, R (reprint author), Univ Padua, Dept Phys G Galilei, Via Marzolo 8, I-35131 Padua, Italy.
EM renato.nobili@pd.infn.it
CR ALLEN JB, 1979, J ACOUST SOC AM, V66, P123, DOI 10.1121/1.383064
   ALLEN JB, 1977, J ACOUST SOC AM, V61, P110, DOI 10.1121/1.381272
   Bekesy G., 1960, EXPT HEARING
   de Boer E., 1991, PHYS REP, V203, P127
   DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3
   DEBOER E, 1984, PHYS REP, V105, P141, DOI 10.1016/0370-1573(84)90108-X
   Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144
   GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1
   LESSER MB, 1972, J FLUID MECH, V51, P497, DOI 10.1017/S0022112072002320
   Milne-Thomson L. M., 1957, THEORETICAL HYDRODYN
   Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6
   Nobili R, 1998, TRENDS NEUROSCI, V21, P159, DOI 10.1016/S0166-2236(97)01192-2
   Nobili R, 2003, JARO-J ASSOC RES OTO, V4, P478, DOI 10.1007/s10162-002-3055-1
   OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535
   Penrose R., 1955, P CAMBRIDGE PHILOS S, P406, DOI DOI 10.1017/S0305004100030401
   RANKE OF, 1950, J ACOUST SOC AM, V22, P772, DOI 10.1121/1.1906688
   RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485
   SIEBERT WM, 1974, J ACOUST SOC AM, V56, P594, DOI 10.1121/1.1903296
   SONDHI MM, 1978, J ACOUST SOC AM, V63, P1468, DOI 10.1121/1.381893
   Stakgold I., 1979, GREENS FUNCTIONS BOU
   Whittaker E. T., 1935, COURSE MODERN ANAL
   Zweig G, 1976, Cold Spring Harb Symp Quant Biol, V40, P619
NR 24
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 43
EP 53
DI 10.1016/j.heares.2006.08.012
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300005
PM 17008036
ER

PT J
AU Chen, GD
AF Chen, Guang-Di
TI Prestin gene expression in the rat cochlea following intense noise
   exposure
SO HEARING RESEARCH
LA English
DT Article
DE prestin; OHC motor protein; cochlear amplification; noise-induced
   hearing loss; OHC cytoskeleton
ID OUTER HAIR-CELLS; ELECTROKINETIC SHAPE CHANGES; INDUCED HEARING-LOSS;
   ACTIN-FILAMENTS; MOTOR PROTEIN; INNER-EAR; F-ACTIN; ELECTROMOTILITY;
   LOCALIZATION; CYTOSKELETAL
AB Noise-induced permanent loss of cochlear amplification was observed previously with the majority of outer hair cells (OHCs) still surviving in the cochlea and even with a normal OHC receptor potential, indicated by CM (cochlear microphonics) recording [Chen, G.D., Fechter, L.D., 2003. The relationship between noise-induced hearing loss and hair cell loss in rats. Hear. Res. 177(1-2), 81-90 Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9]. This study focused on effects of an intense noise exposure (10-20 kHz at a level of 110 dB SPL for 4 It) on the OHC motor protein (prestin) and structural proteins in the OHC membrane skeleton. The noise exposure significantly disrupted CM and CAP (cochlear compound action potential). The injured CM recovered after]-week resting period. The impaired CAP at frequencies lower than the noise band also recovered. However, the CAP recovery at frequencies of the noise band stopped at a linear line one week after the noise exposure, indicating a permanent loss of cochlear amplification. Gene expression of prestin, beta-spectrin, and beta-actin was significantly up-regulated after the noise exposure. The elevated gene expression peaked at the 3rd post-exposure day and returned to baseline 4 weeks after the noise exposure. The up-regulated gene expression may be in response to injury of the proteins, which may be responsible for the loss of cochlear amplification. (c) 2006 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM gchen7@buffalo.edu
CR Ashmore J, 2002, BRIT MED BULL, V63, P59, DOI 10.1093/bmb/63.1.59
   ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   ATTANASIO G, 1994, HEARING RES, V81, P199, DOI 10.1016/0378-5955(94)90165-1
   Belyantseva IA, 2000, J NEUROSCI, V20, part. no.
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559
   CHEN GD, IN PRESS HEAR RES
   Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X
   Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016
   Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H
   DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0
   Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
   DALLOS P, 1974, AUDIOLOGY, V13, P277
   DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
   FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339
   FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870
   GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025
   HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8
   He DZZ, 2003, J NEUROSCI, V23, P9089
   HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249
   HOLLEY MC, 1990, J CELL SCI, V96, P283
   HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0
   Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509
   KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0
   KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671
   KUHN B, 1995, HEARING RES, V84, P139, DOI 10.1016/0378-5955(95)00021-U
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Rao DB, 2001, HEARING RES, V161, P113, DOI 10.1016/S0378-5955(01)00366-5
   TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4
   Tolomeo JA, 1996, BIOPHYS J, V71, P421
   Wu Xudong, 2004, Brain Res Mol Brain Res, V126, P30
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Yu N, 2006, BRAIN RES, V1095, P51, DOI 10.1016/j.brainres.2006.04.017
   ZENNER HP, 1981, ARCH OTO-RHINO-LARYN, V230, P81, DOI 10.1007/BF00665383
   Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307
   Zheng J, 2003, NEUROSCI LETT, V347, P13, DOI 10.1016/S0304-3940(03)00597-4
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   Zhong H, 1999, BIOCHEM BIOPH RES CO, V259, P523, DOI 10.1006/bbrc.1999.0815
NR 42
TC 20
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 54
EP 61
DI 10.1016/j.heares.2006.08.011
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300006
PM 17005342
ER

PT J
AU Kevanishvili, Z
   Hofmann, G
   Burdzgla, I
   Pietsch, M
   Gamgebeli, Z
   Yarin, Y
   Tushishvili, M
   Zahnert, T
AF Kevanishvili, Zurab
   Hofmann, Gert
   Burdzgla, Irina
   Pietsch, Markus
   Gamgebeli, Zurab
   Yarin, Yury
   Tushishvili, Michael
   Zahnert, Thomas
TI Behavior of evoked otoacoustic emission under low-frequency tone
   exposure: Objective study of the bounce phenomenon in humans
SO HEARING RESEARCH
LA English
DT Article
DE bounce phenomenon; EOAE effects; acquisition dependence; exposure
   intensity dependence; ipsilateral vs. contralateral effects
ID COMPOUND ACTION-POTENTIALS; POSTEXPOSURE RESPONSIVENESS; AUDITORY
   SYSTEM; SENSITIZATION; MODULATION; COCHLEA; SOUND; SENSITIVITY
AB The bounce phenomenon has been investigated in humans, evaluating alterations of click evoked otoacoustic emission (EOAE) after presentation of 250-Hz frequency loud tones during 3 min. EOAE changes were manifested in initial augmentation followed by reduction, peaking at 1 and 3 min of post-exposure time, respectively. Recoveries took 5-7 min afterwards. Under linear and nonlinear EOAE acquisition modes both manifestations of bounce appeared similar. At lower exposure intensities, 65-75 dB SPL, augmentations prevailed over reductions. At higher intensities, 80-95 dB SPL, augmentations and reductions were of similar magnitudes. At highest intensity, 100 dB SPL, an obvious EOAE drop has hardly been preceded by any augmentation. Based upon these data, the bounce is considered to be a compound of two opposite events, appearance of each being dependent upon the exposure level. Subjects with high bounce indices in one ear displayed comparable indices in other ear too. Low bounce magnitudes were accordingly typical for particular subjects irrespective of the ears tested. EOAE alterations were observed under ipsilateral, but not contralateral exposures of tones. It has been concluded therefore that the bounce involves peripheral receptor rather than central neural mechanisms. No EOAE shifts were seen under application of clicks without any low-frequency exposure tones. Correspondingly, the bounce is judged to reflect inner-ear processes triggered by low-frequency tones, but not by regular presentations of test-stimuli. (c) 2006 Elsevier B.V. All rights reserved.
C1 Ctr Audiol & Hearing Rehabil, GE-0179 Tbilisi, Rep of Georgia.
   Tech Univ Dresden, Otorhinolaryngol Clin, D-01307 Dresden, Germany.
   Univ Munich, D-80539 Munich, Germany.
RP Kevanishvili, Z (reprint author), Ctr Audiol & Hearing Rehabil, Chavchavadze Ave 33, GE-0179 Tbilisi, Rep of Georgia.
EM zuriko_k@hotmail.com
CR BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2
   Chen Jiahua, 2000, P1
   Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
   Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7
   HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867
   HIRSH IJ, 1955, J ACOUST SOC AM, V27, P1186, DOI 10.1121/1.1908157
   HUGHES JR, 1954, J ACOUST SOC AM, V26, P1064, DOI 10.1121/1.1907450
   HUGHES JR, 1957, J ACOUST SOC AM, V29, P275, DOI 10.1121/1.1908854
   HUGHES JR, 1958, PHYSIOL REV, V38, P91
   Janssen T, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P498, DOI 10.1142/9789812704931_0068
   KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
   Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6
   KIRKCONNELL CS, 2001, CRYOCOOLERS, V11, P69
   KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1
   NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P552, DOI 10.1121/1.1911928
   NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P546, DOI 10.1121/1.1911927
   NORTON SJ, 1989, HEARING RES, V38, P243, DOI 10.1016/0378-5955(89)90069-5
   PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3
   PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7
   Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508
   RUSSELL IJ, 1992, J NEUROSCI, V12, P1587
   ZWICKER E, 1984, J ACOUST SOC AM, V75, P545, DOI 10.1121/1.390488
NR 22
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 62
EP 69
DI 10.1016/j.heares.2006.05.014
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300007
PM 17052872
ER

PT J
AU Gu, FM
   Han, HL
   Zhang, LS
AF Gu, Feng-ming
   Han, Hong-lei
   Zhang, Lian-shan
TI Effects of vasopressin on gene expression in rat inner ear
SO HEARING RESEARCH
LA English
DT Article
DE vasopressin; inner ear; gene expression; microarray; aquaporin;
   endolymphatic hydrops
ID ANTI-DIURETIC HORMONE; ADENYLATE-CYCLASE; CYTOCHEMICAL-LOCALIZATION;
   ENDOLYMPHATIC SAC; MENIERES-DISEASE; STRIA VASCULARIS; MARGINAL CELLS;
   ARGININE-VASOPRESSIN; MESSENGER-RNAS; GUINEA-PIG
AB Vasopressin regulates water excretion from the kidney by increasing water permeability of the collecting duct as a hormone secreted from the posterior pituitary. A clinical study reported that plasma levels of arginine vasopressin were significantly higher in patients suffering from Meniere's disease. It was histologically confirmed that chronic administration of vasopressin induced endolymphatic hydrops in guinea pigs. However, the mechanism of endolymphatic hydrops induced by vasopressin is still unclear. We use cDNA microarray to study the effects of vasopressin on gene expression profiles in rat inner ear to elucidate the possible mechanism of the induced hydrolabyrinth. Wistar rats were intraperitoneally injected with 50 kg/kg arginine vasopressin once a day for one week. Hydrolabyrinth in rat inner ear induced by administration of vasopressin was detected by HE stain. The bullae were dissected out for total RNA extraction. cDNAs were synthesized by reverse transcription and labeled with Cyanine3 (Cy3) or Cyanine5 (Cy5). The Biostar R-40s cDNA microarray was hybridized with the above cDNAs and the changes of mRNA expression intensity were showed by data analysis. Furthermore, the changes of aquaporins expression level were measured by reverse transcription polymerase chain (RT-PCR). Endolymphatic hydrops were present in rats intraperitoneally injected with vasopressin. 226 known differentially expressed genes were screened out in rat inner ear induced by vasopressin injection. Of the 226 genes, IS transcripts were increased by 5-fold or more, and 7 transcripts were decreased to 0.2-fold or less. Ten differentially expressed genes were identified that associate with cell signal transduction, 14 differentially expressed genes were identified that relate to ion transport, 7 differentially expressed genes were involved in vesicle-mediated transport, and 2 differentially expressed genes were aquaporin 2 (AQP2) and aquaporin 7 (AQP7), The expression level of AQP2 was significantly higher and AQP7 was significantly lower. These results suggest that there are obvious differences in gene expression profiles in inner ear between vasopressin injected rats and normal control rats. Vasopressin may disturb fluid homeostasis in inner ear by way of signal transduction, ion transport, vesicle-mediated transport and aquaporins. It is likely that up-regulated expression of AQP2 mRNA and down-regulated expression of AQP7 mRNA in the rat inner ear caused by vasopressin induce an increased production and a decreased absorption of endolymph, resulting in endolymphatic hydrops. (c) 2006 Published by Elsevier B.V.
C1 Fudan Univ, Dept Otolaryngol Eye Ear Nose & Throat Hosp, Shanghai 200031, Peoples R China.
   China Japan Friendship Hosp, Dept Otolaryngol, Beijing 100029, Peoples R China.
   Union Med Univ, Beijing 100730, Peoples R China.
   Peking Union Med Hosp, Chinese Acad Sci, Dept Otolaryngol, Beijing 100730, Peoples R China.
RP Gu, FM (reprint author), Fudan Univ, Dept Otolaryngol Eye Ear Nose & Throat Hosp, 83 Fenyang Rd, Shanghai 200031, Peoples R China.
EM fengming.gu@gmail.com; hanhonglei@hotmail.com; zhangls@sohu.com
CR AHLSTROM P, 1975, LARYNGOSCOPE, V85, P1241, DOI 10.1288/00005537-197507000-00016
   ANNIKO M, 1981, HEARING RES, V4, P11, DOI 10.1016/0378-5955(81)90033-2
   BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231
   Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2
   Brooks HL, 2003, AM J PHYSIOL-RENAL, V284, pF218, DOI 10.1152/ajprenal.00054.2002
   Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042
   COMACCHIO F, 1992, AM J OTOL, V13, P477
   Drescher M J, 2000, Brain Res Mol Brain Res, V76, P289
   DUGUE B, 1993, SCAND J CLIN LAB INV, V53, P555, DOI 10.3109/00365519309092553
   FERRARY E, 1991, ACTA OTO-LARYNGOL, V111, P281, DOI 10.3109/00016489109137388
   FUKUSHIMA M, 2004, ACTA OTO-LARYNGOL, V553, P13
   Furuta H, 1999, ACTA OTO-LARYNGOL, V119, P53
   Hibino H, 1997, J NEUROSCI, V17, P4711
   Horii A, 2001, BRAIN RES, V914, P179, DOI 10.1016/S0006-8993(01)02799-8
   Kitamura M, 2003, CRYST GROWTH DES, V3, P25, DOI 10.1021/cg025575h
   Kitano H, 1997, NEUROREPORT, V8, P2289, DOI 10.1097/00001756-199707070-00038
   Kitano H, 1994, Ear Nose Throat J, V73, P921
   Knepper MA, 1997, CURR OPIN CELL BIOL, V9, P560, DOI 10.1016/S0955-0674(97)80034-8
   Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731
   Lee JH, 2001, ACTA OTO-LARYNGOL, V121, P902, DOI 10.1080/000164801317166754
   Lim JS, 2003, LARYNGOSCOPE, V113, P1321, DOI 10.1097/00005537-200308000-00011
   MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3
   MEES K, 1984, ARCH OTO-RHINO-LARYN, V240, P55, DOI 10.1007/BF00464345
   Mhatre AN, 2002, HEARING RES, V170, P59, DOI 10.1016/S0378-5955(02)00452-5
   MINTEGUIAGA C, 1998, PFLUGERS ARCH, V436, P940
   Nishimoto G, 1999, AM J PHYSIOL-RENAL, V276, pF254
   OUDAR O, 1990, CELL TISSUE RES, V262, P579, DOI 10.1007/BF00305255
   OUDAR O, 1991, EUR ARCH OTO-RHINO-L, V248, P386, DOI 10.1007/BF01463559
   Patil RV, 1997, BIOCHEM BIOPH RES CO, V238, P392, DOI 10.1006/bbrc.1997.7310
   Sawada S, 1997, Acta Otolaryngol Suppl, V528, P109
   Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011
   SCHACHT J, 1985, HEARING RES, V20, P9, DOI 10.1016/0378-5955(85)90053-X
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X
   Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P395, DOI 10.1007/BF00464650
   ZENNER HP, 1979, ARCH OTO-RHINO-LARYN, V222, P275, DOI 10.1007/BF01261174
NR 38
TC 11
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 70
EP 78
DI 10.1016/j.heares.2006.08.016
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300008
PM 17070001
ER

PT J
AU Roberts, B
   Holmes, SD
AF Roberts, Brian
   Holmes, Stephen D.
TI Grouping and the pitch of a mistuned fundamental component: Effects of
   applying simultaneous multiple mistunings to the other harmonics
SO HEARING RESEARCH
LA English
DT Article
DE auditory grouping; harmonic relations; mistuning; pitch shifts
ID COMPLEX TONES; PERCEPTUAL SEGREGATION; SPECTRAL PATTERN; PARTIALS;
   FREQUENCY; FUSION; SHIFTS; MODEL; TEMPLATE; HEARING
AB Mistuning a harmonic produces In exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that Causes the other harmonics (Constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (norminal FO frequency = 200 Hz) was mistuned by +8% and -8%,). The pitch-shift gradient was defined as the difference between these values and its magnitude was used its a measure of frame integration. An independent Ad random perturbation (spectral jitter) wits applied simulateously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to +/- 40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient. but more distant components also contributed. The Stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components. (c) 2006 Elsevier B.V. All rights reserved.
C1 Aston Univ, Sch Life & Hth Sci, Birmingham B4 7ET, W Midlands, England.
   Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England.
RP Roberts, B (reprint author), Aston Univ, Sch Life & Hth Sci, Birmingham B4 7ET, W Midlands, England.
EM b.roberts@aston.ac.uk
CR BALAGUERBALLEST.E, 2006, BRIT SOC AUD ANN M E
   Bregman AS., 1990, AUDITORY SCENE ANAL
   Brunstrom JM, 1998, J ACOUST SOC AM, V104, P3511, DOI 10.1121/1.423934
   Brunstrom JM, 2001, J ACOUST SOC AM, V110, P391, DOI 10.1121/1.1379079
   Brunstrom JM, 2000, J ACOUST SOC AM, V107, P1566, DOI 10.1121/1.428441
   CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722
   DARWIN CJ, 1994, J ACOUST SOC AM, V95, P2631, DOI 10.1121/1.409832
   DEBOER E, 1976, HDB SENSORY PHYSL, V5, P479
   de Cheveigne A, 1999, J ACOUST SOC AM, V106, P887, DOI 10.1121/1.427104
   deCheveigne A, 1997, J ACOUST SOC AM, V102, P1083, DOI 10.1121/1.419612
   DEMANY L, 1988, J ACOUST SOC AM, V83, P687, DOI 10.1121/1.396164
   DEMANY L, 1992, HEARING RES, V61, P161, DOI 10.1016/0378-5955(92)90047-Q
   FINE PA, 1993, MUSIC PERCEPT, V11, P39
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   Hartmann W. M., 1988, AUDITORY FUNCTION, P623
   HARTMANN WM, 1990, J ACOUST SOC AM, V88, P1712, DOI 10.1121/1.400246
   Hartmann WM, 1996, J ACOUST SOC AM, V99, P567, DOI 10.1121/1.414514
   HARTMANN WM, 2004, 129 MICH STAT U
   Henke W. L., 1997, MITSYN COHERENT FAMI
   Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001
   LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
   Lin JY, 1998, J ACOUST SOC AM, V103, P2608, DOI 10.1121/1.422781
   Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
   MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725
   MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936
   MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043
   Pierce John R., 1992, SCI MUSICAL SOUND
   PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256
   Pressnitzer D., 2001, PHYSL PSYCHOPHYSICAL, P84
   RAKOWSKI A, 1980, J ACOUST SOC AM, V68, P467, DOI 10.1121/1.384759
   RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550
   Roberts B, 2003, J ACOUST SOC AM, V114, P2118, DOI 10.1121/1.1605411
   Roberts B, 2001, J ACOUST SOC AM, V110, P2479, DOI 10.1121/1.1410965
   Roberts B, 2005, ACTA ACUST UNITED AC, V91, P945
   Roberts B, 1998, J ACOUST SOC AM, V104, P2326, DOI 10.1121/1.423771
   Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0
   Snedecor G. W., 1967, STAT METHODS
   TERHARDT E, 1971, 7TH P INT C AC, V3, P621
   Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
NR 39
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 79
EP 88
DI 10.1016/j.heares.2006.08.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300009
PM 17055676
ER

PT J
AU Chen, WC
   Davis, RL
AF Chen, Wei Chun
   Davis, Robin L.
TI Voltage-gated and two-pore-domain potassium channels in murine spiral
   ganglion neurons
SO HEARING RESEARCH
LA English
DT Article
DE Kv3.3; TWIK-1; KCNK; tandem pore; spiral ganglion; auditory; cochlea
ID DOMAIN K+ CHANNELS; RAT-BRAIN; DIFFERENTIAL EXPRESSION; AUDITORY
   NEURONS; NERVE-TERMINALS; FIRING PATTERNS; ALPHA-SUBUNITS; MOUSE;
   CURRENTS; TREK-1
AB The systematically varied firing features Of spiral ganglion neurous provide an excellent model system for the exploration of how graded ion channel distributions can be used to organize neuronal firing across a population of neurons. Elucidating the underlying mechanisms that determine neuronal response properties requires a complete Understanding of the combination of ion channels. auxiliary proteins, modulators, and second messengers that form this highly organized system in the auditory periphery. Toward this goal, we built upon previous studies of voltage-gated K+-selective ion channels (Kv), and expanded Our analysis to K+-selective leak channels (KCNK), which can play a major role in setting the basic firing characteristics of spirit] ganglion neurons.
   To begin a more comprehensive analysis of Kv and KCNK channels, a screening approach was employed. RT-PCR was utilized to examine gene expression, the major results of which were confirmed with immunochemistry. initial Studies validated this approach by accurately detecting voltage-dependent K+ channels that were documented previously in the spiral ganglion. Furthermore, an additional channel type within the Kv3 family, Kv3.3, was identified and further characterized. The major focus Of the Study. however, was to systematically examine gene expression levels of the KCNK family of K+-selective leak channels. These channel types determine the resting membrane potential which has a major impact oil setting the level Of neuronal excitation. TWIK-1. TASK-3. TASK-1, and TREK-1 were expressed in the spiral ganglion TWIK-1 was specifically localized with immunocytochemistry to the neuronal sonata and initial processes of spiral ganglion neurons in vitro. (c) 2006 Elsevier B.V. All rights reserved.
C1 Rutgers State Univ, Nelson Labs, Dept Cell Biol & Neurosci, Piscataway, NJ 08854 USA.
RP Davis, RL (reprint author), Rutgers State Univ, Nelson Labs, Dept Cell Biol & Neurosci, 604 Allison Rd, Piscataway, NJ 08854 USA.
EM rldavis@rci.rutgers.edu
CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244
   Adamson CL, 2002, J NEUROSCI, V22, P1385
   Berg AP, 2004, J NEUROSCI, V24, P6693, DOI 10.1523/JNEUROSCI.1408-04.2004
   Bockenhauer D, 2001, NAT NEUROSCI, V4, P486
   Brooke RE, 2004, EUR J NEUROSCI, V20, P3313, DOI 10.1111/j.1460-9568.2004.03730.x
   Chen HJ, 2003, NEURON, V40, P15, DOI 10.1016/S0896-6273(03)00570-1
   Cluzeaud F, 1998, AM J PHYSIOL-CELL PH, V275, pC1602
   Czirjak G, 2002, J BIOL CHEM, V277, P5426, DOI 10.1074/jbc.M107138200
   Fernandez FR, 2003, J BIOL CHEM, V278, P40890, DOI 10.1074/jbc.M304235200
   Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809
   Fink M, 1996, EMBO J, V15, P6854
   GHANSHANI S, 1992, GENOMICS, V12, P190, DOI 10.1016/0888-7543(92)90365-Y
   Ginzinger DG, 2002, EXP HEMATOL, V30, P503, DOI 10.1016/S0301-472X(02)00806-8
   Goldstein SAN, 1998, J MOL MED-JMM, V76, P13, DOI 10.1007/s109-1998-8100-0
   Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2
   HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500
   Holt AG, 2006, HEARING RES, V216, P146, DOI 10.1016/j.heares.2006.03.009
   Hossain WA, 2005, J NEUROSCI, V25, P6857, DOI 10.1523/JNEUROSCI.0123-05.2005
   Jagger DJ, 2002, NEUROSCIENCE, V109, P169, DOI 10.1016/S0306-4522(01)00454-7
   Kanjhan R, 2004, NEUROREPORT, V15, P437, DOI 10.1097/01.wnr.0000114978.66165.39
   Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045
   KETCHUM KA, 1995, NATURE, V376, P690, DOI 10.1038/376690a0
   Knaus HG, 1996, J NEUROSCI, V16, P955
   Lesage F, 1996, EMBO J, V15, P6400
   Lesage F, 1997, FEBS LETT, V402, P28, DOI 10.1016/S0014-5793(96)01491-3
   Lesage F, 1996, EMBO J, V15, P1004
   Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279
   LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
   Lopes CMB, 2001, J BIOL CHEM, V276, P24449, DOI 10.1074/jbc.C100184200
   Maingret F, 1999, J BIOL CHEM, V274, P26691, DOI 10.1074/jbc.274.38.26691
   Maingret F, 2000, EMBO J, V19, P2483, DOI 10.1093/emboj/19.11.2483
   Maingret F, 2000, J BIOL CHEM, V275, P10128, DOI 10.1074/jbc.275.14.10128
   Massova I, 1997, J MOL MODEL, V3, P17, DOI 10.1007/s008940050021
   McMahon A, 2004, EUR J NEUROSCI, V19, P3317, DOI 10.1111/j.1460-9568.2004.03385.x
   Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294
   Mo ZL, 2002, J PHYSIOL-LONDON, V542, P763, DOI 10.1113/jphysiol.2002.017202
   Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019
   Morrison TB, 1998, BIOTECHNIQUES, V24, P960
   Morrison TB, 1998, BIOTECHNIQUES, V24, P962
   Morrison TB, 1998, BIOTECHNIQUES, V24, P954
   Mourre C, 1999, J PHARMACOL EXP THER, V291, P943
   Nicolas MT, 2004, BRAIN RES, V1017, P46, DOI 10.1016/j.brainres.2004.05.012
   Plant LD, 2005, CURR OPIN NEUROBIOL, V15, P326, DOI 10.1016/j.conb.2005.05.008
   Pountney DJ, 1999, FEBS LETT, V450, P191, DOI 10.1016/S0014-5793(99)00495-0
   Rajan S, 2005, CELL, V121, P37, DOI 10.1016/j.cell.2005.01.019
   Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200
   Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9
   Ririe KM, 1997, ANAL BIOCHEM, V245, P154, DOI 10.1006/abio.1996.9916
   Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0
   SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599
   Serodio P, 1998, J NEUROPHYSIOL, V79, P1081
   Standridge M, 2000, RRD ENDOCRINOL, V1, P185
   TALLEY CE, 2000, P SOC PHOTO-OPT INS, V1, P11
   Talley EM, 2003, NEUROSCIENTIST, V9, P46, DOI 10.1177/1073858402239590
   Talley EM, 2001, J NEUROSCI, V21, P7491
   Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
   Xu HD, 1996, J GEN PHYSIOL, V108, P405, DOI 10.1085/jgp.108.5.405
   Zhou ZP, 2005, J NEUROSCI, V25, P7558, DOI 10.1523/JNEUROSCI.1735-05.2005
NR 58
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 89
EP 99
DI 10.1016/j.heares.2006.09.002
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300010
PM 17079103
ER

PT J
AU Chatterjee, M
   Sarampalis, A
   Oba, SI
AF Chatterjee, Monita
   Sarampalis, Anastasios
   Oba, Sandra I.
TI Auditory stream segregation with cochlear implants: A preliminary report
SO HEARING RESEARCH
LA English
DT Article
DE auditory streaming; cochlear implants; modulation
ID FUNDAMENTAL-FREQUENCY; IMPAIRED LISTENERS; SEQUENCES; ATTENTION
AB Auditory stream segregation was measured in cochlear implant (0) listeners using a subjective "Yes-No" task in which listeners indicated whether a sequence of stimuli was perceived as two separate streams or not. Stimuli were brief, 50-ms pulse trains A and B, presented in an A_B_A_A_B_A...sequence, with 50 ms in between consecutive stimuli. All stimuli were carefully loudness-balanced prior to the experiments. The cochlear electrode location of A was fixed, while the location of B was varied systematically. Measures of electrode discrimination and subjective perceptual difference were also included for comparison. There was strong intersubject variation in the pattern of results. One of the participants participated in a second series of experiments, the results of which indicated that he was able to perceptually segregate stimuli that were different in cochlear electrode location, as well as stimuli that were different in temporal envelope. Although preliminary, these results suggest that it is possible for some cochlear implant listeners to perceptually segregate stimuli based on differences in cochlear location as well as temporal envelope. (c) 2006 Elsevier B.V. All rights reserved.
C1 House Ear Res Inst, Dept Auditory Implants & Percept, Los Angeles, CA 90057 USA.
RP Chatterjee, M (reprint author), Univ Maryland, Dept Speech & Hearing Sci, 0100 LeFrak Hall, College Pk, MD 20742 USA.
EM mchatterjee@hesp.umd.edu
CR Bregman AS., 1990, AUDITORY SCENE ANAL
   CARLYON RP, 2004, TRENDS COGN SCI, V8, P1364
   CHATTERJEE M, 2002, J ACOUST SOC AM, V111, P2429
   Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274
   Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643
   DIVENYI PL, 1997, IEEE MOH MOUNT WORKS, DOI UNSP 14.1.1-14.1.4
   GAUDRAIN E, 2006, J ACOUST SOC AM, V119, P3238
   Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740
   Grimault N, 2001, BRIT J AUDIOL, V35, P173
   Grimault N, 2000, J ACOUST SOC AM, V108, P263, DOI 10.1121/1.429462
   HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872
   Hong RS, 2006, J ACOUST SOC AM, V120, P360, DOI 10.1121/1.2204450
   JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321
   Mackersie CL, 2003, J SPEECH LANG HEAR R, V46, P912, DOI 10.1044/1092-4388(2003/071)
   McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553
   MICHEYL C, 2005, AUDITORY SIGNAL PROC
   Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
   Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06
   ROBERT ME, 2002, HOUSE EAR I NUCL RES
   Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784
   Shani M, 1999, ISRAEL MED ASSOC J, V1, P1
   SHANNON RV, 1990, J ACOUST SOC AM, V87, P905, DOI 10.1121/1.398902
   Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021
   Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003
   van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
   Vliegen J, 1999, J ACOUST SOC AM, V105, P339, DOI 10.1121/1.424503
   ZENG FG, 1991, Q J EXP PSYCHOL-A, V43, P565
NR 27
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 100
EP 107
DI 10.1016/j.heares.2006.09.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300011
PM 17071032
ER

PT J
AU Weisz, N
   Hartmann, T
   Dohrmann, K
   Schlee, W
   Norena, A
AF Weisz, Nathan
   Hartmann, Thomas
   Dohrmann, Katalin
   Schlee, Winfried
   Norena, Arnaud
TI High-frequency tinnitus without hearing loss does not mean absence of
   deafferentation
SO HEARING RESEARCH
LA English
DT Article
DE tinnitus; tinnitus spectrum; hearing loss; dead regions; pitch scaling
ID CORTICAL REORGANIZATION
AB A broad consensus within the neuroscience of tinnitus holds that this audiologic condition is triggered by central deafferentation, mostly due to cochlear damage. The absence of audiometrically detectable hearing loss however poses a challenge to this rather generalizing assumption. The aim of this study was therefore to scrutinize cochlear functioning in a sample of tinnitus subjects audiometrically matched to a normal hearing control group. Two tests were applied: the Threshold Equalizing Noise (TEN) test and a pitch scaling task. To perform well on both tasks relatively normal functioning of inner hair cells is a requirement. In the TEN test the tinnitus group revealed a circumscribed increment of thresholds partially overlapping with the tinnitus spectrum. Abnormal slopes were observed in the pitch scaling task which indicated that tinnitus subjects, when presented with a high-frequency stimulus, relied heavily on input derived from lower-frequency inner hair cells (off-frequency listening). In total both results argue for the presence of a deafferentation also in tinnitus subjects with audiometrically normal thresholds and therefore favour the deafferentation assumption posed by most neuroscientific theories. (c) 2006 Elsevier B.V. All rights reserved.
C1 INSERM, U280, F-69500 Bron, France.
   Univ Konstanz, Dept Psychol, D-7750 Constance, Germany.
   Univ Lyon 1, CNRS, UMR 5020, F-69622 Villeurbanne, France.
RP Weisz, N (reprint author), INSERM, U280, 95 Blvd Pinel, F-69500 Bron, France.
EM weisz@lyon.inserm.fr
RI Schlee, Winfried/C-8983-2011
OI Schlee, Winfried/0000-0001-7942-1788
CR Diesch E, 2004, EUR J NEUROSCI, V19, P1093, DOI 10.1111/j.1460-9568.2004.03191.x
   Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9
   Gouveris H, 2005, OTOLARYNG HEAD NECK, V132, P550, DOI 10.1016/j.otohns.2004.09.031
   Greenwood DD, 1997, HEARING RES, V103, P199, DOI 10.1016/S0378-5955(96)00175-X
   Henry J A, 2000, J Am Acad Audiol, V11, P138
   Henry JA, 2004, J REHABIL RES DEV, V41, P871, DOI 10.1682/JRRD.2003.10.0158
   Irvine DRF, 1997, ACTA OTO-LARYNGOL, P39
   MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
   MOORE BC, 2000, BRIT J AUDIOL, V4, P205
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
   Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
   Pinheiro J. C., 2000, MIXED EFFECTS MODELS
   R Development Core Team, 2004, R LANG ENV STAT COMP
   Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9
   Vernon JA, 2003, OTOLARYNG CLIN N AM, V36, P293, DOI 10.1016/S0030-6665(02)00162-7
   Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153
   Weisz N, 2005, BRAIN, V128, P2722, DOI 10.1093/brain/awh588
   Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023
NR 19
TC 98
Z9 104
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 108
EP 114
DI 10.1016/j.heares.2006.09.003
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300012
PM 17079102
ER

PT J
AU Tornabene, SV
   Sato, K
   Pham, L
   Billings, P
   Keithley, EM
AF Tornabene, Stephen V.
   Sato, Kunihiro
   Pham, Liem
   Billings, Peter
   Keithley, Elizabeth M.
TI Immune cell recruitment following acoustic trauma
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; chemokines; macrophages; wound healing
ID SPIRAL LIGAMENT FIBROCYTES; NECROSIS-FACTOR-ALPHA; INNER-EAR;
   PROINFLAMMATORY CYTOKINES; COCHLEAR INFLAMMATION; CONTUSION INJURY;
   MOUSE COCHLEA; SPINAL-CORD; EXPRESSION; RAT
AB Acoustic trauma induces Cochlear inflammation. We hypothesized that chemokines are involved in the recruitment of leukocytes as part of a wound healing response. The cochleas of NIH-Swiss mice, exposed to octave-band noise (8-16 kHz, at I IS dB) for 2 hi were examined after the termination of exposure. Leukocytes were identified immunohistochemistry with antibodies to CD45 and F4/80. Gene array analysis followed by RT-PCR was performed Oil cochlear tissue to identify Up-regulation of chemokine and adhesion molecule mRNA. The expression of the adhesion Molecule ICAM-1 was also investigated immunochemistry. Few CD45- or F4/80-positive leukocytes were observed in the non-exposed cochlea. Following acoustic trauma however, the number of CD45-positive cells was dramatically increased especially after 2 and 4 days, after which time the numbers decreased. F4/80-positive cells also increased in number over the course of a week. Gene array analysis indicated increased expression of monocyte chemoattractant protein 5 (MCP-5), monocyte chemoattractant protein I (MCP-1), macrophage inflammatory protein-1 beta (MIP-1 beta) and ICAM-1. RT-PCR, performed using primers for the individual mRNA sequences, confirmed the increased expression of MCP-1, MCP-5. MIP-1, and ICAM-1 relative to non-exposed mice. In the normal cochlea, ICAM-1 immunohistochemical expression was observed in venules, spiral ligament fibrocytes and in endosteal cells of the scala tympani. Expression increased to include more of the spiral ligament and endosteal cells after acoustic trauma. A cochlear inflammatory response is initiated in response to acoustric trauma and involves the recruitment of circulating leukocytes to the inner ear. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA.
   San Diego VA Med Ctr, Dept Vet Affairs, Div Med Res, La Jolla, CA USA.
RP Keithley, EM (reprint author), Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM ekeithley@ucsd.edu
CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001
   Adams JC, 2002, OTOL NEUROTOL, V23, P316, DOI 10.1097/00129492-200205000-00015
   BOZIC CR, 1995, J IMMUNOL, V154, P6048
   DEWALD O, 2005, CIRC RES, V96, P812
   DiPietro LA, 2001, WOUND REPAIR REGEN, V9, P28, DOI 10.1046/j.1524-475x.2001.00028.x
   DIPIETRO LA, 1995, AM J PATHOL, V146, P868
   FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
   Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764
   Ghirnikar RS, 2000, J NEUROSCI RES, V59, P63, DOI 10.1002/(SICI)1097-4547(20000101)59:1<63::AID-JNR8>3.0.CO;2-W
   HARRIS JP, 1990, ACTA OTO-LARYNGOL, V110, P357, DOI 10.3109/00016489009107455
   Hashimoto S, 2005, AUDIOL NEURO-OTOL, V10, P35, DOI 10.1159/000082306
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619
   Ichimiya I, 2000, INT J PEDIATR OTORHI, V56, P45, DOI 10.1016/S0165-5876(00)00408-0
   Lee RH, 2001, J SURG RES, V101, P104, DOI 10.1006/jsre.2001.6261
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   Ma CL, 2000, LARYNGOSCOPE, V110, P451, DOI 10.1097/00005537-200003000-00024
   Maeda K, 2005, HEARING RES, V202, P154, DOI 10.1016/j.heares.2004.08.022
   McTigue DM, 1998, J NEUROSCI RES, V53, P368, DOI 10.1002/(SICI)1097-4547(19980801)53:3<368::AID-JNR11>3.0.CO;2-1
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Otto VI, 2001, NEUROREPORT, V12, P2059, DOI 10.1097/00001756-200107030-00053
   Park JE, 2004, AM J SURG, V187, p11S, DOI 10.1016/S0002-9610(03)00296-4
   Rancan M, 2001, J NEUROSCI RES, V63, P438, DOI 10.1002/1097-4547(20010301)63:5<438::AID-JNR1039>3.3.CO;2-G
   Satoh H, 1997, ACTA OTO-LARYNGOL, V117, P80, DOI 10.3109/00016489709117996
   Satoh H, 2002, LARYNGOSCOPE, V112, P1627, DOI 10.1097/00005537-200209000-00019
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   TAKAHASHI M, 1988, ACTA OTO-LARYNGOL, V106, P409, DOI 10.3109/00016488809122264
   VALENTE A, 1988, BIOCHEMISTRY-US, V17, P4162
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Yimtae K, 2001, LARYNGOSCOPE, V111, P1631, DOI 10.1097/00005537-200109000-00026
   Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3
NR 31
TC 34
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 115
EP 124
DI 10.1016/j.heares.2006.09.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300013
PM 17081714
ER

PT J
AU Soeta, Y
   Nakagawa, S
AF Soeta, Yoshiharu
   Nakagawa, Seiji
TI Complex tone processing and critical band in the human auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE auditory-evoked fields (AEFs); critical band; critical bandwidth;
   magnetoencephalography (MEG); N1m
ID EVOKED MAGNETIC-FIELDS; ITERATED RIPPLED NOISE; ELECTROPHYSIOLOGICAL
   EVIDENCE; PITCH STRENGTH; LOUDNESS; SOUNDS; REPRESENTATION; BANDWIDTH;
   RESPONSES
AB Psychophysical experiments in humans have indicated that the auditory system has a well-defined bandwidth for resolution of complex stimuli. This bandwidth is known as the critical bandwidth (CBW). Physiological correlates of the CBW were examined in the human auditory cortex. Two- and three-tone complexes were used as the sound stimuli with all signals presented at 55 dB sound pressure level (SPL). The duration of stimulation was 500 ins, with rise and fall ramps of 10 ins. Tell normal-hearing subjects took part in the study. Auditory-evoked fields were recorded using a 122-channel whole-head magnetometer in a magnetically shielded room. The latencies, source strengths, and coordinates of the N1m waves, which were found above the left and right temporal lobes approximately 100 ms after the onset of stimulation, were analyzed. The results indicated that NI in amplitudes were approximately constant when the frequency separation of a two-tone complex or the total bandwidth of a three-tone complex was less than the CBW; however, the N1m amplitudes increased with increasing frequency separation or total bandwidth when these were greater than the CBW. These findings indicate critical band-like behavior in the human auditory cortex. The NI in amplitudes in the right hemisphere were significantly greater than those in the left hemisphere, which may reflect a right-hemispheric dominance in the processing of tonal Stimuli. (c) 2006 Elsevier B.V. All rights reserved.
C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
RP Soeta, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
CR Ando Y, 1999, COMPUTATIONAL ACOUST, P63
   BURROWS DL, 1990, J ACOUST SOC AM, V88, P180, DOI 10.1121/1.399938
   Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146
   Fishman YI, 2000, J ACOUST SOC AM, V108, P247, DOI 10.1121/1.429461
   Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
   Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   GREENWOOD D, 1961, J ACOUST SOC AM, V33, P484, DOI 10.1121/1.1908699
   HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413
   Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
   Ritter S, 2005, NEUROIMAGE, V27, P533, DOI 10.1016/j.neuroimage.2005.05.003
   SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4
   SAMSON S, 1994, NEUROPSYCHOLOGIA, V32, P231, DOI 10.1016/0028-3932(94)90008-6
   Sato S, 2002, J SOUND VIB, V250, P47, DOI 10.1006/jsvi.2001.3888
   SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235
   Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
   SIDTIS JJ, 1981, NEUROPSYCHOLOGIA, V19, P103, DOI 10.1016/0028-3932(81)90050-6
   SIDTIS JJ, 1980, NEUROPSYCHOLOGIA, V18, P321, DOI 10.1016/0028-3932(80)90127-X
   SKINNER PH, 1970, J ACOUST SOC AM, V48, P557, DOI 10.1121/1.1912171
   Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012
   Soeta Y, 2005, NEUROREPORT, V16, P1787, DOI 10.1097/01.wnr.0000185961.88593.4f
   Soeta Y, 2005, HEARING RES, V205, P256, DOI 10.1016/j.heares.2005.03.026
   WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592
   Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
   Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
   Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193
   ZERLIN S, 1986, J ACOUST SOC AM, V79, P1612, DOI 10.1121/1.393297
   Zhang CY, 1997, J ACOUST SOC AM, V102, P2925, DOI 10.1121/1.420347
   Zwicker E, 1999, PSYCHOACOUSTICS FACT
   ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963
NR 30
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2006
VL 222
IS 1-2
BP 125
EP 132
DI 10.1016/j.heares.2006.09.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 117YN
UT WOS:000242909300014
PM 17081712
ER

PT J
AU Coffey, CS
   Ebert, CS
   Marshall, AF
   Skaggs, JD
   Falk, SE
   Crocker, WD
   Pearson, JM
   Fitzpatrick, DC
AF Coffey, Charles S.
   Ebert, Charles S., Jr.
   Marshall, Allen F.
   Skaggs, John D.
   Falk, Stephanie E.
   Crocker, William D.
   Pearson, James M.
   Fitzpatrick, Douglas C.
TI Detection of interaural correlation by neurons in the superior olivary
   complex, inferior colliculus and auditory cortex of the unanesthetized
   rabbit
SO HEARING RESEARCH
LA English
DT Article
DE sound localization; interaural temporal disparities; interaural time
   differences; acoustic space
ID LOW-FREQUENCY NEURONS; TIME DIFFERENCE DISCRIMINATION; CHICK BRAIN-STEM;
   SOUND LOCALIZATION; DELAY-LINES; COINCIDENCE DETECTION;
   BINAURAL-INTERACTION; CROSS-CORRELATION; NOISE STIMULI; TONOTOPIC
   ORGANIZATION
AB A critical binaural cue important for sound localization and detection of signals in noise is the interaural time difference (ITD), or difference in the time of arrival of sounds at each ear. The ITD can be determined by cross-correlating the sounds at the two ears and finding the ITD where the correlation is maximal. The amount of interaural correlation is affected by properties of spaces and can therefore be used to assess spatial attributes. To examine the neural basis for sensitivity to the overall level of the interaural correlation, we identified subcollicular neurons and neurons in the inferior colliculus (IC) and auditory cortex of unanesthetized rabbits that were sensitive to ITDs and examined their responses as the interaural correlation was varied. Neurons at each brain level could show linear or non-linear responses to changes in interaural correlation. The direction of the non-linearities in most neurons was to increase the slope of the response change for correlations near 1.0. The proportion of neurons with non-linear responses was similar in subcollicular and IC neurons but increased in the auditory cortex. Non-linear response functions to interaural correlation were not related to the type of response as determined by the tuning to ITDs across frequencies. The responses to interaural correlation were also not related to the frequency tuning of the neuron, unlike the responses to ITD, which broadens for neurons tuned to lower frequencies. The neural discriminibility of the ITD using frozen noise in the best neurons was similar to the behavioral acuity in humans at a reference correlation of 1.0. However, for other reference ITDs the neural discriminibility was more linear and generally better than the human discriminibility of the interaural correlation, suggesting that stimulus rather than neural variability is the basis for the decline in human performance at lower levels of interaural correlation. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA.
RP Fitzpatrick, DC (reprint author), Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, 101 Med Res Bldg A,CB 7070, Chapel Hill, NC 27599 USA.
EM dcf@med.unc.edu
CR AHACKILETON TM, 2005, J ASS  RES OTOLARYNG, P1
   ALBECK Y, 1995, J NEUROPHYSIOL, V74, P1689
   Ando Y., 1998, ARCHITECTURAL ACOUST
   BABKOFF H, 1966, J ACOUST SOC AM, V41, P87
   BALAUERT J, 1997, SPATIAL HEARING PSYC
   Batra R, 1997, J NEUROPHYSIOL, V78, P1237
   Batra R, 1997, J NEUROPHYSIOL, V78, P1222
   Batra R, 2004, JARO-J ASSOC RES OTO, V5, P238, DOI 10.1007/s10162-004-4027-4
   BATRA R, 1989, J NEUROPHYSIOL, V61, P257
   Beckius GE, 1999, J NEUROSCI, V19, P3146
   Bernstein LR, 1996, J ACOUST SOC AM, V100, P1754, DOI 10.1121/1.416072
   Bernstein LR, 1996, J ACOUST SOC AM, V100, P3774, DOI 10.1121/1.417237
   BERNSTEIN LR, 1992, J ACOUST SOC AM, V91, P306, DOI 10.1121/1.402773
   Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857
   BRAND A, 2001, ASS RES OTOLARYNGOL, V24, P59
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   CARR CE, 1993, BRAIN RES, V628, P330, DOI 10.1016/0006-8993(93)90975-S
   CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311
   Culling JF, 2001, J ACOUST SOC AM, V110, P1020, DOI 10.1121/1.1383296
   DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681
   Faller C, 2004, J ACOUST SOC AM, V116, P3075, DOI 10.1121/1.1791872
   Fitzpatrick DC, 2002, HEARING RES, V168, P79, DOI 10.1016/S0378-5955(02)00359-3
   Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605
   Fitzpatrick DC, 2001, J NEUROSCI, V21, P4844
   Funabiki K, 1998, J PHYSIOL-LONDON, V508, P851, DOI 10.1111/j.1469-7793.1998.851bp.x
   GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326
   GREEN DM, 1966, SIGNAL DETECTION THE
   Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004
   Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768
   vanderHeijden M, 1997, J ACOUST SOC AM, V102, P2966, DOI 10.1121/1.420351
   JAIN M, 1991, J ACOUST SOC AM, V90, P1918, DOI 10.1121/1.401671
   Joris PX, 2006, J NEUROSCI, V26, P279, DOI 10.1523/JNEUROSCI.2285-05.2006
   Joris PX, 1996, J NEUROPHYSIOL, V76, P2137
   Joris PX, 2003, J NEUROSCI, V23, P6345
   JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043
   KOEHNKE J, 1986, J ACOUST SOC AM, V79, P1558, DOI 10.1121/1.393682
   Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123
   KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338
   KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964
   Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062
   Mardia K. V., 1972, STAT DIRECTIONAL DAT
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   McAlpine D, 1998, J NEUROSCI, V18, P6026
   McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
   MCMULLEN NT, 1982, EXP NEUROL, V75, P208, DOI 10.1016/0014-4886(82)90019-X
   OVERHOLT EM, 1992, J NEUROSCI, V12, P1698
   PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M
   POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852
   REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207
   REALE RA, 1990, J NEUROPHYSIOL, V64, P1247
   Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4
   SAKITT B, 1973, NATURE, V241, P133, DOI 10.1038/241133a0
   Shackleton TM, 2003, J NEUROSCI, V23, P716
   SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
   SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245
   SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668
   Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005
   Yang LC, 1999, J NEUROSCI, V19, P2313
   YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020
   YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
   YIN TCT, 1986, J NEUROPHYSIOL, V55, P280
   YIN TCT, 1987, J NEUROPHYSIOL, V58, P562
   YOUNG SR, 1983, J NEUROSCI, V3, P1373
   Zhou Y, 2005, J NEUROSCI, V25, P3046, DOI 10.1523/JNEUROSCI.3064-04.2005
NR 67
TC 22
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 1
EP 16
DI 10.1016/j.jheares.2006.06.005
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700001
PM 16978812
ER

PT J
AU Heffner, RS
   Koay, G
   Heffner, HE
AF Heffner, R. S.
   Koay, G.
   Heffner, H. E.
TI Hearing in large (Eidolon helvum) and small (Cynopterus brachyotis)
   non-echolocating fruit bats
SO HEARING RESEARCH
LA English
DT Article
DE audiogram; megachiroptera; yinpterochiroptera; pteropodiformes;
   straw-colored fruit bat; dog-faced fruit bat; echolocation; evolution
ID BIG BROWN BAT; MONKEY SAIMIRI-SCIUREUS; PURE-TONE THRESHOLDS; LEAF-NOSED
   BATS; SOUND-LOCALIZATION; PRIMITIVE MAMMALS; AUDITORY-SENSITIVITY;
   EPTESICUS-FUSCUS; ROUSETTUS-AEGYPTIACUS; BEHAVIORAL AUDIOGRAMS
AB Comparing the hearing abilities of echolocating and non-echolocating bats can provide insight into the effect of echolocation on more basic hearing abilities. Toward this end, we determined the audiograms of two species of non-echolocating bats, the straw-colored fruit bat (Eidolon helvum), a large (230-350 g) African fruit bat, and the dog-faced fruit bat (Cynopterus brachyotis), a small (3045 g) bat native to India and Southeast Asia. A conditioned suppression/avoidance procedure with a fruit juice reward was used for testing. At 60 dB SPL, the hearing range of E. helvum extends from 1.38 to 41 kHz with best sensitivity at 8 kHz; the hearing range of C brachyotis extends from 2.63 to 70 kHz with best sensitivity at 10 kHz. As with all other bats tested so far, neither species was able to hear below 500 Hz, suggesting that they may not use a time code for perceiving pitch. Comparison of the high-frequency hearing abilities of echolocating and non-echolocating bats suggests that the use of laryngeal echolocation has resulted in additional selective pressure to hear high frequencies. However, the typical high-frequency sensitivity of small non-echolocating mammals would have been sufficient to support initial echolocation in the early evolution of bats, a finding that supports the possibility of multiple origins of echolocation. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA.
RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA.
EM Rickye.Heffner@utoledo.edu
CR Babushina Ye. S., 1991, Biophysics, V36
   BEECHER MD, 1974, J ACOUST SOC AM, V55, P196, DOI 10.1121/1.1928152
   BROWN CH, 1984, ANIM BEHAV, V32, P66, DOI 10.1016/S0003-3472(84)80325-5
   Butler RA, 1975, HDB SENSORY PHYSL AU, V2, P247
   CALFORD MB, 1987, AUSTR MAMMALOGY, V10, P97
   Calford M.B., 1985, Australian Mammalogy, V8, P309
   DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185
   Eick GN, 2005, MOL BIOL EVOL, V22, P1869, DOI 10.1093/molbev/msi180
   Flydal K, 2001, J COMP PHYSIOL A, V187, P265, DOI 10.1007/s003590100198
   FROST SB, 1994, HEARING RES, V76, P67, DOI 10.1016/0378-5955(94)90088-4
   GILLETTE RG, 1973, AM J PHYS ANTHROPOL, V38, P365, DOI 10.1002/ajpa.1330380234
   GREEN S, 1975, J EXP ANAL BEHAV, V23, P255, DOI 10.1901/jeab.1975.23-255
   GRINNELL AD, 1972, Z VERGL PHYSIOL, V76, P82, DOI 10.1007/BF00395501
   HEFFNER H, 1980, J ACOUST SOC AM, V68, P154
   Heffner H. E., 1995, METHODS COMP PSYCHOA, P73
   Heffner H. E., 2006, CURRENT PROTOCOLS NE
   HEFFNER H, 1970, J COMP PHYSIOL PSYCH, V71, P175, DOI 10.1037/h0029138
   HEFFNER HE, 1969, J AUD RES, V9, P12
   HEFFNER HE, 1985, J COMP PSYCHOL, V99, P275, DOI 10.1037//0735-7036.99.3.275
   Heffner H.E., 2003, HDB RES METHODS EXPT, P413, DOI 10.1002/9780470756973.ch19
   HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2
   HEFFNER HE, 1983, BEHAV NEUROSCI, V97, P310, DOI 10.1037/0735-7044.97.2.310
   HEFFNER HE, 1969, J AUD RES, V9, P19
   HEFFNER R, 1971, J ACOUST SOC AM, V49, P1888, DOI 10.1121/1.1912596
   Heffner R. S., 2001, AUDITORY BIOL LAB MO, P31
   Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2
   HEFFNER RS, 1994, HEARING RES, V73, P185, DOI 10.1016/0378-5955(94)90233-X
   HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S
   HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311
   HEFFNER RS, 1990, HEARING RES, V46, P239, DOI 10.1016/0378-5955(90)90005-A
   HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H
   HEFFNER RS, 1983, BEHAV NEUROSCI, V97, P299, DOI 10.1037/0735-7044.97.2.299
   HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926
   HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5
   Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3
   HEFFNER RS, 1985, J MAMMAL, V66, P745, DOI 10.2307/1380801
   HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A
   Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8
   HIENZ RD, 1982, HEARING RES, V8, P71, DOI 10.1016/0378-5955(82)90035-1
   Jackson LL, 1997, J COMP PSYCHOL, V111, P100, DOI 10.1037//0735-7036.111.1.100
   Jackson LL, 1999, J ACOUST SOC AM, V106, P3017, DOI 10.1121/1.428121
   JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
   Jones ML, 1982, ZOOLOGICAL GARTEN, V52, P113
   KELLY JB, 1986, HEARING RES, V24, P269, DOI 10.1016/0378-5955(86)90025-0
   Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X
   Koay G, 2002, HEARING RES, V171, P111, DOI 10.1016/S0378-5955(02)00492-6
   Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0
   KOAY G, 2002, HEARING RES, V171, P97
   Koay G, 1998, HEARING RES, V119, P37, DOI 10.1016/S0378-5955(98)00037-9
   Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371
   LONG GR, 1975, J COMP PHYSIOL, V100, P211
   MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574
   NEUWEILER G, 1984, J COMP PHYSIOL, V154, P133, DOI 10.1007/BF00605398
   OWREN MJ, 1988, J COMP PSYCHOL, V102, P99
   PFINGST BE, 1975, J ACOUST SOC AM, V57, P431, DOI 10.1121/1.380466
   Popper AN, 2004, ICES J MAR SCI, V61, P1057, DOI 10.1016/j.icesjms.2004.06.005
   RAVIZZA RJ, 1969, J AUD RES, V9, P1
   RAVIZZA RJ, 1969, J AUD RES, V9, P8
   Reimer K, 1995, ZOOL-ANAL COMPLEX SY, V99, P121
   RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961
   RYAN MJ, 1983, J COMP PHYSIOL, V150, P413
   Schmidt S., 1984, Myotis, V21-22, P62
   Sivian LJ, 1933, J ACOUST SOC AM, V4, P288, DOI 10.1121/1.1915608
   SUTHERLAND D, 1988, ASS RES OT ABSTR, V11, P232
   Teeling EC, 2005, SCIENCE, V307, P580, DOI 10.1126/science.1105113
   Waters DA, 2003, ACTA CHIROPTEROL, V5, P209
   WEBSTER DB, 1972, BRAIN BEHAV EVOLUT, V5, P41, DOI 10.1159/000123736
   WENDT G. R., 1934, COMP PSYCHOL MONOGR, V10, P1
   WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934
   WOLLACK CH, 1963, J AUD RES, V3, P121
   WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410
NR 71
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 17
EP 25
DI 10.1016/j.heares.2006.06.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700002
PM 16982165
ER

PT J
AU Langemann, U
   Klump, GM
AF Langemann, Ulrike
   Klump, Georg M.
TI Asymmetry of masking in the European starling: Behavioural auditory
   thresholds
SO HEARING RESEARCH
LA English
DT Article
DE bird; signal detection in narrow-band noise; intensity difference limen
   (IDL); envelope spectrum; temporal processing
ID MODULATION TRANSFER-FUNCTIONS; EXCITATION-PATTERN MODEL;
   AMPLITUDE-MODULATION; STURNUS-VULGARIS; INTENSITY DISCRIMINATION; NOISE;
   BANDWIDTH; CARRIERS; LEVEL
AB Psychophysical studies of simultaneous masking with human observers exhibit an asymmetry in the amount of masking that depends on the relative bandwidths of signals and maskers. For noise bands up to the bandwidth of one auditory filter, masked auditory thresholds are considerably lower when the bandwidth of the signal exceeds that of the masker compared to the reversed condition. We investigate asymmetry of masking in an animal model, that will allow to study the mechanisms associated with the asymmetry of masking effect. European starlings (Sturnus vulgaris) were trained in a Go/NoGo paradigm to report the detection of a 500 ms noise signal centred in a 700 ms noise masker. Signals and maskers with centre frequencies of 2 kHz had bandwidths of 4 Hz or 256 Hz. Thresholds for detecting the 256 Hz wide-band signal in a 4 Hz narrow-band masker were considerably lower compared to detecting the 4 Hz narrow-band signal in a 256 Hz wide masker and compared to all other conditions. The asymmetry of masking in starlings was on average 15 and 17 dB for 40 and 70 dB SPL overall masker level, respectively. Our animal model thus proved perceptual abilities similar to human subjects. The results are discussed with respect to the importance of both intensity and temporal cues for signal detection. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Oldenburg, Fak 5, Inst Biol & Umweltwissensch, D-26129 Oldenburg, Germany.
RP Langemann, U (reprint author), Univ Oldenburg, Fak 5, Inst Biol & Umweltwissensch, Carl von Ossietzky Str 9-11, D-26129 Oldenburg, Germany.
EM ulrike.langemann@uni-oldenburg.de
CR BEE MA, 2004, ABSTR ASS RES OTOLAR, V27, P106
   BOS CE, 1966, J ACOUST SOC AM, V39, P708, DOI 10.1121/1.1909945
   BUUS S, 1995, J ACOUST SOC AM, V98, P112, DOI 10.1121/1.414466
   BUUS S, 1990, J ACOUST SOC AM, V87, P2643, DOI 10.1121/1.399057
   Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
   Dooling R. J., 1995, METHODS COMP PSYCHOA, P161
   Dooling R. J., 2000, COMP HEARING BIRDS R, P308
   EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661
   Ewert SD, 2004, J ACOUST SOC AM, V116, P478, DOI 10.1121/1.1737399
   EWERT SD, 2002, J ACOUST SOC AM, V102, P2921
   Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47
   FLORENTINE M, 1981, J ACOUST SOC AM, V70, P1646, DOI 10.1121/1.387219
   GLEICH O, 1994, J ACOUST SOC AM, V95, P401, DOI 10.1121/1.408333
   Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422
   GREEN DM, 1966, SIGNAL DETECTION THE
   Greenewalt CH, 1968, BIRD SONG ACOUSTICS
   HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311
   Hall JL, 1997, J ACOUST SOC AM, V101, P1023, DOI 10.1121/1.418027
   HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005
   HELLMAN RP, 1972, PERCEPT PSYCHOPHYS, V11, P241, DOI 10.3758/BF03206257
   HOSE B, 1987, BRAIN RES, V422, P367, DOI 10.1016/0006-8993(87)90946-2
   Klump Georg, 2000, P193, DOI 10.1002/9783527609734.ch7
   KLUMP GM, 1990, NATURWISSENSCHAFTEN, V77, P545, DOI 10.1007/BF01139270
   KLUMP GM, 2001, PHYSL PSYCHOPHYSICAL, P266
   KLUMP GM, 1991, HEARING RES, V52, P1, DOI 10.1016/0378-5955(91)90182-9
   Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605
   Krumbholz K, 2001, J ACOUST SOC AM, V110, P2096, DOI 10.1121/1.1395583
   LANGEMANN U, 1995, HEARING RES, V84, P167, DOI 10.1016/0378-5955(95)00023-W
   Lawson J. L., 1950, THRESHOLD SIGNALS
   MAIWALD D, 1967, ACUSTICA, V18, P193
   MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
   Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321
   Patterson RD, 1986, FREQUENCY SELECTIVIT, P123
   Sen K, 2001, J NEUROPHYSIOL, V86, P1445
   Swets J.A., 1964, SIGNAL DETECTION REC
   SWICKER E, 1957, J ACOUST SOC AM, V29, P548
   TABACHNICK BG, 1996, USING MULTIVARIATE
   Verhey JL, 2002, J ACOUST SOC AM, V111, P1018, DOI 10.1121/1.1430690
   VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531
   WAKEFIELD GH, 1990, J ACOUST SOC AM, V88, P1367, DOI 10.1121/1.399714
NR 40
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 26
EP 35
DI 10.1016/j.heares.2006.06.018
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700003
PM 16973317
ER

PT J
AU Kiefer, J
   Bohnke, F
   Adunka, O
   Arnold, W
AF Kiefer, Jan
   Boehnke, Frank
   Adunka, Oliver
   Arnold, Wolfgang
TI Representation of acoustic signals in the human cochlea in presence of a
   cochlear implant electrode
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; inner ear; cochlear implant; basilar membrane; model;
   electric-acoustic stimulation; frequency representation; round window;
   impedance
ID AUDITORY-SYSTEM; HEARING-LOSS; STIMULATION; PRESERVATION; MEMBRANE
AB Background: In subjects with remaining low frequency hearing, combined electric-acoustic stimulation (EAS) of the auditory system is a new therapeutic perspective. Intracochlear introduction of a cochlear implant electrode, however, may alter the biomechanical properties of the inner ear and thus affect perception of acoustic stimuli.
   Study design: Based on histological observations of morphologic changes after cochlear implantation in cadaveric and post mortem studies the effects of basilar membrane (BM) stiffening in the ascending basal and middle turns of the cochlea due to close contact of the BM with the electrode were simulated in a 3D-computational finite element model of the inner ear. To verify our simulated results, pre- and postoperative pure-tone audiograms of 13 subjects with substantial residual hearing, who underwent cochlear implantation, were evaluated.
   Results: In the scenario of partial BM-fixation, acoustic energy of middle (2 kHz) and high (6 kHz) frequency was focused basally and apically to the fixed section, increasing BM displacement amplitudes up to 6 dB at a stimulation level of 94 dB (SPL). Lower frequencies were not affected by fixation in the basal and middle turn of the cochlea. In implanted subjects, a small but significant decrease of thresholds was observed at 1.5 kHz, a place in tonotopy adjacent to the tip region of the implanted electrode.
   Conclusion: Our model suggests that stiffening of the basilar membrane adjacent to an implanted electrode into the basal and middle cochlear turn did not affect BM movement in the low frequency area. Focussing of acoustic energy may increase perception in regions adjacent to the fixed section. Observations in implanted subjects were concordant with our model predictions. High frequencies, however, should not be amplified in patients using EAS to avoid disturbances in discrimination due to tonotopically incorrect frequency representation. (c) 2006 Published by Elsevier B.V.
C1 Tech Univ Munich, Klinikum Rechts Isar, Klin & Poliklin HNO Heilkunde, Dept Otolaryngol, D-81675 Munich, Germany.
   Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC USA.
RP Kiefer, J (reprint author), Tech Univ Munich, Klinikum Rechts Isar, Klin & Poliklin HNO Heilkunde, Dept Otolaryngol, Ismaninger Str 22, D-81675 Munich, Germany.
EM J.Kiefer@lrz.tum.de
CR Adunka O, 2004, ACTA OTO-LARYNGOL, V124, P807, DOI 10.1080/00016480410018179
   Adunka O, 2004, LARYNGOSCOPE, V114, P1237, DOI 10.1097/00005537-200407000-00018
   ADUNKA O, 2005, PRESERVATION BASAL, P302
   Bohnke F, 1999, ORL J OTO-RHINO-LARY, V61, P305, DOI 10.1159/000027688
   Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P40
   Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005
   Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2
   Gstoettner W, 2000, WIEN KLIN WOCHENSCHR, V112, P477
   Kiefer J, 1998, AUDIOLOGY, V37, P382
   Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023
   Nadol JB, 2004, OTOL NEUROTOL, V25, P257, DOI 10.1097/00129492-200405000-00010
   Plenk Jr H, 1986, TECHNIQUES BIOCOMPAT, P35
   Skarzynski H, 2002, ORL J OTO-RHINO-LARY, V64, P247, DOI 10.1159/000064134
   VOLDRICH L, 1978, ACTA OTO-LARYNGOL, V86, P331, DOI 10.3109/00016487809107511
   von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
   Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645
NR 16
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 36
EP 43
DI 10.1016/j.heares.2006.07.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700004
PM 16962268
ER

PT J
AU Calderon, A
   Derr, A
   Stagner, BB
   Johnson, KR
   Martin, G
   Noben-Trauth, K
AF Calderon, Alfredo
   Derr, Adam
   Stagner, Barden B.
   Johnson, Kenneth R.
   Martin, Glen
   Noben-Trauth, Konrad
TI Cochlear developmental defect and background-dependent hearing
   thresholds in the Jackson circler (jc) mutant mouse
SO HEARING RESEARCH
LA English
DT Article
DE Jackson circler; hearing loss; vestibular deficits; cochlea
   malformation; genetic background
ID PRODUCT OTOACOUSTIC EMISSIONS; ENLARGED VESTIBULAR AQUEDUCT; BRAIN-STEM
   RESPONSE; INNER-EAR; PENDRED-SYNDROME; MODIFIER GENES; JERKER MOUSE;
   MICE; STEREOCILIA; MUTATIONS
AB Jackson circler (jc) is a spontaneous, recessive mouse mutation that results in circling behavior and an impaired acoustic startle response. In this study, we refined the phenotypic and genetic parameters of the original jc mutation and characterized a new mutant allele, jc(2J). In open-field behavior tests, homozygous jc mutants exhibited abnormal circling and ambulatory behavior that was indistinguishable from that of phenotypically similar mutants with defects in the vestibule of the inner ear. The jc/jc and jc(2J)/jc(2J) mice had stable elevated auditory-evoked brainstem response (ABR) thresholds at the 16 kHz stimulus of 88 +/- 9 dB sound pressure levels (SPL) and 43 +/- 11 dB SPL, respectively. Peak latencies and peak time intervals were normal in jc mutants. The jc mice showed no measurable distortion-product otoacoustic emissions (DPOAEs) above the system noise floor. In the mutant cochlea, the apical turn failed to form due to the developmental growth arrest of the cochlear duct at the level of the first turn at gestational day 13.5. In a large intrasubspecific intercross, jc localized to a 0.2cM interval at position 25cM on chromosome 10, which is homologous to the human 6q21 region. On CZECHII/Ei and CAST/Ei backgrounds jc/jc mutant hearing thresholds at the 16 kHz stimulus were significantly lower than those observed on the C57BL/6J background, with means of 62 +/- 22 dB SPL and 55 +/- 18 dB SPL, respectively. Genome-wide linkage scans of backcross, intercross, and congenic progeny revealed a complex pattern of genetic and stochastic effects. (c) 2006 Elsevier B.V. All rights reserved.
C1 NIDOCD, Neurogenet Sect, Inst Mol Biol, Rockville, MD 20850 USA.
   Jerry L Pettis Mem Vet Adm Med Ctr, Loma Linda, CA 92357 USA.
   Jackson Lab, Bar Harbor, ME 04609 USA.
RP Noben-Trauth, K (reprint author), NIDOCD, Neurogenet Sect, Inst Mol Biol, 5 Res Court, Rockville, MD 20850 USA.
EM nobentk@nidcd.nih.gov
CR Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3
   Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116
   CHURCHILL GA, 1994, GENETICS, V138, P963
   CORDES SP, 1994, CELL, V79, P1025, DOI 10.1016/0092-8674(94)90033-7
   Curtin JA, 2003, CURR BIOL, V13, P1129, DOI 10.1016/S0960-9822(03)00374-9
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   DEOL MS, 1954, J GENET, V52, P562, DOI 10.1007/BF02985081
   Di Palma F, 2001, NAT GENET, V27, P103
   Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579
   Eppig JT, 2005, NUCLEIC ACIDS RES, V33, pD471, DOI 10.1093/nar/gki113
   Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153
   Fedrowitz M, 2003, NEUROSCIENCE, V118, P867, DOI 10.1016/S0306-4522(02)00939-9
   Flagella M, 1999, J BIOL CHEM, V274, P26946, DOI 10.1074/jbc.274.38.26946
   Flint J, 2005, NAT REV GENET, V6, P271, DOI 10.1038/nrg1576
   HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815
   Hequembourg S, 2001, JARO, V2, P118
   HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7
   Ikeda A, 1999, HUM MOL GENET, V8, P1761, DOI 10.1093/hmg/8.9.1761
   Iughetti P, 2000, AM J MED GENET, V95, P482, DOI 10.1002/1096-8628(20001218)95:5<482::AID-AJMG14>3.0.CO;2-X
   Jimenez AM, 2001, JARO, V2, P233
   Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9
   Johnson KR, 1999, HUM MOL GENET, V8, P645, DOI 10.1093/hmg/8.4.645
   Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021
   JONES SM, 2005, JARO-J ASSOC RES OTO, P1
   Kaiser A, 2001, EUR J NEUROSCI, V14, P1129, DOI 10.1046/j.0953-816x.2001.01726.x
   Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
   LANDER E, 1995, NAT GENET, V11, P241, DOI 10.1038/ng1195-241
   Legare ME, 2000, GENOME RES, V10, P42
   Manly KF, 2001, MAMM GENOME, V12, P930, DOI 10.1007/s00335-001-1016-3
   MARTIN P, 1993, DEV BIOL, V159, P549, DOI 10.1006/dbio.1993.1263
   Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208
   Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6
   Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4
   Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6
   *MGD, 2005, MOUS GEN INF PROJ
   Mondini C, 1997, AM J OTOL, V18, P288
   Montcouquiol M, 2003, NATURE, V423, P173, DOI 10.1038/nature01618
   MUNDINUS C, 1791, OPUSCULA CAROLI MUND, P7
   Nadeau JH, 2003, CURR OPIN GENET DEV, V13, P290, DOI 10.1016/S0959-437X(03)00061-3
   Nadeau JH, 2001, NAT REV GENET, V2, P165, DOI 10.1038/35056009
   NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869
   Phippard D, 1999, J NEUROSCI, V19, P5980
   Pryor SP, 2005, J MED GENET, V42, P159, DOI 10.1136/jmg.2004.024208
   Quint E, 2003, CURR TOP DEV BIOL, V57, P45, DOI 10.1016/S0070-2153(03)57002-8
   Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055
   Siemens J, 2002, P NATL ACAD SCI USA, V99, P14946, DOI 10.1073/pnas.232579599
   SJOSTROM B, 1990, EUR ARCH OTO-RHINO-L, V247, P51
   SOUTHARD JL, 1970, MOUSE NEWS LETT, V42, P30
   Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758
   Torres MA, 1996, DEVELOPMENT, V122, P3381
   Tsukamoto K, 2003, EUR J HUM GENET, V11, P916, DOI 10.1038/sj.ejhg.5201073
   Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933
   Vazquez AE, 2001, HEARING RES, V156, P31, DOI 10.1016/S0378-5955(01)00265-9
   Wang JB, 2005, NAT GENET, V37, P980, DOI 10.1038/ng1622
   Witmer PD, 2003, GENOME RES, V13, P485, DOI 10.1101/gr.717903
   Xu PX, 1999, NAT GENET, V23, P113
   Zheng LL, 2000, CELL, V102, P377, DOI 10.1016/S0092-8674(00)00042-8
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
   ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D
   ZHOU RZ, 1995, HEARING RES, V88, P87, DOI 10.1016/0378-5955(95)00104-C
NR 60
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 44
EP 58
DI 10.1016/j.heares.2006.07.008
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700005
PM 16962269
ER

PT J
AU Konig, O
   Schaette, R
   Kempter, R
   Gross, M
AF Koenig, Ovidiu
   Schaette, Roland
   Kempter, Richard
   Gross, Manfred
TI Course of hearing loss and occurrence of tinnitus
SO HEARING RESEARCH
LA English
DT Article
DE tinnitus; noise-induced hearing loss; audiometric difference; audiogram
   steepness; audiogram edge; tinnitus pitch
ID DORSAL COCHLEAR NUCLEUS; ENRICHED ACOUSTIC ENVIRONMENT; PURE-TONE
   TRAUMA; FREQUENCY DISCRIMINATION; AUDITORY-CORTEX; PLASTICITY; DAMAGE;
   HYPERACTIVITY; PREVALENCE; EXPOSURE
AB Chronic tinnitus is often accompanied by a hearing impairment, but it is still unknown whether hearing loss can actually cause tinnitus. The association between the pitch of the tinnitus sensation and the audiogram edge in patients with high-frequency hearing loss suggests a functional relation, but a large fraction of patients with hearing loss does not present symptoms of tinnitus. We therefore, investigated how the occurrence of tinnitus is related to the shape of the audiogram. We analyzed a sample where all patients had noise-induced hearing loss, containing 30 patients without tinnitus, 24 patients with tone-like tinnitus, and 17 patients with noise-like tinnitus. All patients had moderate to severe high-frequency hearing loss, and only minor to moderate hearing loss at low frequencies. We found that tinnitus patients had less overall hearing loss than patients without tinnitus. Moreover, the maximum steepness of the audiogram was higher in patients with tinnitus (-52.9 +/- 1.9 dB/octave) compared to patients without tinnitus (-43.1 +/- 2.4 dB/octave). Differences in overall hearing loss and maximum steepness between tone-like and noise-like tinnitus were not significant. For tone-like tinnitus, there was a clear association between the tinnitus pitch and the edge of the audiogram, with tinnitus pitch being on average 1.48 +/- 0.12 octaves above the audiogram edge frequency, and 0.81 +/- 0.1 octaves above the frequency with the steepest slope. Our results suggest that the occurrence of tinnitus is promoted by a steep audiogram slope. A steep slope leads to abrupt discontinuities in the activity along the tonotopic axis of the auditory system, which could be misinterpreted as sound. (c) 2006 Elsevier B.V. All rights reserved.
C1 Humboldt Univ, Inst Theroret Biol, D-10115 Berlin, Germany.
   Med Fac Berlin, Charite, Dept Audiol & Phoniatr, D-14195 Berlin, Germany.
   Bernstein Ctr Computat Neurosci Berlin, D-10115 Berlin, Germany.
   Med Fac Berlin, Charite, Ctr Res Neurosci, D-10117 Berlin, Germany.
RP Schaette, R (reprint author), Humboldt Univ, Inst Theroret Biol, Invalidenstr 43, D-10115 Berlin, Germany.
EM r.schaette@biologie.hu-berlin.de
CR Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   BURNS EM, 1984, AUDIOLOGY, V23, P426
   CHUNG DY, 1984, AUDIOLOGY, V23, P441
   Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
   Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0
   Folmer RL, 2006, OTOLARYNG HEAD NECK, V134, P132, DOI 10.1016/j.otohns.2005.09.030
   Gerken GM, 1996, HEARING RES, V97, P75
   Henry JA, 1999, P 6 INT TINN SEM, P51
   Jastreboff P J, 2000, J Am Acad Audiol, V11, P162
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
   Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750
   LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
   Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
   McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
   MCSHANE DP, 1988, CLIN OTOLARYNGOL, V13, P323, DOI 10.1111/j.1365-2273.1988.tb00760.x
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
   Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001
   Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
   Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
   Ochi K, 2003, LARYNGOSCOPE, V113, P427, DOI 10.1097/00005537-200303000-00007
   PHOON WH, 1993, OCCUP MED-OXFORD, V43, P35, DOI 10.1093/occmed/43.1.35
   Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786
   Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4
   ROBERTS LE, IN PRESS ACTA OTOLAR
   Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x
   Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X
   Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9
   Sindhusake Doungkamol, 2004, J Am Acad Audiol, V15, P269
   Sindhusake D, 2003, EAR HEARING, V24, P501, DOI 10.1097/01.AUD.0000100204.08771.3D
   Surr R K, 1999, J Am Acad Audiol, V10, P489
   Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044
   Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228
   Weisz N, 2005, P 8 INT TINN SEM, P76
NR 36
TC 64
Z9 68
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 59
EP 64
DI 10.1016/j.heares.2006.07.007
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700006
PM 16962270
ER

PT J
AU Jones, SJ
AF Jones, S. J.
TI Cortical processing of quasi-periodic versus random noise sounds
SO HEARING RESEARCH
LA English
DT Article
DE auditory evoked potentials; auditory cortex; iterated rippled noise;
   pitch onset response; temporal regularity
ID HUMAN AUDITORY-CORTEX; ITERATED RIPPLED NOISE; TONOTOPIC ORGANIZATION;
   MAGNETIC-FIELDS; COMPLEX TONES; EVOKED POTENTIALS; PITCH;
   REPRESENTATION; FREQUENCY; MAPS
AB The first objective was to confirm using auditory evoked potentials (AEPs) the findings of magnetoencephalographic studies; that quasi-periodic iterated rippled noise (IRN) elicits a population response in the human auditory cortex which is topographically distinct from that elicited by random noise with a similar overall frequency spectrum. AEPs were recorded at the onset of random noise from silence, at the transition from random noise to IRN with a period of 5 ms, and in the two complementary conditions, IRN onset from silence and the transition from IRN to random noise. An N1/P2 complex was recorded to all four stimuli, that to the transition to IRN being significantly the most anteriorly distributed on the scalp. The second objective was to determine whether the response to the transition to IRN was due to detection of its quasi-periodicity, rather than its spectral "ripples". Virtually no effect was found of applying a 2 kHz low- or high-pass filter, above which it is unlikely that the spectral ripples at intervals of 200 Hz would have been resolved on the cochlear partition. It is concluded that a substantial neuronal population in the auditory cortex is influenced by temporal regularity in sounds, and that this population is equally responsive to spectral frequencies below and above 2 kHz. (c) 2006 Elsevier B.V. All rights reserved.
C1 UCL Natl Hosp Neurol & Neurosurg, Dept Clin Neurophysiol, London WC1N 3BG, England.
RP Jones, SJ (reprint author), UCL Natl Hosp Neurol & Neurosurg, Dept Clin Neurophysiol, Queen Sq, London WC1N 3BG, England.
EM sjjones@ion.ucl.ac.uk
CR Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867
   Bilecen D, 1998, HEARING RES, V126, P19, DOI 10.1016/S0378-5955(98)00139-7
   ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201
   Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X
   Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949
   Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140
   Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0
   Hung J, 2001, EXP BRAIN RES, V140, P56, DOI 10.1007/s002210100783
   Jones SJ, 1998, EVOKED POTENTIAL, V108, P131, DOI 10.1016/S0168-5597(97)00077-4
   Jones SJ, 2001, CLIN NEUROPHYSIOL, V112, P965, DOI 10.1016/S1388-2457(01)00515-6
   Jones SJ, 2003, EXP BRAIN RES, V150, P506, DOI 10.1007/s00221-003-1482-9
   Jones SJ, 2000, CLIN NEUROPHYSIOL, V111, P1569, DOI 10.1016/S1388-2457(00)00360-6
   Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
   Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148
   LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3
   Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790
   MAKELA JP, 1988, ELECTROEN CLIN NEURO, V69, P423, DOI 10.1016/0013-4694(88)90064-8
   MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2
   Moore BCJ, 1997, INTRO PSYCHOL HEARIN
   MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312
   PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
   Pantev C, 1996, HEARING RES, V100, P164, DOI 10.1016/0378-5955(96)00124-4
   Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212
   REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207
   ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770
   Schonwiesner M, 2002, NEUROIMAGE, V17, P1144, DOI 10.1006/nimg.2002.1250
   SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
   Schulze H, 2002, EUR J NEUROSCI, V15, P1077, DOI 10.1046/j.1460-9568.2002.01935.x
   Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
   Soeta Y, 2005, HEARING RES, V205, P256, DOI 10.1016/j.heares.2005.03.026
   Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002
   Vaz Pato M., 1999, COGNITIVE BRAIN RES, V7, P295, DOI 10.1016/S0926-6410(98)00032-9
   VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7
   YAMAMOTO T, 1992, ACTA OTO-LARYNGOL, V112, P201
   Yost WA, 1997, J ACOUST SOC AM, V101, P1644, DOI 10.1121/1.418148
NR 35
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 65
EP 72
DI 10.1016/j.heares.2006.06.019
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700007
PM 16963209
ER

PT J
AU Willott, JF
   VandenBosche, J
   Shimizu, T
   Ding, DL
   Salvi, R
AF Willott, James F.
   VandenBosche, Justine
   Shimizu, Toru
   Ding, Da-Lian
   Salvi, Richard
TI Effects of exposing gonadectomized and intact C57BL/6J mice to a
   high-frequency augmented acoustic environment: Auditory brainstem
   response thresholds and cytocochleograms
SO HEARING RESEARCH
LA English
DT Article
DE mouse; ABR; augmented acoustic environment; hearing loss; cochleograms;
   hair cells; gonadal hormones; sex differences
ID ANTEROVENTRAL COCHLEAR NUCLEUS; PRODUCT OTOACOUSTIC EMISSIONS; AGING
   C57BL-6J MICE; HAIR CELL LOSS; HEARING-LOSS; SEX-DIFFERENCES; DBA/2J
   MICE; PROLONGED EXPOSURE; ESTROGEN-RECEPTORS; CALBINDIN D-28K
AB Gonadectomized and surgically intact adult C57BL/6J (B6) mice of both sexes were exposed for 12 h nightly to a high-frequency augmented acoustic environment (AAE): repetitive bursts of a half-octave noise band centered at 20 kHz, 70 dB SPL. The effects of sex, gonadectomy, and AAE treatment on genetic progressive hearing loss (exhibited by B6 mice) were evaluated by obtaining auditory brainstem response thresholds at ages 3-, 6-, and 9-months; hair cell counts (cytocochleograms) were obtained at 9 months. A sex difference in the rate of genetic progressive hearing loss in B6 mice (observed by earlier studies) was confirmed, with females exhibiting a faster rate of threshold elevations and more severe loss of hair cells at age 9 months. Gonadectomy had no consistent effects on the rate or severity of hearing loss in non-exposed mice of either sex. An unexpected finding was that the high-frequency AAE treatment caused additional ABR threshold elevations and hair cell loss. In an earlier study, the same high-frequency AAE treatment on DBA/2J mice ameliorated hearing loss. The most severe AAE-induced losses occurred in surgically intact females, suggesting a potentiating effect of ovarian hormone(s). (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ S Florida, Dept Psychol, Tampa, FL 33620 USA.
   Jackson Lab, Bar Harbor, ME 04609 USA.
   SUNY Buffalo, Dept Biochem, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Willott, JF (reprint author), Univ S Florida, Dept Psychol, 4202 E Fowler Ave,PCD4188G, Tampa, FL 33620 USA.
EM jimw@niu.edu
CR Arnold AP, 1996, HORM BEHAV, V30, P495, DOI 10.1006/hbeh.1996.0053
   BELISLE S, 1985, AM J OBSTET GYNECOL, V153, P394
   BERGMAN MD, 1989, J STEROID BIOCHEM, V33, P1027, DOI 10.1016/0022-4731(89)90405-6
   Bittar R S, 2001, Int Tinnitus J, V7, P41
   COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0
   Davis R R, 2003, Noise Health, V5, P19
   DAVIS RR, 2001, HDB MOUSE AUDITORY R, P477, DOI 10.1201/9781420038736.sec5
   Di Palma F, 2001, NAT GENET, V27, P103
   EATON A, 2006, BEHAV NEUROSCI, V120, P1
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Erway LC, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P429, DOI 10.1201/9781420038736.ch28
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
   Garcia-Segura LM, 2001, PROG NEUROBIOL, V63, P29, DOI 10.1016/S0301-0082(00)00025-3
   Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013
   HARDING GW, 2004, HEARING RES, V204, P90
   Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X
   Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5
   Hequembourg S, 2001, JARO, V2, P118
   HOLME RH, 2003, J ASS RES OTOLARYNOL, V5, P66
   Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617
   Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   LAUGEL GR, 1987, HEARING RES, V31, P245, DOI 10.1016/0378-5955(87)90194-8
   LAUGEL GR, 1988, ACTA OTO-LARYNGOL, V106, P34, DOI 10.3109/00016488809107368
   Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1
   LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418
   McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4
   McFadden SL, 2000, J ACOUST SOC AM, V107, P2162, DOI 10.1121/1.428497
   McFadden SL, 1999, J COMP NEUROL, V413, P101
   McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007
   Nathan CAO, 1999, ACTA OTO-LARYNGOL, V119, P853
   NELSON JF, 1992, ENDOCRINOLOGY, V130, P805, DOI 10.1210/en.130.2.805
   NELSON JF, 1981, BIOL REPROD, V24, P784, DOI 10.1095/biolreprod24.4.784
   NELSON JF, 1975, ACTA ENDODRINOL, V80, P742
   NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M
   NELSON JF, 1982, BIOL REPROD, V27, P327, DOI 10.1095/biolreprod27.2.327
   Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326
   ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0
   Papalexi E, 2005, HORM BEHAV, V48, P291, DOI 10.1016/j.yhbeh.2005.03.009
   Picazo O, 2003, BRAIN RES, V990, P20, DOI 10.1016/S0006-8993(03)03380-8
   Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
   Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2
   Toran-Allerand CD, 1999, FRONT NEUROENDOCRIN, V20, P97, DOI 10.1006/frne.1999.0177
   Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0
   Usui T, 2006, ENDOCR J, V53, P7, DOI 10.1507/endocrj.53.7
   Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017
   WILLOTT JF, 2005, JARO-J ASSOC RES OTO, V28, P1
   WILLOTT JF, 1996, ILSI MONOGRAPHS PATH, P179
   Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5
   Willott JF, 2006, HEARING RES, V216, P138, DOI 10.1016/j.heares.2006.01.010
   Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9
   Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065
   WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312
   Willott JF, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P205
   Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3
   Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8
   Zhang Y, 2004, J NEUROSCI, V24, P5315, DOI 10.1523/JNEUROSCI.0913-04.2004
   Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010
NR 59
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 73
EP 81
DI 10.1016/j.heares.2006.07.016
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700008
PM 16973316
ER

PT J
AU Chen, L
   Sun, W
   Salvi, RJ
AF Chen, Lin
   Sun, Wei
   Salvi, Richard J.
TI Effects of nimodipine, an L-type calcium channel antagonist, on the
   chicken's cochlear potentials
SO HEARING RESEARCH
LA English
DT Article
DE L-type calcium channel; hair cell; neurotransmitter release; nimodipine;
   chicken; cochlear potential
ID GUINEA-PIG COCHLEA; GATED CA2+ CHANNELS; ACTIVATED POTASSIUM CHANNELS;
   SPIRAL GANGLION-CELLS; INNER HAIR-CELLS; TRANSMITTER RELEASE; DISCHARGE
   PATTERNS; ALPHA(1D) SUBUNIT; SENSORY NEURONS; KAINIC ACID
AB At most synapses in the brain, neurotransmitter release depends on N-type or P/Q-type calcium channels. However, available in vitro experimental data suggest that there exist almost exclusively L-type calcium channels in sensory hair cells of most species. To test whether chicken hair cells depend on L-type calcium channels for neurotransmitter release, we examined the effects of nimodipine, a selective L-type calcium channel antagonist, on acoustically evoked cochlear potentials in 10-15 week old chickens in vivo. Diffusion of nimodipine into scala tympani significantly elevated threshold, dramatically decreased the amplitude and increased the latency of the compound action potential within 20 min of drug application. The summating potential was also significantly reduced in amplitude, but the cochlear microphonic was relatively less affected. All the effects were reversible after nimodipine was washed out with artificial perilymph except that the cochlear microphonic amplitude remained decreased. Application of omega-conotoxin GVIA, an N-type calcium channel antagonist and agatoxin Tk, a P-type calcium channel antagonist had no observable effects on the cochlear potentials. These results suggest that L-type calcium channels control neurotransmitter release from avian hair cells. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China.
   SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Chen, L (reprint author), Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China.
EM linchen@ustc.edu.cn
RI Chen, Lin/N-8327-2013
OI Chen, Lin/0000-0002-5847-2989
CR ART JJ, 1987, J PHYSIOL-LONDON, V385, P207
   ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49
   Bao H, 2003, J NEUROPHYSIOL, V90, P155, DOI 10.1152/jn.00242.2002
   BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X
   BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E
   BORN DE, 1988, J NEUROSCI, V8, P901
   Brandt A, 2005, J NEUROSCI, V25, P11577, DOI 10.1523/JNEUROSCI.3411-05.2005
   Catterall WA, 2000, ANNU REV CELL DEV BI, V16, P521, DOI 10.1146/annurev.cellbio.16.1.521
   Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X
   CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J
   Doughty JM, 1998, J PHYSIOL-LONDON, V512, P365, DOI 10.1111/j.1469-7793.1998.365be.x
   Duncan RK, 2003, J PHYSIOL-LONDON, V547, P357, DOI 10.1113/jphysiol.2002.029785
   DUNLAP K, 1995, TRENDS NEUROSCI, V18, P89
   FOX AP, 1987, J PHYSIOL-LONDON, V394, P149
   FOX AP, 1987, J PHYSIOL-LONDON, V394, P173
   FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P553
   FUCHS PA, 1988, J NEUROSCI, V8, P2460
   HILLE B, 1992, IONIC CHANNELS EXCIT, P83
   Hisashi K, 1995, HEARING RES, V91, P196, DOI 10.1016/0378-5955(95)00191-3
   HUDSPETH AJ, 1986, HEARING RES, V22, P21, DOI 10.1016/0378-5955(86)90070-5
   KIMITSUKI T, 1994, ACTA OTO-LARYNGOL, V114, P144, DOI 10.3109/00016489409126033
   Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14889, DOI 10.1073/pnas.94.26.14889
   Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883
   LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0
   Marchetti C, 1996, NEUROSCI LETT, V207, P77, DOI 10.1016/0304-3940(96)12492-7
   MartinezDunst C, 1997, J NEUROSCI, V17, P9133
   Martini M, 2000, BIOPHYS J, V78, P1240
   MILLER RJ, 1987, SCIENCE, V235, P46, DOI 10.1126/science.2432656
   Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1
   POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0
   Reuter H, 1996, CURR OPIN NEUROBIOL, V6, P331, DOI 10.1016/S0959-4388(96)80116-4
   RIOS E, 1987, NATURE, V325, P717, DOI 10.1038/325717a0
   Rispoli G, 2000, NEUROREPORT, V11, P2769, DOI 10.1097/00001756-200008210-00032
   ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431
   ROBERTS WM, 1990, J NEUROSCI, V10, P3664
   Robertson D, 2002, J NEUROPHYSIOL, V87, P2734, DOI 10.1152/jn.00327.2001
   Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x
   Rosenblatt KP, 1997, NEURON, V19, P1061, DOI 10.1016/S0896-6273(00)80397-9
   SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227
   SALVI RJ, 1994, J COMP PHYSIOL A, V174, P351
   Samaranayake H, 2004, J PHYSIOL-LONDON, V560, P13, DOI 10.1113/jphysiol.2004.069856
   SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599
   Schnee ME, 2003, J PHYSIOL-LONDON, V549, P697, DOI 10.1113/jphysiol.2002.037481
   Skinner LJ, 2003, J NEUROPHYSIOL, V90, P320, DOI 10.1152/jn.01155.2002
   Snutch T P, 2001, Curr Opin Pharmacol, V1, P11, DOI 10.1016/S1471-4892(01)00012-1
   Spassova M, 2001, J PHYSIOL-LONDON, V535, P689, DOI 10.1111/j.1469-7793.2001.00689.x
   Sueta T, 2004, HEARING RES, V188, P117, DOI 10.1016/S0378-5955(03)00374-5
   Sun H, 2000, J ACOUST SOC AM, V107, P2136, DOI 10.1121/1.428495
   Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307
   ZIDANIC M, 1995, BIOPHYS J, V68, P1323
NR 50
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 82
EP 90
DI 10.1016/j.heares.2006.08.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700009
PM 16996235
ER

PT J
AU Shechter, B
   Depireux, DA
AF Shechter, Barak
   Depireux, Didier A.
TI Response adaptation to broadband sounds in primary auditory cortex of
   the awake ferret
SO HEARING RESEARCH
LA English
DT Article
DE auditory cortex; adaptation; grating; ferret; second-order adaptation;
   coding; primary auditory cortex; AI
ID SPECTROTEMPORAL REVERSE CORRELATION; MODULATION TRANSFER-FUNCTIONS;
   AMPLITUDE-MODULATION; CONTRAST ADAPTATION; RECEPTIVE-FIELDS; DYNAMIC
   SPECTRA; UNIT RESPONSES; CAT; NEURONS; REPRESENTATION
AB Driven by previous reports of adaptation to persistent stimuli in other brain regions, we investigated adaptive effects in the Primary Auditory Cortex of awake non-behaving ferrets (Mustela putorius furo). Electrophysiological data was obtained in response to the presentation of auditory gratings with a structured spectro-temporal envelope of varying bandwidth which had repeated transitions between low and high modulation depths. The responses were analyzed in terms of the evoked spike rates and in terms of the degree of phase locking to the modulation. We found two populations of cells, both of which showed adaptation in the traditional sense. For one population, we also found a second order of adaptation -i.e., adaptation of the adaptation. This suggests the existence of at least two coding strategies which differ in the weight placed on sensory context. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Maryland, Dept Anat & Neurobiol, Sch Med, Baltimore, MD 21201 USA.
   Univ Maryland, Program Neurosci, Sch Med, Baltimore, MD 21201 USA.
RP Shechter, B (reprint author), Univ Maryland, Dept Anat & Neurobiol, Sch Med, 20 Pennh St,HSF 2 Rm S251, Baltimore, MD 21201 USA.
EM bshec001@umaryland.edu
CR Attias H, 1997, ADV NEUR IN, V9, P27
   Baccus SA, 2002, NEURON, V36, P909, DOI 10.1016/S0896-6273(02)01050-4
   Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004
   Bieser A, 1996, EXP BRAIN RES, V108, P273
   Bruno RM, 2002, J NEUROSCI, V22, P10966
   Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100
   Crowder NA, 2006, J NEUROPHYSIOL, V95, P271, DOI 10.1152/jn.00871.2005
   Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541
   Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220
   DEWEESE M, 1995, NUOVO CIMENTO D, V17, P733, DOI 10.1007/BF02451830
   EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9
   Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3
   Fairhall AL, 2001, NATURE, V412, P787, DOI 10.1038/35090500
   Kim KJ, 2001, J NEUROSCI, V21, P287
   Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183
   Klein DJ, 2006, J COMPUT NEUROSCI, V20, P111, DOI 10.1007/s10827-005-3589-4
   KLEIN DJ, 2003, EURASIP J APPL SIG P, V7, P659
   Kohn A, 2003, NEURON, V39, P681, DOI 10.1016/S0896-6273(03)00438-0
   Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503
   Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524
   Kvale MN, 2004, J NEUROPHYSIOL, V91, P604, DOI 10.1152/jn.00484.2003
   LAUGHLIN S, 1981, Z NATURFORSCH C, V36, P910
   Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001
   Reinagel P, 2001, NATURE, V412, P776, DOI 10.1038/35090669
   RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5
   RREDISH AD, 2004, MCLUST SPIKE SORTING
   SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3
   SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2
   SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367
   Shapley R., 1984, PROGR RETINAL RES, V3, P263, DOI 10.1016/0278-4327(84)90011-7
   Smirnakis SM, 1997, NATURE, V386, P69, DOI 10.1038/386069a0
   Spinks RL, 2003, J NEUROPHYSIOL, V90, P1324, DOI 10.1152/jn.00169.2003
   Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
   VANSTEVENINCK RRD, 1994, P IEEE INT C SYST MA, P302
   Werner-Reiss U, 2006, EXP BRAIN RES, V168, P272, DOI 10.1007/s00221-005-0184-x
   Wojtczak M, 2003, J ACOUST SOC AM, V114, P991, DOI 10.1121/1.1593067
NR 36
TC 12
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 91
EP 103
DI 10.1016/j.heares.2006.08.002
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700010
PM 16982164
ER

PT J
AU Stamataki, S
   Francis, HW
   Lehar, M
   May, BJ
   Ryugo, DK
AF Stamataki, Sofia
   Francis, Howard W.
   Lehar, Mohamed
   May, Bradford J.
   Ryugo, David K.
TI Synaptic alterations at inner hair cells precede spiral ganglion cell
   loss in aging C57BL/6J mice
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; afferent innervation; synapse; ultrastructure; presbycusis
ID ANTEROVENTRAL COCHLEAR NUCLEUS; SENSORINEURAL HEARING-LOSS;
   AUDITORY-NERVE FIBERS; AGE-RELATED LOSS; DEAF WHITE CATS; MOUSE MODEL;
   DENDRITIC SPINES; SERIAL SECTIONS; FUNCTIONAL AGE; SYNAPSES
AB Hearing deficits have often been associated with loss of or damage to receptor hair cells and/or degeneration of spiral ganglion cells. There are, however, some physiological abnormalities that are not reliably attributed to loss of these cells. The afferent synapse between radial fibers of spiral ganglion neurons and inner hair cells (IHCs) emerges as another site that could be involved in transmission abnormalities. We tested the hypothesis that the structure of these afferent terminals would differ between young animals and older animals with significant hearing loss. Afferent endings and their synapses were examined by transmission electron microscopy at approximately 45% distance from the basal end of the cochlea in 2-3 month-old and 8-12 month-old C57BL/6J mice. The number of terminals in older animals was reduced by half compared to younger animals. In contrast, there was no difference in the density of SGCs between the age groups. Older animals featured enlarged terminals and mitochondria and enlarged postsynaptic densities and presynaptic bodies. These morphological changes may be a combination of pathologic, adaptive and compensatory responses to sensory dysfunction. Improved knowledge of these processes is necessary to understand the role of afferent connectivity in dysfunction of the aging cochlea. (c) 2006 Elsevier B.V. All rights reserved.
C1 Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
RP Francis, HW (reprint author), Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Johns Hopkins Outpatient Ctr, 601 N Caroline St,6th Floor, Baltimore, MD 21287 USA.
EM hfrancis@jhmi.edu
CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005
   BertoniFreddari C, 1996, GERONTOLOGY, V42, P170
   BERTONIFREDDARI C, 1989, PATHOL RES PRACT, V185, P799
   CAVANAGH JB, 1964, INT REV EXP PATHOL, V3, P219
   Chen MA, 2006, OTOL NEUROTOL, V27, P316, DOI 10.1097/00129492-200604000-00005
   DEGROOT DMG, 1988, J MICROSC-OXFORD, V151, P23
   Di Palma F, 2001, NAT GENET, V27, P103
   FALIA JC, 2001, J AM MED INFORM ASSN, V8, P1
   FALIA JC, 2001, J MICROSC-OXFORD, V202, P468
   Francis HW, 2006, J NEUROSCI METH, V150, P150, DOI 10.1016/j.jneumeth.2005.06.020
   Francis HW, 2004, BRAIN RES, V1016, P182, DOI 10.1016/j.brainres.2004.05.016
   Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0
   Furness DN, 2003, J NEUROSCI, V23, P11296
   FURUKAWA K, 1995, EXP NEUROL, V133, P153, DOI 10.1006/exnr.1995.1018
   Geinisman Y, 1996, J COMP NEUROL, V368, P413
   Halpain S, 2005, PROG BRAIN RES, V147, P29, DOI 10.1016/S0079-6123(04)47003-4
   Halpain S, 1998, J NEUROSCI, V18, P9835
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   Hequembourg S, 2001, JARO, V2, P118
   Jansen HG, 1997, MICROSC RES TECHNIQ, V36, P96, DOI 10.1002/(SICI)1097-0029(19970115)36:2<96::AID-JEMT3>3.0.CO;2-T
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
   Kowald A, 2000, J THEOR BIOL, V202, P145, DOI 10.1006/jtbi.1999.1046
   Krishna BS, 2002, J COMPUT NEUROSCI, V13, P71, DOI 10.1023/A:1020116122533
   LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418
   LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6
   LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309
   LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
   LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5
   LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
   Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
   LISMAN JE, 1993, TRENDS NEUROSCI, V16, P141, DOI 10.1016/0166-2236(93)90122-3
   Lolova IS, 1997, MECH AGEING DEV, V97, P193, DOI 10.1016/S0047-6374(97)00062-6
   Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011
   Murthy VN, 2001, NEURON, V32, P673, DOI 10.1016/S0896-6273(01)00500-1
   NADOL JB, 1979, OTOLARYNG HEAD NECK, V87, P818
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   PAULER M, 1986, ARCH OTO-RHINO-LARYN, V243, P200, DOI 10.1007/BF00470622
   Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   Rivas A, 2005, OTOL NEUROTOL, V26, P415, DOI 10.1097/01.mao.0000169764.00798.84
   Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2
   Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419
   Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2
   Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799
   SCHUKNECHT HF, 1994, OTOLARYNG HEAD NECK, V110, P530
   Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
   SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942
   Spiwoks-Becker I, 2004, EUR J NEUROSCI, V19, P1559, DOI 10.1111/j.1460-9568.2004.03198.x
   Spoendlin H, 1990, Acta Otolaryngol Suppl, V470, P61
   SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493
   Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004
   Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
   Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6
   Walmsley B, 1998, TRENDS NEUROSCI, V21, P81, DOI 10.1016/S0166-2236(97)01170-3
   White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X
   WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106
   Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3
NR 57
TC 38
Z9 44
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 104
EP 118
DI 10.1016/j.heares.2006.07.014
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700011
PM 17005343
ER

PT J
AU Sendowski, I
   Abaamrane, L
   Raffin, F
   Cros, A
   Clarencon, D
AF Sendowski, I.
   Abaamrane, L.
   Raffin, F.
   Cros, A.
   Clarencon, D.
TI Therapeutic efficacy of intra-cochlear administration of
   methylprednisolone after acoustic trauma caused by gunshot noise in
   guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE acoustic trauma; impulse noise; guinea pig; methylprednisolone; osmotic
   pump
ID SENSORINEURAL HEARING-LOSS; INNER-EAR; GLUCOCORTICOID RECEPTORS;
   STEROID-THERAPY; FREE-RADICALS; NITRIC-OXIDE; HAIR-CELLS; PREDNISOLONE;
   PHARMACOKINETICS; AGENTS
AB The therapeutic efficacy of cochlear infusion of methylprednisolone (MP) after an impulse noise trauma (170 dB SPL peak) was evaluated in guinea pigs. The compound action potential threshold shifts were measured over a 14 days recovery period after the gunshot exposure. For each animal, one of the cochlea was perfused directly into the scala tympani with MP during 7 days via a mini-osmotic pump, whereas the other cochlea was not pump-implanted. The functional study of hearing was supplemented by histological analysis. Forty eight hours after the trauma, significant differences between auditory threshold shifts in the implanted and non-implanted ears were observed for frequencies above 8 kHz. At day 7, the difference was significant for only one frequency and no difference was observed after 14 days recovery. Cochleograms showed that the hair cell losses were significantly lower in the MP treated ears. This work indicates that direct infusion of MP into perilymphatic space accelerates hearing recovery, reduces hair cell losses after impulse noise trauma but does not limit permanent threshold shifts. (c) 2006 Elsevier B.V. All rights reserved.
C1 CRSSA, Dept Radiobiol, F-38702 La Tronche, France.
RP Sendowski, I (reprint author), CRSSA, Dept Radiobiol, 24 Ave Maquis Gresivaudan,BP 87, F-38702 La Tronche, France.
EM isendowski@crssa.net; L.abaamrane@crssa.net; Fraffin@crssa.net;
   Didierclarencon@crssa.net
CR Aoki D, 2006, OTOLARYNG HEAD NECK, V134, P783, DOI 10.1016/j.otohns.2005.12.029
   Arnold W, 2005, AUDIOL NEURO-OTOL, V10, P53, DOI 10.1159/000082575
   Bachmann G, 2001, HNO, V49, P538, DOI 10.1007/s001060170078
   Canlon B, 1988, Scand Audiol Suppl, V27, P1
   Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5
   Czock D, 2005, CLIN PHARMACOKINET, V44, P61, DOI 10.2165/00003088-200544010-00003
   d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x
   De Bosscher K, 2000, P NATL ACAD SCI USA, V97, P3919, DOI 10.1073/pnas.97.8.3919
   Diem R, 2003, J NEUROSCI, V23, P6993
   Doyle KJ, 2004, OTOL NEUROTOL, V25, P1034, DOI 10.1097/00129492-200411000-00031
   El-Hennawi DM, 2005, J LARYNGOL OTOL, V119, P2
   Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913
   Fu ES, 2005, J NEUROSURG ANESTH, V17, P82, DOI 10.1097/01.ana.0000163199.10365.38
   Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764
   García-Purriños F J, 2005, Acta Otorrinolaringol Esp, V56, P74
   Ghosh A, 2005, EMERG MED J, V22, P732, DOI 10.1136/emj.2005.029066
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308
   HENRY KR, 1992, ACTA OTO-LARYNGOL, V112, P599, DOI 10.3109/00016489209137447
   Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3
   Jackson LE, 2002, OTOLARYNG CLIN N AM, V35, P639, DOI 10.1016/S0030-6665(02)00023-3
   JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538
   Karlidag T, 2002, AURIS NASUS LARYNX, V29, P147, DOI 10.1016/S0385-8146(01)00137-7
   KOLLS J, 1994, P SOC EXP BIOL MED, V205, P220
   Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011
   Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X
   Lefebvre PP, 2002, ACTA OTO-LARYNGOL, V122, P698, DOI 10.1080/003655402/000028037
   LIGHT JP, 2004, HEAD NECK SURG, V12, P378
   LILES WC, 1995, BLOOD, V86, P3181
   Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008
   MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664
   Nagashima R, 2005, J PHARMACOL SCI, V99, P301, DOI 10.1254/jphs.CPJ05004X
   Niedermeyer HP, 2003, AUDIOL NEURO-OTOL, V8, P316, DOI 10.1159/000073516
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X
   RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N
   SCHREINER L, 1963, ARCH OHREN NASEN KEH, V9, P587
   Seidman MD, 2004, OTOLARYNG CLIN N AM, V37, P973, DOI 10.1016/j.otc.2004.03.005
   Sendowski I, 2006, ACTA OTO-LARYNGOL, V126, P122, DOI 10.1080/00016480500312547
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   Shi XR, 2002, HEARING RES, V164, P49
   Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
   Shirwany NA, 1998, AM J OTOL, V19, P230
   Silverstein H, 1996, Ear Nose Throat J, V75, P468
   Silverstein H, 1999, Ear Nose Throat J, V78, P595
   Suc B, 1994, Ann Otolaryngol Chir Cervicofac, V111, P319
   Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9
   Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795
   Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825
   Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003
   TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E
   TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
   Terunuma Tsumoru, 2003, Brain Res Mol Brain Res, V120, P65
   Tobita T, 2002, HEARING RES, V165, P30, DOI 10.1016/S0378-5955(01)00394-X
   Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
   Yildirim Erkan, 2006, Heart Lung Circ, V15, P124, DOI 10.1016/j.hlc.2005.10.001
NR 60
TC 23
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 119
EP 127
DI 10.1016/j.heares.2006.08.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700012
PM 17008037
ER

PT J
AU Sugahara, K
   Rubel, EW
   Cunningham, LL
AF Sugahara, Kazuma
   Rubel, Edwin W.
   Cunningham, Lisa L.
TI JNK signaling in neomycin-induced vestibular hair cell death
SO HEARING RESEARCH
LA English
DT Article
DE hair cell; aminoglycoside; JNK; caspase; apoptosis; ototoxicity; utricle
ID TERMINAL KINASE PROTECTS; C-JUN; IN-VITRO; SENSORY EPITHELIA; NEURONAL
   APOPTOSIS; CASPASE ACTIVATION; PEPTIDE INHIBITOR; GENTAMICIN;
   AMINOGLYCOSIDE; PATHWAYS
AB Mechanosensory hair cells are susceptible to apoptotic death in response to exposure to ototoxic drugs, including aminoglycoside antibiotics. The c-Jun n-terminal kinase (JNK) is a stress-activated protein kinase that can promote apoptotic cell death in a variety of systems. Inhibition of the JNK signaling pathway can prevent aminoglycoside-induced death of cochlear and vestibular sensory hair cells. We used an in vitro preparation of utricles from adult mice to examine the role of JNK activation in aminoglycoside-induced hair cell death. CEP-11004 was used as an indirect inhibitor of JNK signaling. Immunohistochemistry showed that both JNK and its downstream target c-Jun are phosphorylated in hair cells of utricles exposed to neomycin. CEP-11004 inhibited neomycin-induced phosphorylation of both JNK and c-Jun. CEP-11004 inhibited hair cell death in utricles exposed to moderate doses of neomycin. However, the results were not uniform across the dose-response function; CEP-11004 did not inhibit hair cell death in utricles exposed to high-dose neomycin. The CEP-11004-induced protective effect was not due to inhibition of PKC or p38, since neither Chelerythrine nor SB203580 could mimic the protective effect of CEP-11004. In addition, inhibition of JNK inhibited the activation of caspase-9 in hair cells. These results indicate that JNK plays an important role in neomycin-induced vestibular hair cell death and caspase-9 activation. (c) 2006 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA.
   Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
   Yamaguchi Univ, Sch Med, Dept Otolaryngol, Ube, Yamaguchi 7550585, Japan.
RP Cunningham, LL (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, Box 250908, Charleston, SC 29425 USA.
EM cunninll@musc.edu
CR Bodmer D, 2002, LARYNGO RHINO OTOL, V81, P853, DOI 10.1055/s-2002-36100
   Bonny C, 2001, DIABETES, V50, P77, DOI 10.2337/diabetes.50.1.77
   Borsello T, 2003, NAT MED, V9, P1180, DOI 10.1038/nm911
   Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63
   Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8
   CUENDA A, 1995, FEBS LETT, V364, P229, DOI 10.1016/0014-5793(95)00357-F
   Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006
   CUNNINGHAM LL, BRAIN RES
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   Gallo KA, 2002, NAT REV MOL CELL BIO, V3, P663, DOI 10.1038/nrm906
   Ham J, 2000, BIOCHEM PHARMACOL, V60, P1015, DOI 10.1016/S0006-2952(00)00372-5
   Harper SJ, 2001, CELL SIGNAL, V13, P299, DOI 10.1016/S0898-6568(01)00148-6
   Harris CA, 2001, J BIOL CHEM, V276, P37754
   Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
   Ichijo H, 1997, SCIENCE, V275, P90, DOI 10.1126/science.275.5296.90
   Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9
   JIANG H, 2005, CELL DEATH DIFFER
   Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1
   Lee Ji Eun, 2004, Acta Otolaryngol Suppl, P69
   LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307
   Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   Maroney AC, 2001, J BIOL CHEM, V276, P25302, DOI 10.1074/jbc.M011601200
   Matsui JI, 2003, J NEUROSCI, V23, P6111
   Matsui JI, 2002, J NEUROSCI, V22, P1218
   Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054
   Murakata C, 2002, BIOORG MED CHEM LETT, V12, P147, DOI 10.1016/S0960-894X(01)00690-4
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   Saitoh M, 1998, EMBO J, V17, P2596, DOI 10.1093/emboj/17.9.2596
   Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7
   Shimizu A, 2003, ACTA OTO-LARYNGOL, V123, P459, DOI 10.1080/00016480310001312
   Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477
   Tournier C, 2000, SCIENCE, V288, P870, DOI 10.1126/science.288.5467.870
   Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014
   Wang J, 2003, J NEUROSCI, V23, P8596
   Whitfield J, 2001, NEURON, V29, P629, DOI 10.1016/S0896-6273(01)00239-2
   Whitmarsh AJ, 1996, J MOL MED-JMM, V74, P589, DOI 10.1007/s001090050063
   Willaime-Morawek S, 2003, NEUROSCIENCE, V119, P387, DOI 10.1016/S0306-4522(02)00996-X
   XIA ZG, 1995, SCIENCE, V270, P1326, DOI 10.1126/science.270.5240.1326
   Yang DD, 1997, NATURE, V389, P865, DOI 10.1038/39899
   Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
NR 43
TC 28
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2006
VL 221
IS 1-2
BP 128
EP 135
DI 10.1016/j.heares.2006.08.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 105RT
UT WOS:000242050700013
PM 17005344
ER

PT J
AU Choudhury, N
   Song, GJ
   Chen, FY
   Matthews, S
   Tschinkel, T
   Zheng, JF
   Jacques, SL
   Nuttall, AL
AF Choudhury, Niloy
   Song, Guiju
   Chen, Fangyi
   Matthews, Scott
   Tschinkel, Tanja
   Zheng, Jiefu
   Jacques, Steven L.
   Nuttall, Alfred L.
TI Low coherence interferometry of the cochlear partition
SO HEARING RESEARCH
LA English
DT Article
ID BASILAR-MEMBRANE VIBRATION; GUINEA-PIG COCHLEA; HETERODYNE LASER
   INTERFEROMETER; MOSSBAUER TECHNIQUE; CAPACITIVE PROBE; RECORDING DEPTH;
   INNER-EAR; TOMOGRAPHY; MOTION
AB Interferometric measurement of the vibration of the organ of Corti in the isolated guinea pig cochlea was conducted using low-coherence light (1310 +/- 47 nm wavelength) from a superluminescent diode. The short coherence length of the light source localized measurements along the axial direction to within a similar to 10-mu m window (in tissue), even when using a low numerical-aperture lens. The ability to accomplish this is important because measurement of the vibration of the basal-turn organ of Corti is generally done via a small hole in the bone of the cochlea, which effectively limits the numerical aperture. The axial localization, combined with the inherent sensitivity of the method, allowed distinct measurements of the basilar membrane (BM) and the putative reticular lamina (RL) vibration using only the native tissue reflectance, that is without requiring the use of reflective particles. The system was first operated in a scanning mode as an optical coherence tomography (OCT) system to yield an image of the organ of Corti. The reflectance of intensity from the BM and RL was 8 x 10(-5) and 8 x 10(-6), respectively. The internal structure between the BM and RL presented a variable reflectivity of about 10(-7). A mirror would define a reflectance of 1.00. Then the instrument was operated as a homodyne interferometer to measure the displacement of either the BM or RL. Vibration at 16 kHz was induced by a piezoelectric actuator, causing whole movement of a dissected cochlea. After calibration of the system, we demonstrated clear measurement of mechanically driven vibration for both the BM and RL of 0.30 nm above a noise floor equivalent to 0.03 nm. OCT interferometry, when adapted for in vivo organ of Corti measurements, appears suitable to determine the micromechanical vibration of cells and tissue elements of the organ. (c) 2006 Elsevier B.V. All rights reserved.
C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
   Oregon Hlth & Sci Univ, Beaverton, OR 97006 USA.
   Univ Appl Sci, Tech Fach Hsch Berlin, D-13353 Berlin, Germany.
   Oregon Hlth & Sci Univ, Dept Dermatol, Portland, OR 97239 USA.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Shanghai Jiao Tong Univ, Dept Otolaryngol, Shanghai 200030, Peoples R China.
RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97239 USA.
EM nuttall@ohsu.edu
CR Bekesy G., 1960, EXPT HEARING
   Cooper NP, 1999, J ACOUST SOC AM, V106, pL59, DOI 10.1121/1.428147
   Cooper NP, 1999, J NEUROSCI METH, V88, P93, DOI 10.1016/S0165-0270(99)00017-5
   Dalhoff E, 1998, J MOD OPTIC, V45, P765, DOI 10.1080/09500349808230620
   Dalhoff E, 2001, J ACOUST SOC AM, V110, P1725, DOI 10.1121/1.1404975
   de La Rochefoucauld O, 2005, J ACOUST SOC AM, V117, P1267, DOI 10.1121/1.1848177
   Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI 10.1088/0034-4885/66/2/204
   HONG F, 2006, 29 MIDW M ASS RES OT
   HUANG D, 1991, SCIENCE, V254, P1178, DOI 10.1126/science.1957169
   JOHNSTON.BM, 1967, SCIENCE, V158, P389, DOI 10.1126/science.158.3799.389
   KHANNA SM, 1986, HEARING RES, V23, P9, DOI 10.1016/0378-5955(86)90172-3
   Khanna S M, 1989, Acta Otolaryngol Suppl, V467, P69
   Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7
   KLIAUGA P, 1983, PHYS MED BIOL, V28, P359, DOI 10.1088/0031-9155/28/4/004
   KOHLLOFF.LU, 1972, ACUSTICA, V27, P66
   KOSSL M, 1995, P NATL ACAD SCI USA, V92, P276, DOI 10.1073/pnas.92.1.276
   LEPAGE EL, 1987, J ACOUST SOC AM, V82, P126, DOI 10.1121/1.395556
   Lukashkin AN, 2005, J NEUROSCI METH, V148, P122, DOI 10.1016/j.jneumeth.2005.04.014
   MORIOKA I, 1995, HEARING RES, V83, P142, DOI 10.1016/0378-5955(95)00002-L
   NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A
   Ren TY, 2001, J ACOUST SOC AM, V109, P826, DOI 10.1121/1.1337957
   RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485
   ROBERTSO.D, 1974, SCIENCE, V186, P153, DOI 10.1126/science.186.4159.153
   Rollins AM, 1998, OPT EXPRESS, V3, P219
   RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B
   Scheid D, 2004, FEMS MICROBIOL ECOL, V50, P101, DOI 10.1016/j.femsec.2004.06.001
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   TONNDORF J, 1977, ACTA OTO-LARYNGOL, V83, P113, DOI 10.3109/00016487709128820
   WILSON JP, 1973, J SOUND VIB, V30, P483, DOI 10.1016/S0022-460X(73)80169-5
   Wong BJF, 2000, J BIOMED OPT, V5, P367, DOI 10.1117/1.1310165
   XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103
NR 31
TC 32
Z9 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2006.06.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800001
PM 16945496
ER

PT J
AU Ohlemiller, KK
   Lett, JM
   Gagnon, PM
AF Ohlemiller, Kevin K.
   Lett, Jadynn M.
   Gagnon, Patricia M.
TI Cellular correlates of age-related endocochlear potential reduction in a
   mouse model
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; stria vascularis; spiral ligament; marginal cells; intermediate
   cells; basal cells; fibrocytes; presbycusis
ID SENSORINEURAL HEARING-LOSS; SPIRAL LIGAMENT PATHOLOGY; PIGMENTED
   GUINEA-PIGS; COCHLEAR LATERAL WALL; STRIA VASCULARIS; INNER-EAR;
   SUPEROXIDE-DISMUTASE; MRL-FAS(LPR) MOUSE; C57-B16 MOUSE; ROUND WINDOW
AB Age-related degeneration of cochlear stria vascularis and resulting reduction in the endocochlear potential (EP) are the hallmark features of strial presbycusis, one of the major forms of presbycusis, or age-related hearing loss (ARHL) (Schuknecht, H.F., 1964. Further observations on the pathology of presbycusis. Archives of Otolaryugology 80, 369-382; Schuknecht, H.F., 1993. Pathology of the Ear. Lea and Febiger, Philadelphia; Schuknecht, H.F., Gacek, M.R., 1993. Cochlear pathology in presbycusis. Annals of Otology, Rhinology and Laryngology 102, 1-16). It is unclear whether there are multiple forms of strial ARHL having different sequences of degenerative events and different risk factors. Human temporal bone studies suggest that the initial pathology usually affects strial marginal cells, then spreads to other strial cell types. While inheritance studies support a moderate genetic influence, no contributing genes have been identified. Establishment of mouse models of strial ARHL may promote the identification of underlying genes and gene/environment interactions. We have found that BALB/cJ mice show significant EP reduction by 19 months of age. The reduction only occurs in a subset of animals. To identify key anatomical correlates of the EP reduction, we compared several cochlear lateral wall metrics, in BALBs with those in C57BL/6J (136) mice, which show little EP reduction for ages up to 26 months. Among the measures obtained, marginal cell density and spiral ligament thickness were the best predictors of both the EP decline in BALBs, and EP stability in B6. Our results indicate that the sequence of strial degeneration in BALBs is like that suggested for humans. Additional strain comparisons we have performed suggest that genes governing strial melanin production do not play a role. (c) 2006 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA.
EM kohlemiller@wustl.edu
CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005
   Barrenas ML, 1997, AUDIOLOGY, V36, P187
   Bartels S, 2001, HEARING RES, V154, P116, DOI 10.1016/S0378-5955(01)00213-1
   BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9
   CABLE J, 1993, PIGM CELL RES, V6, P215, DOI 10.1111/j.1600-0749.1993.tb00605.x
   CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3
   CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N
   CONLEE JW, 1988, ACTA OTO-LARYNGOL, V106, P64, DOI 10.3109/00016488809107372
   COVELL W. P., 1957, LARYNGOSCOPE, V67, P118
   Di Girolamo S, 2001, AUDIOLOGY, V40, P322
   Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13
   Dunaway G, 2003, HEARING RES, V177, P1, DOI 10.1016/S0378-5995(02)-00767-0
   FOX RR, 1997, HDB GENETICALLY STAN, P95467
   Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654
   Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X
   Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9
   Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7
   Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8
   HAMERS FPT, 2002, AUDIOL NEURO-OTOL, V8, P305
   HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001
   Hequembourg S, 2001, JARO, V2, P118
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7
   JACKSON IJ, 1988, P NATL ACAD SCI USA, V85, P4392, DOI 10.1073/pnas.85.12.4392
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   JOHNSON R, 1992, NAT GENET, V1, P226, DOI 10.1038/ng0692-226
   JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002
   Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009
   Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4
   Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X
   LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61
   Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403
   McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4
   McFadden SL, 1999, J COMP NEUROL, V413, P101
   MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632
   MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1
   Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408
   *NAT CTR HLTH STAT, 1994, PREV CHAR PERS HEAR
   Nelson EG, 2003, LARYNGOSCOPE, V113, P1672, DOI 10.1097/00005537-200310000-00006
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326
   Ohlemiller Kevin K., 2004, Journal of Comparative Neurology, V469, P377, DOI 10.1002/cne.11011
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 2002, JARO, V3, P444, DOI 10.1007/s10162-002-2041-y
   PAULER M, 1988, LARYNGOSCOPE, V98, P754
   Rarey KE, 1996, ACTA OTO-LARYNGOL, V116, P833, DOI 10.3109/00016489609137935
   Ruckenstein MJ, 1999, HEARING RES, V131, P22, DOI 10.1016/S0378-5955(99)00018-0
   Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6
   SAITOH Y, 1995, NEUROBIOL AGING, V16, P129, DOI 10.1016/0197-4580(94)00153-7
   SALT AN, 1987, LARYNGOSCOPE, V97, P984
   SCHMIEDT RA, 2001, ASS RES OTOLARYNGOLO, V24, P149
   Schmiedt RA, 2002, J NEUROSCI, V22, P9643
   SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
   SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777
   Schuknecht HF, 1993, PATHOLOGY EAR
   SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369
   SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022
   Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
   Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006
   STEEL KP, 1996, CLIN ASPECTS HEARING, P10
   STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0
   STEEL KP, 1989, DEVELOPMENT, V107, P453
   TACHEUCHI S, 2000, BIOPHYS J, V79, P2572
   Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4
   Voisey J, 2002, PIGM CELL RES, V15, P10, DOI 10.1034/j.1600-0749.2002.00039.x
   Wangemann P., 1996, COCHLEA, P130
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5
   Wolters FLC, 2003, HEARING RES, V179, P53, DOI 10.1016/S0378-5955(03)00080-7
   Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6
   Yamasoba T, 2003, NEUROSCI LETT, V347, P171, DOI 10.1016/S0304-3940(03)00675-X
   YANZ JL, 1985, AUDIOLOGY, V24, P260
   ZUMGOTTESBERGE AMM, 1988, PIGM CELL RES, V1, P238
NR 76
TC 32
Z9 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 10
EP 26
DI 10.1016/j.heares.2006.06.012
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800002
PM 16901664
ER

PT J
AU Otto, G
   Ingo, H
   Malte, KC
   Georg, K
   Jurgen, S
AF Otto, Gleich
   Ingo, Hamann
   Malte, Kittel C.
   Georg, Klump M.
   Juergen, Strutz
TI A quantitative analysis of psychometric functions for different auditory
   tasks in gerbils
SO HEARING RESEARCH
LA English
DT Article
DE presbyacusis; aging; hearing loss; psychoacoustic testing; temporal
   processing; gap detection
ID QUIET-AGED GERBILS; MERIONES-UNGUICULATUS; MONGOLIAN GERBIL; GAP
   DETECTION; NORMAL-HEARING; NERVE FIBERS; NOISE; THRESHOLDS; MASKING;
   YOUNG
AB The psychometric function relates the probability of a correct response to the variation of a physical stimulus parameter. In many perceptual tasks one point on this function is defined by a more or less arbitrary threshold criterion and threshold is used to study the effects of various treatments or age. Besides threshold, the shape of the psychometric function provides additional information. The variability of internal (neural) noise and the sensorineural transduction function will affect the shape of the psychometric function and may, therefore, reveal important features in the processing of stimulus characteristics. Here we analyze the effect of age on psychometric functions from gerbils: (A) for the detection of a tone or noise pulse in silence which is generally regarded as a measure of cochlear function and (B) for a gap detection task, investigating aspects of temporal processing that involve the ascending auditory pathway. Our data show that the slope of the psychometric function for the detection of tone and noise pulses in silence is independent of age and threshold. In contrast, the steepness of the psychometric function is decreased in gerbils with impaired temporal resolution. We discuss these observations in the context of physiological data from young and old animals. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany.
   Univ Oldenburg, AG Zoophysiol & Verhalten, Inst Biol & Umweltwissensch, D-26111 Oldenburg, Germany.
RP Otto, G (reprint author), Univ Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany.
EM otto.gleich@klinik.uni-regensburg.de; ingo-kva@online.no;
   Matte.Kittel@astrazeneca.com; juergen.strutz@Klinik.uni-regensburg.de;
   juergen.strutz@klinik.uni-regensburg.de
CR ALLEN P, 1994, J SPEECH HEAR RES, V37, P105
   AREHART KH, 1990, J SPEECH HEAR RES, V33, P433
   ARRINGTO.LR, 1973, LAB ANIM SCI, V23, P262
   BARGONES JY, 1995, J ACOUST SOC AM, V98, P99, DOI 10.1121/1.414446
   Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8
   Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7
   CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5
   CHEAL M, 1986, EXP AGING RES, V12, P3
   CRAIK FIM, 1969, DECISION MAKING AGE, P147
   DAVIS AC, 1997, SCOTT BROWNS OTOLARY
   EGAN JP, 1969, PERCEPT PSYCHOPHYS, V6, P209, DOI 10.3758/BF03207019
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507
   Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74
   Gleich O, 1997, AUDIOL NEURO-OTOL, V2, P113
   GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696
   GREEN DM, 1974, SIGNAL DETECTION THE
   HALL JL, 1981, J ACOUST SOC AM, V69, P1763, DOI 10.1121/1.385912
   Hamann I, 2004, JARO-J ASSOC RES OTO, V5, P49, DOI 10.1007/s10162-003-3041-2
   Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9
   HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N
   HELLSTROM LI, 1991, HEARING RES, V53, P217, DOI 10.1016/0378-5955(91)90055-E
   Lam CF, 1996, J ACOUST SOC AM, V99, P3689, DOI 10.1121/1.414966
   Lam CF, 1997, J ACOUST SOC AM, V102, P3697, DOI 10.1121/1.420155
   Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78
   PENNER MJ, 1986, J SPEECH HEAR RES, V29, P400
   REES JN, 1971, J GERONTOL, V26, P133
   SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6
   Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446
   Strasburger H, 2001, PERCEPT PSYCHOPHYS, V63, P1348, DOI 10.3758/BF03194547
   TROUP GM, 1969, EXP GERONTOL, V4, P139, DOI 10.1016/0531-5565(69)90001-1
   Walton JP, 1998, J NEUROSCI, V18, P2764
   WATSON CS, 1972, J ACOUST SOC AM, V52, P633, DOI 10.1121/1.1913153
   Zar JH, 1984, BIOSTATISTICAL ANAL
   ZHOU B, 1995, J ACOUST SOC AM, V98, P828, DOI 10.1121/1.413509
NR 35
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 27
EP 37
DI 10.1016/j.heares.2006.06.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800003
ER

PT J
AU MacLennan, AJ
   Benner, SJ
   Andringa, A
   Chaves, AH
   Rosing, JL
   Vesey, R
   Karpman, AM
   Cronier, SA
   Lee, N
   Erway, LC
   Miller, ML
AF MacLennan, A. John
   Benner, Shannon J.
   Andringa, Anastasia
   Chaves, Alicia H.
   Rosing, Joanna L.
   Vesey, Rachel
   Karpman, Adam M.
   Cronier, Samantha A.
   Lee, Nancy
   Erway, Larry C.
   Miller, Marian L.
TI The S1P(2) sphingosine 1-phosphate receptor is essential for auditory
   and vestibular function
SO HEARING RESEARCH
LA English
DT Article
DE ear; lysophospholipid; AGR16; H218; Edg-5; vestibular
ID SMOOTH-MUSCLE-CELLS; PROTEIN-COUPLED RECEPTORS; SIGNALING PATHWAYS;
   MAMMALIAN-CELLS; CALCIUM SIGNALS; MUTANT MICE; SPHINGOSINE-1-PHOSPHATE;
   EDG3; MIGRATION; HEARING
AB Sphingosine I-phosphate (SIP) is an endogenous growth factor with potent effects on many different cell types. Most of these effects are produced by activation of one or more of a family of G-protein coupled receptors. The S1P(2) receptor can mediate SIP-induced proliferation, differentiation and survival in a wide variety of cells in culture. However, identifying essential in vivo functions for S1P2 has been hampered by its ubiquitous expression and the failure to detect any anatomical abnormalities in initial analyses Of S1P(2) knockout mice. We report here that all S1P(2) knockout mice are profoundly deaf from postnatal day 22 and approximately half display a progressive loss of vestibular function with aging. Anatomically, both the auditory and vestibular systems appear to develop normally but then degrade. Morphological defects associated with hearing are first detected at 3 weeks postnatal as deformations of the organ of Corti/Nuel's space. By one year of age structures within the scala media are dramatically altered. The S1P(2) knockout mice also display a loss of otoconia consistent with the vestibular impairment. The present data are the first to indicate that SIP signaling plays critical roles, in vivo, in auditory and vestibular functions. The data further establish that the SIP signaling occurs through the S1P(2) receptor and makes an essential. contribution to the structural maintenance of these systems, raising the possibility that properly targeted enhancement of this signaling may prove to be clinically beneficial. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Cincinnati, Dept Cellular & Mol Physiol, Cincinnati, OH 45267 USA.
   Univ Cincinnati, Dept Environm Hlth, Cincinnati, OH 45267 USA.
   Univ Florida, Dept Neurosci, Gainesville, FL 32610 USA.
   Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA.
RP MacLennan, AJ (reprint author), Univ Cincinnati, Dept Cellular & Mol Physiol, 231 Albert Sabin Way,Room 4155 MSB, Cincinnati, OH 45267 USA.
EM john.maclen@uc.edu
CR An S, 1998, J Cell Biochem Suppl, V30-31, P147
   An SZ, 2000, J BIOL CHEM, V275, P288, DOI 10.1074/jbc.275.1.288
   An SZ, 1999, MOL PHARMACOL, V55, P787
   Ancellin N, 1999, J BIOL CHEM, V274, P18997, DOI 10.1074/jbc.274.27.18997
   Beer MS, 2000, ANN NY ACAD SCI, V905, P118
   Bergstrom RA, 1998, GENETICS, V150, P815
   Biacabe B, 2001, AURIS NASUS LARYNX, V28, P85, DOI 10.1016/S0385-8146(00)00080-8
   Chun J, 2002, PHARMACOL REV, V54, P265, DOI 10.1124/pr.54.2.265
   DAVIS AC, 1989, INT J EPIDEMIOL, V18, P911, DOI 10.1093/ije/18.4.911
   ERWAY L, 1971, GENETICS, V67, P97
   GARY LE, 1988, TOXICOL APPL PHARM, V92, P266
   Goetzl EJ, 1998, FASEB J, V12, P1589
   Gonda K, 1999, BIOCHEM J, V337, P67, DOI 10.1042/0264-6021:3370067
   Hobson JP, 2001, SCIENCE, V291, P1800, DOI 10.1126/science.1057559
   Ishii I, 2002, J BIOL CHEM, V277, P25152, DOI 10.1074/jbc.M200137200
   Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008
   Kon J, 1999, J BIOL CHEM, V274, P23940, DOI 10.1074/jbc.274.34.23940
   Lim D, 1978, VESTIBULAR MECH HLTH, P195
   Lim D J, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P17
   MACLENNAN AJ, 1994, MOL CELL NEUROSCI, V5, P201, DOI 10.1006/mcne.1994.1024
   MacLennan AJ, 2001, EUR J NEUROSCI, V14, P203, DOI 10.1046/j.0953-816x.2001.01634.x
   MacLennan AJ, 2000, DEV NEUROSCI-BASEL, V22, P283, DOI 10.1159/000017452
   Meacci E, 2002, BIOCHEM J, V362, P349, DOI 10.1042/0264-6021:3620349
   Melton L, 1996, BONE S3, V18, P121
   Moolenaar WH, 1999, EXP CELL RES, V253, P230, DOI 10.1006/excr.1999.4702
   Ohmori T, 2003, CARDIOVASC RES, V58, P170, DOI 10.1016/S0008-6363(03)00260-8
   Ohmori T, 2004, J THROMB HAEMOST, V2, P203, DOI 10.1111/j.1538-7836.2004.0562h.x
   Okamoto H, 1999, BIOCHEM BIOPH RES CO, V260, P203, DOI 10.1006/bbrc.1999.0886
   Okamoto H, 2000, MOL CELL BIOL, V20, P9247, DOI 10.1128/MCB.20.24.9247-9261.2000
   Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X
   Osada M, 2002, BIOCHEM BIOPH RES CO, V299, P483, DOI 10.1016/S0006-291X(02)02671-2
   Pyne S, 2000, BIOCHEM J, V349, P385, DOI 10.1042/0264-6021:3490385
   Pyne S, 1999, BIOCHEM SOC T, V27, P404
   ROGERS JM, 1989, TERATOLOGY, V39, P515, DOI 10.1002/tera.1420390602
   ROSS MD, 1976, ANN OTO RHINOL LARYN, V85, P1
   Ryu Y, 2002, CIRC RES, V90, P325, DOI 10.1161/hh0302.104455
   Simpson EM, 1997, NAT GENET, V16, P19, DOI 10.1038/ng0597-19
   Thalmann R, 2001, ANN NY ACAD SCI, V942, P162
   Van Brocklyn JR, 1999, J BIOL CHEM, V274, P4626, DOI 10.1074/jbc.274.8.4626
   WEINDRUCH R, 1989, Ear Nose and Throat Journal, V68, P925
   Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5
   Zhang GF, 1999, GENE, V227, P89, DOI 10.1016/S0378-1119(98)00589-7
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 43
TC 44
Z9 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 38
EP 48
DI 10.1016/j.heares.2006.06.016
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800004
PM 16945494
ER

PT J
AU van Wieringen, A
   Carlyon, RP
   Macherey, O
   Wouters, J
AF van Wieringen, Astrid
   Carlyon, Robert P.
   Macherey, Olivier
   Wouters, Jan
TI Effects of pulse rate on thresholds and loudness of biphasic and
   alternating monophasic pulse trains in electrical hearing
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implants; pulse shape; rate; alternating monophasic
ID COCHLEAR-IMPLANT USERS; PSYCHOPHYSICAL DETECTION THRESHOLDS;
   AUDITORY-NERVE; PHASE DURATION; STIMULATION; SENSITIVITY; SEPARATION;
   FREQUENCY; GAP
AB Detection thresholds and most comfortable loudnesses (MCLs) were determined as a function of pulse rate for standard biphasic pulse trains (BP) and for anodic and cathodic monophasic phases alternating at fixed intervals (ALT-m). Three different phase durations were examined.
   With a 100-mu s phase duration, thresholds for the ALT-m stimulus were substantially (up to 12 dB) lower than for the BP stimuli at relatively low rates (200 pps), but were similar to the BP thresholds at high rates (>= 1000 pps). Thresholds for BP pulse trains decreased monotonically with increasing rate, whereas the function for ALT-m waveforms was non-monotonic with a maximum between 400 and 1000 pps. These trends occurred for three different cochlear implant devices, different electrode configurations, and, generally, for different phase durations (10.8,25, and 100 mu s/phase). However, at the shorter phase durations, thresholds remained lower for the ALT-m stimulus, even at 5000 pps, the highest rate studied.
   Dynamic ranges of the BP pulse trains increased with increasing rate, irrespective of the phase duration under test, but for the ALT-m stimuli this was only true at the shorter phase durations tested. At a 100-mu s phase duration, dynamic ranges for the ALT-m waveforms did not differ significantly as a function of rate.
   The results confirm previous reports that delaying charge recovery, in this case by switching from a BP to an ALT-m wave shape, can substantially reduce thresholds [Van Wieringen, A., Carlyon, R.P., Laneau, J., Wouters, J., 2005. Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hear. Res. 200, 73-86; Carlyon, R.P., van Wieringen, A., Decks, J.M., Long, C.J., Lyzenga, J, Wouters, J., 2005. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hear. Res. 205, 210224]. However, at high pulse rates, this advantage only occurs at short phase durations. In addition, we show that the complex interaction between the effects of pulse shape, rate, and phase duration on thresholds can be captured by the simple linear model described by Carlyon et al. (c) 2006 Elsevier B.V. All rights reserved.
C1 Katholieke Univ Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium.
   MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England.
RP van Wieringen, A (reprint author), Katholieke Univ Leuven, Dept Neurosci, ExpORL, Herestr 49, B-3000 Louvain, Belgium.
EM astrid.vanwieringen@med.kuleuven.be
RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015
CR Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021
   CLOPTON BM, 1983, ANN NY ACAD SCI, P146
   Geurts L, 2000, J ACOUST SOC AM, V108, P2949, DOI 10.1121/1.1321011
   GUTTMAN R, 1971, J GEN PHYSIOL, V58, P304, DOI 10.1085/jgp.58.3.304
   Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99
   Hutcheon B, 2000, TRENDS NEUROSCI, V23, P216, DOI 10.1016/S0166-2236(00)01547-2
   Kreft HA, 2004, J ACOUST SOC AM, V115, P1885, DOI 10.1121/1.1701895
   Laneau J, 2005, J NEUROSCI METH, V142, P131, DOI 10.1016/j.jneumeth.2004.08.015
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Loizou Philipos C., 2003, Ear and Hearing, V24, P12, DOI 10.1097/01.AUD.0000052900.42380.50
   MACHEREY O, 2006, ASYMMETRIC PULSES CO
   McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1
   Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795
   Miller AL, 1997, HEARING RES, V109, P21, DOI 10.1016/S0378-5955(97)00037-3
   Miller AL, 1999, HEARING RES, V134, P89, DOI 10.1016/S0378-5955(99)00072-6
   Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6
   MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U
   PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665
   Pfingst BE, 1996, HEARING RES, V98, P77, DOI 10.1016/0378-5955(96)00071-8
   PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155
   PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6
   Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
   SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1
   SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
   SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3
   Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
   Skinner M W, 2000, J Am Acad Audiol, V11, P203
   *SPSS INC, 2000, SPSS 12 0
   van Wieringen A, 2005, HEARING RES, V200, P73, DOI 10.1016/j.heares.2004.08.006
   van Wieringen A, 2001, EAR HEARING, V22, P528, DOI 10.1097/00003446-200112000-00008
   VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953
   Wilson BS, 1997, BRIT J AUDIOL, V31, P205
NR 32
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 49
EP 60
DI 10.1016/j.heares.2006.06.015
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800005
PM 16904278
ER

PT J
AU Dixit, A
   Vaney, N
   Tandon, OP
AF Dixit, Abhinav
   Vaney, Neelam
   Tandon, O. P.
TI Effect of caffeine on central auditory pathways: An evoked potential
   study
SO HEARING RESEARCH
LA English
DT Article
DE auditory brainstem response; mid latency response; slow vertex response;
   peak latency; interpeak latency
ID SELECTIVE ATTENTION; BRAIN; PERFORMANCE; RESPONSES; GENERATORS;
   RECEPTORS; CAT; EEG
AB Caffeine is consumed in various forms like tea, coffee, chocolates and colas. The present study evaluated the effect of caffeine on auditory brainstem response (ABR), mid latency response (MLR) and slow vertex response (SVR) in 40 male volunteers. The recordings were done using a computerized evoked potential recorder by 10-20 electrode placement system. The subjects consumed 3 mg/kg body weight of caffeine after 12 It abstinence from caffeine in any form. The data obtained revealed that latencies of waves IV and V along with I-V interpeak interval of ABR decreased significantly. This was accompanied with significant increase in amplitude of wave V. MLR latencies and latency of PI wave of SVR was significantly decreased following caffeine ingestion. The results indicated that caffeine improves transmission in the peripheral and central brain auditory pathways. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Coll Med Sci, Dept Physiol, New Delhi 110095, India.
   GTB Hosp, New Delhi 110095, India.
RP Dixit, A (reprint author), Near Vet Hosp, Moti Bagh 1, New Delhi 110021, India.
EM abhinavdr@yahoo.com; neelamvaney@rediffmail.com; optandon@hotmaii.com
CR AZCONA O, 1995, BRIT J CLIN PHARMACO, V40, P393
   Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8
   BONATI M, 1982, CLIN PHARMACOL THER, V32, P98
   CLUBLEY M, 1979, BRIT J CLIN PHARMACO, V7, P157
   Daly J, 1993, CAFFEINE COFFEE HLTH, P97
   DEIBER MP, 1988, ELECTROEN CLIN NEURO, V71, P187, DOI 10.1016/0168-5597(88)90004-4
   Deslandes AC, 2004, ARQ NEURO-PSIQUIAT, V62, P385, DOI 10.1590/S0004-282X2004000300002
   DEWS PB, 1982, ANNU REV NUTR, V2, P323, DOI 10.1146/annurev.nu.02.070182.001543
   DICKERSON LW, 1992, EXP NEUROL, V117, P313, DOI 10.1016/0014-4886(92)90141-C
   Dixit A, 2004, IND J PHYSL PHARM, V48, P79
   Don M, 2002, HDB CLIN AUDIOLOGY, P274
   FARAH K, 2003, IND J PHYSL PHARM, V47, P393
   FISCHER C, 1995, EVOKED POTENTIAL, V96, P261, DOI 10.1016/0168-5597(94)00273-H
   Fisone G, 2004, CELL MOL LIFE SCI, V61, P857, DOI 10.1007/s00018-003-3269-3
   FREDHOLM BB, 1995, PHARMACOL TOXICOL, V76, P93
   Fredholm BB, 1999, PHARMACOL REV, V51, P83
   FREDHOLM BB, 1994, PHARMACOL REV, V46, P143
   HASENFRATZ M, 1994, PSYCHOPHARMACOLOGY, V114, P281, DOI 10.1007/BF02244850
   Kawamura N, 1996, PSYCHIAT CLIN NEUROS, V50, P217, DOI 10.1111/j.1440-1819.1996.tb02745.x
   LATINI R, 1978, TOXICOL LETT, V2, P267, DOI 10.1016/0378-4274(78)90024-3
   Lorist MM, 1996, PSYCHOPHYSIOLOGY, V33, P354, DOI 10.1111/j.1469-8986.1996.tb01059.x
   Lorist MM, 2003, BRAIN COGNITION, V53, P82, DOI 10.1016/S0278-2626(03)00206-9
   LORIST MM, 1994, PSYCHOPHARMACOLOGY, V113, P411, DOI 10.1007/BF02245217
   Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6
   MOLLER AR, 1994, ELECTROEN CLIN NEURO, V92, P215, DOI 10.1016/0168-5597(94)90065-5
   Orth M, 2005, CLIN NEUROPHYSIOL, V116, P308, DOI 10.1016/j.clinph.2004.08.012
   Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2
   PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2
   Ruijter J, 2000, PSYCHOPHYSIOLOGY, V37, P427, DOI 10.1017/S0048577200981514
   SALAMY A, 1975, BRAIN RES, V96, P361, DOI 10.1016/0006-8993(75)90748-9
   Seidl R, 2000, AMINO ACIDS, V19, P635, DOI 10.1007/s007260070013
   Stockard J, 1992, ELECTRODIAGNOSIS CLI, P503
   STOCKARD JJ, 1978, ANN NEUROL, V3, P368, DOI 10.1002/ana.410030416
   TANDON OP, 1990, INDIAN J MED RES-B, V92, P252
   TRIPATHI KD, 1999, ESSENTIALS MED PHARM, P222
   UNDEM BJ, 2001, GOODMAN GILMANS PHAR, P743
   VAUGHAN HG, 1970, ELECTROEN CLIN NEURO, V28, P360, DOI 10.1016/0013-4694(70)90228-2
   Yadav Asha, 2002, Indian J Physiol Pharmacol, V46, P449
   Yadav Asha, 2003, Indian Journal of Physiology and Pharmacology, V47, P423
NR 39
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 61
EP 66
DI 10.1016/j.heares.2006.06.017
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800006
PM 16914275
ER

PT J
AU Meenderink, SWF
   Narins, PM
AF Meenderink, Sebastiaan W. F.
   Narins, Peter M.
TI Stimulus frequency otoacoustic emissions in the Northern leopard frog,
   Rana pipiens pipiens: Implications for inner ear mechanics
SO HEARING RESEARCH
LA English
DT Article
DE stimulus frequency otoacoustic emissions; frog; Amphibian; linear
   coherent reflection; nonlinear distortion
ID AMPHIBIAN PAPILLA; TEMPERATURE-DEPENDENCE; COCHLEA
AB Otoacoustic emissions (OAEs) are weak sounds that originate from the inner ear which are traditionally classified/named based on their evoking stimulus. Recently, it has been argued that such a classification, at least for mammals, misrepresents the underlying mechanisms of emission-generation. As an alternative classification, it has been suggested to recognize that OAEs arise either via nonlinear distortion or linear coherent reflection. For non-mammalian vertebrates, data on evoked OAEs that arise via the latter mechanism are largely missing. Here, we present the first measurements of stimulus frequency OAEs (SFOAEs), which are emissions thought to arise via linear coherent reflection, from an amphibian (the Northern leopard frog, Rana pipiens pipiens). Their properties as a function of the evoking stimulus frequencies and levels are described and subsequently compared with the previously reported properties of distortion product OAEs (DPOAEs) from the same frog species. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA.
RP Meenderink, SWF (reprint author), Univ Calif Los Angeles, Dept Physiol Sci, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA.
EM swfmeenderink@yahoo.com
CR BERGEVIN C, 2006, ASS RES OTOLARYNGOL, V29, P24
   BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046
   de Kleine E, 2000, J ACOUST SOC AM, V107, P3308, DOI 10.1121/1.429403
   HAU LW, 2004, 5306 SOC NEUR
   HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
   Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34
   LEWIS ER, 1983, SCAN ELECTRON MICROS, P189
   LEWIS ER, 1982, J COMP PHYSIOL, V145, P437
   MANLEY GA, 1987, HEARING RES, V26, P257, DOI 10.1016/0378-5955(87)90062-1
   Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8
   Meenderink SWF, 2006, JARO-J ASSOC RES OTO, V7, P246, DOI 10.1007/s10162-006-0039-6
   Meenderink SWF, 2004, HEARING RES, V192, P107, DOI 10.1016/j.heares.2004.01.015
   Meenderink SWF, 2005, JARO-J ASSOC RES OTO, V6, P37, DOI 10.1007/s10162-004-5019-0
   MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5
   Palmer AR, 1982, J PHYSL, V324, P66
   RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047
   Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211
   Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
   SIMMONS DD, 1992, J COMP NEUROL, V322, P191, DOI 10.1002/cne.903220205
   Smotherman MS, 1999, J NEUROSCI, V19, P5275
   Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1
   vanDijk P, 1996, HEARING RES, V101, P102
   VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2
   van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3
   Vassilakis PN, 2004, J ACOUST SOC AM, V116, P3713, DOI 10.1121/1.1811571
   WHITEHEAD ML, 1986, AUDITORY FREQUENCY S, P39
   Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065
NR 29
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 67
EP 75
DI 10.1016/j.heares.2006.07.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800007
PM 16942850
ER

PT J
AU Kermany, MH
   Parker, LL
   Guo, YK
   Miller, D
   Swanson, DJ
   Yoo, TJ
   Goldowitz, D
   Zuo, J
AF Kermany, Mohammad Habiby
   Parker, Lisan L.
   Guo, Yun-Kal
   Miller, Darla
   Swanson, Douglas J.
   Yoo, Tai-June
   Goldowitz, Dan
   Zuo, Jian
TI Identification of 17 hearing impaired mouse strains in the TMGC
   ENU-mutagenesis screen
SO HEARING RESEARCH
LA English
DT Article
DE presbycusis; noise-induced hearing loss (NIHL); auditory brainstern
   response (ABR); fibrocyte; ganglia; mouse; mutant
ID ETHYL-N-NITROSOUREA; GENOME-WIDE; MICE; OTOTOXICITY; INHERITANCE;
   CADHERIN-23; DEAFNESS; MUTANTS; COCHLEA; LOCUS
AB The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured >= 12 mice per pedigree in >= 2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (>= 16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans. (c) 2006 Elsevier B.V. All rights reserved.
C1 St Jude Childrens Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA.
   Inst Neurosci, Dept Otolaryngol, Dept Mol Sci, Dept Med, Memphis, TN 38163 USA.
   Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA.
   Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA.
RP Zuo, J (reprint author), St Jude Childrens Hosp, Dept Dev Neurobiol, 332 N Lauderdale St, Memphis, TN 38105 USA.
EM jian.zuo@stjude.org
CR Cordes SP, 2005, MICROBIOL MOL BIOL R, V69, P426, DOI 10.1128/MMBR.69.3.426-439.2005
   de Angelis MH, 2000, NAT GENET, V25, P444, DOI 10.1038/78146
   Friedman TB, 2003, ANNU REV GENOM HUM G, V4, P341, DOI 10.1146/annurev.genom.4.070802.110347
   GAO J, UNPUB ORPHAN GLUTAMA
   Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5
   Goldfarb Abraham, 2002, Journal of Basic and Clinical Physiology and Pharmacology, V13, P75
   Goldowitz Dan, 2004, Brain Res Mol Brain Res, V132, P105
   Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5
   Hequembourg S, 2001, JARO, V2, P118
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2
   Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617
   Jablonski MM, 2005, VISUAL NEUROSCI, V22, P595, DOI 10.1017/S0952523805225087
   Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8]
   Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009
   Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006
   McFadden SL, 2001, AUDIOLOGY, V40, P313
   Munroe RJ, 2000, NAT GENET, V24, P318, DOI 10.1038/73563
   Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Nolan PM, 2000, NAT GENET, V25, P440, DOI 10.1038/78140
   Noveroske JK, 2000, MAMM GENOME, V11, P478, DOI 10.1007/s003350010093
   RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E
   Ruttiger L, 2004, P NATL ACAD SCI USA, V101, P12922, DOI 10.1073/pnas.0402660101
   Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758
   Trune DR, 2002, HEARING RES, V167, P170, DOI 10.1016/S0378-5955(02)00384-2
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
   Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010
NR 30
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 76
EP 86
DI 10.1016/j.heares.2006.07.011
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800008
PM 16949226
ER

PT J
AU Deng, YQ
   Chen, YY
   Reuss, L
   Altenberg, GA
AF Deng, Yanqin
   Chen, Yongyue
   Reuss, Luis
   Altenberg, Guillermo A.
TI Mutations of connexin 26 at position 75 and dominant deafness: Essential
   role of arginine for the generation of functional gap-junctional
   channels
SO HEARING RESEARCH
LA English
DT Article
DE Cx26; hemichannels; gap junction; aromatic amino acids; skin disease;
   genetic disease
ID NONJUNCTIONAL PLASMA-MEMBRANE; NONSYNDROMIC HEARING-LOSS; INNER-EAR;
   XENOPUS-OOCYTES; PALMOPLANTAR KERATODERMA; CHEMICAL RESCUE; METABOLIC
   INHIBITION; EXTRACELLULAR LOOP; MOLECULAR-GENETICS; R75Q MUTATION
AB Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin of the cochlea, are its most frequent cause. Mutations of R75 cause deafness and disrupt gap-junctional communication. Here, we determined the effects of substitutions of R75 with different residues (alanine, asparagine, aspartic acid, lysine, phenylalanine, tyrosine or tryptophan) on formation of gap-junctional channels and hemichannels. We show that connexin 26 R75 is essential for the formation of gap-junctional channels. Substitution of R75 with aromatic residues yields functional hemichannels that display altered voltage dependence, whereas substitution with other residues yields non-functional hemichannels. The expression of R75 mutants has a dominant negative effect on gap-junctional communication mediated by wild-type connexin 26, independently of the ability of the mutants to form functional gap-junctional hemichannels. Our results show that the arginine located at position 75 of connexin 26 is essential for function, and cannot be replaced by other residues. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Texas, Med Branch, Dept Neurosci & Cell Biol, Galveston, TX 77555 USA.
   Univ Texas, Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Galveston, TX 77555 USA.
RP Altenberg, GA (reprint author), Univ Texas, Med Branch, Dept Neurosci & Cell Biol, Galveston, TX 77555 USA.
EM galtenbe@utmb.edu
CR Bao XY, 2005, J BIOL CHEM, V280, P8647, DOI 10.1074/jbc.M413536200
   Bao XY, 2004, J BIOL CHEM, V279, P9689, DOI 10.1074/jbc.M311438200
   Bao XY, 2004, AM J PHYSIOL-CELL PH, V286, pC647, DOI 10.1152/ajpcell.00295.2003
   Beltramello M, 2005, NAT CELL BIOL, V7, P63, DOI 10.1038/ncb1205
   Beltramello M, 2003, BIOCHEM BIOPH RES CO, V305, P1024, DOI 10.1016/S0006-291X(03)00868-4
   Boehlein SK, 1997, J BIOL CHEM, V272, P12384, DOI 10.1074/jbc.272.19.12384
   Button B, 2001, J GEN PHYSIOL, V117, P457, DOI 10.1085/jgp.117.5.457
   CHEN Y, 2005, FASEB J
   Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1
   Contreras JE, 2002, P NATL ACAD SCI USA, V99, P495, DOI 10.1073/pnas.012589799
   Ebihara L, 1996, BIOPHYS J, V71, P742
   Feldmann D, 2005, AM J MED GENET A, V137A, P225, DOI 10.1002/ajmg.a.30765
   Foote CI, 1998, J CELL BIOL, V140, P1187, DOI 10.1083/jcb.140.5.1187
   Forge A, 2002, AUDIOL NEURO-OTOL, V7, P141, DOI 10.1159/000058299
   Forge A, 2002, BRIT MED BULL, V63, P5, DOI 10.1093/bmb/63.1.5
   Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916
   Forge A, 2003, CELL COMMUN ADHES, V10, P341, DOI 10.1080/15419060390263010
   Harris AL, 2001, Q REV BIOPHYS, V34, P325
   Hua VB, 2003, J MEMBRANE BIOL, V194, P59, DOI 10.1007/s00232-003-2026-8
   Jentsch TJ, 2000, NAT REV NEUROSCI, V1, P21, DOI 10.1038/35036198
   John SA, 1999, J BIOL CHEM, V274, P236, DOI 10.1074/jbc.274.1.236
   JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77
   Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001
   Kronengold J, 2003, J GEN PHYSIOL, V122, P389, DOI 10.1085/jgp.200308861
   Kudo T, 2003, HUM MOL GENET, V12, P995, DOI 10.1093/hmg/ddg116
   Maeda Y, 2005, HUM MOL GENET, V14, P1641, DOI 10.1093/hmg/ddi172
   Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076
   METHFESSEL C, 1986, PFLUG ARCH EUR J PHY, V407, P577, DOI 10.1007/BF00582635
   Mo L, 1999, J MEMBRANE BIOL, V168, P253, DOI 10.1007/s002329900514
   Oh S, 1999, J GEN PHYSIOL, V114, P339, DOI 10.1085/jgp.114.3.339
   Oshima A, 2003, J BIOL CHEM, V278, P1807, DOI 10.1074/jbc.M207713200
   PAUL DL, 1991, J CELL BIOL, V115, P1077, DOI 10.1083/jcb.115.4.1077
   Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224
   Piazza V, 2005, CLIN GENET, V68, P161, DOI 10.1111/j.1399-0004.2005.00468.x
   Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I
   Richard G, 1998, HUM GENET, V103, P393, DOI 10.1007/s004390050839
   Ripps H, 2004, CELL MOL NEUROBIOL, V24, P647, DOI 10.1023/B:CEMN.0000036403.43484.3d
   Rizzuto R, 2003, ONCOGENE, V22, P8619, DOI 10.1038/sj.onc.1207105
   Rynkiewicz MJ, 1996, BIOCHEMISTRY-US, V35, P16174, DOI 10.1021/bi961311i
   Sosinsky GE, 2005, BBA-BIOMEMBRANES, V1711, P99, DOI 10.1016/j.bbamem.2005.04.001
   SPRAY DC, 1981, J GEN PHYSIOL, V77, P77, DOI 10.1085/jgp.77.1.77
   Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363
   Suchyna TM, 1999, BIOPHYS J, V77, P2968
   Thomson SC, 2003, KIDNEY BLOOD PRESS R, V26, P10, DOI 10.1159/000069766
   Unger VM, 1999, SCIENCE, V283, P1176, DOI 10.1126/science.283.5405.1176
   Uyguner O, 2002, CLIN GENET, V62, P306, DOI 10.1034/j.1399-0004.2002.620409.x
   VAN CAMP G., 2006, HEREDITARY HEARING L
   Vergara L, 2003, J MEMBRANE BIOL, V196, P173, DOI 10.1007/s00232-003-0636-9
   Wang HL, 2004, NEUROBIOL DIS, V15, P361, DOI 10.1016/j.nbd.2003.11.005
   Williams DM, 2000, J BIOL CHEM, V275, P38127, DOI 10.1074/jbc.C000606200
   Yum SW, 2002, NEUROBIOL DIS, V11, P43, DOI 10.1006/nbdi.2002.0545
   Zhang YP, 2005, P NATL ACAD SCI USA, V102, P15201, DOI 10.1073/pnas.0501859102
NR 52
TC 15
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 87
EP 94
DI 10.1016/j.heares.2006.07.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800009
PM 16945493
ER

PT J
AU Xu, H
   Wang, W
   Tang, ZQ
   Xu, TL
   Chen, L
AF Xu, Han
   Wang, Wei
   Tang, Zheng-Quan
   Xu, Tian-Le
   Chen, Lin
TI Taurine acts as a glycine receptor agonist in slices of rat inferior
   colliculus
SO HEARING RESEARCH
LA English
DT Article
DE taurine; glycine receptor; central nucleus of inferior colliculus; brain
   slice; rat; whole-cell patch-clamp
ID NEUROTRANSMITTER AMINO-ACIDS; FOCAL CEREBRAL-ISCHEMIA;
   CENTRAL-NERVOUS-SYSTEM; GABA-A RECEPTOR; OLFACTORY-BULB;
   ELECTRICAL-STIMULATION; DEVELOPMENTAL-CHANGES; GABAERGIC INHIBITION;
   CALCIUM HOMEOSTASIS; AUDITORY-SYSTEM
AB Taurine is an important endogenous amino acid for neural development and for many physiological functions,but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at I mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 mu M strychnine, an antagonist of glycine receptors, but not by 10 mu M bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neuro transmitter glycine. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Sci & Technol China, Sch Life Sci, Audit Res Lab, Hefei 230027, Peoples R China.
   Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China.
RP Xu, TL (reprint author), Univ Sci & Technol China, Sch Life Sci, Audit Res Lab, Hefei 230027, Peoples R China.
EM tlxu@ion.ac.cn; linchen@ustc.edu.cn
RI WANG, WEI/A-2176-2013; WANG, WEI/F-4992-2013; WANG, WEI/G-7605-2014;
   Chen, Lin/N-8327-2013
OI Chen, Lin/0000-0002-5847-2989
CR AGRAWAL HC, 1971, BIOCHEM J, V122, P759
   APRISON MH, 1969, COMP BIOCHEM PHYSIOL, V28, P1345, DOI 10.1016/0010-406X(69)90571-4
   Backus KH, 1998, J PHYSIOL-LONDON, V507, P783, DOI 10.1111/j.1469-7793.1998.783bs.x
   Belluzzi O, 2004, NEUROSCIENCE, V124, P929, DOI 10.1016/j.neurosceince.2003.12.032
   CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
   Chaput MA, 2004, CHEM SENSES, V29, P83, DOI 10.1093/chemse/bjh008
   Chen L, 2001, MOL BRAIN RES, V88, P135, DOI 10.1016/S0169-328X(01)00042-0
   Chen L, 1999, HEARING RES, V138, P106, DOI 10.1016/S0378-5955(99)00156-2
   Chen WQ, 2001, J NEUROSCI RES, V66, P612, DOI 10.1002/jnr.10027
   COLLINS GCS, 1974, BRIT J PHARMACOL, V50, pP451
   DAVIES WE, 1994, ADV EXP MED BIOL, V359, P393
   DAVIES WE, 1990, PROG CLIN BIOL RES, V351, P397
   Davies WE, 1996, ADV EXP MED BIOL, V403, P631
   DAVISON AN, 1971, NATURE, V234, P107, DOI 10.1038/234107a0
   DEBELLER.JS, 1973, J NEUROCHEM, V21, P441, DOI 10.1111/j.1471-4159.1973.tb04264.x
   del Olmo N, 2004, EUR J NEUROSCI, V19, P1875, DOI 10.1111/j.1460.9568.2004.03309.x
   del Olmo N, 2000, BRAIN RES, V864, P298, DOI 10.1016/S0006-8993(00)02211-3
   Dominy J, 2004, J NEUROCHEM, V89, P1195, DOI 10.1111/j.1471-4159.2004.02410.x
   El Idrissi A, 1999, J NEUROSCI, V19, P9459
   Flint AC, 1998, NEURON, V20, P43, DOI 10.1016/S0896-6273(00)80433-X
   Foos TM, 2002, NEUROCHEM RES, V27, P21, DOI 10.1023/A:1014890219513
   Friauf E, 1997, J COMP NEUROL, V385, P117, DOI 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5
   FRITSCHY JM, 1995, J COMP NEUROL, V359, P154, DOI 10.1002/cne.903590111
   Galarreta M, 1996, J NEUROSCI, V16, P92
   GOLDEN GT, 1989, NEUROCHEM RES, V14, P465, DOI 10.1007/BF00964862
   HARDING NJ, 1993, HEARING RES, V65, P211, DOI 10.1016/0378-5955(93)90214-L
   HAUSSER MA, 1992, BRAIN RES, V571, P103, DOI 10.1016/0006-8993(92)90514-A
   Horner KC, 1997, HEARING RES, V109, P135, DOI 10.1016/S0378-5955(97)00057-9
   Hornung JP, 1996, J COMP NEUROL, V367, P413, DOI 10.1002/(SICI)1096-9861(19960408)367:3<413::AID-CNE7>3.0.CO;2-8
   Hussy N, 1997, J PHYSIOL-LONDON, V502, P609, DOI 10.1111/j.1469-7793.1997.609bj.x
   HUXTABLE RJ, 1992, PHYSIOL REV, V72, P101
   Huxtable RJ, 2000, ADV EXP MED BIOL, V483, P1
   HUXTABLE RJ, 1989, PROG NEUROBIOL, V32, P471, DOI 10.1016/0301-0082(89)90019-1
   JIANG HY, 2005, 28 ANN M ASS RES OT, V28, P315
   Kakazu Y, 1999, J NEUROSCI, V19, P2843
   Kamisaki Y, 1996, ADV EXP MED BIOL, V403, P445
   KAMISAKI Y, 1993, BRAIN RES, V627, P181
   Kirsch J, 1998, NATURE, V392, P717, DOI 10.1038/33694
   KISHI M, 1988, BIOCHIM BIOPHYS ACTA, V939, P615, DOI 10.1016/0005-2736(88)90109-5
   KONTRO P, 1980, BRAIN RES, V184, P129, DOI 10.1016/0006-8993(80)90592-2
   KUBO T, 1992, J PHARMACOBIO-DYNAM, V15, P519
   LAURIE DJ, 1992, J NEUROSCI, V12, P1063
   LOMBARDINI JB, 1994, ADV EXP MED BIOL, V359, P9
   Ma CL, 2002, NEUROSCIENCE, V114, P207, DOI 10.1016/S0306-4522(02)00130-6
   MACLENNAN AJ, 1991, NEUROSCIENCE, V43, P369, DOI 10.1016/0306-4522(91)90301-4
   Matsumoto K, 1996, J CEREBR BLOOD F MET, V16, P114
   MCCOWN TJ, 1987, J PHARMACOL EXP THER, V243, P603
   Mori M, 2002, J PHYSIOL-LONDON, V539, P191, DOI 10.1013/jphysiol.2001.013147
   NAGELHUS EA, 1993, NEUROSCIENCE, V54, P615, DOI 10.1016/0306-4522(93)90233-6
   NAMIMA M, 1983, J NEUROCHEM, V40, P1, DOI 10.1111/j.1471-4159.1983.tb12645.x
   OJA SS, 1992, J NEUROSCI RES, V32, P551, DOI 10.1002/jnr.490320410
   PALKOVITS M, 1986, J NEUROCHEM, V47, P1333, DOI 10.1111/j.1471-4159.1986.tb00761.x
   PASANTESMORALES H, 1980, J NEUROCHEM, V34, P244, DOI 10.1111/j.1471-4159.1980.tb04651.x
   PERLMAN M, 1989, PEDIATRICS, V83, P796
   Piechotta K, 2001, J COMP NEUROL, V438, P336
   Puopolo M, 1998, NEUROREPORT, V9, P2319, DOI 10.1097/00001756-199807130-00031
   RIBAK CE, 1988, EPILEPSY RES, V2, P9
   Saransaari P, 2000, AMINO ACIDS, V19, P509, DOI 10.1007/s007260070003
   SCHMIEDEN V, 1992, EMBO J, V11, P2025
   SIEGHART W, 1995, PHARMACOL REV, V47, P181
   Sivaramakrishnan S, 2004, J NEUROSCI, V24, P5031, DOI 10.1523/JNEUROSCI.0357-04.2004
   SOLIS JM, 1988, NEUROSCI LETT, V91, P53, DOI 10.1016/0304-3940(88)90248-0
   STURMAN JA, 1986, ANN NY ACAD SCI, V477, P196, DOI 10.1111/j.1749-6632.1986.tb40337.x
   STURMAN JA, 1993, PHYSIOL REV, V73, P119
   TOKUTOMI N, 1989, BRIT J PHARMACOL, V97, P353
   Turecek R, 2001, NATURE, V411, P587, DOI 10.1038/35079084
   TYSON JE, 1989, PEDIATRICS, V83, P406
   UCHIYAMATSUYUKI Y, 1994, J NEUROCHEM, V62, P1074
   VALLECALLESANDOVAL MH, 1991, INT J DEV NEUROSCI, V9, P571, DOI 10.1016/0736-5748(91)90018-H
   Wang DS, 1998, BRAIN RES, V792, P41, DOI 10.1016/S0006-8993(98)00119-X
   Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
   Wisden W, 1992, Curr Opin Neurobiol, V2, P263, DOI 10.1016/0959-4388(92)90113-Y
   Wu H, 2005, BRAIN RES, V1038, P123, DOI 10.1016/j.brainres.2005.01.058
   Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004
   Wu ZY, 2003, AMINO ACIDS, V24, P155, DOI 10.1007/s00726-002-0314-8
   Xu H, 2004, BRAIN RES, V1021, P232, DOI 10.1016/j.brainres.2004.07.001
   Yoshida M, 2004, J NEUROBIOL, V60, P166, DOI 10.1002/neu.20003
   Young TL, 2004, NEURON, V41, P867, DOI 10.1016/S0896-6273(04)00141-2
   Zhang Y, 2000, HEARING RES, V147, P92, DOI 10.1016/S0378-5955(00)00123-4
NR 79
TC 11
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 95
EP 105
DI 10.1016/j.heares.2006.07.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800010
PM 16949227
ER

PT J
AU Soeta, Y
   Nakagawa, S
AF Soeta, Yoshiharu
   Nakagawa, Seiji
TI Auditory evoked magnetic fields in relation to interaural time delay and
   interaural correlation
SO HEARING RESEARCH
LA English
DT Article
DE auditory evoked field; Nlm; interaural time delay; interaural
   correlation
ID SOUND IN-SPACE; CROSS-CORRELATION; INFERIOR COLLICULUS; ASYMMETRIC
   PERFORMANCES; CORTICAL REPRESENTATION; LEVEL DIFFERENCES; CORRELATION
   MODEL; HUMAN BRAIN; LOCALIZATION; LATERALIZATION
AB The detection of interaural time differences (ITD) for sound localization depends on the similarity between the left and right ear signals, namely interaural correlation (IAC). Human localization performance deteriorates with decreasing IACs. In order to examine activity related to localization performance in the human cortex, auditory evoked magnetic fields to the ITD of bandpass noises with different IACs were analyzed. When the JAC was 0.95, the N1m, amplitudes, i.e., the estimated equivalent current dipole moments, increased with increasing ITD. However the effect of ITD on the N1m amplitudes was not significant when the IAC was 0.5. When the ITD was 0.7 ins, the N1m amplitudes decreased with decreasing IACs. There were no systematic changes in the source location of N1m in the auditory cortex related to changes in ITD or IAC. The results suggest that localization performance is reflected in N1m amplitudes. (c) 2006 Elsevier B.V. All rights reserved.
C1 Natl Inst AIST, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
RP Soeta, Y (reprint author), Natl Inst AIST, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
CR ALBECK Y, 1995, J NEUROPHYSIOL, V74, P1689
   Ando Y., 1998, ARCHITECTURAL ACOUST
   ANDO Y, 1986, J ACOUST SOC AM, V80, P833, DOI 10.1121/1.393906
   Ando Y., 1987, Journal of the Acoustical Society of Japan (E), V8
   BLAUERT J, 1986, J ACOUST SOC AM, V79, P806, DOI 10.1121/1.393471
   Blauert J., 1983, SPATIAL HEARING PSYC
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026
   BURKE KA, 1994, NEUROPSYCHOLOGIA, V32, P1409, DOI 10.1016/0028-3932(94)00074-3
   BUTLER RA, 1994, NEUROPSYCHOLOGIA, V32, P221, DOI 10.1016/0028-3932(94)90007-8
   Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005
   COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294
   D'Angelo WR, 2003, J NEUROPHYSIOL, V90, P2827, DOI 10.1152/jn.00269.2003
   Fujiki N, 2002, EUR J NEUROSCI, V16, P2207, DOI 10.1046/j.1460-9568.2002.02276.x
   Itoh K, 2000, NEUROSCI LETT, V292, P215, DOI 10.1016/S0304-3940(00)01465-8
   JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
   JEFFRESS LA, 1962, J ACOUST SOC AM, V34, P1122, DOI 10.1121/1.1918257
   Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1
   Kaiser J, 2000, J NEUROSCI, V20, P6631
   Keller CH, 1996, J NEUROSCI, V16, P4300
   KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163
   Krumbholz K, 2005, CEREB CORTEX, V15, P317, DOI 10.1093/cercor/bhh133
   KUROZUMI K, 1983, J ACOUST SOC AM, V74, P1726, DOI 10.1121/1.390281
   LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358
   LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325
   Maeder PP, 2001, NEUROIMAGE, V14, P802, DOI 10.1006/nimg.2001.0888
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
   MCEVOY L, 1994, HEARING RES, V78, P249, DOI 10.1016/0378-5955(94)90031-0
   MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U
   MCEVOY LK, 1990, AUDIOLOGY, V29, P163
   MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003
   OSMAN E, 1971, J ACOUST SOC AM, V50, P1494, DOI 10.1121/1.1912803
   Palomaki K, 2000, NEUROREPORT, V11, P1535, DOI 10.1097/00001756-200005150-00033
   Palomaki KJ, 2005, COGNITIVE BRAIN RES, V24, P364, DOI 10.1016/j.cogbrainres.2005.02.013
   Palomaki KJ, 2002, COGNITIVE BRAIN RES, V14, P294, DOI 10.1016/S0926-6410(02)00132-5
   Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4
   SAMS M, 1993, HEARING RES, V67, P89, DOI 10.1016/0378-5955(93)90236-T
   SAYERS BM, 1957, J ACOUST SOC AM, V29, P973, DOI 10.1121/1.1914990
   Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4
   Shackleton TM, 2005, JARO-J ASSOC RES OTO, V6, P244, DOI 10.1007/s10162-005-0005-8
   Soeta Y, 2004, HEARING RES, V196, P109, DOI 10.1016/j.heares.2004.07.002
   Soeta Y, 2006, NEUROREPORT, V17, P505, DOI 10.1097/01.wnr.0000208998.31072.e4
   Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078
   Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2
   UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0
   WEBSTER FA, 1951, J ACOUST SOC AM, V50, P1494
   Woldorff MG, 1999, HUM BRAIN MAPP, V7, P49, DOI 10.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5>3.0.CO;2-J
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
   YIN TCT, 1987, J NEUROPHYSIOL, V58, P562
   Zimmer U, 2005, NEURON, V47, P893, DOI 10.1016/j.neuron.2005.07.019
NR 51
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 106
EP 115
DI 10.1016/j.heares.2006.07.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800011
PM 16934951
ER

PT J
AU Li, HZ
   Sabes, JH
   Sinex, DG
AF Li, Hongzhe
   Sabes, Jennifer H.
   Sinex, Donal G.
TI Responses of inferior colliculus neurons to SAM tones located in
   inhibitory response areas
SO HEARING RESEARCH
LA English
DT Article
DE amplitude modulation; inhibition; inferior colliculus; physiology;
   chinchilla
ID SUPERIOR OLIVARY COMPLEX; COMBINATION-SENSITIVE NEURONS;
   AMPLITUDE-MODULATED SIGNALS; GERBIL COCHLEAR NUCLEUS; SINGLE UNIT
   RESPONSES; BIG BROWN BAT; LATERAL LEMNISCUS; GLYCINERGIC INHIBITION;
   FREQUENCY MODULATIONS; AUDITORY RESPONSES
AB In order to examine the effect of inhibition on processing auditory temporal information, responses of single neurons in the inferior colliculus of the chinchilla to sinusoidally amplitude-modulated (SAM) tones alone and the presence of a steady-state tone were obtained. The carrier frequency of the SAM tone was either the characteristic frequency (CF) or a frequency in the inhibitory response area of a studied neuron. When the carrier frequency was set to the neuron's CF, neurons responded in synchrony to the SAM-tone envelope, as expected. When the carrier frequency was set to a frequency at which pure tones produced inhibition, SAM tones elicited little or no response, also as expected. However, when the same SAM tone was paired with a pure tone whose frequency was set to the neuron's CF, responses synchronized to the SAM tone envelope were obtained. These modulated responses were typically one-half cycle out-of-phase with the response to the SAM tone at CF, suggesting that they arose from cyclic inhibition and release from inhibition by the SAM tone. The results demonstrate that the representation of temporal information by inferior colliculus neurons is influenced by temporally-patterned inhibition arising from locations remote from CF. (c) 2006 Elsevier B.V. All rights reserved.
C1 Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA.
   Utah State Univ, Dept Psychol, Logan, UT 84322 USA.
RP Sinex, DG (reprint author), Utah State Univ, Dept Psychol, Logan, UT 84322 USA.
EM hongzhe@u.washington.edu; Jennifer.Henderson-Sabes@ucsfmedctr.org;
   don.sinex@usu.edu
CR Backoff PM, 1999, HEARING RES, V134, P77, DOI 10.1016/S0378-5955(99)00071-4
   Burger RM, 1998, J NEUROPHYSIOL, V80, P1686
   CARRELL TD, 1992, PERCEPT PSYCHOPHYS, V52, P437, DOI 10.3758/BF03206703
   Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5
   Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595
   CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106
   Darwin C. J., 1995, P387, DOI 10.1016/B978-012505626-7/50013-3
   EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111
   EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5
   Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9
   FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
   FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z
   Gardner EP, 2000, PRINCIPLES NEURAL SC, P451
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1
   HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005
   JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639
   Koch U, 1998, J NEUROPHYSIOL, V80, P71
   Krishna BS, 2000, J NEUROPHYSIOL, V84, P255
   KUFFLER SW, 1953, J NEUROPHYSIOL, V16, P37
   Kuwada S, 1999, J NEUROSCI, V19, P2273
   KUWADA S, 1989, J NEUROPHYSIOL, V61, P269
   LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799
   LeBeau FEN, 2001, J NEUROSCI, V21, P7303
   LI H, 2002, ABSTR ASS RES OT
   LI H, 2003, ABSTR ASS RES OT
   Lu Y, 1998, J NEUROPHYSIOL, V79, P2303
   MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209
   MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1
   Nataraj K, 2005, J NEUROPHYSIOL, V93, P3294, DOI 10.1152/jn.01152.2004
   Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005
   Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4
   Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195
   Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211
   Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3
   REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1
   REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851
   RHODE WS, 1976, TEST SIGNIFICANCE ME
   Richards VM, 1996, J ACOUST SOC AM, V99, P1645, DOI 10.1121/1.414736
   RYAN A, 1978, EXP BRAIN RES, V32, P389
   SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B
   SCHULZ DW, 1981, BRAIN RES, V209, P177, DOI 10.1016/0006-8993(81)91179-3
   Sinex DG, 2005, J NEUROPHYSIOL, V94, P3523, DOI 10.1152/jn.01194.2004
   Sinex DG, 2002, JARO, V3, P390, DOI 10.1007/s101620020026
   Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0
   Snyder RL, 2002, J NEUROPHYSIOL, V87, P434
   Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1
   Yang LC, 1997, J NEUROPHYSIOL, V77, P324
   YOST WA, 1991, HEARING RES, V56, P8, DOI 10.1016/0378-5955(91)90148-3
   YOST WA, 1994, HEARING RES, V79, P48, DOI 10.1016/0378-5955(94)90126-0
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
NR 51
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2006
VL 220
IS 1-2
BP 116
EP 125
DI 10.1016/j.heares.2006.07.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 094JX
UT WOS:000241236800012
PM 16945495
ER

PT J
AU Lychakov, DV
   Rebane, YT
   Lombarte, A
   Fuiman, LA
   Takabayashi, A
AF Lychakov, D. V.
   Rebane, Y. T.
   Lombarte, A.
   Fuiman, L. A.
   Takabayashi, A.
TI Fish otolith asymmetry: Morphometry and modeling
SO HEARING RESEARCH
LA English
DT Article
DE fish; sacculus; utriculus; Otolith asymmetry; mathematical modeling
ID WEIGHTLESSNESS; SHAPE
AB Mathematical modeling suggests that relatively large values of otolith mass asymmetry in fishes can alter acoustic functionality and may be responsible for abnormal fish behavior when subjected to weightlessness during parabolic or space flight [D.V. Lychakov, Y.T. Rebane, Otolith mass asymmetry in 18 species of fish and pigeon, J. Grav. Physiol. 11 (3) (2004) 17-34; D.V. Lychakov, Y.T. Rebane, Fish otolith mass asymmetry: morphometry and influence on acoustic functionality, Hear. Res. 201 (2005) 55-69]. The results of morphometric studies of otolith mass asymmetry suppose that the absolute value and the sign of the otolith mass asymmetry can change many times during the growth of individual fish within the range +/- 20% [D.V. Lychakov, Y.T. Rebane, Otolith mass asymmetry in 18 species of fish and pigeon, J. Grav. Physiol. 11 (3) (2004) 17-34; D.V. Lychakov, Y.T. Rebane, Fish otolith mass asymmetry: morphometry and influence on acoustic functionality, Hear. Res. 201 (2005) 55-69]. This implies that the adverse effects of otolith asymmetry on acoustic and vestibular functionality could change during the lifetime of an individual fish. The aims of the present article were to examine the nature of otolith mass asymmetry fluctuation and to quantify otolith mass asymmetry in a large number of teleost fishes to verify our previous measurements.
   A dimensionless measure of otolith mass asymmetry, chi, was calculated as the difference between the masses of the right and left paired otoliths divided by average otolith mass. Saccular otolith mass asymmetry was studied in 59 Mediterranean teleost species (395 otolith pairs), 14 Black Sea teleost species (42 otolith pairs), red drum (196 otolith pairs) and guppy (30 otolith pairs). Utricular otolith mass asymmetry was studied in carp (103 otolith pairs) and goldfish (45 otolith pairs). In accordance with our previous results the value of chi did not depend on fish size (length or mass), systematic or ecological position of the fish, or otolith growth rate. In the great majority of the fishes studied, the saccular otolith chi was small vertical bar chi vertical bar < 0.05 (or < 5%). Mathematical modeling indicates that values of chi vary among individual fish, but that the value is probably stable during a fish's lifetime. (c) 2006 Published by Elsevier B.V.
C1 Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg 194223, Russia.
   Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
   CSIC, CMIMA, Inst Ciencies Mar, Dept Recursos Marins Renovables, E-08003 Barcelona, Spain.
   Univ Texas, Inst Marine Sci, Dept Marine Sci, Port Aransas, TX 78373 USA.
   Fujita Hlth Univ, Sch Hlth Sci, Toyoake, Aichi 4701192, Japan.
RP Lychakov, DV (reprint author), Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, Thorez Pr 44, St Petersburg 194223, Russia.
EM Lychakov@iephb.ru
RI Lombarte, Antoni/D-3142-2013
CR deJong HAA, 1996, AVIAT SPACE ENVIR MD, V67, P463
   Egorov A.D., 1970, KOSMICHESKAYA BIOL A, V4, P85
   Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103
   Helling K, 2005, J VESTIBUL RES-EQUIL, V15, P59
   Hilbig R, 2002, J Gravit Physiol, V9, pP29
   HOFF GR, 1993, COMP BIOCHEM PHYS A, V106, P209, DOI 10.1016/0300-9629(93)90502-U
   HOFFMAN RB, 1977, AVIAT SPACE ENVIR MD, V48, P712
   Lombarte A, 2006, SCI MAR, V70, P147
   LOMBARTE A, 1995, J MORPHOL, V225, P179, DOI 10.1002/jmor.1052250204
   Lychakov DV, 2000, HEARING RES, V143, P83, DOI 10.1016/S0378-5955(00)00026-5
   LYCHAKOV DV, 1992, J EVOL BIOCHEM PHYS+, V28, P531
   LYCHAKOV DV, 1988, KOSM BIOL AVIAK MED+, V22, P27
   Lychakov DV., 2002, THESIS SECHENOV I ST, V1, P1
   Lychakov DV., 2002, THESIS SECHENOV I ST, V2, P1
   Lychakov D.V., 2004, J GRAV PHYSL, V11, P17
   Lychakov DV, 2005, HEARING RES, V201, P55, DOI 10.1016/j.heares.2004.08.017
   Rahmann H, 2002, J Gravit Physiol, V9, pP19
   Takabayashi Akira, 2003, Biol Sci Space, V17, P293, DOI 10.2187/bss.17.293
   VONBAUMGARTEN RJ, 1982, PHYSIOLOGIST S6, V25, P33
NR 19
TC 9
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 1
EP 11
DI 10.1016/j.heares.2006.03.019
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300001
PM 16859847
ER

PT J
AU MacArthur, CJ
   Hefeneider, SH
   Kempton, JB
   Parrish, SK
   McCoy, SL
   Trune, DR
AF MacArthur, Carol J.
   Hefeneider, Steven H.
   Kempton, J. Beth
   Parrish, Sarah K.
   McCoy, Sharon L.
   Trune, Dennis R.
TI Evaluation of the mouse model for acute otitis media
SO HEARING RESEARCH
LA English
DT Article
DE otitis media; mouse; inflammation; Streptococcus pneumoniae; auditory
   brainstem response; middle ear
ID NONTYPABLE HAEMOPHILUS-INFLUENZAE; ROUND WINDOW MEMBRANE; SENSORINEURAL
   HEARING-LOSS; MIDDLE-EAR; STREPTOCOCCUS-PNEUMONIAE; CHINCHILLA MODEL;
   RAT MODEL; NASOPHARYNGEAL COLONIZATION; CYTOKINE GENES; MURINE MODEL
AB Various animal models have been employed for otitis media research. The mouse has been studied less, in spite of its many advantages. To better understand the suitability of the mouse for studies of otitis media, an evaluation was made of its middle ear inflammatory processes following inoculation with heat-killed Streptococcus pneumoniae (strain 6A), one of the three most common bacteria to cause otitis media in the human. A total of 94 BALB/c mice were injected transtympanically with three concentrations of heat-killed bacteria (10(4), 10(6), and 10(9) organisms per ml) and inflammation evaluated with both histologic examination and auditory brainstem response audiometry. Dose-related measures of the time course of inflammation showed it was maximal at 3 days. PBS-injected control mice also demonstrated some degree of middle ear inflammation. Therefore, inflammation measures from PBS injected mice were used as the threshold above which histologic inflammatory changes would be considered a response to bacteria. These quantitative comparisons of bacterial and PBS inoculations revealed the most significant middle ear measures of inflammation were amount of fluid in the middle ear, tympanic membrane thickness, and number of inflammatory cells. The induction of middle ear inflammation in the mouse demonstrated the applicability of this model for investigations of otitis media. (c) 2006 Elsevier B.V. All rights reserved.
C1 Oregon Hlth Sci Univ, Dept Otolaryngol, Portland, OR 97239 USA.
   Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
   Oregon Hlth Sci Univ, Dept Med, Div Rheumatol, Portland, OR 97239 USA.
   Vet Affairs Med Ctr, Dept Immunol, Portland, OR 97239 USA.
   Targeted Gene Delivery Inc, Portland, OR 97201 USA.
RP MacArthur, CJ (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol, 3181 SW Sam Jackson Pk Rd,PV-01, Portland, OR 97239 USA.
EM macarthc@ohsu.edu
CR Akira S, 2004, NAT REV IMMUNOL, V4, P499, DOI 10.1038/nri1391
   Antonelli PJ, 2003, LARYNGOSCOPE, V113, P1764, DOI 10.1097/00005537-200310000-00019
   BIKHAZI P, 1995, LARYNGOSCOPE, V105, P629, DOI 10.1288/00005537-199506000-00013
   Bluestone CD, 2001, OTITIS MEDIA INFANTS
   CARLSEN BD, 1992, INFECT IMMUN, V60, P2850
   Cureoglu S, 2004, LARYNGOSCOPE, V114, P622, DOI 10.1097/00005537-200404000-00006
   DeMaria TF, 1997, INFECT IMMUN, V65, P4431
   DeMaria TF, 1996, INFECT IMMUN, V64, P5187
   ENGEL F, 1995, INFECT IMMUN, V63, P1305
   Eskola J, 2001, NEW ENGL J MED, V344, P403, DOI 10.1056/NEJM200102083440602
   Goycoolea M V, 1988, Laryngoscope, V98, P1, DOI 10.1288/00005537-198806001-00002
   GOYCOOLEA MV, 1995, ACTA OTO-LARYNGOL, V115, P282, DOI 10.3109/00016489509139310
   Hardisty RE, 2003, JARO, V4, P130, DOI 10.1007/s10162-002-3015-9
   Hebda PA, 2002, LARYNGOSCOPE, V112, P1657, DOI 10.1097/00005537-200209000-00024
   HERMANSSON A, 1988, AM J OTOLARYNG, V9, P97, DOI 10.1016/S0196-0709(88)80013-9
   Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X
   Hunter SE, 1999, OTOLARYNG HEAD NECK, V120, P884, DOI 10.1016/S0194-5998(99)70331-1
   ICHIMIYA I, 1990, ARCH OTOLARYNGOL, V116, P324
   Jewett BS, 1999, OTOLARYNG HEAD NECK, V121, P7, DOI 10.1016/S0194-5998(99)70114-2
   Johnson M, 1997, LARYNGOSCOPE, V107, P1405, DOI 10.1097/00005537-199710000-00020
   KREKORIAN TD, 1991, LARYNGOSCOPE, V101, P648
   KREKORIAN TD, 1990, ACTA OTO-LARYNGOL, V109, P288, DOI 10.3109/00016489009107445
   LIM DJ, 1990, ANN OTO RHINOL LARYN, V99, P33
   Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1
   Long JP, 2003, INFECT IMMUN, V71, P5531, DOI 10.1128/IAI.71.10.5531-5540.2003
   MacArthur CJ, 2006, LARYNGOSCOPE, V116, P1071, DOI 10.1097/01.mlg.0000224527.41288.c4
   McCoy SL, 2005, J IMMUNOL, V174, P3006
   Meek RB, 1999, ANN OTO RHINOL LARYN, V108, P31
   Melhus A, 2003, APMIS, V111, P989, DOI 10.1034/j.1600-0463.2003.1111012.x
   Melhus A, 2000, INFECT IMMUN, V68, P4024, DOI 10.1128/IAI.68.7.4024-4031.2000
   Melhus A, 2001, J ANTIMICROB CHEMOTH, V48, P397, DOI 10.1093/jac/48.3.397
   Mitchell CR, 1997, OTOLARYNG HEAD NECK, V117, P459, DOI 10.1016/S0194-5998(97)70014-7
   Mitchell CR, 1999, AUDIOL NEURO-OTOL, V4, P80, DOI 10.1159/000013824
   NAGUIB MB, 1994, LARYNGOSCOPE, V104, P1003
   PAPARELLA MM, 1984, ANN OTO RHINOL LARYN, V93, P623
   Ryding M, 2002, ANN OTO RHINOL LARYN, V111, P261
   Sabirov A, 2001, INFECT IMMUN, V69, P2964, DOI 10.1128/IAI.69.5.2964-2971.2001
   Sato K, 1999, INFECT IMMUN, V67, P1943
   SCHACHERN PA, 1992, ARCH OTOLARYNGOL, V118, P53
   Tong HH, 2000, INFECT IMMUN, V68, P4593, DOI 10.1128/IAI.68.8.4593-4597.2000
   Tong HH, 2000, INFECT IMMUN, V68, P921, DOI 10.1128/IAI.68.2.921-924.2000
   Tonnaer ELGM, 2003, LARYNGOSCOPE, V113, P322, DOI 10.1097/00005537-200302000-00023
   Trune DR, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P505
   Watanabe K, 1997, ANN OTO RHINOL LARYN, V106, P394
   Wurfel MM, 2005, J IMMUNOL, V175, P2570
   Yoon YJ, 2002, J KOREAN MED SCI, V17, P230
NR 46
TC 24
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 12
EP 23
DI 10.1016/j.heares.2006.05.012
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300002
PM 16887307
ER

PT J
AU Lineton, B
   Thornton, ARD
   Baker, VJ
AF Lineton, B.
   Thornton, A. R. D.
   Baker, V. J.
TI An investigation into the relationship between input-output
   nonlinearities and rate-induced nonlinearities of click-evoked
   otoacoustic emissions recorded using maximum length sequences
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emissions; click evoked; maximum length sequences;
   rate-suppression
ID STIMULATED ACOUSTIC EMISSIONS; BRAIN-STEM RESPONSES; IPSILATERAL
   SUPPRESSION; TEMPORAL INTERACTIONS; QUALITY ESTIMATION; LEVEL; EARS
AB The maximum length sequence (MLS) technique allows otoacoustic emissions (OAEs) to be recorded using clicks presented at very high presentation rates. It has previously been found that increasing the click presentation rate leads to increasing suppression (termed "rate-suppression") of the MLS evoked OAE (Hine, J.E., Thornton, A.R.D., 1997. Transient evoked otoacoustic emissions recorded using maximum length sequences as a function of stimulus rate and level. Ear Hear. 18, 121-128). It has been suggested that the source of rate-suppression arises from the same nonlinear processes that give rise to the well-known nonlinear growth of OAEs. Based on this assumption, a simple model of rate-suppression (Kapadia, S., Lutman, M.E., 2001. Static input-output nonlinearity as the source of nonlinear effects in maximum length sequence click-evoked OAEs. Br. J. Audiol. 35, 103-112) predicts that both input-output (I/O) nonlinearity and rate-suppression can be unified by characterising the stimulus in terms of its acoustic power which, at high rates, is proportional to the click presentation rate. The objective of this study was to test this simple model by recording MLS OAEs from a group of normally hearing adults over a range of stimulus rates from 40 to 5000 clicks/s, and of stimulus levels from 45 to 70 dB peSPL. The results are broadly in agreement with the predictions from the model, though there appears to be some tendency for the model to slightly overestimate the degree of rate-suppression for a given degree of I/O nonlinearity. It is also suggested that the model may break down more significantly in the presence of spontaneous OAEs. (c) 2006 Elsevier B.V. All rights reserved.
C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England.
   Univ Southampton, Sch Med, Div Clin Neurosci, Southampton SO16 7PX, Hants, England.
RP Lineton, B (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
EM bl@isvr.soton.ac.uk
CR COOPER HE, 2006, THESIS U SOUTHAMPTON
   Davies W.D.T., 1966, Control, V10
   ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059
   GOBSCH H, 1993, HEARING RES, V69, P176, DOI 10.1016/0378-5955(93)90105-A
   Harte JM, 2005, J ACOUST SOC AM, V117, P2989, DOI 10.1121/1.1893285
   Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4
   Hine JE, 1997, HEARING RES, V108, P28, DOI 10.1016/S0378-5955(97)00036-1
   Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004
   Johannesen PT, 1998, SCAND AUDIOL, V27, P37, DOI 10.1080/010503998419687
   Kapadia S, 2001, BRIT J AUDIOL, V35, P103
   Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7
   Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9
   KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KULAWIEC JT, 1995, EAR HEARING, V16, P515
   LINAGRANADE G, 1997, HEARING RES, V107, P92
   LUTMAN ME, 1990, SCAND AUDIOL, V19, P3, DOI 10.3109/01050399009070745
   Maat B, 2000, J ACOUST SOC AM, V108, P2272, DOI 10.1121/1.1312357
   NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542
   NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750
   Patuzzi R., 1996, COCHLEA, P186
   PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001
   PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   RASSMUSSEN AN, 1998, BRIT J AUDIOL, V32, P355
   RIFE DD, 1989, J AUDIO ENG SOC, V37, P419
   RUTTEN WLC, 1980, HEARING RES, V2, P263, DOI 10.1016/0378-5955(80)90062-3
   Ryan S, 1996, HEARING RES, V94, P140, DOI 10.1016/0378-5955(96)00021-4
   SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717
   Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834
   Talmadge C., 1993, BIOPHYSICS HAIR CELL, P25
   TAVARTKILADZE GA, 1997, OTOACOUSTIC EMISSION, P110
   TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568
   THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900
   Thornton ARD, 1997, BRIT J AUDIOL, V31, P493, DOI 10.3109/03005364000000043
   THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519
   THORNTON ARD, 1994, BRIT J AUDIOL, V28, P227, DOI 10.3109/03005369409086572
   THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512
   THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090
   ZWICKER E, 1983, HEARING RES, V11, P359, DOI 10.1016/0378-5955(83)90067-9
NR 40
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 24
EP 35
DI 10.1016/j.heares.2006.05.005
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300003
PM 16839721
ER

PT J
AU Micheyl, C
   Delhommeau, K
   Perrot, X
   Oxenham, AJ
AF Micheyl, Christophe
   Delhommeau, Karine
   Perrot, Xavier
   Oxenham, Andrew J.
TI Influence of musical and psychoacoustical training on pitch
   discrimination
SO HEARING RESEARCH
LA English
DT Article
DE musicians; pitch; frequency discrimination; auditory training;
   perceptual learning
ID AUDITORY FREQUENCY DISCRIMINATION; EAR DIFFERENCES; NON-MUSICIANS;
   DOMINANCE; NONMUSICIANS; SPECIFICITY; PERCEPTION; TASK
AB This study compared the influence of musical and psych oacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2 h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8 h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance. (c) 2006 Elsevier B.V. All rights reserved.
C1 MIT, Elect Res Lab, Cambridge, MA 02139 USA.
   CNRS, UMR 7593, Paris, France.
   Montreal Neurol Inst, Neuropsychol Dept, Montreal, PQ, Canada.
   Univ Lyon 1, CNRS, UMR 5020, F-69365 Lyon, France.
   Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA.
RP Micheyl, C (reprint author), MIT, Elect Res Lab, 50 Vassar St,Bldg 36-758, Cambridge, MA 02139 USA.
EM cmicheyl@mit.edu
CR Amitay S, 2005, PERCEPT PSYCHOPHYS, V67, P691, DOI 10.3758/BF03193525
   Roth Daphne Ari-Even, 2003, Journal of Basic and Clinical Physiology and Pharmacology, V14, P137
   BEVER TG, 1974, SCIENCE, V185, P537, DOI 10.1126/science.185.4150.537
   CAMPBELL RA, 1963, J ACOUST SOC AM, V35, P1511, DOI 10.1121/1.1918738
   DELHOMMEAU K, 2005, JARO-J ASSOC RES OTO, V6, P1
   Delhommeau K, 2002, PERCEPT PSYCHOPHYS, V64, P426, DOI 10.3758/BF03194715
   DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034
   Demany L, 2002, J ACOUST SOC AM, V111, P1377, DOI 10.1121/1.1445791
   DIVENYI PL, 1977, J ACOUST SOC AM, V62, P624, DOI 10.1121/1.381564
   GREEN DM, 1966, SIGNAL DETECTION THE
   Grimault N, 2003, HEARING RES, V184, P41, DOI 10.1016/S0378-5955(03)00214-4
   Grimault N, 2002, PERCEPT PSYCHOPHYS, V64, P189, DOI 10.3758/BF03195785
   Irvine DRF, 2000, J ACOUST SOC AM, V108, P2964, DOI 10.1121/1.1323465
   JOHNSON PR, 1977, CORTEX, V13, P385
   Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155
   KIMURA D, 1964, Q J EXP PSYCHOL, V16, P355, DOI 10.1080/17470216408416391
   Kishon-Rabin Liat, 2001, Journal of Basic and Clinical Physiology and Pharmacology, V12, P125
   Roth Daphne Ari-Even, 2004, Journal of Basic and Clinical Physiology and Pharmacology, V15, P15
   LOCKHEAD GR, 1981, J ACOUST SOC AM, V70, P387, DOI 10.1121/1.386773
   MESSERLI P, 1995, NEUROPSYCHOLOGIA, V33, P395, DOI 10.1016/0028-3932(94)00123-7
   MIYAZAKI K, 1989, MUSIC PERCEPT, V7, P1
   MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640
   OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
   PERETZ I, 1992, NEUROPSYCHOLOGIA, V30, P227
   PERETZ I, 1983, BRAIN COGNITION, V2, P313, DOI 10.1016/0278-2626(83)90016-7
   SIDTIS JJ, 1981, NEUROPSYCHOLOGIA, V19, P103, DOI 10.1016/0028-3932(81)90050-6
   SIDTIS JJ, 1980, NEUROPSYCHOLOGIA, V18, P321, DOI 10.1016/0028-3932(80)90127-X
   SPIEGEL MF, 1984, J ACOUST SOC AM, V76, P1690, DOI 10.1121/1.391605
   WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251
   WRIGHT BA, 1995, AUDITORY SIGNAL PROC
   ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767
   ZATORRE RJ, 1991, BRAIN, V114, P2403, DOI 10.1093/brain/114.6.2403
NR 32
TC 100
Z9 102
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 36
EP 47
DI 10.1016/j.heares.2006.05.004
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300004
PM 16839723
ER

PT J
AU Dammeijer, PFM
   van Dijk, P
   Manni, JJ
   van Mameren, H
AF Dammeijer, Patrick F. M.
   van Dijk, Paul
   Manni, Johannes J.
   van Mameren, Henk
TI Stapedius muscle fiber characterization during postnatal development in
   the rat
SO HEARING RESEARCH
LA English
DT Article
DE stapedius; myosin ATPase lability; myosin heavy chain; muscle
   development; rat
ID MYOSIN HEAVY-CHAIN; SKELETAL-MUSCLE; SOUND-TRANSMISSION; MASSETER
   MUSCLE; REFLEX; ISOFORMS; ATPASE; EXPRESSION; IDENTIFICATION;
   TRANSITIONS
AB The stapedius muscle (SM) is reported to prevent cochlear damage by noise. Functional demands are then the ability of fast contraction with long endurance. At the end of the third postnatal week, the middle ear of the rat is completely pneumatized and according to electrophysiological data, the auditory function starts to match the adult.
   We investigated the developmental changes in myosin composition of SM fibres using consecutive complete SM cross-sections (taken from rats on post natal day (PND) 7, 14, 16, 21, 28, 42 and 84) which were processed by enzymehistochemistry to determine acid/alkali lability of myofibrillar adenosine triphosphatase (mATPase) and by immunohistochemistry using myosin heavy chain (MHC) antibodies (mAb). Fibres were assigned to mATPase type I, IIA, IIB, IIX or `Miscellaneous' categories. Per mATPase category, the fibres were attributed to groups with specific MHC isoform compositions. Neonatal MHC expression could not be documented with the mAb used. However, embryonal (Emb) MHC was expressed at PND 7, very little at PND 14; at later PND fibres did not show Emb MHC. In general, the mATPase-based classification did not show large alterations after PND 21. Expression of MHC IIB, which was present in almost 50% of the fibres at PND 7 and 14, diminished to 3% at PND 84. A decrease in number of fibres expressing more than one MHC isoform was found. These results show that the SM is a precociously developing muscle compared to limb muscles and even to the diaphragm. Moreover, it is shown that the expression of the adult MHC isoform phenotype coincides with the onset of auditory function in the third postnatal week. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Maastricht, Dept Anat Embryol, NL-6200 MD Maastricht, Netherlands.
   Univ Hosp Maastricht, Dept Otorhinolaryngol & Head & Neck Surg, NL-6202 AZ Maastricht, Netherlands.
RP Dammeijer, PFM (reprint author), Univ Maastricht, Dept Anat Embryol, POB 616, NL-6200 MD Maastricht, Netherlands.
EM pdammeijer@home.nl; p.van-dijk@ae.unimaas.nl; jman@skno.azm.nl;
   h.vanmameren@ae.unimaas.nl
CR ADAMS GR, 1999, AM J PHYSIOL, V276, P954
   Agbulut O, 2003, BIOL CELL, V95, P399, DOI 10.1016/S0248-4900(03)00087-X
   BORG E, 1984, ACOUSTIC REFLEX BASI, P50
   BORG E, 1975, ACTA OTO-LARYNGOL, V79, P325, DOI 10.3109/00016487509124694
   BREDMAN JJ, 1991, HISTOCHEM J, V23, P160, DOI 10.1007/BF01046587
   BREDMAN JJ, 1992, HISTOCHEM J, V24, P260, DOI 10.1007/BF01046840
   BROOKE MH, 1970, ARCH NEUROL-CHICAGO, V23, P369
   BUTLERBROWNE GS, 1984, DEV BIOL, V102, P324, DOI 10.1016/0012-1606(84)90197-0
   DALBIS A, 1989, EUR J BIOCHEM, V183, P583, DOI 10.1111/j.1432-1033.1989.tb21087.x
   Dammeijer PFM, 2000, HEARING RES, V141, P169, DOI 10.1016/S0378-5955(99)00220-8
   Di Maso NA, 2000, AM J PHYSIOL-REG I, V278, pR1099
   FLETCHER JL, 1960, J ACOUST SOC AM, V32, P401, DOI 10.1121/1.1908079
   GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F
   Geiger PC, 2001, J APPL PHYSIOL, V90, P380
   GORZA L, 1990, J HISTOCHEM CYTOCHEM, V38, P257
   GUTH L, 1970, EXP NEUROL, V28, P365, DOI 10.1016/0014-4886(70)90244-X
   Hoh Joseph F. Y., 1992, Current Opinion in Rheumatology, V4, P801
   JOHNSON BD, 1994, J APPL PHYSIOL, V77, P481
   Lucas CA, 2000, BIOCHEM BIOPH RES CO, V272, P303, DOI 10.1006/bbrc.2000.2768
   MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996
   MOORMAN AFM, 1984, CELL DIFFER DEV, V14, P113, DOI 10.1016/0045-6039(84)90036-8
   OGILVIE RW, 1990, STAIN TECHNOL, V65, P231
   ONO J, 1980, HNO, V28, P104
   Pang XD, 1997, J ACOUST SOC AM, V102, P3576, DOI 10.1121/1.420399
   PEREIRA JAAS, 1995, HISTOCHEM J, V27, P715
   Perie S, 2000, ANN OTO RHINOL LARYN, V109, P216
   Pette D, 2000, MICROSC RES TECHNIQ, V50, P500, DOI 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.3.CO;2-Z
   Pilz PKD, 1997, HEARING RES, V105, P171, DOI 10.1016/S0378-5955(96)00206-7
   Sant'ana Pereira J A, 1995, J Muscle Res Cell Motil, V16, P21
   SCHIAFFINO G, 1990, DYNAMIC STATE MUSCLE, P329
   Schiaffino S, 1996, PHYSIOL REV, V76, P371
   SCHIAFFINO S, 1989, J MUSCLE RES CELL M, V10, P197, DOI 10.1007/BF01739810
   STARON RS, 1993, HISTOCHEMISTRY, V100, P149, DOI 10.1007/BF00572901
   Usami A, 2003, ANAT HISTOL EMBRYOL, V32, P244, DOI 10.1046/j.1439-0264.2003.00481.x
   VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S
   WHALEN RG, 1981, NATURE, V292, P805, DOI 10.1038/292805a0
   WIECZOREK DF, 1985, J CELL BIOL, V101, P618, DOI 10.1083/jcb.101.2.618
   WORMALD PJ, 1995, CLIN OTOLARYNGOL, V20, P59, DOI 10.1111/j.1365-2273.1995.tb00013.x
   ZAKRISSON JE, 1975, ACTA OTO-LARYNGOL, V79, P1, DOI 10.3109/00016487509124648
NR 39
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 48
EP 55
DI 10.1016/j.heares.2006.05.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300005
PM 16839722
ER

PT J
AU Thornton, ARD
   Lineton, B
   Baker, VJ
   Slaven, A
AF Thornton, A. R. D.
   Lineton, B.
   Baker, V. J.
   Slaven, A.
TI Nonlinear properties of otoacoustic emissions in normal and impaired
   hearing
SO HEARING RESEARCH
LA English
DT Article
DE Nonlinear systems; maximum length sequences; cochlear amplifier;
   otoacoustic emissions; Volterra kernels; cochlear pathology
ID MAXIMUM LENGTH SEQUENCES; SUPPRESSION; HUMANS; CLICKS; LEVEL
AB Click-evoked otoacoustic emissions (CEOAEs) exhibit nonlinearities in amplitude and time domains. The first objective of this study was to investigate whether there is any correlation between the temporal and amplitude nonlinearities of CEOAEs in normals. Additionally there is evidence that pathology affects the normal cochlear nonlinearity. The second objective was to investigate whether pathology affects the temporal nonlinear components.
   Conventional and maximum length sequence (MLS) CEOAEs were recorded in normal subjects and in patients with mild hearing loss. The slope of the input-output (I/O) function of the conventional CEOAE measured the amplitude nonlinearity. Two measures of temporal nonlinearity were the magnitude of the suppression that occurs with increase in stimulus rate and the amplitudes of the second and third order temporal interaction components (Volterra slices).
   The amplitude nonlinearity is well correlated with both the magnitude of the rate suppression and the amplitudes of the Volterra slices. The `linear' CEOAE amplitude showed no differences between the normal and patient groups but the differences in the Volterra slices were substantial. This suggests that the first sign of damage to the cochlea is that the system becomes more linear. Hence the Volterra slices may provide a sensitive measure of cochlear damage. (c) 2006 Elsevier B.V. All rights reserved.
C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton Sect, Southampton SO14 0YG, Hants, England.
   Univ Southampton, Sch Med, Dept Clin Neurosci, Southampton SO16 7PX, Hants, England.
RP Thornton, ARD (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton Sect, Mailpoint OAU, Southampton SO14 0YG, Hants, England.
EM ardt@soton.ac.uk
CR Arnold DJ, 1999, ARCH OTOLARYNGOL, V125, P215
   BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453
   DEBOER J, 2004, COMMUNICATION
   ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059
   GRANDORI F, 1995, ADV OTOACOUSTIC EMIS, V2, P48
   Hall AJ, 1999, AUDIOLOGY, V38, P277
   Hine JE, 2002, HEARING RES, V165, P128, DOI 10.1016/S0378-5955(02)00295-2
   Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004
   Kapadia S, 2001, BRIT J AUDIOL, V35, P103
   Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9
   KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3
   KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
   Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34
   KEMP DT, 1990, EAR HEARING, V11, P93
   Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956
   Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108
   O-Uchi T, 1994, Acta Otolaryngol Suppl, V514, P89
   PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001
   PRIEVE BA, 1995, EAR HEARING, V16, P521
   Rasmussen AN, 1998, BRIT J AUDIOL, V32, P355, DOI 10.3109/03005364000000087
   Ryan S, 1996, HEARING RES, V94, P140, DOI 10.1016/0378-5955(96)00021-4
   Slaven A, 2003, HEARING RES, V179, P113, DOI 10.1016/S0378-5955(03)00101-1
   STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351
   SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1
   TAVARTKILADZE GA, 1997, OTOACOUSTIC EMISSION, P110
   THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900
   Thornton ARD, 1997, BRIT J AUDIOL, V31, P493, DOI 10.3109/03005364000000043
   Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9
   THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090
   YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M
NR 30
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 56
EP 65
DI 10.1016/j.heares.2006.05.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300006
PM 16839724
ER

PT J
AU Lee, JH
   Heo, JH
   Chang, SO
   Kim, CS
   Oh, SH
AF Lee, Jun Ho
   Heo, Jeong-Hwa
   Chang, Sun O.
   Kim, Chong-Sun
   Oh, Seung-Ha
TI Reactive blue 2, an antagonist of rat P2Y(4), increases K+ secretion in
   rat cochlea strial marginal cells
SO HEARING RESEARCH
LA English
DT Article
DE voltage-sensitive vibrating probe; strial marginal cell; cochlea; rat;
   P2Y(4); reactive blue
ID P2X(2) RECEPTOR SUBUNIT; ION-CHANNEL FUNCTION; I-SK CHANNEL; INNER-EAR;
   APICAL MEMBRANE; AUDITORY NEUROTRANSMISSION; ISK/KVLQT1 CHANNELS; SOUND
   TRANSDUCTION; GUINEA-PIG; VASCULARIS
AB Extracellular ATP decreases K+ secretion in strial marginal cells via apical P2Y(4) receptors. We investigated the effect of reactive blue 2 (RB-2), an antagonist of rat P2Y(4), on rat strial marginal cells using a voltage-sensitive vibrating probe. The application of RB-2 increased K+ secretion in a dose-dependent manner, and this increase was characterized as a peak followed by a partial relaxation to a steady-state. Moreover, this response was similar to that caused by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Suramin had no similar effect, except at high concentration. Thus, we tested the effects of these chemicals on P2Y(4) receptors in strial marginal cells. Both RB-2 and DIDS had antagonistic activities at P2Y(4), and the antagonist potency at P2Y(4) paralleled the potency of K+ secretion. Interestingly, 2'- and 3'-O-(4-benzoyl-benzoyl)adenosine 5'-triphosphate (BzATP) exhibited an agonistic effect at P2Y(4) receptor, which was blocked by RB-2, but not by pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS). Based on these results, we speculate that direct and/or indirect inhibitory mechanisms between P2Y(4) and KENQ1/KCNEI K+ channels exist in strial marginal cell. (c) 2006 Elsevier B.V. All rights reserved.
C1 Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, Seoul 110744, South Korea.
   Seoul Natl Univ, Bundang Hosp, Dept Otolaryngol Head & Neck Surg, Coll Med, Songnam 463707, Kunggi Do, South Korea.
RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, 28 Yeongon Dong, Seoul 110744, South Korea.
EM junlee@snu.ac.kr; amaranthh@paran.com; suno@snu.ac.kr;
   chongkim@plaza.snu.ac.kr; shaoh@snu.ac.kr
RI Oh, Seung Ha/J-5540-2012
CR Boeynaems JM, 2005, SEMIN THROMB HEMOST, V31, P139, DOI 10.1055/s-2005-869519
   Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5
   Glanzel M, 2003, EUR J MED CHEM, V38, P303, DOI 10.1016/S0223-5234(02)01449-6
   Glanzel M, 2005, EUR J MED CHEM, V40, P1262, DOI 10.1016/j.ejmech.205.07.007
   Housley GD, 2002, AUDIOL NEURO-OTOL, V7, P55, DOI 10.1159/000046865
   Housley GD, 1999, J NEUROSCI, V19, P8377
   Housley GD, 1998, J COMP NEUROL, V393, P403
   Khakh BS, 2001, PHARMACOL REV, V53, P107
   Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1
   Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657
   Lee SY, 2003, MOL PHARMACOL, V63, P878, DOI 10.1124/mol.63.4.878
   Lee SY, 2003, CELL BIOCHEM BIOPHYS, V39, P75, DOI 10.1385/CBB:39:1:75
   Marcus DC, 2001, AM J PHYSIOL-CELL PH, V281, pC282
   Marcus Daniel C., 1996, Keio Journal of Medicine, V45, P301
   Marcus Daniel C, 2005, Cell Commun Signal, V3, P13, DOI 10.1186/1478-811X-3-13
   MARCUS DC, 1994, BIOPHYS J, V66, P1939
   Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9
   Morse DM, 2001, AM J PHYSIOL-CELL PH, V280, P1485
   Ralevic V, 1998, PHARMACOL REV, V50, P413
   Sage CL, 2002, J MEMBRANE BIOL, V185, P103, DOI 10.1007/s00232-001-0116-z
   Salt AN, 2001, ANN NY ACAD SCI, V942, P306
   SHEN Z, 1995, J MEMBRANE BIOL, V146, P283
   Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215
   Shen ZJ, 1998, HEARING RES, V123, P157, DOI 10.1016/S0378-5955(98)00110-5
   SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4
   Sunose H, 1997, HEARING RES, V114, P107, DOI 10.1016/S0378-5955(97)00152-4
   TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P
   Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X
   Wangemann P, 1996, AUDIT NEUROSCI, V2, P187
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   Wangemann P, 2001, J MEMBRANE BIOL, V182, P171, DOI 10.1007/s00232-001-0042-0
   WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1
   Wildman SS, 2003, BRIT J PHARMACOL, V140, P1177, DOI 10.1038/sj.bjp.0705544
NR 33
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 66
EP 73
DI 10.1016/j.heares.2006.05.011
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300007
PM 16839719
ER

PT J
AU Jin, Z
   Mannstrom, P
   Skjonsberg, A
   Jarlebark, L
   Ulfendahl, M
AF Jin, Zhe
   Mannstrom, Paula
   Skjonsberg, Asa
   Jarlebark, Leif
   Ulfendahl, Mats
TI Auditory function and cochlear morphology in the German waltzing guinea
   pig
SO HEARING RESEARCH
LA English
DT Article
DE deafness; inner ear; melanocytes; phenotype; recessive genes; stria
   vascularis
ID MYOSIN-VIIA GENE; STRIA VASCULARIS; INNER-EAR; DEAFNESS; STRAIN; MOUSE;
   HEREDITY; MUTATION; HEARING; TRAUMA
AB The German waltzing guinea pig is a new strain of animals with a recessively inherited inner ear defect resulting in deafness and severe vestibular dysfunction. Measurements of auditory brainstem responses (ABRs) demonstrated that the homozygotes (gw/gw) are deaf while the heterozygotes (gw/+) have normal hearing. In the gw/gw cochlea, a collapse of Reissner's membrane leads to the absence of scala media. Melanin pigment accumulation was clearly observed in the gw/gw stria vascularis, and both the height and width of stria vascularis were significantly reduced. Ultrastructural observations further detailed the disorganization of stria vascularis in the gw/gw animals: marginal cells lacked basolateral infoldings; intermediate cells (melanocytes) were scarce and degenerated; and basal cells were difficult to identify. The level of degeneration of the organ of Corti varied between individual gw/gw animals. The density of spiral ganglion neurons was significantly decreased in old (1-2 years of age) gw/gw animals. In contrast, no pathological changes were observed in the cochleae of gw/+ animals. Our data suggest that the degeneration originates in the stria vascularis (most likely in the melanocytes), and that this is the primary cause for inner ear defects in the German waltzing guinea pig. Here, we describe the auditory function and cochlear morphology in this spontaneously mutated guinea pig strain. (c) 2006 Elsevier B.V. All rights reserved.
C1 Karolinska Inst, Ctr Hearing & Commun Res, Dept Clin Neurosci, SE-17176 Stockholm, Sweden.
   Stockholm Univ, Karolinska Hosp, Dept Otolaryngol, SE-17176 Stockholm, Sweden.
RP Ulfendahl, M (reprint author), Stockholm Univ, Karolinska Hosp, Dept Clin Neurosci, Ctr Hearing & Commun Res,Karolinska Inst, Bldg M1-02, SE-17176 Stockholm, Sweden.
EM zhe.jin@ki.se; paula.mannstrom@ki.se; asa.skjonsberg@ki.se;
   leif.jarlebark@ki.se; mats.ulfendahl@ki.se
RI Jin, Zhe/C-5150-2008
CR CABLE J, 1993, PIGM CELL RES, V6, P215, DOI 10.1111/j.1600-0749.1993.tb00605.x
   CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   ERNSTSON S, 1970, ACTA OTO-LARYNGOL, V69, P358, DOI 10.3109/00016487009123377
   ERNSTSON S, 1971, ACTA OTO-LARYNGOL, V71, P469, DOI 10.3109/00016487109125391
   ERNSTON S, 1971, ACTA OTO-LARYNGOL, V72, P303, DOI 10.3109/00016487109122487
   ERNSTSON S, 1969, ACTA OTO-LARYNGOL, V67, P521, DOI 10.3109/00016486909125480
   Ernstson S, 1972, Acta Otolaryngol Suppl, V297, P1
   GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0
   GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x
   Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010
   Heid S, 1998, HEARING RES, V115, P101, DOI 10.1016/S0378-5955(97)00182-2
   HORNER KC, 1987, HEARING RES, V26, P327, DOI 10.1016/0378-5955(87)90068-2
   Hoshino T, 2000, HEARING RES, V140, P145, DOI 10.1016/S0378-5955(99)00192-6
   IBSEN LH, 1929, ANAT REC, V44, P294
   Linthicum FH, 2001, OTOL NEUROTOL, V22, P708, DOI 10.1097/00129492-200109000-00027
   Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188
   Liu XZ, 1997, NAT GENET, V17, P268, DOI 10.1038/ng1197-268
   LURIE M. H., 1941, ANN OTOL RHINOL AND LARYNGOL, V50, P113
   LURIE MH, 1939, LARYNGOSCOPE, V49, P558
   Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1
   MAIR IWS, 1976, ARCH OTO-RHINO-LARYN, V212, P1, DOI 10.1007/BF00456358
   PAPARELLA MM, 1991, OTOLARYNGOLOGY, V2, P1579
   REARDON W, 1992, J MED GENET, V29, P521, DOI 10.1136/jmg.29.8.521
   Rivas A, 2005, OTOL NEUROTOL, V26, P415, DOI 10.1097/01.mao.0000169764.00798.84
   Rozengurt N, 2003, HEARING RES, V177, P71, DOI 10.1016/S0378-5955(02)00799-2
   Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
   Skjonsberg A, 2005, AUDIOL NEURO-OTOL, V10, P323, DOI 10.1159/000087349
   STEEL KP, 1989, DEVELOPMENT, V107, P453
   TASAKI I, 1959, J NEUROPHYSIOL, V22, P149
   Wangemann P, 2004, BMC MED, V2, DOI 10.1186/1741-7015-2-30
   WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
   Weil D, 1997, NAT GENET, V16, P191, DOI 10.1038/ng0697-191
NR 33
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 74
EP 84
DI 10.1016/j.heares.2006.06.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300008
PM 16870368
ER

PT J
AU Dajani, HR
   Picton, TW
AF Dajani, Hilmi R.
   Picton, Terence W.
TI Human auditory steady-state responses to changes in interaural
   correlation
SO HEARING RESEARCH
LA English
DT Article
DE steady-state responses; binaural hearing; interaural correlation; time
   constants; binaural sluggishness; auditory modeling
ID BINAURAL INTERACTION COMPONENT; HUMAN EVOKED-POTENTIALS; AURAL
   CORRELATION; SOUND-SOURCE; BRAIN-STEM; CORRELATION DISCRIMINATION;
   INFERIOR COLLICULUS; LEVEL DIFFERENCE; TIME DIFFERENCE; PHASE DISPARITY
AB Steady-state responses were evoked by noise stimuli that alternated between two levels of interaural correlation rho at a frequency f(m). With rho alternating between +1 and 0, responses at fm dropped steeply above 4 Hz, but persisted up to 64 Hz. Two time constants of 47 and 4.4 ms with delays of 198 and 36 ms, respectively, were obtained by fitting responses to a transfer function based on symmetric exponential windows. The longer time constant, possibly reflecting cortical integration, is consistent with perceptual binaural "sluggishness". The shorter time constant may reflect running cross-correlation in the high brainstem or primary auditory cortex. Responses at 2f(m) peaked with an amplitude of 848 +/- 479 nV (f(m) = 4 Hz). Investigation of this robust response revealed that: (1) changes in rho and later-alization evoked similar responses, suggesting a common neural origin, (2) response was most dependent on stimulus frequencies below 1000 Hz, but frequencies up to 4000 Hz also contributed, and (3) when rho alternated between [0.2-1] and 0, response amplitude varied linearly with rho, and the physiological response threshold was close to the average behavioral threshold (rho = 0.31). This steady-state response may prove useful in the objective investigation of binaural hearing. (c) 2006 Elsevier B.V. All rights reserved.
C1 Rotman Res Inst Baycrest, Toronto, ON M6A 2E1, Canada.
   Univ Toronto, Toronto, ON M6A 2E1, Canada.
RP Dajani, HR (reprint author), Rotman Res Inst Baycrest, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada.
EM h.dajani@utoronto.ca; tpicton@rotman-baycrest.on.ca
CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607
   Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897
   Akeroyd MA, 2001, J ACOUST SOC AM, V110, P2516, DOI 10.1121/1.1412442
   Babkoff H, 2002, HEARING RES, V165, P117, DOI 10.1016/S0378-5955(02)00292-7
   Bates D, 1988, NONLINEAR REGRESSION
   Bernstein LR, 2001, J ACOUST SOC AM, V109, P1604, DOI 10.1121/1.1354203
   BLAUERT J, 1972, AUDIOLOGY, V11, P265
   Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026
   Bullock TH, 1997, P NATL ACAD SCI USA, V94, P1, DOI 10.1073/pnas.94.1.1
   Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005
   ConeWesson B, 1997, HEARING RES, V106, P163, DOI 10.1016/S0378-5955(97)00016-6
   Culling JF, 2001, J ACOUST SOC AM, V110, P1020, DOI 10.1121/1.1383296
   Culling JF, 1998, J ACOUST SOC AM, V103, P3540, DOI 10.1121/1.423061
   DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391
   DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2
   DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681
   GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821
   GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643
   GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751
   GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326
   GRANTHAM DW, 1979, J ACOUST SOC AM, V65, P1509, DOI 10.1121/1.382915
   Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9
   HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4
   Holube I, 1998, J ACOUST SOC AM, V104, P2412, DOI 10.1121/1.423773
   John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8
   JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
   JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
   Joris PX, 2006, J NEUROSCI, V26, P279, DOI 10.1523/JNEUROSCI.2285-05.2006
   Joris P. X., 1996, Society for Neuroscience Abstracts, V22, P648
   Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
   Kaernbach C, 2004, EXP PSYCHOL, V51, P240, DOI 10.1027/1618-3169.51.4.240
   KILLION MC, 1989, J ACOUST SOC AM, V85, P1775, DOI 10.1121/1.397969
   KILLION MC, 1989, J ACOUST SOC AM, V83, P1688
   KOLLMEIER B, 1990, J ACOUST SOC AM, V87, P1709, DOI 10.1121/1.399419
   Kuwada S, 2006, J NEUROPHYSIOL, V95, P1309, DOI 10.1152/jn.00901.2005
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Mardia K. V., 1972, STAT DIRECTIONAL DAT
   MCEVOY LK, 1990, AUDIOLOGY, V29, P163
   MCEVOY LK, 1991, AUDIOLOGY, V30, P286
   MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z
   MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3
   Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316
   Picton TW, 1985, HUMAN COMMUNICATION, V9, P127
   POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852
   RIEDEL H, 2004, J ACOUST SOC AM, V116, P2599
   ROBINSON PA, 2001, PHYS REV E, V63, P1
   ROSE JE, 1966, J NEUROPHYSIOL, V29, P288
   ROSS B, 2004, NEUROL CLIN NEUROPHY, V18, P1
   Schwarz DWF, 2005, CLIN NEUROPHYSIOL, V116, P658, DOI 10.1016/j.clinph.2004.09.014
   SOVIJARV.AR, 1974, BRAIN RES, V73, P455, DOI 10.1016/0006-8993(74)90669-6
   Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062
   SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245
   Stollman MHP, 1996, BRIT J AUDIOL, V30, P227, DOI 10.3109/03005369609079043
   Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
   Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005
   Trahiotis C, 2005, SOUND SOURCE LOCALIZ
   Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2
   WEISS TF, 1988, HEARING RES, V33, P175, DOI 10.1016/0378-5955(88)90030-5
   Witton C, 2000, J ACOUST SOC AM, V108, P1826, DOI 10.1121/1.1310195
   Wong WYS, 2004, EAR HEARING, V25, P57, DOI 10.1097/01.AUD.0000111257.11898.64
   ZUREK PM, 1992, EAR HEARING, V13, P307, DOI 10.1097/00003446-199210000-00008
NR 66
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 85
EP 100
DI 10.1016/j.heares.2006.06.003
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300009
PM 16870369
ER

PT J
AU Grant, L
   Slapnick, S
   Kennedy, H
   Hackney, C
AF Grant, Lisa
   Slapnick, Susan
   Kennedy, Helen
   Hackney, Carole
TI Ryanodine receptor localisation in the mammalian cochlea: An
   ultrastructural study
SO HEARING RESEARCH
LA English
DT Article
DE hair cells; calcium-induced calcium release; subsurface cisternae;
   synatoplasmic cistern; cochlear efferents; immunogold; hearing
ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; INTRACELLULAR CALCIUM-RELEASE;
   SUBSURFACE CISTERNAE; TRANSMITTER RELEASE; CA2+ STORE; CHANNELS; INNER;
   EXOCYTOSIS; PLASTICITY
AB Calcium-induced calcium release (CICR) in the mammalian cochlea has been suggested to enhance neurotransmitter release from inner hair cells and facilitate the efferent response in outer hair cells. Light microscopic evidence exists for the presence of ryanodine receptors in the organ of Corti but there is so far no information about their ultrastructural localisation. We have therefore used post-embedding immunogold labeling with antibodies that predominantly recognise ryanodine receptor isoforms 1 (RyR1) and 2 (RyR2) to investigate their distribution in rat cochleae. In inner hair cells, the highest levels of labeling were observed over an area of rough endoplasmic reticulum that lies in the cytoplasmic region beneath the nucleus; in outer hair cells, the cytoplasmic region above the nucleus displayed most labeling. Labeling was also associated with the subsurface cisternae adjacent to the lateral membranes of both types of hair cell, with the efferent terminals on the outer hair cells and was observed in adjacent supporting cells. Labeling in outer hair cells was significantly higher than that in inner hair cells or in the supporting cells. Our results support the presence of RyR1 in the cochlea but do not rule out the presence of other isoforms. CICR may be involved in the control of calcium levels in the base of the inner hair cells and supporting cells, and in the cholinergic efferent response and motile behaviour of the outer hair cells. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Keele, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England.
   Univ Wisconsin, Dept Anat, Madison, WI 53706 USA.
   Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA.
   Univ Bristol, Dept Physiol, Bristol BS8 1TD, Avon, England.
RP Hackney, C (reprint author), Univ Keele, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England.
EM lisa.grant@bristol.ac.uk; Slapnick@wise.edu;
   helen.kennedy@bristol.ac.uk; coa38@keele.ac.uk
CR Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3
   Berridge MJ, 2003, NAT REV MOL CELL BIO, V4, P517, DOI 10.1038/nrm1155
   Bobbin RP, 2001, NEUROREPORT, V12, P2923, DOI 10.1097/00001756-200109170-00034
   Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8
   Bouchard R, 2003, PROG NEUROBIOL, V69, P391, DOI 10.1016/S0301-0082(03)00053-4
   Carter AG, 2002, J NEUROSCI, V22, P21
   Dallos P, 1997, J NEUROSCI, V17, P2212
   Emptage NJ, 2001, NEURON, V29, P197, DOI 10.1016/S0896-6273(01)00190-8
   ENDO M, 1970, NATURE, V228, P34, DOI 10.1038/228034a0
   Evans MG, 2000, CELL CALCIUM, V28, P195, DOI 10.1054/ceca.2000.0145
   Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828
   Fill M, 2002, PHYSIOL REV, V82, P893, DOI 10.1152/physrev.00013.2002
   FORGE A, 1993, HEARING RES, V64, P175, DOI 10.1016/0378-5955(93)90003-J
   Frolenkov GI, 2000, J NEUROSCI, V20, P5940
   Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862
   FUCHS PA, 2006, VERTEBRATE HAIR CELL, P249
   FURNESS DN, 1990, EUR ARCH OTO-RHINO-L, V247, P12
   Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796
   Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005
   Hafidi A, 2005, NEUROSCIENCE, V130, P475, DOI 10.1016/j.neuroscience.2004.09.038
   Hall JD, 1997, BIOPHYS J, V73, P1243
   Issa NP, 1996, P NATL ACAD SCI USA, V93, P9527, DOI 10.1073/pnas.93.18.9527
   Kennedy ADM, 2002, BMC HEALTH SERV RES, V2, DOI 10.1186/1472-6963-2-2
   Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267
   Lelli A, 2003, J NEUROSCI, V23, P6894
   Lioudyno M, 2004, J NEUROSCI, V24, P11160, DOI 10.1523/JNEUROSCI.3674-04.2004
   LLANO I, 2000, J NEUROSCI, V23, P6894
   Mammano F, 1999, J NEUROSCI, V19, P6918
   Marcotti W, 2004, J PHYSIOL-LONDON, V557, P613, DOI 10.1113/jphysiol.2003.060137
   Meldolesi J, 1998, TRENDS BIOCHEM SCI, V23, P10, DOI 10.1016/S0968-0004(97)01143-2
   Morton-Jones RT, 2006, NEUROSCIENCE, V137, P275, DOI 10.1016/j.neuroscience.2005.09.011
   Moser T, 2000, P NATL ACAD SCI USA, V97, P883, DOI 10.1073/pnas.97.2.883
   Murugasu E, 1996, AUDIT NEUROSCI, V2, P363
   Narita K, 2000, J GEN PHYSIOL, V115, P519, DOI 10.1085/jgp.115.4.519
   OTTERSEN OP, 1989, ANAT EMBRYOL, V180, P1, DOI 10.1007/BF00321895
   PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4
   Pyott SJ, 2004, J NEUROSCI, V24, P9469, DOI 10.1523/JNEUROSCI.3162-04.2004
   Ricci AJ, 2000, J PHYSIOL-LONDON, V524, P423, DOI 10.1111/j.1469-7793.2000.00423.x
   Rose CR, 2001, NEURON, V31, P519, DOI 10.1016/S0896-6273(01)00402-0
   Sakaguchi N, 1998, J HISTOCHEM CYTOCHEM, V46, P29
   Sorrentino V, 1995, Adv Pharmacol, V33, P67, DOI 10.1016/S1054-3589(08)60666-3
   Spicer SS, 1998, ANAT REC, V251, P97, DOI 10.1002/(SICI)1097-0185(199805)251:1<97::AID-AR15>3.0.CO;2-6
   Sridhar TS, 1997, J NEUROSCI, V17, P428
   Tucker T, 1995, NEURON, V15, P1323, DOI 10.1016/0896-6273(95)90011-X
   Williams AJ, 2002, FRONT BIOSCI, V7, pD1223, DOI 10.2741/williams
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 46
TC 12
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 101
EP 109
DI 10.1016/j.heares.2006.06.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300010
PM 16889917
ER

PT J
AU Zheng, QY
   Yu, H
   Washington, JL
   Kisley, LB
   Kikkawa, YS
   Pawlowski, KS
   Wright, CG
   Alagramam, KN
AF Zheng, Q. Y.
   Yu, H.
   Washington, J. L.
   Kisley, L. B.
   Kikkawa, Y. S.
   Pawlowski, K. S.
   Wright, C. G.
   Alagramam, K. N.
TI A new spontaneous mutation in the mouse protocadherin 15 gene
SO HEARING RESEARCH
LA English
DT Article
DE deafness; cochlear hair cells; Pcdh15; mouse
ID USHER-SYNDROME; HEARING-LOSS; PCDH15; MICE; ADHESION; ALLELES; STRAINS;
   MUTANT; 1F
AB We have characterized a new allele of the protocadherin 15 gene (designated Pcdh15(av-6J)) that arose as a spontaneous, recessive mutation in the C57BL/6J inbred strain at Jackson Laboratory. Analysis revealed an inframe deletion in Pcdh15, which is predicted to result in partial deletion of cadherin domain (domain 9) in Pcdh15. Morphologic study revealed normal to moderately defective cochlear hair cell stereocilia in Pcdh15(av-6J) mutants at postnatal day 2 (P2). Stereocilia abnormalities were consistently present at P5 and P10. Degenerative changes including loss of inner and outer hair cells were seen at P20, with severe sensory cell loss in all cochlear turns occurring by P40. The hair cell phenotype observed in the 6J allele between PO and P20 is the least severe phenotype yet observed in Pcdh15 alleles. However, young Pcdh15(av-6J) mice are unresponsive to auditory stimulation and show circling behavior indicative of vestibular dysfunction. Since these animals show severe functional deficits but have relatively mild stereocilia defects at a young age they may provide an appropriate model to test for a direct role of Pcdh15 in mechanotransduction. (c) 2006 Elsevier B.V. All rights reserved.
C1 Case Western Reserve Univ, Cleveland, OH 44106 USA.
   Jackson Lab, Bar Harbor, ME 04609 USA.
   Univ Texas, SW Med Ctr, Dallas, TX 75390 USA.
RP Alagramam, KN (reprint author), Case Western Reserve Univ, 11100 Euclid Ave, Cleveland, OH 44106 USA.
EM kna3@case.edu
RI Zheng, Qing/C-1731-2012
CR Ahmed ZM, 2003, HUM MOL GENET, V12, P3215, DOI 10.1093/hmg/ddg358
   Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277
   Alagramam KN, 1999, GENETICS, V152, P1691
   Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3
   Alagramam KN, 2001, NAT GENET, V27, P99
   Alagramam KN, 2001, HUM MOL GENET, V10, P1709, DOI 10.1093/hmg/10.16.1709
   Ben-Yosef T, 2003, NEW ENGL J MED, V348, P1664, DOI 10.1056/NEJMoa021502
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Gumbiner BM, 2005, NAT REV MOL CELL BIO, V6, P622, DOI 10.1038/nrm1699
   Hampton LL, 2003, HEARING RES, V180, P67, DOI 10.1016/S0378-5955(03)00107-2
   Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
   Patel SD, 2003, CURR OPIN STRUC BIOL, V13, P690, DOI 10.1016/j.sbi.2003.10.007
   Pawlina G, 2006, J ECON MANAGE STRAT, V15, P1, DOI 10.1111/j.1530-9134.2006.00090.x
   Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1
   Senften M, 2006, J NEUROSCI, V26, P2060, DOI 10.1523/JNEUROSCI.4521-05.2006
   TAYLOR BA, 1994, GENOMICS, V21, P626, DOI 10.1006/geno.1994.1323
   Washington JL, 2005, HEARING RES, V202, P161, DOI 10.1016/j.heares.2004.09.014
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 18
TC 12
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 110
EP 120
DI 10.1016/j.heares.2006.06.010
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300011
PM 16887306
ER

PT J
AU de Boer, J
   Thornton, ARD
AF de Boer, Jessica
   Thornton, A. Roger D.
TI Volterra Slice otoacoustic emissions recorded using maximum length
   sequences from patients with sensorineural hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE evoked otoacoustic emissions; hearing loss; maximum length sequence;
   Volterra series; non-linearity
ID AMINOGLYCOSIDE-INDUCED OTOTOXICITY; ACOUSTIC EMISSIONS; IMPAIRED
   SUBJECTS; NORMALLY HEARING; CLICK; IDENTIFICATION; EARS
AB When normally hearing ears are stimulated with maximum length sequences (MLS) of clicks, a family of non-linear temporal interaction components of otoacoustic emissions (OAEs) can be derived, which have been named Volterra Slice OAEs (VS OAEs). This study investigates the sensitivity of VS OAEs to sensorineural hearing impairment in adults, compared to that of the widely used derived non-linear click evoked OAE (DNL CEOAE). VS OAEs and DNL CEOAEs were obtained from 24 normally hearing and 24 hearing impaired ears using a custom-built MLS system and a Otodynamics `IL088' OAE Analyzer, respectively. The results show that, based on waveform reproducibility, VS OAEs are as successful as DNL CEOAEs at separating normal from impaired ears at the audiometric frequencies of 1 and 2 kHz, where a strong correlation is found between the amplitudes of the two OAE types. At 4 kHz however, VS OAEs are a significantly better indicator of hearing loss than DNL CEOAEs. This difference at 4 kHz appears to be due to the lack of stimulus artefact contamination of VS OAEs in the early, high frequency portion of the response. The findings suggest that VS OAEs may provide a better diagnostic and monitoring tool for hearing loss at high frequencies than the conventional DNL CEOAE. (c) 2006 Published by Elsevier B.V.
C1 Royal S Hants Hosp, Southamapton Outstn, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England.
RP de Boer, J (reprint author), Royal S Hants Hosp, Southamapton Outstn, MRC, Inst Hearing Res, Brintons Terrace Mailpoint OAU, Southampton SO14 0YG, Hants, England.
EM jdbl@soton.ac.uk
CR Attias J, 2001, NOISE HEALTH, V3, P19
   BONFILS P, 1989, ANN OTO RHINOL LARYN, V98, P326
   BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405
   Davis A, 2003, INT J PEDIATR OTORHI, V67, pS193, DOI 10.1016/j.ijporl.2003.08.024
   GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348
   Hall AJ, 1999, AUDIOLOGY, V38, P277
   Harris FP, 2002, OTOACOUSTIC EMISSION, P213
   Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4
   Hine JE, 2005, HEARING RES, V203, P122, DOI 10.1016/j.heares.2004.11.019
   Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004
   HOTZ MA, 1994, LARYNGOSCOPE, V104, P1130
   Hussain DM, 1998, EAR HEARING, V19, P434, DOI 10.1097/00003446-199812000-00005
   Kapadia S, 2001, BRIT J AUDIOL, V35, P103
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KEMP DT, 1990, EAR HEARING, V11, P93
   LUTMAN ME, 1993, BRIT J AUDIOL, V27, P103, DOI 10.3109/03005369309077899
   MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M
   Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794
   PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715
   PROBST R, 1993, PROG BRAIN RES, V97, P91
   Punnett A, 2004, PEDIATR BLOOD CANCER, V42, P598, DOI 10.1002/pbc.20036
   Schetzen M., 1989, VOLTERRA WIENER THEO
   Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834
   Slaven A, 2003, HEARING RES, V179, P113, DOI 10.1016/S0378-5955(03)00101-1
   Sliwinska-Kowalska M, 2001, NOISE HEALTH, V3, P75
   Stavroulaki P, 2002, ARCH OTOLARYNGOL, V128, P150
   Thompson DC, 2001, JAMA-J AM MED ASSOC, V286, P2000, DOI 10.1001/jama.286.16.2000
   THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900
   Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9
   THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512
   THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090
   ZAKZANIS KK, 2000, ARCH CLIN NEUROL, V16, P653
NR 32
TC 2
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2006
VL 219
IS 1-2
BP 121
EP 136
DI 10.1016/j.heares.2006.06.009
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 085YW
UT WOS:000240641300012
PM 16887305
ER

PT J
AU Brunso-Bechtold, JK
   Evans, SD
   Henkel, CK
AF Brunso-Bechtold, Judy K.
   Evans, Stephanie D.
   Henkel, Craig K.
TI Synaptogenesis in the inferior colliculus of the pre-hearing postnatal
   ferret
SO HEARING RESEARCH
LA English
DT Article
DE postnatal development; electron microscopy; auditory midbrain
ID RAT; NUCLEUS; FEATURES
AB Although intrinsic organization in the inferior colliculus (IC) has been surveyed in a variety of species, current knowledge of synaptogenesis within the mammalian inferior colliculus is limited. The present study surveyed the ultrastructure of the central nucleus of the inferior colliculus in postnatal day (P) P4, P7, P14, and P28 ferrets, prior to the onset of hearing at the end of the first postnatal month with the goal of beginning to characterize the time course of synapse formation in relation to the development of afferent projection patterns within the IC. Results suggest that initial synaptogenesis has occurred in the IC by P4 and continues during the period when maturation of the distribution of axons from brainstem auditory nuclei is taking place. (c) 2006 Elsevier B.V. All rights reserved.
C1 Wake Forest Univ, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA.
   Wake Forest Univ, Neurosci Program, Winston Salem, NC 27157 USA.
RP Brunso-Bechtold, JK (reprint author), Wake Forest Univ, Dept Neurobiol & Anat, Med Ctr Blvd, Winston Salem, NC 27157 USA.
EM jbrunso@wfubmc.edu
CR Aitkin L, 1996, J COMP NEUROL, V375, P77, DOI 10.1002/(SICI)1096-9861(19961104)375:1<77::AID-CNE5>3.0.CO;2-L
   Aitkin L, 1997, HEARING RES, V113, P69, DOI 10.1016/S0378-5955(97)00128-7
   BRUNSOBECHTOLD JK, 1992, J COMP NEUROL, V324, P539, DOI 10.1002/cne.903240407
   BRUNSOBECHTOLD JK, 1996, PROGR BRAIN RES NEUR, V108, P65
   Gabriele ML, 2000, J COMP NEUROL, V416, P368, DOI 10.1002/(SICI)1096-9861(20000117)416:3<368::AID-CNE8>3.0.CO;2-C
   GONZALEZHERNANDEZ TH, 1989, NEUROSCIENCE, V30, P127, DOI 10.1016/0306-4522(89)90359-X
   KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202
   KEIGER CJ, 2003, ASS RES OT ABSTR, V26, P145
   Kraushaar U, 2002, PFLUG ARCH EUR J PHY, V445, P279, DOI 10.1007/s00424-002-0924-8
   PYSH JJ, 1969, AM J ANAT, V124, P411, DOI 10.1002/aja.1001240402
   Brunso-Bechtold JK, 2005, INFERIOR COLLICULUS, P537, DOI 10.1007/0-387-27083-3_18
NR 11
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 1
EP 4
DI 10.1016/j.heares.2006.03.017
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000001
PM 16766149
ER

PT J
AU Riedel, H
   Kollmeier, B
AF Riedel, Helmut
   Kollmeier, Birger
TI Interaural delay-dependent changes in the binaural difference potential
   of the human auditory brain stem response
SO HEARING RESEARCH
LA English
DT Article
DE binaural difference potential; interaural time difference; auditory
   brain stem response; delay line; Jeffress model; chirp; lateralization;
   azimuth
ID SUPERIOR OLIVARY COMPLEX; UNIT EXCITATORY RESPONSES; HUMAN
   EVOKED-POTENTIALS; HIGH-FREQUENCY NEURONS; TIME DIFFERENCES; INTERACTION
   COMPONENT; INFERIOR COLLICULUS; SOUND LOCALIZATION; COINCIDENCE
   DETECTION; TEMPORAL DISPARITIES
AB Binaural difference potentials (BDs) are thought to be generated by neural units in the brain stem responding specifically to binaural stimulation. They are computed by subtracting the sum of monaural responses from the binaural response, BD = B - (L + R). BDs in dependency on the interaural time difference (ITD) have been measured and compared to the Jeffress model in a number of studies with conflicting results. The classical Jeffress model assuming binaural coincidence detector cells innervated by bilateral excitatory cells via two delay lines predicts a BD latency increase of ITD/2. A modification of the model using only a single delay line as found in birds yields a BD latency increase of ITD. The objective of this study is to measure BDs with a high signal-to-noise ratio for a large range of ITDs and to compare the data with the predictions of some models in the literature including that of Jeffress. Chirp evoked BDs were recorded for 17 ITDs in the range from 0 to 2 ms at a level of 40 dB nHL for four channels (A1, A2, PO9, PO10) from 11 normal hearing subjects. For each binaural condition 10,000 epochs were collected while 40,000 epochs were recorded for each of the two monaural conditions. Significant BD components are observed for ITDs up to 2 ms. The peak-to-peak amplitude of the first components of the BD, DP1-DN1, is monotonically decreasing with ITD. This is in contrast with click studies which reported a constant BD-amplitude for ITDs up to I ms. The latency of the BD-component DN1 is monotonically, but nonlinearly increasing with ITD. In the current study, DN1 latency is found to increase faster than ITD/2 but slower than ITD incompatible with either variant of the Jeffress model. To describe BD waveforms, the computational model proposed by Ungan et al. [Hearing Research 106, 66-82, 1997] using ipsilateral excitatory and contralateral inhibitory inputs to the binaural cells was implemented with only four parameters and successfully fitted to the BD data. Despite its simplicity the model predicts features which can be physiologically tested: the inhibitory input must arrive slightly before the excitatory input, and the duration of the inhibition must be considerably longer than the standard deviations of excitatory and inhibitory arrival times to the binaural cells. With these characteristics, the model can accurately describe BD amplitude and latency as a function of the ITD. (c) 2006 Elsevier B.V. All rights reserved.
C1 Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
RP Riedel, H (reprint author), Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
EM helmut.riedel@uni-oldenburg.de
CR Batra R, 1997, J NEUROPHYSIOL, V78, P1237
   Batra R, 1997, J NEUROPHYSIOL, V78, P1222
   BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825
   Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297
   CAIRD D, 1983, EXP BRAIN RES, V52, P385
   Campbell RAA, 2004, CURR BIOL, V14, pR886, DOI 10.1016/j.cub.2004.09.070
   CARR CE, 1990, J NEUROSCI, V10, P3227
   CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311
   Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438
   Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833
   Delb W, 2003, HNO, V51, P99, DOI 10.1007/s00106-002-0727-4
   Delb WF, 2004, INT J AUDIOL, V43, P69, DOI 10.1080/14992020400050012
   DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391
   DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2
   Fitzpatrick DC, 2002, HEARING RES, V168, P79, DOI 10.1016/S0378-5955(02)00359-3
   FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802
   FURST M, 1990, HEARING RES, V49, P347, DOI 10.1016/0378-5955(90)90113-4
   Furst M, 2004, HEARING RES, V187, P63, DOI 10.1016/S0378-5955(03)00331-9
   GALAMBOS R, 1959, AM J PHYSIOL, V197, P527
   GAUMOND RP, 1991, J ACOUST SOC AM, V89, P454, DOI 10.1121/1.400482
   GERULL G, 1984, AUDIOLOGY, V23, P265
   Goksoy C, 2005, BRAIN RES, V1054, P183, DOI 10.1016/j.brainres.2005.06.083
   GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   Gopal KV, 1999, SCAND AUDIOL, V28, P85, DOI 10.1080/010503999424806
   Granzow M., 2001, Zeitschrift fur Audiologie, V40
   HALL JL, 1965, J ACOUST SOC AM, V37, P814, DOI 10.1121/1.1909447
   HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4
   Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004
   Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768
   HOTH S, 1986, AUDIOLOGY, V25, P248
   ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6
   Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1
   JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
   JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517
   Jiang ZD, 1996, EVOKED POTENTIAL, V100, P505
   JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N
   JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P399, DOI 10.1016/0168-5597(91)90088-F
   JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K
   JORIS PX, 2004, J NEUROPHYSIOL
   Joris PX, 1996, J NEUROPHYSIOL, V76, P2137
   Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1
   Joris PX, 1998, J NEUROPHYSIOL, V79, P253
   JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043
   KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181
   Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123
   Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x
   KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338
   LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412
   LEVINE RA, 1991, HEARING RES, V57, P121, DOI 10.1016/0378-5955(91)90081-J
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   McAlpine D, 1996, HEARING RES, V97, P136
   McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1
   MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U
   MCEVOY LK, 1990, AUDIOLOGY, V29, P163
   MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003
   MCEVOY LK, 1991, AUDIOLOGY, V30, P286
   MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z
   MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1
   Melcher JR, 1996, HEARING RES, V95, P144, DOI 10.1016/0378-5955(96)00032-9
   NELDER JA, 1965, COMPUT J, V7, P308
   OVERHOLT EM, 1992, J NEUROSCI, V12, P1698
   Picton T W, 1991, Acta Otolaryngol Suppl, V491, P139
   PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2
   Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3
   Pratt H, 1997, HEARING RES, V108, P1, DOI 10.1016/S0378-5955(97)00033-6
   Rayleigh L., 1907, PHILOS MAG, V13, P214
   Riedel H, 2002, HEARING RES, V169, P85, DOI 10.1016/S0378-5955(02)00342-8
   Riedel H., 2001, Zeitschrift fur Audiologie, V40
   Riedel Helmut, 2003, Z Med Phys, V13, P75
   Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8
   SAMS M, 1993, HEARING RES, V67, P89, DOI 10.1016/0378-5955(93)90236-T
   Sharbrough F., 1991, J CLIN NEUROPHYSIOL, V8, P200
   SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3
   Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748
   Stollman MHP, 1996, BRIT J AUDIOL, V30, P227, DOI 10.3109/03005369609079043
   TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164
   TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P184
   Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2
   Ungan P, 2002, HEARING RES, V167, P81, DOI 10.1016/S0378-5955(02)00351-9
   Ungan P, 1996, ELECTROEN CLIN NEURO, V99, P479, DOI 10.1016/S0013-4694(96)96503-7
   UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0
   Ungan P, 1997, HEARING RES, V106, P66, DOI 10.1016/S0378-5955(97)00003-8
   von Bekesy G, 1930, PHYS Z, V31, P857
   VONBERGEIJK WA, 1962, J ACOUST SOC AM 2, V34, P1431
   WADA SI, 1989, ELECTROEN CLIN NEURO, V72, P535, DOI 10.1016/0013-4694(89)90231-9
   Wagner H., 2005, Zeitschrift fur Audiologie, V44
   Walger M, 2003, HNO, V51, P125, DOI 10.1007/s00106-002-0662-4
   WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445
   WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
   YIN TCT, 1987, J NEUROPHYSIOL, V58, P562
   YOUNG SR, 1983, J NEUROSCI, V3, P1373
NR 95
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 5
EP 19
DI 10.1016/j.heares.2006.03.018
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000002
PM 16762518
ER

PT J
AU Abrashkin, KA
   Izumikawa, M
   Miyazawa, T
   Wang, CH
   Crumling, MA
   Swiderski, DL
   Beyer, LA
   Gong, TWL
   Raphael, Y
AF Abrashkin, Karen A.
   Izumikawa, Masahiko
   Miyazawa, Toru
   Wang, Chih-Hung
   Crumling, Mark A.
   Swiderski, Donald L.
   Beyer, Lisa A.
   Gong, Tzy-Wen L.
   Raphael, Yehoash
TI The fate of outer hair cells after acoustic or ototoxic insults
SO HEARING RESEARCH
LA English
DT Article
DE guinea pig; mouse; prestin; overstimulation; ototoxicity; outer hair
   cell; supporting cell
ID AMINOGLYCOSIDE OTOTOXICITY; GENTAMICIN TREATMENT; APOPTOTIC CELLS; MOTOR
   PROTEIN; RAT ORGAN; IN-VIVO; COCHLEA; CORTI; PRESTIN; TRAUMA
AB In epithelial sheets, clearance of dead cells may occur by one of several routes, including extrusion into the lumen, phagocytic clearance by invading lymphocytes, or phagocytosis by neighboring cells. The fate of dead cochlear outer hair cells is unclear. We investigated the fate of the "corpses" of dead outer hair cells in guinea pigs and mice following drug or noise exposure. We examined whole mounts and plastic sections of normal and lesioned organ of Corti for the presence of prestin, a protein unique to outer hair cells. Supporting cells, which are devoid of prestin in the normal ear, contained clumps of prestin in areas of hair cell loss. The data show that cochlear supporting cells surround the corpses and/or debris of degenerated outer hair cells, and suggest that outer hair cell remains are phagocytosed by supporting cells within the epithelium. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Rm 9301 MSRB-3, Ann Arbor, MI 48109 USA.
EM Yoash@umich.edu
CR Belyantseva IA, 2000, J NEUROSCI, V20, part. no.
   Bok D, 1993, J Cell Sci Suppl, V17, P189
   Brough DE, 1997, J VIROL, V71, P9206
   CARY RB, 1994, J CELL SCI, V107, P1609
   Chung SB, 2000, NAT CELL BIOL, V2, P931
   COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E
   Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
   Daudet N, 1998, J COMP NEUROL, V401, P145
   Dini L, 2002, MICROSC RES TECHNIQ, V57, P530, DOI 10.1002/jemt.10107
   Engström H, 1970, Ciba Found Symp, P127
   FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
   Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125
   Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8
   Lauber K, 2004, MOL CELL, V14, P277, DOI 10.1016/S1097-2765(04)00237-0
   Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2
   Nakajima M, 1996, AM J PATHOL, V148, P631
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408
   RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7
   RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307
   Rosenblatt J, 2001, CURR BIOL, V11, P1847, DOI 10.1016/S0960-9822(01)00587-5
   Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836
   SPOENDLIN H, 1976, EFFECTS NOISE HEARIN, V270, P69
   Sun WB, 1998, WORLD J GASTROENTERO, V4, P77
   Suzuki Y, 1996, CHEM SENSES, V21, P467, DOI 10.1093/chemse/21.4.467
   Wang J, 2003, J NEUROSCI, V23, P8596
   Wang ZM, 2000, NEUROREPORT, V11, P1389, DOI 10.1097/00001756-200005150-00008
   Wu Xudong, 2004, Brain Res Mol Brain Res, V126, P30
   Yamasoba T, 2003, NEUROSCI LETT, V347, P171, DOI 10.1016/S0304-3940(03)00675-X
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 32
TC 37
Z9 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 20
EP 29
DI 10.1016/j.heares.2006.04.001
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000003
PM 16777363
ER

PT J
AU Throckmorton, CS
   Kucukoglu, MS
   Remus, JJ
   Collins, LM
AF Throckmorton, Chandra S.
   Kucukoglu, M. Selin
   Remus, Jeremiah J.
   Collins, Leslie M.
TI Acoustic model investigation of a multiple carrier frequency algorithm
   for encoding fine frequency structure: Implications for cochlear
   implants
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Conference on Implantable Auditory Prostheses
CY AUG, 2005
CL Asilomar, CA
DE frequency discrimination; frequency modulation; acoustic model; cochlear
   implant
ID SPEECH-RECOGNITION; ELECTRODE DISCRIMINATION; ELECTRICAL-STIMULATION;
   SIGNAL PROCESSORS; NORMAL-HEARING; NOISE; PERCEPTION; CHANNELS; PITCH;
   PERFORMANCE
AB Current cochlear implants provide frequency resolution through the number of channels. Improving resolution by increasing channels is limited by factors such as the physiological feasibility of increasing the number of electrodes, the inability to increase the number of channels for those already implanted, and the increased possibility of channel interactions reducing channel efficacy. Recent studies have suggested an alternative method: providing a continuum of pitch percepts for each channel based on the frequency content of that channel. This study seeks to determine the frequency resolution necessary for the highest performance gain, which may give some indication of the feasibility for implementation in implants. A discrete set of carrier frequencies, instead of a continuum, are evaluated using an acoustic model to measure speech recognition. Performance increased as the number of available frequencies increased, and substantive improvement was seen with as few as two frequencies per channel. The effect of variable frequency discrimination was also assessed, and the results suggest that frequency modulation can still provide benefits with poor frequency discrimination on some channels. These results suggest that if two or more discriminable frequencies per channel can be generated for cochlear implant subjects then an improvement in speech recognition may be possible. (c) 2006 Elsevier B.V. All rights reserved.
C1 Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA.
RP Collins, LM (reprint author), Duke Univ, Dept Elect & Comp Engn, 130 Hudson Hall,POB 90291, Durham, NC 27708 USA.
EM cst@ee.duke.edu; msk5@ee.duke.edu; jjr6@ee.duke.edu;
   lcollins@ee.duke.edu
CR Baskent D, 2003, J ACOUST SOC AM, V113, P2064, DOI 10.1121/1.1558357
   BLAMEY PJ, 1987, J ACOUST SOC AM, V82, P38, DOI 10.1121/1.395542
   Clark G., 1987, ADV OTORHINOLARYNGOL, V38, P1
   Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989
   Dorman Michael F, 2002, Am J Audiol, V11, P119, DOI 10.1044/1059-0889(2002/014)
   Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603
   Dorman MF, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/063)
   Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940
   Dorman MF, 2000, EAR HEARING, V21, P590, DOI 10.1097/00003446-200012000-00006
   Fearn R, 2000, ANN OTO RHINOL LARYN, V109, P51
   Fearn R. A., 2001, THESIS U NEW S WALES
   FLANAGAN JL, 1980, J ACOUST SOC AM, V68, P412, DOI 10.1121/1.384752
   FLANAGAN JL, 1966, AT&T TECH J, V45, P1493
   Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
   Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725
   Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941
   Geier L, 1999, ANN OTO RHINOL LARYN, V108, P80
   HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
   Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711
   Kessler D K, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P8
   KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714
   KUCUKOGLU MS, 2006, 29 ARO MIDW M BALT M
   Landsberger DM, 2005, J ACOUST SOC AM, V117, P319, DOI 10.1121/1.1830672
   Loizou PC, 2000, J ACOUST SOC AM, V108, P2377, DOI 10.1121/1.1317557
   McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742
   MCKAY CM, 1992, ACTA OTO-LARYNGOL, V112, P752, DOI 10.3109/00016489209137470
   McKay CM, 1996, J ACOUST SOC AM, V100, P1081, DOI 10.1121/1.416294
   MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526
   Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799
   NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
   Patrick J., 1991, EAR HEARING S1, V12, P3
   Rubinstein JT, 1999, AM J OTOL, V20, P445
   SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   Shipp D B, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P194
   THORNTON AR, 1978, J SPEECH HEAR RES, V21, P507
   Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275
   Throckmorton CS, 2002, J ACOUST SOC AM, V112, P285, DOI 10.1121/1.1482073
   TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620
   TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
   Tyler RS, 1986, IOWA PHONEME SENTENC
   van Dijk JE, 1999, AUDIOLOGY, V38, P109
   WILSON BS, 1991, AM J OTOL, V12, P56
   Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
   Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
   Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401
NR 46
TC 13
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 30
EP 42
DI 10.1016/j.heares.2006.03.020
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000004
PM 16797896
ER

PT J
AU Zhou, JX
   Balaban, C
   Durrant, JD
AF Zhou, Jianxun
   Balaban, Carey
   Durrant, John D.
TI Effect of intracochlear perfusion of vanilloids on cochlear neural
   activity in the guinea pig
SO HEARING RESEARCH
LA English
DT Article
DE capsaicin; cochlear neural activity; pain
ID PROTEIN-KINASE-C; SPIRAL GANGLION NEURONS; INNER-EAR; CAPSAICIN
   RECEPTOR; KANAMYCIN CHALLENGE; BACKGROUND ACTIVITY; MESSENGER-RNA;
   ROUND-WINDOW; RAT; VR1
AB Recent findings show that the vanilloid receptor subtype 1 (TRPV1) is expressed by cochlear outer hair cells and spiral ganglion cells, and that its expression is up-regulated in ganglion cells after aminoglycoside treatment. This study tested the hypothesis that agents that act on TRPV1 receptors affect the spectrum of ensemble background activity (EBA). Consecutive intracochlear perfusions of the TRPV1 agonist, capsaicin (CAP 0.1, 1, and 10 parts per million), as well as its antagonist capsazepine (CZP), were used to test effects of TRPV1 activation on EBA recorded from the cochlear base. Perfusion with CAP alone produced a dose-dependent increase of the 900-Hz peak ratio (power normalized re the overall spectrum) of the EBA. The CAP effect was attenuated during concurrent perfusion with CZP. These findings are consistent with the hypothesis that TRPV1 activation increases background activity of spiral ganglion cells and support a role of TRPV1 in gating spontaneous and evoked auditory nerve excitability. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA.
   Univ Pittsburgh, Dept Otolaryngol, Eye & Ear Inst 107, Pittsburgh, PA 15213 USA.
   Univ Pittsburgh, Dept Neurobiol, Eye & Ear Inst 107, Pittsburgh, PA 15213 USA.
RP Durrant, JD (reprint author), Univ Pittsburgh, Dept Commun Sci & Disorders, Forbes Tower 4033, Pittsburgh, PA 15260 USA.
EM durrant@pitt.edu
CR BALABAN CD, IN PRESS VOLTA REV
   Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7
   Benham CD, 2003, CELL CALCIUM, V33, P479, DOI 10.1016/S0143-4160(03)00063-0
   Bhave G, 2003, P NATL ACAD SCI USA, V100, P12480, DOI 10.1073/pnas.2032100100
   Caterina MJ, 1997, NATURE, V389, P816
   Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9
   Correll CC, 2004, NEUROSCI LETT, V370, P55, DOI 10.1016/j.neulet.2004.07.058
   Crandall M, 2002, PAIN, V98, P109, DOI 10.1016/S0304-3959(02)00034-9
   CULP WJ, 1989, BRAIN, V112, P1317, DOI 10.1093/brain/112.5.1317
   daCosta DL, 1997, EXP BRAIN RES, V116, P259, DOI 10.1007/PL00005754
   daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826
   DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054
   Garcia MM, 1997, J COMP NEUROL, V385, P1
   Hansen MR, 2001, J NEUROSCI, V21, P2256
   Hegarty JL, 1997, J NEUROSCI, V17, P1959
   Huang SM, 2002, P NATL ACAD SCI USA, V99, P8400, DOI 10.1073/pnas.122196999
   Hwang SW, 2000, P NATL ACAD SCI USA, V97, P6155, DOI 10.1073/pnas.97.11.6155
   Kiang NYS, 1965, RES MONOGRAPH, V35
   Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056
   Kitahara T, 2005, HEARING RES, V201, P132, DOI 10.1016/j.heares.2004.09.007
   Kitahara T, 2004, HEARING RES, V196, P39, DOI 10.1016/j.heares.2004.02.002
   LAMOTTE RH, 1992, J PHYSIOL-LONDON, V448, P749
   MARTIN WH, 1993, LARYNGOSCOPE, V103, P600
   McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2
   Mezey E, 2000, P NATL ACAD SCI USA, V97, P3655, DOI 10.1073/pnas.060496197
   Phillips E, 2004, J BIOL CHEM, V279, P17165, DOI 10.1074/jbc.M313328200
   Premkumar LS, 2000, NATURE, V408, P985, DOI 10.1038/35050121
   Premkumar LS, 2004, J NEUROPHYSIOL, V91, P1442, DOI 10.1152/jn.00745.2003
   Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8
   Strassman AM, 1996, NATURE, V384, P560, DOI 10.1038/384560a0
   SZOLCSANYI J, 1988, BRAIN RES, V446, P262, DOI 10.1016/0006-8993(88)90885-2
   SZOLCSANYI J, 1987, J PHYSIOL-LONDON, V388, P9
   Tominaga M, 1998, NEURON, V21, P531, DOI 10.1016/S0896-6273(00)80564-4
   Toth A, 2003, LIFE SCI, V73, P487, DOI 10.1016/S0024-3205(03)00310-2
   Vass Z, 2001, NEUROSCIENCE, V103, P189, DOI 10.1016/S0306-4522(00)00521-2
   Vass Z, 1997, NEUROSCIENCE, V79, P605, DOI 10.1016/S0306-4522(96)00641-0
   Vellani V, 2001, J PHYSIOL-LONDON, V534, P813, DOI 10.1111/j.1469-7793.2001.00813.x
   Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002
   Zhou JX, 2004, J ACOUST SOC AM, V116, P2738, DOI 10.1121/1.179829
NR 39
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 43
EP 49
DI 10.1016/j.heares.2006.02.013
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000005
PM 16781098
ER

PT J
AU Seither-Preisler, A
   Patterson, RD
   Krumbholz, K
   Seither, S
   Lutkenhoner, B
AF Seither-Preisler, A.
   Patterson, Roy D.
   Krumbholz, K.
   Seither, S.
   Luetkenhoener, B.
TI From noise to pitch: Transient and sustained responses of the auditory
   evoked field
SO HEARING RESEARCH
LA English
DT Article
DE pitch; spectral bandwidth; temporal coding; auditory cortex; RIS; MEG;
   pitch onset response; sustained field
ID ITERATED RIPPLED NOISE; NEUROMAGNETIC EVIDENCE; MAGNETIC-FIELDS; HESCHLS
   GYRUS; NEURAL TRANSDUCTION; SENSORY MEMORY; SOUND-LEVEL; HUMAN-BRAIN;
   LOWER LIMIT; CORTEX
AB In recent magnetoencephalographic studies, we established a novel component of the auditory evoked field, which is elicited by a transition from noise to pitch in the absence of a change in energy. It is referred to as the 'pitch onset response'. To extend our understanding of pitch-related neural activity, we compared transient and sustained auditory evoked fields in response to a 2000-ms segment of noise and a subsequent 1000-ms segment of regular interval sound (RIS). RIS provokes the same long-term spectral representation in the auditory system as noise, but is distinguished by a definite pitch, the salience of which depends on the degree of temporal regularity. The stimuli were presented at three steps of increasing regularity and two spectral bandwidths. The auditory evoked fields were recorded from both cerebral hemispheres of twelve subjects with a 37-channel magnetoencephalographic system. Both the transient and the sustained components evoked by noise and RIS were sensitive to spectral bandwidth. Moreover, the pitch salience of the RIS systematically affected the pitch onset response, the sustained field, and the off-response. This indicates that the underlying neural generators reflect the emergence, persistence and offset of perceptual attributes derived from the temporal regularity of a sound. (c) 2006 Elsevier B.V. All rights reserved.
C1 Munster Univ Hosp, ENT Clin, Dept Expt Audiol, D-48149 Munster, Germany.
   Univ Cambridge, Dept Physiol, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England.
   MRC, Inst Hearing Res, Nottingham NG7 2RD, England.
RP Seither-Preisler, A (reprint author), Graz Univ, Dept Psychol, Cognit Sci Sect, Univ Pl 2-3, A-8010 Graz, Austria.
EM annemarie.seither-preisler@uni-graz.at
CR BILSEN FA, 1966, ACUSTICA, V17, P295
   BRAAK H, 1978, ANAT EMBRYOL, V152, P141, DOI 10.1007/BF00315922
   Cariani P, 1999, NEURAL PLAST, V6, P147, DOI 10.1155/NP.1999.147
   GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312
   Gutschalk A, 2004, NEUROIMAGE, V22, P755, DOI 10.1016/j.neuroimage.2004.01.025
   Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949
   Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697
   Hari R, 1990, ADV AUDIOL, V6, P222
   HARI R, 1987, AUDIOLOGY, V26, P31
   Hawley ML, 2005, HEARING RES, V204, P101, DOI 10.1016/j.heares.2005.01.005
   HOUTSMA AJM, 1991, J ACOUST SOC AM, V90, P1674, DOI 10.1121/1.401911
   Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
   Krumbholz K, 2000, J ACOUST SOC AM, V108, P1170, DOI 10.1121/1.1287843
   Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197
   Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5
   Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1
   Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132
   Lutkenhoner B, 2003, NEUROIMAGE, V18, P58, DOI 10.1006/nimg.2002.1325
   Lutkenhoner B, 2006, NEUROIMAGE, V30, P927, DOI 10.1016/jneuroimiage.2005.10.034
   Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790
   Martin BA, 1999, EAR HEARING, V20, P33, DOI 10.1097/00003446-199902000-00004
   Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556
   Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357
   MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050
   MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460
   Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088
   Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
   Moore BCJ, 1996, ACUSTICA, V82, P335
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Ostroff JM, 1998, EAR HEARING, V19, P290, DOI 10.1097/00003446-199808000-00004
   Patterson RD, 1998, J ACOUST SOC AM, V104, P2967, DOI 10.1121/1.423879
   PATTERSON RD, 1992, ADV BIOSCI, V83, P429
   PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456
   Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7
   Pressnitzer D, 2001, J ACOUST SOC AM, V109, P2074, DOI 10.1121/1.1359797
   Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304
   ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9
   RUPP A, AUDITORY SIGNAL PROC, P119
   SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363
   Schneider P, 2002, NAT NEUROSCI, V5, P688, DOI 10.1038/nn871
   Schneider P, 2005, NAT NEUROSCI, V8, P1241, DOI 10.1038/nn1530
   Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
   Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
   Seither-Preisler A, 2006, HEARING RES, V213, P88, DOI 10.1016/j.heares.2006.01.003
   SHAMMA SA, 1986, J ACOUST SOC AM, V80, P133, DOI 10.1121/1.394173
   Shofner WP, 2002, PERCEPT PSYCHOPHYS, V64, P437, DOI 10.3758/BF03194716
   SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232
   Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012
   Sumner CJ, 2002, J ACOUST SOC AM, V111, P2178, DOI 10.1121/1.1453451
   TERHARDT E, 1982, J ACOUST SOC AM, V71, P671, DOI 10.1121/1.387543
   Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z
   YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5
   Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
   Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873
   Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7
   ZATORRE RJ, 1991, BRAIN, V114, P2403, DOI 10.1093/brain/114.6.2403
   Zwicker E., 1990, PSYCHOACOUSTICS FACT
NR 57
TC 19
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 50
EP 63
DI 10.1016/j.heares.2006.04.005
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000006
PM 16814971
ER

PT J
AU Soeta, Y
   Nakagawa, S
   Matsuoka, K
AF Soeta, Yoshiharu
   Nakagawa, Seiji
   Matsuoka, Katsunori
TI The effect of center frequency and bandwidth on the auditory evoked
   magnetic field
SO HEARING RESEARCH
LA English
DT Article
DE magnetoencephalography; auditory evoked response; Nlm; loudness; center
   frequency; bandwidth
ID INTENSITY-DISCRIMINATION; TONOTOPIC ORGANIZATION; COMPLEX SOUNDS;
   HUMAN-BRAIN; CEREBRAL-CORTEX; MIDDLE-EAR; REPRESENTATION; STIMULUS;
   NOISE; TONES
AB Auditory evoked magnetic fields in relation to the center frequency of sound with a certain bandwidth were examined by magnetoencephalography (MEG). Octave band, 1/3 octave band, and 130 Hz bandwidth noises were used as the sound stimuli. All signals were presented at 60 dB SPL. The stimulus duration was 500 ms, with rise and fall ramps of 10 ms. Ten normal-hearing subjects took part in the study. Auditory evoked fields were recorded using a 122 channel whole-head magnetometer in a magnetically shielded room. The latencies, source strengths and coordinates of the N1m wave, which was found above the left and right temporal lobes around 100 ms after the stimulus onset, were analyzed. The results demonstrated that the middle frequency range had shorter N1m latencies and larger N1m amplitudes, and that the lower and higher frequency stimuli had relatively delayed N1m latencies and decreased N1m amplitudes. The N1m amplitudes correlated well to the loudness values in the frequency ranges between 250 and 2000 Hz. The source locations of N1m did not reveal any systematic changes related to the center frequency and bandwidth. (c) 2006 Elsevier B.V. All rights reserved.
C1 Natl Inst AIST, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
RP Soeta, Y (reprint author), Natl Inst AIST, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
CR Ando Y., 1998, ARCHITECTURAL ACOUST
   Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036
   BAK CK, 1985, ELECTROEN CLIN NEURO, V61, P141, DOI 10.1016/0013-4694(85)91053-3
   Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132
   CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453
   ELBERLING C, 1982, ACTA NEUROL SCAND, V65, P553
   Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x
   GOLDSTEIN JL, 1974, SENSATION MEASUREMEN, P223
   HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413
   JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321
   Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1
   Kiang NY-s, 1965, DISCHARGE PATTERNS S
   LACHS G, 1984, IEEE T SYST MAN CYB, V14, P819
   Lakatos P, 2005, NEUROREPORT, V16, P933, DOI 10.1097/00001756-200506210-00011
   Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1
   MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200
   ONCHI Y, 1961, J ACOUST SOC AM, V33, P794, DOI 10.1121/1.1908801
   PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4
   PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8
   PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2
   PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
   PICKLES JO, 1983, HEARING RES, V12, P239, DOI 10.1016/0378-5955(83)90109-0
   RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330
   Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
   REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0
   Relkin EM, 1997, J ACOUST SOC AM, V101, P2735, DOI 10.1121/1.418561
   Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007
   ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770
   ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
   RUBINSTEIN M, 1966, J ACOUST SOC AM, V44, P1420
   SCHLAUCH RS, 1987, J SPEECH HEAR RES, V30, P13
   Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
   SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522
   SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059
   Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012
   Suzuki Y, 2004, J ACOUST SOC AM, V116, P918, DOI 10.1121/1.1763601
   VASAMA JP, 1995, ACTA OTO-LARYNGOL, V115, P616, DOI 10.3109/00016489509139376
   Vogten LL, 1974, FACTS MODELS HEARING, P142
   WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211
   Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108
   WIENER FM, 1946, J ACOUST SOC AM, V18, P401, DOI 10.1121/1.1916378
   YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732
   Zwislocki J., 1965, HDB MATH PSYCHOL, VIII, P1
   ZWISLOCKI JJ, 1962, J ACOUST SOC AM, V35, P1514
NR 48
TC 2
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 64
EP 71
DI 10.1016/j.heares.2006.04.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000007
PM 16797895
ER

PT J
AU Okoyama, S
   Ohbayashi, M
   Ito, M
   Harada, S
AF Okoyama, Shigeo
   Ohbayashi, Masao
   Ito, Makoto
   Harada, Shinichi
TI Neuronal organization of the rat inferior colliculus participating in
   four major auditory pathways
SO HEARING RESEARCH
LA English
DT Article
DE neuronal classification; collateral projections; retrograde tracing;
   ascending pathway; descending pathway; commissural pathway
ID FREQUENCY-RESPONSE AREAS; SUPERIOR OLIVARY COMPLEX; MEDIAL
   GENICULATE-BODY; CENTRAL NUCLEUS; GUINEA-PIG; GABAERGIC NEURONS;
   COCHLEAR NUCLEUS; BRAIN-SLICES; ALBINO-RAT; CELL-TYPES
AB The central nucleus of the inferior colliculus (CNIC) contains different types of neurons and is a source of ascending projection to the medial geniculate body (MGB), commissural projection to the contralateral IC, direct descending projection to the cochlea nucleus (CN) and indirect projection to the CN via the superior olivary complex (SOC). Using a retrograde tracing technique, we examined what kind of neurons and what percentage of neurons of each type recognized in the CNIC participated in the above-mentioned four projection pathways. We also examined whether the individual CNIC neurons send the collateral to the NIGB, the contralateral IC, the CN and the soc.
   In the present study, we demonstrated that the neurons participating in the four projections could be morphologically classified into two types of neurons with soma size variation. The percentages of neurons of each type differed among the four projection pathways. Using a double-labeling technique, we found very few double-labeled neurons, indicating the collateral projections to the ipsilateral MGB and the contralateral IC. There were no double-labeled neurons in the collateral projections between the other combinations of targets. Therefore, we conclude that the ascending projection, the commissural projection and the descending projection to these targets arise from separate populations of neurons. (c) 2006 Elsevier B.V. All rights reserved.
C1 Kanazawa Univ, Grad Sch Med Sci, Ctr Biomed Res & Educ, Lab Neuroanat, Kanazawa, Ishikawa 9208640, Japan.
   Kanazawa Univ, Grad Sch Med Sci, Div Neurosci, Kanazawa, Ishikawa 9208640, Japan.
RP Okoyama, S (reprint author), Kanazawa Univ, Grad Sch Med Sci, Ctr Biomed Res & Educ, Lab Neuroanat, Kanazawa, Ishikawa 9208640, Japan.
EM okoyama@med.kanazawa-u.ac.jp
CR Bal R, 2002, NEUROSCI LETT, V317, P42, DOI 10.1016/S0304-3940(01)02425-9
   Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009
   Covey E, 1996, J NEUROSCI, V16, P3009
   FAYELUND H, 1986, ANAT EMBRYOL, V175, P35, DOI 10.1007/BF00315454
   FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050
   FAYELUND H, 1988, UPSALA J MED SCI, V93, P1
   FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304
   FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204
   GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E
   GONZALEZHERNANDEZ TH, 1991, HEARING RES, V52, P17, DOI 10.1016/0378-5955(91)90184-B
   González Hernández T H, 1986, Brain Res, V368, P268, DOI 10.1016/0006-8993(86)90571-8
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570
   Kelly JB, 2002, HEARING RES, V168, P35, DOI 10.1016/S0378-5955(02)00372-6
   Kuwada S, 1997, J NEUROSCI, V17, P7565
   LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902
   LeBeau FEN, 2001, J NEUROSCI, V21, P7303
   MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102
   Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8
   Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x
   Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1
   McAlpine D, 1996, HEARING RES, V97, P136
   MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0
   MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
   OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207
   OLIVER DL, 1992, INFERIOR SUPERIOR CO
   OLIVER DL, 1984, NEUROSCIENCE, V11, P409, DOI 10.1016/0306-4522(84)90033-2
   Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J
   OLIVER DL, 2005, NEURAL ORG INFERIOR
   OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
   Peruzzi D, 2000, NEUROSCIENCE, V101, P403, DOI 10.1016/S0306-4522(00)00382-1
   POPELAR J, 1982, ACTA NEUROBIOL EXP, V42, P299
   Rees A, 1997, J NEUROPHYSIOL, V77, P2945
   Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X
   RIBAK CE, 1986, J NEUROCYTOL, V15, P421, DOI 10.1007/BF01611726
   ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345
   ROCKEL AJ, 1973, J COMP NEUROL, V147, P61, DOI 10.1002/cne.901470104
   ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103
   Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X
   Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A
   SCHULLER G, 1991, EUR J NEUROSCI, V3, P648, DOI 10.1111/j.1460-9568.1991.tb00851.x
   Shiraishi S, 2001, MOL BRAIN RES, V96, P122, DOI 10.1016/S0169-328X(01)00282-0
   Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861
   Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426
   Wu SH, 2002, HEARING RES, V168, P43, DOI 10.1016/S0378-5955(02)00375-1
NR 45
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 72
EP 80
DI 10.1016/j.heares.2006.04.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000008
PM 16814970
ER

PT J
AU McDermott, HJ
   Sucher, CM
AF McDermott, Hugh J.
   Sucher, Catherine M.
TI Perceptual dissimilarities among acoustic stimuli and ipsilateral
   electric stimuli
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; hearing aid; electro-acoustic stimulation
ID COCHLEAR IMPLANTATION; AUDITORY-SYSTEM; HEARING-LOSS
AB Five users of cochlear implants who had residual acoustic hearing in the implanted ear postoperatively participated in a study comparing the percepts elicited by acoustic and electric stimuli. The stimuli comprised pulse trains delivered to single electrodes and pure tones presented ipsilaterally. In the experiments, 12 equally loud stimuli with differing frequencies, electrode positions, and pulse rates were generated. Subjects listened to all of the possible pairs of stimuli in each set, and provided a relative dissimilarity rating for the members of each stimulus pair. The data were analyzed using non-metric multi-dimensional scaling techniques. Stimulus spaces were plotted in two dimensions to represent the results for each subject with each stimulus set. The results suggested that one dimension was associated with a pitch-like percept, related to the acoustic tone frequency and the active electrode position. The second dimension separated the acoustic stimuli from the electric stimuli. Generally, the electric pulse rate seemed to have a relatively small perceptual effect in this experimental context. Overall, the results show that acoustic pure tones are perceived as very different from electric pulse trains delivered to single electrode positions with constant rate, even when both the acoustic and the electric stimuli are presented to the same ear. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
RP McDermott, HJ (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM hughm@unimelb.edu.au
CR BOGGESS WJ, 1989, LARYNGOSCOPE, V99, P1002
   Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320
   Dillon H., 2001, HEARING AIDS
   Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423
   Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432
   Henshall K R, 2001, J Am Acad Audiol, V12, P478
   Kiefer J, 1998, AUDIOLOGY, V37, P382
   Kiefer J, 2004, ACTA OTO-LARYNGOL, V124, P272, DOI 10.1080/00016480310000755
   Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023
   KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P115, DOI 10.1007/BF02289694
   McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594
   RIZER FM, 1988, OTOLARYNG HEAD NECK, V98, P203
   Schiffman Susan S., 1981, INTRO MULTIDIMENSION
   SKARZYNSKI H, 2003, MED SCI MONITOR, V9, pCS26
   Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425
   von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
   YOUNG FW, 1979, ALSCAL USERS GUIDE D
NR 17
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 81
EP 88
DI 10.1016/j.heares.2006.05.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000009
PM 16777362
ER

PT J
AU Takeda, T
   Takeda, S
   Kakigi, A
   Okada, T
   Nishioka, R
   Taguchi, D
AF Takeda, Taizo
   Takeda, Setsuko
   Kakigi, Akinobu
   Okada, Teruhiko
   Nishioka, Rie
   Taguchi, Daizo
TI A comparison of dehydration effects of V-2-antagonist (OPC-31260) on the
   inner ear between systemic and round window applications
SO HEARING RESEARCH
LA English
DT Article
DE vasopressin; V-2-antagonist; OPC-31260; endolymphatic hydrops; Meniere's
   disease
ID ENDOLYMPHATIC HYDROPS; MENIERES-DISEASE; ANTIDIURETIC-HORMONE;
   ANTAGONIST OPC-31260; VASOPRESSIN; SAC; AQUAPORINS; EXPRESSION; RAT;
   COCHLEA
AB V-2-antagonist (OPC-31260 (OPC)) application to the scala tympani reduced endolymphatic hydrops. In the present study, we investigated whether systemic administration or local infusion via the round window (RW application) of OPC would be more suitable for clinical use. In Experiment 1, the increase ratios of the cross-sectional area of the scala media of experimentally induced endolymphatic hydrops were quantitatively assessed among four groups of non-OPC application, RW application of xanthan gum, systemic application of OPC and RW application of OPC. In Experiment 2, the effects of systemic and RW applications of OPC on plasma vasopressin (p-VP) concentrations and plasma osmolality (p-OSM) were investigated. In Experiment 3, endocochlear DC potential (EP) was measured in guinea pigs with the RW application of OPC. Electron microscopic observations of the stria vascularis and the hair cells were also made. Both systemic and RW applications of OPC significantly reduced endolymphatic hydrops. However, systemic application resulted in the distension of the Reissner's membrane in the non-operated ear, which seemed to be caused by elevated p-VP levels resulting from the systemic application of OPC. In contrast, RW application of OPC produced no apparent toxic effects in the inner ear, as indicated electrophysiological or morphological changes. Thus, drug delivery via the round window is more useful for the clinical application of OPC for medical decompression. (c) 2006 Elsevier B.V. All rights reserved.
C1 Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Kochi 7838505, Japan.
   Kochi Med Sch, Dept Anat, Nanko Ku, Kochi 7838505, Japan.
RP Takeda, T (reprint author), Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Oko Cho, Kochi 7838505, Japan.
EM takedat@med.kochi-u.ac.jp
CR AGRE P, 1993, AM J PHYSIOL, V265, pF461
   Aoki M, 2005, CLIN OTOLARYNGOL, V30, P521, DOI 10.1111/j.1749-4486.2005.01107.x
   Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2
   Fleeman LM, 2000, AUST VET J, V78, P825, DOI 10.1111/j.1751-0813.2000.tb10497.x
   Fukushima K, 2005, ORL J OTO-RHINO-LARY, V67, P282, DOI 10.1159/000089409
   Huang DL, 2002, HEARING RES, V165, P85, DOI 10.1016/S0378-5955(02)00288-5
   KITANO H, 1994, ENT J, V73, P824
   Kitano H, 1999, NEUROREPORT, V10, P1205, DOI 10.1097/00001756-199904260-00009
   Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731
   LINSAY JR, 1942, ARCH OTOLARYNGOL, V35, P853
   MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8
   Marples D, 1998, AM J PHYSIOL-RENAL, V275, pF400
   Merves M, 2000, LARYNGOSCOPE, V110, P1925, DOI 10.1097/00005537-200011000-00030
   Mhatre AN, 1999, BIOCHEM BIOPH RES CO, V264, P157, DOI 10.1006/bbrc.1999.1323
   MINAGAWA H, 1998, SPACE FORUM, V4, P19
   Nielsen S, 1999, J AM SOC NEPHROL, V10, P647
   Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
   Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011
   SHAMBAUG.GE, 1969, ARCH OTOLARYNGOL, V89, P816
   Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450
   STERKERS O, 1988, PHYSIOL REV, V68, P1083
   Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X
   Takeda T, 1997, Acta Otolaryngol Suppl, V528, P80
   Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219
   Takeda T, 2003, HEARING RES, V182, P9, DOI 10.1016/S0378-5955(03)00135-7
   Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x
   YAMAMURA Y, 1992, BRIT J PHARMACOL, V105, P787
   YAZAWA Y, 1981, ORL J OTO-RHINO-LARY, V43, P121
NR 28
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 89
EP 97
DI 10.1016/j.heares.2006.05.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000010
PM 16781097
ER

PT J
AU Stainsby, TH
   Moore, BCJ
AF Stainsby, Thomas H.
   Moore, Brian C. J.
TI Temporal masking curves for hearing-impaired listeners
SO HEARING RESEARCH
LA English
DT Article
DE temporal masking curves; forward masking; decay of masking; linear
   temporal integrator; sensorineural hearing loss; reduced compression
ID BASILAR-MEMBRANE NONLINEARITY; TUNING CURVES; PERIPHERAL COMPRESSION;
   COCHLEAR COMPRESSION; AUDITORY COMPRESSION; FREQUENCIES; MECHANICS;
   ADDITIVITY; MODEL; AGE
AB The decay of forward masking was investigated for three subjects with moderate sensorineural hearing loss. For such subjects, compression on the basilar membrane (BM) is thought to be largely absent, enabling one to determine the decay of masking without the influence of compression. Temporal masking curves (TMCs), plots of the masker level at threshold against delay between masker offset and signal onset, were measured for delays of 0, 15, 30, 45, 60, and 75 ins, for signal frequencies, f(s), of 500, 1000, 2000, 4000, and 6000 Hz. Masker frequencies were 0.5, 0.8, 1.0, 1.15, and 1.3 times f(s). Most of the TMCs were well fitted with single-segment straight lines, which, except for high masker levels, were roughly parallel for each fs, supporting the belief that BM compression was largely absent in these subjects. However, the slopes of the TMCs were greater for f(s) = 500 and 1000 Hz than for higher frequencies, which may indicate that the decay of forward masking is not the same for all signal frequencies. The results suggest that it may not be valid to infer BM compression at low signal frequencies by using a reference TMC for a high f(s). (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Stainsby, TH (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM ths22@cam.ac.uk
RI Moore, Brian/I-5541-2012
CR Borg E, 1995, SCAND AUDIOL S40, V24, P1
   BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648
   Cooper N. P., 2004, COMPRESSION COCHLEA, P1
   COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X
   Fitzgibbons PJ, 1995, J ACOUST SOC AM, V98, P3140, DOI 10.1121/1.413803
   Gehr SE, 1999, J ACOUST SOC AM, V106, P2793, DOI 10.1121/1.428104
   Gifford RH, 2005, J ACOUST SOC AM, V118, P3823, DOI 10.1121/1.2126933
   Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526
   HOUTGAST T, 1973, ACUSTICA, V29, P168
   JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490
   Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
   KLUK K, 2006, IN PRESS INT J AUDIO
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Lister J, 2002, J ACOUST SOC AM, V111, P2793, DOI 10.1121/1.1476685
   Lopez-Poveda EA, 2005, HEARING RES, V205, P172, DOI 10.1016/j.heares.2005.03.015
   Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838
   MOLLER AR, 1972, FDN MODERN AUDITORY, V2, P133
   Moore B., 1998, COCHLEAR HEARING LOS
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2
   Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
   Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89
   Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133
   NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091
   Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
   NELSON DA, 1989, J SPEECH HEAR RES, V32, P298
   Nelson DA, 2004, J ACOUST SOC AM, V115, P2221, DOI 10.1121/1.1689341
   NELSON DA, 1987, J ACOUST SOC AM, V81, P709, DOI 10.1121/1.395131
   OLOUGHLIN BJ, 1981, HEARING RES, V5, P343, DOI 10.1016/0378-5955(81)90057-5
   Oxenham AJ, 1997, MODELING SENSORINEURAL HEARING LOSS, P273
   OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376
   Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78
   Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706
   Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
   Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852
   OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0
   Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812
   Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0
   Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247
   RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569
   Rhodes CH, 1997, DIAGN MOL PATHOL, V6, P49, DOI 10.1097/00019606-199702000-00008
   ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389
   Robles L, 2001, PHYSIOL REV, V81, P1305
   ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946
   Rosengard PS, 2005, J ACOUST SOC AM, V117, P3028, DOI 10.1121/1.1883367
   Schuknecht HF, 1993, PATHOLOGY EAR
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007
   Williams EJ, 2005, HEARING RES, V201, P44, DOI 10.1016/j.heares.2004.10.006
   Winer BJ, 1991, STAT PRINCIPLES EXPT
   Wojtczak M, 2001, J ACOUST SOC AM, V109, P1571, DOI 10.1121/1.1356702
   Yates Graeme K., 1995, P41, DOI 10.1016/B978-012505626-7/50004-2
   YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M
NR 55
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2006
VL 218
IS 1-2
BP 98
EP 111
DI 10.1016/j.heares.2006.05.007
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 077LN
UT WOS:000240031000011
PM 16843625
ER

PT J
AU Rhode, WS
AF Rhode, William S.
TI Contributions of Aage Moller in the study of the cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE physiology using microelectrodes
ID UNIT RESPONSES; DYNAMIC PROPERTIES; MOSSBAUER TECHNIQUE;
   BASILAR-MEMBRANE; SINGLE NEURONS; CAT; RAT; AMPLITUDE; TONES; NOISE
AB At a time when little was known about processing in the auditory system, Aage Moller undertook an extensive investigation of the response properties of cochlear nucleus (CN) neurons. With an excellent background in physiological acoustics and a command of computational techniques he systematically explored neural tuning, rate-level functions, and receptive fields of CN neurons using microelectrode recordings. He chose to employ more natural stimuli than just pure tones and employed a variety of stimuli consisting of tones, clicks, noise, amplitude- and frequency-modulated signals to document both intensity and temporal response characteristics.
   The response to noise stimuli was quantified using linear systems analysis which was very innovative at that time. By choosing to perform the studies in the white rat rather than cat, he provided important comparative data on this first center of the central auditory system. Over a span of ten years he provided a significant body of observations of CN units properties that has rarely been equaled. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA.
RP Rhode, WS (reprint author), Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA.
EM rhode@neurophys.wisc.edu
CR EVANS EF, 1973, EXP BRAIN RES, V17, P402
   Fay R. R., 1988, HEARING VERTEBRATES
   FRINSINA R, 1990, HEARING RES, V44, P123
   GALAMBOS R, 1951, FED PROC, V10, P47
   GLATTKE TJ, 1969, J ACOUST SOC AM, V45, P419, DOI 10.1121/1.1911390
   GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206
   GREENWOOD DD, 1965, J NEUROPHYSIOL, V28, P865
   MOLLER AR, 1970, ACTA PHYSIOL SCAND, V78, P289, DOI 10.1111/j.1748-1716.1970.tb04665.x
   MOLLER AR, 1976, EXP BRAIN RES, V25, P307
   MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812
   MOLLER AR, 1969, ACTA PHYSIOL SCAND, V76, P503, DOI 10.1111/j.1748-1716.1969.tb04497.x
   MOLLER AR, 1973, BRAIN RES, V57, P443, DOI 10.1016/0006-8993(73)90148-0
   MOLLER AR, 1976, J PHYSIOL-LONDON, V259, P63
   MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574
   MOLLER AR, 1977, AUDIOLOGY, V17, P446
   MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x
   MOLLER AR, 1971, ACTA PHYSIOL SCAND, V81, P540, DOI 10.1111/j.1748-1716.1971.tb04931.x
   MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542
   MOLLER AR, 1970, ACTA PHYSIOL SCAND, V78, P299, DOI 10.1111/j.1748-1716.1970.tb04666.x
   MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P530, DOI 10.1111/j.1748-1716.1969.tb04408.x
   MOLLER AR, 1977, J NEUROSCI RES, V4, P1
   Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773
   PFALZ REINHARD K. J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1472, DOI 10.1121/1.1918372
   PFEIFFER RR, 1965, BIOPHYS J, V5, P301
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P493
   RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6
   RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797
   RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485
   Robles L, 2001, PHYSIOL REV, V81, P1305
   ROSE JE, 1959, B JOHNS HOPKINS HOSP, V104, P211
   Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   VANGISBERGEN JAM, 1975, EXP BRAIN RES, V23, P387
   Young ED, 2002, SPR HDB AUD, V15, P160
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
NR 36
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 2
EP 6
DI 10.1016/j.heares.2006.02.007
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300002
PM 16644161
ER

PT J
AU Recio-Spinoso, A
   van Dijk, P
AF Recio-Spinoso, Alberto
   van Dijk, Pim
TI Analysis of responses to noise in the ventral cochlear nucleus using
   Wiener kernels
SO HEARING RESEARCH
LA English
DT Article
DE Wiener kernels; cochlear nucleus; nonlinear analysis
ID AUDITORY-NERVE FIBERS; SPECTROTEMPORAL RECEPTIVE-FIELDS;
   FREQUENCY-SELECTIVITY; AMPLITUDE-MODULATION; PHASE-LOCKING; CAT;
   NEURONS; STIMULI; CHINCHILLA; PATTERNS
AB Responses to noise were recorded in ventral cochlear nucleus (VCN) neurons of anesthetized chinchillas and cats, then analyzed using Wiener-kernel theory. First-order kernels, which are proportional to reverse-correlation functions, of primary-like (PL) and primary-like with notch (PLN) neurons having low characteristic frequency (CF) are similar to those obtained in auditory nerve fibers (ANFs). Such kernels consist of lightly damped transient oscillations with frequency equal to the neuron's CF. The first-order kernel of high-CF PL and PLN neurons displays no evidence of tuning to CF. Second-order kernels of the aforementioned VCN neuron types also resemble those in the nerve, irrespective of CF. In general, first- and second-order Wiener kernels of chopper neurons are similar to those obtained in high-CF ANFs. This is likely the consequence of the poor phase-locking capabilities to near-CF tones exhibited by chopper neurons. By analyzing second-order kernels using singular-value decomposition, it was possible to estimate group delays for the entire neuronal population, regardless of the neuron's type or CF. This was done by analyzing the highest-ranking singular vector (FSV). Amplitude values of FSVs in chopper neurons in the cat are substantially larger than in high-spontaneous ANFs. (c) 2006 Elsevier B.V. All rights reserved.
C1 Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands.
   Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA.
   Univ Groningen, Med Ctr, Dept Otorhinolaryngol, Groningen, Netherlands.
   Univ Groningen, Sch Behav & Cognit Neurosci, NL-9700 RB Groningen, Netherlands.
RP Recio-Spinoso, A (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands.
EM a.recio@lumc.nl
RI Van Dijk, Pim/E-8019-2010; Recio-Spinoso, Alberto/F-7744-2013
OI Van Dijk, Pim/0000-0002-8023-7571; 
CR BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191
   BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
   Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843
   CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653
   CLOPTON BM, 1991, HEARING RES, V52, P329, DOI 10.1016/0378-5955(91)90023-3
   DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704
   de BOER E., 1967, J AUD RES, V7, P209
   EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R
   EVANS EF, PSYCHOPHYSICS PHYSL, P185
   FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
   JOHNSON DH, 1980, J ACOUST SOC AM, V68, P876, DOI 10.1121/1.384826
   JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
   KIM PJ, 1994, J ACOUST SOC AM, V95, P410, DOI 10.1121/1.408335
   Lewis ER, 2002, HEARING RES, V174, P206, DOI 10.1016/S0378-5955(02)00695-0
   Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W
   MOLLER AR, 1983, HEARING RES, V11, P267, DOI 10.1016/0378-5955(83)90062-X
   MOLLER AR, 1979, ACUSTICA, V41, P258
   MOLLER AR, 1977, J ACOUST SOC AM, V62, P135
   MOLLER AR, 1974, ACUSTICA, V31, P292
   MOLLER AR, 1970, ACTA PHYSIOL SCAND, V78, P299, DOI 10.1111/j.1748-1716.1970.tb04666.x
   PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220
   Recio A, 2000, HEARING RES, V146, P167, DOI 10.1016/S0378-5955(00)00111-8
   Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004
   RHODE WS, 1987, J NEUROPHYSIOL, V57, P414
   RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
   Rhode WS, 1998, HEARING RES, V117, P39, DOI 10.1016/S0378-5955(98)00002-1
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797
   RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5
   Schetzen M., 1989, VOLTERRA WIENER THEO
   SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305
   VANGISBERGEN JAM, 1975, EXP BRAIN RES, V23, P387
   van der Heijden M, 2003, J NEUROSCI, V23, P9194
   VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009
   WICKESBERG RE, 1984, HEARING RES, V14, P155, DOI 10.1016/0378-5955(84)90014-5
   YAMADA W, 1997, DIVERSITY AUDITORY M, P111
   Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2
NR 37
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 7
EP 18
DI 10.1016/j.heares.2006.03.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300003
PM 16644154
ER

PT J
AU Joris, PX
   Louage, DH
   Cardoen, L
   van der Heijden, M
AF Joris, Philip X.
   Louage, Dries H.
   Cardoen, Liesbeth
   van der Heijden, Marcel
TI Correlation index: A new metric to quantify temporal coding
SO HEARING RESEARCH
LA English
DT Article
DE phase-locking; vector strength; temporal; correlogram; fine-structure;
   envelope; revcor
ID AUDITORY-NERVE FIBERS; BROAD-BAND NOISE; ANTEROVENTRAL COCHLEAR NUCLEUS;
   NEURONAL SPIKE TRAINS; INTERAURAL TIME SENSITIVITY; STOCHASTIC POINT
   PROCESSES; AMPLITUDE-MODULATION; NEURAL SYNCHRONIZATION; INFERIOR
   COLLICULUS; DYNAMIC PROPERTIES
AB The standard procedure to study temporal encoding Of Sound waveforms in the auditory system has been Fourier analysis of responses to periodic stimuli. We introduce a new metric-correlation index (CI)-which is based on a simple counting of spike coincidences. It can be used for responses to aperiodic stimuli and does not require knowledge of the stimulus. Moreover, the basic procedure of comparing spiketimes in spiketrains is more physiological than currently used methods for temporal analysis. The CI is the peak value of the normalized shuffled autocorrelogram (SAC), which provides a quantitative summary of temporal structure in the neural response to arbitrary stimuli. We illustrate the CI and SACs by comparing temporal coding in the auditory nerve and output fibers of the cochlear nucleus. (c) 2006 Elsevier B.V. All rights reserved.
C1 Katholieke Univ Leuven, Lab Auditory Neurophysiol, Sch Med, B-3000 Louvain, Belgium.
RP Joris, PX (reprint author), Katholieke Univ Leuven, Lab Auditory Neurophysiol, Sch Med, Campus Gasthuisberg 0&N Bus 1021,Herestr 49, B-3000 Louvain, Belgium.
EM philip.joris@med.kuleuven.be; Dries.Louage@med.kuleuven.be;
   Liesbeth.Cardoen@student.kuleuven.ac.be;
   Marcel.Vanderheyden@med.kuleuven.be
RI Joris, Philip/D-9608-2011
CR AERTSEN AMHJ, 1979, BIOL CYBERN, V32, P175, DOI 10.1007/BF00337394
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   Carney LH, 2002, ACTA ACUST UNITED AC, V88, P334
   DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561
   Delgutte B., 1997, HDB PHONETIC SCI, P507
   DENG L, 1987, J ACOUST SOC AM, V82, P2001, DOI 10.1121/1.395644
   EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341
   Eggermont JJ, 1990, CORRELATIVE BRAIN
   FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
   GERSTEIN GL, 1972, BIOPHYS J, V12, P453
   GERSTEIN GL, 1960, BIOPHYS J, V1, P15
   GOBLICK TJ, 1969, J ACOUST SOC AM, V46, P924, DOI 10.1121/1.1911812
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   GREENWOOD DD, 1986, J ACOUST SOC AM, V79, P1857, DOI 10.1121/1.393194
   HARTMANN WM, 1997, SIGNALS SOUND SENSAT
   Heinz MG, 2001, J ACOUST SOC AM, V110, P2065, DOI 10.1121/1.1404977
   JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
   Joris PX, 2005, J NEUROPHYSIOL, V93, P1857, DOI 10.1152/jn.00962.2004
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037
   Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
   Joris PX, 1998, J NEUROSCI, V18, P3955
   Joris PX, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P478
   Joris PX, 2003, J NEUROSCI, V23, P6345
   KIANG NYS, 1990, HEARING RES, V49, P1
   Kiang NYS, 1965, RES MONOGRAPH, V35
   KIM DO, 1979, J NEUROPHYSIOL, V42, P16
   KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S
   Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001
   Louage DHG, 2004, J NEUROPHYSIOL, V91, P2051, DOI 10.1152/jn.00816.2003
   Louage DHG, 2005, J NEUROSCI, V25, P1560, DOI 10.1523/JNEUROSCI.4742-04.2005
   Louage DHG, 2006, J NEUROSCI, V26, P96, DOI 10.1523/JNEUROSCI.2339-05.2006
   MOLLER AR, 1974, EXP NEUROL, V45, P104, DOI 10.1016/0014-4886(74)90104-6
   MOLLER AR, 1977, J ACOUST SOC AM, V62, P135
   MOLLER AR, 1973, BRAIN RES, V57, P443, DOI 10.1016/0006-8993(73)90148-0
   MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x
   MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x
   PERKEL DH, 1967, BIOPHYS J, V7, P391
   PERKEL DH, 1967, BIOPHYS J, V7, P419
   REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851
   RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797
   RODIECK RW, 1967, J NEUROPHYSIOL, V30, P1043
   ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
   RUGGERO MA, 1973, J NEUROPHYSIOL, V36, P569
   SACHS MB, 1983, J NEUROPHYSIOL, V50, P27
   SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1622, DOI 10.1121/1.392800
   Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957
   SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169
   TENKATE JH, 1988, J ACOUST SOC AM, V84, P2092, DOI 10.1121/1.397054
   VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7
   VANGISBERGER JAM, 1975, EXP BRAIN RES, V23, P367
   Wong JC, 1998, HEARING RES, V123, P61, DOI 10.1016/S0378-5955(98)00098-7
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
NR 54
TC 42
Z9 44
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 19
EP 30
DI 10.1016/j.heares.2006.03.010
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300004
PM 16644160
ER

PT J
AU Needham, K
   Paolini, AG
AF Needham, Karina
   Paolini, Antonio G.
TI Neural timing, inhibition and the nature of stellate cell interaction in
   the ventral cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE cochlear nucleus; stellate neurons; chopper cells; onset cells;
   intracellular; commissural
ID GUINEA-PIG; GLYCINE IMMUNOREACTIVITY; RESPONSE PROPERTIES; COMMISSURAL
   NEURONS; MULTIPOLAR CELLS; CHOPPER UNITS; CAT; REGULARITY; BRAIN; NOISE
AB The ventral cochlear nucleus (VCN) stellate cell population comprises two clusters: narrowly-tuned, excitatory T stellate neurons, and D stellate neurons, a broadly-tuned population of inhibitory cells. These neurons respond to best frequency (BF) tone bursts in a chopper or onset manner, respectively. Through extensive local and commissural projections the D stellate population provides a source of fast inhibitory input to both intrinsic and contralateral T stellate neurons. Whilst the nature of interactions between intrinsic stellate populations is difficult to examine, our previous intracellular investigations of the commissural pathway have provided a means by which to study this relationship in the in vivo preparation. It is the aim of this paper to both review and extend our understanding of the link between stellate populations and their involvement in the commissural pathway by presenting an overview of the results attained in our recently expanded study. The sample of 17 intracellular and 34 extracellular onset chopper (O(C)) and late/ideal (On(L)/On(1)) neurons revealed antidromic activity in 31.4% of neurons following contralateral stimulation, providing physiological evidence that On(L)/On(1) neurons also contribute projections to the commissural connection. Alternatively, 64.7/0 of the 34 intracellularly-recorded chopper neurons displayed fast, monosynaptic inhibitory potentials. This commissural input was found to influence the timing of neural activity in chopper neurons, providing insight into the relationship that exists between T and D stellate neurons. (c) 2006 Elsevier B.V. All rights reserved.
C1 La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia.
   Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
   Bion Ear Inst, Melbourne, Vic 3002, Australia.
RP Paolini, AG (reprint author), La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia.
EM kneedham@bionicear.org; a.paolini@latrobe.edu.au
CR ADAMS JC, 1983, NEUROSCI LETT, V37, P205, DOI 10.1016/0304-3940(83)90431-7
   ADAMS JC, 1993, NATO ADV SCI INST SE, V239, P133
   Alibardi L, 1998, ANN ANAT, V180, P427
   Alibardi L, 2000, ANN ANAT, V182, P207, DOI 10.1016/S0940-9602(00)80023-0
   Alibardi L., 2000, Journal of Submicroscopic Cytology and Pathology, V32, P555
   ALTSCHULER RA, 1986, BRAIN RES, V369, P316, DOI 10.1016/0006-8993(86)90542-1
   Arnott RH, 2004, JARO-J ASSOC RES OTO, V5, P153, DOI 10.1007/s10162-003-4036-8
   Babalian AL, 1999, NEUROREPORT, V10, P1913, DOI 10.1097/00001756-199906230-00022
   Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038
   BLACKBURN CC, 1992, J NEUROPHYSIOL, V68, P124
   BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
   Cant NB, 1992, MAMMALIAN AUDITORY P, P66
   CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308
   CANT NB, 1981, NEUROSCIENCE, V6, P2643, DOI 10.1016/0306-4522(81)90109-3
   DAVIS KA, 2005, JARO-J ASSOC RES OTO, V6, P1
   Davis KA, 2000, J NEUROPHYSIOL, V83, P926
   Doucet JR, 1997, J COMP NEUROL, V385, P245
   Doucet JR, 1999, J COMP NEUROL, V408, P515
   FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102
   Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51
   GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206
   Jiang D, 1996, J NEUROPHYSIOL, V75, P380
   Joris PX, 1998, J NEUROSCI, V18, P10157
   Josephson EM, 1998, J NEUROCYTOL, V27, P841, DOI 10.1023/A:1006959532686
   Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G
   KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485
   KOLSTON J, 1992, ANAT EMBRYOL, V186, P443
   LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
   MAST TE, 1970, J NEUROPHYSIOL, V33, P108
   Needham K, 2003, J NEUROSCI, V23, P6357
   NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446
   OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112
   OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
   OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103
   Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6
   Palmer AR, 1996, J NEUROPHYSIOL, V75, P780
   Paolini AG, 2004, J NEUROPHYSIOL, V92, P2615, DOI 10.1152/jn.00327.2004
   Paolini AG, 2005, EUR J NEUROSCI, V21, P1236, DOI 10.1111/j.1460-9568.2005.03958.x
   Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347
   PEYRET D, 1987, ACTA OTO-LARYNGOL, V104, P71, DOI 10.3109/00016488709109049
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P493
   RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
   RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408
   SAINTMARIE RL, 1993, NATO ADV SCI INST SE, V239, P121
   Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5
   SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W
   Shore SE, 2003, EXP BRAIN RES, V153, P427, DOI 10.1007/s00221-003-1610-6
   Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407
   SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410
   WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X
   WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X
   WENTHOLD RJ, 1988, J COMP NEUROL, V276, P423, DOI 10.1002/cne.902760307
   WICKESBERG RE, 1990, J NEUROSCI, V10, P1762
   WINTER IM, 1995, J NEUROPHYSIOL, V73, P141
   WU SH, 1986, J NEUROSCI, V6, P2691
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
   YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1
NR 57
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 31
EP 42
DI 10.1016/j.heares.2006.01.016
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300005
PM 16554129
ER

PT J
AU Verhey, JL
   Winter, IM
AF Verhey, Jesko L.
   Winter, Ian M.
TI The temporal representation of the delay of iterated rippled noise with
   positive or negative gain by chopper units in the cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE multi-polar cell; pitch; inter-spike intervals; autocorrelation
ID AMPLITUDE-MODULATION; NEURONAL MECHANISMS; RESPONSE PROPERTIES; PITCH
   STRENGTH; COMPLEX TONES; TIME-DOMAIN; CLASSIFICATION; CHINCHILLA;
   REGULARITY; CAT
AB The role of chopper units in representing the pitch of complex sounds is unresolved. Traditionally chopper units have been regarded as primarily responding to the stimulus envelope of complex stimuli. This has been supported by the response of chopper units to iterated rippled noise (IRN) as they can provide a robust representation of the delay of IRN with positive gain (+) in their first-order interspike intervals and for some chopper units this representation is relatively level independent. The envelope modulation of IRN(+), and pitch, is at the reciprocal of the delay, the pitch of IRN with negative gain (IRN(-)) is often at twice the delay. This distinction between IRN(+) and IRN(-) can be used to help determine whether a unit is simply responding to modulation or to stimulus fine structure. Chopper units with relatively high best frequencies (1317) are unable to represent the distinction between IRN(+) and IRN(-). However, in this study it is shown that at least some chopper units, with low BFs (< 1.25 kHz), can represent the pitch of the IRN(-) as perceived perceptually. (c) 2006 Elsevier B.V. All rights reserved.
C1 Ctr Neural Basis Hearing, Physiol Lab, Cambridge CB2 3EG, England.
   Univ Oldenburg, D-26111 Oldenburg, Germany.
RP Winter, IM (reprint author), Ctr Neural Basis Hearing, Physiol Lab, Downing St, Cambridge CB2 3EG, England.
EM imw1001@cam.ac.uk
CR BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
   FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z
   KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S
   LANGNER G, 1981, EXP BRAIN RES, V44, P450
   LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799
   Louage DHG, 2005, J NEUROSCI, V25, P1560, DOI 10.1523/JNEUROSCI.4742-04.2005
   MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084
   Neuert V, 2005, J NEUROPHYSIOL, V93, P2766, DOI 10.1152/jn.00774.2004
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797
   Shofner WP, 1999, J NEUROPHYSIOL, V81, P2662
   SHOFNER WP, 1991, J ACOUST SOC AM, V90, P2450, DOI 10.1121/1.402049
   TENKATE JH, 1988, J ACOUST SOC AM, V84, P2092, DOI 10.1121/1.397054
   Wiegrebe L, 2001, J NEUROPHYSIOL, V85, P1206
   WIEGREBE L, 2001, PHYSL PSYCHOPHYSICAL
   Wiegrebe L, 2004, J ACOUST SOC AM, V115, P1207, DOI 10.1121/1.1643359
   Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x
   Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
   Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
   Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873
   YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1
NR 23
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 43
EP 51
DI 10.1016/j.heares.2006.02.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300006
PM 16716545
ER

PT J
AU McGinley, MJ
   Oertel, D
AF McGinley, Matthew J.
   Oertel, Donata
TI Rate thresholds determine the precision of temporal integration in
   principal cells of the ventral cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE ventral cochlear nucleus; synaptic integration; temporal coding;
   temporal summation; integration window; action potential generation;
   current ramp
ID AUDITORY-NERVE FIBERS; CA1 PYRAMIDAL NEURONS; RESPONSE PROPERTIES;
   OCTOPUS CELLS; HORSERADISH-PEROXIDASE; LATERAL LEMNISCUS; COINCIDENCE
   DETECTION; POTASSIUM CURRENTS; OUTWARD CURRENTS; UNIT RESPONSES
AB The three types of principal cells of the ventral cochlear nucleus (VCN), bushy, octopus, and T stellate, differ in the detection of coincidence among synaptic inputs. To explore the role of the action-potential-generation mechanism in the detection of coincident inputs, we examined responses to depolarizing currents that increased at varying rates. To fire an action potential, bushy cells, likely of the globular subtype, had to be depolarized faster than 4.8 +/- 2.8 mV/ms, octopus cells faster than 9.5 +/- 3.6 mV/ms, and T stellate cells fired irrespective of the rate of depolarization. The threshold rate of depolarization permitted definition of a time window over which depolarization could contribute to generating action potentials. This integration window differed between cell types. It was 5.3 +/- 1.8 ms for bushy cells and 1.4 +/- 0.3 ms for octopus cells. T Stellate cells fired action potentials in response to even slow depolarizations, showing that their integration window was unlimited so that temporal summation in these cells is limited by the time course of synaptic potentials. The rate of depolarization threshold in octopus and bushy cells was decreased by alpha-dendrotoxin while T stellate cells were largely insensitive to ot-dendrotoxin indicating that low-voltage-activated K(+) conductances (g(KL)) are important determinants of the integration window. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA.
RP Oertel, D (reprint author), Univ Wisconsin, Dept Physiol, 1300 Univ Ave, Madison, WI 53706 USA.
EM oertel@physiology.wisc.edu
CR Adams JC, 1997, AUDIT NEUROSCI, V3, P335
   ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108
   Azouz R, 2000, P NATL ACAD SCI USA, V97, P8110, DOI 10.1073/pnas.130200797
   Azouz R, 2003, NEURON, V37, P513, DOI 10.1016/S0896-6273(02)01186-8
   Bair W, 2004, J NEUROSCI, V24, P7305, DOI 10.1523/JNEUROSCI.0554-04.2004
   Bal R, 2000, J NEUROPHYSIOL, V84, P806
   Bal R, 2001, J NEUROPHYSIOL, V86, P2299
   Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x
   BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
   BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302
   Brew HM, 2005, HEARING RES, V206, P116, DOI 10.1016/j.heares.2004.12.012
   Brew HM, 1995, J NEUROSCI, V15, P8011
   Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568
   CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7
   CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406
   CAO X, 2006, ASS RES OTOLARYNGOL, P29
   Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004
   Carney LH, 1998, J NEUROSCI, V18, P1096
   Carney LH, 1999, CURR OPIN NEUROBIOL, V9, P442, DOI 10.1016/S0959-4388(99)80066-X
   Dodson PD, 2002, J NEUROSCI, V22, P6953
   Doucet JR, 1997, J COMP NEUROL, V385, P245
   Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001
   Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51
   FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P143, DOI 10.1098/rspb.1993.0021
   Fujino K, 2001, J NEUROSCI, V21, P7372
   Gardner SM, 1999, J NEUROSCI, V19, P8721
   GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409
   GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206
   GOLDING NL, 1995, J NEUROSCI, V15, P3138
   Golding NL, 1999, J NEUROSCI, V19, P2897
   GRISSMER S, 1994, MOL PHARMACOL, V45, P1227
   HOPKINS WF, 1994, PFLUG ARCH EUR J PHY, V428, P382, DOI 10.1007/BF00724522
   Hopkins WF, 1998, J PHARMACOL EXP THER, V285, P1051
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037
   Koch C, 1996, CEREB CORTEX, V6, P93, DOI 10.1093/cercor/6.2.93
   Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199
   LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205
   Magee JC, 1998, J NEUROSCI, V18, P7613
   Mainen ZF, 1995, NEURON, V15, P1427, DOI 10.1016/0896-6273(95)90020-9
   MANIS PB, 1991, J NEUROSCI, V11, P2865
   MCGINLEY MJ, 2005, ASS RES OTOLARYNGOL, P28
   Migliore M, 2003, J COMPUT NEUROSCI, V14, P185, DOI 10.1023/A:1021906818333
   Mittmann W, 2005, J PHYSIOL-LONDON, V563, P369, DOI 10.1113/jphysiol.2004.075028
   MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812
   MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574
   MOLLER AR, 1971, ACTA PHYSIOL SCAND, V81, P540, DOI 10.1111/j.1748-1716.1971.tb04931.x
   MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542
   MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x
   OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112
   OERTEL D, 1985, J ACOUST SOC AM, V78, P328, DOI 10.1121/1.392494
   OERTEL D, 1983, J NEUROSCI, V3, P2043
   Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773
   Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821
   OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
   Owen DG, 1997, BRIT J PHARMACOL, V120, P1029, DOI 10.1038/sj.bjp.0701004
   PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667
   Pouille F, 2001, SCIENCE, V293, P1159, DOI 10.1126/science.1060342
   PRICE GR, 1978, J ACOUST SOC AM, V64, P1400, DOI 10.1121/1.382106
   Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824
   RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
   RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408
   Rodrigues ARA, 2006, J NEUROPHYSIOL, V95, P76, DOI 10.1152/jn.00624.2005
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3083, DOI 10.1152/jn.00126.2002
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002
   Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1
   SCHOFIELD BR, 1995, J COMP NEUROL, V360, P135, DOI 10.1002/cne.903600110
   Schwarz DWF, 1997, HEARING RES, V114, P127, DOI 10.1016/S0378-5955(97)00162-7
   Scott LL, 2005, J NEUROSCI, V25, P7887, DOI 10.1523/JNEUROSCI.1016-05.2005
   Sekerli M, 2004, IEEE T BIO-MED ENG, V51, P1665, DOI 10.1109/TBME.2004.827531
   SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305
   Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407
   SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410
   SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349
   Soares D, 2002, J NEUROPHYSIOL, V88, P152, DOI 10.1152/jn.00674.2001
   Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533
   SPIROU GA, 2005, SOC NEUROSCI ABSTR
   Svirskis G, 2003, BIOL CYBERN, V89, P333, DOI 10.1007/s00422-003-0438-2
   Svirskis G, 2003, NETWORK-COMP NEURAL, V14, P137, DOI 10.1088/0954-898X/14/1/308
   Svirskis G, 2004, J NEUROPHYSIOL, V91, P2465, DOI 10.1152/jn.00717.2003
   TOLBERT LP, 1982, NEUROSCIENCE, V7, P3031, DOI 10.1016/0306-4522(82)90228-7
   Trussell LO, 1997, CURR OPIN NEUROBIOL, V7, P487, DOI 10.1016/S0959-4388(97)80027-X
   Wang FC, 1999, EUR J BIOCHEM, V263, P230, DOI 10.1046/j.1432-1327.1999.00493.x
   WANG H, 1994, J NEUROSCI, V14, P4588
   WHITE JA, 1994, J NEUROPHYSIOL, V71, P1774
   WINTER IM, 1990, J ACOUST SOC AM, V88, P1437, DOI 10.1121/1.399720
   WU SH, 1987, HEARING RES, V30, P99
   WU SH, 1995, J NEUROPHYSIOL, V73, P780
   WU SH, 1984, J NEUROSCI, V4, P1577
   Zhang XD, 2005, NEURAL COMPUT, V17, P2571, DOI 10.1162/089976605774320584
   Zhao M, 2001, J COMP NEUROL, V433, P255, DOI 10.1002/cne.1139
NR 91
TC 42
Z9 42
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 52
EP 63
DI 10.1016/j.heares.2006.02.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300007
PM 16647828
ER

PT J
AU Cant, NB
   Benson, CG
AF Cant, Nell B.
   Benson, Christina G.
TI Wisteria floribunda lectin is associated with specific cell types in the
   ventral cochlear nucleus of the gerbil, Meriones unguiculatus
SO HEARING RESEARCH
LA English
DT Article
DE auditory system; octopus cells; multipolar cells; perineuronal nets
ID CALCIUM-BINDING PROTEINS; AUDITORY BRAIN-STEM; CHONDROITIN SULFATE
   PROTEOGLYCANS; TERMINAL N-ACETYLGALACTOSAMINE; GLUTAMATE-RECEPTOR
   SUBUNITS; CENTRAL-NERVOUS-SYSTEM; PERINEURONAL NETS; OCTOPUS CELLS;
   EXTRACELLULAR-MATRIX; POTASSIUM CHANNEL
AB The cochlear nucleus is made up of a number of diverse cell types with different anatomical and physiological properties. A plant lectin, Wisteria floribunda agglutinin, that recognizes specific carbohydrate residues in the extracellular matrix binds to some cell types in the ventral cochlear nucleus but not to cells in the dorsal cochlear nucleus. In the ventral cochlear nucleus, the most intensely labeled cells are octopus cells, a subset of multipolar cells and cochlear root neurons. The multipolar cells that are labeled may correspond to the population that projects to the inferior colliculus. (c) 2006 Elsevier B.V. All rights reserved.
C1 Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA.
RP Cant, NB (reprint author), Duke Univ, Med Ctr, Dept Neurobiol, POB 3209,213 Bryan Res Bldg, Durham, NC 27710 USA.
EM nellcant@neuro.duke.edu
CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253
   ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305
   Adams JC, 1997, AUDIT NEUROSCI, V3, P335
   ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775
   ARAI R, 1991, J COMP NEUROL, V310, P21, DOI 10.1002/cne.903100105
   Bal R, 2000, J NEUROPHYSIOL, V84, P806
   Bal R, 2001, J NEUROPHYSIOL, V86, P2299
   Bandtlow CE, 2000, PHYSIOL REV, V80, P1267
   Bertolotto A, 1996, CELL TISSUE RES, V283, P283, DOI 10.1007/s004410050538
   Bilak MM, 1996, NEUROSCIENCE, V75, P1075, DOI 10.1016/0306-4522(96)00197-2
   BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302
   Braz JM, 2002, P NATL ACAD SCI USA, V99, P15148, DOI 10.1073/pnas.222546999
   Brown MC, 2003, EXP BRAIN RES, V153, P491, DOI 10.1007/s00221-003-1679-y
   Bruckner G, 2004, J MOL HISTOL, V35, P115
   Bruckner G, 2000, J COMP NEUROL, V428, P616, DOI 10.1002/1096-9861(20001225)428:4<616::AID-CNE3>3.0.CO;2-K
   Bruckner G, 1998, ANAT EMBRYOL, V197, P249, DOI 10.1007/s004290050135
   BRUCKNER G, 1994, BRAIN RES, V658, P67
   Burette A, 2001, J COMP NEUROL, V431, P1, DOI 10.1002/1096-9861(20010226)431:1<1::AID-CNE1051>3.0.CO;2-E
   Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   Cant NB, 1992, MAMMALIAN AUDITORY P, P66
   CANT NB, 2006, IN PRESS J COMP NEUR
   Celio MR, 1998, TRENDS NEUROSCI, V21, P510, DOI 10.1016/S0166-2236(98)01298-3
   CELIO MR, 1994, BRAIN RES REV, V19, P128, DOI 10.1016/0165-0173(94)90006-X
   Doucet JR, 1997, J COMP NEUROL, V385, P245
   Doucet JR, 1999, J COMP NEUROL, V408, P515
   FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102
   Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001
   Laabs T, 2005, CURR OPIN NEUROBIOL, V15, P116, DOI 10.1016/j.conb.2005.01.014
   Ginsberg SD, 2005, J COMP NEUROL, V487, P107, DOI 10.1002/cne.20535
   GLEICH O, 1994, HEARING RES, V78, P49, DOI 10.1016/0378-5955(94)90043-4
   Golding NL, 1999, J NEUROSCI, V19, P2897
   Gray D, 1999, J COMP NEUROL, V409, P452, DOI 10.1002/(SICI)1096-9861(19990705)409:3<452::AID-CNE9>3.0.CO;2-I
   Halpern M, 1998, MICROSC RES TECHNIQ, V41, P519, DOI 10.1002/(SICI)1097-0029(19980615)41:6<519::AID-JEMT7>3.3.CO;2-C
   HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303
   HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103
   Hartig W, 2001, BRAIN RES, V899, P123, DOI 10.1016/S0006-8993(01)02211-9
   Hartig W, 1999, BRAIN RES, V842, P15, DOI 10.1016/S0006-8993(99)01784-9
   Hilbig H, 2001, ANAT EMBRYOL, V203, P45, DOI 10.1007/s004290000135
   Horn AK, 2003, J COMP NEUROL, V455, P341, DOI 10.1002/cne.10495
   HUNTER C, 1993, J NEUROSCI, V13, P1932
   Kleene R, 2004, NAT REV NEUROSCI, V5, P195, DOI 10.1038/nrn1349
   Korada S, 2000, HEARING RES, V140, P23, DOI 10.1016/S0378-5955(99)00182-3
   Lander C, 1997, J NEUROSCI, V17, P1928
   Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E
   Luo L, 1999, NAT MED, V5, P117, DOI 10.1038/4806
   Lurie DI, 1997, J COMP NEUROL, V380, P319, DOI 10.1002/(SICI)1096-9861(19970414)380:3<319::AID-CNE3>3.0.CO;2-5
   Matthews RT, 2002, J NEUROSCI, V22, P7536
   McInvale AC, 2002, J COMP NEUROL, V450, P382, DOI 10.1002/cne.10328
   Miesenbock G, 2005, ANNU REV NEUROSCI, V28, P533, DOI 10.1146/annurev.neuro.28.051804.101610
   Mojsilovic-Petrovic J, 2004, J NEUROSCI METH, V133, P39, DOI 10.1016/j.jneumeth.2003.09.026
   Møller A R, 2001, Am J Audiol, V10, P68, DOI 10.1044/1059-0889(2001/012)
   MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306
   MOORE JK, 1986, NEUROBIOLOGY HEARING, P283
   Morawski M, 2004, EXP NEUROL, V188, P309, DOI 10.1016/j.expneurol.2004.04.017
   Morris NP, 2000, EUR J NEUROSCI, V12, P828, DOI 10.1046/j.1460-9568.2000.00970.x
   NAKAGAWA F, 1986, J COMP NEUROL, V243, P280, DOI 10.1002/cne.902430210
   NAKAGAWA F, 1986, J NEUROCYTOL, V15, P389, DOI 10.1007/BF01611440
   OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407
   OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103
   Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6
   Perney TM, 1997, J COMP NEUROL, V386, P178
   Preuss TM, 1998, SOMATOSENS MOT RES, V15, P211, DOI 10.1080/08990229870772
   Rauch U, 1997, CELL TISSUE RES, V290, P349, DOI 10.1007/s004410050940
   Richter E, 1983, Adv Otorhinolaryngol, V31, P59
   ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207
   Romand R, 1997, CENTRAL AUDITORY SYS, P97
   Rosenberger MH, 2003, J COMP NEUROL, V462, P101, DOI 10.1002/cne.10713
   Ruoslahti E, 1996, GLYCOBIOLOGY, V6, P489, DOI 10.1093/glycob/6.5.489
   RYUGO DK, 1995, J COMP NEUROL, V358, P102, DOI 10.1002/cne.903580107
   Salazar I, 1998, ANAT EMBRYOL, V198, P331, DOI 10.1007/s004290050188
   SEEGER G, 1994, NEUROSCIENCE, V58, P371, DOI 10.1016/0306-4522(94)90044-2
   Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407
   SPICER SS, 1992, J HISTOCHEM CYTOCHEM, V40, P1
   Spicer SS, 1996, J COMP NEUROL, V365, P217, DOI 10.1002/(SICI)1096-9861(19960205)365:2<217::AID-CNE2>3.0.CO;2-8
   THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209
   VENSTROM KA, 1993, FASEB J, V7, P996
   WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X
   WICKESBERG RE, 1991, J COMP NEUROL, V313, P457, DOI 10.1002/cne.903130306
   Wright DD, 1996, J COMP NEUROL, V364, P729, DOI 10.1002/(SICI)1096-9861(19960122)364:4<729::AID-CNE10>3.0.CO;2-K
   Yamaguchi Y, 2000, CELL MOL LIFE SCI, V57, P276, DOI 10.1007/PL00000690
   Young E.D., 2004, SYNAPTIC ORG BRAIN, P125
NR 82
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 64
EP 72
DI 10.1016/j.heares.2006.01.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300008
PM 16497454
ER

PT J
AU Schofield, BR
   Coomes, DL
AF Schofield, Brett R.
   Coomes, Diana L.
TI Pathways from auditory cortex to the cochlear nucleus in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE inferior colliculus; superior olivary complex; descending pathways;
   efferent system
ID SUPERIOR OLIVARY COMPLEX; INFERIOR COLLICULUS; DESCENDING PROJECTIONS;
   TRAPEZOID BODY; FINE-STRUCTURE; LARGE NEURONS; BRAIN-STEM; RAT;
   ORGANIZATION; CELLS
AB The inferior colliculus (IC) and superior olivary complex (SOC) are important sources of descending pathways to the cochlear nucleus. The IC and SOC are also targets of direct projections from the auditory cortex but it is not known if cortical axons contact the cells that project to the cochlear nucleus. Multi-labeling techniques were used to address this question in guinea pigs. A fluorescent anterograde tracer was injected into temporal cortex to label corticofugal axons. Different fluorescent tracers were injected into one or both cochlear nuclei to label olivary and collicular cells. The brain was subsequently processed for fluorescence microscopy and the IC and SOC were examined for apparent contacts between cortical axons and retrogradely labeled cells. The results suggest that cortical axons contact cochlear nucleus-projecting cells in both IC and SOC. In both regions, contacts were more numerous on the side ipsilateral to the injected cortex. In the IC, the contacted cells projected ipsilaterally or contralaterally to the CN. In the SOC, the contacted cells projected ipsilaterally, contralaterally or bilaterally to the CN. We conclude that auditory cortex is in a position to modulate descending pathways from both the IC and SOC to the cochlear nucleus. (c) 2006 Elsevier B.V. All rights reserved.
C1 Northeastern Ohio Univ Coll Med & Pharm, Dept Neurobiol, Rootstown, OH 44272 USA.
RP Schofield, BR (reprint author), Northeastern Ohio Univ Coll Med & Pharm, Dept Neurobiol, 4209 State Route 44,POB 95, Rootstown, OH 44272 USA.
EM bschofie@neoucom.edu
CR Alibardi L, 1999, J BRAIN RES, V39, P429
   Alibardi L, 2000, EUR J HISTOCHEM, V44, P365
   ASCHOFF A, 1988, EXP BRAIN RES, V71, P241
   Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7
   BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307
   Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x
   Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009
   COOMES DL, 2002, ASS RES OTOLARYNGOL, V25, P114
   Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x
   COOMES DL, 2003, ASS RES OTOLARYNGOL, V26, P93
   DESMEDT JE, 1960, NEURAL MECH AUDITORY, P152
   DEWSON JAMES H., 1966, BRAIN RES, V2, P151, DOI 10.1016/0006-8993(66)90020-5
   Doucet JR, 2003, EXP BRAIN RES, V153, P461, DOI 10.1007/s00221-003-1604-4
   Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6
   FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
   Helfert RH, 1997, CENTRAL AUDITORY SYS, P193
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2
   Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8
   MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112
   MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4
   Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
   Ostapoff EM, 1997, J COMP NEUROL, V381, P500, DOI 10.1002/(SICI)1096-9861(19970519)381:4<500::AID-CNE9>3.0.CO;2-6
   RYAN AF, 1984, J NEUROSCI, V4, P298
   SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153
   Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003
   SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403
   Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402
   Schofield BR, 2005, HEARING RES, V206, P3, DOI 10.1016/j.heares.2005.03.005
   Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X
   Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A
   SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107
   SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N
   Shore SE, 1998, HEARING RES, V116, P33, DOI 10.1016/S0378-5955(97)00207-4
   Spangler K., 1991, NEUROBIOLOGY HEARING, P27
   Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222
   SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3
   Thompson AM, 2005, INFERIOR COLLICULUS, P182, DOI 10.1007/0-387-27083-3_6
   THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309
   Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X
   Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X
   VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U
   Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9
   Wallace MN, 2000, NEUROREPORT, V11, P3989, DOI 10.1097/00001756-200012180-00017
   Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0
   Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
   Weedman DL, 1996, J COMP NEUROL, V371, P311
   Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8
   WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110
NR 51
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 81
EP 89
DI 10.1016/j.heares.2006.01.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300010
PM 16874906
ER

PT J
AU Shore, SE
   Zhou, JX
AF Shore, Susan E.
   Zhou, Jianxun
TI Somatosensory influence on the cochlear nucleus and beyond
SO HEARING RESEARCH
LA English
DT Article
DE auditory; cochlear nucleus; pathways; trigeminal; reticular formation;
   somatosensory; non-auditory projections
ID TRIGEMINAL GANGLION STIMULATION; GUINEA-PIG; INFERIOR COLLICULUS;
   HORSERADISH-PEROXIDASE; FUNCTIONAL-ORGANIZATION; SUBNUCLEUS
   INTERPOLARIS; MICROSCOPIC FEATURES; RETROGRADE TRANSPORT;
   RETICULAR-FORMATION; EXTERNAL NUCLEUS
AB Interactions between somatosensory and auditory systems occur at peripheral levels in the central nervous system. The cochlear nucleus (CN) receives innervation from trigeminal sensory structures: the ophthalmic division of the trigerninal ganglion and the caudal and interpolar regions of the spinal trigerninal nucleus (Sp51 and Sp5C). These projections terminate primarily in the granule cell domain, but also in magnocellular regions of the ventral and dorsal CN. Additionally, new evidence is presented demonstrating that cells in the lateral paragiganticular regions of the reticular formation (RE) also project to the CN. Not unlike the responses obtained from electrically stimulating the trigeminal system, stimulating RF regions can also result in excitation/inhibition of dorsal CN neurons. The origins and central connections of these projection neurons are associated with systems controlling vocalization and respiration. Electrical stimulation of trigeminal and RF projection neurons can suppress acoustically driven activity of not only CN neurons, but also neurons in the inferior colliculus. Together with the anatomical observations, these physiological observations suggest that one function of somatosensory input to the auditory system is to suppress responses to "expected" body-generated sounds such as vocalization or respiration. This would serve to enhance responses to "unexpected" external ly-generated sounds, such as the vocalizations of other animals. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Ann Arbor, MI 48109 USA.
RP Shore, SE (reprint author), Univ Michigan, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM sushore@umich.edu
CR Aigner M, 1997, J COMP NEUROL, V380, P16, DOI 10.1002/(SICI)1096-9861(19970331)380:1<16::AID-CNE2>3.0.CO;2-W
   AITKIN LM, 1978, J NEUROPHYSIOL, V41, P837
   AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104
   Bell C, 1997, BRAIN BEHAV EVOLUT, V50, P17, DOI 10.1159/000113352
   BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
   BURIAN M, 1989, ARCH OTO-RHINO-LARYN, V246, P238, DOI 10.1007/BF00463563
   BUTTNERENNEVER J, 1986, PROG BRAIN RES, V64, P89
   DARIANSMITH I, 1963, J PHYSIOL-LONDON, V168, P129
   Davis KA, 1996, J NEUROPHYSIOL, V76, P3012
   Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002
   Eliades SJ, 2005, CEREB CORTEX, V15, P1510, DOI 10.1093/cercor/bhi030
   Golding NL, 1997, J NEUROPHYSIOL, V78, P248
   GSTOETTNER W, 1991, NEUROSCI LETT, V122, P163, DOI 10.1016/0304-3940(91)90848-N
   HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
   Haenggeli CA, 2005, J COMP NEUROL, V484, P191, DOI 10.1002/cne.20466
   HAYASHI H, 1984, J NEUROPHYSIOL, V51, P890
   HIRABA K, 1988, J NEUROPHYSIOL, V60, P1333
   ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
   JACQUIN MF, 1989, J COMP NEUROL, V282, P45, DOI 10.1002/cne.902820105
   Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077
   Joris PX, 1998, J NEUROSCI, V18, P3955
   Jurgens U, 2002, NEUROSCI BIOBEHAV R, V26, P235, DOI 10.1016/S0149-7634(01)00068-9
   Kanold PO, 2001, J NEUROSCI, V21, P7848
   KEVETTER GA, 1989, BRAIN BEHAV EVOLUT, V34, P193, DOI 10.1159/000116505
   KOHLER S, 2005, TEMPORAL EFFECTS TRI
   MONTGOMERY JC, 1994, NEUROSCI LETT, V174, P145, DOI 10.1016/0304-3940(94)90007-8
   MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406
   MUGNAINI E, 1980, J NEUROCYTOL, V9, P537, DOI 10.1007/BF01204841
   NAZRUDDIN S S, 1989, Brain Research, V490, P219
   OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112
   Ohlrogge M, 2001, J COMP NEUROL, V436, P290
   PARHAM K, 1995, J NEUROPHYSIOL, V73, P550
   Populin LC, 2002, J NEUROSCI, V22, P2826
   PORTER JD, 1982, J COMP NEUROL, V204, P56, DOI 10.1002/cne.902040107
   RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407
   RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5
   ROMFH JH, 1979, EXP NEUROL, V65, P99, DOI 10.1016/0014-4886(79)90251-6
   Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0
   Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
   Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x
   SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110
   Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667
   SUEMUNE S, 1992, BRAIN RES, V586, P162, DOI 10.1016/0006-8993(92)91389-V
   TAKEMURA M, 1991, EXP NEUROL, V111, P324, DOI 10.1016/0014-4886(91)90099-X
   Tammer R, 2004, BEHAV BRAIN RES, V151, P331, DOI 10.1016/j.bbr.2003.09.008
   Usunoff K.G., 1997, ADV ANAT EMBRYOL CEL, V136, P1
   Vass Z, 1998, NEUROSCIENCE, V84, P559, DOI 10.1016/S0306-4522(97)00503-4
   Vass Z, 1997, NEUROSCIENCE, V79, P605, DOI 10.1016/S0306-4522(96)00641-0
   WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3
   Wolff A, 1997, NEUROSCI LETT, V221, P125, DOI 10.1016/S0304-3940(96)13305-X
   Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L
   Young E. D., 1998, SYNAPTIC ORG BRAIN, P121
   YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743
   Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883
   Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343
   Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863
NR 56
TC 51
Z9 53
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 90
EP 99
DI 10.1016/j.heares.2006.01.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300011
PM 16513306
ER

PT J
AU Ryugo, DK
   Montey, KL
   Wright, AL
   Bennett, ML
   Pongstaporn, T
AF Ryugo, D. K.
   Montey, K. L.
   Wright, A. L.
   Bennett, M. L.
   Pongstaporn, T.
TI Postnatal development of a large auditory nerve terminal: The endbulb of
   Held in cats
SO HEARING RESEARCH
LA English
DT Article
DE hearing; postsynaptic densities; puncta adherentia; synapses; synaptic
   vesicles
ID ANTEROVENTRAL COCHLEAR NUCLEUS; DEAF WHITE CATS; PRIMARY AXOSOMATIC
   ENDINGS; SPHERICAL BUSHY CELLS; FINE-STRUCTURE; ULTRASTRUCTURAL
   ANALYSIS; VENTRAL COCHLEAR; BRAIN-STEM; SEQUENTIAL ALTERATIONS; NEURONAL
   ARCHITECTURE
AB The endbulbs of Held are formed by the ascending branches of myelinated auditory nerve fibers and represent one of the largest synaptic endings in the brain. Most of the developmental changes in structure occur during the first 30 postnatal days of age. The neonatal endbulb begins as a flattened expansion with many filopodia, resembling a growth cone and characterized by numerous puncta adherentia and synapses associated with small postsynaptic densities; the most impressive feature of the ending at this age is its highly irregular plasma membrane that interdigitates with that of the postsynaptic spherical bushy cell. During these first 30 days, the number of puncta adherentia diminishes, postsynaptic densities nearly double in size, intermembraneous cisternae emerge, and plasma membranes flatten. These features endow the endbulb with an adult-like appearance. On the other hand, synaptic vesicle density increases progressively from approximately 50/mu m(2) at birth to 100/mu m(2) at adulthood. Mitochondria size remains constant over this developmental period but mitochondrial volume fraction increases until 60 days postnatal. Although many features of endbulb morphology stabilize by 30 days, other features suggest that endbulb development continues into the third month of age. Many of these observations correlate with the maturation of physiological response properties and suggest issues for further study. (c) 2006 Elsevier B.V. All rights reserved.
C1 Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
   Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Neurosci, Baltimore, MD 21205 USA.
RP Ryugo, DK (reprint author), Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave,Traylor Res Bldg,Room 510, Baltimore, MD 21205 USA.
EM dryugo@bme.jhu.edu
CR Ahmari SE, 2000, NAT NEUROSCI, V3, P445
   BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406
   BRUGGE JF, 1981, HEARING RES, V5, P217, DOI 10.1016/0378-5955(81)90047-2
   BRUGGE JF, 1978, J NEUROPHYSIOL, V41, P1557
   CAJAL SRY, 1909, HISTOLOGIE SYSTEME N, V1, P754
   CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6
   Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-#
   CARR CE, 1990, J NEUROSCI, V10, P3227
   Dunn ME, 1998, ANAT EMBRYOL, V197, P9
   FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311
   Friedman HV, 2000, NEURON, V27, P57, DOI 10.1016/S0896-6273(00)00009-X
   Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
   GENTSCHE.T, 1973, BRAIN RES, V62, P37, DOI 10.1016/0006-8993(73)90618-5
   GULLEY RL, 1977, J CELL BIOL, V75, P837, DOI 10.1083/jcb.75.3.837
   HELD H, 1918, ARCH ANAT PHYSL ANAT, P302
   IBATA Y, 1976, J NEUROCYTOL, V5, P395, DOI 10.1007/BF01181647
   JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X
   JHAVERI S, 1982, NEUROSCIENCE, V7, P855, DOI 10.1016/0306-4522(82)90047-1
   Jontes JD, 2000, NAT NEUROSCI, V3, P231
   KETTNER RE, 1985, J NEUROSCI, V5, P275
   KOPPL C, 1994, J COMP NEUROL, V339, P438, DOI 10.1002/cne.903390310
   Koppl C, 1997, J COMP NEUROL, V378, P265
   Larramendi L. M., 1969, NEUROBIOLOGY CEREBEL, P803
   Leake PA, 2002, J COMP NEUROL, V448, P6, DOI 10.1002/cne.10176
   Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14
   Lendvai B, 2000, NATURE, V404, P876, DOI 10.1038/35009107
   LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205
   LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6
   LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757
   Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
   Lorente de No R, 1981, PRIMARY ACOUSTIC NUC
   Lorente de No R, 1933, LARYNGOSCOPE, V43, P327
   Lu B, 2004, PROG BRAIN RES, V146, P137, DOI 10.1016/S0079-6123(03)46010-X
   MOLNAR CE, 1968, PR INST ELECTR ELECT, V56, P993, DOI 10.1109/PROC.1968.6450
   Morara S, 2001, NEUROSCIENCE, V108, P655, DOI 10.1016/S0306-4522(01)00433-X
   MUGNAINI E, 1969, NEUROBIOLOGY CEREBEL, P749
   NEISES GR, 1982, ANAT REC, V204, P271, DOI 10.1002/ar.1092040312
   Nicol MJ, 2002, J PHYSIOL-LONDON, V539, P713, DOI 10.1013/jphysiol.2001.012972
   Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652
   Peters A, 1991, FINE STRUCTURE NERVO, V3rd
   PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220
   PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667
   Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5
   ROMAND R, 1984, EXP BRAIN RES, V56, P395
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2
   RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304
   Ryugo DK, 2003, HEARING RES, V181, P73, DOI 10.1016/S0378-5955(03)00171-0
   RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105
   Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419
   Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2
   Ryugo DK, 1996, J COMP NEUROL, V365, P141, DOI 10.1002/(SICI)1096-9861(19960129)365:1<141::AID-CNE11>3.0.CO;2-T
   SENTO S, 1989, J COMP NEUROL, V280, P553, DOI 10.1002/cne.902800406
   SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
   Snyder RL, 1997, J COMP NEUROL, V384, P293, DOI 10.1002/(SICI)1096-9861(19970728)384:2<293::AID-CNE9>3.0.CO;2-X
   SPOENDLIN H, 1973, P185
   Suter DM, 2000, J NEUROBIOL, V44, P97, DOI 10.1002/1097-4695(200008)44:2<97::AID-NEU2>3.0.CO;2-U
   Trussell LO, 2002, CURR OPIN NEUROBIOL, V12, P400, DOI 10.1016/S0959-4388(02)00335-5
   VAUGHN JE, 1989, SYNAPSE, V3, P255, DOI 10.1002/syn.890030312
   WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461
   WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2
   WALSH EJ, 1988, HEARING RES, V36, P233, DOI 10.1016/0378-5955(88)90065-2
   Walsh Edward J., 1992, P161
   Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005
   Wang YX, 1998, J NEUROSCI, V18, P1148
NR 65
TC 19
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 100
EP 115
DI 10.1016/j.heares.2006.01.007
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300012
PM 16497457
ER

PT J
AU Feng, JJ
   Morest, DK
AF Feng, Jane J.
   Morest, D. Kent
TI Development of synapses and expression of a voltage-gated potassium
   channel in chick embryonic auditory nuclei
SO HEARING RESEARCH
LA English
DT Article
DE Kv3.1; translocation; nucleus magnocellularis; nucleus laminaris;
   astrocyte; axon initial segment
ID FREQUENCY FIRING NEURONS; BRAIN-STEM; N-MAGNOCELLULARIS; COCHLEAR
   NUCLEUS; UP-REGULATION; KV3 CHANNELS; K+ CHANNELS; SYSTEM; LAMINARIS;
   CURRENTS
AB The potassium channel protein, Kv3.1, is abundantly expressed in the chick auditory pathway. Its b-isoform is found in nucleus magnocellularis, which receives the cochlear input, both before and after the establishment of synaptic connections. It is also present in cell cultures in the absence of any peripheral input. However, the expression of this isoform in the embryo has been shown to increase with development. Here, we address the question of the correlation between maturation of synapses in the auditory pathway and the pattern of expression of the b-isoform in a series of embryos prepared for immunohistochemistry at Hamburger-Hamilton stages equivalent to E10, E12, E14, and E17. We show here that this subunit translocates from the perinuclear cytoplasm to the cell membrane domain in nucleus magnocellularis at the time that cochlear nerve endings emerge as endbulbs of Held (E17). In nucleus laminaris, by this time, while abundant Kv3.1b occurs in the perinuclear cytoplasm, a translocation to the cell membrane domain has not yet occurred, and the mature peri-synaptic localization is delayed to a later stage. This difference suggests a hierarchy in the developmental expression of Kv3.1. An unexpected finding is the expression of the a-isoform of Kv3.1 in astrocytes, especially those which surround the developing nuclei and their connecting fibers. We also report here for the first time the presence of Kv3.1b in the initial segments of axons at the times when they begin to form. Our observations suggest that the Kv3.1 channel protein is regulated through mechanisms linked to the development of synaptic activity. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA.
   So Connecticut State Univ, Dept Biol, New Haven, CT 06515 USA.
RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA.
EM kentmorest@neuron.uchc.edu
CR Anderova M, 2004, GLIA, V48, P311, DOI 10.1002/glia.20076
   Bekar LK, 2002, GLIA, V39, P207, DOI 10.1002/glia.10096
   BOOK KJ, 1991, EXP NEUROL, V111, P228, DOI 10.1016/0014-4886(91)90011-Z
   Brenowitz S, 2001, J NEUROSCI, V21, P9487
   Brew HM, 1995, J NEUROSCI, V15, P8011
   Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-#
   Carr CE, 2001, CURR OPIN NEUROBIOL, V11, P727, DOI 10.1016/S0959-4388(01)00276-8
   Chung S, 1998, NEUROSCI LETT, V242, P73, DOI 10.1016/S0304-3940(98)00029-9
   Cramer KS, 2000, DEV BIOL, V224, P138, DOI 10.1006/dbio.2000.9779
   Devaux J, 2003, J NEUROSCI, V23, P4509
   Elezgarai I, 2003, NEUROSCIENCE, V118, P889, DOI 10.1016/S0306-4522(03)00068-X
   Feng J, 2001, J NEUROSCI RES, V65, P121, DOI 10.1002/jnr.1135
   Gan L, 1998, J NEUROBIOL, V37, P69, DOI 10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6
   Gan L, 1996, J BIOL CHEM, V271, P5859
   Gurantz D, 2000, J NEUROBIOL, V42, P347, DOI 10.1002/(SICI)1097-4695(20000215)42:3<347::AID-NEU6>3.0.CO;2-J
   Hallows JL, 1998, J NEUROSCI, V18, P5682
   HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104
   Hendriks R, 1999, J NEUROSCI RES, V58, P805, DOI 10.1002/(SICI)1097-4547(19991215)58:6<805::AID-JNR7>3.0.CO;2-V
   Hendriks R, 1999, J NEUROSCI RES, V58, P791, DOI 10.1002/(SICI)1097-4547(19991215)58:6<791::AID-JNR6>3.0.CO;2-3
   Henne J, 2004, J NEUROSCI RES, V75, P44, DOI 10.1002/jnr.10830
   Ishikawa T, 2003, J NEUROSCI, V23, P10445
   JACKSON H, 1978, J COMP PHYSIOL PSYCH, V92, P682, DOI 10.1037/h0077496
   JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
   JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X
   JHAVERI S, 1982, NEUROSCIENCE, V7, P809, DOI 10.1016/0306-4522(82)90045-8
   JOSEPH AW, 1993, J NEUROPHYSIOL, V69, P1197
   Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279
   Liu SQJ, 1998, J NEUROSCI, V18, P2881
   Liu SQJ, 1998, J NEUROSCI, V18, P8758
   LUNEAU CJ, 1991, P NATL ACAD SCI USA, V88, P3932, DOI 10.1073/pnas.88.9.3932
   Macica CM, 2003, J NEUROSCI, V23, P1133
   Parameshwaran S, 2001, J NEUROSCI, V21, P485
   Parameshwaran-Iyer S, 2003, J NEUROBIOL, V55, P165, DOI 10.1002/neu.10198
   PARKS TN, 1975, J COMP NEUROL, V164, P435, DOI 10.1002/cne.901640404
   PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756
   PERNEY T M, 1991, Current Opinion in Cell Biology, V3, P663, DOI 10.1016/0955-0674(91)90039-2
   Perney TM, 1997, J COMP NEUROL, V386, P178
   Pollock NS, 2002, J COMP NEUROL, V452, P381, DOI 10.1002/cne.10401
   REYES AD, 1994, J NEUROSCI, V14, P5352
   ROSE JE, 1967, J NEUROPHYSIOL, V30, P769
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   RUBEL EW, 1975, J COMP NEUROL, V164, P411, DOI 10.1002/cne.901640403
   RUBEL EW, 1976, J COMP NEUROL, V166, P469, DOI 10.1002/cne.901660408
   Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0
   Rudy B, 1999, ANN NY ACAD SCI, V868, P304, DOI 10.1111/j.1749-6632.1999.tb11295.x
   SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0
   Smart SL, 1997, GLIA, V20, P127, DOI 10.1002/(SICI)1098-1136(199706)20:2<127::AID-GLIA4>3.0.CO;2-6
   Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
   Van Lunteren E, 2002, J MUSCLE RES CELL M, V23, P197, DOI 10.1023/A:1020967106084
   von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004
   Wang LY, 1998, P NATL ACAD SCI USA, V95, P1882, DOI 10.1073/pnas.95.4.1882
   Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
   WEISER M, 1995, J NEUROSCI, V15, P4298
   Zhou XN, 2001, J NEUROSCI RES, V65, P24, DOI 10.1002/jnr.1124
NR 54
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 116
EP 126
DI 10.1016/j.heares.2006.01.012
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300013
PM 16530363
ER

PT J
AU Harris, JA
   Rubel, EW
AF Harris, Julie A.
   Rubel, Edwin W.
TI Afferent regulation of neuron number in the cochlear nucleus: Cellular
   and molecular analyses of a critical period
SO HEARING RESEARCH
LA English
DT Article
DE cochlear nucleus; critical period; microarray; deafferentation; neuron
   death
ID STEM AUDITORY NUCLEI; UNILATERAL ODOR DEPRIVATION; BRAIN-STEM;
   PROTEIN-SYNTHESIS; GENE-EXPRESSION; MAGNOCELLULARIS NEURONS;
   INTRACELLULAR CALCIUM; ELECTRICAL-ACTIVITY; ACTION-POTENTIALS;
   OLFACTORY-BULB
AB The neurons of the cochlear nucleus are dependent on input from the auditory nerve for survival during a critical period of development in a variety of vertebrate species. The molecules that underlie this age-dependent vulnerability to deafferentation are for the most part unknown, although recent studies have begun to yield interesting candidate genes. Here, we review the studies that originally described the presence of afferent dependent neuron survival in the cochlear nucleus and the age-dependency of this effect, as well as more recent work that seeks to understand the mechanisms underlying the neuron loss that occurs and the basis of this critical period. While much of the past work on cochlear nucleus neuronal susceptibility has been conducted looking at one or two genes at a time, recent advances in genomics make it possible to screen tens of thousands of genes while looking for candidate genes that are determinants of the critical period response to afferent deprivation. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA.
RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Grad Program Neurobiol & Behav, CHDD Bldg,Rm CD176,Box 357923, Seattle, WA 98195 USA.
EM jharris1@u.washington.edu; rubel@u.washington.edu
CR Baldi A, 2000, EUR J NEUROSCI, V12, P2281, DOI 10.1046/j.1460-9568.2000.00119.x
   Benn SC, 2004, NAT REV NEUROSCI, V5, P686, DOI 10.1038/nrn1477
   BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403
   BORN DE, 1988, J NEUROSCI, V8, P901
   BRUNJES PC, 1983, BRAIN RES BULL, V11, P501, DOI 10.1016/0361-9230(83)90121-1
   Campenot RB, 2004, J NEUROBIOL, V58, P217, DOI 10.1002/neu.10322
   CHOI DW, 1992, J NEUROBIOL, V23, P1261, DOI 10.1002/neu.480230915
   Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4
   Ehret G, 1976, J Am Audiol Soc, V1, P179
   Fields RD, 2005, CELL CALCIUM, V37, P433, DOI 10.1016/j.ceca.2005.01.011
   FRAZIER LL, 1988, J COMP NEUROL, V269, P355, DOI 10.1002/cne.902690304
   GALLI L, 1988, SCIENCE, V242, P90, DOI 10.1126/science.3175637
   GALLIRESTA L, 1993, J NEUROSCI, V13, P243
   GOEDERT M, 1978, BRAIN RES, V148, P264, DOI 10.1016/0006-8993(78)90401-8
   HAMBURGER V, 1949, J EXP ZOOL, V111, P457, DOI 10.1002/jez.1401110308
   HARRIS JA, 2005, ABSTRACT ITINEARY PL
   Harris JA, 2005, J COMP NEUROL, V493, P460, DOI 10.1002/cne.20776
   Hashisaki G T, 1989, J Comp Neurol, V283, P5
   Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710
   Hensch TK, 2004, ANNU REV NEUROSCI, V27, P549, DOI 10.1146/annurev.neuro.27.070203.144327
   HUBEL DH, 1970, J PHYSIOL-LONDON, V206, P419
   HUBEL DH, 1964, N-S ARCH EX PATH PH, V248, P492, DOI 10.1007/BF00348878
   HYSON RL, 1989, J NEUROSCI, V9, P2835
   JACKSON H, 1982, J COMP NEUROL, V210, P80, DOI 10.1002/cne.902100109
   LEVIMONTALCINI R, 1949, J COMP NEUROL, V91, P209, DOI 10.1002/cne.900910204
   Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
   Lin X, 2000, Brain Res Dev Brain Res, V119, P297
   LIPPE WR, 1994, J NEUROSCI, V14, P1486
   Lorente de No R, 1981, PRIMARY ACOUSTIC NUC
   LORENZ KZ, 1958, SCI AM, V199, P67
   Lu Y, 2005, J NEUROPHYSIOL, V93, P1418, DOI 10.1152/jn.00659.2004
   MARTIN MR, 1981, J COMP NEUROL, V197, P169, DOI 10.1002/cne.901970113
   Mizrahi A, 2003, NAT NEUROSCI, V6, P1201, DOI 10.1038/nn1133
   Mizrahi A, 2004, J NEUROSCI, V24, P3147, DOI 10.1523/JNEUROSCI.5218-03.2004
   MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412
   Mostafapour SP, 2002, J NEUROSCI, V22, P4670
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204
   PARKS TN, 1979, J COMP NEUROL, V183, P665, DOI 10.1002/cne.901830313
   PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403
   Riccio A, 1999, SCIENCE, V286, P2358, DOI 10.1126/science.286.5448.2358
   RICH T, 1999, NAT CELL BIOL, V1, P69
   RUBEL EW, 2004, PLASTICITY AUDITORY, V21, P8
   Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2
   SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0
   SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407
   Smittkamp SE, 2005, HEARING RES, V204, P48, DOI 10.1016/j.heares.2004.12.011
   SNIDER WD, 1992, J NEUROBIOL, V23, P1231, DOI 10.1002/neu.480230913
   Stern EA, 2001, NEURON, V31, P305, DOI 10.1016/S0896-6273(01)00360-9
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410
   Turrigiano GG, 2004, NAT REV NEUROSCI, V5, P97, DOI 10.1038/nrn1327
   WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2
   Walsh GS, 2004, J NEUROSCI, V24, P9638, DOI 10.1523/JNEUROSCI.1299-04.2004
   West AE, 2001, P NATL ACAD SCI USA, V98, P11024, DOI 10.1073/pnas.191352298
   WIESEL TN, 1963, J NEUROPHYSIOL, V26, P1003
   Wilkinson Brandy L, 2002, Brain Res Mol Brain Res, V99, P67
   Wilkinson BL, 2003, NEUROSCIENCE, V120, P1071, DOI 10.1016/S0306-4522(03)00387-7
   Zhao J, 2004, HEARING RES, V189, P63, DOI 10.1016/S0378-5955(03)00370-8
   ZIRPEL L, 1995, J NEUROPHYSIOL, V74, P1355
   Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288
   Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127
   Zirpel L, 2000, J NEUROSCI, V20, P6267
NR 63
TC 29
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 127
EP 137
DI 10.1016/j.heares.2006.03.016
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300014
PM 16874907
ER

PT J
AU Willott, JF
   Bosch, JV
   Shimizu, T
   Ding, DL
AF Willott, James F.
   Bosch, Justine Vanden
   Shimizu, Toru
   Ding, Da-Lian
TI Effects of exposing DBA/2J mice to a high-frequency augmented acoustic
   environment on the cochlea and anteroventral cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE mice; sensorineural hearing loss; augmented acoustic environment;
   cochlear nucleus; hair cells
ID CONDUCTIVE HEARING-LOSS; HAIR CELL LOSS; INFERIOR COLLICULUS; C57BL/6J
   MICE; PROLONGED EXPOSURE; AUDITORY FUNCTION; AGE; MOUSE; STRAINS;
   NEURONS
AB DBA/2.1 (D2) mice, which exhibit very early progressive sensorineural hearing loss, were treated for 12 h nightly with an augmented acoustic environment (AAE) initiated before the onset of hearing. The AAE consisted of repetitive bursts of a 70 dB sound pressure level, half-octave noise band centered at 20 kHz (i.e. low frequencies were excluded). At 55 days of age, AAE-treated mice, compared to control mice, exhibited less elevation of auditory brainstem response thresholds for tone frequencies from 16 to 32 kHz and fewer missing outer hair cells in the high-frequency tonotopic region of the cochlea, The dorsal region of their anteroventral cochlear nucleus (most strongly stimulated by the AAE) was larger, had more surviving neurons, and larger neurons than those of untreated control mice. These and previous findings using an AAE band containing lower frequencies indicate that AAE treatment effects are frequency-related. The findings provide support for the hypothesis that the beneficial effects of AAE treatment on the cochlea are associated with increased physiological activity evoked by the AAE, and the central AAE effects result from increased AAE-evoked neural activity and a healthier cochlea providing the auditory input. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ S Florida, Dept Psychol, Tampa, FL 33620 USA.
   Jackson Lab, Bar Harbor, ME 04609 USA.
   Univ Buffalo, Buffalo, NY USA.
RP Willott, JF (reprint author), Univ S Florida, Dept Psychol, 4202 E Fowler Ave,PCD4118G, Tampa, FL 33620 USA.
EM jimw@niu.edu
CR BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9
   BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0
   Bohne BA, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P171
   COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0
   Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13
   Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P243, DOI 10.1201/9781420038736.ch18
   HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   Javel E., 1986, NEUROBIOLOGY HEARING, P213
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   Kiang N.Y.S., 1965, MIT RES MONOGRAPH, V35
   McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4
   McFadden SL, 1999, J COMP NEUROL, V413, P101
   Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
   RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8
   Ramon, 1909, HISTOLOGIE SYSTEME N
   Rhode WS, 1991, NEUROBIOLOGY HEARING, P47
   RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0
   Shnerson A, 1983, AUDITORY PSYCHOBIOLO, P395
   Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315
   SUNDIN V, 1999, SOC NEUR MIAM
   Trettel J, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P279, DOI 10.1201/9781420038736.ch19
   TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410
   Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0
   WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9
   WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1
   WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684
   WILLIS RD, 1984, J VAC SCI TECHNOL A, V2, P57, DOI 10.1116/1.572625
   WILLOTT JF, 2005, JARO-J ASSOC RES OTO, V28, P1
   WILLOTT JF, 1996, ILSI MONOGRAPHS PATH, P179
   Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5
   Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9
   Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065
   WILLOTT JF, 1982, NEUROSCI LETT, V34, P13, DOI 10.1016/0304-3940(82)90085-4
   WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312
   WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35
   Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3
   Willott JF, 2000, HEARING RES, V147, P275, DOI 10.1016/S0378-5955(00)00137-4
NR 41
TC 7
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 138
EP 145
DI 10.1016/j.heares.2006.01.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300015
PM 16497456
ER

PT J
AU Holt, AG
   Asako, M
   Duncan, RK
   Lomax, CA
   Juiz, JM
   Altschuler, RA
AF Holt, Avril Genene
   Asako, Mikiya
   Duncan, R. Keith
   Lomax, Catherine A.
   Juiz, Jose M.
   Altschuler, Richard A.
TI Deafness associated changes in expression of two-pore domain potassium
   channels in the rat cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE auditory; deafness; potassium channels; plasticity; cochlear nucleus
ID CEREBELLAR GRANULE CELLS; CENTRAL AUDITORY-SYSTEM; K+ CHANNEL; INFERIOR
   COLLICULUS; ELECTRICAL-STIMULATION; FUNCTIONAL EXPRESSION; MUSCARINIC
   INHIBITION; CEREBRAL-ISCHEMIA; NOISE EXPOSURE; SIZE CHANGES
AB Two-pore domain potassium channels (K-2PD(+)) play an important role in setting resting membrane potential by regulating background leakage of potassium ions, which in turn controls neuronal excitability. To determine whether these channels contribute to activitydependent plasticity following deafness, we used quantitative real-time PCR to examine the expression of 10 K-2PD(+), subunits in the rat cochlear nucleus at 3 days, 3 weeks and 3 months after bilateral cochlear ablation. There was a large sustained decrease in the expression of TASK-5, a subunit that is predominantly expressed in auditory brain stem neurons, and in the TASK-1 subunit which is highly expressed in several types of cochlear nucleus neurons. TWIK-1 and THIK-2 also showed significant decreases in expression that were maintained across all time points. TWIK-2, TREK-1 and TREK-2 showed no significant change in expression at 3 days but showed large decreases at 3 weeks and 3 months following deafness. TRAAK and TASK-3 subunits showed significant decreases at 3 days and 3 weeks following deafness, but these differences were no longer significant at 3 months. Dramatic changes in expression of K-2PD(+), subunits suggest these channels may play a role in deafness-associated changes in the excitability of cochlear nucleus neurons. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA.
   Kansai Med Univ, Dept Otolaryngol, Osaka, Japan.
   Univ Castilla La Mancha, Albacete 02071, Spain.
   Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA.
RP Holt, AG (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM avrilhol@umich.edu
CR Ashmole I, 2001, PFLUG ARCH EUR J PHY, V442, P828, DOI 10.1007/s004240100620
   Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
   BLEDSOE SC, 1997, LANG SCI, P513
   Boyd DF, 2000, J PHYSIOL-LONDON, V529, P321, DOI 10.1111/j.1469-7793.2000.00321.x
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Caminos E, 2005, BRAIN RES, V1056, P118, DOI 10.1016/j.brainres.2005.07.031
   Chambard JM, 2005, PFLUG ARCH EUR J PHY, V450, P34, DOI 10.1007/s00424-004-1366-2
   Czirjak G, 2001, AM J PHYSIOL-CELL PH, V281, pC700
   Enyeart JA, 2003, MOL PHARMACOL, V64, P132, DOI 10.1124/mol.64.1.132
   Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9
   Fujino K, 2001, J NEUROSCI, V21, P7372
   Gnatenco C, 2002, BRAIN RES, V931, P56, DOI 10.1016/S0006-8993(02)02261-8
   Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674
   Kaczmarek LK, 2005, HEARING RES, V206, P133, DOI 10.1016/j.heares.2004.11.023
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
   Kang DW, 2004, J PHYSIOL-LONDON, V554, P64, DOI 10.1113/jphysiol.2003.054387
   Kanold PO, 2005, J NEUROPHYSIOL, V93, P2887, DOI 10.1152/jn.00910.2004
   Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045
   Kawano A, 1997, ADV OTO-RHINO-LARYNG, V52, P33
   Kim D, 2005, CURR PHARM DESIGN, V11, P2717, DOI 10.2174/1381612054546824
   Kim JS, 2005, J PHARMACOL EXP THER, V314, P618, DOI 10.1124/jpet.105.084418
   LESPERANCE MM, 1995, HEARING RES, V86, P77, DOI 10.1016/0378-5955(95)00056-A
   Li ZB, 2005, BIOCHEM BIOPH RES CO, V327, P1163, DOI 10.1016/j.bbrc.2004.12.124
   Liu W, 2004, CLIN EXP PHARMACOL P, V31, P174, DOI 10.1111/j.1440-1681.2004.03964.x
   Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
   Lu Y, 2004, J COMP NEUROL, V470, P93, DOI 10.1002/cne.11037
   LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2
   Macica CM, 2003, J NEUROSCI, V23, P1133
   Millar JA, 2000, P NATL ACAD SCI USA, V97, P3614, DOI 10.1073/pnas.050012597
   MOLLER AR, 2005, ANATOMICAL PHYSL BAS, P1
   Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
   Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7
   Niparko JK, 1999, LARYNGOSCOPE, V109, P1721, DOI 10.1097/00005537-199911000-00001
   Pal B, 2005, HEARING RES, V199, P57, DOI 10.1016/j.heares.2004.07.020
   Plant LD, 2005, CURR OPIN NEUROBIOL, V15, P326, DOI 10.1016/j.conb.2005.05.008
   Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002
   Rusznak Z, 2004, CELL MOL LIFE SCI, V61, P1532, DOI 10.1007/s00018-004-4082-3
   Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
   SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407
   Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533
   Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6
   Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
   Talley EM, 2001, J NEUROSCI, V21, P7491
   Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x
   Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
   von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004
   Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005
   WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6
   WOMBLE MD, 1992, J PHYSIOL-LONDON, V457, P93
   Xu XH, 2004, MOL BRAIN RES, V120, P205, DOI 10.1016/j.molbrainres.2003.09.020
   Yeom M, 2005, BIOCHEM BIOPH RES CO, V326, P321, DOI 10.1016/j.bbrc.2004.11.034
   Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
NR 54
TC 26
Z9 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 146
EP 153
DI 10.1016/j.heares.2006.03.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300016
PM 16650703
ER

PT J
AU Rubio, ME
AF Rubio, Maria E.
TI Redistribution of synaptic AMPA receptors at glutamatergic synapses in
   the dorsal cochlear nucleus as an early response to cochlear ablation in
   rats
SO HEARING RESEARCH
LA English
DT Article
DE cochlear ablation; rat; electron microscopy; postembedding immunogold
   labeling; AMPA receptors
ID STEM AUDITORY NUCLEI; BRAIN-STEM; GUINEA-PIG; DIFFERENTIAL DISTRIBUTION;
   DESCENDING PROJECTIONS; HIPPOCAMPAL-NEURONS; CONGENITAL DEAFNESS;
   OSSICLE REMOVAL; ACOUSTIC TRAUMA; FUSIFORM CELLS
AB This study investigated whether unilateral deafferentation of the presynaptic neuron is key in the control of morphology and the subunit composition and expression of AMPA type glutamate receptors (GluRs) in neurons of the dorsal cochlear nucleus (DCN). Data showed that there are morphological changes at the postsynaptic sites which precede presynaptic changes at the auditory nerve (AN) synaptic ending in response to peripheral damage, in particular that the postsynaptic densities (PSD) of the AN on fusiform cells (FC) are thicker after denervation. Moreover, GluR2, GluR3 and GluR4 AMPA receptor subunits were redistributed, not only at the synapse of FCs receiving direct contact with the AN, but also at the glutarnatergic synapse of the parallel fibers on FC and on cartwheel cells (CwC) which are indirectly innervated by the AN. Interestingly, the same synapses in the DCN contralateral to the lesion and with a normal AN synaptic input also redistributed AMPA receptor subunits at the synapse in respond to deafferentation. In these synapses, there was an increase of immunogold labeling for GluR2/3 subunits but not for GluR2 at 2 days after deafferentation. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Connecticut, Dept Physiol & Neurobiol, Storrs, CT 06269 USA.
RP Rubio, ME (reprint author), Univ Connecticut, Dept Physiol & Neurobiol, 75 N Eagleville Rd, Storrs, CT 06269 USA.
EM maria.rubio@uconn.edu
CR Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
   BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
   Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
   Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
   BLISS TVP, 1993, NATURE, V361, P31, DOI 10.1038/361031a0
   BOETTCHER FA, 1993, J ACOUST SOC AM, V94, P2123, DOI 10.1121/1.407484
   BROWN MC, 1990, HEARING RES, V49, P105, DOI 10.1016/0378-5955(90)90098-A
   Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
   DAVIS KA, 2000, AM PHYSL SOC, P926
   Dosemeci A, 2001, P NATL ACAD SCI USA, V98, P10428, DOI 10.1073/pnas.181336998
   Gardner SM, 1999, J NEUROSCI, V19, P8721
   Gardner SM, 2001, J NEUROSCI, V21, P7428
   GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4
   Golding NL, 1997, J NEUROPHYSIOL, V78, P248
   GULLEY RL, 1977, J CELL BIOL, V75, P837, DOI 10.1083/jcb.75.3.837
   HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335
   KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303
   Lawrence JJ, 2000, J NEUROSCI, V20, P4864
   Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14
   Lissin DV, 1998, P NATL ACAD SCI USA, V95, P7097, DOI 10.1073/pnas.95.12.7097
   Liu SQJ, 2000, NATURE, V405, P454
   Malinow R, 2002, ANNU REV NEUROSCI, V25, P103, DOI 10.1146/annurev.neuro.25.112701.142758
   MANIS PB, 1989, J NEUROPHYSIOL, V61, P149
   Martone ME, 1999, J NEUROSCI, V19, P1988
   MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663
   Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
   MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106
   Murthy VN, 2001, NEURON, V32, P673, DOI 10.1016/S0896-6273(01)00500-1
   Nusser Z, 2000, CURR OPIN NEUROBIOL, V10, P337, DOI 10.1016/S0959-4388(00)00086-6
   O'Brien RJ, 1998, NEURON, V21, P1067
   OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206
   OSEN KK, 1995, J COMP NEUROL, V357, P482, DOI 10.1002/cne.903570311
   Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417
   Petralia RS, 2004, EUR J NEUROSCI, V19, P2017, DOI 10.1111/j.1460-9568.2004.03324.x
   PETRALIA RS, 2000, HEARING RES, V3496, P1
   Petralia RS, 1996, J COMP NEUROL, V372, P356
   Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641
   Rao A, 1997, NEURON, V19, P801, DOI 10.1016/S0896-6273(00)80962-9
   Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5
   Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249
   Rubio ME, 1998, J COMP NEUROL, V399, P341, DOI 10.1002/(SICI)1096-9861(19980928)399:3<341::AID-CNE4>3.0.CO;2-0
   Rubio ME, 1997, NEURON, V18, P939, DOI 10.1016/S0896-6273(00)80333-5
   Rubio ME, 1999, J NEUROSCI, V19, P5549
   RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103
   Shen K, 1999, SCIENCE, V284, P162, DOI 10.1126/science.284.5411.162
   Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
   SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N
   SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110
   SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311
   Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005
   Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471
   Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
   Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946
   Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
   Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103
   Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
   Wang YX, 1998, J NEUROSCI, V18, P1148
   Weedman DL, 1996, J COMP NEUROL, V369, P345
   WENTHOLD RJ, 1992, J BIOL CHEM, V267, P501
   WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114
   ZHANG S, 1994, J NEUROPHYSIOL, V71, P914
   Zirpel L, 2000, J NEUROSCI, V20, P6267
NR 64
TC 27
Z9 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 154
EP 167
DI 10.1016/j.heares.2006.03.007
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300017
PM 16644159
ER

PT J
AU Jin, YM
   Godfrey, DA
   Wang, J
   Kaltenbach, JA
AF Jin, Yong-Ming
   Godfrey, Donald A.
   Wang, Jie
   Kaltenbach, James A.
TI Effects of intense tone exposure on choline acetyltransferase activity
   in the hamster cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE acetylcholinesterase; auditory; facial nerve; microdissection;
   plasticity; tinnitus
ID SPONTANEOUS NEURAL ACTIVITY; SUPERIOR OLIVARY COMPLEX; OLIVOCOCHLEAR
   NEURONS; ACOUSTIC TRAUMA; BRAIN-STEM; SOUND EXPOSURE; RAT; TINNITUS;
   ACETYLCHOLINESTERASE; SYSTEM
AB Choline acetyltransferase (ChAT) activity has been mapped in the cochlear nucleus (CN) of control hamsters and hamsters that had been exposed to an intense tone. ChAT activity in most CN regions of hamsters was only a third or less of the activity in rat CN, but in granular regions ChAT activity was similar in both species. Eight days after intense tone exposure, average ChAT activity increased on the tone-exposed side as compared to the opposite side, by 74% in the anteroventral CN (AVCN), by 5511,, in the granular region dorsolateral to it, and by 74% in the deep layer of the dorsal CN (DCN). In addition, average ChAT activity in the exposed-side AVCN and fusiform soma layer of DCN was higher than in controls, by 152% and 67%, respectively. Two months after exposure, average ChAT activity was still 53% higher in the exposed-side deep layer of DCN as compared to the opposite side. Increased ChAT activity after intense tone exposure may indicate that this exposure leads to plasticity of descending cholinergic innervation to the CN, which might affect spontaneous activity in the DCN that has been associated with tinnitus. (c) 2006 Elsevier B.V. All rights reserved.
C1 Med Univ Ohio, Dept Surg, Div Otolaryngol, Toledo, OH 43614 USA.
   Wayne State Univ, Dept Otolaryngol, Detroit, MI USA.
RP Godfrey, DA (reprint author), Med Univ Ohio, Dept Surg, Div Otolaryngol, 3065 Arlington Ave, Toledo, OH 43614 USA.
EM dgodfrey@meduohio.edu
CR ARMSTRONG DM, 1991, J COMP NEUROL, V304, P596, DOI 10.1002/cne.903040407
   BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
   Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
   BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   CARRON M, 2006, ARO ABSTR, V29, P45
   Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
   Chen K, 1999, NEUROSCIENCE, V90, P1043, DOI 10.1016/S0306-4522(98)00503-X
   CHEN KJ, 1995, HEARING RES, V89, P137, DOI 10.1016/0378-5955(95)00131-6
   CHEN KJ, 1994, HEARING RES, V77, P168
   COLLINGE C, 1991, HEARING RES, V53, P159, DOI 10.1016/0378-5955(91)90051-A
   GODFREY DA, 1987, HEARING RES, V28, P253, DOI 10.1016/0378-5955(87)90053-0
   GODFREY DA, 1987, HEARING RES, V28, P237, DOI 10.1016/0378-5955(87)90052-9
   GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8
   GODFREY DA, 1983, HEARING RES, V11, P133, DOI 10.1016/0378-5955(83)90076-X
   GODFREY DA, 1981, J HISTOCHEM CYTOCHEM, V29, P720
   Godfrey DA, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P139, DOI 10.1007/978-1-4419-8712-9_13
   GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P697
   GODFREY DA, 1990, HEARING RES, V49, P259, DOI 10.1016/0378-5955(90)90108-2
   Golding NL, 1996, J NEUROSCI, V16, P2208
   Hazell J., 1999, P 6 INT TINN SEM TIN, P133
   Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
   Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3
   HOOVER DB, 1985, NEUROSCIENCE, V15, P481, DOI 10.1016/0306-4522(85)90226-X
   Horvath M, 2000, J COMP NEUROL, V422, P95
   Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536
   Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F
   Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
   Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
   Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
   Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
   Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080
   LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779
   Lowry OH, 1972, FLEXIBLE SYSTEM ENZY
   Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
   Moller AR, 2003, OTOLARYNG CLIN N AM, V36, P249, DOI 10.1016/S003-6665(02)00170-6
   Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
   MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406
   OSEN KK, 1984, ARCH ITAL BIOL, V122, P169
   Raji-Kubba J, 2002, J CHEM NEUROANAT, V24, P75, DOI 10.1016/S0891-0618(02)00022-4
   Rasmussen G.L., 1960, NEURAL MECHANISMS AU, P105
   Sanchez-Gonzalez MA, 2003, HEARING RES, V185, P65, DOI 10.1016/S0378-5955(03)00213-2
   SASAKI CT, 1981, LARYNGOSCOPE, V91, P2018
   SCHWEITZER L, 1984, J COMP NEUROL, V225, P228, DOI 10.1002/cne.902250208
   SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8
   Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130
   VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104
   Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1
   Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L
   Yao WP, 1996, J COMP NEUROL, V373, P27
   Zhang JS, 2000, HEARING RES, V140, P7, DOI 10.1016/S0378-5955(99)00181-1
   Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4
   ZHANG S, 1994, J NEUROPHYSIOL, V71, P914
NR 57
TC 26
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 168
EP 175
DI 10.1016/j.heares.2006.02.002
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300018
PM 16549284
ER

PT J
AU Ma, WLD
   Young, ED
AF Ma, Wei-Li Diana
   Young, Eric D.
TI Dorsal cochlear nucleus response properties following acoustic trauma:
   Response maps and spontaneous activity
SO HEARING RESEARCH
LA English
DT Article
DE dorsal cochlear nucleus; acoustic trauma; response maps; spontaneous
   activity
ID STEM AUDITORY NUCLEI; COMPLEX-SPIKING NEURONS; SPONTANEOUS NEURAL
   ACTIVITY; INFERIOR COLLICULUS; BRAIN-STEM; GUINEA-PIG;
   ELECTRICAL-STIMULATION; INTENSE SOUND; NERVE FIBERS; HEARING-LOSS
AB Recordings from single neurons in the dorsal cochlear nucleus (DCN) of unanesthetized (decerebrate) cats were done to characterize the effects of acoustic, trauma. Trauma was produced by a 250 Hz band of noise centered at 10 kHz, presented at 105-120 dB SPL for 4 h. After a one-month recovery period, neurons were recorded in the DCN. The threshold shift, determined from compound action-potential audiograms, showed a sharp threshold elevation of about 60 dB at BFs above an edge frequency of 5-10 kHz. The response maps of neurons with best frequencies (BFs) above the edge did not show the typical organization of excitatory and inhibitory areas seen in the DCN of unexposed animals. Instead, neurons showed no response to sound, weak responses that were hard to tune and characterize, or "tail" responses, consisting of broadly-tuned, predominantly excitatory responses, with a roughly low-pass shape similar to the tuning curves of auditory nerve fibers with similar threshold shifts. In some tail responses whose BFs were near the edge of the threshold elevation, a second weak high-frequency response was seen that suggests convergence of auditory nerve inputs with widely separated BFs on these cells. Spontaneous rates among neurons with elevated thresholds were not increased over those in populations of principal neurons in unexposed animals. (c) 2006 Elsevier B.V. All rights reserved.
C1 Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA.
   Johns Hopkins Univ, Ctr Hearing & Balance, Baltimore, MD 21205 USA.
RP Young, ED (reprint author), Johns Hopkins Univ, Dept Biomed Engn, 505 Traylor Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA.
EM dma@bme.jhu.edu; eyoung@jhu.edu
CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0
   Anderson MJ, 2004, HEARING RES, V188, P29, DOI 10.1016/S0378-5955(03)00348-4
   BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
   Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
   Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
   BORN DE, 1988, J NEUROSCI, V8, P901
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
   BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1
   Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
   Davis KA, 2000, J NEUROPHYSIOL, V83, P926
   Davis KA, 1996, J NEUROPHYSIOL, V75, P1411
   Davis KA, 1997, J NEUROSCI, V17, P6798
   Ding J, 1999, J NEUROPHYSIOL, V82, P3434
   EVANS EF, 1973, EXP BRAIN RES, V17, P402
   GEISLER CD, 1989, J ACOUST SOC AM, V86, P2192, DOI 10.1121/1.398480
   GERKEN GM, 1984, HEARING RES, V13, P249, DOI 10.1016/0378-5955(84)90078-9
   GODFREY DA, 1975, J COMP NEUROL, V162, P269, DOI 10.1002/cne.901620207
   HARRISON RV, 1981, J ACOUST SOC AM, V70, P1036, DOI 10.1121/1.386954
   Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0
   Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
   HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549
   ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
   Joris PX, 1998, J NEUROSCI, V18, P3955
   KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
   Kanold PO, 2001, J NEUROSCI, V21, P7848
   Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212
   Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
   Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7
   Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156
   LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6
   LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
   LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
   MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208
   Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0
   Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321
   Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN
   Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
   Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
   MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406
   Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011
   Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963
   NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446
   NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204
   Ohlrogge M, 2001, J COMP NEUROL, V436, P290
   Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821
   PALMER AR, 1993, PROG BRAIN RES, V97, P107
   PARHAM K, 1995, J NEUROPHYSIOL, V73, P550
   PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220
   POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8
   Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X
   Rajan R, 1998, J COMP NEUROL, V399, P35
   Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5
   Reiss LAJ, 2005, J NEUROSCI, V25, P3680, DOI 10.1523/JNEUROSCI.4963-04.2005
   RHODE WS, 1987, J NEUROPHYSIOL, V57, P414
   Rhode WS, 1992, MAMMALIAN AUDITORY P, P94
   Rhode WS, 1999, J NEUROPHYSIOL, V82, P1019
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
   Salvi R., 1982, NEW PERSPECTIVES NOI, P165
   SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
   SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917
   Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
   Spirou GA, 1999, J NEUROPHYSIOL, V82, P648
   SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750
   Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
   Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946
   Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
   Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0
   Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
   VOIGT HF, 1990, J NEUROPHYSIOL, V64, P1590
   Wang J, 1996, J NEUROPHYSIOL, V75, P171
   Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X
   Willott JF, 1997, J COMP NEUROL, V385, P405
   YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X
   YOUNG ED, 2001, INTEGRATIVE FUNCTION, P160
   YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
   YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4
   Young ED, 2003, SYNAPTIC ORG BRAIN, P125
   ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384
NR 90
TC 24
Z9 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 176
EP 188
DI 10.1016/j.heares.2006.03.011
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300019
PM 16630701
ER

PT J
AU Illing, RB
   Reisch, A
AF Illing, Robert-Benjamin
   Reisch, Adrian
TI Specific plasticity responses to unilaterally decreased or increased
   hearing intensity in the adult cochlear nucleus and beyond
SO HEARING RESEARCH
LA English
DT Article
DE synaptic remodeling; cochlear lesion; cochlear implant; GAP-43; c-Fos
ID AUDITORY BRAIN-STEM; ELECTRICAL INTRACOCHLEAR STIMULATION; LONG-TERM
   POTENTIATION; IMMEDIATE-EARLY GENES; C-FOS; OLIVOCOCHLEAR NEURONS;
   TRANSCRIPTION FACTORS; MESSENGER-RNA; EXPRESSION; RAT
AB Variations of sensory activation in strength and pattern are known to affect structure and function of the mammalian brain. Whereas such malleability is readily granted to forebrain structures at early developmental stages, acceptance of experience-dependent structural plasticity has been slow for the adult brainstem. Over the past years we have identified consequences of cochlear ablation, noise trauma., or electrical intracochlear stimulation on neurons and circuitry of the auditory brainstem of the adult rat. We found that loss of sensory activation as well as a substitution for it entail specific molecular, ultrastructural, and morphological changes to central auditory neurons. Here, we make a first attempt to compare these different patterns of central remodeling. We tentatively suggest that after hearing loss or intracochlear stimulation responses of the central neural network in the adult brainstem suit the concept of functional adaptation. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, D-79106 Freiburg, Germany.
RP Illing, RB (reprint author), Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, Killianstr 5, D-79106 Freiburg, Germany.
EM robert.illing@uniklinik-freiburg.de
CR ABRAHAM WC, 1994, P NATL ACAD SCI USA, V91, P10049, DOI 10.1073/pnas.91.21.10049
   Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2
   COLE AJ, 1989, NATURE, V340, P474, DOI 10.1038/340474a0
   DEMMER J, 1993, MOL BRAIN RES, V17, P279, DOI 10.1016/0169-328X(93)90012-E
   Fleischmann A, 2003, J NEUROSCI, V23, P9116
   Forster CR, 1998, NEUROREPORT, V9, P3531
   Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W
   Illing RB, 2002, EXP NEUROL, V175, P226, DOI 10.1006/exnr.2002.7895
   ILLING RB, 1995, NEUROSCI LETT, V194, P9, DOI 10.1016/0304-3940(95)11706-3
   Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016
   Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4
   Illing RB, 2001, NEUROREPORT, V12, P875, DOI 10.1097/00001756-200103260-00050
   Jones MW, 2001, NAT NEUROSCI, V4, P289, DOI 10.1038/85138
   KACZMAREK L, 1992, BEHAV NEURAL BIOL, V57, P263, DOI 10.1016/0163-1047(92)90276-A
   KACZMAREK L, 1993, J NEUROSCI RES, V34, P377, DOI 10.1002/jnr.490340402
   KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4
   Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080
   KUHL PK, 1992, SCIENCE, V255, P606, DOI 10.1126/science.1736364
   Lunds R, 1978, DEV PLASTICITY BRAIN
   Michler SA, 2003, AUDIOL NEURO-OTOL, V8, P190, DOI 10.1159/000071060
   Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
   Moller AR, 2001, NEUROL RES, V23, P565, DOI 10.1179/016164101101199009
   Møller A R, 2001, Am J Audiol, V10, P68, DOI 10.1044/1059-0889(2001/012)
   Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052
   Pena M, 2003, P NATL ACAD SCI USA, V100, P11702, DOI 10.1073/pnas.1934290100
   PURVES D, 1985, PRINCIPLES NEURAL DE
   ROBERTSON HA, 1992, BIOCHEM CELL BIOL, V70, P729
   Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005
   VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104
   Warr W., 1992, MAMMALIAN AUDITORY P
   WORLEY PF, 1993, J NEUROSCI, V13, P4776
   Yao WP, 1996, AUDIT NEUROSCI, V2, P241
NR 32
TC 12
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 189
EP 197
DI 10.1016/j.heares.2005.12.014
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300020
PM 16624512
ER

PT J
AU Idrizbegovic, E
   Salman, H
   Niu, XZ
   Canlon, B
AF Idrizbegovic, Esma
   Salman, Hazim
   Niu, Xianzhi
   Canlon, Barbara
TI Presbyacusis and calcium-binding protein immunoreactivity in the
   cochlear nucleus of BALB/c mice
SO HEARING RESEARCH
LA English
DT Article
DE hair cells; spiral ganglion neurons; calbindin; calretinin; parvalbumin;
   aging; presbycusis
ID AUDITORY BRAIN-STEM; CALBINDIN D-28K IMMUNOREACTIVITY; INDUCED
   HEARING-LOSS; INFERIOR COLLICULUS; CBA/CAJ MICE; F1-HYBRID STRAINS;
   INBRED STRAINS; NERVOUS-SYSTEM; UP-REGULATION; CELL-DEATH
AB The BALB/c mouse is an established model for the early development of sensorineural hearing loss, and is homozygous for the Ah1 allele (age-related hearing loss). The present study was designed to determine how auditory peripheral pathology influences calcium-binding protein immunoreactivity in the cochlear nucleus in aged BALB/c mice. To address this issue the loss of hair cells, spiral ganglion neurons (SGN), and neurons in the dorsal (DCN) and posteroventral (PVCN) cochlear nucleus of BALB/c mice at 1 and 24 months of age were quantified using CAST stereological methods. These values were then compared to the percent increase in immunopositive calcium-binding proteins in the cochlear nucleus. By 24 months of age there was a near complete loss of all outer hair cells (OHC). The inner hair cell (IHC) loss was near complete in the more apical and basal regions, while in the mid-regions approximately 50% were missing. The SGN in the apical and middle turns show a 20% loss (re: 1 month) and the basal turn up to 80% loss. A statistically significant decrease in the density of DCN and PVCN neurons (25%) was found at 24 months of age compared to the one month old animals. The percentage of parvalbumin and calretinin positive neurons in the DCN and the PVCN in relation to the density of Nissl stained neurons showed significant increases at 24 months compared to the 1 month old animals. We also determine the relationship between peripheral pathology and the percent increase in calcium-binding protein immunoreactivity. In the DCN, the percent increase of calretinin and parvalbumin was correlated to the loss of SGN, IHCs and OHCs. In the PVCN, parvalbumin was correlated to SGN, IHC, and OHC loss. The percent increase in calbindin immunoreactivity was not correlated to any peripheral pathology. The data here suggest a percent increase in calcium-binding protein immunoreactivity in the cochlea nucleus in the 24 month old mice may reflect an endogenous protective strategy that is designed to counteract calcium overload that is prominent during aging and degeneration. These results will be valuable for understanding the relationship among the peripheral and central auditory system in a model demonstrating a rapidly progressive presbyacusis. (c) 2006 Elsevier B.V. All rights reserved.
C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
   Karlinska Univ Hosp, Dept Audiol, Stockholm, Sweden.
RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Eulers Vag 8, S-17177 Stockholm, Sweden.
EM Barbara.Canlon@fyfa.ki.se
CR Alvarado JC, 2004, J COMP NEUROL, V470, P63, DOI 10.1002/cne.11038
   BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I
   Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8
   Caicedo A, 1996, ANAT EMBRYOL, V194, P465
   CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H
   Dekkers J, 2004, NEUROSCIENCE, V123, P459, DOI 10.1016/j.neuroscience.2003.07.013
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V
   FRISINA RD, 1995, HEARING RES, V85, P53, DOI 10.1016/0378-5955(95)00029-4
   Fuentes-Santamaria V, 2003, J COMP NEUROL, V460, P585, DOI 10.1002/cne.10676
   GUNDERSEN HJG, 1988, APMIS, V96, P857
   Heizmann CW, 1995, CALCIUM REGULATION C
   Idrizbegovic E, 2001, HEARING RES, V158, P102, DOI 10.1016/S0378-5955(01)00295-7
   Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5
   Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004
   Idrizbegovic E, 1999, NEUROSCI LETT, V259, P49, DOI 10.1016/S0304-3940(98)00911-2
   Idrizbegovic E, 1998, BRAIN RES, V800, P86, DOI 10.1016/S0006-8993(98)00504-6
   Idrizbegovic E, 2001, AUDIOL NEURO-OTOL, V6, P132, DOI 10.1159/000046820
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   LALONDE J, 2004, J NEUROSCI, V24, P55
   Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E
   LUKAS W, 1994, NEUROSCIENCE, V61, P307, DOI 10.1016/0306-4522(94)90233-X
   MILLER RJ, 1995, BIOCHEM SOC T, V23, P629
   MOCKEL V, 1994, BRAIN RES, V648, P109, DOI 10.1016/0006-8993(94)91911-9
   Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
   ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0
   ORRENIUS S, 1994, J NEURAL TRANSM-SUPP, P1
   Paxinos G., 2004, MOUSE BRAIN STEREOTA
   SCHMIDTKASTNER R, 1992, EXP NEUROL, V117, P230, DOI 10.1016/0014-4886(92)90132-A
   Spencer RF, 2002, HEARING RES, V171, P129, DOI 10.1016/S0378-5955(02)00494-X
   Terro F, 1998, BRAIN RES, V809, P319, DOI 10.1016/S0006-8993(98)00883-X
   VATER M, 1994, J COMP NEUROL, V341, P534, DOI 10.1002/cne.903410409
   Verkhratsky A, 1998, TRENDS NEUROSCI, V21, P2, DOI 10.1016/S0166-2236(97)01156-9
   Viberg A, 2004, HEARING RES, V197, P1, DOI 10.1016/j.heares.2004.04.016
   WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202
   Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5
   Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
   Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7
   Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8
NR 40
TC 16
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 198
EP 206
DI 10.1016/j.heares.2006.01.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300021
PM 16874908
ER

PT J
AU Caspary, DA
   Hughes, LF
   Schatteman, TA
   Turner, JG
AF Caspary, Donald A.
   Hughes, Larry F.
   Schatteman, Tracy A.
   Turner, Jeremy G.
TI Age-related changes in the response properties of cartwheel cells in rat
   dorsal cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE auditory; aging; cartwheel cells; dorsal cochlear nucleus; response
   properties
ID COMPLEX-SPIKING NEURONS; PARALLEL FIBER STIMULATION; LABELED FUSIFORM
   CELLS; HEARING-LOSS; GUINEA-PIG; INFERIOR COLLICULUS; SPEECH
   RECOGNITION; AUDITORY-SYSTEM; FISCHER-344 RAT; DISCHARGE CHARACTERISTICS
AB The fusiform cell and deep layers of the dorsal cochlear nucleus (DCN) show neurotransmitter and functional age-related changes suggestive of a downregulation of inhibitory efficacy onto DCN output neurons. Inhibitory circuits implicated in these changes include vertical and D-multipolar cells. Cartwheel cells comprise a large additional population of DCN inhibitory neurons. Cartwheel cells receive excitatory inputs from granule cell parallel fibers and provide a source of glycinergic inhibitory input onto apical dendrites of DCN fusiform cells. The present study compared the response properties from young and aged units meeting cartwheel-cell criteria in anesthetized rats. Single unit recordings from aged cartwheel cells revealed significantly higher thresholds, increased spontaneous activity and significantly altered rate-level functions characterized by hyperexcitability at higher intensities. Aged cartwheel cells showed a significant reduction in off-set suppression. Collectively, these findings suggest a loss of tonic and perhaps response inhibition onto aged DCN cartwheel neurons. These changes likely reflect a compensatory downregulation of synaptic inhibition in response to a loss of excitatory drive from auditory and non-auditory excitatory inputs via granule cells. The impact of increased excitability of cartwheel cells on DCN output neurons is likely to be complex, influenced by loss of glycinergic release and/or subunit receptor changes which would only partially off-set age-related loss of inhibition onto the somata and basal dendrites of fusiform cells. (c) 2006 Elsevier B.V. All rights reserved.
C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA.
   So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA.
RP Caspary, DA (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629, Springfield, IL 62794 USA.
EM dcaspary@siumed.edu
CR AKHTAR ND, 1991, J COMP NEUROL, V307, P200, DOI 10.1002/cne.903070204
   BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P563, DOI 10.1007/BF00964919
   BERREBI AS, 1990, J NEUROCYTOL, V19, P643, DOI 10.1007/BF01188033
   BERREBI AS, 1991, ANAT EMBRYOL, V183, P427
   BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T
   BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1
   Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5
   CASPARY DM, 1990, J NEUROSCI, V10, P2363
   Caspary DM, 2001, NOISE INDUCED HEARIN, P169
   Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005
   Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
   Davis KA, 1997, J NEUROSCI, V17, P6798
   Ding J, 1999, J NEUROPHYSIOL, V82, P3434
   DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011
   FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S
   FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   Fuchs JL, 1998, J COMP NEUROL, V395, P209
   Golding NL, 1997, J NEUROPHYSIOL, V78, P248
   Golding NL, 1996, J NEUROSCI, V16, P2208
   GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276
   GREENWOOD DD, 1998, J ACOUST SOC AM, V7, P2592
   Hancock KE, 2002, J NEUROPHYSIOL, V87, P2505, DOI 10.1152/jn00342.2001
   Hancock KE, 2002, J NEUROPHYSIOL, V87, P2520, DOI 10.1152/jn.00343.2001
   HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535
   HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549
   HUNTSMAN MM, 1995, J COMP NEUROL, V352, P235, DOI 10.1002/cne.903520207
   JONES EG, 1993, CEREB CORTEX, V3, P361, DOI 10.1093/cercor/3.5.361-a
   KAAS JH, 1991, ANNU REV NEUROSCI, V14, P137, DOI 10.1146/annurev.neuro.14.1.137
   KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306
   Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005
   Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874
   MANIS PB, 1989, J NEUROPHYSIOL, V61, P149
   MANIS PB, 1990, J NEUROSCI, V10, P2338
   MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208
   May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8
   Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5
   MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T
   Molitor SC, 2003, J NEUROPHYSIOL, V89, P2225, DOI 10.1152/jn.00709.2002
   MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240
   Moore KA, 2002, J NEUROSCI, V22, P6724
   MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406
   MUGNAINI E, 1980, J NEUROCYTOL, V9, P537, DOI 10.1007/BF01204841
   MULROW CD, 1990, ANN INTERN MED, V113, P188
   MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545
   Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001
   Ohlrogge M, 2001, J COMP NEUROL, V436, P290
   Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417
   Ostroff JM, 2003, HEARING RES, V181, P1, DOI 10.1016/S0378-5955(03)00113-8
   Palombi PS, 1996, J NEUROPHYSIOL, V76, P3114
   PARHAM K, 1995, J NEUROPHYSIOL, V73, P550
   Ralston HJ, 1996, J COMP NEUROL, V371, P325
   Reiss LAJ, 2005, J NEUROSCI, V25, P3680, DOI 10.1523/JNEUROSCI.4963-04.2005
   RUBIO ME, 2004, J COMP NEUROL, V447, P253
   Schmolesky MT, 2000, NAT NEUROSCI, V3, P384
   SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403
   Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x
   Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205
   SPONGR VP, 1992, ARCH OTOLARYNGOL, V118, P157
   Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
   Sutherland DP, 1998, HEARING RES, V120, P86, DOI 10.1016/S0378-5955(98)00056-2
   Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
   Thomas A, 1980, Br J Audiol, V14, P76, DOI 10.3109/03005368009078906
   Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007
   Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7
   Turner JG, 2005, HEARING RES, V202, P129, DOI 10.1016/j.heares.2004.09.011
   WALLER HJ, 1994, J NEUROPHYSIOL, V71, P467
   Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1
   Weedman DL, 1996, J COMP NEUROL, V369, P345
   WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3
   WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593
   WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U
   Willott JF, 1997, J COMP NEUROL, V385, P405
   WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412
   WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F
   Woody CD, 1998, BRAIN RES, V789, P74, DOI 10.1016/S0006-8993(98)00017-1
   WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114
   Young E.D., 2004, SYNAPTIC ORG BRAIN, P125
   ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384
NR 81
TC 17
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 207
EP 215
DI 10.1016/j.heares.2006.03.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300022
PM 16644158
ER

PT J
AU Frisina, RD
   Walton, JP
AF Frisina, Robert D.
   Walton, Joseph P.
TI Age-related structural and functional changes in the cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE presbycusis; glycine; auditory brainstem; central auditory system; aging
ID SENSORINEURAL HEARING-LOSS; INFERIOR COLLICULUS; CBA/J MICE; FISCHER-344
   RATS; SYNAPTIC CHANGES; AGING C57BL/6J; MOUSE; YOUNG; MORPHOLOGY;
   INHERITANCE
AB Presbycusis - age-related hearing loss - is a key communication disorder and chronic medical condition of our aged population. The cochlear nucleus is the major site of projections from the auditory portion of the inner ear. Relative to other levels of the peripheral and central auditory systems, relatively few studies have been conducted examining age-related changes in the cochlear nucleus. The neurophysiological investigations suggest declines in glycine-mediated inhibition, reflected in increased firing rates in cochlear nucleus neurons from old animals relative to young adults. Biochemical investigations of glycine inhibition in the cochlear nucleus are consistent with the functional aging declines of this inhibitory neurotransmitter system that affect complex sound processing. Anatomical reductions in neurons of the cochlear nucleus and their output pathways can occur due to aging changes in the brain, as well as due to age-dependent plasticity of the cochlear nucleus in response to the age-related loss of inputs from the cochlea, particularly from the basal, high-frequency regions. Novel preventative and curative biomedical interventions in the future aimed at alleviating the hearing loss that comes with age, will likely emanate from increasing our knowledge and understanding of its neural and molecular bases. To the extent that this sensory deficit resides in the central auditory system, including the cochlear nucleus, future neural therapies will be able to improve hearing in the elderly. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA.
   Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA.
   Univ Rochester, Sch Med & Dent, Dept Neurobiol, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Anat & Biomed Engn, Rochester, NY 14642 USA.
RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA.
EM rdf@q.ent.rochester.edu
CR Allen PD, 2003, HEARING RES, V186, P17, DOI 10.1016/S0378-5955(03)00300-9
   BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918
   BRINER W, 1989, NEUROBIOL AGING, V10, P295, DOI 10.1016/0197-4580(89)90039-0
   CASPARY DM, 2005, J NEUROSCI, V47, P10952
   Frisina Robert D., 2001, Seminars in Hearing, V22, P213, DOI 10.1055/s-2001-15627
   Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1
   Frisina RD, 2005, INFERIOR COLLICULUS, P559, DOI 10.1007/0-387-27083-3_19
   Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
   FRISINDA DR, 2001, FUNCTIONAL NEUROBIOL, P569
   Helfert RH, 1999, J COMP NEUROL, V406, P285
   Helfert RH, 2003, HEARING RES, V183, P18, DOI 10.1016/S0378-5955(03)00194-1
   KEITHLEY EM, 1990, HEARING RES, V49, P169, DOI 10.1016/0378-5955(90)90103-V
   Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005
   MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4
   Walton JP, 1998, J NEUROSCI, V18, P2764
   Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103
   Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005
   WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U
   Willott JF, 1997, J COMP NEUROL, V385, P405
   WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412
   WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106
   Willott JF, 1991, AGING AUDITORY SYSTE, P286
   WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312
   WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6
   Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3
   Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010
NR 29
TC 27
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN-JUL
PY 2006
VL 216
BP 216
EP 223
DI 10.1016/j.heares.2006.02.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 064NL
UT WOS:000239096300023
PM 16597491
ER

PT J
AU Excoffon, KJDA
   Avenarius, MR
   Hansen, MR
   Kimberling, WJ
   Najmabadi, H
   Smith, RJH
   Zabner, J
AF Excoffon, KJDA
   Avenarius, MR
   Hansen, MR
   Kimberling, WJ
   Najmabadi, H
   Smith, RJH
   Zabner, J
TI The Coxsackievirus and Adenovirus Receptor: A new adhesion protein in
   cochlear development
SO HEARING RESEARCH
LA English
DT Article
DE Coxsackievirus and Adenovirus Receptor; CAR; CXADR; usher syndrome;
   deafness; cochlea
ID MEDIATED GENE-TRANSFER; INNER-EAR; USHER-SYNDROME; HAIR-CELLS;
   RESPIRATORY VIRUSES; OTITIS-MEDIA; B VIRUS; CAR; EXPRESSION; THERAPY
AB The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
   Univ Iowa, Dept Internal Med, Div Pulm Med, Iowa City, IA 52242 USA.
   Boys Town Natl Res Hosp, Ctr Hereditary Commun Disorders, Omaha, NE 68131 USA.
   Social Welf & Rehabil Sci Univ, Genet Res Ctr, Tehran, Iran.
   Univ Iowa, Interdept PhD Program Genet, Iowa City, IA 52242 USA.
RP Smith, RJH (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
EM richard-smith@uiowa.edu; joseph-zabner@uiowa.edu
CR Ahmed ZM, 2003, CLIN GENET, V63, P431, DOI 10.1034/j.1399-0004.2003.00109.x
   Asher DR, 2005, GENESIS, V42, P77, DOI 10.1002/gene.20127
   Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339
   Boeda B, 2002, EMBO J, V21, P6689, DOI 10.1093/emboj/cdf689
   Bowles NE, 2002, MOL GENET METAB, V77, P257, DOI 10.1016/S1096-7192(02)00168-3
   Bruning A, 2004, EXP CELL RES, V298, P624, DOI 10.1016/j.yexcr.2004.05.001
   Chaib H, 1997, HUM MOL GENET, V6, P27, DOI 10.1093/hmg/6.1.27
   Coyne CB, 2005, ADV DRUG DELIVER REV, V57, P869, DOI 10.1016/j.addr.2005.01.007
   Davis LE, 1995, OTOLARYNG HEAD NECK, V113, P695, DOI 10.1016/S0194-5998(95)70007-2
   Dorner AA, 2005, J CELL SCI, V118, P3509, DOI 10.1242/jcs.02476
   Excoffon KJDA, 2005, AM J RESP CELL MOL, V32, P498, DOI 10.1165/rcmb.2005-0031OC
   Excoffon KJDA, 2003, J VIROL, V77, P2559, DOI 10.1128/JVI.77.4.2559-2567.2003
   Excoffon KJDA, 2004, J CELL SCI, V117, P4401, DOI 10.1242/jcs.01300
   Farinas I, 2001, J NEUROSCI, V21, P6170
   Heikkinen T, 2000, VACCINE, V19, pS51, DOI 10.1016/S0264-410X(00)00278-4
   Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8
   Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
   Kanzaki S, 2002, HEARING RES, V169, P112, DOI 10.1016/S0378-5955(02)00347-7
   Kawamoto K, 2003, MOL THER, V7, P484, DOI 10.1016/S1525-0016(03)00058-3
   Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
   Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551
   Monobe H, 2003, INT J PEDIATR OTORHI, V67, P801, DOI 10.1016/S0165-5876(03)00124-1
   Musher DM, 2003, NEW ENGL J MED, V348, P1256, DOI 10.1056/NEJMra021771
   Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264
   Noramly S, 2002, J NEUROBIOL, V53, P100, DOI 10.1002/neu.10131
   Okegawa T, 2001, CANCER RES, V61, P6592
   Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X
   Roelvink PW, 1998, J VIROL, V72, P7909
   Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
   Scanlan MJ, 1999, BBA-GENE STRUCT EXPR, V1445, P39, DOI 10.1016/S0167-4781(99)00033-0
   Selmani Z, 2005, EUR ARCH OTO-RHINO-L, V262, P331, DOI 10.1007/s00405-004-0816-y
   Staecker H, 2004, OTOLARYNG CLIN N AM, V37, P1091, DOI 10.1016/j.otc.2004.05.001
   Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X
   Thoelen I, 2002, BMC GENET, V3, DOI 10.1186/1471-2156-3-1
   Verpy E, 2000, NAT GENET, V26, P51
   Walters RW, 1999, J BIOL CHEM, V274, P10219, DOI 10.1074/jbc.274.15.10219
   Walters RW, 2002, CELL, V110, P789, DOI 10.1016/S0092-8674(02)00912-1
   Weiss MA, 1997, INT J DEV NEUROSCI, V15, P577, DOI 10.1016/S0736-5748(96)00112-8
NR 38
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2006.02.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900001
PM 16678988
ER

PT J
AU Cartee, LA
   Miller, CA
   van den Honert, C
AF Cartee, LA
   Miller, CA
   van den Honert, C
TI Spiral ganglion cell site of excitation I: Comparison of scala tympani
   and intrameatal electrode responses
SO HEARING RESEARCH
LA English
DT Article
DE auditory nerve; cats; cochlear implant; electrical stimulation; single
   fiber recording
ID AUDITORY-NERVE FIBERS; COCHLEAR NEURAL MEMBRANE; ELECTRICAL-STIMULATION;
   PHYSIOLOGICAL-PROPERTIES; GUINEA-PIG; CAT; NEURONS; RECORDINGS;
   POTENTIALS; PATTERNS
AB To determine the site of excitation on the spiral ganglion cell in response to electrical stimulation similar to that from a cochlear implant, single-fiber responses to electrical stimuli delivered by an electrode positioned in the scala tympani were compared to responses from stimuli delivered by an electrode placed in the internal auditory meatus. The response to intrameatal stimulation provided a control set of data with a known excitation site, the central axon of the spiral ganglion cell. For both intrameatal and scala tympani stimuli, the responses to single-pulse, summation, and refractory stimulus protocols were recorded. The data demonstrated that summation pulses, as opposed to single pulses, are likely to give the most insightful measures for determination of the site of excitation. Single-fiber summation data for both scala tympani and intrameatally stimulated fibers were analyzed with a clustering algorithm. Combining cluster analysis and additional numerical modeling data, it was hypothesized that the scala tympani responses corresponded to central excitation, peripheral excitation adjacent to the cell body, and peripheral excitation at a site distant from the cell body. Fibers stimulated by an intrameatal electrode demonstrated the greatest range of jitter measurements indicating that greater fiber independence may be achieved with intrameatal stimulation. (c) 2006 Elsevier B.V. All rights reserved.
C1 N Carolina State Univ, Joint Dept Biomed Engn, Raleigh, NC 27695 USA.
   Univ N Carolina, Chapel Hill, NC USA.
   Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52240 USA.
   Cochlear Amer Englewood, Englewood, CO USA.
RP Cartee, LA (reprint author), N Carolina State Univ, Joint Dept Biomed Engn, 2110 Faucette Dr,118 Weaver Labs,Box 7625, Raleigh, NC 27695 USA.
EM lacartee@ncsu.edu
CR ADAMO NJ, 1973, J NEUROCYTOL, V2, P91, DOI 10.1007/BF01099211
   Badi AN, 2002, ARCH OTOLARYNGOL, V128, P1019
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   CARTEE LA, 2006, IN PRESS HEAR RES
   Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X
   Cartee LA, 2000, HEARING RES, V146, P153, DOI 10.1016/S0378-5955(00)00110-6
   Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55
   GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002
   HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
   Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0
   JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26
   KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553
   KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714
   KOHLLOFFEL LUE, 1974, ARCH OTORHINOLARYNGO, V109, P179
   LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203
   Litvak L, 2003, J ACOUST SOC AM, V114, P2099, DOI 10.1121/1.1612494
   Miller CA, 2003, HEARING RES, V175, P200
   Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X
   Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6
   MILLER CA, 2003, 2003 MIDW M ASS RES
   Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383
   MOXON EC, 1965, THESIS MIT CAMBRIDGE
   Moxon E.C., 1971, THESIS MIT CAMBRIDGE
   Rattay F, 1990, ELECT NERVE STIMULAT
   ROBERTSON D, 1976, BRAIN RES, V109, P487, DOI 10.1016/0006-8993(76)90029-9
   Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
   SIMMONS BF, 1983, ANN NY ACAD SCI, V405, P259
   SPACH MS, 1985, IEEE T BIO-MED ENG, V32, P743, DOI 10.1109/TBME.1985.325489
   STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0
   Theodoridis S., 2003, PATTERN RECOGNITION
   VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7
   VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
   VERVEEN A. A., 1962, ACTA MORPHOL NEERLANDO SCAND, V5, P79
   ZAPPIA JJ, 1990, OTOLARYNG HEAD NECK, V103, P575
NR 34
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 10
EP 21
DI 10.1016/j.heares.2006.02.012
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900002
PM 16624511
ER

PT J
AU Cartee, LA
AF Cartee, LA
TI Spiral ganglion cell site of excitation II: Numerical model analysis
SO HEARING RESEARCH
LA English
DT Article
DE auditory neuron; cochlear implant; electrical stimulation;
   Hodgkin-Huxley equations; neural model
ID ELECTRICAL-STIMULATION; MYELINATED NERVE; AUDITORY-NERVE; NEURONS;
   PROPAGATION; POTENTIALS; MEMBRANE; CATS
AB An anatomically based model of cochlear neuron electrophysiology has been developed and used to interpret the physiological responses of the auditory neuron to electrical summation and refractory pulse-pair stimuli. For summation pulses, the summation time constant, is tau(sum), indicates the ability of the membrane to hold charge after cessation of a pulse. When a spiral ganglion cell with a cell body was simulated, the value of tau(sum) was elevated at the peripheral node adjacent to the cell body. For refraction pulses, the refraction time constant, tau(ref), indicates the duration of the relative refractory period of the membrane. In spiral ganglion cell simulations, tau(ref) was decreased at the peripheral node adjacent to the cell body and slightly elevated at other peripheral nodes. The extent of the cell body influence on tau(sum) and tau(ref) was high localized. Excitation times for the nodes adjacent to the cell body were either simultaneous or near simultaneous resulting in similar response latencies. Results indicate that values of tau(sum) and tau(ref) may be useful for distinguishing central and peripheral excitation sites while latency measures alone are not a good indication of site of excitation. (c) 2006 Elsevier B.V. All rights reserved.
C1 N Carolina State Univ, Joint Dept Biomed Engn, Raleigh, NC 27695 USA.
   Univ N Carolina, Chapel Hill, NC USA.
RP Cartee, LA (reprint author), N Carolina State Univ, Joint Dept Biomed Engn, Box 7625, Raleigh, NC 27695 USA.
EM lacartee@ncsu.edu
CR ADAMO NJ, 1973, J NEUROCYTOL, V2, P91, DOI 10.1007/BF01099211
   CARTEE LA, 2006, HEAR RES
   CARTEE LA, 1995, ANN BIOMED ENG S1, V23, pS80
   Cartee LA, 2000, HEARING RES, V146, P153, DOI 10.1016/S0378-5955(00)00110-6
   COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3
   COOLEY JW, 1966, BIOPHYS J, V6, P583
   CRANK J, 1947, P CAMB PHILOS SOC, V43, P50
   Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55
   FRANKENHAEUSER B, 1964, J PHYSIOL-LONDON, V171, P302
   Gardenhire LW, 1964, P 1964 NAT TEL C, P1
   GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002
   HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500
   KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553
   KOHLLOFFEL LUE, 1974, ARCH OTORHINOLARYNGO, V109, P179
   LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203
   MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593
   POLLARD AE, 1987, MED BIOL ENG COMPUT, V25, P261, DOI 10.1007/BF02447422
   REILLY JP, 1985, IEEE T BIO-MED ENG, V32, P1001, DOI 10.1109/TBME.1985.325509
   ROBERTSON D, 1976, BRAIN RES, V109, P487, DOI 10.1016/0006-8993(76)90029-9
   RUBINSTEIN JT, 1991, BIOPHYS J, V60, P538
   SAMPFLI R, 1952, ERGEB PHYSL, V148, P70
   SPACH MS, 1985, IEEE T BIO-MED ENG, V32, P743, DOI 10.1109/TBME.1985.325489
   TASAKI I, 1955, AM J PHYSIOL, V181, P639
NR 23
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 22
EP 30
DI 10.1016/j.heares.2006.02.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900003
PM 16624510
ER

PT J
AU Mazurek, B
   Amarjargal, N
   Haupt, H
   Gross, J
AF Mazurek, B
   Amarjargal, N
   Haupt, H
   Gross, J
TI High potassium concentrations protect inner and outer hair cells in the
   newborn rat culture from ischemia-induced damage
SO HEARING RESEARCH
LA English
DT Article
DE potassium; ischemia; hair cell loss; newborn rat; organ of Corti culture
ID PLASMA-MEMBRANE CA2+-ATPASE; CALCIUM-PUMP ACTIVITY; GUINEA-PIG; CA2+
   HOMEOSTASIS; SENSORY CELLS; CHANNELS; DEPOLARIZATION; NEURONS; COCHLEA;
   DEATH
AB Several studies indicate that an increase in the extracellular potassium (K+) concentration is a factor exerting a damaging effect on cochlear hair cells (HCs). The present study was designed to examine the effects of high extracellular K+ concentrations on the HCs under normoxic and ischemic conditions. Organotypic cultures of the organ of Corti of newborn rats were exposed to normoxia and ischemia at K+ concentrations of 5-70 mM in artificial perilymph for 3-4 h. The number of IHCs and OHCs in the apical, medial and basal parts of the cochlea were counted 24 h later. The work resulted in two main findings: (1) extracellular K+ concentrations of 30-70 mM had no effect on the HCs under normoxic conditions: (2) tinder ischemic conditions, a clear HC loss. mainly in the medial and basal cochlear parts, was observed at 5 mM K+ as previously reported. In contrast, a high extracellular K+ concentration strongly attenuated the HC loss. This effect nearly completely disappeared by the addition of both eosin, an inhibitor of the plasma membrane calcium ATPase (PMCA), and linopirdine, an inhibitor of the KCNQ4 channel, indicating that a normal activity of the PMCA and the KCNQ4 channels are key factors for HC survival under ischemia and depolarizing conditions. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Med Berlin, Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany.
RP Gross, J (reprint author), Univ Med Berlin, Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, Spandauer Damm 130 Bld 31, D-14050 Berlin, Germany.
EM birgit.mazurek@charite.de; nyamaa.amra@charite.de;
   heidemarie.haupt@charite.de; johann.gross@charite.de
CR Babnigg G, 2003, J BIOL CHEM, V278, P14872, DOI 10.1074/jbc.M210418200
   Beisel KW, 2000, MOL BRAIN RES, V82, P137
   Boyer C, 1998, EUR J NEUROSCI, V10, P971, DOI 10.1046/j.1460-9568.1998.00107.x
   Boyer C, 2001, J NEUROSCI, V21, P2640
   Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6
   Dallos P, 1996, SPRINGER HDB AUDITOR, P1
   DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K
   Engel J, 2002, ADV OTO-RHINO-LARYNG, V59, P35
   Flock A, 2003, AUDIOL NEURO-OTOL, V8, P59, DOI 10.1159/000069002
   FRANKLIN JL, 1995, J NEUROSCI, V15, P643
   Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143
   Garcia ML, 2001, J NEUROSCI RES, V64, P661, DOI 10.1002/jnr.1120
   Huy PTB, 2002, ORL-J OTO-RHIN-LARYN, V64, P120
   IKEDA K, 1992, PFLUG ARCH EUR J PHY, V420, P493, DOI 10.1007/BF00374624
   Jentsch TJ, 2000, NAT REV NEUROSCI, V1, P21, DOI 10.1038/35036198
   Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267
   Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5
   Lampe BJ, 1997, NEUROSCI LETT, V222, P135, DOI 10.1016/S0304-3940(97)13347-X
   Lipton P, 1999, PHYSIOL REV, V79, P1431
   Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6
   Martinez-Sanchez M, 2004, NEUROSCIENCE, V128, P729, DOI 10.1016/j.neuroscience.2004.06.074
   Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5
   MEIER K, 1988, ENDOCRINOLOGY, V122, P2764
   Nilles R, 1995, HNO, V43, P716
   Nouvian R, 2003, EUR J NEUROSCI, V17, P2553, DOI 10.1046/j.1460-9568.2003.02715.x
   OKANO Y, 1975, ARCH OTO-RHINO-LARYN, V209, P121, DOI 10.1007/BF00456369
   Oliver D, 2003, J NEUROSCI, V23, P2141
   Osborn Kenneth D, 2004, Biophys J, V87, P1892, DOI 10.1529/biophysj.103.039404
   Pottorf WJ, 2002, J NEUROCHEM, V83, P1002, DOI 10.1046/j.1471-4159.2002.01221.x
   ROMERO PJ, 1984, BIOCHIM BIOPHYS ACTA, V778, P245, DOI 10.1016/0005-2736(84)90365-1
   Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x
   Semaan Maroun T, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P301, DOI 10.1097/01.moo.0000186335.44206.1c
   Shieh CC, 2000, PHARMACOL REV, V52, P557
   Tan CT, 2001, HEARING RES, V154, P81, DOI 10.1016/S0378-5955(01)00222-2
   Usachev YM, 2001, J NEUROCHEM, V76, P1756, DOI 10.1046/j.1471-4159.2001.00169.x
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   Xiao AY, 2001, NEUROSCIENCE, V108, P61, DOI 10.1016/S0306-4522(01)00394-3
   Yao CJ, 1999, J NEUROCHEM, V73, P457, DOI 10.1046/j.1471-4159.1999.0730457.x
   ZENNER HP, 1986, ARCH OTO-RHINO-LARYN, V243, P108, DOI 10.1007/BF00453760
   ZENNER HP, 1994, EUR ARCH OTO-RHINO-L, V251, P143
NR 40
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 31
EP 38
DI 10.1016/j.heares.2006.02.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900004
PM 16678987
ER

PT J
AU Braun, M
AF Braun, M
TI A retrospective study of the spectral probability of spontaneous
   otoacoustic emissions: Rise of octave shifted second mode after infancy
SO HEARING RESEARCH
LA English
DT Article
DE spontaneous otoacoustic emission; medial olivocochlear system; neonate;
   octave
ID ACTIVE MICROMECHANICAL PROPERTIES; SPONTANEOUS CELLULAR VIBRATIONS;
   DISTORTION-PRODUCT; NON-MUSICIANS; SELECTIVE ATTENTION; EAR RESONANCE;
   COCHLEA; SENSITIVITY; PREVALENCE; AMPLITUDE
AB The recording of otoacoustic emissions (OAEs) is today a widely used tool in medical diagnosis. The mechanisms of OAE generation in the cochlea and their transmission to the external ear canal, however, are not well understood and a matter of long-standing debates. Here, the frequency distribution of 1660 spontaneous otoacoustic emissions (SOAEs) from three surveys, covering 296 human subjects, is analyzed. Neonates show a monomodal distribution with a peak at 4 kHz. but both children (5-11 y) and adults show an identical bimodal distribution, with two peaks in an octave distance (1.5 and 3 kHz). For the combined children and adult data, distribution density at the two peak tops is 2.8 and 2.7 times as high as at the low between them. Mean SOAE amplitudes are unrelated to the two peaks, but show a significant narrow-band dip precisely at the low in between at 2140 Hz (P < 0.008). External ear canal resonance can explain the single 4 kHz mode at birth and the 3 kHz mode in children and adults. The octave shifted 1.5 kHz mode remains without mechanical explanation. It may reflect descending neural influence from central octave band processing. The results are relevant for the interpretation of OAE levels in medical diagnosis. (c) 2006 Elsevier B.V. All rights reserved.
C1 Neurosci Mus, S-67195 Klassbol, Sweden.
RP Braun, M (reprint author), Neurosci Mus, Gamsbyn 14, S-67195 Klassbol, Sweden.
EM nombraun@telia.com
CR Abdala C, 2003, J ACOUST SOC AM, V114, P3239, DOI 10.1121/1.1625930
   Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844
   BENTLER RA, 1989, J SPEECH HEAR DISORD, V54, P264
   BILGER RC, 1990, J SPEECH HEAR RES, V33, P418
   BONFILS P, 1992, LARYNGOSCOPE, V102, P182
   Braun M, 2000, HEARING RES, V145, P130, DOI 10.1016/S0378-5955(00)00083-6
   Braun M, 1998, HEARING RES, V118, P129, DOI 10.1016/S0378-5955(98)00028-8
   Braun M, 1997, HEARING RES, V114, P197, DOI 10.1016/S0378-5955(97)00160-3
   Braun M, 2005, HEARING RES, V210, P85, DOI 10.1016/j.heares.2005.05.015
   BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330
   BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438
   Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183
   FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4
   GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X
   Goode RL, 1996, AM J OTOL, V17, P813
   Guinan Jr J.J., 1996, COCHLEA, P435
   Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31
   Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
   KEEFE DH, 1994, J ACOUST SOC AM, V95, P355, DOI 10.1121/1.408380
   KEILSON SE, 1993, ACTA OTO-LARYNGOL, V113, P591, DOI 10.3109/00016489309135869
   KHANNA SM, 1993, BRIT J AUDIOL, V27, P79, DOI 10.3109/03005369309077895
   KRUGER B, 1987, ACTA OTO-LARYNGOL, V103, P578
   LAFRENIERE D, 1991, ARCH OTOLARYNGOL, V117, P1382
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3
   MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z
   MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6
   MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900
   MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F
   MICHEYL C, 1995, BRAIN COGNITION, V29, P127, DOI 10.1006/brcg.1995.1272
   Micheyl C, 1997, NEUROREPORT, V8, P1047, DOI 10.1097/00001756-199703030-00046
   MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M
   Norena A, 2002, HEARING RES, V171, P66, DOI 10.1016/S0378-5955(02)00388-X
   Perrot X, 1999, NEUROSCI LETT, V262, P167, DOI 10.1016/S0304-3940(99)00044-0
   PIERSON LL, 1994, AM J OTOLARYNG, V15, P37, DOI 10.1016/0196-0709(94)90038-8
   PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4
   Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185
   Russell A.F., 1992, THESIS U ILLINOIS UR
   Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750
   SMURZYNSKI J, 1992, HEARING RES, V58, P227, DOI 10.1016/0378-5955(92)90132-7
   SPEKTOR Z, 1991, LARYNGOSCOPE, V101, P965
   TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V
   VANDIJK P, 1994, J ACOUST SOC AM, V96, P163, DOI 10.1121/1.411438
   WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8
   WESTWOOD GFS, 1992, BRIT J AUDIOL, V26, P143, DOI 10.3109/03005369209079032
   WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012
   ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763
NR 49
TC 5
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 39
EP 46
DI 10.1016/j.heares.2006.03.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900005
PM 16644155
ER

PT J
AU Prado-Guitierrez, P
   Fewster, LM
   Heasman, JM
   Mckay, CM
   Shepherd, RK
AF Prado-Guitierrez, P
   Fewster, LM
   Heasman, JM
   Mckay, CM
   Shepherd, RK
TI Effect of interphase gap and pulse duration on electrically evoked
   potentials is correlated with auditory nerve survival
SO HEARING RESEARCH
LA English
DT Article
DE neural degeneration; deafness; electrical stimulation; cochlear implant;
   neural prostheses; EABR; ECAP
ID SENSORINEURAL HEARING-LOSS; PSYCHOPHYSICAL DETECTION THRESHOLDS;
   COCHLEAR IMPLANT USERS; FUNCTIONAL-RESPONSES; SPIRAL GANGLION;
   GUINEA-PIGS; BRAIN-STEM; IN-VIVO; STIMULATION; SINGLE
AB We investigated the effect of pulse duration (PD) and interphase-gap (IPG) on the electrically-evoked auditory brain stem response (EABR) and viiith nerve compound action potential (ECAP) of deafened guinea pigs in order to test the hypothesis that the extent of change in these neural responses is affected by the histological status of the auditory nerve. Fifteen guinea pigs were deafened by coadministration of kanamycin and furosemide. Animals were acutely implanted with an 8-band electrode array at 1, 4 or 12 weeks following deafening. EABR and ECAP input/output functions were recorded in response to charge balanced biphasic current pulses. We determined the change in current required to equalize; (i) the EABR amplitude when the duration of the current pulse was doubled (104208 mu s/phase); and (ii) the EABR and ECAP amplitudes when the IPG was increased from 8 to 58 mu s using a 104 mu s/phase current pulse. Following the completion of each experiment the cochleae were examined quantitatively for spiral ganglion neuron survival. As expected, the current level required to evoke an EABR with equal amplitude was lower when the animal was stimulated with current pulses of 208 compared with 104 mu s/phase. Moreover, the current level required to evoke EABR/ECAPs with equal amplitude was lower when current pulses had an IPG of 58 versus 8 mu s. Importantly, there was a reduction in the magnitude of this effect with greater neural loss; the reduced efficacy of changing both PD and IPG on these electrically-evoked potentials was statistically correlated with neural survival. These results may provide a tool for investigating the contribution of auditory nerve survival to clinical performance among cochlear implant subjects. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3052, Australia.
   Bion Ear Inst, Melbourne, Vic 3002, Australia.
RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3052, Australia.
EM rshepherd@bionicear.org
RI Shepherd, Robert/I-6276-2012
CR ABBAS PJ, 1991, HEARING RES, V51, P139, DOI 10.1016/0378-5955(91)90012-X
   BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716
   BROWN MC, 1994, J NEUROPHYSIOL, V71, P1835
   BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218
   Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021
   DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616
   Felix H, 1985, Acta Otolaryngol Suppl, V423, P67
   Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
   Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
   HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
   HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x
   Huang CQ, 1999, IEEE T BIO-MED ENG, V46, P461, DOI 10.1109/10.752943
   KOLES ZJ, 1972, J PHYSIOL-LONDON, V227, P351
   Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899
   LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
   McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1
   McKay CM, 1999, J ACOUST SOC AM, V106, P998, DOI 10.1121/1.428052
   McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316
   Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1
   Miller CA, 1995, HEARING RES, V92, P100, DOI 10.1016/0378-5955(95)00205-7
   Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
   Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9
   NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
   Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
   OTTE J, 1978, LARYNGOSCOPE, V88, P1231
   PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5
   PARKINS CW, 1987, HEARING RES, V31, P267, DOI 10.1016/0378-5955(87)90196-1
   PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665
   PRADOGUTIERREZ P, 2004, 3 INT COCHL IMPL C I
   Robblee L S, 1990, NEURAL PROSTHESES FU, P25
   Rose C., 1990, YALE JL HUMAN, V2, P37
   SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
   Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
   Shepherd RK, 2001, ANN BIOMED ENG, V29, P195, DOI 10.1114/1.1355276
   Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
   Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
   SKINNER MW, 1994, AM J OTOL, V15, P15
   Skinner MW, 2002, EAR HEARING, V23, P207, DOI 10.1097/00003446-200206000-00005
   Smith DW, 1997, J ACOUST SOC AM, V102, P2228, DOI 10.1121/1.419636
   Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76
   TASAKI I, 1955, AM J PHYSIOL, V181, P639
   VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
   VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117
   Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033
NR 44
TC 35
Z9 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 47
EP 55
DI 10.1016/j.heares.2006.03.006
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900006
PM 16644157
ER

PT J
AU Wu, CH
   Jen, PHS
AF Wu, CH
   Jen, PHS
TI The role of GABAergic inhibition in shaping duration selectivity of bat
   inferior collicular neurons determined with temporally patterned sound
   trains
SO HEARING RESEARCH
LA English
DT Article
DE bat; bicuculline; duration selectivity; GABA; pulse repetition rate;
   pulse trains
ID BIG BROWN BAT; EPTESICUS-FUSCUS; TUNING CHARACTERISTICS; PULSE TRAINS;
   GLYCINERGIC INHIBITION; SPACE REPRESENTATION; RESPONSE PROPERTIES;
   AUDITORY MIDBRAIN; REPETITION RATE; FM BAT
AB A previous study has shown that duration selectivity of neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus becomes sharper with increasing pulse repetition rate (PRR). The present study examines the role of GABAergic inhibition in improving duration selectivity of bat IC neurons with PRR by means of iontophoretic application of GABA as well as its antagonist, bicuculline. Duration selectivity of IC neurons is studied by plotting the duration tuning curves with the number of impulses per pulse against the pulse duration. Duration tuning curves of IC neurons are described as band-, short-, long- and all-pass in terms of filtering properties to sound duration. Bicuculline application produces more pronounced broadening of duration tuning curves at high than at low PRR. Conversely, GABA application produces more pronounced narrowing of duration tuning curves at low than at high PRR. In either case, sharpening of duration selectivity of IC neurons with increasing PRR is abolished during drug application. The duration tuning curves of IC neurons progressively broadens with recording depth. Broadening of duration tuning curves during bicuculline application is more pronounced for neurons at upper than at deep IC. This progressive decrease in duration selectivity with recording depth is discussed in relation to spatial distribution gradient of GABA(A) receptors in the IC. Possible biological significance of these findings relevant to bat echolocation is discussed. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA.
   Univ Missouri, Intedisciplinary Neurosci Program, Columbia, MO 65211 USA.
RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, 208 Lefevre Hall, Columbia, MO 65211 USA.
EM jenp@missouri.edu
CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305
   BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7
   Brand A, 2000, J NEUROPHYSIOL, V84, P1790
   CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25
   Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
   CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
   Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8
   Cooper J. R., 1982, BIOMEDICAL BASIS NEU
   Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360
   FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5
   Fubara BM, 1996, J COMP NEUROL, V369, P83
   Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1
   Galazyuk AV, 2000, J NEUROPHYSIOL, V83, P128
   Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050
   GELFAND SA, 1990, HEARING, P257
   GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1
   Griffin DR, 1958, LISTENING DARK
   He JF, 1997, J NEUROSCI, V17, P2615
   Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9
   JEN PHS, 1982, J COMP PHYSIOL, V147, P351
   JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4
   Jen PHS, 2001, J COMP PHYSIOL A, V187, P605, DOI 10.1007/s003590100233
   Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317
   Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408
   Jen PHS, 2002, BRAIN RES, V948, P159, DOI 10.1016/S0006-8993(02)03056-1
   KLUG A, 1995, J NEUROPHYSIOL, V74, P1701
   Koch U, 1998, J NEUROPHYSIOL, V80, P71
   LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902
   LeBeau FEN, 2001, J NEUROSCI, V21, P7303
   Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119
   Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885
   Lu Y, 1998, J NEUROPHYSIOL, V79, P2303
   NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790
   OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
   Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005
   PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69
   POON PWF, 1990, EXP BRAIN RES, V79, P83
   ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345
   SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103
   SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674
   Smalling JM, 2001, NEUROREPORT, V12, P3539, DOI 10.1097/00001756-200111160-00033
   Surlykke A, 2000, J ACOUST SOC AM, V108, P2419, DOI 10.1121/1.1315295
   Wu M, 1991, Chin J Physiol, V34, P145
   WU M, 1995, LERHINOLOPHE, V11, P75
   Wu MI, 1996, J COMP PHYSIOL A, V179, P385
   WU MI, 1995, HEARING RES, V85, P155, DOI 10.1016/0378-5955(95)00042-3
   Zhou XM, 2001, J COMP PHYSIOL A, V187, P63, DOI 10.1007/s003590000179
   Zhou XM, 2002, J COMP PHYSIOL A, V188, P815, DOI 10.1007/s00359-002-0367-x
NR 48
TC 13
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 56
EP 66
DI 10.1016/j.heares.2006.03.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900007
PM 16644156
ER

PT J
AU Sigalovsky, IS
   Melcher, JR
AF Sigalovsky, IS
   Melcher, JR
TI Effects of sound level on fMRI activation in human brainstem, thalamic
   and cortical centers
SO HEARING RESEARCH
LA English
DT Article
DE BOLD; sound intensity; level coding; cardiac gating; sparse imaging;
   interleaved sampling
ID PRIMARY AUDITORY-CORTEX; DEPENDENT REPRESENTATION; TEMPORAL ENVELOPE;
   PRESSURE LEVEL; HESCHLS GYRUS; STIMULI; NOISE; CAT; INTENSITY; FREQUENCY
AB The dependence of fMRI activation on sound level was examined throughout the auditory pathway of normal human listeners using continuous broadband noise, a stimulus widely used in neuroscientific investigations of auditory processing, but largely neglected in neuro-imaging. Several specialized techniques were combined here for the first time to enhance detection of brainstem activation, mitigate scanner noise, and recover temporal resolution lost by the mitigation technique. The main finding was increased activation with increasing level in cochlear nucleus, superior olive, inferior colliculus, medial geniculate body and auditory cortical areas. We suggest that these increases reflect monotonically increasing activity in a preponderance of individual auditory neurons responsive to broadband noise. While the time-course of activation changed with level, the change was subtle and only significant in a part of the cortex. To our knowledge, these are the first fMRI data showing the effects of sound level in subcortical centers or for a non-tonal, non-speech stimulus at any stage of the pathway. The present results add to the body of parametric data in normal human listeners and are fundamental to the design of any fMRI experiment employing continuous noise. (c) 2006 Elsevier B.V. All rights reserved.
C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
   Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
RP Sigalovsky, IS (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM plumbum@alum.mit.edu
CR AITKIN L, 1991, J NEUROPHYSIOL, V65, P383
   Arthurs OJ, 2002, TRENDS NEUROSCI, V25, P27, DOI 10.1016/S0166-2236(00)01995-0
   Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480
   Bilecen D, 2002, NEUROIMAGE, V17, P710, DOI 10.1006/nimg.2002.1133
   Brechmann A, 2002, J NEUROPHYSIOL, V87, P423
   Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026
   CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383
   Dale W., 1999, PROSTATE J, V1, P179, DOI 10.1046/j.1525-1411.1999.14005.x
   Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N
   Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396
   Fomby T. B., 1984, ADV ECONOMETRIC METH
   FRISTON KJ, 1995, HUMAN BRAIN MAPPING, V2, P165
   Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588
   Grady CL, 1997, NEUROREPORT, V8, P2511, DOI 10.1097/00001756-199707280-00019
   Guimaraes AR, 1998, HUM BRAIN MAPP, V6, P33, DOI 10.1002/(SICI)1097-0193(1998)6:1<33::AID-HBM3>3.0.CO;2-M
   Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
   Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697
   Harms MP, 2005, J NEUROPHYSIOL, V93, P210, DOI 10.1152/jn.00712.2004
   Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002
   Harms MP, 2003, HUM BRAIN MAPP, V20, P168, DOI 10.1002/hbm.10136
   Hart HC, 2002, HEARING RES, V171, P177, DOI 10.1016/S0378-5955(02)00498-7
   Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X
   Hawley ML, 2005, HEARING RES, V204, P101, DOI 10.1016/j.heares.2005.01.005
   HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X
   IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448
   Jancke L, 1999, NEUROSCI LETT, V266, P125, DOI 10.1016/S0304-3940(99)00288-8
   Jancke L, 1998, NEUROPSYCHOLOGIA, V36, P875, DOI 10.1016/S0028-3932(98)00019-0
   KAJIKAWA Y, 2005, J NEUROPHYSIOL, V93, P2
   Lasota KJ, 2003, J COMPUT ASSIST TOMO, V27, P213, DOI 10.1097/00004728-200303000-00018
   Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65
   Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005
   MILLEN SJ, 1995, LARYNGOSCOPE, V105, P1305, DOI 10.1288/00005537-199512000-00008
   Mohr CM, 1999, J ACOUST SOC AM, V105, P2738, DOI 10.1121/1.426942
   Mulert C, 2005, NEUROIMAGE, V28, P49, DOI 10.1016/j.neuroimage.2005.05.041
   NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410
   PHILLIPS DP, 1985, HEARING RES, V18, P87, DOI 10.1016/0378-5955(85)90112-1
   PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
   RADEMACHER J, 1993, CEREB CORTEX, V3, P313, DOI 10.1093/cercor/3.4.313
   Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083
   SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442
NR 40
TC 40
Z9 43
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 67
EP 76
DI 10.1016/j.heares.2006.03.002
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900008
PM 16644153
ER

PT J
AU Wang, HT
   Luo, B
   Zhou, KQ
   Xu, TL
   Chen, L
AF Wang, HT
   Luo, B
   Zhou, KQ
   Xu, TL
   Chen, L
TI Sodium salicylate reduces inhibitory postsynaptic currents in-neurons of
   rat auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE sodium salicylate; inhibitory postsynaptic current; tinnitus; auditory
   cortex; whole-cell patch-clamp; rat; brain slice
ID INFERIOR COLLICULUS; ANIMAL-MODEL; TINNITUS; OTOTOXICITY; PLASTICITY; AI
AB Sodium salicylate (SS) is a medicine for anti-inflammation and for chronic pain relief with a side effect of tinnitus. To understand the cellular mechanisms of tinnitus induced by SS in the central auditory system, we examined effects of SS on evoked and miniature inhibitory postsynaptic currents (eIPSCs and mIPSCs) recorded from layer II/III pyramidal neurons of rat auditory cortex in a brain slice preparation with whole-cell patch-clamp techniques. Both eIPSCs and mIPSCs recorded from the auditory cortex could be completely blocked by bicuculline; a selective GABA(A) receptor antagonist. SS did not change the input resistance of neurons but was found to reversibly depress eIPSCs in a concentration-dependent manner. SS reduced eIPSCs to 82.3% of the control level at 0.5 mM (n = 7) and to 60.9% at 1.4 mM (n = 12). In addition, SS at 1.4 mM significantly reduced the amplitude of mIPSCs from 24.12 +/- 1.44 pA to 19.92 +/- 1.31 pA and reduced the frequency of mIPSCs from 1.34 +/- 0.23 Hz to 0.89 +/- 0.13 Hz (n = 6). Our results demonstrate that SS attenuates inhibitory postsynaptic currents in the auditory cortex, suggesting that the alteration of inhibitory neural circuits may be one of the cellular mechanisms for tinnitus induced by SS in the central auditory region. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China.
   Univ Sci & Technol China, Sch Life Sci, Lab Receptor Pharmacol, Hefei 230027, Peoples R China.
   Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China.
RP Chen, L (reprint author), Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, 443 Yellow Mt Rd, Hefei 230027, Peoples R China.
EM linchen@ustc.edu.cn
RI Chen, Lin/N-8327-2013
OI Chen, Lin/0000-0002-5847-2989
CR Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003
   Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8
   Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
   Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   DEER BC, 1982, J OTOLARYNGOL, V11, P260
   Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
   Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7
   Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0
   Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
   Gignoux M, 1966, J Fr Otorhinolaryngol Chir Maxillofac, V15, P631
   Guitton MJ, 2003, J NEUROSCI, V23, P3944
   JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811
   JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
   JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280
   JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050
   Liu YX, 2005, HEARING RES, V205, P271, DOI 10.1016/j.heares.2005.03.028
   Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
   Lockwood AH, 1998, NEUROLOGY, V50, P114
   MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483
   Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6
   Paxinos G, 2005, RAT BRAIN STEREOTAXI, V5th
   Peng BG, 2003, NEUROSCI LETT, V343, P21, DOI 10.1016/S0304-3940(03)00296-9
   PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304
   PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305
   Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
   Reyes SA, 2002, HEARING RES, V171, P43, DOI 10.1016/S0378-5955(02)00346-5
   Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3
   SILVERST.H, 1967, ANN OTO RHINOL LARYN, V76, P118
   Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
   Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8
   Xu H, 2005, NEUROREPORT, V16, P813, DOI 10.1097/00001756-200505310-00007
NR 32
TC 38
Z9 45
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 77
EP 83
DI 10.1016/j.heares.2006.03.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900009
PM 16632286
ER

PT J
AU Kim, Y
   Xin, J
   Qi, YY
AF Kim, Y
   Xin, J
   Qi, YY
TI A study of hearing aid gain functions based on a nonlinear nonlocal
   feedforward cochlea model
SO HEARING RESEARCH
LA English
DT Article
DE cochlea model; intelligibility; model based amplification; noises;
   adaptive amplification
ID AUDIBILITY; MECHANICS
AB A model based sound amplification method is proposed and studied to enhance the ability of the hearing impaired. The model consists of mechanical equations on basilar membrane and outer hair cell (OHC). The OHC is described by a nonlinear nonlocal feedforward model. In addition, a perceptive correction is defined to account for the lumped effect of higher level auditory processing, motivated by the intelligibility function of the hearing impaired. The gain functions are computed by matching the impaired model output to the perceptively weighted normal output, and qualitative agreement is achieved with NAL-NL:1 prescription on clean signals. For noisy signals, an adaptive gain strategy is proposed based on the signal to noise ratios (SNR) computed by the model. The adaptive gain functions provide less gain as SNRs decrease so that the intelligibility can be higher with the adaptivity. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA.
   Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA.
   Qualcomm Inc, San Diego, CA 92121 USA.
RP Xin, J (reprint author), Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA.
EM kimy@ices.utexas.edu; jxin@math.uci.edu
CR American National Standards Institute (ANSI), 1997, AM NAT STAND METH CA, VANSI S3.5-1997
   Ching TYC, 1998, J ACOUST SOC AM, V103, P1128, DOI 10.1121/1.421224
   Ching TYC, 2001, EAR HEARING, V22, P212, DOI 10.1097/00003446-200106000-00005
   De Boer E, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P331, DOI 10.1142/9789812704931_0046
   DILLON H, 2001, HEARING AID
   Geisler C. D., 1998, SOUND SYNAPSE
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   KILLION M, 1996, HAIR CELLS HEARING A
   Kim Y, 2005, MULTISCALE MODEL SIM, V4, P664, DOI 10.1137/040612464
   LEVEQUE RJ, 1988, SIAM J APPL MATH, V48, P191, DOI 10.1137/0148009
   LIM K, 2000, THESIS STANFORD U
   Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4
   MOORE B, 2000, COCHLEAR HEARING LOS
   *NAT AC LABS, 2003, NAL NLI SOFTW
   NEELY ST, 1985, J ACOUST SOC AM, V78, P345, DOI 10.1121/1.392497
   Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78
   Pickles JO, 1988, INTRO PHYSL HEARING
   Porat B., 1997, COURSE DIGITAL SIGNA
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
NR 20
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 84
EP 96
DI 10.1016/j.heares.2006.03.013
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900010
PM 16678986
ER

PT J
AU Anderson, M
   Bostrom, M
   Pfaller, K
   Glueckert, R
   Schrott-Fischer, A
   Gerdin, B
   Rask-Andersen, H
AF Anderson, M
   Bostrom, M
   Pfaller, K
   Glueckert, R
   Schrott-Fischer, A
   Gerdin, B
   Rask-Andersen, H
TI Structure and locomotion of adult in vitro regenerated spiral ganglion
   growth cones - A study using video microscopy and SEM
SO HEARING RESEARCH
LA English
DT Article
DE spiral ganglion; growth cone; SEM; TLVM; in vitro
ID NERVE GROWTH; CYTOSKELETAL DYNAMICS; NEUROTROPHIC FACTOR; AUDITORY
   NEURONS; CYTOCHALASIN-B; AXON GUIDANCE; INNER-EAR; CELLS; EXPRESSION;
   MYOSIN
AB Neuronal development and neurite regeneration depends on the locomotion and navigation of nerve growth cones (GCs). There are few detailed descriptions of the GC function and structure in the adult auditory system. In this study. GCs of adult dissociated and cultured spiral ganglion (SG) neurons were analyzed in vitro utilizing combined high resolution scanning electron microscopy (SEM) and time lapse video microscopy (TLVM). Axon kinesis was assessed on planar substratum with growth factors BDNF, NT-3 and GDNF. At the nano-scale level, lamellipodial abdomen of the expanding GC was found to be decorated with short surface specializations, which at TLVM were considered to be related to their crawling capacity. Filopodia were devoid of these surface structures, supporting its generally described sensory role. Microspikes appearing on lamellipodia and axons, showed circular adhesions, which at TLVM were found to provide anchorage of the navigating and turning axon. Neurons and GCs expressed the DCC-receptor for the guidance molecule netrin-1. Asymmetric ligand-based stimulation initiated turning responses suggest that this attractant cue influences steering of GC in adult regenerating auditory neurites. Hopefully, these findings may be used for ensuing tentative navigation of spiral ganglion neurosis to induce regenerative processes in the human ear. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Uppsala Hosp, Dept Surg Sci, Unit Otosurg, Uppsala, Sweden.
   Univ Uppsala Hosp, Dept Surg Sci, Unit Plast Surg, Uppsala, Sweden.
   Med Univ Innsbruck, Dept Anat Histol & Embryol, Div Histol & Embryol, Innsbruck, Austria.
   Med Univ Innsbruck, Dept Otolaryngol, Innsbruck, Austria.
RP Anderson, M (reprint author), Univ Uppsala Hosp, Dept Surg Sci, Unit Otosurg, Uppsala, Sweden.
EM malin.anderson@gmail.com
CR Aletsee C, 2001, JARO, V2, P377, DOI 10.1007/s101620010086
   Aletsee C, 2000, HNO, V48, P457, DOI 10.1007/s001060050597
   ALETTA JM, 1988, J NEUROSCI, V8, P1425
   BRAY D, 1985, J NEUROSCI, V5, P3204
   BRAY D, 1979, J CELL SCI, V37, P391
   BRAY D, 1970, P NATL ACAD SCI USA, V65, P905, DOI 10.1073/pnas.65.4.905
   Brewer GJ, 1999, EXP NEUROL, V159, P237, DOI 10.1006/exnr.1999.7123
   BRIDGMAN PC, 1989, J CELL BIOL, V108, P95, DOI 10.1083/jcb.108.1.95
   BUNGE MB, 1973, J CELL BIOL, V56, P713, DOI 10.1083/jcb.56.3.713
   Dent EW, 2003, NEURON, V40, P209, DOI 10.1016/S0896-6273(03)00633-0
   Farinas I, 2001, J NEUROSCI, V21, P6170
   Fazeli A, 1997, NATURE, V386, P796, DOI 10.1038/386796a0
   Gillespie LN, 2005, HEARING RES, V199, P117, DOI 10.1016/j.heares.2004.07.004
   Harrison RG, 1907, ANAT REC, V1, P116, DOI 10.1002/ar.1090010503
   Hasson T, 1997, CURR OPIN NEUROBIOL, V7, P615, DOI 10.1016/S0959-4388(97)80080-3
   HEDGECOCK EM, 1990, NEURON, V4, P61, DOI 10.1016/0896-6273(90)90444-K
   Hegarty JL, 1997, J NEUROSCI, V17, P1959
   Johansson K, 2001, DEV BRAIN RES, V130, P133, DOI 10.1016/S0165-3806(01)00221-8
   Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007
   KNECHT DA, 1987, SCIENCE, V236, P1081, DOI 10.1126/science.3576221
   LAMOUREUX P, 1989, Nature (London), V340, P159, DOI 10.1038/340159a0
   LEFEBVRE PP, 1992, ACTA OTO-LARYNGOL, V112, P288
   LEFEBVRE PP, 1991, ACTA OTO-LARYNGOL, V111, P304, DOI 10.3109/00016489109137392
   LETOURNEAU PC, 1987, CELL MOTIL CYTOSKEL, V8, P193, DOI 10.1002/cm.970080302
   Lin CH, 1996, NEURON, V16, P769, DOI 10.1016/S0896-6273(00)80097-5
   MARSH L, 1984, J CELL BIOL, V99, P2041, DOI 10.1083/jcb.99.6.2041
   MING G, 2001, NEURON, V29, P311
   MITCHISON T, 1988, NEURON, V1, P761, DOI 10.1016/0896-6273(88)90124-9
   Miura M, 2001, BRAIN RES, V905, P1, DOI 10.1016/S0006-8993(01)02038-8
   Pamulova L, 2006, OTOL NEUROTOL, V27, P270, DOI 10.1097/01.mao.0000187239.56583.d2
   PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
   Ramon y Cajal S., 1890, ANAT ANZEIGER, V21, P609
   Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005
   REYNOLDS BA, 1992, SCIENCE, V255, P1707, DOI 10.1126/science.1553558
   Rochlin MW, 1999, MOL BIOL CELL, V10, P2309
   Seaman C, 2001, MECH DEVELOP, V103, P173, DOI 10.1016/S0925-4773(01)00350-1
   Small J V, 1988, Electron Microsc Rev, V1, P155
   Suter DM, 1998, CURR OPIN NEUROBIOL, V8, P106, DOI 10.1016/S0959-4388(98)80014-7
   Svitkina TM, 2003, J CELL BIOL, V160, P409, DOI 10.1083/jcb.200210174
   TessierLavigne M, 1996, SCIENCE, V274, P1123, DOI 10.1126/science.274.5290.1123
   VANDEWATER TR, 1989, ACTA OTO-LARYNGOL, V108, P227, DOI 10.3109/00016488909125522
   vanWeering DHJ, 1997, J BIOL CHEM, V272, P249
   Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030
NR 43
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2006
VL 215
IS 1-2
BP 97
EP 107
DI 10.1016/j.heares.2006.03.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 052ZX
UT WOS:000238273900011
PM 16684592
ER

PT J
AU Murashita, H
   Tabuchi, K
   Hoshino, T
   Tsuji, S
   Hara, A
AF Murashita, H
   Tabuchi, K
   Hoshino, T
   Tsuji, S
   Hara, A
TI The effects of tempol, 3-aminobenzamide and nitric oxide synthase
   inhibitors on acoustic injury of the mouse cochlea
SO HEARING RESEARCH
LA English
DT Article
DE acoustic injury; cochlea; tempol; poly (ADP-ribose) synthetase (PARS);
   nitric oxide synthase
ID TRANSIENT LOCAL ANOXIA; FREE-RADICAL SCAVENGER; POLY(ADP-RIBOSE)
   POLYMERASE; SUPEROXIDE-DISMUTASE; HYDROGEN-PEROXIDE; GUINEA-PIG;
   CELL-DEATH; DYSFUNCTION; TRAUMA; DAMAGE
AB Oxygen free radicals have been implicated in the pathogenesis of acoustic injury of the cochlea. The purpose of this study was to evaluate the effects of tempol (a superoxide anion scavenger), 3-aminobenzamide (a poly (ADP-ribose) synthetase (PARS) inhibitor), N-nitro-(L)-arginine (a non-selective nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (a selective neuronal NOS inhibitor) and aminoguanidine (a selective inducible NOS inhibitor) on acoustic injury. Mice were exposed to a 4 kHz pure tone of 110-128 dB SPL for 4 h. Tempol, 3-amino benzamide or N-nitro-(L)-arginine was intraperitoneally administered immediately before the onset of acoustic overexposure, while 7-nitroindazole or aminoguanidine was intraperitoneally administered every 12 h starting immediately before the onset of acoustic overexposure. The threshold shift of the auditory brainstem response (ABR) and hair cell loss were then evaluated one and two weeks after acoustic overexposure. Tempol and 3-aminobenzamide significantly protected the cochlea against acoustic injury, whereas the NOS inhibitors did not exert any protective effect. These findings suggest that reactive oxygen species and PARS are involved in acoustic injury of the cochlea. However, further study is necessary to elucidate the roles of nitric oxide and nitric oxide synthase in acoustic injury. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Tsukuba, Grad Sch Comprehens Human Sci Majors Funct & Regu, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan.
   Tsukuba Univ Hosp, Dept Otolaryngol, Tsukuba, Ibaraki, Japan.
RP Hara, A (reprint author), Univ Tsukuba, Grad Sch Comprehens Human Sci Majors Funct & Regu, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.
EM haraakir@md.tsukuba.ac.jp
CR Cookson MR, 1998, J NEUROCHEM, V70, P501
   Dais CGD, 1996, HEARING RES, V99, P1
   FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525
   Hara A, 2000, HEARING RES, V143, P110, DOI 10.1016/S0378-5955(00)00029-0
   HELLER B, 1995, J BIOL CHEM, V270, P11176, DOI 10.1074/jbc.270.19.11176
   HYSLOP PA, 1988, J BIOL CHEM, V263, P1665
   Laight DW, 1997, ENVIRON TOXICOL PHAR, V3, P65, DOI 10.1016/S1382-6689(96)00143-3
   Monti E, 1996, FREE RADICAL BIO MED, V21, P463, DOI 10.1016/0891-5849(96)00124-4
   Murphy MP, 1999, BBA-BIOENERGETICS, V1411, P401, DOI 10.1016/S0005-2728(99)00029-8
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   Reddan J, 1992, Lens Eye Toxic Res, V9, P385
   SAMUNI A, 1991, J CLIN INVEST, V87, P1526, DOI 10.1172/JCI115163
   SAMUNI A, 1988, J BIOL CHEM, V263, P17921
   SCHRAUFSTATTER IU, 1986, P NATL ACAD SCI USA, V83, P4908, DOI 10.1073/pnas.83.13.4908
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Shi XR, 2002, HEARING RES, V164, P49
   Szabo C, 1997, J CLIN INVEST, V100, P723, DOI 10.1172/JCI119585
   Tabuchi K, 1999, ACTA OTO-LARYNGOL, V119, P179
   Tabuchi K, 2003, TOHOKU J EXP MED, V200, P195, DOI 10.1620/tjem.200.195
   Tabuchi K, 2000, ANN OTO RHINOL LARYN, V109, P715
   Takemoto T, 2004, EUR J PHARMACOL, V487, P113, DOI 10.1016/j.ejphar.2004.01.019
   Takumida M, 1998, ORL J OTO-RHINO-LARY, V60, P246, DOI 10.1159/000027605
   Tsuji S, 2002, HEARING RES, V166, P72, DOI 10.1016/S0378-5955(02)00299-X
   Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7
NR 25
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 1
EP 6
DI 10.1016/j.heares.2005.12.008
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900001
PM 16516419
ER

PT J
AU Ghanooni, R
   Decaestecker, C
   Simon, P
   Gablus, HJ
   Hassid, S
   Choufani, G
AF Ghanooni, R
   Decaestecker, C
   Simon, P
   Gablus, HJ
   Hassid, S
   Choufani, G
TI Characterization of patterns of expression of protein kinase C-alpha,
   -delta -eta, -gamma and -zeta and their correlations to p53, galectin-3,
   the retinoic acid receptor-beta and the macrophage migration inhibitory
   factor (MIF) in human cholesteatomas
SO HEARING RESEARCH
LA English
DT Article
DE cholesteatoma; galectin; MIF; p53; PKC; RAR beta
ID MIDDLE-EAR CHOLESTEATOMA; DIFFERENTIATION; CALCYCLIN; APOPTOSIS;
   OVEREXPRESSION; PROLIFERATION; CELLS; GENE; SKIN
AB Cholesteatoma, is a benign disease characterized by the presence of an unrestrained growth and the accumulation of keratin in the middle ear cavity. Due to roles in cell proliferation, apoptosis and differentiation members of the protein kinase C (PKC) family could be involved in disease progression. This study focuses on the expression of protein kinase C-alpha, -delta, -eta, -gamma and -zeta in the epithelial tissues of 56 human cholesteatomas and their correlations with those of previously characterized distributions of p53, galectin-3, retinoic acid receptor-beta (RAR beta) and macrophage migration inhibitory factor (MIF). We have previously reported this marker set to be correlated with keratinocyte differentiation in human cholesteatomas. Our present data clearly show that the percentage of PKC-alpha (but not PKC-delta, -gamma, -eta and -zeta)-immunopositive cells in epithelial tissue fro recurrent cholesteatomas was significantly higher than in non-recurrent cases. Correlations between the PKC isoenzymes and the biological markers were non-uniform. PKC-alpha (but not PKC-alpha, -gamma, -eta and -zeta) expression in epithelial cholesteatoma cells correlated significantly and positively with the percentages of p53-immunopositive cells. The patterns of PKC-alpha and -delta expression, but not of PKC-gamma, -eta and -zeta correlated significantly and positively with galectin-3 expression. In addition, the correlation levels between the expression of PKC-alpha and -delta and that of galectin-3 varied depending on the infection and recurrence status. Presence of RARP correlated significantly (and positively) with the expression of PKC-gamma and -zeta and also in relation to the infection and recurrence status. MIF correlated presence significantly (and positively) with that of the five PKCs under study, depending on whether the cholesteatomas were non-infected or infected as well as non-recurrent or recurrent. In conclusion, the present study suggests that modifications occurring at the level of keratinocyte differentiation in human cholesteatomas involve distinct effectors, to which the activation of PKC-alpha, -delta, -eta, -gamma and -zeta can be added.
C1 Erasme Univ Hosp, Dept Otolaryngol, B-1070 Brussels, Belgium.
   Erasme Univ Hosp, Dept Head & Neck Surg, B-1070 Brussels, Belgium.
   Univ Libre Bruxelles, Fac Med, Lab Histopathol, Brussels, Belgium.
   Univ Munich, Inst Physiol Chem, D-8000 Munich, Germany.
RP Ghanooni, R (reprint author), Erasme Univ Hosp, Dept Otolaryngol, 808 Route Lennik, B-1070 Brussels, Belgium.
EM rosemaryam_ghanooni@yahoo.fr
CR Albino AP, 1998, AM J OTOL, V19, P30
   Albino AP, 1998, AM J OTOL, V19, P7
   Blobe GC, 1996, CANCER SURV, V27, P213
   Choufani G, 1999, LARYNGOSCOPE, V109, P1825, DOI 10.1097/00005537-199911000-00019
   Choufani G, 2001, LARYNGOSCOPE, V111, P1656, DOI 10.1097/00005537-200109000-00031
   Cordon-Cardo C, 1999, J EXP MED, V190, P1367, DOI 10.1084/jem.190.10.1367
   Donn RP, 2004, J ENDOCRINOL, V182, P1, DOI 10.1677/joe.0.1820001
   FERRARI S, 1987, J BIOL CHEM, V262, P8325
   FINKENZELLER G, 1992, CELL SIGNAL, V4, P163, DOI 10.1016/0898-6568(92)90080-R
   Fisher GJ, 1996, FASEB J, V10, P1002
   Fisher GJ, 1998, J INVEST DERMATOL, V110, P297, DOI 10.1046/j.1523-1747.1998.00112.x
   Gabius HJ, 2004, CHEMBIOCHEM, V5, P740, DOI 10.1002/cbic.200300753
   Gabius HJ, 1997, EUR J BIOCHEM, V243, P543, DOI 10.1111/j.1432-1033.1997.t01-1-00543.x
   Haake AR, 1997, EXP CELL RES, V231, P83, DOI 10.1006/excr.1996.3441
   Hofmann J, 1997, FASEB J, V11, P649
   Jaken S, 2000, BIOESSAYS, V22, P245, DOI 10.1002/(SICI)1521-1878(200003)22:3<245::AID-BIES6>3.0.CO;2-X
   Kadrofske MM, 1998, ARCH BIOCHEM BIOPHYS, V349, P7, DOI 10.1006/abbi.1997.0447
   Kojima H, 1998, ARCH OTOLARYNGOL, V124, P261
   Lahm Harald, 2004, Glycoconj J, V20, P227
   Legendre H, 2003, MODERN PATHOL, V16, P491, DOI 10.1097/01.MP.0000068235.45178.C1
   Manni A, 1996, CELL GROWTH DIFFER, V7, P1187
   Miyazaki H, 1999, LARYNGOSCOPE, V109, P1785, DOI 10.1097/00005537-199911000-00012
   RABVINOVICH GA, 2002, BIOCHIM BIOPHYS ACTA, V1572, P274
   SANO H, 2001, MOD ASP IMMUNOBIOL, V2, P4
   Sheikholeslam-Zadeh R, 2001, LARYNGOSCOPE, V111, P1042, DOI 10.1097/00005537-200106000-00020
   SHINODA H, 1995, LARYNGOSCOPE, V105, P1232, DOI 10.1288/00005537-199511000-00018
   Simon P, 2001, HEARING RES, V156, P1, DOI 10.1016/S0378-5955(01)00230-1
   SPANDAU DF, 1994, ONCOGENE, V9, P1861
   Swope MD, 1999, REV PHYSIOL BIOCH P, V139, P1, DOI 10.1007/BFb0033647
   Timoshenko AV, 1999, MOL CELL BIOCHEM, V197, P137, DOI 10.1023/A:1006989529992
   WAYS KD, 1996, J CLIN INVEST, V95, P1906
   ZENG FY, 1993, INT J BIOCHEM, V25, P1019, DOI 10.1016/0020-711X(93)90116-V
NR 32
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 7
EP 16
DI 10.1016/j.heares.2006.01.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900002
PM 16513304
ER

PT J
AU Briaire, JJ
   Frijns, JHM
AF Briaire, JJ
   Frijns, JHM
TI The consequences of neural degeneration regarding optimal cochlear
   implant position in scala tympani: A model approach
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; electrode design; eCAP; volume conduction; neural
   degeneration
ID ELECTRICALLY STIMULATED COCHLEA; ROTATIONALLY SYMMETRICAL MODEL;
   POSTOPERATIVE PERFORMANCE; VOLUME CONDUCTION; SPEECH-PERCEPTION;
   ELECTRODE ARRAY; AUDITORY-NERVE; EXCITATION; INTRACOCHLEAR; PREDICTORS
AB Cochlear implant research endeavors to optimize the spatial selectivity, threshold and dynamic range with the objective of improving the speech perception performance of the implant user. One of the ways to achieve some of these goals is by electrode design. New cochlear implant electrode designs strive to bring the electrode contacts into close proximity to the nerve fibers in the modiolus: this is done by placing the contacts on the medial side of the array and positioning the implant against the medial wall of scala tympani. The question remains whether this is the optimal position for a cochlea with intact neural fibers and, if so, whether it is also true for a cochlea with degenerated neural fibers. In this study a computational model of the implanted human cochlea is used to investigate the optimal position of the array with respect to threshold, dynamic range and spatial selectivity for a cochlea with intact nerve fibers and for degenerated nerve fibers. In addition, the model is used to evaluate the predictive value of eCAP measurements for obtaining peri-operative information on the neural status.
   The model predicts improved threshold, dynamic range and spatial selectivity for the peri-modiolar position at the basal end of the cochlea, with minimal influence of neural degeneration. At the apical end of the array (1.5 cochlear turns), the dynamic range and the spatial selectivity are limited due to the occurrence of cross-turn stimulation, with the exception of the condition without neural degeneration and with the electrode array along the lateral wall of scala tympani. The eCAP simulations indicate that a large P-0 peak occurs before the N1P1 complex when the fibers are not degenerated. The absence of this peak might be used as an indicator for neural degeneration. (c) 2006 Elsevier B.V. All rights reserved.
C1 Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands.
RP Briaire, JJ (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands.
EM J.J.Briaire@LUMC.nl
RI Briaire, Jeroen/A-7972-2008; Frijns, Johan/H-6249-2011
OI Briaire, Jeroen/0000-0003-4302-817X; 
CR Albu S., 1997, Acta Oto-Rhino-Laryngologica Belgica, V51, P11
   ASCHENDORFF A, 1999, 1999 C IMPL AUD PROS, P56
   Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452
   Briaire JJ, 2000, SIMULAT PRACT THEORY, V8, P57, DOI 10.1016/S0928-4869(00)00007-0
   Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020
   Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9
   Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
   Cohen SG, 2002, ALLERGY ASTHMA PROC, V23, P59
   Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3
   Donaldson GS, 2001, ARCH OTOLARYNGOL, V127, P956
   Firszt JB, 2003, EAR HEARING, V24, P184, DOI 10.1097/01.AUD.0000061230.58992.9A
   Friedland DR, 2003, OTOL NEUROTOL, V24, P582, DOI 10.1097/00129492-200307000-00009
   FRIJINS JHM, 2004, COCHLEAR IMPLANTS IN, V1273
   Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
   Frijns JHM, 2000, SIMULAT PRACT THEORY, V8, P75, DOI 10.1016/S0928-4869(00)00008-2
   FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
   Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909
   Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D
   HALTER JA, 1991, J THEOR BIOL, V148, P345, DOI 10.1016/S0022-5193(05)80242-5
   KUZMA JA, 1999, 1999 C IMPL AUD PROS, P60
   Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899
   Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
   NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T
   PASANISI E, 2002, LARYNGOSCOPE, V119, P1653
   Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
   Rubinstein JT, 1999, AM J OTOL, V20, P445
   Saunders E, 2002, EAR HEARING, V23, p28S
   Schuknecht HF, 1993, PATHOLOGY EAR
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0
   Summerfield A Q, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P105
   Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007
   van der Beek FB, 2005, EAR HEARING, V26, P577, DOI 10.1097/01.aud.0000188116.30954.21
   Wackym PA, 2004, LARYNGOSCOPE, V114, P71, DOI 10.1097/00005537-200401000-00012
   WALTZMAN SB, 1995, ANN OTO RHINOL LARYN, V104, P15
   Wesselink W. A., 1999, Medical and Biological Engineering and Computing, V37, P228, DOI 10.1007/BF02513291
NR 38
TC 38
Z9 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 17
EP 27
DI 10.1016/j.heares.2006.01.015
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900003
PM 16520009
ER

PT J
AU Kanzaki, S
   Beyer, LA
   Swiderski, DL
   Izumikawa, M
   Stover, T
   Kawamoto, K
   Raphael, Y
AF Kanzaki, S
   Beyer, LA
   Swiderski, DL
   Izumikawa, M
   Stover, T
   Kawamoto, K
   Raphael, Y
TI P27(Kip1) deficiency causes organ of Corti pathology and hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE hair cell; cell cycle; deafness; p27(Kip1); mouse
ID HAIR-CELLS; MICE LACKING; BASILAR PAPILLA; INNER-EAR; PROLIFERATION;
   INHIBITOR; GENE; HYPERPLASIA; EXPRESSION; GENERATION
AB p27(Kip1) (p27) has been shown to inhibit several cyclin-dependent kinase molecules and to play a central role in regulating entry into the cell cycle. Once hair cells in the cochlea are formed, p27 is expressed in non-sensory cells of the organ of Corti and prevents their re-entry into the cell cycle. In one line of p27 deficient mice (p27(-/-)), cell division in the organ of Corti continues past its normal embryonic time, leading to continual production of cells in the organ of Corti. Here we report on the structure and function of the inner ear in another line of p27 deficient mice originating from the Memorial Sloan-Kettering Cancer Center. The deficiency in p27 expression of these mice is incomplete, as they retain expression of amino acids 52-197. We determined that mice homozygote for this mutation had severe hearing loss and their organ of Corti exhibited an increase in the number of inner and outer hair cells. There also was a marked increase in the number of supporting cells, with severe pathologies in pillar cells. These data show similarities between this P27(Kip1) mutation and another, previously reported null allele of this gene, and suggest that reducing the inhibition on the cell cycle in the organ of Corti leads to pathology and dysfunction. Manipulations to regulate the time and place of p27 inhibition will be necessary for inducing functionally useful hair cell regeneration. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Sch Med, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Keio Univ, Dept Otolaryngol, Shinjuku Ku, Tokyo 1600016, Japan.
   Univ Hannover, Dept Otolaryngol, D-30167 Hannover, Germany.
   Kansai Med Univ, Dept Otolaryngol, Osaka, Japan.
RP Raphael, Y (reprint author), Univ Michigan, Sch Med, Kresge Hearing Res Inst, MSRB 3 Room 9303,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA.
EM yoash@umich.edu
RI Kanzaki, Sho/B-3100-2014
OI Kanzaki, Sho/0000-0001-9056-0850
CR Sato M, 2004, DEV CELL, V6, P458
   Baldassarre G, 2000, CELL GROWTH DIFFER, V11, P517
   Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
   Chen P, 2003, NAT CELL BIOL, V5, P422, DOI 10.1038/ncb976
   Chen P, 1999, DEVELOPMENT, V126, P1581
   DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
   Dong YY, 2003, NEUROREPORT, V14, P759, DOI 10.1097/01.wnr.0000066199.94941.ed
   Fero ML, 1996, CELL, V85, P733, DOI 10.1016/S0092-8674(00)81239-8
   Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193
   Kiyokawa H, 1996, CELL, V85, P721, DOI 10.1016/S0092-8674(00)81238-6
   Koff A, 1995, Prog Cell Cycle Res, V1, P141
   Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084
   Lumpkin EA, 2003, GENE EXPR PATTERNS, V3, P389, DOI 10.1016/S1567-133X(03)00089-9
   Nakayama K, 1996, CELL, V85, P707, DOI 10.1016/S0092-8674(00)81237-4
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408
   RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1
   RAPHAEL Y, 1994, HEARING RES, V80, P53, DOI 10.1016/0378-5955(94)90008-6
   Ruben RJ, 1967, ACTA OTO-LARYNGOL, P1
   Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642
   Sasaki K, 2000, Brain Res Mol Brain Res, V77, P209
   Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6
   Tarui T, 2005, CEREB CORTEX, V15, P1343, DOI 10.1093/cercor/bhi017
   Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349
NR 24
TC 25
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 28
EP 36
DI 10.1016/j.heares.2006.01.014
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900004
PM 16513305
ER

PT J
AU Kanzaki, S
   Beyer, L
   Karolyi, IJ
   Dolan, DF
   Fang, Q
   Probst, FJ
   Camper, SA
   Raphael, Y
AF Kanzaki, S
   Beyer, L
   Karolyi, IJ
   Dolan, DF
   Fang, Q
   Probst, FJ
   Camper, SA
   Raphael, Y
TI Transgene correction maintains normal cochlear structure and function in
   6-month-old Myo15a mutant mice
SO HEARING RESEARCH
LA English
DT Article
DE Shaker2 mouse; cytocaud; phenotypic rescue; BAC transgene
ID INDUCED HEARING-LOSS; HAIR CELL PATHOLOGY; UNCONVENTIONAL MYOSIN;
   SHAKER-2 MOUSE; DEAFNESS DFNB3; GENE DOSAGE; GUINEA-PIG; INNER-EAR;
   STEREOCILIA; ALLELES
AB The shaker2 (sh2) mouse is a murine model for human non-syndromic deafness DFNB3. The mice have abnormal circling behavior suggesting a balanced disorder, and profound deafness. The insertion of a bacterial artificial chromosome (BAC) transgene containing the Myo15a gene into sh2/sh2 zygotes confers hearing capability and abolishes the circling behavior in 1-month-old transgenic animals. In this study, we investigated both the hearing and the morphology of the cochlea in Myo15a mutants carrying this BAC transgene at two, four, or six months of age. The hearing threshold of these mice is normal, with no physiologically significant differences compared to agematched heterozygous sh2J mice (with or without the BAC transgene). In six-month-old transgenic mice with the BAC, the morphology of hair cells in the apical and upper basal turns of the cochlea is normal. Hair cells of lower basal turn, however, were missing in some mutant animals. This study demonstrates that BAC transgene correction cannot only maintain normal morphology but also confer stable hearing function in Myo15a mutant mice for as long as 6 months. In addition, excess Myo15a expression has no physiologically significant protective or deleterious effects on hearing of normal mice, suggesting that the dosage of Myo15a may not be problematic for gene therapy. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Keio Univ, Dept Otolaryngol, Shinjuku Ku, Tokyo 1600016, Japan.
   Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA.
   Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA.
RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, MSRB 3 Room 9303, Ann Arbor, MI 48109 USA.
EM yoash@umich.edu
RI Fang, Qing/D-6338-2012; Kanzaki, Sho/B-3100-2014
OI Kanzaki, Sho/0000-0001-9056-0850
CR Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729
   ANNIKO M, 1980, ARCH OTO-RHINO-LARYN, V226, P45, DOI 10.1007/BF00455401
   Belyantseva IA, 2005, NAT CELL BIOL, V7, P148, DOI 10.1038/ncb1219
   Belyantseva IA, 2003, P NATL ACAD SCI USA, V100, P13958, DOI 10.1073/pnas.2334417100
   Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443
   Delprat B, 2005, HUM MOL GENET, V14, P401, DOI 10.1093/hmg/ddi036
   DEOL MS, 1954, J GENET, V52, P562, DOI 10.1007/BF02985081
   DOBROVOLSKAIA-ZAVASDKAIA N., 1928, ARCH BIOL, V38, P457
   FitzPatrick DR, 2005, TRENDS GENET, V21, P249, DOI 10.1016/j.tig.2005.02.012
   Friedman TB, 2003, ANNU REV GENOM HUM G, V4, P341, DOI 10.1146/annurev.genom.4.070802.110347
   Friedman TB, 2002, ADV OTO-RHINO-LARYNG, V61, P124
   Haider NB, 2002, HUM MOL GENET, V11, P1195, DOI 10.1093/hmg/11.10.1195
   Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P289, DOI 10.1159/000064447
   KAROLYI IJ, 2003, HUM MOL GENET
   KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X
   Liang Y, 1998, AM J HUM GENET, V62, P904, DOI 10.1086/301786
   Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976
   Liburd N, 2001, HUM GENET, V109, P535, DOI 10.1007/s004390100604
   MAEDA Y, 2005, HUM MOL GENET
   Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208
   Morton CC, 2002, HUM MOL GENET, V11, P1229, DOI 10.1093/hmg/11.10.1229
   NIEDZIELSKI AS, 1991, HEARING RES, V57, P107, DOI 10.1016/0378-5955(91)90079-O
   Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
   OSBORNE MP, 1984, CELL TISSUE RES, V237, P43
   Probst FJ, 1998, SCIENCE, V280, P1444, DOI 10.1126/science.280.5368.1444
   RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1
   Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1
   Schedl A, 1996, CELL, V86, P71, DOI 10.1016/S0092-8674(00)80078-1
   Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a
   Snell GD, 1939, J HERED, V30, P447, DOI 10.1093/jhered/30.10.447
   SOBIN A, 1982, ARCH OTO-RHINO-LARYN, V236, P1, DOI 10.1007/BF00464051
   Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447
   Yu RN, 1998, NAT GENET, V20, P353, DOI 10.1038/3822
NR 33
TC 7
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 37
EP 44
DI 10.1016/j.heares.2006.01.017
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900005
PM 16580798
ER

PT J
AU Lu, TK
   Zhak, S
   Dallos, P
   Sarpeshkar, R
AF Lu, Timothy K.
   Zhak, Serhii
   Dallos, Peter
   Sarpeshkar, Rahul
TI Fast cochlear amplification with slow outer hair cells
SO HEARING RESEARCH
LA English
DT Article
DE cochlear amplifier; outer hair cell; receptor potential; membrane time
   constant low-pass filtering; electromotility; negative feedback
ID GUINEA-PIG COCHLEA; BASILAR-MEMBRANE; FREQUENCY-RESPONSE; TECTORIAL
   MEMBRANE; MAMMALIAN COCHLEA; MECHANOELECTRICAL-TRANSDUCTION; OTOACOUSTIC
   EMISSIONS; HYDRODYNAMIC-FORCES; INPUT IMPEDANCE; TRAVELING-WAVE
AB In mammalian cochleas, outer hair cells (OHCs) produce mechanical amplification over the entire audio-frequency range (up to 100 kHz). Under the 'somatic electromotility' theory, mechano-electrical transduction modulates the OHC transmembrane potential, driving an 0HC mechanical response which generates cycle-by-cycle mechanical amplification. Yet, though the OHC motor responds up to at least 70 kHz, the OHC membrane RC time constant (in vitro upper limit similar to 1000 Hz) reduces the potential driving the motor at high frequencies. Thus, the mechanism for high-frequency amplification with slow OHCs has been. a two-decade-long mystery. Previous models fit to experimental data incorporated slow OHCs but did not explain how the OHC time constant limitation is overcome. Our key contribution is showing that negative feedback due to organ-of-Corti functional anatomy with adequate OHC gain significantly extends closed-loop system bandwidth and increases resonant gain. The OHC gain-bandwidth product, not just bandwidth, determines if high-frequency amplification is possible. Due to the cochlea's collective traveling-wave architecture, a single OHC's gain need not be great. OHC piezoelectricity increases the effectiveness of negative-feedback but is not essential for amplification. Thus, emergent closed-loop network dynamics differ significantly from open-loop component dynamics, a generally important principle in complex biological systems. (c) 2006 Elsevier B.V. All rights reserved.
C1 MIT, Analog VLSI & Biol Syst Grp, Res Lab Elect, Cambridge, MA 02139 USA.
   Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA.
   Northwestern Univ, Dept Neurobiol & Physiol, Auditory Physiol Lab, Evanston, IL 60208 USA.
   Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Evanston, IL 60208 USA.
RP Sarpeshkar, R (reprint author), MIT, Analog VLSI & Biol Syst Grp, Res Lab Elect, 77 Massachusetts Ave,Room 38-276, Cambridge, MA 02139 USA.
EM rahuls@mit.edu
CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198
   Bode H. W., 1945, NETWORK ANAL FEEDBAC
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   Chadwick RS, 1996, P NATL ACAD SCI USA, V93, P2564, DOI 10.1073/pnas.93.6.2564
   Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385
   Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559
   Choe Y, 1998, P NATL ACAD SCI USA, V95, P15321, DOI 10.1073/pnas.95.26.15321
   CODY AR, 1992, HEARING RES, V62, P166, DOI 10.1016/0378-5955(92)90182-M
   COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y
   Csete ME, 2002, SCIENCE, V295, P1664, DOI 10.1126/science.1069981
   DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325
   DEBOER E, 1990, LECT NOTES BIOMATH, V87, P333
   de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436
   DEBOER E, 1990, HEARING RES, V44, P83, DOI 10.1016/0378-5955(90)90024-J
   DEEN WM, 1998, ANAL TRANSPORT PHENO, P253
   Deo N, 2004, BIOPHYS J, V86, P3519, DOI 10.1529/biophysj.103.026658
   Dimitriadis EK, 1999, J ACOUST SOC AM, V106, P1880, DOI 10.1121/1.427937
   Dong XX, 2002, BIOPHYS J, V82, P1254
   Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
   FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519
   FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S
   Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420
   Franklin G. F., 2002, FEEDBACK CONTROL DYN
   FREEMAN DM, 1990, HEARING RES, V48, P31, DOI 10.1016/0378-5955(90)90197-W
   FREEMAN DM, 1990, HEARING RES, V48, P17, DOI 10.1016/0378-5955(90)90196-V
   Fukazawa T, 1997, HEARING RES, V113, P182, DOI 10.1016/S0378-5955(97)00138-X
   GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5
   Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727
   He DZZ, 1999, P NATL ACAD SCI USA, V96, P8223, DOI 10.1073/pnas.96.14.8223
   He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591
   HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73
   HUBBARD A, 1993, SCIENCE, V259, P68, DOI 10.1126/science.8418496
   HUBBARD AE, 2000, S REC DEV AUD MECH W, P167
   IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194
   Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367
   Khanna SM, 2000, HEARING RES, V149, P55, DOI 10.1016/S0378-5955(00)00162-3
   KINSLER LE, 1962, FUNDAMENTALS ACOUSTI, P186
   Kolston PJ, 1999, P NATL ACAD SCI USA, V96, P3676, DOI 10.1073/pnas.96.7.3676
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X
   Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4
   LU TK, 2006, AUDITORY MECH PROCES, P432
   LU TK, 2003, THESIS MASACHUSETTES
   LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995
   MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0
   MARKIN VS, 1995, BIOPHYS J, V69, P138
   MOUNTAIN DC, 1994, J ACOUST SOC AM, V95, P350, DOI 10.1121/1.408273
   MOUNTAIN DC, 2003, 146 M AC SOC AM
   Mountain DC, 1983, MECHANICS HEARING, P119
   Murugasu E, 1996, J NEUROSCI, V16, P325
   Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6
   NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674
   NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091
   Nilsen KE, 2000, P NATL ACAD SCI USA, V97, P11751, DOI 10.1073/pnas.97.22.11751
   Nobili R, 1996, J ACOUST SOC AM, V99, P2244, DOI 10.1121/1.415412
   Ospeck M, 2003, BIOPHYS J, V84, P739
   Overstreet EH, 2002, J PHYSIOL-LONDON, V545, P279, DOI 10.1113/jphysiol.2002.025205
   Preyer S, 1996, AUDIT NEUROSCI, V2, P145
   PREYER S, 1994, HEARING RES, V77, P116, DOI 10.1016/0378-5955(94)90259-3
   PURIA S, 1991, J ACOUST SOC AM, V89, P287, DOI 10.1121/1.400675
   Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2
   REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M
   Robles L, 2001, PHYSIOL REV, V81, P1305
   RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409
   Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4
   Sarpeshkar R, 1998, ANALOG INTEGR CIRC S, V16, P245, DOI 10.1023/A:1008218308069
   SARPESHKAR R, 2000, S REC DEV AUD MECH, P216
   Scheid D, 2004, FEMS MICROBIOL ECOL, V50, P101, DOI 10.1016/j.femsec.2004.06.001
   Scherer MP, 2004, BIOPHYS J, V87, P1378, DOI 10.1529/biophysj.103.037184
   SELLICK PM, 1983, HEARING RES, V10, P101, DOI 10.1016/0378-5955(83)90020-5
   SHERA CA, 1991, J ACOUST SOC AM, V89, P1276, DOI 10.1121/1.400650
   Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750
   Spector AA, 2003, J ACOUST SOC AM, V113, P453, DOI 10.1121/1.1526493
   Spector AA, 2005, ANN BIOMED ENG, V33, P991, DOI 10.1007/s10439-005-5749-0
   Spector AA, 2005, J BIOMECH ENG-T ASME, V127, P391, DOI 10.1115/1894233
   Steele CR, 1999, ORL J OTO-RHINO-LARY, V61, P238, DOI 10.1159/000027681
   Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
   Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364
   Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021
   THORNE PR, 1984, J ACOUST SOC AM, V76, P440, DOI 10.1121/1.391136
   ULFENDAHL M, 1995, NEUROREPORT, V6, P1157, DOI 10.1097/00001756-199505300-00021
   VONBEKESY G, 1960, EXPT HEARING, P406
   Weitzel EK, 2003, J ACOUST SOC AM, V114, P1462, DOI 10.1121/1.1596172
   WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472
   WRIGHT A, 1984, HEARING RES, V13, P89, DOI 10.1016/0378-5955(84)90099-6
   ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
   ZWEIG G, 1991, J ACOUST SOC AM, V89, P1229, DOI 10.1121/1.400653
   ZWISLOCKI JJ, 1979, ACTA OTO-LARYNGOL, V87, P267, DOI 10.3109/00016487909126419
   ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671
NR 91
TC 29
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 45
EP 67
DI 10.1016/j.heares.2006.01.018
PG 23
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900006
PM 16603325
ER

PT J
AU Frey, A
   Lampert, A
   Waldegger, S
   Jeck, N
   Waldegger, P
   Artunc, F
   Seebohm, G
   Lang, UE
   Kupka, S
   Pfister, M
   Hoppe, J
   Gerloff, C
   Schaeffeler, E
   Schwab, M
   Lang, F
AF Frey, A
   Lampert, A
   Waldegger, S
   Jeck, N
   Waldegger, P
   Artunc, F
   Seebohm, G
   Lang, UE
   Kupka, S
   Pfister, M
   Hoppe, J
   Gerloff, C
   Schaeffeler, E
   Schwab, M
   Lang, F
TI Influence of gain of function epithelial chloride channel ClC-Kb
   mutation on hearing thresholds
SO HEARING RESEARCH
LA English
DT Article
DE chloride channels; stria vascularis; single nucleotide polymorphism; Cl-
   secretion; hearing loss
ID STRIAL MARGINAL CELLS; INNER-EAR; MESSENGER-RNA; GENE PROMOTER;
   EXPRESSION; RAT; DEAFNESS; KIDNEY; BARTTIN; COCHLEA
AB Hearing depends on functional ClC-K-type chloride channels composed of barttin with ClC-Ka or ClC-Kb. Loss-of-function mutations of the barttin gene BSND or of both, the ClC-Ka gene CLNKA and the ClC-Kb gene CLNKB lead to congenital deafness and renal salt wasting. Recently, we identified the gain-of-function mutation ClC-Kb(T411S) which is associated with increased blood pressure. To explore the impact of ClC-Kb(T411S) on hearing, healthy volunteers (n = 329) and individuals suffering from tinnitus (n = 246) volunteered for hearing tests (n = 348) and genetic analysis (n = 575). 19.1% of the individuals were heterozygote (ClC-Kb(T41IS)/ClC-Kb) and 1.7% homozygote carriers. Pure tone average hearing threshold (PTAt) for air conduction was significantly (p < 0.033) lower in ClC-Kb(T481S) carriers (13.2 +/- 1.2 dB) than in wild-type individuals (17.1 +/- 0.9 dB). The prevalence of ClC-Kb(T411S) carriers was significantly increased (29.7%) in individuals with PTAt < 15 dB (p < 0.05) and significantly decreased (13.2%) in individuals with PTAt > 30 dB (P < 0.017). The difference was largely due to the female population. Bone conduction was less affected pointing to an effect of the mutation on middle ear function. Tinnitus tended to be more frequent in ClC-Kb(T411S) carriers, a difference, however, not statistically significant. In conclusion, hearing thresholds are slightly lower in carriers of ClC-Kb(T411S), i.e., the gain-of-function polymorphism ClC-Kb(T481S) exerts a subtle but significant protective effect against hearing loss. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Tubingen, Dept Physiol, D-72076 Tubingen, Germany.
   Univ Tubingen, Dept Otolaryngol, D-72076 Tubingen, Germany.
   Univ Tubingen, Dept Neurol, D-72076 Tubingen, Germany.
   Univ Marburg, Dept Pediat, D-35032 Marburg, Germany.
   Dr Margarete Fischer Bosch Inst Clin Pharmacol, D-7000 Stuttgart, Germany.
RP Lang, F (reprint author), Univ Tubingen, Dept Physiol, Gmelinstr 5, D-72076 Tubingen, Germany.
EM florian.lang@uni-tuebingen.de
CR Ando M, 2000, NEUROSCI LETT, V284, P171, DOI 10.1016/S0304-3940(00)01021-1
   Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2
   Birkenhager R, 2001, NAT GENET, V29, P310, DOI 10.1038/ng752
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   Estevez R, 2001, NATURE, V414, P558, DOI 10.1038/35107099
   Hartmann R, 2002, HEARING RES, V172, P145, DOI 10.1016/S0378-5955(02)00576-2
   Ikeda K, 1997, HEARING RES, V107, P1, DOI 10.1016/S0378-5955(97)00009-9
   Jeck N, 2004, HYPERTENSION, V43, P1175, DOI 10.1161/01.HYP.0000129824.12959.f0
   Jeck N, 2004, KIDNEY INT, V65, P190, DOI 10.1111/j.1523-1755.2004.00363.x
   Kobayashi K, 2002, J AM SOC NEPHROL, V13, P1992, DOI 10.1097/01.ASN.0000023434.47132.3D
   Maehara H, 2003, NEUROREPORT, V14, P1571, DOI 10.1097/01.wnr.0000087905.78892.55
   MARCUS DC, 1987, HEARING RES, V30, P55, DOI 10.1016/0378-5955(87)90183-3
   Nascimento DS, 2003, PFLUG ARCH EUR J PHY, V446, P593, DOI 10.1007/s00424-003-1095-y
   Neyroud N, 1997, NAT GENET, V15, P186, DOI 10.1038/ng0297-186
   Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2
   Schlingmann KP, 2004, NEW ENGL J MED, V350, P1314, DOI 10.1056/NEJMoa032843
   Simon DB, 1997, NAT GENET, V17, P171, DOI 10.1038/ng1097-171
   Tu TY, 1999, ACTA OTO-LARYNGOL, V119, P544
   Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X
   Wagner CA, 2000, CELL PHYSIOL BIOCHEM, V10, P1, DOI 10.1159/000016341
   Waldegger S, 2002, PFLUG ARCH EUR J PHY, V444, P411, DOI 10.1007/s00424-002-0819-8
   Waldegger S, 2000, J AM SOC NEPHROL, V11, P1331
   WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2
NR 23
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 68
EP 75
DI 10.1016/j.heares.2006.02.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900007
PM 16549283
ER

PT J
AU PiCClotti, PM
   Fetoni, AR
   Paludetti, G
   Wolf, FI
   Torsello, A
   Trolani, D
   Ferraresi, A
   Pola, R
   Sergi, B
AF PiCClotti, PM
   Fetoni, AR
   Paludetti, G
   Wolf, FI
   Torsello, A
   Trolani, D
   Ferraresi, A
   Pola, R
   Sergi, B
TI Vascular endothelial growth factor (VEGF) expression in noise-induced
   hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE noise; cochlea; VEGF; VEGF-receptors
ID COCHLEAR BLOOD-FLOW; GUINEA-PIG; IN-VIVO; MOUSE COCHLEA; GENE-TRANSFER;
   RECEPTORS; EXPOSURE; CELLS; ANGIOGENESIS; NEUROPATHY
AB Noise-induced hearing loss has been associated with alterations in cochlear blood flow. Our study analyzed the expression of Vascular Endothelial Growth Factor (VEGF) and its functional receptors, Flt-1 and Flk-1, in the cochlear structures of noise-exposed and unexposed guinea pigs. VEGF is a prototypical angiogenic agent, with multiple functions on vascular biology, ranging from vascular permeability to endothelial cell migration, proliferation, differentiation, and survival.
   Acoustic trauma was induced by a continuous pure tone of 6 kHz, at 120 dB SPL for 30 min. Auditory function was evaluated by electrocochleographic recordings at 2-20 kHz for 7 days. Noise-induced cochlear morphological changes were studied by immunohistochemistry and scanning electron microscopy. The expression of VEGF and its receptors was examined by immunohistochemistry and western blotting analysis. The hearing threshold shift reached a level of 60 dB SPL on day I after trauma and underwent a partial recovery over time, reaching a value of about 20 dB SPL on day 7. Outer hair cell loss was more prominent in the area located 14-16 min from the apex. Increased cochlear VEGF expression was observed in noise-exposed animals, in particular at the level of stria vascularis, spiral ligament, and spiral ganglion cells. No changes were observed in the expression of VEGF-receptors.
   Our data suggest a role for VEGF in the regulation of the vascular network in the inner ear after acoustic trauma and during auditory recovery, with potentially important clinical and therapeutic implications. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Sacred Heart, Sch Med, Inst Otolaryngol, I-00168 Rome, Italy.
   Univ Sacred Heart, Sch Med, Dept Internal Med, I-00168 Rome, Italy.
   Univ Sacred Heart, Sch Med, Inst Pathol, I-00168 Rome, Italy.
   Univ Sacred Heart, Sch Med, Inst Human Physiol, I-00168 Rome, Italy.
RP Sergi, B (reprint author), Univ Sacred Heart, Sch Med, Inst Otolaryngol, Lgo A Gemelli 8, I-00168 Rome, Italy.
EM bruno.sergi@rm.unicatt.it
CR Attanasio G, 2001, ACTA OTO-LARYNGOL, V121, P465, DOI 10.1080/000164801300366598
   AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0
   Carmeliet R, 2002, SEMIN CELL DEV BIOL, V13, P1, DOI 10.1006/scdb.2001.0291
   Cody AR, 1980, SCAND AUDIOL S, V12, P121
   FERRARA N, 1992, ENDOCR REV, V13, P18, DOI 10.1210/er.13.1.18
   Fetoni AR, 2003, ACTA OTO-LARYNGOL, V123, P192, DOI 10.1080/00016480310001484
   Gerber HP, 1997, J BIOL CHEM, V272, P23659, DOI 10.1074/jbc.272.38.23659
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   Isner J M, 2001, Hum Gene Ther, V12, P1593
   Kuroki M, 1996, J CLIN INVEST, V98, P1667, DOI 10.1172/JCI118962
   Lamm K, 1996, Audiol Neurootol, V1, P148
   Michel O, 2001, HEARING RES, V155, P175, DOI 10.1016/S0378-5955(01)00262-3
   MINCHENKO A, 1994, LAB INVEST, V71, P374
   Neufeld G, 1999, FASEB J, V13, P9
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   Oosthuyse B, 2001, NAT GENET, V28, P131, DOI 10.1038/88842
   Picciotti P, 2004, EXP GERONTOL, V39, P1253, DOI 10.1016/j.exger.2004.06.003
   Picciotti PM, 2005, ACTA OTO-LARYNGOL, V125, P1152, DOI 10.1080/00016480510044241
   PLATE KH, 1992, NATURE, V359, P845, DOI 10.1038/359845a0
   QUIRK WS, 1995, AM J OTOL, V16, P322
   SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281
   Schratzberger P, 2001, J CLIN INVEST, V107, P1083, DOI 10.1172/JCI12188
   SCHRETER RK, 2000, PSYCHIAT PRACTICE MA, V6, P4
   Sergi B, 2003, HEARING RES, V182, P56, DOI 10.1016/S0378-5955(03)00142-4
   SHIMA DT, 1995, MOL MED, V1, P182
   Simovic D, 2001, ARCH NEUROL-CHICAGO, V58, P761, DOI 10.1001/archneur.58.5.761
   Sondell M, 1999, J NEUROSCI, V19, P5731
   Wang J, 2002, NEUROSCIENCE, V111, P635
   WANG J, 2003, J NEUROSCI, V17, P8596
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   YAMINE H, 1991, ACTA OTOLARYNGOL, V111, P85
   Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008
NR 33
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 76
EP 83
DI 10.1016/j.heares.2006.02.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900008
PM 16603326
ER

PT J
AU Polley, DB
   Cobos, I
   Merzenich, MM
   Rubenstein, JLR
AF Polley, DB
   Cobos, I
   Merzenich, MM
   Rubenstein, JLR
TI Severe hearing loss in Dlxl mutant mice
SO HEARING RESEARCH
LA English
DT Article
DE ABR; branchial arch; incus; stapes; mouse; ossicles; development
ID HOMEOBOX GENES; TRANSCRIPTIONAL REGULATION; BRANCHIAL ARCHES;
   EXPRESSION; DIFFERENTIATION; SKELETAL; LACKING
AB The Dlx homeobox gene family participates in regulating middle and inner ear development. A significant role for Dlx1, in particular, has been demonstrated in the development of the middle ear ossicles, but the functional consequences of Dlx1 gene mutation on hearing thresholds has not been assessed. The present study characterizes auditory brainstem responses to click and tonal stimuli in a non-lethal variant of a Dlx1 gene knockout. We found that peripheral hearing thresholds for click and tonal stimuli were significantly elevated in homozygous Dlx1 knockout (Dlx1(-/-)) compared to both heterozygous (Dlx1(-/-)) and wild type (Dlx1(+/+)) mice. Thus, abnormal morphogenesis of the incus and stapes that has been documented previously with histological measures is now known to result in a severe peripheral hearing deficit. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif San Francisco, Dept Psychiat, Nina Ireland Lab Dev Neurobiol, San Francisco, CA 94158 USA.
   Univ Calif San Francisco, Dept Otolaryngol, WM Keck Fdn Ctr Integrat Neurosci, Coleman Mem Lab, San Francisco, CA 94143 USA.
RP Rubenstein, JLR (reprint author), Univ Calif San Francisco, Dept Psychiat, Nina Ireland Lab Dev Neurobiol, San Francisco, CA 94158 USA.
EM daniel.polley@vanderbilt.edu; john.rubenstein@ucsf.edu
CR Acampora D, 1999, DEVELOPMENT, V126, P3795
   Beverdam A, 2002, GENESIS, V34, P221, DOI 10.1002/gene.10156
   Brown ST, 2005, J COMP NEUROL, V483, P48, DOI 10.1002/cne.20418
   Cobos I, 2005, NAT NEUROSCI, V8, P1059, DOI 10.1038/nn1499
   Depew MJ, 2005, J ANAT, V207, P501
   Depew MJ, 2002, SCIENCE, V298, P381, DOI 10.1126/science.1075703
   Depew MJ, 1999, DEVELOPMENT, V126, P3831
   Ellies DL, 1997, GENOMICS, V45, P580, DOI 10.1006/geno.1997.4978
   Ferrari D, 2002, DEV BIOL, V252, P257, DOI 10.1006/dbio.2002.0862
   Harris SE, 2003, FRONT BIOSCI, V8, pS1249, DOI 10.2741/1170
   Hassan MQ, 2004, MOL CELL BIOL, V24, P9248, DOI 10.1128/MCB.24.20.9248-9261.2004
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   Lezot F, 2002, CONNECT TISSUE RES, V43, P509, DOI 10.1080/03008200290000583
   Panganiban G, 2002, DEVELOPMENT, V129, P4371
   Qiu MS, 1997, DEV BIOL, V185, P165, DOI 10.1006/dbio.1997.8556
   Thomas BL, 1997, DEVELOPMENT, V124, P4811
   WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391
NR 17
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2006
VL 214
IS 1-2
BP 84
EP 88
DI 10.1016/j.heares.2006.02.008
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 046NI
UT WOS:000237817900009
PM 16632068
ER

PT J
AU Hernandez, PP
   Moreno, V
   Olivari, FA
   Allende, ML
AF Hernandez, PP
   Moreno, V
   Olivari, FA
   Allende, ML
TI Sub-lethal concentrations of waterborne copper are toxic to lateral line
   neuromasts in zebrafish (Danio rerio)
SO HEARING RESEARCH
LA English
DT Article
DE zebrafish; lateral line; mechanosensory cells; copper toxicity; hair
   cell regeneration
ID HAIR CELL-DEATH; POSTEMBRYONIC DEVELOPMENT; EMBRYONIC-DEVELOPMENT;
   TRANSPORTER CTR1; FM1-43; EXPOSURE; SYSTEM; FISH; CURRENTS; MUTANTS
AB in teleosts. the lateral line system is composed of neuromasts containing hair cells that are analogous to those present in the inner ear of all vertebrates. In the zebrafish embryo and early larva, this system is composed of the anterior lateral line (ALL). which covers the head, and the posterior lateral line (PLL), present in the trunk and tail. The mechanosensory hair cells found in neuromasts can be labeled in Vivo using fluorescent dyes such as 4-di-2-Asp (DiAsp) or FM 1-43. We have studied the effects of water-borne copper exposure on the function of the lateral line system in zebrafish larvae. our results show that transient incubation of post-hatching larvae for 2 h with non-lethal concentrations of copper (1-50 mu M CuSO4) induces cellular damage localized to neuromasts, apoptosis, and loss of hair cell markers. This effect is specific to copper, as other metals did not show these effects. Since hair cells in fish can regenerate, we followed the reappearance of viable hair cells in neuromasts after copper removal. In the PLL, we determined that there is a threshold concentration of copper above which regeneration does not occur, whereas, at lower concentrations, the length of time it takes for viable hair cells to reappear is dependent oil the amount of copper used during the treatment. The ALL behaves differently though, as regeneration can Occur even after treatments with concentrations of copper an order of magnitude higher than the one that irreversibly affects the PLL. Regeneration of hair cells is dependent oil cell division within the neuromasts as damage that precludes proliferation prevents reappearance of this cell type. (C) 2005 Published by Elsevier B.V.
C1 Univ Chile, Fac Ciencias, Millennium Nucleus Dev Biol, Santiago, Chile.
   Univ Chile, Fac Ciencias, Dept Biol, Santiago, Chile.
RP Allende, ML (reprint author), Univ Chile, Fac Ciencias, Millennium Nucleus Dev Biol, Encinas 3370,Edificio Milenio,Casilla 653, Santiago, Chile.
EM allende@uchile.cl
RI Allende, Miguel/C-5167-2008
OI Allende, Miguel/0000-0002-2783-2152
CR ABRAMS JM, 1993, DEVELOPMENT, V117, P29
   BALAK KJ, 1990, J NEUROSCI, V10, P2502
   Blechinger SR, 2002, ENVIRON HEALTH PERSP, V110, P1041
   Carreau ND, 2005, ECOTOX ENVIRON SAFE, V61, P1, DOI 10.1016/j.ecoenv.2004.01.008
   Clearwater SJ, 2002, COMP BIOCHEM PHYS C, V132, P269, DOI 10.1016/S1532-0456(02)00078-9
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   COLLAZO A, 1994, SCIENCE, V264, P426, DOI 10.1126/science.8153631
   Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066
   ENRNEST S, 2000, HUM MOL GENET, V9, P2189
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   Gaetke LM, 2003, TOXICOLOGY, V189, P147, DOI 10.1016/S0300-483X(03)00159-8
   Gale JE, 2001, J NEUROSCI, V21, P7013
   Ghysen A, 2004, CURR OPIN NEUROBIOL, V14, P67, DOI 10.1016/j.conb.2004.01.012
   Griesinger CB, 2002, J NEUROSCI, V22, P3939
   Grosell M, 2003, COMP BIOCHEM PHYS C, V135, P179, DOI 10.1016/S1532-0456(03)00089-9
   Haffter P, 1996, DEVELOPMENT, V123, P1
   Handy RD, 2003, COMP BIOCHEM PHYS A, V135, P25, DOI 10.1016/S1095-6433(03)00018-7
   Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
   Ishida S, 2002, P NATL ACAD SCI USA, V99, P14298, DOI 10.1073/pnas.162491399
   KIMMEL CB, 1995, DEV DYNAM, V203, P253
   Lee J, 2002, J BIOL CHEM, V277, P4380, DOI 10.1074/jbc.M104728200
   Liang GH, 2003, NEUROTOXICOL TERATOL, V25, P349, DOI 10.1016/S0892-0362(03)00008-4
   Mackenzie NC, 2004, GENE, V328, P113, DOI 10.1016/j.gene.2003.11.019
   Meyers JR, 2003, J NEUROSCI, V23, P4054
   Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4
   Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627
   Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9
   Nishikawa S, 1996, J HISTOCHEM CYTOCHEM, V44, P733
   OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189
   OLIVEIRA EC, 2004, CHEMOSPHERE, V56, P369
   Pichon F, 2004, EVOL DEV, V6, P187, DOI 10.1111/j.1525-142X.2004.04024.x
   Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   Reash RJ, 2004, ENVIRON MONIT ASSESS, V96, P203, DOI 10.1023/B:EMAS.0000031728.52806.68
   Richardson GP, 1997, J NEUROSCI, V17, P9506
   Sapede D, 2002, DEVELOPMENT, V129, P605
   SCHWEITZER VG, 1993, LARYNGOSCOPE S, V103, P59
   Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G
   Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005
   Villavicencio G, 2005, ENVIRON TOXICOL CHEM, V24, P1287, DOI 10.1897/04-095R.1
   Vinot I, 2005, ENVIRON POLLUT, V133, P169, DOI 10.1016/j.envpol.2004.03.002
   Webb JF, 2003, DEV DYNAM, V228, P370, DOI 10.1002/dvdy.10385
   Westerfield M, 1994, ZEBRAFISH BOOK GUIDE
   Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3
NR 45
TC 59
Z9 61
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 1
EP 10
DI 10.1016/j.heares.2005.10.015
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400001
PM 16386394
ER

PT J
AU Ohashi, M
   Ide, S
   Kimitsuki, T
   Komune, S
   Suganuma, T
AF Ohashi, M
   Ide, S
   Kimitsuki, T
   Komune, S
   Suganuma, T
TI Three-dimensional regular arrangement of the annular ligament of the rat
   stapediovestibular joint
SO HEARING RESEARCH
LA English
DT Article
DE annular ligament; stapediovestibular joint; electron microscopy; elastic
   fiber; rat
ID ELECTRON MICROSCOPY; OTOSCLEROSIS; STAIN
AB The stapes footplate articulates with the vestibular window through the annular ligament. This articulation is known as the stapediovestibular joint (SVJ). We investigated the ultrastructure of adult rat SVJ and report here on the characteristic ultrastructure of the corresponding annular ligament. Transmission electron microscopy showed that this annular ligament comprises thick ligament fibers consisting of a peripheral mantle of microfibrils and an electron-lucent central amorphous Substance that is regularly arranged in a linear fashion, forming laminated structures parallel to the horizontal plane of the SVJ. Scanning electron microscopy revealed that transverse microfibrils cross the thick ligament fibers, showing a lattice-like structure. The annular ligament was vividly stained with elastica van Gieson's stain and the Verhoeffs iron hematoxylin method. Staining of the electron-lucent central amorphous substance of the thick ligament fibers by the tannate-metal salt method revealed in intense electron density. These results indicate that the annular ligament of the SVJ is mainly composed of mature elastic fibers. (C) 2005 Elsevier B.V. All rights reserved.
C1 Miyazaki Univ, Fac Med, Dept Anat, Miyazaki 8891692, Japan.
   Kyushu Univ, Fac Med, Dept Otolaryngol, Fukuoka 8128582, Japan.
RP Suganuma, T (reprint author), Miyazaki Univ, Fac Med, Dept Anat, 5200 Kihara, Miyazaki 8891692, Japan.
EM suganumat@med.miyazaki-u.ac.jp
CR BOLZ EA, 1972, ACTA OTO-LARYNGOL, V73, P10, DOI 10.3109/00016487209138188
   BRUNNER H, 1954, AMA ARCH OTOLARYNGOL, V59, P18
   Chole RA, 2001, OTOL NEUROTOL, V22, P249, DOI 10.1097/00129492-200103000-00023
   DAVIES J, 1948, J LARYNGOL OTOL, V62, P533
   De Souza A, 1991, Rev Laryngol Otol Rhinol (Bord), V112, P7
   FULLMER HM, 1958, J HISTOCHEM CYTOCHEM, V6, P425
   GUSSEN R, 1968, AM J ANAT, V122, P397, DOI 10.1002/aja.1001220214
   GUSSEN R, 1969, ACTA OTO-LARYNGOL, V248, P5
   HARTY M, 1953, J Laryngol Otol, V67, P723, DOI 10.1017/S0022215100049239
   JUNQUEIRA L, 2002, BASIC HISTOLOGY, P95
   KAGEYAMA M, 1985, HISTOCHEM J, V17, P93, DOI 10.1007/BF01003406
   Merchant SN, 2001, OTOL NEUROTOL, V22, P305, DOI 10.1097/00129492-200105000-00006
   MURAKAMI T, 1973, Archivum Histologicum Japonicum, V35, P323
   MYRHAUG H, 1967, ACTA OTOLARYNGOL S, V224, P156
   Niedermeyer HP, 2002, ORL J OTO-RHINO-LARY, V64, P114, DOI 10.1159/000057789
   Okumura Akiko, 1993, Okajimas Folia Anatomica Japonica, V69, P385
   PUCHTLER H, 1979, HISTOCHEMISTRY, V62, P233, DOI 10.1007/BF00508352
   REYNOLDS ES, 1963, J CELL BIOL, V17, P208, DOI 10.1083/jcb.17.1.208
   Schuknecht H. F., 1974, PATHOLOGY EAR
   SCHUKNECHT HF, 1985, LARYNGOSCOPE, V95, P1307
   STEMPAK JG, 1964, J CELL BIOL, V22, P697, DOI 10.1083/jcb.22.3.697
   Verhoeff F. H., 1908, JAMA-J AM MED ASSOC, V50, P876
   Whyte JR, 2002, CELLS TISSUES ORGANS, V171, P241, DOI 10.1159/000063124
   WOLFF D, 1956, Ann Otol Rhinol Laryngol, V65, P895
NR 24
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 11
EP 16
DI 10.1016/j.heares.2005.11.007
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400002
PM 16476532
ER

PT J
AU Hullar, TE
   Williams, CD
AF Hullar, TE
   Williams, CD
TI Geometry of the semicircular canals of the chinchilla (Chinchilla
   laniger)
SO HEARING RESEARCH
LA English
DT Article
DE vestibular; vestibulo-ocular reflex; anatomy; afferent; prime direction;
   chinchilla
ID AIDED 3-DIMENSIONAL RECONSTRUCTION; PLANAR RELATIONSHIPS; PHYSIOLOGIC
   CHARACTERISTICS; VESTIBULAR AFFERENTS; DIMENSIONAL ANALYSIS; GUINEA-PIG;
   ORIENTATION; CAT; MORPHOLOGY; RESPONSES
AB The orientations of the semicircular canals determines the response of the canals to head rotations and, in turn, the brain's ability to interpret those motions. The geometry of chinchillas' semicircular canals has never been reported.
   Volumetric representations of three chinchilla skulls were generated using a microCT scanner. The centroids of each semicircular canal lumen were identified its they passed through the image slices and were regressed to a plane. Unit vectors normal to the plane representing canal orientations were used to calculate angles between canal pairs. Pitch and roll maneuvers required to bring any canal into the horizontal plane for physiologic investigation were calculated.
   The semicircular canals of the chinchilla were found to be relatively planar. The horizontal canal was found to be oriented 55.0 degrees anteriorly upward. Pairs of ipsilateral chinchilla canals were not orthogonal and contralateral synergistic pairs were not parallel. Despite this arrangement, the canal plane unit normal vectors were organized to respond with approximately equal overall sensitivity to rotations in any direction. The non-orthogonal chinchilla labyrinth may provide all opportunity to determine whether the frame of reference used by the central vestibular and oculomotor system is based oil directions of afferent maximum sensitivity or prime directions. (C) 2005 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, St Louis, MO 63110 USA.
RP Hullar, TE (reprint author), Washington Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 660 S Euclid Ave 8115, St Louis, MO 63110 USA.
EM hullart@ent.wustl.edu
CR BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182
   BLANKS RHI, 1989, BRAIN RES, V487, P278, DOI 10.1016/0006-8993(89)90832-9
   BLANKS RHI, 1972, AM J PHYSIOL, V223, P55
   BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X
   BLANKS RHI, 1975, J NEUROPHYSIOL, V38, P1250
   BLANKS RHI, 1975, ACTA OTO-LARYNGOL, V80, P185, DOI 10.3109/00016487509121318
   BRICHTA AM, 1988, BRAIN BEHAV EVOLUT, V32, P236, DOI 10.1159/000116551
   Carey JP, 2004, OTOL NEUROTOL, V25, P345, DOI 10.1097/00129492-200405000-00024
   CURTHOYS IS, 1975, ACTA OTO-LARYNGOL, V80, P197, DOI 10.3109/00016487509121319
   CURTHOYS IS, 1977, J MORPHOL, V151, P17, DOI 10.1002/jmor.1051510103
   De Groot J, 1959, RAT FOREBRAIN STEREO
   DELLASANTINA CC, 2004, J VESTIBUL RES-EQUIL, V14, P98
   DELLASANTINA CC, 2005, J ASS RES OTOLARYNGO
   Dickman JD, 1996, EXP BRAIN RES, V111, P8
   ESTES MS, 1975, J NEUROPHYSIOL, V38, P1232
   EZURE K, 1984, NEUROSCIENCE, V12, P85, DOI 10.1016/0306-4522(84)90140-4
   Ghanem TA, 1998, HEARING RES, V124, P27, DOI 10.1016/S0378-5955(98)00108-7
   Gray A.A., 1907, LABYRINTH ANIMALS
   HAQUE A, 2003, EXP BRAIN RES, V155, P81
   Hashimoto Shinichiro, 2003, Nihon Jibiinkoka Gakkai Kaiho, V106, P1
   Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004
   Hoffman RA, 1968, GOLDEN HAMSTER ITS B
   Hullar TE, 1999, J NEUROPHYSIOL, V82, P2000
   Hullar TE, 2005, J NEUROPHYSIOL, V93, P2777, DOI 10.1152/jn.01002.2004
   HULLAR TE, 2000, ARO MIDW M
   Ichijo Hiroaki, 2002, Nihon Jibiinkoka Gakkai Kaiho, V105, P1138
   Konig JFR, 1963, RAT BRAIN STEREOTAXI
   LANDOLT JP, 1975, J COMP NEUROL, V159, P257, DOI 10.1002/cne.901590207
   Lewis E R, 1994, J Vestib Res, V4, P189
   MAZZA D, 1984, ACTA OTO-LARYNGOL, V98, P472, DOI 10.3109/00016488409107588
   OMAN CM, 1987, ACTA OTO-LARYNGOL, V103, P1, DOI 10.3109/00016488709134691
   Paxinos G., 1998, RAT BRAIN STEREOTAXI
   Rabbitt Richard D., 2004, VVolume 19, P153
   Rabbitt RD, 1999, BIOL CYBERN, V80, P417, DOI 10.1007/s004220050536
   RAMPRASHAD F, 1980, J COMP NEUROL, V192, P883, DOI 10.1002/cne.901920415
   RAMPRASHAD F, 1984, AM J ANAT, V169, P295, DOI 10.1002/aja.1001690306
   REISINE H, 1988, ANN NY ACAD SCI, V545, P10, DOI 10.1111/j.1749-6632.1988.tb19552.x
   SATO H, 1993, ACTA OTO-LARYNGOL, V113, P171, DOI 10.3109/00016489309135787
   SHERWOOD NM, 1970, STEREOTAXIC ATLAS DE
   Slotnick B.M., 1975, STEREOTAXIC ATLAS AL
   SPOOR F, 1998, AM J PHYS ANTHROPOL, P211
   TAKAGI A, 1989, ACTA OTO-LARYNGOL, V107, P362, DOI 10.3109/00016488909127522
   TAKAGI A, 1988, OTOLARYNG HEAD NECK, V98, P195
NR 43
TC 21
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 17
EP 24
DI 10.1016/j.heares.2005.11.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400003
PM 16439079
ER

PT J
AU Santos, F
   MacDonald, G
   Rubel, EW
   Raible, DW
AF Santos, F
   MacDonald, G
   Rubel, EW
   Raible, DW
TI Lateral line hair cell maturation is a determinant of aminoglycoside
   susceptibility in zebrafish (Danio rerio)
SO HEARING RESEARCH
LA English
DT Article
DE ototoxicity; aminoglycosides; mechanotransduction; hearing loss
ID IN-VITRO; GUINEA-PIG; GENTAMICIN EXPOSURE; CASPASE ACTIVATION; BASILAR
   PAPILLA; FREE-RADICALS; MYOSIN VIIA; DEATH; NEOMYCIN; OTOTOXICITY
AB Developmental differences in hair cell susceptibility to aminoglycoside-induced cell death has been observed in multiple species. Increased sensitivity to aminoglycosides has been temporally correlated with the onset of mechanotransduction dependent activity. We have used in vivo fluorescent vital dye markers to further investigate the determinants of aminoglycoside induced hair cell death in the lateral line of zebrafish (Danio rerio). Labeling hair cells of the lateral line in vivo with the dyes FM 1-43, To-Pro-3, and Yo-Pro-1 served as reliable indicators of hair cell viability. Results indicate that hair cell maturation is a determinant of developmental differences in Susceptibility. The age dependent differences in susceptibility to aminoglycosides are independent of the onset of mechanotransduction-dependent activity as measured by FM 1-43 uptake and independent of hair cell ability to take Lip fluorescently Conjugated aminoglycosides. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
   Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
   Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA.
RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA.
EM rubel@u.washington.edu; draible@u.washington.edu
CR Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x
   BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985
   Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   COLLAZO A, 1994, SCIENCE, V264, P426, DOI 10.1126/science.8153631
   Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6
   Coombs S, 1999, COMP HEARING FISH AM
   Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066
   CORTOPASSI G, 1994, HEARING RES, V78, P27, DOI 10.1016/0378-5955(94)90040-X
   Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J
   DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96
   Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357
   FRIEDMANN I, 1961, J PATHOL BACTERIOL, V81, P81, DOI 10.1002/path.1700810110
   Gale JE, 2001, J NEUROSCI, V21, P7013
   Geleoc GSG, 2003, NAT NEUROSCI, V6, P1019, DOI 10.1038/nn1120
   Gompel N, 2001, MECH DEVELOP, V105, P69, DOI 10.1016/S0925-4773(01)00382-3
   Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
   Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5
   Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6
   HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546
   Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200
   Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
   Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
   Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0
   KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1
   Langenberg T, 2003, DEV DYNAM, V228, P464, DOI 10.1002/dvdy.10395
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951
   MAROT M, 1980, HEARING RES, V2, P111, DOI 10.1016/0378-5955(80)90032-5
   Matsui JI, 2003, J NEUROSCI, V23, P6111
   Matsui JI, 2002, J NEUROSCI, V22, P1218
   METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307
   Meyers JR, 2003, J NEUROSCI, V23, P4054
   Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4
   Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005
   Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002
   Nishikawa S, 1996, J HISTOCHEM CYTOCHEM, V44, P733
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K
   RAPHAEL Y, 1983, ARCH OTO-RHINO-LARYN, V238, P45, DOI 10.1007/BF00453740
   Richardson GP, 1997, J NEUROSCI, V17, P9506
   RYBEK LP, 2003, CURR OPIN OTOLARYNGO, V11, P328
   SANTOS F, 2005, ARO ABSTR, V28, P210
   Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   Si F, 2003, J NEUROSCI, V23, P10815
   Sidi S, 2003, SCIENCE, V301, P96, DOI 10.1126/science.1084370
   Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
   SMITH C R, 1977, New England Journal of Medicine, V296, P349, DOI 10.1056/NEJM197702172960701
   SOLLNER C, 2000, NATURE, V428, P955
   Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9
   Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0
   STEYGER PS, 2003, JARO-J ASSOC RES OTO, V4, P4565
   THEOPOLD HM, 1977, ACTA OTO-LARYNGOL, V84, P57, DOI 10.3109/00016487709123942
   Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005
   Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477
   Walker P. D., 1987, AM J PHYSIOL, V253, P495
   WEEG MS, 2002, J NEUROPHYSIOL, V55, P74
   Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3
NR 64
TC 58
Z9 60
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 25
EP 33
DI 10.1016/j.heares.2005.12.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400004
PM 16459035
ER

PT J
AU Baumann, U
   Nobbe, A
AF Baumann, U
   Nobbe, A
TI The cochlear implant electrode-pitch function
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; electric hearing; frequency-place function; pitch
   sensation
ID SPEECH-PERCEPTION; DEAD REGIONS; INSERTION; HEARING; ARRAYS; NEURON;
   MODEL
AB The cochlear frequency-place function in normal hearing cars has been found to be an exponential relationship in a wide variety of species [D.D. Greenwood, J. Acoust. Soc. Am. 87 (1990) 2592-2605]. Although it seems reasonable to assume a similar function for electrical stimulation by means of an intra-cochlear electrode array, the exact frequency-place function for this special type of stimulation needs to be investigated. Six users of the MED-EL COMBI 40+ cochlear implant device with moderate to profound hearing loss between 125 and 1000 Hz in the non-implanted ear took part in a binaural pitch adjustment experiment. The COMBI 40+ electrode array provides a deep insertion into the scala tympani and a wide spatial separation between the stimulating electrodes. Insertion depth was controlled by Stenver's view plain radiographs and the insertion angle was estimated. The task of the subjects was to adjust the frequency of a sinusoid presented in the non-implanted ear by means of an adjusting knob until they perceived the same pitch as was elicited by a reference stimulus in the implanted ear. The results show adjustments corresponding to electrode positions along the cochlea, with the exception of the two most apical electrodes for most of the Subjects. Pitch increased in an orderly fashion with an average of 98 Hz per electrode separation (40 Hz/mm). In contrast to the exponential predictions according to [D.D. Greenwood, J. Acoust. Soc. Am. 87 (1990) 2592-2605] for normal hearing, the average electrode-pitch function shows a linear relationship. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Munich, Dept Otorhinolaryngol, D-81377 Munich, Germany.
   Med El GmbH, A-6020 Innsbruck, Austria.
   Univ Munich, ENT Dept, Munich, Germany.
RP Baumann, U (reprint author), Univ Munich, Dept Otorhinolaryngol, Marchioninistr 15, D-81377 Munich, Germany.
EM Uwe.Baumann@med.uni-muenchen.de
CR Baumann U, 2004, EAR HEARING, V25, P275, DOI 10.1097/00003446-200406000-00008
   Baumann U, 2004, HEARING RES, V196, P49, DOI 10.1016/j.heares.2004.06.008
   Bekesy G., 1960, EXPT HEARING
   BOEX C, 2006, IN PRESS J ASS RES O
   Cohen LT, 1996, AM J OTOL, V17, P859
   DORMAN MF, 1994, J ACOUST SOC AM, V95, P1677, DOI 10.1121/1.408558
   GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Hochmair I, 2003, ACTA OTO-LARYNGOL, V123, P612, DOI 10.1080/00016480310001844
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
   OTTE J, 1978, LARYNGOSCOPE, V88, P1231
   Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4
   Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
   SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7
   TURNER C, 1983, J ACOUST SOC AM, V73, P966, DOI 10.1121/1.389022
   Yukawa K, 2004, AUDIOL NEURO-OTOL, V9, P163, DOI 10.1159/000077267
   Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
   Zierhofer C. M., 1995, IEEE Transactions on Rehabilitation Engineering, V3, DOI 10.1109/86.372900
   Zwicker E, 1999, PSYCHOACOUSTICS FACT
NR 20
TC 37
Z9 37
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 34
EP 42
DI 10.1016/j.heares.2005.12.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400005
PM 16442249
ER

PT J
AU Murao, MS
   Bento, RF
   Sanchez, TG
   Ribas, GC
AF Murao, MS
   Bento, RF
   Sanchez, TG
   Ribas, GC
TI Transient evoked otoacoustic emissions after vestibular nerve section in
   chinchillas
SO HEARING RESEARCH
LA English
DT Article
DE olivocochlear bundle; otoacoustic emissions; chinchilla; vestibular
   nerve section; outer hair cells
ID OLIVOCOCHLEAR BUNDLE SECTION; SUPERIOR OLIVARY COMPLEX; DISTORTION
   PRODUCTS; NEURONS; HUMANS; REFLEX
AB Transient evoked otoacoustic emissions are believed to be sensitive to the effects of the cochlear efferent system. The most well-known function of this system is inhibitory oil cochlear response. It has been demonstrated that crossed medial efferent system section produces inhibitory control of the outer hair cells mechanisms responsible For non-linear transient evoked otoacoustic emissions generation. However, We Suppose that the uncrossed medial efferent system plays a role in outer hair cell function too. We recorded the non-linear part or transient evoked otoacoustic emissions in 17 chinchillas before and after section of the vestibular nerve (crossed and uncrossed fibers). Responses at Frequencies bands centered on 0.8, 1.6, 2.4, 3.2 and 4.0 kHz, as well as total emission responses, were analyzed. After vestibular nerve section, there Were significant increases in the amplitudes of the 2.4- and 4.0 kHz responses and of the total response. These results indicate that the medial efferent system is important to maintain normal cochlear mechanics. Uncrossed medial efferent system and lateral efferent system seem to be not important in maintaining normal cochlear mechanics. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Sch Med, Otorhinolaryngol Sci Lab, BR-01246903 Sao Paulo, Brazil.
   Univ Sao Paulo, Sch Med, Dept Anat, BR-01246903 Sao Paulo, Brazil.
RP Murao, MS (reprint author), Rua Dona Cota,177,Sala 202, BR-37010560 Varginha, MG, Brazil.
EM marciamurao@hotmail.com
CR Brown MC, 2003, EXP BRAIN RES, V153, P491, DOI 10.1007/s00221-003-1679-y
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   CAZALS Y, 1987, ACTA OTO-LARYNGOL, V103, P572
   Costa Deise Lima Da, 1998, Audiology (London), V37, P151
   GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310
   Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3
   GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
   Guinan Jr J.J., 1996, COCHLEA, P435
   Kakigi A, 1997, HEARING RES, V110, P34, DOI 10.1016/S0378-5955(97)00062-2
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
   LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242
   Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8
   Wake M, 1996, ACTA OTO-LARYNGOL, V116, P374, DOI 10.3109/00016489609137860
   Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
   WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029
NR 16
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 43
EP 48
DI 10.1016/j.heares.2005.12.013
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400006
PM 16497453
ER

PT J
AU Gabriel, D
   Veuillet, E
   Vesson, JF
   Collet, L
AF Gabriel, D
   Veuillet, E
   Vesson, JF
   Collet, L
TI Rehabilitation plasticity: Influence of hearing aid fitting on frequency
   discrimination performance near the hearing-loss cut-off
SO HEARING RESEARCH
LA English
DT Article
DE frequency discrimination; rehabilitation plasticity; hearing loss;
   hearing aid
ID CENTRAL AUDITORY PLASTICITY; CORTICAL REORGANIZATION; UNILATERAL
   DEAFNESS; SOMATOSENSORY CORTEX; COCHLEAR LESIONS; MOTOR CORTEX; ORGAN
   DAMAGE; LATE-ONSET; MONKEYS; DEAFFERENTATION
AB Several studies have already demonstrated that patients with steeply sloping hearing loss of cochlear origin exhibit an improvement in frequency discrimination performance at or around the cut-off frequency. This enhancement cannot be explained in terms of peripheral mechanisms and should rather be interpreted in terms of central reorganization: i.e., injury-induced cortical plasticity. However, the reversibility and time course of such reorganization has not yet been described. The main goal of the present study was therefore to investigate the occurrence of rehabilitation plasticity associated with hearing-aid fitting in human Subjects. Nine Subjects with steeply sloping hearing loss and who were candidates for auditory rehabilitation were tested. Discrimination-limen-for-frequency (DLF) enhancement was investigated at the frequency With the best DLF (bDLF) For each individual Subject before and during auditory rehabilitation (at 1 month, 3 months and 6 months). From 1 month on, frequency discrimination performance decreased significantly at the bDLF frequency, while remaining stable at other frequencies. This normalization may reflect a new central reorganization reversing the initial injury-induced changes in the cortical map. A correlation between subject's age and alteration in DLF at 1 month was also found, suggesting that plasticity operates faster in younger patients. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Lyon 1, CNRS GDR Protheses Audit 2213, Lab Neurosci & Syst Sensoriels, Unite CNRS UMR 5020, F-69366 Lyon 07, France.
RP Gabriel, D (reprint author), Univ Lyon 1, CNRS GDR Protheses Audit 2213, Lab Neurosci & Syst Sensoriels, Unite CNRS UMR 5020, 50 Av Tony Garnier, F-69366 Lyon 07, France.
EM damiengabriel@yahoo.fr
CR Bilecen D, 2000, NEUROLOGY, V54, P765
   Buss E, 1998, HEARING RES, V125, P98, DOI 10.1016/S0378-5955(98)00131-2
   Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9
   Fujiki N, 1998, NEUROREPORT, V9, P3129, DOI 10.1097/00001756-199810050-00002
   GARRAGHTY PE, 1991, SOMATOSENS MOT RES, V8, P347
   GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469
   Giraux P, 2001, NAT NEUROSCI, V4, P691, DOI 10.1038/89472
   HALLPIKE C S, 1959, Acta Otolaryngol, V50, P472, DOI 10.3109/00016485909129223
   HALLPIKE C S, 1951, Rev Laryngol Otol Rhinol (Bord), V72, P219
   HENDRY SHC, 1986, NATURE, V320, P750, DOI 10.1038/320750a0
   ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
   Kelahan A M, 1981, Brain Res, V223, P152, DOI 10.1016/0006-8993(81)90815-5
   Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
   McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
   MERZENICH MM, 1983, NEUROSCIENCE, V8, P33, DOI 10.1016/0306-4522(83)90024-6
   Olsen SO, 1999, AUDIOLOGY, V38, P61
   Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4
   PONS TP, 1991, SCIENCE, V252, P1857, DOI 10.1126/science.1843843
   Ponton CW, 2001, HEARING RES, V154, P32, DOI 10.1016/S0378-5955(01)00214-3
   Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
   Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   RECANZONE GH, 1993, J NEUROSCI, V13, P87
   ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230
   Roricht S, 1999, NEUROLOGY, V53, P106
   Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156
   SCHWABER MK, 1993, AM J OTOL, V14, P252
   Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044
   Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228
   WALL JT, 1983, SCIENCE, V221, P771, DOI 10.1126/science.6879175
   WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329
NR 31
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 49
EP 57
DI 10.1016/j.heares.2005.12.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400007
PM 16459036
ER

PT J
AU Rajan, R
AF Rajan, R
TI Contextual modulation of cochlear hearing desensitization depends on the
   type of loud sound trauma
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; hearing damage; loud sounds; background noise; auditory
ID BASILAR-MEMBRANE VIBRATIONS; TEMPORARY THRESHOLD SHIFT; ACOUSTIC
   STIMULATION; MAMMALIAN COCHLEA; MECHANICS; PATHWAYS; INTERFERENCE;
   TRANSDUCTION; PATTERNS; DAMAGE
AB In ears in which cochlear efferent pathways were cut and with testing done Under anaesthetic conditions that preclude middle ear muscle activity (so as to examine the "intrinsic" effects of loud sound on the cochlea without any confounding effect of efferent pathways to the auditory periphery), atraumatic background white noise (WN) increases cochlear hearing loss (temporary threshold shifts, TTSs) induced by a traumatic pure tone but reduces TTSs caused by traumatic 5-kHz wide narrow band (NB) sound. The short-duration moderately intense traumata used in these Studies most likely cause TTSs by affecting cochlear mechanics and these WN modulatory effects, exerted directly on the cochlea's intrinsic susceptibility to TTSs, are not predicted by any Current description of cochlear mechanics. Here it is demonstrated that background WN reduces trauma-induced TTSs with even a relatively small increase in trauma bandwidth beyond that of a pure tone, discounting the alternative that contextual modulatory effects transition systematically along a continuum as trauma bandwidth increases from a pure tone to a broader bandwidth (albeit 2 kHz-wide NB) trauma. These results have implications for cochlear mechanics as the TTSs due to the traumatic Sound of this study are most likely due to changes in cochlear mechanics but are not easily explained by what is currently known of cochlear mechanics. (C) 2006 Elsevier B.V. All rights reserved.
C1 Monash Univ, Dept Physiol, Monash, Vic 3800, Australia.
RP Rajan, R (reprint author), Monash Univ, Dept Physiol, Wellington Rd, Monash, Vic 3800, Australia.
EM ramesh.rajan@med.monash.edu.au
RI Rajan, Ramesh/A-5945-2008
CR Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6
   Chertoff ME, 1997, J ACOUST SOC AM, V102, P441, DOI 10.1121/1.419766
   CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0
   CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5
   COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y
   Fridberger A, 2002, HEARING RES, V167, P214, DOI 10.1016/S0378-5955(02)00396-9
   Fridberger A, 2002, J NEUROPHYSIOL, V88, P2341, DOI 10.1152/jn.00192.2002
   Geisler CD, 1997, J ACOUST SOC AM, V102, P430, DOI 10.1121/1.419765
   GUMMER AW, IN PRESS PULSATING F
   LEGOUIX JP, 1973, J ACOUST SOC AM, V53, P409, DOI 10.1121/1.1913337
   Lin T, 2000, J ACOUST SOC AM, V107, P2615, DOI 10.1121/1.428648
   NOWOTNY M, IN PRESS WHAT DO OHC
   Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0
   PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S
   PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X
   Patuzzi R. B., 1992, NOISE INDUCED HEARIN, P45
   PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2
   RAJAN R, 1995, J NEUROPHYSIOL, V74, P582
   RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U
   RAJAN R, 1995, J NEUROPHYSIOL, V74, P598
   Rajan R, 2000, J NEUROSCI, V20, P6684
   Rajan R, 2005, J NEUROPHYSIOL, V93, P1977, DOI 10.1152/jn.00848.2004
   Robles L, 2001, PHYSIOL REV, V81, P1305
   RUGGERO MA, 1993, BIOPHYSICS HAIR CELL, P258
   Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329
   Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660
   STOCKWEL.CW, 1969, ANN OTO RHINOL LARYN, V78, P1144
   van der Heijden M, 2005, J ACOUST SOC AM, V117, P1223, DOI 10.1121/1.1856375
   ZHANG MS, 1995, HEARING RES, V85, P1, DOI 10.1016/0378-5955(95)00026-Z
NR 29
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 58
EP 63
DI 10.1016/j.heares.2005.12.006
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400008
PM 16439080
ER

PT J
AU Dai, CF
   Mangiardi, D
   Cotanche, DA
   Steyger, PS
AF Dai, CF
   Mangiardi, D
   Cotanche, DA
   Steyger, PS
TI Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo
SO HEARING RESEARCH
LA English
DT Article
DE inner ear; gentamicin; hair cells; blood-labyrinth barrier
ID COCHLEAR HAIR-CELLS; INNER-EAR TISSUES; AMINOGLYCOSIDE ANTIBIOTICS;
   ETHACRYNIC-ACID; GUINEA-PIG; STRIA VASCULARIS; CATION CHANNEL;
   HORSERADISH-PEROXIDASE; LLC-PK1 CELLS; GOLGI-COMPLEX
AB Aminoglycoside uptake in the inner ear remains poorly understood. We subcutaneously injected a fluorescently-conjugated aminoglycoside, gentamicin-Texas Red (GTTR), to investigate the in vivo uptake of GTTR in the inner ear of several vertebrates, and in various murine sensory cells using confocal microscopy.
   In bullfrogs, GTTR uptake was prominent in mature hair cells, but not in immature hair cells. Avian hair cells accrued GTTR more rapidly at the base of the basilar papilla. GTTR was associated with the hair bundle; and, in guinea pigs and mice, somatic GTTR fluorescence was initially diffuse before punctate (endosomal) fluorescence could be observed. A baso-apical gradient of intracellular GTTR uptake in guinea pig cochleae could only be detected at early time points (<3 h). In 21-28 day mice, cochlear GTTR uptake was greatly reduced compared to guinea pigs, 6-day-old mice, or mice treated with ethacrynic acid. In mice, GTTR was also rapidly taken up, and retained, in the kidney, dorsal root and trigeminal ganglia. In linguinal and vibrissal tissues rapid GTTR uptake cleared over a period of several days.
   The preferential uptake of GTTR by mature saccular, and proximal hair cells resembles the pattern of aminoglycoside-induced hair cell death in bullfrogs and chicks. Differences in the degree of GTTR uptake in hair cells of different species suggests variation in serum levels, clearance rates from serum, and/or the developmental and functional integrity of the blood-labyrinth barrier. GTTR uptake by hair cells in vivo suggests that GTTR has potential to elucidate aminoglycoside transport mechanisms into the inner ear, and as a biotracer for in vivo pharmacokinctic studies. (C) 2006 Elsevier B.V. All rights reserved.
C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
   Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otolaryngol, Shanghai 200031, Peoples R China.
   Childrens Hosp, Dept Otolaryngol, Boston, MA 02115 USA.
   Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA.
RP Steyger, PS (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM steygerp@ohsu.edu
RI dai, chenkai/A-8051-2010
CR Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x
   AU S, 1987, BIOCHIM BIOPHYS ACTA, V902, P80, DOI 10.1016/0005-2736(87)90137-4
   Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x
   BALOGH K, 1970, ANN OTO RHINOL LARYN, V79, P641
   BEAUBIEN AR, 1991, ANTIMICROB AGENTS CH, V35, P1070
   BHAVE SA, 1995, J NEUROSCI, V15, P4618
   BRUMMETT RE, 1981, REV INFECT DIS, V3, pS216
   Caterina MJ, 1997, NATURE, V389, P816
   Chen P, 1999, DEVELOPMENT, V126, P1581
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066
   COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1
   DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J
   Ding D, 1995, Zhonghua Er Bi Yan Hou Ke Za Zhi, V30, P323
   Ding DL, 2003, HEARING RES, V185, P90, DOI 10.1016/S0378-5955(03)00258-2
   Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
   DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226
   DULON D, 1993, CR ACAD SCI III-VIE, V316, P682
   Dunn KW, 2002, AM J PHYSIOL-CELL PH, V283, pC905, DOI 10.1152/ajpcell.00159.2002
   DUVALL AJ, 1989, ACTA OTO-LARYNGOL, V108, P397, DOI 10.3109/00016488909125545
   Ehret G, 1976, J Am Audiol Soc, V1, P179
   FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X
   FORGE A, 1985, HEARING RES, V20, P233, DOI 10.1016/0378-5955(85)90028-0
   FOX KE, 1979, ACTA OTO-LARYNGOL, V87, P72, DOI 10.3109/00016487909126389
   Gale JE, 2001, J NEUROSCI, V21, P7013
   Goodman L. S., 2001, GOODMAN GILMANS PHAR, V10th
   HACKNEY CM, 1990, LECT NOTES BIOMATH, V87, P10
   Hashino E, 2000, BRAIN RES, V887, P90, DOI 10.1016/S0006-8993(00)02971-1
   HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H
   Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3
   Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5
   Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6
   HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546
   Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200
   HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G
   HIEL H, 1992, ACTA OTO-LARYNGOL, V112, P272
   Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x
   Hofmann T, 2003, CURR BIOL, V13, P1153, DOI 10.1016/S0960-9822(03)00431-7
   HUY PTB, 1986, J CLIN INVEST, V77, P1492
   Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
   Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7
   Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706
   KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9
   Kitahara T, 2005, HEARING RES, V201, P132, DOI 10.1016/j.heares.2004.09.007
   KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3
   LEE SB, 1995, CURR OPIN CELL BIOL, V7, P183, DOI 10.1016/0955-0674(95)80026-3
   LI CW, 1979, ANN OTO RHINOL LARYN, V88, P427
   Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4
   Macpherson LJ, 2005, CURR BIOL, V15, P929, DOI 10.1016/j/cub.2005.04.018
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   MARCHE P, 1987, KIDNEY INT, V31, P59, DOI 10.1038/ki.1987.9
   MARCOTTI W, 2005, J PHYSL
   Meyers JR, 2003, J NEUROSCI, V23, P4054
   Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005
   Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002
   Naito H, 1997, ORL J OTO-RHINO-LARY, V59, P248
   NONCLERCQ D, 1992, RENAL FAILURE, V14, P507, DOI 10.3109/08860229209047660
   Porta EA, 2002, ANN NY ACAD SCI, V959, P57
   PORTMANN M, 1974, ARCH OTOLARYNGOL, V100, P473
   Raisinghani M, 2005, PAIN, V113, P123, DOI 10.1016/j.pain.2004.09.042
   Richardson GP, 1997, J NEUROSCI, V17, P9506
   RICHARDSON GP, 1989, COCHLEAR MECH STRUCT, P566
   RYAN AF, 1980, HEARING RES, V3, P335, DOI 10.1016/0378-5955(80)90027-1
   RYBAK LP, 1982, J OTOLARYNGOL, V11, P127
   Sandoval R, 1998, J AM SOC NEPHROL, V9, P167
   Sandoval RM, 2000, AM J PHYSIOL-RENAL, V279, pF884
   SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236
   Shnerson A, 1981, Brain Res, V254, P65
   SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9
   Staecker H, 1997, INT J DEV NEUROSCI, V15, P553, DOI 10.1016/S0736-5748(96)00110-4
   Stanislawski L, 1997, Clin Oral Investig, V1, P131, DOI 10.1007/s007840050024
   STEYGER PS, 1991, THESIS KEELE U
   Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5
   Strotmann R, 2000, NAT CELL BIOL, V2, P695
   Suchy SF, 2002, AM J HUM GENET, V71, P1420, DOI 10.1086/344517
   SYKA J, 1985, HEARING RES, V20, P267, DOI 10.1016/0378-5955(85)90031-0
   HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3
   von Ilberg C, 1971, Acta Otolaryngol, V71, P159, DOI 10.3109/00016487109125345
   WEDEEN RP, 1983, LAB INVEST, V48, P212
   Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
   Xie Y, 2001, KIDNEY INT, V59, P959, DOI 10.1046/j.1523-1755.2001.059003959.x
   Xu HX, 2002, NATURE, V418, P181, DOI 10.1038/nature00882
   Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
   Zhang ZJ, 2000, BRAIN RES, V852, P116, DOI 10.1016/S0006-8993(99)02223-4
   Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002
   Zhou LM, 2002, AATCC REV, V2, P29
   Zhou Y, 2001, NEUROSCI LETT, V315, P98, DOI 10.1016/S0304-3940(01)02356-4
   ZIERHUT G, 1979, EUR J BIOCHEM, V98, P577, DOI 10.1111/j.1432-1033.1979.tb13219.x
NR 88
TC 44
Z9 47
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 64
EP 78
DI 10.1016/j.heares.2005.11.011
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400009
PM 16466873
ER

PT J
AU Qu, CY
   Liang, FH
   Hu, W
   Shen, ZJ
   Spicer, SS
   Schulte, BA
AF Qu, CY
   Liang, FH
   Hu, W
   Shen, ZJ
   Spicer, SS
   Schulte, BA
TI Expression of CLC-K chloride channels in the rat cochlea
SO HEARING RESEARCH
LA English
DT Article
DE chloride channel; ClC-K1; ClC-K2; cochlea; organ of Corti; stria
   vascularis; spiral ligament
ID STRIA-VASCULARIS; MARGINAL CELLS; GERBIL COCHLEA; SPIRAL GANGLION;
   MESSENGER-RNA; MICE LACKING; INNER-EAR; KIDNEY; LOCALIZATION; ACID
AB Current models of the lateral K+ recycling pathway in the mammalian cochlea include two multicellular transport networks separated from one another by three interstitial gaps. The first gap is between outer hair cells and Deiters cells, the second is between outer sulcus cells and type II spiral ligament fibrocytes and the third is between intermediate and marginal cells in the stria vascularis. K+ taken up by cells bordering these interstitial spaces is accompanied by Cl-. Maintaining appropriate electrolyte balance and membrane potentials in these cells requires a mechanism for exit of the resorbed Cl-. One possible candidate For regulating this Cl- efflux is ClC-K, a chloride channel previously thought to be kidney specific. Here, we demonstrate the expression of both known isoforms of ClC-K in the organ of Corti, spiral ligament and stria vascularis of the rat cochlea by immunohistochemical, Western blot and RT-PCR analysis. These results indicate a role for ClC-K in mediating Cl- recycling in the cochlea. The widespread expression of both ClC-K. isoforms in the cochlea may help to explain the symptoms of Bartter's syndrome Type III, a mutation in the hClC-Kb gene (human homologue of ClC-K2), which results in renal salt wasting without deafness. These data support the hypothesis that both isoforms of ClC-K are co-expressed in sonic cell membranes and account for the preservation of hearing in the presence of a mutation in only one channel isoform. (C) 2006 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA.
   Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA.
RP Schulte, BA (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,Suite 309,POB 250908, Charleston, SC 29425 USA.
EM quc@musc.edu; schulteb@musc.edu
CR ADACHI S, 1994, J BIOL CHEM, V269, P17677
   AKIZUKI N, 2001, AM J PHYSIOL-RENAL, V280, P79
   Ando M, 2000, NEUROSCI LETT, V284, P171, DOI 10.1016/S0304-3940(00)01021-1
   Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a
   Brandt S, 1995, FEBS LETT, V377, P15, DOI 10.1016/0014-5793(95)01298-2
   BURSTONE MS, 1959, J HISTOCHEM CYTOCHEM, V7, P39
   Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773
   Duan D, 1997, NATURE, V390, P417
   Estevez R, 2001, NATURE, V414, P558, DOI 10.1038/35107099
   Estevez R, 2002, CURR OPIN STRUC BIOL, V12, P531, DOI 10.1016/S0959-440X(02)00358-5
   GALLAGHER JP, 1983, BRAIN RES, V267, P249, DOI 10.1016/0006-8993(83)90877-6
   Igarashi Y, 2002, J CHROMATOGR B, V781, P345, DOI 10.1016/S1570-0232(02)00431-2
   INOUE C, 1987, P NATL ACAD SCI USA, V84, P6659, DOI 10.1073/pnas.84.19.6659
   JIANG CW, 1993, SCIENCE, V262, P424, DOI 10.1126/science.8211164
   KIEFERLE S, 1994, P NATL ACAD SCI USA, V91, P6943, DOI 10.1073/pnas.91.15.6943
   Kornak U, 2001, CELL, V104, P205, DOI 10.1016/S0092-8674(01)00206-9
   KUIJPERS W, 1969, THESIS CATHOLIC U NI
   Liu SY, 2000, CHINESE CHEM LETT, V11, P957
   LIU W, 2002, AM J PHYSIOL-RENAL, V282, P451
   MacIntyre N, 2001, BRIT J BIOMED SCI, V58, P190
   Maehara H, 2003, NEUROREPORT, V14, P1571, DOI 10.1097/01.wnr.0000087905.78892.55
   Malgrange B, 1997, NEUROREPORT, V8, P591, DOI 10.1097/00001756-199702100-00003
   MARCUS DC, 1985, HEARING RES, V17, P79, DOI 10.1016/0378-5955(85)90133-9
   Matsumura Y, 1999, NAT GENET, V21, P95, DOI 10.1038/5036
   McGuirt JP, 1996, AUDIT NEUROSCI, V2, P135
   Ramos-Vara JA, 2005, VET PATHOL, V42, P405, DOI 10.1354/vp.42-4-405
   REINHOLT FP, 1990, J BONE MINER RES, V5, P1055
   RYBAK LP, 1991, ORL J OTO-RHINO-LARY, V53, P72
   RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4
   Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2
   Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7
   Schlingmann KP, 2004, NEW ENGL J MED, V350, P1314, DOI 10.1056/NEJMoa032843
   SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127
   SHINDO M, 1992, JPN J PHYSIOL, V42, P617, DOI 10.2170/jjphysiol.42.617
   Simon DB, 1997, NAT GENET, V17, P171, DOI 10.1038/ng1097-171
   SMITH CA, 1954, LARYNGOSCOPE, V64, P141
   SPICER SS, 2003, 26 ANN MIDW RES M, P110
   SUNOSE H, 1993, AM J PHYSIOL, V265, P72
   TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R
   Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029
   UCHIDA S, 1993, J BIOL CHEM, V268, P3821
   UCHIDA S, 1995, J CLIN INVEST, V95, P104, DOI 10.1172/JCI117626
   VANDEWALLE A, 1997, AM J PHYSIOL-RENAL, V272, P678
   Waldegger S, 2002, PFLUG ARCH EUR J PHY, V444, P411, DOI 10.1007/s00424-002-0819-8
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   WANGEMANN P, 2000, HEARING RES, V165, P1
   Yamamoto Y, 2002, ACTA OTO-LARYNGOL, V122, P709, DOI 10.1080/003655402/000028058
   YAO XF, 1994, HEARING RES, V80, P31, DOI 10.1016/0378-5955(94)90006-X
   ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355
NR 49
TC 12
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 79
EP 87
DI 10.1016/j.heares.2005.12.012
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400010
PM 16466872
ER

PT J
AU Seither-Preisler, A
   Patterson, R
   Krumbholz, K
   Seither, S
   Lutkenhoner, B
AF Seither-Preisler, A
   Patterson, R
   Krumbholz, K
   Seither, S
   Lutkenhoner, B
TI Evidence of pitch processing in the N100m component of the auditory
   evoked field
SO HEARING RESEARCH
LA English
DT Article
DE N100m latency; AEF; pitch; relative phase; AIM
ID NEUROMAGNETIC EVIDENCE; COMPLEX TONES; FUNCTIONAL-ORGANIZATION; TEMPORAL
   INTEGRATION; STIMULUS FREQUENCY; MAGNETIC-FIELDS; SENSORY MEMORY;
   VIRTUAL PITCH; HUMAN BRAIN; LATENCY
AB The latency of the N100m component of the auditory evoked field (AEF) is sensitive to the period and spectrum of a sound. However, little attention was paid so fair to the wave shape at stimulus onset, which might have biased previous results. This problem was fixed in the present study by aligning the first major peaks in the acoustic waveforms. The stimuli were harmonic tones (spectral range: 800-5000 Hz) with periods corresponding to 100, 200, 400, and 800 Hz. The frequency components were in sine, alternating or random phase. Simulations with a computational model suggest that the auditory-nerve activity is strongly affected by both the period and the relative phase of the stimulus, whereas the output of the more central pitch processor only depends on the period. Our AEF data, recorded from the right hemisphere of seven subjects, are consistent with the latter prediction: The latency of the N100m depends on the period, but not on the relative phase of the stimulus components. This suggests that the N100m reflects temporal pitch extraction, not necessarily implying that the underlying generators are directly involved in this analysis. (C) 2006 Elsevier B.V. All rights reserved.
C1 Munster Univ Hosp, ENT Clin, Dept Expt Audiol, D-48129 Munster, Germany.
   Univ Cambridge, Dept Physiol, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England.
   MRC, Inst Hearing Res, Nottingham NG7 2RD, England.
RP Seither-Preisler, A (reprint author), Munster Univ Hosp, ENT Clin, Dept Expt Audiol, Kardinal von Galen Ring 10, D-48129 Munster, Germany.
EM preisler@uni-muenster.de; roy.patterson@mrc-cbu.cam.ac.uk;
   katrin@ihr.mrc.ac.uk
CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9
   Beagley H A, 1967, J Laryngol Otol, V81, P861, DOI 10.1017/S0022215100067815
   Biermann S, 2000, J NEUROPHYSIOL, V84, P2426
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732
   Crottaz-Herbette S, 2000, CLIN NEUROPHYSIOL, V111, P1759, DOI 10.1016/S1388-2457(00)00422-3
   Eggermont JJ, 2002, AUDIOL NEURO-OTOL, V7, P71, DOI 10.1159/000057656
   FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B
   Greenberg S., 1998, PSYCHOPHYSICAL PHYSL, P293
   Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459
   Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637
   Heil P, 1997, J NEUROPHYSIOL, V78, P2438
   JACOBSON GP, 1992, EAR HEARING, V13, P300, DOI 10.1097/00003446-199210000-00007
   JOUTSENIEMI SL, 1989, AUDIOLOGY, P325
   Kaernbach C, 1998, J ACOUST SOC AM, V104, P2298, DOI 10.1121/1.423742
   Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
   Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197
   Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5
   Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132
   Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790
   Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357
   MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Patterson RD, 1998, J ACOUST SOC AM, V104, P2967, DOI 10.1121/1.423879
   PATTERSON RD, 1992, ADV BIOSCI, V83, P429
   PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1409, DOI 10.1121/1.410285
   PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456
   Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004
   Poeppel D, 1996, BRAIN COGNITION, V32, P156
   PREISLER A, 1993, PERCEPT PSYCHOPHYS, V54, P589, DOI 10.3758/BF03211783
   Ragot R, 1996, NEUROREPORT, V7, P905
   Ragot R, 1998, NEUROREPORT, V9, P3123, DOI 10.1097/00001756-199810050-00001
   RAPIN I, 1966, ELECTROEN CLIN NEURO, V21, P335, DOI 10.1016/0013-4694(66)90039-3
   ROBERTS T, 1998, NEUROREPORT, V9, P3256
   Roberts TPL, 2000, J CLIN NEUROPHYSIOL, V17, P114, DOI 10.1097/00004691-200003000-00002
   Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007
   SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363
   Schouten JF, 1938, P K NED AKAD WETENSC, V41, P1086
   Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
   Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
   SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
   SHAMMA SA, 1986, J ACOUST SOC AM, V80, P133, DOI 10.1121/1.394173
   Shofner WP, 2002, PERCEPT PSYCHOPHYS, V64, P437, DOI 10.3758/BF03194716
   Stufflebeam SM, 1998, NEUROREPORT, V9, P91, DOI 10.1097/00001756-199801050-00018
   Sumner CJ, 2002, J ACOUST SOC AM, V111, P2178, DOI 10.1121/1.1453451
   VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7
   Wiegrebe L, 2000, J ACOUST SOC AM, V107, P3343, DOI 10.1121/1.429437
   WOODS DL, 1993, HEARING RES, V66, P46, DOI 10.1016/0378-5955(93)90258-3
   Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
NR 50
TC 19
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 88
EP 98
DI 10.1016/j.heares.2006.01.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400011
PM 16464550
ER

PT J
AU Lewald, J
   Getzmann, S
AF Lewald, J
   Getzmann, S
TI Horizontal and vertical effects of eye-position on sound localization
SO HEARING RESEARCH
LA English
DT Article
DE spatial hearing; gaze direction; binaural cues; pinna cues; azimuth;
   elevation
ID PRIMATE SUPERIOR COLLICULUS; MINIMUM AUDIBLE ANGLE; AUDITORY
   LOCALIZATION; SPATIAL HEARING; INFERIOR COLLICULUS; VISUAL LOCALIZATION;
   NECK MUSCLES; MOVEMENTS; DIRECTION; SPACE
AB The effect of gaze direction on the localization of sound sources was investigated in the azimuthal and elevational dimension using a pointing task. In both dimensions, eccentric eye-position induced a significant shift in sound localization that was opposite to the direction of eccentricity. This finding is in accordance with the view that the azimuthal and elevational components of the auditory spatial information are processed in common neural Substrates. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Dortmund, Inst Occupat Physiol, Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany.
   Ruhr Univ Bochum, Fac Psychol, Dept Cognit & Environm Psychol, D-44780 Bochum, Germany.
RP Lewald, J (reprint author), Univ Dortmund, Inst Occupat Physiol, Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany.
EM joerg.lewald@rub.de
RI Lewald, Jorg/D-3034-2009
OI Lewald, Jorg/0000-0001-9351-0170
CR ANDREDESHAYS C, 1988, EXP BRAIN RES, V69, P399
   Blauert J., 1997, SPATIAL HEARING PSYC
   BOCK O, 1986, EXP BRAIN RES, V64, P476, DOI 10.1007/BF00340484
   Fujiki N, 2002, EUR J NEUROSCI, V16, P2207, DOI 10.1046/j.1460-9568.2002.02276.x
   Getzmann S, 2002, HEARING RES, V169, P130, DOI 10.1016/S0378-5955(02)00387-8
   Groh JM, 2001, NEURON, V29, P509, DOI 10.1016/S0896-6273(01)00222-7
   GUSKI R, 1990, PERCEPTION, V19, P819, DOI 10.1068/p190819
   HARTLINE PH, 1995, EXP BRAIN RES, V104, P402
   HELD RICHARD, 1955, AMER JOUR PSYCHOL, V68, P526, DOI 10.2307/1418782
   HILL AL, 1972, PERCEPT PSYCHOPHYS, V11, P175, DOI 10.3758/BF03210370
   JAY MF, 1987, J NEUROPHYSIOL, V57, P35
   JAY MF, 1984, NATURE, V309, P345, DOI 10.1038/309345a0
   JONES B, 1975, PERCEPT PSYCHOPHYS, V17, P241, DOI 10.3758/BF03203206
   Lewald J, 2001, NEUROSCI RES, V39, P253, DOI 10.1016/S0168-0102(00)00210-8
   Lewald J, 2004, NEUROPSYCHOLOGIA, V42, P1598, DOI 10.1016/j.neuropsychologia.2004.04.012
   Lewald J, 2004, J COGNITIVE NEUROSCI, V16, P828, DOI 10.1162/089892904970834
   Lewald J, 2000, BEHAV BRAIN RES, V108, P105, DOI 10.1016/S0166-4328(99)00141-2
   Lewald J, 1999, EXP BRAIN RES, V125, P389, DOI 10.1007/s002210050695
   Lewald J, 1998, HEARING RES, V115, P206, DOI 10.1016/S0378-5955(97)00190-1
   Lewald J, 1996, EXP BRAIN RES, V108, P473
   Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1
   Lewald J, 2001, BEHAV BRAIN RES, V121, P69, DOI 10.1016/S0166-4328(00)00386-7
   Lewald J, 2002, LEARN MEMORY, V9, P268, DOI 10.1101/lm.51402
   Lewald J, 1998, J ACOUST SOC AM, V104, P1586, DOI 10.1121/1.424371
   Lewald J, 2002, NEUROPSYCHOLOGIA, V40, P1868, DOI 10.1016/S0028-3932(02)00071-4
   LEWALD J, 2000, VISION RES, V40, P549
   MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
   MORGAN CL, 1978, PERCEPT PSYCHOPHYS, V23, P61, DOI 10.3758/BF03214296
   Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0
   PECK CK, 1995, EXP BRAIN RES, V103, P227
   PERROTT DR, 1990, J ACOUST SOC AM, V87, P1728, DOI 10.1121/1.399421
   PINEK B, 1989, CORTEX, V25, P175
   PLATT BB, 1972, PERCEPT PSYCHOPHYS, V12, P245, DOI 10.3758/BF03212884
   Recanzone GH, 1998, P NATL ACAD SCI USA, V95, P869, DOI 10.1073/pnas.95.3.869
   SHELTON BR, 1980, PERCEPT PSYCHOPHYS, V28, P589, DOI 10.3758/BF03198830
   Stein B. E., 1993, MERGING SENSES
   Stricanne B, 1996, J NEUROPHYSIOL, V76, P2071
   VIDAL PP, 1982, EXP BRAIN RES, V46, P448
   Werner-Reiss U, 2003, CURR BIOL, V13, P554, DOI 10.1016/S0960-9822(03)00168-4
   Zimmer U, 2004, EUR J NEUROSCI, V20, P3148, DOI 10.1111/j.1460-9568.2004.03766.x
   Zwiers MP, 2004, J NEUROSCI, V24, P4145, DOI 10.1523/JNEUROSCI.0199-04.2004
   Zwiers MP, 2003, NAT NEUROSCI, V6, P175, DOI 10.1038/nn999
NR 42
TC 23
Z9 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 99
EP 106
DI 10.1016/j.heares.2006.01.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400012
PM 16466875
ER

PT J
AU Anderson, SE
   Kilgard, MP
   Sloan, AM
   Rennaker, RL
AF Anderson, SE
   Kilgard, MP
   Sloan, AM
   Rennaker, RL
TI Response to broadband repetitive stimuli in auditory cortex of the
   unanesthetized rat
SO HEARING RESEARCH
LA English
DT Article
DE unanesthetized; multi-unit; temporal coding; chronic implant
ID FREQUENCY; CAT; ORGANIZATION; MECHANISMS; AMPLITUDE; CLICKS; SOUND
AB This study examines the ability of multi-unit clusters (MUCs) in layer IV/V of primary auditory cortex of the awake rat to respond to a series of broadband click trains. The data from 113 multi-unit clusters were analyzed for synchronous and nonsynchronized responses using several methods. Synchronous responses were measured using window analysis, circular statistics and spectral analysis. Nonsynchronous responses were measured during different time intervals during the click train (first 50 ms, 50-450 ins, and the entire click train). The results demonstrate that multi-unit clusters are capable of synchronizing to clicks at rates up to 166 Hz. The mean synchronization boundary (limiting rate) for the group was found to be 72 Hz. Mean peak response rate, mean response duration, and mean time-to-peak response decreased as the stimulus presentation rate (SPR) increased, resulting in a temporal sharpening of the population response. For fast SPRs (>50 Hz), 50%, of MUCs exhibited nonsynchronous responses in which the firing rate increased with SPR, although this activity was most prevalent during the first 50 ins of the response. Sustained increases in firing rate with SPR were seen in 8%, of he MUCs, while another 38% of MUCs exhibited sustained decreases during the click train. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Oklahoma, Dept Aerosp & Mech Engn, Norman, OK 73019 USA.
   Univ Oklahoma, Ctr Bioengn, Sarkeys Engn Ctr T335, Norman, OK 73019 USA.
   Univ Texas, Cognit & Neurosci Program, Sch Behav & Brain Sci, Richardson, TX 75083 USA.
RP Rennaker, RL (reprint author), Univ Oklahoma, Dept Aerosp & Mech Engn, 865 Asp Ave Felgar Hall 210, Norman, OK 73019 USA.
EM Rennaker@ou.edu
RI Rennaker, Robert/K-9049-2013
OI Rennaker, Robert/0000-0003-1260-1973
CR Bandrowski AE, 2002, SYNAPSE, V44, P146, DOI 10.1002/syn.10058
   De Ribaupierre F, 1972, Brain Res, V48, P205, DOI 10.1016/0006-8993(72)90179-5
   EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6
   GAESE BH, 1995, EUR J NEUROSCI, V7, P438, DOI 10.1111/j.1460-9568.1995.tb00340.x
   Gaese BH, 2003, EUR J NEUROSCI, V18, P2638, DOI 10.1046/j.1460-9568.2003.03007.x
   ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33
   Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
   Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1
   Leong D, 2004, ACTA OTO-LARYNGOL, V124, P454, DOI 10.1080/0001648031000692
   Liu WT, 2003, ARTIF ORGANS, V27, P986, DOI 10.1046/j.1525-1594.2003.07306.x
   Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737
   Lu T, 2000, J NEUROPHYSIOL, V84, P236
   Mardia K, 2000, DIRECTIONAL STAT
   MILLER GA, 1948, J ACOUST SOC AM, V20, P171, DOI 10.1121/1.1906360
   PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748
   PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946
   Rennaker RL, 2005, J NEUROSCI METH, V142, P169, DOI [10.1016/j.jneumeth.2004.08.009, 10.1016/j.neumeth.2004.08.009]
   Rennaker RL, 2005, J NEUROSCI METH, V142, P97, DOI 10.1016/j.jneumeth.2004.07.018
   RONKEN DA, 1970, J ACOUST SOC AM, V47, P1091, DOI 10.1121/1.1912010
   SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
   Schreiner C E, 1992, Curr Opin Neurobiol, V2, P516, DOI 10.1016/0959-4388(92)90190-V
   Schreiner C E, 1997, Acta Otolaryngol Suppl, V532, P54
   STEINSCHNEIDER M, 1980, BRAIN RES, V198, P75, DOI 10.1016/0006-8993(80)90345-5
   Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6
   Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3
   Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009
NR 26
TC 23
Z9 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 107
EP 117
DI 10.1016/j.heares.2005.12.011
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400013
PM 16466874
ER

PT J
AU Harris, KC
   Bielefeld, E
   Hu, BH
   Henderson, D
AF Harris, KC
   Bielefeld, E
   Hu, BH
   Henderson, D
TI Increased resistance to free radical damage induced by low-level sound
   conditioning
SO HEARING RESEARCH
LA English
DT Article
DE conditioning; paraquat; chinchilla
ID INDUCED HEARING-LOSS; SUPEROXIDE-DISMUTASE; TRAUMATIC EXPOSURE;
   THRESHOLD SHIFTS; ACOUSTIC TRAUMA; NOISE EXPOSURE; PROTECTION;
   CHINCHILLA; COCHLEA; HYDROETHIDINE
AB Conditioning is the phenomenon where exposure to moderate-level acoustic stimuli can increase the ear's resistance to subsequent more intense sound exposures. In recent years, research has shown that conditioning increases the availability of antioxidant enzymes which presumably protects the ear from oxidative stress induced by a traumatic noise exposure [Jacono, A.A., Hu, B., Kopke, R.D., Henderson, D., Van De Water, T.R., Steinman, H.M., 1998. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117. 31-8]. The current Study was designed to assess whether the increase in endogenous antioxidants seen following conditioning could provide protection from oxidative stress induced by Paraquat, a potent generator of superoxide. Chinchillas were exposed to a conditioning noise, 500 Hz OBN at 95 dB for 6 h/day for 10 days, followed 5 days later with Paraquat application to the round window. Controls underwent the Paraquat application surgery, without prior conditioning. Evoked potential thresholds were determined prior to conditioning, at day 1, 5 and 10 during conditioning, at day 15 (5 days after conditioning), and at day 17, 19, 23, and 35 (1, 3, 7, and 20 days post-Paraquat). The conditioned animals showed reductions in permanent threshold shift and reduced inner hair cell loss relative to controls. These results reinforce the hypothesis that antioxidants are primary mediators of the conditioning effect. (C) 2006 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA.
   SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,POB 250550, Charleston, SC 29425 USA.
EM harriskc@musc.edu
RI Bielefeld, Eric/D-2015-2012
CR Benov L, 1998, FREE RADICAL BIO MED, V25, P826, DOI 10.1016/S0891-5849(98)00163-4
   Bielefeld EC, 2005, HEARING RES, V207, P35, DOI 10.1016/j.heares.2005.03.025
   Bindokas VP, 1996, J NEUROSCI, V16, P1324
   CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H
   CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4
   Chan PH, 1998, J NEUROSCI, V18, P8292
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Halliwell B, 1999, FREE RADICALS BIOL D
   HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321
   HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1
   Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
   McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0
   Nicotera TM, 2004, AUDIOL NEURO-OTOL, V9, P353, DOI 10.1159/000081284
   Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
   SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B
   Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Yamasoba T, 1999, HEARING RES, V127, P31, DOI 10.1016/S0378-5955(98)00178-6
   Yoshida N, 1999, J NEUROSCI, V19, P10116
NR 29
TC 10
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 118
EP 129
DI 10.1016/j.heares.2005.11.012
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400014
PM 16466871
ER

PT J
AU Loebach, JL
   Wickesberg, RE
AF Loebach, JL
   Wickesberg, RE
TI The representation of noise vocoded speech in the auditory nerve of the
   chinchilla: Physiological correlates of the perception of spectrally
   reduced speech
SO HEARING RESEARCH
LA English
DT Article
DE speech; auditory nerve; spectrally reduced speech; noise vocoded speech
ID NORMAL-HEARING LISTENERS; COCHLEAR IMPLANT USERS; STEADY-STATE VOWELS;
   TEMPORAL CUES; CONSONANT RECOGNITION; DISCHARGE PATTERNS; SIGNAL
   PROCESSORS; ENVELOPE CUES; SINE-WAVE; CHANNELS
AB This Study investigated the neural representation of naturally produced and noise vocoded speech signals in the auditory nerve of the chinchilla. The syllables /b(sic)/, /d(sic)/, /tu / and /p(sic)/ produced by male speakers were used to synthesize noise vocoded speech stimuli containing one, two, three and four bands of envelope modulated noise. The ensemble response of the auditory nerve, computed by pooling the PST histograms across many auditory nerve fibers, revealed temporal patterns in the responses to the natural tokens that uniquely identified the stop consonants. The responses to the 3- and 4-band noise vocoded tokens contained temporal patterns that were nearly identical to those observed for the natural tokens, while the responses to the 1- and 2-band tokens were significantly different (p < 0.0001). The ALSR, ALIR and autocorrelation of the pooled PST histograms represented the detail of the frequency spectrum for a naturally produced vowel, while the driven rate was unreliable. Each of these spectral analyses failed to reveal significant information about the noise vocoded vowels. These results Suggest that temporal patterns in the responses of the auditory nerve can provide the cues necessary for the recognition of noise vocoded stop consonants. (C) 2006 Elsevier B.V. All rights reserved.
C1 Univ Illinois, Dept Psychol, Champaign, IL 61820 USA.
   Indiana Univ, Dept Psychol, Bloomington, IN 47405 USA.
RP Wickesberg, RE (reprint author), Univ Illinois, Dept Psychol, 603 E Daniel St, Champaign, IL 61820 USA.
EM jlloebac@indiana.edu; wickesbe@uiuc.edu
CR Barker J, 1999, SPEECH COMMUN, V27, P159, DOI 10.1016/S0167-6393(98)00081-8
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   CLAREY JC, 2004, HEARING RES, V90, P37
   Denes P. B., 1993, SPEECH CHAIN
   Diehl RL, 2004, ANNU REV PSYCHOL, V55, P149, DOI 10.1146/annurev.psych.55.090902.142028
   Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603
   Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940
   DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836
   DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1054
   Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201
   FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407
   Fu QJ, 2001, J ACOUST SOC AM, V109, P1166, DOI 10.1121/1.1344158
   Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1
   GREENBERG S, 1999, P INT C SPOK LANG PR
   LOEBACH JL, 2005, THESIS U ILLINOIS UR
   Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954
   NEAREY TM, 1989, J ACOUST SOC AM, V85, P2088, DOI 10.1121/1.397861
   REMEZ RE, 1994, PSYCHOL REV, V101, P129, DOI 10.1037/0033-295X.101.1.129
   REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191
   ROSEN S, 1989, COCHLEAR IMPLANT ACQ, P3
   SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098
   SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825
   Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400
   Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   Stevens HE, 2005, HEARING RES, V205, P21, DOI 10.1016/j.heares.2005.02.008
   Stevens HE, 2002, HEARING RES, V173, P119, DOI 10.1016/S0378-5955(02)00608-1
   STEVENS HE, 1999, HEARING RES, V13, P47
   Stevens K.N., 1998, ACOUSTIC PHONETICS
   TARTTER VC, 1989, J ACOUST SOC AM, V86, P1679
   VANTASSELL DJ, 1992, J ACOUST SOC AM, V92, P1247, DOI 10.1121/1.403920
   VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251
   VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8
   Wilson BS, 1997, BRIT J AUDIOL, V31, P205
   Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405
   YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532
NR 36
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2006
VL 213
IS 1-2
BP 130
EP 144
DI 10.1016/j.heares.2006.01.011
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 028QP
UT WOS:000236503400015
PM 16497455
ER

PT J
AU Ma, WLD
   Hidaka, H
   May, BJ
AF Ma, WLD
   Hidaka, H
   May, BJ
TI Spontaneous activity in the inferior colliculus of CBA/J mice after
   manipulations that induce tinnitus
SO HEARING RESEARCH
LA English
DT Article
DE sound exposure; salicylate; hyperactivity; spontaneous activity;
   auditory nerve; dorsal cochlear nucleus; auditory cortex
ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; PRIMARY
   AUDITORY-CORTEX; INDUCED HEARING-LOSS; PURE-TONE TRAUMA; C-FOS; INTENSE
   SOUND; ANIMAL-MODEL; BEHAVIORAL PARADIGM; RESPONSE PROPERTIES
AB Several physiological studies have linked experimentally induced tinnitus to increases in the spontaneous activity of auditory neurons, These results have led to the proposal of hyperactivity models of tinnitus in which elevated neural activity in the absence of auditory stimulation is perceived as phantom sound. Such models are appealing in their simplicity but remain controversial because a generalized elevation of spontaneous rates may not be observed after treatments that induce tinnitus in humans and experimental animals. Our study addressed these issues by characterizing the effects of common methods of tinnitus induction on spontaneous activity in the central nucleus of the inferior colliculus (ICC). The ICC is an interesting structure in tinnitus research because its diverse inputs include putative generator sites in the dorsal cochlear nucleus, as well as brainstem sources that appear to remain normal after tinnitus induction. Groups of CBA/J mice were subjected to one of three induction methods: bilateral or unilateral sound exposure, and acute salicylate intoxication. Relative to normal baselines, bilaterally exposed mice showed increases in the spontaneous rates of neurons with tuning near the exposure frequency. When the sample was separated into physiologically defined response classes, exposure effects were strongest among neurons with broad excitatory bandwidths. By contrast, salicylate decreased the spontaneous rates of low-frequency neurons with transient sound-evoked activity. Our results suggest that the disordered processes of hearing that give rise to tinnitus do not involve a pervasive elevation of spontaneous activity or a single mode of induction. (c) 2005 Elsevier B.V. All rights reserved.
C1 Johns Hopkins Univ, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA.
RP May, BJ (reprint author), Johns Hopkins Univ, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave, Baltimore, MD 21205 USA.
EM bmay@jhu.edu
CR Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1
   Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8
   Bauer CA, 2003, OTOLARYNG CLIN N AM, V36, P267, DOI 10.1016/S0030-6665(02)00171-8
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013
   Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113
   Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5
   Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001
   DOWBEN RM, 1953, SCIENCE, V118, P22, DOI 10.1126/science.118.3053.22
   Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2
   Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786
   EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H
   Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454
   Evans E F, 1981, Ciba Found Symp, V85, P108
   GRAHAM JDP, 1948, Q J MED, V17, P153
   Guitton MJ, 2003, J NEUROSCI, V23, P3944
   HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213
   Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
   IMIG TJ, 2005, ABS ASS RES OTOLARYN, V28, P959
   JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004
   JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391
   JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202
   JASTREBOFF PJ, 1994, AM J OTOL, V15, P19
   JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280
   Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
   Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
   Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5
   Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
   LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
   Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X
   Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005
   MARTIN WL, 1995, P 5 INT TINN SEM AM, P127
   May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1
   MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165
   Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X
   Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9
   Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003
   Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6
   Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6
   PROSEN CA, 2005, ABS ASS RES OTOLARYN, V28, P410
   Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152
   Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3
   SALVI RJ, 1978, EXP BRAIN RES, V32, P301
   Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1
   SOKAL RR, 1909, BIOMETRY
   STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E
   Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004
   WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029
   Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2
   Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
NR 56
TC 65
Z9 67
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 9
EP 21
DI 10.1016/j.heares.2005.10.003
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000002
PM 16307852
ER

PT J
AU Trune, DR
   Kempton, JB
   Gross, ND
AF Trune, DR
   Kempton, JB
   Gross, ND
TI Mineralocorticoid receptor mediates glucocorticoid treatment effects in
   the autoimmune mouse ear
SO HEARING RESEARCH
LA English
DT Article
DE autoimmune hearing loss; spironolactone; prednisolone; aldosterone;
   mineralocorticoid; MRL/MpJ-Fas(lpr) autoimmune mice
ID SENSORINEURAL HEARING-LOSS; MAMMALIAN INNER-EAR; STRIA VASCULARIS;
   ALDOSTERONE ANTAGONISTS; COCHLEAR FUNCTION; STEROID TREATMENT; NA+
   CHANNELS; RAT COCHLEA; MICE; SPIRONOLACTONE
AB The standard treatment for many hearing disorders is glucocorticoid therapy, although the cochlear mechanisms involved in steroid-responsive hearing loss are poorly understood. Cochlear dysfunction in autoimmune mice has recently been shown to be controlled with the mineralocorticoid aldosterone as effectively as with the glucocorticoid prednisolone. Because aldosterone regulates sodium, potassium, and other electrolyte homeostasis, this implied the restoration of hearing with the mineralocorticoid was due to its impact on cochlear ion transport, particularly in the stria vascularis. This also suggested glucocorticoids may be controlling hearing recovery in part through their binding to the mineralocorticoid receptor in addition to their glucocorticoid receptor-mediated anti-inflammatory and immunosuppressive functions. Therefore, the aim of the present study was to better delineate the role of the mineralocorticoid receptor in steroid control of hearing in the autoimmune mouse. Spironolactone, a mineralocorticoid receptor antagonist, was administered to MRL/MpJ-Fas(lpr) autoimmune mice in combination with either aldosterone or prednisolone to compare their hearing and systemic disease with mice that received either steroid alone. ABR thresholds showed either aldosterone or prednisolone alone preserved hearing in the mice, but spironolactone prevented both steroids from maintaining normal cochlear function. This suggested both steroids are preserving hearing through the mineralocorticoid receptor within the ear to regulate endolymph homeostasis. The spironolactone treatment did not block normal glucocorticoid receptor-mediated immune-suppression functions because mice receiving prednisolone, either with or without spironolactone, maintained normal body weights, hematocrits, and serum immune complexes. Thus, reducing systemic autoimmune disease was not sufficient to control hearing if mineralocorticoid receptor-mediated functions were blocked. It was concluded the inner ear mineralocorticoid receptor is a significant target of glucocorticoids and a factor that should be considered in therapeutic treatments for steroid-responsive hearing loss. (c) 2005 Elsevier B.V. All rights reserved.
C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA.
RP Trune, DR (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Mail Code NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM truned@ohsu.edu
CR Abdallah JG, 2001, J AM SOC NEPHROL, V12, P1335
   Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253
   ALNEMRI ES, 1991, J BIOL CHEM, V266, P18072
   ARRIZA JL, 1987, SCIENCE, V237, P268, DOI 10.1126/science.3037703
   BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L
   BENOS DJ, 1995, J MEMBRANE BIOL, V143, P1
   CLAIRE M, 1993, J MED CHEM, V36, P2404, DOI 10.1021/jm00068a018
   CLORE JN, 1988, J CLIN ENDOCR METAB, V67, P824
   COUETTE B, 1992, ENDOCRINOLOGY, V130, P430, DOI 10.1210/en.130.1.430
   Falkenstein E, 2000, KIDNEY INT, V57, P1390, DOI 10.1046/j.1523-1755.2000.00980.x
   Funder JW, 1997, ANNU REV MED, V48, P231
   FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X
   Garty H, 1997, PHYSIOL REV, V77, P359
   GRANDIS JR, 1993, AM J OTOL, V14, P183
   Gross ND, 2002, LARYNGOSCOPE, V112, P298, DOI 10.1097/00005537-200202000-00018
   HAUSLER A, 1992, J STEROID BIOCHEM, V41, P785, DOI 10.1016/0960-0760(92)90425-I
   HORISBERGER JD, 1992, HYPERTENSION, V19, P221
   HUNNEYBALL IM, 1986, AGENTS ACTIONS, V18, P384, DOI 10.1007/BF01965002
   KAYLIE DM, 2002, ASS RES OT MIDW MTG
   KLEYMAN TR, 1989, J BIOL CHEM, V264, P11995
   Lesouhaitier O, 2001, ENDOCRINOLOGY, V142, P4320, DOI 10.1210/en.142.10.4320
   Lin DW, 1997, OTOLARYNG HEAD NECK, V117, P530, DOI 10.1016/S0194-5998(97)70026-3
   LUZZANI F, 1984, BIOCHEM PHARMACOL, V33, P2277, DOI 10.1016/0006-2952(84)90667-1
   MCINNES GT, 1982, BRIT J CLIN PHARMACO, V13, P331
   Mitchell CR, 1999, AUDIOL NEURO-OTOL, V4, P80, DOI 10.1159/000013824
   MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664
   MUJAIS SK, 1985, J CLIN INVEST, V76, P170, DOI 10.1172/JCI111942
   MUNCK A, 1990, AM REV RESPIR DIS, V141, P2
   Murphy E. D, 1981, IMMUNOLOGIC DEFECTS, VI, P143
   Nadel D M, 1996, Ear Nose Throat J, V75, P502
   PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D
   PITOVSKI DZ, 1993, HEARING RES, V69, P10, DOI 10.1016/0378-5955(93)90088-I
   RAREY KE, 1991, LARYNGOSCOPE, V101, P1081
   Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6
   RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785
   RUPPRECHT R, 1993, EUR J PHARM-MOLEC PH, V247, P145, DOI 10.1016/0922-4106(93)90072-H
   Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2
   Schimmer BP, 1996, GOODMAN GILMANS PHAR, V9th, P1459
   Smith PJ, 2001, J IMMUNOL, V167, P2502
   Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0
   Ten Cate Wouter-Jan F., 1994, American Journal of Physiology, V266, pE269
   TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
   Trune DR, 1997, OTOLARYNG HEAD NECK, V117, P504, DOI 10.1016/S0194-5998(97)70022-6
   Trune DR, 1999, HEARING RES, V137, P160, DOI 10.1016/S0378-5955(99)00147-1
   Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4
   Trune DR, 1999, HEARING RES, V137, P167, DOI 10.1016/S0378-5955(99)00148-3
   Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8
   Trune DR, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P505
   TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7
   VANDERKRAAN PM, 1993, ANN RHEUM DIS, V52, P734, DOI 10.1136/ard.52.10.734
   WAMBACH G, 1983, BIOCHEM PHARMACOL, V32, P1479, DOI 10.1016/0006-2952(83)90469-0
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0
   Weber PC, 2001, LARYNGOSCOPE, V111, P1156, DOI 10.1097/00005537-200107000-00006
   WILSON WR, 1980, ARCH OTOLARYNGOL, V106, P772
   Yao XF, 1996, ACTA OTO-LARYNGOL, V116, P493, DOI 10.3109/00016489609137879
   ZHOU NN, 1994, INT J IMMUNOPHARMACO, V16, P845
   Zhou ZH, 2001, AM J PHYSIOL-CELL PH, V281, pC1118
NR 58
TC 33
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 22
EP 32
DI 10.1016/j.heares.2005.10.006
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000003
PM 16307853
ER

PT J
AU Manley, GA
AF Manley, GA
TI Spontaneous otoacoustic emissions from free-standing stereovillar
   bundles of ten species of lizard with small papillae
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emission; lizard; suppression tuning
ID AUDITORY HAIR-CELLS; NERVE FIBER ACTIVITY; FROG RANA-ESCULENTA; BOBTAIL
   LIZARD; TOKAY GECKO; FREQUENCY FLUCTUATIONS; TEMPERATURE-DEPENDENCE;
   VARANUS-BENGALENSIS; ACOUSTIC EMISSIONS; MAMMALIAN COCHLEA
AB Spontaneous otoacoustic emissions (SOAE) were measured in 10 lizard species from the families Iguanidae, Agamidae and Anguidae. The typical feature of these papillae is that the hair cells in the higher-frequency papillar regions that produce SOAE are not covered by a tectorial structure. The number of hair cells in the species used here was between 58 and 292 per ear. SOAE could be measured from all species, but some of their characteristics varied with papillar anatomy. Thus very small papillae produced fewer and smaller SOAE than larger papillae. (c) 2005 Elsevier B.V. All rights reserved.
C1 Tech Univ Munich, Lehrstuhl Zool, D-85747 Garching, Germany.
RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Lichtenbergstr 4, D-85747 Garching, Germany.
EM geoffrey.manley@wzw.tum.de
CR AUTHIER S, 1995, HEARING RES, V82, P1
   Baker R. J., 1989, COCHLEAR MECHANISMS, P349
   BIALEK W, 1984, PHYS LETT A, V104, P173, DOI 10.1016/0375-9601(84)90371-2
   BRASS D, 1993, J ACOUST SOC AM, V93, P1502, DOI 10.1121/1.406808
   Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385
   DALLOS P, 1992, J NEUROSCI, V12, P4575
   DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0
   EATOCK RA, 1981, J COMP PHYSIOL, V142, P219
   EATOCK RA, 1981, J COMP PHYSIOL, V142, P203
   GALLO L, 1997, THESIS TU MUNCHEN
   GENOSSA TJ, 1989, J ACOUST SOC AM, V85, P35
   He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070
   HOLLEY M, 1991, BIOESSAYS, V13, P115, DOI 10.1002/bies.950130304
   HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241
   Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
   Hudspeth AJ, 1997, CURR OPIN NEUROBIOL, V7, P480, DOI 10.1016/S0959-4388(97)80026-8
   IWASA KH, 1996, COMM THEOR BIOL, V4, P93
   Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367
   Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089
   Koppl C, 1995, ADV HEARING RES, P207
   KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1
   KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U
   Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311
   Koppl C, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P185, DOI 10.1142/9789812704931_0025
   LIND O, 1992, ACTA OTO-LARYNGOL, P79
   Long GR, 1996, HEARING RES, V98, P22, DOI 10.1016/0378-5955(96)00057-3
   LONG GR, 1991, J ACOUST SOC AM, V89, P1200
   Manley G. A., 1990, PERIPHERAL HEARING M
   Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0
   MANLEY GA, 1994, HEARING RES, V72, P171, DOI 10.1016/0378-5955(94)90216-X
   Manley GA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P480, DOI 10.1142/9789812704931_0066
   Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858
   MANLEY GA, 2006, IN PRESS ACTIVE PROC
   Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8
   MANLEY GA, 1977, J COMP PHYSIOL, V118, P249
   Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115
   Manley GA, 2004, J NEUROPHYSIOL, V92, P2685, DOI 10.1152/jn.00267.2004
   Manley GA, 2001, J NEUROPHYSIOL, V86, P541
   Manley GA, 1997, DIVERSITY AUDITORY M, P32
   Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
   MANLEY GA, 2000, RECENT DEV AUDITORY, P499, DOI 10.1142/9789812793980_0070
   MANLEY GA, 2004, EVOLUTION VERTEBRATE, P200
   MANLEY GA, 1976, BRAIN RES, V102, P329, DOI 10.1016/0006-8993(76)90887-8
   Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680
   MARTIN M, 1988, PSYCHOLOGIST, V1, P33
   Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306
   MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102
   MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463
   MULROY MJ, 1987, HEARING RES, V25, P11, DOI 10.1016/0378-5955(87)90075-X
   OBRIEN AJ, 1994, BRIT J AUDIOL, V28, P281, DOI 10.3109/03005369409086578
   OHYAMA K, 1992, ASS RES OT ABSTR, V15, P150
   OHYAMA K, 1991, HEARING RES, V56, P111, DOI 10.1016/0378-5955(91)90160-B
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   Ricci AJ, 2000, J NEUROSCI, V20, P7131
   SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
   SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906
   TALMADGE CL, 1991, J ACOUST SOC AM, V89, P2391, DOI 10.1121/1.400958
   Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1
   TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5
   VANDIJK P, 1994, J ACOUST SOC AM, V96, P163, DOI 10.1121/1.411438
   VANDIJK P, 1987, J ACOUST SOC AM, V88, P17797
   vanDijk P, 1996, HEARING RES, V101, P102
   VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2
   VANDIJK P, 1990, J ACOUST SOC AM, V88, P1779, DOI 10.1121/1.400199
   vanDijk P, 1996, J ACOUST SOC AM, V100, P2220, DOI 10.1121/1.417931
   WEVER EG, 1978, REPTILE EAR
   WILSON JP, 1990, ADV AUDIOL, V7, P47
   WILSON JP, 1986, AUDITORY FREQUENCY S, P39
   WIT HP, 1985, HEARING RES, V18, P197, DOI 10.1016/0378-5955(85)90012-7
   WIT HP, 1990, LECT NOTES BIOMATH, V87, P259
   YATES GK, 1992, TRENDS NEUROSCI, V15, P57, DOI 10.1016/0166-2236(92)90027-6
   ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763
NR 72
TC 18
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 33
EP 47
DI 10.1016/j.heares.2005.10.007
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000004
PM 16307854
ER

PT J
AU Furukawa, S
   Maki, K
AF Furukawa, S
   Maki, K
TI Sensitivity of the auditory middle latency response of the guinea pig to
   interaural level and time differences
SO HEARING RESEARCH
LA English
DT Article
DE middle latency response; interaural time difference; interaural level
   difference; time-intensity trading; guinea pig
ID BINAURAL INTERACTION; SOUND LOCALIZATION; CORTEX; LATERALIZATION;
   COMPONENTS; ANESTHESIA; INTENSITY
AB This study examines the extent to which the auditory middle latency response (MLR) of the guinea pig is sensitive to sound localization cues such as interaural level and time differences (ILD and ITD, respectively). The MLR was recorded with an epidural electrode placed over the auditory cortex of an anesthetized guinea pig. Click stimuli were presented monaurally or binaurally with various ILDs and ITDs. The MLR was much larger for contralateral stimulation than for ipsilateral stimulation, and its amplitude was intermediate for diotic stimulation. The MLR amplitude was sensitive to both ILD and ITD: it decreased as the ipsilateral stimulus increased in level or advanced in time relative to the contralateral stimulus. The steep slope of the amplitude-versus-ITD function fell within an ITD range of +/- 330 mu s, namely the guinea pig's physiological ITD range. The response reduction that resulted from increasing the relative level of the ipsilateral level could be cancelled out by advancing the contralateral onset time relative to the ipsilateral onset time. This parallels the "time-intensity trading" in sound lateralization exhibited in human psychophysics. The results imply that the binaural interaction in the guinea pig MLR reflects aspects of neural processes that are involved in sound localization. (c) 2005 Elsevier B.V. All rights reserved.
C1 NTT Corp, Human & Informat Sci Lab, NTT Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan.
RP Furukawa, S (reprint author), NTT Corp, Human & Informat Sci Lab, NTT Commun Sci Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan.
EM shig@avg.brl.ntt.co.jp; maki@avg.brl.ntt.co.jp
CR ABEL SM, 1983, J ACOUST SOC AM, V73, P955, DOI 10.1121/1.389020
   Clarey J.C., 1992, MAMMALIAN AUDITORY P, P232
   CROWTHER JA, 1990, HEARING RES, V43, P115, DOI 10.1016/0378-5955(90)90220-J
   DEATHERAGE BH, 1959, J ACOUST SOC AM, V31, P486, DOI 10.1121/1.1907740
   Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149
   Goksoy C, 2000, EXP BRAIN RES, V130, P410, DOI 10.1007/s002219900278
   Goksoy C, 2000, TURK J MED SCI, V30, P433
   Hosokawa Y, 1999, HEARING RES, V134, P123, DOI 10.1016/S0378-5955(99)00073-8
   Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153
   KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R
   Kraus N, 1992, MAMMALIAN AUDITORY P, P335
   LITTMAN T, 1992, ELECTROEN CLIN NEURO, V84, P362, DOI 10.1016/0168-5597(92)90089-T
   MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2
   MCGEE TJ, 1983, AM J OTOLARYNG, V4, P116, DOI 10.1016/S0196-0709(83)80013-1
   MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031
   NORDBY K, 1982, J ACOUST SOC AM, V71, P689, DOI 10.1121/1.387545
   OZDAMAR O, 1986, ELECTROEN CLIN NEURO, V63, P476, DOI 10.1016/0013-4694(86)90129-X
   PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X
   Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3
   Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003
   TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1959
NR 21
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 48
EP 57
DI 10.1016/j.heares.2005.10.009
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000005
PM 16324809
ER

PT J
AU Boettcher, FA
   Emery, M
AF Boettcher, FA
   Emery, M
TI Auditory evoked-potential correlates of decrement detection
SO HEARING RESEARCH
LA English
DT Article
DE decrement detection; intensity discrimination; auditory brainstem
   response; ABR; auditory evoked potentials; gap detection
ID AGE-RELATED-CHANGES; HEARING-IMPAIRED LISTENERS; SHORT-TERM ADAPTATION;
   MONGOLIAN GERBIL; GAP DETECTION; FREQUENCY; NOISE; DURATION; YOUNG;
   DISCRIMINATION
AB Decrement detection is a commonly used psychophysical technique in which a subject is required to detect partially filled gaps in an ongoing Sound. The paradigm provides information regarding both temporal resolution and intensity discrimination. The purpose of this project was to determine if an evoked-potential paradigm using decrements in an ongoing noise approximates psychophysical data. If so, the evoked-response paradigm would be useful in estimating decrement detection in laboratory animals, where training time for a psychophysical model of decrement detection might prove prohibitive. In this study, Mongolian gerbils aged 3-10 months were used as subjects. The stimulus was a broadband noise (low-pass filtered at 5 or 30 kHz, overall level of 70 dB SPL), interrupted for durations of 232 ms. Within each off period, a second, identically filtered noise at levels of 0-70 dB SPL was presented. In a manner qualitatively similar to previous human and animal psychophysical studies, the ABR threshold decreased as the duration of the decrement was increased. Latency and amplitudes changed as a function of decrement duration when the decrement depth was held constant, but minimal change as a function of decrement depth occurred when the decrement duration was held constant. The results suggest that ABR paradigm for decrement detection is a qualitative alternative to psychophysical techniques, but that amplitude and latency data may not provide more information on temporal and intensity coding than ABR measures of gap detection. (c) 2005 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA.
RP Boettcher, FA (reprint author), Med Univ S Carolina, Dept Otorhinolaryngol Head & Neck Surg, 39 Sabin St,POB 250150, Charleston, SC 29425 USA.
EM fboettcher@usouthal.edu
CR Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7
   BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2
   BOETTCHER FA, 1993, HEARING RES, V71, P146, DOI 10.1016/0378-5955(93)90030-5
   BURKARD R, 1993, J ACOUST SOC AM, V94, P2441, DOI 10.1121/1.407465
   BUUNEN TJF, 1979, J ACOUST SOC AM, V65, P534, DOI 10.1121/1.382312
   EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633
   FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662
   FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689
   GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276
   GRAF CJ, 1992, J ACOUST SOC AM, V91, P1062, DOI 10.1121/1.402632
   He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109
   He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127
   IRWIN RJ, 1981, AUDIOLOGY, V20, P234
   IRWIN RJ, 1982, J ACOUST SOC AM, V71, P967, DOI 10.1121/1.387578
   JESTEADT W, 1977, J ACOUST SOC AM, V61, P167
   MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7
   Moore BCJ, 1997, J ACOUST SOC AM, V102, P2954, DOI 10.1121/1.420350
   PETERS RW, 1995, J ACOUST SOC AM, V97, P3791, DOI 10.1121/1.412394
   PLACK CJ, 1991, J ACOUST SOC AM, V90, P3069, DOI 10.1121/1.401781
   RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836
   RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J
   RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961
   SALVI RJ, 1986, BASIC APPL ASPECTS N, P179
   SAUNDERS SS, 1991, J ACOUST SOC AM, V82, P1604
   SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098
   Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205
   Snell KB, 1999, J ACOUST SOC AM, V106, P3571, DOI 10.1121/1.428210
   VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531
NR 28
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 58
EP 64
DI 10.1016/j.heares.2005.10.011
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000006
PM 16403610
ER

PT J
AU Killan, EC
   Kapadia, S
AF Killan, EC
   Kapadia, S
TI Simultaneous suppression of tone burst-evoked otoacoustic emissions -
   Effect of level and presentation paradigm
SO HEARING RESEARCH
LA English
DT Article
DE transient-evoked otoacoustic emissions; suppression; tone bursts
ID STIMULUS-FREQUENCY; COCHLEAR MECHANICS; 2-TONE SUPPRESSION; ACOUSTIC
   EMISSIONS; NORMAL-HEARING; CLICK; DISTORTION; MODEL; EARS; ORIGIN
AB There is conflict in the literature over whether individual frequency components of a transient-evoked otoacoustic emission (TEOAE) are generated within relatively independent "channels" along the basilar membrane (BM), or whether each component may be generated by widespread areas of the BM. Two previous studies on TEOAE suppression are consistent with generation within largely independent channels, but with a degree of interaction between nearby channels. However, both these studies reported significant suppression only at high stimulus levels, at which the "nonlinear" presentation paradigm was used. The present study clarifies the separate influences of stimulus level and presentation paradigm on this type of suppression. TEOAEs were recorded using stimulus tone bursts at 1, 2 and 3 kHz and a complex stimulus consisting of a digital addition of the three tone bursts, over a range of stimulus levels and both "linear" and "nonlinear" presentation paradigms. Responses to the individual tone bursts were combined offline and compared with responses to the complex stimuli. Results clearly demonstrate that TEOAE suppression under these conditions is dependent upon stimulus level, and not upon presentation paradigm. It is further argued that the data support the "local" rather than "widespread" model of TEOAE generation, subject to nonlinear interactions between nearby generation channels. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Leeds, Sch Healthcare, Leeds LS2 9UT, W Yorkshire, England.
   Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
RP Killan, EC (reprint author), Univ Leeds, Sch Healthcare, Leeds LS2 9UT, W Yorkshire, England.
EM e.killan@leeds.ac.uk
CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564
   AVAN P, 1995, J ACOUST SOC AM, V97, P1
   BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453
   Carvalho S, 2003, HEARING RES, V175, P215, DOI 10.1016/S0378-5955(02)00745-1
   Cooper NP, 1996, AUDIT NEUROSCI, V3, P123
   Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795
   Elberling C, 1985, Acta Otolaryngol Suppl, V421, P77
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KEMP DT, 1990, EAR HEARING, V11, P93
   Kolston PJ, 2000, HEARING RES, V145, P25, DOI 10.1016/S0378-5955(00)00067-8
   Konrad-Martin D, 2003, J ACOUST SOC AM, V114, P2021, DOI 10.1121/1.1596170
   Konrad-Martin D, 2005, J ACOUST SOC AM, V117, P3799, DOI 10.1121/1.1904403
   NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674
   NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750
   Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794
   PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8
   Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83
   SUTTON GJ, 1985, ACUSTICA, V58, P57
   TAVARTKILADZE GA, 1997, OTOACOUSTIC EMISSION, P110
   Ueda H, 1999, J ACOUST SOC AM, V105, P306, DOI 10.1121/1.424551
   Withnell RH, 2005, J ACOUST SOC AM, V117, P281, DOI 10.1121/1.1798352
   Withnell R.H., 1998, J ACOUST SOC AM, V105, P782
   XU L, 1994, HEARING RES, V74, P173
   Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2
   Yoshikawa H, 2000, HEARING RES, V148, P95, DOI 10.1016/S0378-5955(00)00144-1
NR 25
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 65
EP 73
DI 10.1016/j.heares.2005.10.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000007
PM 16324810
ER

PT J
AU Paasche, G
   Bogel, L
   Leinung, M
   Lenarz, T
   Stover, T
AF Paasche, G
   Bogel, L
   Leinung, M
   Lenarz, T
   Stover, T
TI Substance distribution in a cochlea model using different pump rates for
   cochlear implant drug delivery electrode prototypes
SO HEARING RESEARCH
LA English
DT Article
DE drug delivery; cochlea implant electrode array; multiple outlets;
   substance distribution
ID HAIR CELL LOSS; ADENOVIRUS-MEDIATED OVEREXPRESSION; NEURONS IN-VITRO;
   INNER-EAR; NEUROTROPHIC FACTOR; TECHNICAL REPORT; HEARING-LOSS;
   OUTGROWTH; INFUSION; SURVIVAL
AB Several studies using animals have shown the protective effects of neurotrophic factors (NF) on spiral ganglion cells (SGC). This is of particular importance since the number of SGCs is considered to be among the factors defining the efficacy of cochlear implants. A device for local inner ear treatment is therefore of great interest. As described previously, we modified a Contour (TM) cochlear implant electrode, to examine the inbuilt canal to be used for fluid release [Paasche, G., Gibson, P., Averbeck, T., Becker, H., Lenarz, T., Stover, T., 2003. Technical report: modification of a cochlear implant electrode for drug delivery to the inner ear. Otol. Neurotol. 24, 222-227]. In the present study, three different electrode prototypes with openings of the delivery channel at various locations along the electrode array were examined to determine distribution of dye in a cochlea model over time. We compared dye delivery with: (a) release of the dye at the tip, (b) release of the dye at the tip and the side of the electrode, and (c) release of the dye only at the side of the electrode (6 mm from the tip). A mechanical pump was used to drive the system at pump rates of 100, 10, and 1 mu l/h. Dye concentration changes along the length of the whole cochlea were investigated. Mean values for all experimental conditions show that the distribution along the array is fastest with two outlets whereas the distribution via a single outlet at the side of the electrode array is not considered to be sufficient. The established experimental setup provides the possibility of investigating prototypes of a fluid based drug delivery system for the treatment of inner ear pathologies in combination with electrical stimulation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Hannover Med Sch, Dept Otolaryngol, D-30625 Hannover, Germany.
RP Paasche, G (reprint author), Hannover Med Sch, Dept Otolaryngol, OE 6500,Carl Neuberg Str 1, D-30625 Hannover, Germany.
EM Paasche.Gerrit@MH-Hannover.de
CR BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T
   Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E
   DILLIER N, 1995, AUDIOLOGY, V34, P145
   Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019
   Hakuba N, 2003, GENE THER, V10, P426, DOI 10.1038/sj.gt.3301917
   IGARASHI M, 1986, ACTA OTO-LARYNGOL, V101, P161, DOI 10.3109/00016488609132823
   Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
   Lenarz T, 2000, ADV OTO-RHINO-LARYNG, V57, P347
   Malgrange B, 1996, NEUROREPORT, V7, P2495, DOI 10.1097/00001756-199611040-00019
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   OHYAMA K, 1988, HEARING RES, V35, P119, DOI 10.1016/0378-5955(88)90111-6
   Paasche G, 2003, OTOL NEUROTOL, V24, P222, DOI 10.1097/00129492-200303000-00016
   PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
   Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8
   Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4
   Sousa JE, 2003, CIRCULATION, V107, P2274, DOI 10.1161/01.CIR.0000069330.41022.90
   Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76
   Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108
   Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180
   Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021
   Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1
   Vandali AE, 2001, J ACOUST SOC AM, V109, P2049, DOI 10.1121/1.1358300
   Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
   Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562
NR 24
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 74
EP 82
DI 10.1016/j.heares.2005.10.013
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000008
PM 16337758
ER

PT J
AU Stuart, A
   Jones, SM
   Walker, LJ
AF Stuart, A
   Jones, SM
   Walker, LJ
TI Insights into elevated distortion product otoacoustic emissions in
   sickle cell disease: Comparisons of hydroxyurea-treated and non-treated
   young children
SO HEARING RESEARCH
LA English
DT Article
DE distortion product otoacoustic emissions; sickle cell disease;
   hydroxyurea
ID SENSORINEURAL HEARING-LOSS; INNER-EAR; CONTRALATERAL SUPPRESSION;
   COCHLEAR ISCHEMIA; AUDITORY FUNCTION; ADHESION MOLECULE-1; IMPAIRED
   SUBJECTS; ANEMIA PATIENTS; HUMAN LISTENERS; BLOOD-CELLS
AB Distortion product otoacoustic emissions (DPOAEs) were examined in 15 normal-hearing African-American children between the ages of 6 and 14 years with homozygous sickle cell disease (SCD), who were on a regimen of hydroxyurea (HDU), a drug that reduces inflammatory processes and symptoms of SCD; a matched group of 15 African-American children with homozygous SCD not on HDU; and 15 African-American children with normal hemoglobin. DPOAEs were evoked by 13 primary tone pairs with f(2) frequencies ranging from 1000 to 4500 Hz. Increased DPOAE amplitudes, believed to be a precursor of eventual hearing loss, were evident in children with SCID who were not receiving HDU. Those taking HDU had DPOAE amplitudes similar to normal controls. These findings suggest that HDU, in addition to reducing symptoms of SCD, may play a role in inhibiting or preventing cochlear pathology and hearing loss in individuals with SCID. (c) 2005 Elsevier B.V. All rights reserved.
C1 E Carolina Univ, Sch Allied Hlth Sci, Dept Commun Sci & Disorders, Greenville, NC 27858 USA.
   Missouri State Univ, Dept Commun Sci & Disorders, Springfield, MO USA.
RP Stuart, A (reprint author), E Carolina Univ, Sch Allied Hlth Sci, Dept Commun Sci & Disorders, Belk Annex, Greenville, NC 27858 USA.
EM stuarta@mail.ecu.edu
CR ADAMS PF, 1992, VITAL HLTH STAT, V10, P184
   AJULO SO, 1993, J LARYNGOL OTOL, V107, P790
   *ANSI, 1999, PERM AMB NOIS LEV AU
   *ANSI, 1996, SPEC AUD
   ASHA, 1997, GUID AUD SCREEN
   ASHOOR A, 1985, TROP GEOGR MED, V37, P314
   ATSINA KK, 1988, TROP GEOGR MED, V40, P205
   Belcher JD, 2003, BLOOD, V101, P3953, DOI 10.1182/blood-2002-10-3313
   Benkerrou M, 2002, BLOOD, V99, P2297, DOI 10.1182/blood.V99.7.2297
   BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X
   BERLIN CI, 1993, HEARING RES, V65, P40, DOI 10.1016/0378-5955(93)90199-B
   Brown MD, 2001, PEDIATR PATHOL MOL M, V20, P47
   Brun M, 2003, PHARMACOGENOMICS J, V3, P215, DOI 10.1038/sj.tpj.6500176
   Cevette M J, 2000, J Am Acad Audiol, V11, P323
   Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7
   Chies JAB, 2001, MED HYPOTHESES, V57, P46, DOI 10.1054/mehy.2000.1310
   Conran N, 2004, AM J HEMATOL, V76, P343, DOI 10.1002/ajh.20129
   CRAWFORD MR, 1991, EAR HEARING, V12, P349, DOI 10.1097/00003446-199110000-00007
   Downs CR, 2000, J COMMUN DISORD, V33, P111, DOI 10.1016/S0021-9924(99)00027-1
   Drexl M, 2004, HEARING RES, V194, P135, DOI 10.1016/j.heares.2004.04.006
   Elion JE, 2004, HEMATOL J S3, V5, P195
   Forman-Franco B., 1982, OTOLARYNGOLOGY HEAD, V89, P850
   FRIEDMAN EM, 1980, ANN OTO RHINOL LARYN, V89, P342
   GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732
   Gentry B, 1997, PERCEPT MOTOR SKILL, V84, P434
   Gladwin MT, 2002, BRIT J HAEMATOL, V116, P436, DOI 10.1046/j.1365-2141.2002.03274.x
   GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348
   GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691
   Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003
   Halsey C, 2003, BRIT J HAEMATOL, V120, P177, DOI 10.1046/j.1365-2141.2003.03849.x
   HAUPT H, 1993, EUR ARCH OTO-RHINO-L, V250, P396
   Hillery CA, 2000, BRIT J HAEMATOL, V109, P322, DOI 10.1046/j.1365-2141.2000.02040.x
   Huang ZW, 2005, J NEUROPHYSIOL, V93, P2053, DOI 10.1152/jn.00959.2004
   Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736
   Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009
   Kakigi A, 1998, AUDIOL NEURO-OTOL, V3, P361, DOI 10.1159/000013806
   Kaul DK, 2000, J CLIN INVEST, V106, P411, DOI 10.1172/JCI9225
   Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223
   KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
   Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
   KIMBERLEY BP, 1994, EAR HEARING, V15, P199, DOI 10.1097/00003446-199406000-00001
   Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479
   KOUSPAROU CA, 2000, J INT SOC TUMOUR TAR, V1, P55
   KUJAWA SG, 1994, HEARING RES, V74, P122, DOI 10.1016/0378-5955(94)90181-3
   LONSBURYMARTIN BL, 1993, EAR HEARING, V14, P11, DOI 10.1097/00003446-199302000-00003
   Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P15
   MacDonald CB, 1999, INT J PEDIATR OTORHI, V47, P23, DOI 10.1016/S0165-5876(98)90152-5
   Mom T, 1999, HEARING RES, V133, P40, DOI 10.1016/S0378-5955(99)00056-8
   MORGENST.KM, 1969, LARYNGOSCOPE, V79, P2172, DOI 10.1288/00005537-196912000-00013
   NICOL KMM, 1992, HEARING RES, V61, P117, DOI 10.1016/0378-5955(92)90042-L
   ODETOYINBO O, 1987, ANN OTO RHINOL LARYN, V96, P258
   Okpala I, 2002, EUR J HAEMATOL, V69, P135, DOI 10.1034/j.1600-0609.2002.02775.x
   Onakoya P A, 2002, Afr J Med Med Sci, V31, P21
   O'Rourke C, 2002, INT J AUDIOL, V41, P162, DOI 10.3109/14992020209077180
   OWENS JJ, 1993, AM J OTOL, V14, P34
   Piltcher O, 2000, AM J OTOLARYNG, V21, P75, DOI 10.1016/S0196-0709(00)85001-2
   Prieve BA, 1997, J ACOUST SOC AM, V102, P2871, DOI 10.1121/1.420342
   Raveh E, 1998, J OTOLARYNGOL, V27, P354
   RYAN AF, 2002, ACTA OTO-LARYNGOL, V548, P38
   Saleh AW, 1998, ACTA HAEMATOL-BASEL, V100, P26, DOI 10.1159/000040859
   Saleh AW, 1999, ACTA HAEMATOL-BASEL, V102, P31, DOI 10.1159/000040964
   Scheibe F, 1997, EUR ARCH OTO-RHINO-L, V254, P91, DOI 10.1007/BF01526187
   Schweinfurth JM, 1997, LARYNGOSCOPE, V107, P1457, DOI 10.1097/00005537-199711000-00007
   Schweinfurth JM, 2000, AM J OTOL, V21, P636
   Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83
   Slepecky N. B., 1996, COCHLEA, P44
   Stuart MJ, 2004, LANCET, V364, P1343, DOI 10.1016/S0140-6736(04)17192-4
   Styles LA, 1997, BLOOD, V89, P2554
   SUZUKI M, 1995, ANN OTO RHINOL LARYN, V104, P69
   TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V
   Telischi FF, 1999, LARYNGOSCOPE, V109, P186, DOI 10.1097/00005537-199902000-00003
   TODD GB, 1973, ACTA OTO-LARYNGOL, V76, P268, DOI 10.3109/00016487309121507
   Walker Letitia J, 2004, Am J Audiol, V13, P164, DOI 10.1044/1059-0889(2004/021)
   WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382
   Zhang C, 2000, ACTA OTO-LARYNGOL, V120, P607, DOI 10.1080/000164800750000414
   ZOROWKA P, 1993, INT J PEDIATR OTORHI, V27, P245, DOI 10.1016/0165-5876(93)90230-Z
NR 76
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 83
EP 89
DI 10.1016/j.heares.2005.10.014
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000009
PM 16364581
ER

PT J
AU Groh, D
   Pelanova, J
   Jilek, M
   Popelar, J
   Kabelka, Z
   Syka, J
AF Groh, D
   Pelanova, J
   Jilek, M
   Popelar, J
   Kabelka, Z
   Syka, J
TI Changes in otoacoustic emissions and high-frequency hearing thresholds
   in children and adolescents
SO HEARING RESEARCH
LA English
DT Article
DE children; adolescents; audiograms; otoacoustic emissions
ID DISTORTION-PRODUCT; DEVELOPMENTAL-CHANGES; BASIC CHARACTERISTICS;
   AUDITORY THRESHOLD; INFANTS; AGE; ADULTS; SENSITIVITY; PRESBYCUSIS;
   SYSTEM
AB With the aim of characterizing the loss of high frequency hearing sensitivity in children, hearing thresholds and otoacoustic emissions were measured in a group of 126 normal hearing children and adolescents aged from 6 to 25 years. The subjects were divided into four 5-year age groups. Hearing thresholds over a range of 125 Hz-12.5 kHz were similar in all age groups, the average hearing threshold at 16 kHz was significantly elevated in the oldest age group. The response values of transiently evoked otoacoustic emissions (TEOAEs) significantly declined with age; the decline was negatively correlated with the hearing loss at 16 kHz. Significantly larger TEOAE responses and average distortion-product otoacoustic emission (DPOAE) values at 6.3 kHz were present in the youngest group in comparison with the other three older groups. Spontaneous otoacoustic emissions (SOAEs) were present in 70.8% of the children (in either one or both ears) with the greatest prevalence in the 11-20-year-old subjects. In the 21-25-year-old group, the hearing loss at 16 kHz was significantly smaller in ears with SOAEs than in ears without SOAEs. The results demonstrate that the increase in the high frequency hearing threshold at 16 kHz, which starts at ages over 20 years, is correlated with a decrease in the TEOAE responses at middle frequencies. (c) 2005 Elsevier B.V. All rights reserved.
C1 Acad Sci Czech Republ, Inst Expt Med, Dept Auditory Neurosci, Prague 14220 4, Czech Republic.
   Charles Univ, ENT Dept, Fac Med 2, Prague 15006 5, Czech Republic.
   Univ Hosp Motol, Prague 15006 5, Czech Republic.
RP Syka, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Dept Auditory Neurosci, Videnska 1083, Prague 14220 4, Czech Republic.
EM daniel.groh@lfmotol.cuni.cz; pelanova@biomed.cas.cz;
   jilek@biomed.cas.cz; jpopelar@biomed.cas.cz;
   zdenek.kabelka@lfmotol.cuni.cz; syka@biomed.cas.cz
RI Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014
CR Arnold DJ, 1999, ARCH OTOLARYNGOL, V125, P215
   Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564
   Bertoli S, 1997, EAR HEARING, V18, P286, DOI 10.1097/00003446-199708000-00003
   BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405
   BRIZZEE KR, 1980, NEUROBIOL AGING, V1, P45, DOI 10.1016/0197-4580(80)90023-8
   BROOK L, 2001, SCAND AUDIOL S, V53, P37
   BUREN M, 1992, British Journal of Audiology, V26, P23, DOI 10.3109/03005369209077868
   BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330
   BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438
   COLLET L, 1993, EAR HEARING, V14, P141, DOI 10.1097/00003446-199304000-00009
   COLLET L, 1993, BRAIN DEV-JPN, V15, P249, DOI 10.1016/0387-7604(93)90018-4
   Dorn Patricia A., 1998, Journal of the Acoustical Society of America, V104, P964, DOI 10.1121/1.423339
   el-Bez M, 1994, Ann Otolaryngol Chir Cervicofac, V111, P443
   FAUSTI SA, 1981, J ACOUST SOC AM, V69, P1343, DOI 10.1121/1.385805
   Hoth S, 1996, LARYNGO RHINO OTOL, V75, P709, DOI 10.1055/s-2007-997664
   KARLZON RK, 1994, AM J OTOL, V15, P596
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   Kon K, 2000, BRAIN DEV-JPN, V22, P41, DOI 10.1016/S0387-7604(99)00114-X
   LePage EL, 1998, MED J AUSTRALIA, V169, P588
   LONSBURYMARTIN BL, 1993, EAR HEARING, V14, P11, DOI 10.1097/00003446-199302000-00003
   Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9
   Mazelova J., 2001, NOISE INDUCED HEARIN, P365
   MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M
   MOULIN A, 1991, ACTA OTO-LARYNGOL, V111, P835, DOI 10.3109/00016489109138419
   Murnane Owen D, 2003, J Am Acad Audiol, V14, P525, DOI 10.3766/jaaa.14.9.8
   NORTON SJ, 1990, EAR HEARING, V11, P121, DOI 10.1097/00003446-199004000-00006
   OSTERHAMMEL D, 1979, Scandinavian Audiology, V8, P73, DOI 10.3109/01050397909076304
   Popelar J, 2003, HEARING RES, V186, P75, DOI 10.1016/S0378-5955(03)00329-0
   PRIEVE BA, 1995, EAR HEARING, V16, P521
   Prieve BA, 1997, J ACOUST SOC AM, V102, P2860, DOI 10.1121/1.420341
   PRIEVE B A, 1992, Seminars in Hearing, V13, P37, DOI 10.1055/s-0028-1085140
   Prieve BA, 1997, J ACOUST SOC AM, V102, P2871, DOI 10.1121/1.420342
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   Reuter W, 1997, HNO, V45, P147, DOI 10.1007/s001060050104
   Satoh Yasuo, 1998, Auris Nasus Larynx, V25, P121, DOI 10.1016/S0385-8146(97)10033-5
   SCHECHTER MA, 1986, J ACOUST SOC AM, V79, P767, DOI 10.1121/1.393466
   Schmuziger N, 2005, INT J AUDIOL, V44, P24, DOI 10.1080/14992020400022660
   SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
   SININGER YS, 1998, OTOACOUSTIC EMISSION, P105
   SOUCEK S, 1990, AUDIOMETRIC ELECTROP, P28
   SPEKTOR Z, 1991, LARYNGOSCOPE, V101, P965
   STELMACHOWICZ PG, 1989, J ACOUST SOC AM, V86, P1384, DOI 10.1121/1.398698
   STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351
   STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924
   Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
   TREHUB SE, 1989, AUDIOLOGY, V28, P241
   WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8
   Wagner W, 1999, EUR ARCH OTO-RHINO-L, V256, P177, DOI 10.1007/s004050050136
NR 48
TC 11
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 90
EP 98
DI 10.1016/j.heares.2005.11.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000010
PM 16364580
ER

PT J
AU Severinsen, SA
   Kirkegaard, M
   Nyengaard, JR
AF Severinsen, SA
   Kirkegaard, M
   Nyengaard, JR
TI 2,3-Dihydroxybenzoic acid attenuates kanamycin-induced volume reduction
   in mouse utricular type I hair cells
SO HEARING RESEARCH
LA English
DT Article
DE inner ear; mice; stereology; utricular macula; volume; otoprotection
ID VESTIBULAR SENSORY EPITHELIA; CHINCHILLA CRISTA-AMPULLARIS; INNER-EAR;
   IRON CHELATORS; AMINOGLYCOSIDE OTOTOXICITY; GENTAMICIN OTOTOXICITY;
   POSTNATAL-DEVELOPMENT; PATHOLOGICAL RESEARCH; GUINEA-PIGS; NUMBER
AB The aminoglycoside kanamycin is a commonly used antibiotic, but unfortunately it is oto- and nephrotoxic in large doses. The negative effects are thought to be due to the formation of free radicals which is why strong antioxidants and iron chelators like 2,3-dihydroxybenzoic acid (DHB) are of great interest. This study estimates cellular quantitative changes in the utricular macula of mice following systemic treatment with kanamycin alone or in combination with DHB. The animals were injected with either saline, kanamycin or kanamycin + DHB for 15 days and perfusion fixed three weeks after last injection. Total volume of the utricle, as well as total number of hair and supporting cells, were estimated on light microscopic sections. Total volume and mean volume of hair cell types I and II and supporting cells were estimated on digital transmission electron micrographs. Total volume of the utricular macula, hair cell type I and supporting cells decreased significantly in animals injected with kanamycin but not in animals co-treated with DHB. Hair and supporting cell numbers remained unchanged in all three groups. In conclusion, the kanamycin-induced volume reduction of type I hair cells was attentuated by DHB. (c) 2005 Elsevier B.V. All rights reserved.
C1 Aarhus Univ, Stereol & Electron Microscopy Res Lab, DK-8000 Aarhus C, Denmark.
   Aarhus Univ, MIND Ctr, Inst Clin Med, DK-8000 Aarhus, Denmark.
   Karolinska Univ Hosp, Ctr Hearing & Commun Res, Stockholm, Sweden.
RP Severinsen, SA (reprint author), Aarhus Univ, Stereol & Electron Microscopy Res Lab, Bldg 1185, DK-8000 Aarhus C, Denmark.
EM stig.severinsen@ki.au.dk
CR COLLINS P W P, 1985, British Journal of Audiology, V19, P257, DOI 10.3109/03005368509078981
   Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   Forge A, 1998, J COMP NEUROL, V397, P69
   GUNDERSEN HJG, 1988, APMIS, V96, P379
   GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229
   Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x
   GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3
   GUNDERSEN HJG, 1988, APMIS, V96, P857
   Heydt JL, 2004, HEARING RES, V192, P65, DOI 10.1016/j.heares.2004.01.006
   ISHITSUKA K, 2005, ONCOGENE, P1
   JANSON AM, 1993, NEUROSCIENCE, V57, P931, DOI 10.1016/0306-4522(93)90039-I
   JIANG H, 2005, CELL DEATH DIFFER, P1
   Kim TS, 2005, HEARING RES, V205, P201, DOI 10.1016/j.heares.2005.03.017
   Kirkegaard M, 2005, J COMP NEUROL, V492, P132, DOI 10.1002/cne.20736
   KIRKEGAARD M, 2005, ANAL STEREOL, V24, P69
   LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441
   Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7
   MCDOWELL B, 1986, ACTA OTO-LARYNGOL, V101, P242, DOI 10.3109/00016488609132833
   Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002
   Nakagawa T, 1999, BRAIN RES, V847, P357, DOI 10.1016/S0006-8993(99)02088-0
   Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2
   Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627
   Nyengaard JR, 1999, J AM SOC NEPHROL, V10, P1100
   PETERSON CM, 1979, EXP HEMATOL, V7, P74
   Priuska EM, 1998, INORG CHIM ACTA, V273, P85, DOI 10.1016/S0020-1693(97)05942-2
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   Rusch A, 1998, J NEUROSCI, V18, P7487
   Sha SH, 1999, LAB INVEST, V79, P807
   Shimizu Y, 2005, NEUROSCI LETT, V380, P243, DOI 10.1016/j.neulet.2005.01.066
   Song BB, 1997, J PHARMACOL EXP THER, V282, P369
   Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9
   Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2
   STEYGER PS, 2004, ARO MIDW M ABSTR, V27, P135
   TANDRUP T, 1994, J NEUROCYTOL, V23, P242, DOI 10.1007/BF01275528
   TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7
   HUY PTB, 1988, ACTA OTO-LARYNGOL, V105, P511, DOI 10.3109/00016488809119511
   Wang Z, 2003, BIOCHEM PHARMACOL, V65, P1767, DOI 10.1016/S0006-2952(03)00117-5
   WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285
   Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
   Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015
   Zheng JL, 1999, J NEUROSCI, V19, P2161
NR 46
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 99
EP 108
DI 10.1016/j.heares.2005.10.016
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000011
PM 16377109
ER

PT J
AU El-Kady, MA
   Durrant, JD
   Tawfik, S
   Abdel-Ghany, S
   Moussa, AM
AF El-Kady, MA
   Durrant, JD
   Tawfik, S
   Abdel-Ghany, S
   Moussa, AM
TI Study of auditory function in patients with chronic obstructive
   pulmonary diseases
SO HEARING RESEARCH
LA English
DT Article
DE hypoxia; hypoxemia; chronic obstructive pulmonary disease;
   electrocochleography; auditory brain-stem response; otoacoustic
   emissions; audiometry
ID EVOKED OTOACOUSTIC EMISSIONS; OUTER HAIR-CELLS; COCHLEAR-POTENTIALS;
   SUMMATING POTENTIALS; ACOUSTIC NEUROMAS; HYPOXIA; OXYGEN; RESPONSES;
   ANOXIA; INNER
AB This study was designed to measure auditory function in patients with chronic obstructive pulmonary diseases (COPDs) who generally suffer from chronic hypoxemia. Control and COPD subject groups received a battery of tests to assess overall hearing sensitivity and peripheral (end-organ and eighth-nerve) and brain-stem auditory function, as well as blood-gas analysis. Results showed a statistically significant difference for all audiological measures between the control group and a COPD subgroup - the presumptive hypoxic subjects (partial oxygen tensions, PO2, < 75 mm Hg). Correlation analyses of results from all subjects (regardless Of PO2) also revealed significant covariance with PO2 for overall, RMS, amplitude of click-evoked otoacoustic emissions (RA), hearing threshold level, and auditory brain-stem response (ABR, I-V inter-peak latency). chi(2) or Fisher's exact tests were statistically significant for frequencies of cases classified according to a criterion PO2 of 70 mm Hg (putative critical O-2 for completely normal auditory function) and either hearing thresholds falling below or RA values above 1.5 standard deviations of the control-group means, respectively. However, chi(2) was not significant for a comparable criterion of ABR IN IPL. In general, clinically significant hearing loss was uncommon in COPD patients, and the observed effects represented relatively small changes in the auditory measures examined. Still, overall, changes were in the direction of poorer function, and these results suggest physiologically significant impact of chronic hypoxemia and the need for further study to evaluate thoroughly this medical condition as a potential risk factor for audio-vestibular dysfunction. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Pittsburgh, Dept Commun Sci & Disorders & Otolaryngol, Pittsburgh, PA 15260 USA.
   Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA.
   Ain Shams Univ, Dept Audiol, Cairo, Egypt.
   Sohag Univ Hosp, Dept Chest Dis, Sohag, Egypt.
   Sohag Univ Hosp, Dept Otolaryngol, Sohag, Egypt.
RP Durrant, JD (reprint author), Univ Pittsburgh, Dept Commun Sci & Disorders & Otolaryngol, Forbes Tower 4033, Pittsburgh, PA 15260 USA.
EM durrant@pitt.edu
CR ATTIAS J, 1990, HEARING RES, V45, P247, DOI 10.1016/0378-5955(90)90124-8
   BONFILS P, 1988, AM J OTOL, V9, P412
   BROWN MC, 1983, HEARING RES, V9, P131, DOI 10.1016/0378-5955(83)90023-0
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   BURKETT PR, 1976, AVIAT SPACE ENVIR MD, V47, P649
   CARLILE S, 1992, ACTA OTO-LARYNGOL, V112, P939, DOI 10.3109/00016489209137494
   CARLILE S, 1992, AVIAT SPACE ENV MED, P1093
   DALLOS P, 1972, ACTA OTO-LARYNGOL, P1
   DALLOS P, 1973, AUDITORY PERIPHERY B, P112
   DALLOS P, 1973, AUDITORY PERIPHERY, P355
   DAVIS H, 1957, PHYSIOL REV, V37, P1
   DURRANT J D, 1986, Seminars in Hearing, V7, P289, DOI 10.1055/s-0028-1091465
   Durrant JD, 1998, J ACOUST SOC AM, V104, P370, DOI 10.1121/1.423293
   DURRANT JD, 1988, J ACOUST SOC AM, V62, pS87
   FERRARI R, 1986, EUR HEART J, V7, P3
   GAFNI M, 1976, ACTA OTO-LARYNGOL, V82, P354, DOI 10.3109/00016487609120919
   GYSIN CS, 1999, EFFECT COCHLEAR HYPO
   Hansen S, 1988, Acta Otolaryngol Suppl, V449, P165
   HENDRICKSMUNOZ KD, 1988, PEDIATRICS, V81, P650
   JOHNSTON.BM, 1972, Q REV BIOPHYS, V5, P1
   KEMP DT, 1990, EAR HEARING, V11, P93
   KLOCKE RA, 1989, TXB PULMONARY DISEAS, P147
   KONISHI T, 1979, ACTA OTO-LARYNGOL, V87, P506, DOI 10.3109/00016487909126459
   KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659
   LAWRENCE M, 1975, ANN OTO RHINOL LARYN, V84, P499
   LUCERTINI M, 1993, AUDIOLOGY, V32, P356
   McFarland RA, 1937, J COMP PSYCHOL, V23, P227, DOI 10.1037/h0056332
   MELLEMGA.K, 1966, ACTA PHYSIOL SCAND, V67, P10, DOI 10.1111/j.1748-1716.1966.tb03281.x
   MILLS JA, 1985, EAR HEARING, V6, P139, DOI 10.1097/00003446-198505000-00003
   MOSKI SS, 1981, CLIN NEUROPHYSIOL, V81, P477
   NIEWOEHNER DE, 1989, TXB PULMONARY DIS, P913
   PERLMAN HP, 1951, LARYNGOSCOPE, V69, P591
   PRAZMA J, 1978, HEARING RES, V1, P3, DOI 10.1016/0378-5955(78)90003-5
   REBILLARD G, 1992, HEARING RES, V62, P142, DOI 10.1016/0378-5955(92)90179-Q
   REBILLARD G, 1993, BRIT J AUDIOL, V27, P117, DOI 10.3109/03005369309077901
   RUTH RA, 1988, AM J OTOL, V9, P310
   Ruth R A, 1990, J Am Acad Audiol, V1, P134
   RUTH RA, 1988, AM J OTOL, V9, P1
   SCHUMACHER RE, 1990, EAR HEARING, V11, P359, DOI 10.1097/00003446-199010000-00006
   SOHMER H, 1986, ELECTROEN CLIN NEURO, V64, P334, DOI 10.1016/0013-4694(86)90157-4
   SOHMER H, 1989, HEARING RES, V40, P87, DOI 10.1016/0378-5955(89)90102-0
   SOHMER H, 1982, SCAND AUDIOL, V26, P77
   TELISCHI FF, 1995, LARYNGOSCOPE, V105, P675, DOI 10.1288/00005537-199507000-00002
NR 43
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 109
EP 116
DI 10.1016/j.heares.2005.05.018
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000012
PM 16412595
ER

PT J
AU Morawski, K
   Telischi, FF
   Niemczyk, K
AF Morawski, K
   Telischi, FF
   Niemczyk, K
TI A model of real time monitoring of the cochlear function during an
   induced local ischemia
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emissions; cochlear blood flow; cochlear ischemia; cochlear
   reperfusion
ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC NEUROMA SURGERY; OUTER
   HAIR-CELLS; AUDITORY-EVOKED POTENTIALS; LASER-LIGHT TRANSMISSION; 2
   DISCRETE SOURCES; BLOOD-FLOW; GUINEA-PIG; PHYSIOLOGICAL VULNERABILITY;
   DISTORTION PRODUCTS
AB The aim of this study was to investigate the utility of distortion product otoacoustic emissions (DPOAEs) in intraoperative monitoring (IM) of cochlear ischemic episodes in animals during internal auditory artery (IAA) compression. The IAA was exposed using the posterior fossa approach and then compressed for 3 and 5 min intervals to effect ischemia. DPOAE amplitudes and phases were measured at 4, 8, and 12 kHz geometric mean frequency (GMF). In each monitored ear, laser-Doppler cochlear blood flow (CBF) was measured. All IAA compressions resulted in rapid decrease of DPOAE amplitude and CBF, with simultaneous DPOAE phase increase. DPOAE phase changes were found to increase consistently within several seconds of IAA compression, while corresponding DPOAE amplitudes changed more slowly, with up to 30-40 s delays. Following IAA release, DPOAEs at 12 kHz GMF were characterized by longer delays in returning to baseline than those measured at lower frequencies. In some cases, CBF did not return to baseline. In this animal model, DPOAEs were found to be sensitive measures of cochlear function during transient cochlear ischemic episodes, suggesting the utility of DPOAE monitoring of auditory function during surgery of cerebello-pontine angle tumors. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Miami, Ear Inst, Dept Otolaryngol D48, Miami, FL 33101 USA.
   Med Univ Warsaw, Dept Otolaryngol, PL-02097 Warsaw, Poland.
RP Telischi, FF (reprint author), Univ Miami, Ear Inst, Dept Otolaryngol D48, POB 016960, Miami, FL 33101 USA.
EM ftelisch@med.miami.edu
CR Albera R, 2003, ACTA OTO-LARYNGOL, V123, P812, DOI 10.1080/00016480310002230
   ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   Battista RA, 2000, AM J OTOL, V21, P244, DOI 10.1016/S0196-0709(00)80017-4
   BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5
   BOSHER SK, 1979, J PHYSIOL-LONDON, V293, P329
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   Colletti V, 1998, AM J OTOL, V19, P503
   DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0
   FISCHER C, 1989, NEUROMONITORING SURG, P191
   Haapaniemi J, 2001, EUR ARCH OTO-RHINO-L, V258, P209, DOI 10.1007/s004050100341
   HARA A, 1995, HEARING RES, V90, P228, DOI 10.1016/0378-5955(95)00166-3
   Hatayama T, 1998, ACTA NEUROCHIR, V140, P681, DOI 10.1007/s007010050163
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KOMUNE S, 1993, ORL J OTO-RHINO-LARY, V55, P193
   KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659
   KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P359, DOI 10.1007/BF00588214
   KUROKI A, 1995, J NEUROSURG, V82, P933, DOI 10.3171/jns.1995.82.6.0933
   LENARZ T, 1992, EUR ARCH OTO-RHINO-L, V249, P257, DOI 10.1007/BF00714488
   Linden R. Dean, 1997, P601
   LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7
   Martin GK, 1999, HEARING RES, V136, P105, DOI 10.1016/S0378-5955(99)00119-7
   Miller JM, 1994, AM J OTOL, V15, P305
   MILLER JM, 1991, ANN OTO RHINOL LARYN, V100, P44
   MILLER JM, 1983, HEARING RES, V11, P385, DOI 10.1016/0378-5955(83)90069-2
   MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483
   MILLS DM, 1994, HEARING RES, V77, P182
   MOLLER AR, 1992, NEUROMONITORING OTOL, P199
   Moller AR, 1996, AM J OTOL, V17, P452
   Mom T, 2000, AM J OTOL, V21, P735
   Mom T, 1997, BRAIN RES, V751, P20, DOI 10.1016/S0006-8993(96)01388-1
   Mom T, 1999, HEARING RES, V133, P40, DOI 10.1016/S0378-5955(99)00056-8
   Morawski K, 2003, OTOL NEUROTOL, V24, P918, DOI 10.1097/00129492-200311000-00017
   MORAWSKI K, 2003, 18 BIENN S IERASG PU
   MORAWSKI K, 2004, 27 ANN MIDW RES M DA, V27, P333
   Morawski K, 2004, OTOL NEUROTOL, V25, P818, DOI 10.1097/00129492-200409000-00028
   Morawski K, 2003, LARYNGOSCOPE, V113, P1615, DOI 10.1097/00005537-200309000-00039
   NADOL JB, 1992, LARYNGOSCOPE, V102, P1153, DOI 10.1288/00005537-199210000-00010
   Nakashima T, 2004, ANN OTO RHINOL LARYN, V113, P426
   Nakashima T, 1995, Nihon Jibiinkoka Gakkai Kaiho, V98, P1297
   NAMYSLOWSKI G, 2001, SCAND AUDIOL S, V52, P121
   Nelson EG, 2003, LARYNGOSCOPE, V113, P1672, DOI 10.1097/00005537-200310000-00006
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845
   PERLMAN H B, 1959, Laryngoscope, V69, P591
   PRASHER DK, 1995, ACTA OTO-LARYNGOL, V115, P375, DOI 10.3109/00016489509139332
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
   REBILLARD G, 1992, HEARING RES, V62, P142, DOI 10.1016/0378-5955(92)90179-Q
   Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1
   SAKAMOTO A, 1991, BRAIN RES, V554, P186, DOI 10.1016/0006-8993(91)90187-Z
   SCHEIBE F, 1990, EUR ARCH OTO-RHINO-L, V247, P20
   SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8
   Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x
   SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457
   Selmani Z, 2001, Acta Otolaryngol Suppl, V545, P10
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004
   Tabuchi K, 2002, HEARING RES, V173, P153, DOI 10.1016/S0378-5955(02)00349-0
   Tabuchi K, 1998, HEARING RES, V126, P28, DOI 10.1016/S0378-5955(98)00142-7
   Tabuchi K, 2001, HEARING RES, V153, P1, DOI 10.1016/S0378-5955(00)00247-1
   Tabuchi K, 2001, HEARING RES, V160, P31, DOI 10.1016/S0378-5955(01)00315-X
   Telischi FF, 1999, LARYNGOSCOPE, V109, P186, DOI 10.1097/00005537-199902000-00003
   Telischi FF, 1998, LARYNGOSCOPE, V108, P837, DOI 10.1097/00005537-199806000-00011
   WAZEN JJ, 1994, LARYNGOSCOPE, V104, P446
   WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382
   WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440
   WIDICK MP, 1994, OTOLARYNG HEAD NECK, V111, P407
   WITZMANN A, 1989, NEUROMONITORING SURG, P219
   Yavuz E, 2005, J NEUROSCI METH, V147, P55, DOI 10.1016/j.jneumeth.2005.03.004
NR 68
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 117
EP 127
DI 10.1016/j.heares.2005.05.019
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000013
PM 16403609
ER

PT J
AU Drayton, M
   Noben-Trauth, K
AF Drayton, M
   Noben-Trauth, K
TI Mapping quantitative trait loci for hearing loss in Black Swiss mice
SO HEARING RESEARCH
LA English
DT Article
DE outbred strains; hearing loss; quantitative trait loci; cadherin 23;
   protocadherin 15
ID INBRED STRAINS; GENETIC DISSECTION; COMPLEX TRAITS; AMES WALTZER;
   INNER-EAR; MOUSE; MUTATION; MODEL; IDENTIFICATION; IMPAIRMENT
AB In common inbred mouse strains, hearing loss is a highly prevalent quantitative trait, which is mainly controlled by the Cdh23(753A) variant and alleles at numerous other strain-specific loci. Here, we investigated the genetic basis of hearing loss in non-inbred strains. Mice of Swiss Webster, CF-1, NIH Swiss, ICR, and Black Swiss strains exhibited hearing profiles characteristic of progressive, sensorineural hearing impairment. In particular, CF-1, Black Swiss, and NIH Swiss mice showed early-onset hearing impairment, ICR and Swiss Webster mice expressed a delayed-onset hearing loss, and NMRI mice had normal hearing. By quantitative trait locus (QTL) mapping, two significant QTLs were identified underlying hearing loss in Black Swiss mice: one QTL mapped to chromosome (chr) 10 (named ahl5, LOD 8.9, peak association 35-42 cM) and a second QTL localized to chr 18 (ahl6, LOD 3.8, 38-44 cM). Ahl5 and ahl6 account for 61% and 32% of the variation in the backcross, respectively. Cadherin 23 (Cdh23) and protocadherin 15 (Pedh15), mapping within the 95% confidence interval of ahl5, bear nucleotide polymorphisms in coding exons, but these appear to be unrelated to the hearing phenotype. Haplotype analyses across the Cdh23 locus demonstrated the phylogenetic relationship between Black Swiss and common inbred strains. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, Rockville, MD 20850 USA.
RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, 5 Res Court, Rockville, MD 20850 USA.
EM nobentk@nidcd.nih.gov
CR Alagramam KN, 2001, NAT GENET, V27, P99
   Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0
   Beck JA, 2000, NAT GENET, V24, P23, DOI 10.1038/71641
   CHURCHILL GA, 1994, GENETICS, V138, P963
   Darvasi A, 1998, NAT GENET, V18, P19, DOI 10.1038/1670
   DIPALMA F, 2001, GENE, V23, P281
   Di Palma F, 2001, NAT GENET, V27, P103
   Flint J, 2005, NAT REV GENET, V6, P271, DOI 10.1038/nrg1576
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8]
   Johnson KR, 2005, GENOMICS, V85, P582, DOI 10.1016/j.ygeno.2005.02.006
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   Johnson KR, 2001, NAT GENET, V27, P191, DOI 10.1038/84831
   LANDER E, 1995, NAT GENET, V11, P241, DOI 10.1038/ng1195-241
   Manly KF, 1999, MAMM GENOME, V10, P327, DOI 10.1007/s003359900997
   Manly KF, 2001, MAMM GENOME, V12, P930, DOI 10.1007/s00335-001-1016-3
   Misawa H, 2002, J NEUROSCI, V22, P10088
   Morris KA, 2005, JARO-J ASSOC RES OTO, V6, P75, DOI 10.1007/s10162-004-5046-x
   Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Shnerson A, 1981, Brain Res, V254, P77
   Skradski SL, 2001, NEURON, V31, P537, DOI 10.1016/S0896-6273(01)00397-X
   Wang XS, 2005, NAT GENET, V37, P365, DOI 10.1038/ng1524
   Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5
   Witmer PD, 2003, GENOME RES, V13, P485, DOI 10.1101/gr.717903
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 28
TC 25
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 128
EP 139
DI 10.1016/j.heares.2005.11.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000014
PM 16426780
ER

PT J
AU Farahbakhsh, NA
   Narins, PM
AF Farahbakhsh, NA
   Narins, PM
TI Slow motility in hair cells of the frog amphibian papilla:
   Ca2+-dependent shape changes
SO HEARING RESEARCH
LA English
DT Article
DE auditory hair cells; iso-volumetric contraction; osmotic shortening
ID GUINEA-PIG COCHLEA; MOTOR PROTEIN; ACETYLCHOLINE; ELECTROMOTILITY;
   CALCIUM; PRESTIN; MECHANISMS; STIFFNESS; CURRENTS; LENGTH
AB We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA.
RP Farahbakhsh, NA (reprint author), Univ Calif Los Angeles, Dept Physiol Sci, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA.
EM farahbak@ucla.edu
CR ART JJ, 1982, PROC R SOC SER B-BIO, V216, P377, DOI 10.1098/rspb.1982.0081
   ASHMORE JF, 1995, ACTIVE HEARING, V65, P337
   BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17
   Blanchet C, 1996, J NEUROSCI, V16, P2574
   CECOLA RP, 1992, HEARING RES, V61, P65, DOI 10.1016/0378-5955(92)90037-N
   Chan E, 1997, ACTA PHYSIOL SCAND, V161, P533, DOI 10.1046/j.1365-201X.1997.00241.x
   Chertoff M. E., 1994, AM J PHYSIOL, V266, P467
   Dallos P, 1997, J NEUROSCI, V17, P2212
   Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H
   Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
   DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6
   DULON D, 1990, J NEUROSCI, V10, P1388
   ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FARAHBAKHSH NA, 2004, CALCIUM DEPENDENT CO, P1275
   FARAHBAKHSH NA, 2005, CALCIUM CALMODULIN D, P612
   Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809
   FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755
   Frolenkov GI, 2000, J NEUROSCI, V20, P5940
   Frolenkov GI, 1998, MOL BIOL CELL, V9, P1961
   Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2
   FUNG Y, 1981, BIOMECHANCS
   He DZZ, 2003, J NEUROSCI, V23, P9089
   He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070
   HOLLEY MC, 1992, J CELL SCI, V102, P569
   Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2
   HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113
   HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73
   Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
   Imai S, 1999, NEUROSCI LETT, V275, P121, DOI 10.1016/S0304-3940(99)00775-2
   IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194
   Kalinec F, 2000, J BIOL CHEM, V275, P28000
   KARLSSON KK, 1990, NEUROSCI LETT, V116, P101, DOI 10.1016/0304-3940(90)90393-N
   KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H
   KROS CJ, 1996, COCHLEA, V8, P318
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   LIM DJ, 1998, KIDNEY INT, V65, P104
   Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736
   OGATA Y, 1993, ORL J OTO-RHINO-LARY, V55, P135
   OHNISHI S, 1992, AM J PHYSIOL, V263, pC1088
   POU AM, 1991, HEARING RES, V52, P305, DOI 10.1016/0378-5955(91)90020-A
   Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5
   REITER ER, 1995, J NEUROPHYSIOL, V73, P506
   Santos-Sacchi J, 2001, HEARING RES, V159, P69, DOI 10.1016/S0378-5955(01)00321-5
   SCHACHT J, 1995, ACTIVE HEARING, V65, P209
   Simmons D. D., 1995, AUDIT NEUROSCI, V1, P183
   SIMMONS DD, 1994, HEARING RES, V80, P71, DOI 10.1016/0378-5955(94)90010-8
   SLEPECKY N, 1988, HEARING RES, V34, P119, DOI 10.1016/0378-5955(88)90099-8
   Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153
   Szonyi M, 2001, BRAIN RES, V922, P65, DOI 10.1016/S0006-8993(01)03150-X
   Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6
   Tanigawa T, 1997, Nihon Jibiinkoka Gakkai Kaiho, V100, P264
   TOLOMEO JA, 1995, J ACOUST SOC AM, V97, P3006, DOI 10.1121/1.411865
   TSIEN RY, 1985, CELL CALCIUM, V6, P145, DOI 10.1016/0143-4160(85)90041-7
   ULFENDAHL M, 1988, ARCH OTO-RHINO-LARYN, V245, P237, DOI 10.1007/BF00463935
   Yamamoto T, 1997, NEUROSCI LETT, V236, P79, DOI 10.1016/S0304-3940(97)00749-0
   ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 58
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 140
EP 159
DI 10.1016/j.heares.2005.11.004
PG 20
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000015
PM 16426781
ER

PT J
AU Cohen, LT
   Saunders, E
   Knight, MR
   Cowan, RSC
AF Cohen, LT
   Saunders, E
   Knight, MR
   Cowan, RSC
TI Psychophysical measures in patients fitted with Contour (TM) and
   straight Nucleus electrode arrays
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; perimodiolar placement; radial distance; pitch
   estimation; loudness estimation; spread of neural excitation; forward
   masking
ID COCHLEAR IMPLANT RECIPIENTS; NEURAL EXCITATION; SPATIAL SPREAD; MASKING;
   STIMULATION; POSITION
AB The objective of this study was to compare the psychophysical performance of patients using the Nucleus Contour (TM) electrode array with that of patients using the straight banded-electrode array. In particular, we wished to consider how psychophysical parameters would differ for an electrode array positioned closer to the modiolus, and how this might influence both patient benefits and the design of speech processing strategies. Nine subjects participated in the study: four used the Nucleus straight array and five used the Nucleus Contour electrode array. Radiographic analyses found that the Contour array lay closer to the modiolus, was more deeply inserted and spanned a larger fractional length of the basilar membrane than the straight banded-electrode array. The results were analysed in terms of array type and of the position of the individual electrode band, both distance from the modiolus and longitudinal placement. Mean threshold was lower for the Contour array but maximum comfortable level was similar. Whereas threshold varied significantly with distance of electrode band from the modiolus, maximum comfortable level did not. Pitch varied fairly regularly with longitudinal position of the stimulated electrode, with the exception of one Contour subject. The forward masking profiles, using moderately loud maskers, were narrower for the Contour array, indicative of more localized neural excitation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Cooperat Res Ctr Cochlear Implant & Hearing Aid I, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
   Dynam Hearing, Richmond, Vic 3121, Australia.
   Cochlear Ltd, Melbourne, Vic 3002, Australia.
RP Cohen, LT (reprint author), Cooperat Res Ctr Cochlear Implant & Hearing Aid I, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM ltcohen@unimelb.edu.au
CR ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87
   Balkany TJ, 2002, ACTA OTO-LARYNGOL, V122, P363, DOI 10.1080/00016480260000021
   BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835
   CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330
   Cohen L T, 1996, Audiol Neurootol, V1, P278
   Cohen LT, 2004, INT J AUDIOL, V43, P346, DOI 10.1080/14992020400050044
   COHEN LT, 1994, INT COCHL IMPL SPEEC, P60
   Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9
   COHEN LT, 2001, 2001 C IMPL AUD PROS
   COHEN LT, 2001, 2 INT S WORKSH OBJ M
   Cohen LT, 2005, INT J AUDIOL, V44, P559, DOI 10.1080/14992020500258743
   Cohen LT, 1996, AM J OTOL, V17, P859
   Cohen L T, 1996, Audiol Neurootol, V1, P265
   Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
   Cohen L.T., 2000, 5 EUR S PAED COCHL I
   Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55
   Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   HUGHES ML, 2003, ARO 26 MIDW RES M DA
   MARSH MA, 1993, AM J OTOL, V14, P386
   MERZENICH MM, 1977, FUNCTIONAL ELECT STI, P321
   Park KS, 2002, KOREAN J GENETIC, V24, P41
   Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023
   Saunders E, 2002, EAR HEARING, V23, p28S
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   Stevens S. S., 1940, AM J PSYCHOL, V53, P329, DOI 10.2307/1417526
   Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007
   VONBEKESY G, 1947, ACTA OTO-LARYNGOL, V35, P411
   Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X
NR 30
TC 31
Z9 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 160
EP 175
DI 10.1016/j.heares.2005.11.005
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000016
PM 16403611
ER

PT J
AU Bleeck, S
   Sayles, M
   Ingham, NJ
   Winter, IM
AF Bleeck, S
   Sayles, M
   Ingham, NJ
   Winter, IM
TI The time course of recovery from suppression and facilitation from
   single units in the mammalian cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE adaptation; forward masking; auditory brainstem; onset unit;
   primary-like; chopper
ID AUDITORY-NERVE FIBERS; TONE-BURST; NEURONS; RESPONSES; MASKING;
   ADAPTATION; CLASSIFICATION; REGULARITY; INTENSITY; INVITRO
AB The responses to two identical, consecutive pure tone stimuli with varying inter-stimulus intervals (Delta ts) were measured for 89 neurons in the cochlear nucleus of the anaesthetised guinea pig. We observed two main effects; either a decrease (suppression) or an increase (facilitation) in response to the second tone followed by an exponential recovery. Response behaviour correlated with the unit type; primary-like, primary-like with notch and transient-chopper units showed a recovery from suppression that was very similar to that already reported in the auditory nerve. For chopper units the strength of the adaptation was correlated with the units regularity of spike discharge; sustained chopper (CS) units showed less suppression than transient choppers. Onset units showed complete suppression at short Delta ts. Pause/Build (PB) units responded with increased activity to the second tone. In contrast to previous studies in the cochlear nucleus the recovery from suppression or facilitation was well described by a single exponential function, enabling us to define a recovery time constant and a maximum suppression/facilitation. There appeared to be a hierarchy in the time constant of recovery with PB and CS units showing the longest recovery times and onset units showing the shortest. (c) 2006 Elsevier B.V. All rights reserved.
C1 Physiol Lab, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England.
   Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
RP Winter, IM (reprint author), Physiol Lab, Ctr Neural Basis Hearing, Downing St, Cambridge CB2 3EG, England.
EM imw1001@cam.ac.uk
RI Bleeck, Stefan/A-1178-2013
CR Adrian E., 1928, BASIS SENSATION
   BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303
   BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2
   BROWN MC, 2002, J NEUROPHYSIOL, V86, P2381
   DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824
   De Venecia RK, 2005, J COMP NEUROL, V487, P345, DOI 10.1002/cne.20550
   EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8
   HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083
   KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T
   LLOYD MEA, 2002, INT J AUDIOL, V41, P263
   MANDAVA P, 1995, HEARING RES, V87, P114, DOI 10.1016/0378-5955(95)00084-H
   MANIS PB, 1989, J NEUROPHYSIOL, V61, P149
   MANIS PB, 1990, J NEUROSCI, V10, P2338
   MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084
   PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X
   PARHAM K, 1993, J ACOUST SOC AM, V94, P3227, DOI 10.1121/1.407228
   RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836
   RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
   SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521
   SHORE SE, 1995, HEARING RES, V82, P31
   Shore SE, 1998, J ACOUST SOC AM, V104, P378, DOI 10.1121/1.423294
   SMITH RL, 1983, ANN NY ACAD SCI, V405, P79, DOI 10.1111/j.1749-6632.1983.tb31621.x
   WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E
   WINTER IM, 1995, J NEUROPHYSIOL, V73, P141
   YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1
NR 25
TC 19
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 176
EP 184
DI 10.1016/j.heares.2005.12.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000017
PM 16458460
ER

PT J
AU Sininger, YS
   Cone-Wesson, B
AF Sininger, YS
   Cone-Wesson, B
TI Lateral asymmetry in the ABR of neonates: Evidence and mechanisms
SO HEARING RESEARCH
LA English
DT Article
DE auditory brainstem response; neonates; ear asymmetry; medial
   olivocochlear system
ID BRAIN-STEM RESPONSE; SPONTANEOUS OTOACOUSTIC EMISSIONS; MEDIAL
   OLIVOCOCHLEAR SYSTEM; AUDITORY EVOKED-POTENTIALS; HEARING IMPAIRMENT;
   GENDER DIFFERENCES; SEX-DIFFERENCES; STIMULUS RATE; INFANTS; MASKING
AB Lateralized processing of auditory stimuli occurs at the level of the auditory cortex but differences in function between the left and right sides are not clear at lower levels of the auditory system. The current Study is designed to (1) investigate asymmetric auditory function at the ear and brainstem in human infants and (2) investigate possible mechanisms for asymmetry at these levels. Study I evaluated auditory brainstem responses (ABRs) in response to high and low-level clicks presented to the right and left ears of neonates. Wave V was significantly larger in amplitude and waves III and V were shorter in latency when the ABR was generated in the right ear. Study 2 investigated two possible mechanisms of such asymmetry by (a) using contralateral white noise masking to activate the medial olivocochlear system and (b) increasing stimulus rate to reveal neural conduction and synaptic mechanisms. ABR wave V, evoked by clicks to the left ear, showed a greater reduction in amplitude with contralateral noise than the response evoked from the right ear. No systematic asymmetries in ABR latencies or amplitudes were found with increased stimulus rate. We conclude that (1) the click-evoked ABR in neonates demonstrates asymmetric auditory function with a small but significant right ear advantage and (2) asymmetric activation of the medial olivocochlear system, specifically greater contralateral suppression of ABR produced by the left ear, is a possible mechanism for asymmetry. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Ctr Hlth Sci 62132, Los Angeles, CA 90095 USA.
   Univ Arizona, Dept Speech Language & Hearing Sci, Tucson, AZ 85721 USA.
RP Sininger, YS (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Ctr Hlth Sci 62132, Box 951624, Los Angeles, CA 90095 USA.
EM ysininger@mednet.ucla.edu
CR Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844
   BILGER RC, 1990, J SPEECH HEAR RES, V33, P418
   BOEZEMAN EHJF, 1983, ELECTROEN CLIN NEURO, V55, P710, DOI 10.1016/0013-4694(83)90281-X
   Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209
   BURNS EM, 1991, PREVALENCE SPONTANEO, P66
   CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81
   DON M, 1984, SCAND AUDIOL, V13, P219, DOI 10.3109/01050398409042130
   DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485
   DONALDSON GS, 1990, ELECTROEN CLIN NEURO, V77, P458, DOI 10.1016/0168-5597(90)90006-Y
   Driscoll Carlie, 2002, J Am Acad Audiol, V13, P403
   Eldredge L, 1996, EARLY HUM DEV, V45, P215, DOI 10.1016/0378-3782(96)01732-X
   FOLSOM RC, 1987, ACTA OTO-LARYNGOL, V103, P262, DOI 10.3109/00016488709107792
   HATANAKA T, 1990, EAR HEARING, V11, P233, DOI 10.1097/00003446-199006000-00011
   HUMES LE, 1982, J SPEECH HEAR RES, V25, P528
   Ismail H, 2003, HEARING RES, V179, P97, DOI 10.1016/S0378-5955(03)00099-6
   Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008
   KIMURA D, 1969, CAN J PSYCHOLOGY, V23, P445, DOI 10.1037/h0082830
   KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M
   Lasky RE, 1997, HEARING RES, V111, P165, DOI 10.1016/S0378-5955(97)00106-8
   LEVINE RA, 1983, ELECTROEN CLIN NEURO, V55, P532, DOI 10.1016/0013-4694(83)90163-3
   MCGLONE J, 1980, BEHAV BRAIN SCI, V3, P215
   Moore Jean K, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P7
   Moore JK, 1999, AUDIOL NEURO-OTOL, V4, P311, DOI 10.1159/000013855
   Morlet T, 1999, HEARING RES, V134, P153, DOI 10.1016/S0378-5955(99)00078-7
   Newmark M., 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P133
   Norton SJ, 2000, EAR HEARING, V21, P348, DOI 10.1097/00003446-200010000-00003
   OWEN GA, 1991, J ACOUST SOC AM, V89, P1760, DOI 10.1121/1.401010
   Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508
   Reid A, 1983, Br J Audiol, V17, P155, DOI 10.3109/03005368309107880
   ROSENHAMER H, 1983, SCAND AUDIOL, V12, P11, DOI 10.3109/01050398309076219
   Sininger YS, 2004, SCIENCE, V305, P1581, DOI 10.1126/science.1100646
   Sininger YS, 2000, EAR HEARING, V21, P383, DOI 10.1097/00003446-200010000-00006
   SININGER YS, 1996, MIDW M ASS RES OT ST
   Sininger YS, 1998, HEARING RES, V126, P58, DOI 10.1016/S0378-5955(98)00152-X
   Sininger YS, 1997, HEARING RES, V104, P27, DOI 10.1016/S0378-5955(96)00178-5
   SMITH DI, 1987, HEARING RES, V27, P157, DOI 10.1016/0378-5955(87)90016-5
   SOLI S, 1994, HEARING INSTRUMENTS, V45, P12
   STOCKARD JE, 1983, EAR HEARING, V4, P11, DOI 10.1097/00003446-198301000-00005
   Thornton ARD, 2003, HEARING RES, V184, P123, DOI 10.1016/S0378-5955(03)00234-X
   Vohr BR, 2000, EAR HEARING, V21, P373, DOI 10.1097/00003446-200010000-00005
   Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193
NR 41
TC 25
Z9 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 203
EP 211
DI 10.1016/j.heares.2005.12.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000019
PM 16439078
ER

PT J
AU Kurt, S
   Crook, JM
   Ohl, FW
   Scheich, H
   Schulze, H
AF Kurt, S
   Crook, JM
   Ohl, FW
   Scheich, H
   Schulze, H
TI Differential effects of iontophoretic in vivo application of the
   GABA(A)-antagonists bicuculline and gabazine in sensory cortex
SO HEARING RESEARCH
LA English
DT Article
DE primary auditory cortex; spectral tuning; temporal processing;
   intracortical inhibition; SR95531
ID PRIMARY AUDITORY-CORTEX; CAT VISUAL-CORTEX; FUNCTIONALLY CHARACTERIZED
   SITES; GERBIL MERIONES-UNGUICULATUS; RECEPTIVE-FIELDS; DIRECTION
   SELECTIVITY; RESPONSE PROPERTIES; MONGOLIAN GERBIL; COMPETITIVE
   ANTAGONIST; INHIBITORY MECHANISMS
AB We have compared the effects of microiontophoretic application of the GABA(A)-receptor antagonists bicuculline (BIC) and gabazine (SR95531) on responses to pure tones and to sinusoidally amplitude-modulated (AM) tones in cells recorded extracellularly from primary auditory cortex (AI) of Mongolian gerbils. Besides similar effects in increasing spontaneous and stimulus-evoked activity and their duration, both drugs elicited differential effects on spectral tuning and synchronized responses to AM tones. In contrast to gabazine, iontophoresis of the less potent GABA(A)-antagonist BIC often resulted in substantial broadening of frequency tuning for pure tones and an elimination of synchronized responses to AM tones, particularly with high ejecting currents. BIC-induced effects which could not be replicated by application of gabazine were presumably due to the well-documented, non-GABAergic side-effects of BIC on calcium-dependent potassium channels. Our results thus provide strong evidence that GABA(A)-mediated inhibition in AI does not sharpen frequency tuning for pure tones, but rather contributes to the processing of fast temporal modulations of sound envelopes. They also demonstrate that BIC can have effects on neuronal response selectivity which are not due to blockade of GABAergic inhibition. The results have profound implications for microiontophoretic studies of the role of intracortical inhibition in sensory cortex. (c) 2006 Elsevier B.V. All rights reserved.
C1 Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany.
   Univ Newcastle Upon Tyne, Div Psychol, Sch Biol & Psychol, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England.
RP Schulze, H (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany.
EM Holger.Schulze@IfN-Magdeburg.de
RI Kurt, Simone/I-2927-2012
CR ALBUS K, 1988, EUR J NEUROSCI S1, V1, P355
   Bormann J, 2000, TRENDS PHARMACOL SCI, V21, P16, DOI 10.1016/S0165-6147(99)01413-3
   BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7
   BOWERY NG, 1983, GABA RECEPTORS, P177
   BOX GEP, 1954, ANN MATH STAT, V25, P290, DOI 10.1214/aoms/1177728786
   CHAMBON JP, 1985, P NATL ACAD SCI USA, V82, P1832, DOI 10.1073/pnas.82.6.1832
   Chebib M, 1999, CLIN EXP PHARMACOL P, V26, P937, DOI 10.1046/j.1440-1681.1999.03151.x
   CROOK JM, 1992, J NEUROSCI, V12, P1816
   CROOK JM, 2002, VIRTUAL LESIONS EXAM, P3
   Crook JM, 1998, EUR J NEUROSCI, V10, P2056, DOI 10.1046/j.1460-9568.1998.00218.x
   CURTIS DR, 1974, ERG PHYSIOL BIOL CH, V69, P97
   DYKES RW, 1984, J NEUROPHYSIOL, V52, P1066
   Egebjerg J, 2002, GLUTAMATE GABA RECEP
   Eysel UT, 1998, NEUROSCIENCE, V84, P25, DOI 10.1016/S0306-4522(97)00378-3
   Ferster David, 1994, Current Opinion in Neurobiology, V4, P563, DOI 10.1016/0959-4388(94)90058-2
   Foeller E, 2001, JARO, V2, P279
   GOOD P., 2000, PERMUTATION TESTS PR
   Grothe B, 2000, CURR OPIN NEUROBIOL, V10, P467, DOI 10.1016/S0959-4388(00)00115-X
   Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4
   HAMANN M, 1988, BRAIN RES, V442, P287, DOI 10.1016/0006-8993(88)91514-4
   HEAULME M, 1986, BRAIN RES, V384, P224, DOI 10.1016/0006-8993(86)91158-3
   Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002
   Hevers W, 1998, MOL NEUROBIOL, V18, P35, DOI 10.1007/BF02741459
   HEYER EJ, 1981, NEUROLOGY, V31, P1381
   HICKS TP, 1984, PROG NEUROBIOL, V22, P185
   HUBEL DH, 1962, J PHYSIOL-LONDON, V160, P106
   Johansson S, 2001, J PHYSIOL-LONDON, V532, P625, DOI 10.1111/j.1469-7793.2001.0625e.x
   Johnson SW, 1997, NEUROSCI LETT, V231, P13, DOI 10.1016/S0304-3940(97)00508-9
   KRNJEVIC K, 1984, CEREB CORTEX, V2, P39
   KURT S, 2005, ASS RES OT ABSTR, P345
   KURT S, 2004, SOC NEUR ABSTR
   Li Xing Fang, 1996, Synapse (New York), V24, P115, DOI 10.1002/(SICI)1098-2396(199610)24:2<115::AID-SYN3>3.0.CO;2-I
   Mardia K. V., 1972, STAT DIRECTIONAL DAT
   Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014
   METHERATE R, 1998, FRONT BIOSCI, V3, P494
   MICHAUD JC, 1986, NEUROPHARMACOLOGY, V25, P1197, DOI 10.1016/0028-3908(86)90136-X
   MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673
   Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079
   OLSEN RW, 1976, BRAIN RES, V102, P283, DOI 10.1016/0006-8993(76)90883-0
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P493
   Richter K, 1999, BRAIN RES, V831, P184, DOI 10.1016/S0006-8993(99)01440-7
   SATO H, 1995, J NEUROPHYSIOL, V74, P1382
   Schulze H, 1997, J COMP PHYSIOL A, V181, P573, DOI 10.1007/s003590050141
   Schulze H, 1997, J COMP PHYSIOL A, V181, P651, DOI 10.1007/s003590050147
   Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410
   Schulze H, 2002, ACTA ACUST UNITED AC, V88, P399
   SILLITO AM, 1975, J PHYSIOL-LONDON, V250, P305
   Sillito A. M., 1984, CEREB CORTEX, P91
   SILLITO AM, 1975, J PHYSIOL-LONDON, V250, P287
   Thiele A, 2004, P NATL ACAD SCI USA, V101, P9810, DOI 10.1073/pnas.0307754101
   THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x
   VIDYASAGAR TR, 1986, NEUROSCIENCE, V17, P49, DOI 10.1016/0306-4522(86)90224-1
   Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
   Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8
   Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
   Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222
   YANG LC, 1992, J NEUROPHYSIOL, V68, P1760
NR 58
TC 35
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 224
EP 235
DI 10.1016/j.heares.2005.12.002
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000021
PM 16442250
ER

PT J
AU Hahn, H
   Kammerer, B
   DiMauro, A
   Salt, AN
   Plontke, SK
AF Hahn, H
   Kammerer, B
   DiMauro, A
   Salt, AN
   Plontke, SK
TI Cochlear microdialysis for quantification of dexamethasone and
   fluorescein entry into scala tympani during round window administration
SO HEARING RESEARCH
LA English
DT Article
DE round window membrane; permeability; pharmacokinetics; inner ear;
   microdialysis; perilymph; drug delivery; dexamethasone; steroid
ID SENSORINEURAL HEARING-LOSS; GUINEA-PIG COCHLEA; INNER-EAR; INTRATYMPANIC
   DEXAMETHASONE; MENIERES-DISEASE; DRUG-DELIVERY; PHARMACOKINETICS;
   MEMBRANE; GENTAMICIN; PERILYMPH
AB Before new drugs for the treatment of inner car disorders can be studied in controlled clinical trials, it is important that their pharmacokinetics be established in inner ear fluids. Microdialysis allows drug levels to be measured in perilymph without the volume disturbances and potential cerebrospinal fluid contamination associated with fluid sampling. The aims of this study were to show: (i) that despite low recovery rates from miniature dialysis probes, significant amounts of drug are removed from small fluid compartments, (ii) that dialysis sampling artifacts can be accounted for using computer simulations and (iii) that microdialysis allows quantification of the entry rates through the round window membrane (RWM) into scala tympani (ST). Initial experiments used microdialysis probes in small compartments in vitro containing sodium fluorescein. Stable concentrations were observed in large compartments (1000 mu l) but significant concentration declines were observed in smaller compartments (100, 10 and 5.6 mu l) comparable to the size of the inner ear. Computer simulations of these experiments closely approximated the experimental data. In in vivo experiments, sodium fluorescein 10 mg/ml and dexamethasone-dihydrogen-phosphate disodium salt 8 mg/ml were simultaneously applied to the RWM of guinea pigs. Perilymph concentration in the basal turn of ST was monitored using microdialysis. The fluorescein concentration reached after 200 min application (585 +/- 527 mu g/ml) was approximately twice that of dexamethasone phosphate (291 +/- 369 mu g/ml). Substantial variation in concentrations was found between animals by approximately a factor of 34 for fluorescein and at least 41 for dexamethasone phosphate. This is, to a large extent, thought to be the result of the RWM permeability varying in different animals. It was not caused by substance analysis variations, because two different analytic methods were used and the concentration ratio between the two substances remained nearly constant across the experiments and because differences were apparent for the repeated samples obtained in each animal. Interpretation of the results using computer simulations allowed RWM permeability to be quantified. It also demonstrated, however, that cochlear clearance values could not be reliably obtained with microdialysis because of the significant contribution of dialysis to clearance. The observed interanimal variation, e.g., in RWM permeability, is likely to be clinically relevant to the local application of drugs in patients. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Tubingen, Dept Otorhinolaryngol Head & Neck Surg, Tubingen Hearing Res Ctr, D-72076 Tubingen, Germany.
   Univ Tubingen, Div Clin Pharmacol, Inst Pharmacol & Toxicol, D-72076 Tubingen, Germany.
   Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Plontke, SK (reprint author), Univ Tubingen, Dept Otorhinolaryngol Head & Neck Surg, Tubingen Hearing Res Ctr, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany.
EM Stefan.Plontke@uni-tuebingen.de
CR Bachmann G, 2001, HNO, V49, P538, DOI 10.1007/s001060170078
   Cesarani Antonio, 2002, Int Tinnitus J, V8, P111
   Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5
   Chandrasekhar SS, 2001, OTOL NEUROTOL, V22, P18, DOI 10.1097/00129492-200101000-00005
   Chelikh L, 2003, ACTA OTO-LARYNGOL, V123, P199, DOI 10.1080/00016480310001042
   Chen ZQ, 2003, ACTA OTO-LARYNGOL, V123, P905, DOI 10.1080/00016480310000638
   Chen ZQ, 2003, AUDIOL NEURO-OTOL, V8, P49, DOI 10.1159/000067893
   COLES RRA, 1992, CLIN OTOLARYNGOL, V17, P240, DOI 10.1111/j.1365-2273.1992.tb01835.x
   de Lange ECM, 2000, ADV DRUG DELIVER REV, V45, P125, DOI 10.1016/S0169-409X(00)00107-1
   Elmquist WF, 1997, PHARMACEUT RES, V14, P267, DOI 10.1023/A:1012081501464
   Gianoli GJ, 2001, OTOLARYNG HEAD NECK, V125, P142, DOI 10.1067/mhn.2001.117162
   Gouveris H, 2005, EUR ARCH OTO-RHINO-L, V262, P131, DOI 10.1007/s00405-004-0772-6
   Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552
   Hibi T, 2001, ACTA OTO-LARYNGOL, V121, P336, DOI 10.1080/000164801300102699
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   Ho Ho Guan-Min, 2004, Laryngoscope, V114, P1184
   Hoffer ME, 2001, LARYNGOSCOPE, V111, P1343, DOI 10.1097/00005537-200108000-00007
   Hoya N, 2001, NEUROSCI LETT, V311, P206, DOI 10.1016/S0304-3940(01)02165-6
   Hunter BA, 2003, ACTA OTO-LARYNGOL, V123, P453, DOI 10.1080/00016480310000467
   Itoh A, 1991, Acta Otolaryngol Suppl, V481, P617
   Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470
   Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007
   Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011
   Kroin JS, 2000, NEUROSURGERY, V46, P178
   Lautermann J, 2005, EUR ARCH OTO-RHINO-L, V262, P587, DOI 10.1007/s00405-004-0876-z
   Lefebvre PP, 2002, ACTA OTO-LARYNGOL, V122, P698, DOI 10.1080/003655402/000028037
   Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3
   Matsuda K, 1998, BRAIN RES, V794, P343, DOI 10.1016/S0006-8993(98)00330-8
   Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001
   Plock N, 2005, EUR J PHARM SCI, V25, P1, DOI 10.1016/j.ejps.2005.01.017
   Plontke S, 2005, ACTA OTO-LARYNGOL, V125, P830, DOI 10.1080/00016480510037898
   Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026
   Sakata E, 1997, INT TINNITUS J, V3, P117
   Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
   Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9
   SALT AN, 2003, HEARING RES, V182, P23
   Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140
   SCHEIBE F, 1984, ARCH OTO-RHINO-LARYN, V240, P43, DOI 10.1007/BF00464343
   Sennaroglu L, 2001, OTOLARYNG HEAD NECK, V125, P537, DOI 10.1067/mhn2001.119485
   Shea JJ, 1996, OTOLARYNG CLIN N AM, V29, P353
   Shulman A, 2000, Int Tinnitus J, V6, P10
   Silverstein H, 1998, AM J OTOL, V19, P196
   Silverstein H, 1996, Ear Nose Throat J, V75, P468
   TRUNE DR, 2006, IN PRESS MED OTOLOGY
   UNGERSTEDT U, 1991, J INTERN MED, V230, P365
NR 45
TC 31
Z9 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 236
EP 244
DI 10.1016/j.heares.2005.12.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000022
PM 16442251
ER

PT J
AU Macias, S
   Mora, EC
   Coro, F
   Kossl, M
AF Macias, S
   Mora, EC
   Coro, F
   Kossl, M
TI Threshold minima and maxima in the behavioral audiograms of the bats
   Artibeus jamaicensis and Eptesicus fuscus are not produced by cochlear
   mechanics
SO HEARING RESEARCH
LA English
DT Article
DE distortion product otoacoustic emission; FM bats; pinna; cochlear
   mechanics
ID LEAF-NOSED BATS; DISTORTION-PRODUCT; CAROLLIA-PERSPICILLATA;
   PHYLLOSTOMUS-DISCOLOR; OTOACOUSTIC EMISSIONS; HEARING; ECHOLOCATION;
   SENSITIVITY; ADAPTATIONS; EARS
AB Behavioral audiograins of Artibeus jamaicensis and Eptesicus fuscus are characterized by two threshold minima separated by a threshold maximum at 40 kHz, for A. jamaicensis, and 45 kHz, for E fuscus [Koay, G., Heffner, H.E., Heffner R.S., 1997. Audiogram of the big brown bat (Eptesicus fuscus). Hear. Res. 105, 202-210; Heffner, R.S., Koay, G., Heffner H.E., 2003. Hearing in American leaf-nosed bats. III: Artibeus jamaicensis. Hear. Res. 184, 113-122.]. To investigate whether these characteristics are due to cochlear properties, we recorded distortion product otoacooustic emissions (DPOAEs) and calculated DPOAE threshold curves. We found that in both species cochlear sensitivity, assessed by DPOAE recordings, does not show local threshold maxima. The DPOAE threshold curve calculated for A. jamaicensis reveals a broadly tuned minimum for frequencies between 20 and 50 kHz and the threshold curve of E fuscus shows a broad sensitive area for frequencies between 15 and 60 kHz. In none of the two species any pronounced threshold irregularities were found. The characteristic pattern of a threshold maximum followed by a minimum observed in behavioral studies seems to be shaped by transfer characteristics of the outer ear and/or neuronal processing in the ascending auditory pathway rather than by cochlear mechanics. (c) 2006 Elsevier B.V. All rights reserved.
C1 Univ Havana, Dept Anim & Human Biol, Fac Biol, Havana 10400, Cuba.
   Univ Havana, Dept Basic Format, Fac Psychol, Havana 10600, Cuba.
   Univ Frankfurt, Inst Zool, D-60323 Frankfurt, Germany.
RP Macias, S (reprint author), Univ Havana, Dept Anim & Human Biol, Fac Biol, Calle 25,455 Entre J&I, Havana 10400, Cuba.
EM silvio@fbio.uh.cu
CR Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923
   DALLAND JI, 1965, J AUD RES, V5, P95
   Esser KH, 1996, J COMP PHYSIOL A, V178, P779
   Faulstich M, 1996, HEARING RES, V94, P47, DOI 10.1016/0378-5955(95)00232-4
   Firzlaff Uwe, 2003, Hearing Research, V185, P110, DOI 10.1016/S0378-5955(03)00281-8
   Foeller E, 2000, J COMP PHYSIOL A, V186, P859, DOI 10.1007/s003590000139
   GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732
   GRIFFIN DR, 1958, LISTENING DARK, P229
   Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8
   JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
   Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X
   Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0
   Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6
   Koessl Manfred, 1997, Naturwissenschaften, V84, P9
   KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I
   KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2
   Kossl M, 1999, J COMP PHYSIOL A, V185, P217, DOI 10.1007/s003590050381
   MANLEY GA, 1993, J ACOUST SOC AM, V93, P2820, DOI 10.1121/1.405803
   Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059
   Novick A., 1963, Journal of Mammalogy, V44, P44, DOI 10.2307/1377166
   Schnitzler Hans-Ulrich, 1998, P183
   Surlykke A, 2000, J ACOUST SOC AM, V108, P2419, DOI 10.1121/1.1315295
   Wittekindt A, 2005, J COMP PHYSIOL A, V191, P31, DOI 10.1007/s00359-004-0564-x
NR 23
TC 4
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2006
VL 212
IS 1-2
BP 245
EP 250
DI 10.1016/j.heares.2005.12.004
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 022LT
UT WOS:000236058000023
PM 16434158
ER

PT J
AU Weaver, KE
   Stevens, AA
AF Weaver, KE
   Stevens, AA
TI Auditory gap detection in the early blind
SO HEARING RESEARCH
LA English
DT Article
DE early blindness; auditory temporal discrimination; aging
ID EARLY ACQUIRED BLINDNESS; YES-NO PROCEDURE; TEMPORAL GAPS; PSYCHOMETRIC
   FUNCTIONS; CONGENITALLY BLIND; SIGHTED SUBJECTS; HEARING-LOSS; NOISE;
   CORTEX; THRESHOLDS
AB For blind individuals, audition provides critical information for interacting with the environment. Individuals blinded early in life (EB) typically show enhanced auditory abilities relative to sighted controls as measured by tasks requiring complex discrimination, attention and memory. In contrast, few deficits have been reported on tasks involving auditory sensory thresholds (e.g., Yates, J.T., Johnson, R.M., Starz, W.J., 1972. Loudness perception of the blind. Audiology 11(5), 368-376; Starlinger, I., Niemeyer, W., 1981. Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. I. Peripheral functions. Audiology 20(6), 503-509). A study of gap detection stands at odds with this distinction [Muchnik, C., Efrati, M., Nemeth, E., Malin, M., Hildesheimer, M., 1991. Central auditory skills in blind and sighted subjects. Scand. Audiol. 20(1), 19-23]. In the current investigation we re-examined gap detection abilities in the EB using a single-interval, yes/no method. A group of younger sighted control individuals (SCy) was included in the analysis in addition to EB and sighted age matched control individuals (SCm) in order to examine the effect of age on gap detection performance. Estimates of gap detection thresholds for EB subjects were nearly identical to SCm subjects and slightly poorer relative to the SCy subjects. These results suggest some limits on the extent of auditory temporal advantages in the EB. (c) 2005 Elsevier B.V. All rights reserved.
C1 Oregon Hlth & Sci Univ, Dept Behav Neurosci, Portland, OR 97239 USA.
   Oregon Hlth & Sci Univ, Dept Psychiat, Portland, OR 97239 USA.
RP Stevens, AA (reprint author), Oregon Hlth & Sci Univ, Dept Behav Neurosci, 3181 SW Sam Jackson Pk Rd,CR139, Portland, OR 97239 USA.
EM stevenal@ohsu.edu
CR Amedi A, 2003, NAT NEUROSCI, V6, P758, DOI 10.1038/nn1072
   Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8
   Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848
   Buus S., 2002, GENETICS FUNCTION AU, P183
   Buus S, 1985, TIME RESOLUTION AUDI, P159
   FITZGIBBONS PJ, 1983, J ACOUST SOC AM, V74, P67, DOI 10.1121/1.389619
   Florentine M, 2001, J Am Acad Audiol, V12, P113
   Florentine M, 1999, J ACOUST SOC AM, V106, P3512, DOI 10.1121/1.428204
   Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9
   GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818
   GOU Y, 2002, HEARING RES, V171, P158
   Green DM, 1985, TIME RESOLUTION AUDI, P122
   GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696
   GREEN DM, 1989, J ACOUST SOC AM, V86, P961, DOI 10.1121/1.398731
   GU X, 1994, J ACOUST SOC AM, V96, P93, DOI 10.1121/1.410378
   He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109
   Heinrich A, 2004, NEUROREPORT, V15, P2051, DOI 10.1097/00001756-200409150-00011
   Hugdahl K, 2004, COGNITIVE BRAIN RES, V19, P28, DOI 10.1016/j.cogbrainres.2003.10.015
   IRWIN RJ, 1982, J ACOUST SOC AM, V71, P967, DOI 10.1121/1.387578
   Kelly JB, 1996, BEHAV NEUROSCI, V110, P542
   Kujala T, 1997, ACTA PSYCHOL, V96, P75, DOI 10.1016/S0001-6918(97)00007-3
   Lessard N, 1998, NATURE, V395, P278
   MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240
   MUCHNIK C, 1985, Journal of Auditory Research, V25, P239
   MUCHNIK C, 1991, SCAND AUDIOL, V20, P19, DOI 10.3109/01050399109070785
   Neville HJ, 2001, CARN S COGN, P271
   NIEMEYER W, 1981, AUDIOLOGY, V20, P510
   Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376
   Phillips D P, 1999, J Am Acad Audiol, V10, P343
   PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946
   RAUSCHECKER JP, 1995, TRENDS NEUROSCI, V18, P36, DOI 10.1016/0166-2236(95)93948-W
   Roberts RA, 2004, J SPEECH LANG HEAR R, V47, P965, DOI 10.1044/1092-4388(2004/071)
   Roder B, 2003, INT J PSYCHOPHYSIOL, V50, P27, DOI 10.1016/S0167-8760(03)00122-3
   Roder B, 1999, NEUROSCI LETT, V264, P53, DOI 10.1016/S0304-3940(99)00182-2
   Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205
   STARLINGER I, 1981, AUDIOLOGY, V20, P503
   STEVENS AA, IN PRESS NEUROPSYCHO
   Werner LA, 2001, J SPEECH LANG HEAR R, V44, P737, DOI 10.1044/1092-4388(2001/058)
   YATES JT, 1972, AUDIOLOGY, V11, P368
   ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6
NR 40
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 1
EP 6
DI 10.1016/j.heares.2005.08.002
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500001
PM 16256283
ER

PT J
AU Sellick, PM
   Robertson, D
   Patuzzi, R
AF Sellick, PM
   Robertson, D
   Patuzzi, R
TI The effect of BAPTA and 4AP in scala media on transduction and cochlear
   gain
SO HEARING RESEARCH
LA English
DT Article
DE cochlear amplifier; 4-amino-pyridine; BAPTA
ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; MECHANICAL TRANSDUCTION; NEGATIVE
   FEEDBACK; MAMMALIAN COCHLEA; NERVE; CHANNELS; MODEL; 4-AMINOPYRIDINE;
   POTENTIALS
AB We have injected by iontophoresis 4-amino-pyridine, a K+ channel blocker and BAPTA, (a Ca++ chelator), into scala media of the first three turns of the guinea pig cochlea. We measured the reduction in outer hair cell (OHC) receptor current, as indicated by cochlear microphonic measured in scala media evoked by a 207 Hz tone, and compared this with the elevation of the cochlear action potential (CAP) threshold. We found that in the basal turn, for frequencies between 12 and 21 kHz, CAP threshold was elevated by about 30 dB, while in the second turn, at the 3 kHz place, the maximum elevation was 15 dB. In the third turn, iontophoresis of 4AP and BAPTA reduced CM by similar amounts to that in the basal and second turn, but caused negligible elevation of CAP threshold. We conclude that the gain of the cochlear amplifier is maximal for basal turn frequencies, is halved at 3 kHz, and is reduced to close to one for frequencies below I kHz (no active gain). The effect of 4AP and BAPTA on neural threshold and the receptor current represented by CM may be explained by their action on OHC transduction without the involvement of IHCs. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Nedlands, WA 6009, Australia.
RP Sellick, PM (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Nedlands, WA 6009, Australia.
EM psellick@cyllene.uwa.edu.au
CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X
   BROWNELL WE, 1984, SCANNING ELECTRON MI, V3, P1401
   COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0
   COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X
   DALLOS P, 1985, J NEUROSCI, V5, P1591
   DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
   EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263
   Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1
   Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089
   Khanna SM, 2004, HEARING RES, V194, P97, DOI 10.1016/j.heares.2004.04.003
   Kirk DL, 1998, AUDIOL NEURO-OTOL, V3, P21, DOI 10.1159/000013776
   KIRSCH GE, 1993, J GEN PHYSIOL, V102, P797, DOI 10.1085/jgp.102.5.797
   Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x
   Meyer J, 1998, J NEUROSCI, V18, P6748
   NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9
   Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7
   PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2
   PICKLES JO, 1991, HEARING RES, V54, P153, DOI 10.1016/0378-5955(91)90116-Q
   RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981
   Robles L, 2001, PHYSIOL REV, V81, P1305
   RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261
   Schmiedt RA, 2002, J NEUROSCI, V22, P9643
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1
   STRELIOF.D, 1973, J ACOUST SOC AM, V54, P620, DOI 10.1121/1.1913642
   Sumner CJ, 2003, J ACOUST SOC AM, V113, P3264, DOI 10.1121/1.1568946
   Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5
NR 29
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 7
EP 15
DI 10.1016/j.heares.2005.05.016
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500002
PM 16343830
ER

PT J
AU Hu, BH
   Henderson, D
   Nicotera, TM
AF Hu, BH
   Henderson, D
   Nicotera, TM
TI Extremely rapid induction of outer hair cell apoptosis in the chinchilla
   cochlea following exposure to impulse noise
SO HEARING RESEARCH
LA English
DT Article
DE apoptosis; cochlea; necrosis; impulse noise; outer hair cell; chinchilla
ID GUINEA-PIG COCHLEA; NEURONAL APOPTOSIS; INTENSE NOISE; BRAIN-INJURY;
   HEARING-LOSS; CNS INJURY; DEATH; NECROSIS; MECHANISMS; GLUTAMATE
AB We have reported the presence of OHC apoptosis and necrosis in the organ of Corti following exposure to intense noise. The current study was designed to investigate the rapidity and the initial pattern of outer hair cell (OHC) death induced by exposure to impulse noise. Chinchillas were exposed to 75 pairs of impulse noise at 155 dB peak sound pressure level presented over a time period of 75 s. At 5 or 30 min after the noise exposure, the cochleae were examined for morphological and biological indicators of apoptosis and necrosis. In the cochleae collected within 5 min after the 75-s noise exposure, there were clear signs of nuclear condensation and cell body shrinkage, suggesting the presence of OHC apoptosis. Apoptotic OHCs were further detected by positive staining of TUNEL and caspase-3 assays. In contrast to the rapid development of nuclear condensation, appearance of nuclear swelling, a necrotic phenotype, appeared at 30 min after the noise exposure. The results of the study demonstrate that induction of OHC apoptosis after the noise exposure is an extremely rapid process. (c) 2005 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   Roswell Pk Canc Inst, Dept Mol & Cellular Biophys, Buffalo, NY 14263 USA.
RP Hu, BH (reprint author), SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM bhu@acsu.buffalo.edu; donaldhe@acsu.buffalo.edu;
   thomas.nicotera@roswellpark.org
CR Ankarcrona M, 1998, PROG BRAIN RES, V116, P265, DOI 10.1016/S0079-6123(08)60442-2
   Bittigau P, 2003, NEUROTOX RES, V5, P475
   Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9
   CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2
   DIETRICH WD, 1994, J NEUROTRAUM, V11, P289, DOI 10.1089/neu.1994.11.289
   Dihne M, 2001, BRAIN RES, V902, P178, DOI 10.1016/S0006-8993(01)02378-2
   Eguchi Y, 1997, CANCER RES, V57, P1835
   FRISCH SM, 1994, J CELL BIOL, V124, P619, DOI 10.1083/jcb.124.4.619
   Frisch SM, 2001, CURR OPIN CELL BIOL, V13, P555, DOI 10.1016/S0955-0674(00)00251-9
   Frisch SM, 2000, METHOD ENZYMOL, V322, P472
   Fruttiger M, 2002, INVEST OPHTH VIS SCI, V43, P522
   Galan A, 2001, EUR J CELL BIOL, V80, P312, DOI 10.1078/0171-9335-00159
   GORDON GB, 1963, EXP CELL RES, V31, P440, DOI 10.1016/0014-4827(63)90024-7
   Gottlieb RA, 1999, ANN NY ACAD SCI, V874, P412, DOI 10.1111/j.1749-6632.1999.tb09255.x
   Grossmann J, 2002, APOPTOSIS, V7, P247, DOI 10.1023/A:1015312119693
   HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
   Hausmann R, 2004, INT J LEGAL MED, V118, P32, DOI 10.1007/s00414-003-0413-4
   Heatwole V M, 1999, Methods Mol Biol, V115, P141
   HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052
   HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470
   Kaygusuz I, 2001, HEARING RES, V162, P43, DOI 10.1016/S0378-5955(01)00365-3
   Keane RW, 2001, J CEREBR BLOOD F MET, V21, P1189
   Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479
   MAJNO G, 1995, AM J PATHOL, V146, P3
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007
   Nakazawa K, 2001, HEARING RES, V151, P133, DOI 10.1016/S0378-5955(00)00220-3
   Nicotera Pierluigi, 1998, Toxicology Letters (Shannon), V102-103, P139, DOI 10.1016/S0378-4274(98)00298-7
   Nicotera T., 2001, NOISE INDUCED HEARIN, P99
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32
   Nuttall A.L., 1999, NOISE HEALTH, V2, P17
   Pack AK, 1995, HEARING RES, V91, P119
   Pohl D, 1999, P NATL ACAD SCI USA, V96, P2508, DOI 10.1073/pnas.96.5.2508
   Porter AG, 1999, CELL DEATH DIFFER, V6, P99, DOI 10.1038/sj.cdd.4400476
   SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915
   Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9
   Simon HU, 2000, APOPTOSIS, V5, P415, DOI 10.1023/A:1009616228304
   SPOENDLIN H, 1985, J OTOLARYNGOL, V14, P282
   SUTTON RL, 1993, J NEUROTRAUM, V10, P135, DOI 10.1089/neu.1993.10.135
   Wang J, 2002, NEUROSCIENCE, V111, P635
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
   Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4
   Zipfel GJ, 2000, J NEUROTRAUM, V17, P857, DOI 10.1089/neu.2000.17.857
NR 47
TC 50
Z9 56
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 16
EP 25
DI 10.1016/j.heares.2005.08.006
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500003
PM 16219436
ER

PT J
AU Choi, JY
   Son, EJ
   Kim, JL
   Lee, JH
   Park, HY
   Kim, SH
   Song, MH
   Yoon, JH
AF Choi, JY
   Son, EJ
   Kim, JL
   Lee, JH
   Park, HY
   Kim, SH
   Song, MH
   Yoon, JH
TI ENaC- and CFTR-dependent ion and fluid transport in human middle ear
   epithelial cells
SO HEARING RESEARCH
LA English
DT Article
DE ion channel; fluid transport; sodium; chloride
ID AIRWAY SURFACE LIQUID; CYSTIC-FIBROSIS; SECRETORY DIFFERENTIATION; NA+
   ABSORPTION; CL-SECRETION; CHANNELS; DISEASE; FAMILY; EXPRESSION;
   CHILDREN
AB Ion channels, such as the epithelial sodium channel (ENaC), are essential for maintaining a fluid-free middle ear cavity by controlling periciliary fluid. Deviations from the normal volume or compositions of periciliary fluid are probably responsible for otitis media with effusion. To elucidate the physiologic roles of the ENaC and cystic fibrosis transmembrane conductance regulator (CFTR) in the middle ear mucosa, we compared the electrophysiological activity and protein expressions of ENaC and CFTR in normal human middle ear epithelial (NHMEE) cells with those in normal human nasal epithelial (NHNE) cells. We also evaluated the role of ENaC and CFTR in fluid transport by NHMEE cells. Short-circuit current (I-sc) was measured in cell monolayers by modified Ussing chambers. Immunoblotting was performed for ENaC and CFTR. In addition, transepithelial fluid transport was measured after loading 100 mu l of fluid onto the luminal cell surface. The amiloride-sensitive Isc in NHMEE cells was much larger than in NHNE cells, whereas the forskolin-induced Is, presumably mediated by CFTR, was significantly smaller in NHMEE cells. ENaC subunits alpha, beta, and gamma were all detected in NHMEE cells, and their expressions were stronger than those in NHNE cells. In comparison, CFTR was also detected in the middle ear mucosa, but at a lower expression level than in NHNE cells. NHMEE cells showed more amiloride-sensitive fluid absorption than NHNE cells. In contrast, fluid absorption was less sensitive to forskolin/IBMX in NHMEE cells than in NHNE cells, The ATP induced Cl- efflux and the amplitude of ATP-induced current in NHMEE cells was much larger than in NHNE cells. In the present study, we have demonstrated an enhanced amiloride-sensitive T, and fluid absorption in NHMEE cells, where the role of CFTR is limited. Our data also suggest that the ATP-induced Cl- channel could be an alternative Cl- channel to CFTR in NHMEE cells. (c) 2005 Elsevier B.V. All rights reserved.
C1 Yonsei Univ, Coll Med, Dept Otorhinolaryngol, Seoul 120752, South Korea.
   Yonsei Univ, Coll Med, Airway Mucus Inst, Seoul 120752, South Korea.
   Gacheon Med Sch, Dept Otorhinolaryngol, Inchon, South Korea.
RP Yoon, JH (reprint author), Yonsei Univ, Coll Med, Dept Otorhinolaryngol, 134 Shinchon Dong, Seoul 120752, South Korea.
EM jhyoon@yumc.yonsei.ac.kr
CR ALBAZZAZ FJ, 1986, CLIN CHEST MED, V7, P259
   Bak-Pedersen K, 1979, Acta Otolaryngol Suppl, V360, P138
   BOUCHER RC, 1994, AM J RESP CRIT CARE, V150, P271
   Bucheimer RE, 2004, J PHYSIOL-LONDON, V555, P311, DOI 10.1113/jphysiol.2003.056697
   CANESSA CM, 1994, NATURE, V367, P463, DOI 10.1038/367463a0
   Chan LN, 2000, BIOCHEM BIOPH RES CO, V276, P40, DOI 10.1006/bbrc.2000.3426
   Choi JY, 2002, ACTA OTO-LARYNGOL, V122, P270, DOI 10.1080/000164802753648141
   Fuller CM, 2000, CLIN EXP PHARMACOL P, V27, P906, DOI 10.1046/j.1440-1681.2000.03359.x
   Fuller CM, 2001, PFLUG ARCH EUR J PHY, V443, pS107, DOI 10.1007/s004240100655
   Garty H, 1997, PHYSIOL REV, V77, P359
   HADDAD J, 1994, ARCH OTOLARYNGOL, V120, P491
   HERMAN P, 1992, AM J PHYSIOL, V262, pF373
   Kellenberger S, 2002, PHYSIOL REV, V82, P735, DOI 10.1152/physrev.00007.2002
   Kerem E, 1999, NEW ENGL J MED, V341, P156, DOI 10.1056/NEJM199907153410304
   Mall M, 2004, NAT MED, V10, P487, DOI 10.1038/nm1028
   Mall M, 2003, PEDIATR RES, V53, P608, DOI 10.1203/01.PDR.0000057204.51420.DC
   Mandell DL, 2003, AM J PHYSIOL-CELL PH, V285, pC618, DOI 10.1152/ajpcell.00553.2002
   Matsui H, 1998, CELL, V95, P1005, DOI 10.1016/S0092-8674(00)81724-9
   Pilewski Joseph M., 1999, Physiological Reviews, V79, pS215
   Portier F, 1999, AM J PHYSIOL-CELL PH, V276, pC312
   Portier F, 2005, ACTA OTO-LARYNGOL, V125, P16, DOI 10.1080/00016480410015749
   Schultz BD, 1999, PHYSL REV S, V79, P109
   Tarran R, 2002, J GEN PHYSIOL, V120, P407, DOI 10.1085/jgp.20028599
   TAYLOR B, 1974, ARCH DIS CHILD, V49, P133
   TUNGLAND OP, 1990, J LARYNGOL OTOL, V104, P956, DOI 10.1017/S0022215100114471
   WIDDICOMBE JH, 1995, RESP PHYSIOL, V99, P3, DOI 10.1016/0034-5687(94)00095-H
   Yoon JH, 2000, ANN OTO RHINOL LARYN, V109, P594
NR 27
TC 12
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 26
EP 32
DI 10.1016/j.heares.2005.08.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500004
PM 16226002
ER

PT J
AU Stickney, GS
   Loizou, PC
   Mishra, LN
   Assmann, PF
   Shannon, RV
   Opie, JM
AF Stickney, GS
   Loizou, PC
   Mishra, LN
   Assmann, PF
   Shannon, RV
   Opie, JM
TI Effects of electrode design and configuration on channel interactions
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implants; channel interaction; speech perception
ID ELECTRICALLY STIMULATED COCHLEA; ROTATIONALLY SYMMETRICAL MODEL; SPEECH
   RECOGNITION; AUDITORY-NERVE; NEURAL EXCITATION; IMPLANTS; PATTERNS;
   SELECTIVITY; THRESHOLDS; RECORDINGS
AB A potential shortcoming of existing multichannel cochlear implants is electrical-field summation during simultaneous electrode stimulation. Electrical-field interactions can disrupt the stimulus waveform prior to neural activation. To test whether speech intelligibility can be degraded by electrical-field interaction, speech recognition performance and interaction were examined for three Clarion electrode arrays: the pre-curved, enhanced bipolar electrode array, the enhanced bipolar electrode with an electrode positioner, and the Hi-Focus electrode with a positioner. Channel interaction was measured by comparing stimulus detection thresholds for a probe signal in the presence of a sub-threshold perturbation signal as a function of the separation between the two simultaneously stimulated electrodes. Correct identification of vowels, consonants, and words in sentences was measured with two speech strategies: one which used simultaneous stimulation and another which used sequential stimulation. Speech recognition scores were correlated with measured electrical-field interaction for the strategy which used simultaneous stimulation but not the strategy which used sequential stimulation. Higher speech recognition scores with the simultaneous strategy were generally associated with lower levels of electrical-field interaction. Electrical-field interaction accounted for as much as 70% of the variance in speech recognition scores, suggesting that electrical-field interaction is a significant contributor to the variability found across patients who use simultaneous strategies. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Texas, Sch Human Dev, Richardson, TX 75083 USA.
   Univ Texas, Sch Behav & Brain Sci, Richardson, TX 75083 USA.
   Univ Texas, Dept Elect Engn, Richardson, TX 75083 USA.
   House Ear Res Inst, Dept Auditory Implants & Percept, Los Angeles, CA 90057 USA.
   Adv Bion Corp, Sylmar, CA 91342 USA.
RP Stickney, GS (reprint author), Univ Calif Irvine, Dept Otolaryngol, 364 Med Surg 2, Irvine, CA 92697 USA.
EM stickney@uci.edu
CR BATTMER RD, 2000, 6 INT COCHL IMPL C M
   Boex C, 2003, J ACOUST SOC AM, V114, P2049, DOI 10.1121/1.1610451
   Boex C, 1996, AM J OTOL, V17, P61
   CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330
   Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274
   Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
   de Balthasar C, 2003, HEARING RES, V182, P77, DOI 10.1016/S0378-5955(03)00174-6
   DUNN OJ, 1961, J AM STAT ASSOC, V56, P52, DOI 10.2307/2282330
   Eddington D. K., 2001, 2001 C IMPL AUD PROS
   EDDINGTON D K, 1978, Annals of Otology Rhinology and Laryngology, V87, P5
   Eddington D.K., 1994, SPEECH PROCESSORS AU
   Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
   Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
   FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772
   HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
   HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872
   Kaplan D, 1999, RESAMPLING STATS MAT
   Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Liang DH, 1999, IEEE T BIO-MED ENG, V46, P35, DOI 10.1109/10.736751
   LITHICUM FH, 1991, AM J OTOL, V12, P245
   Loizou Philipos C., 2003, Ear and Hearing, V24, P12, DOI 10.1097/01.AUD.0000052900.42380.50
   Miller CA, 2003, HEARING RES, V175, P200
   NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
   Osberger MJ, 1999, ANN OTO RHINOL LARYN, V108, P74
   Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6
   Pfingst B E, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P127
   Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115
   RYAN AF, 1990, HEARING RES, V50, P57, DOI 10.1016/0378-5955(90)90033-L
   Schindler R. A., 1995, Annals of Otology Rhinology and Laryngology, V104, P269
   SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6
   SHANNON RV, 1985, COCHLEAR IMPLANTS, P323
   Shannon RV, 1999, J ACOUST SOC AM, V106, pL71, DOI 10.1121/1.428150
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455
   VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
   VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
   WHITE MW, 1984, ARCH OTOLARYNGOL, V110, P493
   WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
   WYGONSKI JJ, 2001, 2001 C IMPL AUD PROS
   Zwolan T, 2001, OTOL NEUROTOL, V22, P844, DOI 10.1097/00129492-200111000-00022
NR 43
TC 33
Z9 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 33
EP 45
DI 10.1016/j.heares.2005.08.008
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500005
PM 16338109
ER

PT J
AU Hong, SH
   Park, SK
   Cho, YS
   Lee, HS
   Kim, KR
   Kim, MG
   Chung, WH
AF Hong, SH
   Park, SK
   Cho, YS
   Lee, HS
   Kim, KR
   Kim, MG
   Chung, WH
TI Gentamicin induced nitric oxide-related oxidative damages on vestibular
   afferents in the guinea pig
SO HEARING RESEARCH
LA English
DT Article
DE gentamicin; ototoxicity; NOS; peroxynitrite
ID LIPOPOLYSACCHARIDE-INDUCED EXPRESSION; SYNTHASE INOS/NOS II; HAIR-CELLS;
   SENSORY CELLS; AMINOGLYCOSIDE ANTIBIOTICS; IN-VIVO; GLUTAMATE; COCHLEA;
   DEATH; EXPOSURE
AB Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-D-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and NOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type 1 hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction. (c) 2005 Elsevier B.V. All rights reserved.
C1 Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Otolaryngol & Head & Neck Surg, Seoul 135710, South Korea.
RP Chung, WH (reprint author), Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Otolaryngol & Head & Neck Surg, 50 Ilwon Dong, Seoul 135710, South Korea.
EM whchung@smc.samsung.co.kr
CR ANKARCRONA M, 1995, NEURON, V15, P961, DOI 10.1016/0896-6273(95)90186-8
   Ayata C, 1997, J NEUROSCI, V17, P6908
   Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338
   Bittigau P, 1997, J CHILD NEUROL, V12, P471
   Davies KJA, 2000, IUBMB LIFE, V50, P279, DOI 10.1080/15216540051081010
   DEMEMES D, 1990, HEARING RES, V46, P261, DOI 10.1016/0378-5955(90)90007-C
   Devau G, 2000, HEARING RES, V140, P126, DOI 10.1016/S0378-5955(99)00194-X
   Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
   Ernfors P, 1996, NAT MED, V2, P1313, DOI 10.1038/nm1296-1313
   Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   Glazner GW, 2000, J NEUROSCI, V20, P3641
   Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3
   Harvey SC, 1999, J PHARMACOL EXP THER, V291, P285
   HENLEY CM, 1987, BRAIN RES BULL, V19, P695, DOI 10.1016/0361-9230(87)90056-6
   Hess A, 1998, BRAIN RES, V813, P97, DOI 10.1016/S0006-8993(98)00997-4
   Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X
   Hess A, 1998, NEUROSCI LETT, V251, P185, DOI 10.1016/S0304-3940(98)00532-1
   Ishiyama G, 2002, BRAIN RES, V935, P16, DOI 10.1016/S0006-8993(02)02419-8
   Kuhn DM, 2004, J NEUROCHEM, V89, P529, DOI 10.1111/j.1471-4159.2004.02346.x
   Li XQ, 2001, HEARING RES, V161, P29, DOI 10.1016/S0378-5955(01)00330-6
   Lopez I, 1999, AM J OTOL, V20, P317
   Lopez-Gonzalez MA, 1998, NEUROCHEM INT, V33, P55, DOI 10.1016/S0197-0186(05)80009-9
   Masuko T, 1999, J PHARMACOL EXP THER, V290, P1026
   Michel O, 2000, HEARING RES, V143, P23, DOI 10.1016/S0378-5955(00)00018-6
   Miller JM, 2002, AUDIOL NEURO-OTOL, V7, P175, DOI 10.1159/000058306
   Murphy MP, 1999, BBA-BIOENERGETICS, V1411, P401, DOI 10.1016/S0005-2728(99)00029-8
   NAKANISHI S, 1992, SCIENCE, V258, P597, DOI 10.1126/science.1329206
   Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32
   Schulz JB, 1995, J NEUROSCI, V15, P8419
   Shi XR, 2003, HEARING RES, V177, P43, DOI 10.1016/S0378-5955(02)00796-7
   Smith PF, 2000, J VESTIBUL RES-EQUIL, V10, P1
   SNYDER SH, 1992, SCI AM, V266, P68
   Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P466
   Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P346
   Takumida M, 1998, EUR ARCH OTO-RHINO-L, V255, P184, DOI 10.1007/s004050050040
   Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4
   Takumida M, 2002, ORL J OTO-RHINO-LARY, V64, P143, DOI 10.1159/000057794
   Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
NR 40
TC 26
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 46
EP 53
DI 10.1016/j.heares.2005.08.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500006
PM 16289993
ER

PT J
AU Guerin, A
   Jeannes, RL
   Bes, J
   Faucon, G
   Lorenzi, C
AF Guerin, A
   Jeannes, RL
   Bes, J
   Faucon, G
   Lorenzi, C
TI Evaluation of two computational models of amplitude modulation coding in
   the inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
DE amplitude modulation; cochlear nucleus; inferior colliculus; model
ID COCHLEAR NUCLEUS; TEMPORAL ENVELOPE; AUDITORY-CORTEX; COMPUTER-MODEL;
   RESPONSES; SOUNDS; CAT; REPRESENTATION; MECHANISMS; NEURONS
AB Two computational models replicating amplitude-modulation encoding in the inferior colliculus (IC) are presented and compared. Neurons in this nucleus are modeled as point neurons using Mc Gregor equations, and receive depolarizing currents from action potentials delivered by stellate cells (chopper units) in the cochlear nucleus (CN). Stellate cells are modeled using modified Hodgkin-Huxley equations and receive inputs from a peripheral auditory model. The CN models of the two proposed architectures are characterized by an important dispersion of cellular characteristics, and therefore by various cellular best modulation frequencies (BMFs) ranging from 60 to 300 Hz. In contrast with the previous model proposed by [M.J. Hewitt, R. Meddis, A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus, J. Acoust. Soc. Am. 95 (1994) 2145], each IC cell model receives convergent input from stellate cells with various BMFs. This approach assumes therefore minimal constraints on the model architecture and cell characteristics. The two models differ in terms of the neuronal structure of the IC, composed of 1 or 2 layers of point neurons acting as coincidence detectors. Each model is evaluated using two metrics: mean firing rate and modulation gain. Rate and temporal modulation transfer functions (r-MTFs and t-MTFs, respectively) are simulated and compared with physiological data. Simulations reveal that (i) an important dispersion of BMFs in the CN cells providing input to IC cells yields plausible IC cells responses to AM stimuli, (ii) the 2-layer IC structure yields the best approximation of IC responses measured in vivo. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Rennes 1, INSERM, U642, Lab Traitement Signal & Image, F-35042 Rennes, France.
   Univ Paris 05, Inst Psychol, CNRS, UMR 8581,Lab Psychol Expt, F-75270 Paris 06, France.
RP Jeannes, RL (reprint author), Univ Rennes 1, INSERM, U642, Lab Traitement Signal & Image, F-35042 Rennes, France.
EM regine.le-bouquin-jeannes@univ-rennes1.fr
RI Lorenzi, Christian/F-5310-2012
CR Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7
   EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9
   Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9
   FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y
   Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588
   Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740
   GUERIN A, 2003, 25 ANN INT C IEEE EN, P2795
   HEWITT MJ, 1995, J ACOUST SOC AM, V97, P2405, DOI 10.1121/1.411962
   HEWITT MJ, 1994, J ACOUST SOC AM, V95, P2145, DOI 10.1121/1.408676
   Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003
   Krishna BS, 2000, J NEUROPHYSIOL, V84, P255
   LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799
   Liegeois-Chauvel C, 2004, CEREB CORTEX, V14, P731, DOI 10.1093/cercor/bhh033
   LORENZI C, 1995, HEARING RES, V90, P219, DOI 10.1016/0378-5955(95)00169-9
   MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460
   MOLLER AR, 1986, HEARING RES, V24, P203, DOI 10.1016/0378-5955(86)90019-5
   Nelson PC, 2004, J ACOUST SOC AM, V116, P2173, DOI 10.1121/1.1784442
   PATTERSON RD, 1992, ADV BIOSCI, V83, P429
   REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1
   Rhode WS, 1992, MAMMALIAN AUDITORY P, P94
   SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3
   Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a
NR 23
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 54
EP 62
DI 10.1016/j.heares.2005.10.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500007
PM 16289669
ER

PT J
AU Sendowski, I
   Raffin, F
   Clarencon, D
AF Sendowski, I
   Raffin, F
   Clarencon, D
TI Spectrum of neural electrical activity in guinea pig cochlea: Effects of
   anaesthesia regimen, body temperature and ambient noise
SO HEARING RESEARCH
LA English
DT Article
DE anaesthesia; cochlea; guinea pig; spontaneous activity; 900 Hz peak
ID KETAMINE-XYLAZINE ANESTHESIA; BRAIN-STEM RESPONSE; ROUND-WINDOW;
   INFERIOR COLLICULUS; SURGICAL-PROCEDURES; AVERAGE SPECTRUM;
   HYPERTHERMIA; TINNITUS; NERVE; PHARMACOLOGY
AB Spectral analysis of electric noise recorded from the round window of the cochlea is thought to represent the summed spontaneous activity of the auditory nerve. It has been postulated that it could provide a possible tinnitus index. Because experimental conditions could change this neural activity, the effect of anaesthesia regimen, body temperature and ambient noise on the spectrum of spontaneous neural noise (SNN) were investigated in guinea pig cochlea. SNN was studied in awake guinea pigs and after anaesthesia with pentobarbital (P), xylazine/ketamine (XK) or xylazine/tiletamine-zolazepam (XTZ). Body temperature varied gradually from 33 to 41 degrees C under XK regimen. In awake animals, broadband noise was generated with intensity varying from 0 to 50 dB. The SNN consisted in a broad peak at approximately 900 Hz. With ambient broadband noise, it increased exponentially with the sound level with no shift in frequency. Soon after anaesthetic induction, the lowest frequencies were constantly decreased, and gradually the 900 Hz peak either increased moderately (P) or dropped steeply (XTZ) or remained unchanged (XK). Peak frequency increased linearly with body temperature whereas the amplitude reached a maximum at around 39.5 degrees C. In conclusion, these data indicate that experimental conditions such as anaesthesia, regimen, body temperature and ambient noise modify the spontaneous neural outflow of the cochlea and must be taken into account when studying SNN. (c) 2005 Elsevier B.V. All rights reserved.
C1 CRSSA, Dept Radiobiol, F-38702 La Tronche, France.
RP Sendowski, I (reprint author), CRSSA, Dept Radiobiol, 24 Ave Maquis Gresivaudan,BP 87, F-38702 La Tronche, France.
EM lsendowski@crssa.net; Fraffin@crssa.net; Didierclarencon@crssa.net
CR AHMED B, 1991, INT J HYPERTHER, V7, P93, DOI 10.3109/02656739109004980
   Astl J, 1996, AUDIOLOGY, V35, P335
   BIGELOW DJ, 1987, J BIOL CHEM, V262, P13449
   Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044
   BROWN MC, 1983, HEARING RES, V10, P345, DOI 10.1016/0378-5955(83)90097-7
   BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387
   Buchanan KC, 1998, CONTEMP TOP LAB ANIM, V37, P58
   Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113
   Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9
   CROWTHER J, 1989, OTOLARYNG HEAD NECK, V101, P51
   DALLOS P, 1973, AUDITORY PERIPHERY, P329
   DAUBECHIES I, 1990, IEEE T INFORM THEORY, V36, P961, DOI 10.1109/18.57199
   DESAUVAGE RC, 1996, HEARING RES, V10, P15
   DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054
   EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FerberViart C, 1995, HEARING RES, V91, P202, DOI 10.1016/0378-5955(95)00193-X
   FFRENCHMULLEN JMH, 1987, J PHARMACOL EXP THER, V243, P915
   FONG TM, 1986, BIOCHEMISTRY-US, V25, P830, DOI 10.1021/bi00352a015
   FRANSSEN H, 1994, MUSCLE NERVE, V17, P336, DOI 10.1002/mus.880170313
   Friederich P, 1998, MOL BRAIN RES, V60, P301, DOI 10.1016/S0169-328X(98)00209-5
   GOSSSAMPSON MA, 1991, LAB ANIM, V25, P360, DOI 10.1258/002367791780810074
   GREENE SA, 1988, J VET PHARMACOL THER, V11, P295, DOI 10.1111/j.1365-2885.1988.tb00189.x
   GROSSMANN A, 1984, SIAM J MATH ANAL, V15, P723, DOI 10.1137/0515056
   Guitton MJ, 2003, J NEUROSCI, V23, P3944
   Henry KR, 2003, HEARING RES, V179, P88, DOI 10.1016/S0378-5955(03)00097-2
   Hotz MA, 2000, BRIT J CLIN PHARMACO, V49, P72, DOI 10.1046/j.1365-2125.2000.00104.x
   Jacobson C, 2001, LAB ANIM-UK, V35, P271, DOI 10.1258/0023677011911598
   JANSSEN R, 1992, NEUROSCI BIOBEHAV R, V16, P399, DOI 10.1016/S0149-7634(05)80209-X
   JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
   JASTREBOFF PJ, 1994, AM J OTOL, V15, P19
   KOHSHI K, 1990, J APPL PHYSIOL, V69, P1419
   Lee H J, 1993, Electromyogr Clin Neurophysiol, V33, P125
   Lei H, 2001, BRAIN RES, V913, P174, DOI 10.1016/S0006-8993(01)02786-X
   Lesage F, 2003, NEUROPHARMACOLOGY, V44, P1, DOI 10.1016/S0028-3908(02)00339-8
   Martin W.H., 1995, MECH TINNITUS, P163
   MARTIN WH, 1993, LARYNGOSCOPE, V103, P600
   McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2
   Morand N, 1998, HEARING RES, V121, P71, DOI 10.1016/S0378-5955(98)00068-9
   Mulders WHAM, 2005, HEARING RES, V204, P147, DOI 10.1016/j.heares.2005.01.009
   OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y
   Patuzzi RB, 2004, HEARING RES, V190, P87, DOI 10.1016/S0378-5955(03)00405-2
   Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864
   Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9
   Rudolph U, 2004, NAT REV NEUROSCI, V5, P709, DOI 10.1038/nrn1496
   SCHREINER CE, 1987, P 3 INT TINN SEM HAR, P100
   Searchfield GD, 2004, HEARING RES, V192, P23, DOI 10.1016/j.heares.2004.02.006
   SHINITZKY M, 1984, BIOMEMBRANE, V12, P585
   Sueta T, 2004, HEARING RES, V188, P117, DOI 10.1016/S0378-5955(03)00374-5
   TAKAHASHI H, 1991, INT J HYPERTHER, V7, P613, DOI 10.3109/02656739109034973
   Torterolo P, 2002, BRAIN RES, V935, P9, DOI 10.1016/S0006-8993(02)02235-7
   VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X
   VIRET J, 1976, BIOCHIM BIOPHYS ACTA, V436, P811, DOI 10.1016/0005-2736(76)90408-9
   VIRET J, 1990, MEMBRANE TRANSPORT I, P239
   WELCH PD, 1967, IEEE T ACOUST SPEECH, VAU15, P70, DOI 10.1109/TAU.1967.1161901
NR 55
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 63
EP 73
DI 10.1016/j.heares.2005.10.002
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500008
PM 16310327
ER

PT J
AU Fullgrabe, C
   Berthommier, F
   Lorenzi, C
AF Fullgrabe, C
   Berthommier, F
   Lorenzi, C
TI Masking release for consonant features in temporally fluctuating
   background noise
SO HEARING RESEARCH
LA English
DT Article
DE speech perception; background noise; masking release; modulation
   masking; 1st-order modulation; 2nd-order modulation
ID SPEECH-RECEPTION THRESHOLD; AMPLITUDE-MODULATED NOISE; NORMAL-HEARING
   LISTENERS; COCHLEAR IMPLANT USERS; FREQUENCY-SELECTIVITY; INTERRUPTED
   SPEECH; RECOGNITION; INTELLIGIBILITY; INTERFERENCE; MASKERS
AB Consonant identification was measured for normal-hearing listeners using Vowel-Consonant-Vowel stimuli that were either unprocessed or spectrally degraded to force listeners to use temporal-envelope cues. Stimuli were embedded in a steady state or fluctuating noise masker and presented at a fixed signal-to-noise ratio. Fluctuations in the maskers were obtained by applying sinusoidal modulation to: (i) the amplitude of the noise (1st-order SAM masker) or (ii) the modulation depth of a 1st-order SAM noise (2nd-order SAM masker). The frequencies of the amplitude variation f(m) and the depth variation f(m)' were systematically varied. Consistent with previous studies, identification scores obtained with unprocessed speech were highest in an 8-Hz, 1st-order SAM masker. Reception of voicing and manner also peaked around f(m) = 8 Hz, while the reception of place of articulation was maximal at a higher frequency (f(m) = 32 Hz). When 2nd-order SAM maskers were used, identification scores and received information for each consonant feature were found to be independent of f(m)'. They decreased progressively with increasing carrier modulation frequency f(m) and ranged between those obtained with the steady state and the 1st-order SAM maskers. Finally, the results obtained with spectrally degraded speech were similar across all types of maskers, although an 8% improvement in the reception of voicing was observed for modulated maskers with fm < 64 Hz compared to the steady-state masker. These data provide additional evidence that listeners take advantage of temporal minima in fluctuating background noises, and suggest that: (i) minima of different durations are required for an optimal reception of the three consonant features and (ii) complex (i.e., 2nd-order) envelope fluctuations in background noise do not degrade speech identification by interfering with speech-envelope processing. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Paris 05, Inst Psychol, Expt Psychol Lab, CNRS,UMR 8581, F-92774 Boulogne, France.
   Inst Natl Polytech Grenoble, Inst Commun Parlee, CNRS, UPRESA 5009, F-38031 Grenoble, France.
RP Fullgrabe, C (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England.
EM c.fullgrabe@psychol.cam.ac.uk
RI Imhof, Margarete/F-8471-2011; Lorenzi, Christian/F-5310-2012; Fullgrabe,
   Christian/I-6331-2012
CR Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549
   BACON SP, 1989, J ACOUST SOC AM, V85, P2575, DOI 10.1121/1.397751
   Bregman AS., 1990, AUDITORY SCENE ANAL
   Calliope, 1989, PAROLE SON TRAITEMEN
   Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
   DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467
   DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836
   Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421
   EISENBERG LS, 1995, J SPEECH HEAR RES, V38, P222
   Ewert SD, 2002, J ACOUST SOC AM, V112, P2921, DOI 10.1121/1.1515735
   Ewert SD, 2000, J ACOUST SOC AM, V108, P1181, DOI 10.1121/1.1288665
   FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247
   FESTEN JM, 1993, J ACOUST SOC AM, V94, P1295, DOI 10.1121/1.408156
   DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859
   Fullgrabe C, 2003, J ACOUST SOC AM, V113, P49, DOI 10.1121/1.1523383
   Fullgrabe C, 2005, J ACOUST SOC AM, V117, P2158, DOI 10.1121/1.1861892
   GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346
   HALL JW, 1988, J ACOUST SOC AM, V83, P677, DOI 10.1121/1.396163
   HAZAN V, 1991, PERCEPT PSYCHOPHYS, V49, P187, DOI 10.3758/BF03205038
   HOUTGAST T, 1989, J ACOUST SOC AM, V85, P1676, DOI 10.1121/1.397956
   HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224
   HOWARDJONES PA, 1993, ACUSTICA, V78, P258
   HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811
   Kwon BJ, 2001, J ACOUST SOC AM, V110, P1130, DOI 10.1121/1.1384909
   Lorenzi C, 1999, HEARING RES, V136, P131, DOI 10.1016/S0378-5955(99)00117-3
   Lorenzi C, 2001, J ACOUST SOC AM, V110, P2470, DOI 10.1121/1.1406160
   Lorenzi C, 2001, J ACOUST SOC AM, V110, P1030, DOI 10.1121/1.1383295
   MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526
   MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
   Millman RE, 2002, J ACOUST SOC AM, V111, P2551, DOI 10.1121/1.1475341
   Moore BCJ, 1999, J ACOUST SOC AM, V106, P908, DOI 10.1121/1.427106
   Munson B, 2003, J ACOUST SOC AM, V113, P925, DOI 10.1121/1.1536630
   Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983
   Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538
   Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128
   POWERS GL, 1973, J ACOUST SOC AM, V54, P661, DOI 10.1121/1.1913646
   POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255
   Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009
   Sek A, 2003, J ACOUST SOC AM, V113, P2801, DOI 10.1121/1.1564020
   Sek A, 2004, J ACOUST SOC AM, V116, P3031, DOI 10.1121/1.1795331
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   Sheft S, 1997, J ACOUST SOC AM, V102, P1106, DOI 10.1121/1.419862
   Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957
   Summers V, 2004, J SPEECH LANG HEAR R, V47, P245, DOI 10.1044/1092-4388(2004/020)
   TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410
   Verhey JL, 2003, J ACOUST SOC AM, V114, P2135, DOI 10.1121/1.1612489
   WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392
   YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474
   Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102
NR 49
TC 55
Z9 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 74
EP 84
DI 10.1016/j.heares.2005.09.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500009
PM 16289579
ER

PT J
AU Han, WJ
   Shi, XR
   Nuttall, AL
AF Han, WJ
   Shi, XR
   Nuttall, AL
TI AIF and endoG translocation in noise exposure induced hair cell death
SO HEARING RESEARCH
LA English
DT Article
DE noise exposure; apoptosis; apoptosis inducing factor; endonuclease G;
   caspase; mitochondria; guinea pig
ID ENDONUCLEASE-G; INDUCED APOPTOSIS; ACTIVATION; MICE; MITOCHONDRIA;
   NECROSIS; PATHWAY; HEARING
AB Activation of caspases is a key element in the apoptotic process. However, mitochondria also play an important role via the release of proapoptotic proteins. This study investigated the roles of mitochondria-related apoptosis inducing factor (AIF) and endonuclease G (endoG), mitochondrion-specific nucleases, as well as caspase-3, an important mediator of apoptosis, in noise exposure induced hair cell death. Guinea pigs were exposed for 4 h/day to broadband noise at 122 dB SPL for 2 days. After the noise exposure, the cochleae were examined for the activity of caspase-3 with carboxyfluorescein-labeled fluoromethyl ketone (FMK)-peptide inhibitors. The cochleae were further examined for AIF and endoG translocation from the mitochondria by. immunohistochemistry. Noise exposure triggered activation of caspase-3 in apoptotic hair cells. In the normal organ of Corti, AIF and endoG were co-localized to the mitochondria. After noise exposure, AIF translocated into the nuclei of apoptotic and necrotic hair cells. The translocation of endoG from mitochondria into the nucleus was also found in apoptotic OHCs. These findings indicate that mitochondria-released proapoptotic proteins, AIF and endoG, are important factors in a noise-induced hair cell death pathway. (c) 2005 Published by Elsevier B.V.
C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97290 USA.
   Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100853, Peoples R China.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Rd,NRC04, Portland, OR 97290 USA.
EM nuttall@ohsu.edu
CR Asakura T, 1999, BRIT J CANCER, V80, P711, DOI 10.1038/sj.bjc.6690414
   Chen YR, 2000, INT J ONCOL, V16, P651
   Chi SJ, 1999, ONCOGENE, V18, P2281, DOI 10.1038/sj.onc.1202538
   COTE J, 1993, SCIENCE, V261, P765, DOI 10.1126/science.7688144
   Dawson VL, 2004, J BIOENERG BIOMEMBR, V36, P287, DOI 10.1023/B:JOBB.0000041755.22613.8d
   Garrido C, 2004, CURR OPIN CELL BIOL, V16, P639, DOI 10.1016/j.ceb.2004.09.008
   Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309
   Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Irvine RA, 2005, MOL CELL BIOL, V25, P294, DOI 10.1128/MCB.25.1.294-302.2005
   Jaattela M, 2003, NAT IMMUNOL, V4, P416, DOI 10.1038/ni0503-416
   Joza N, 2001, NATURE, V410, P549, DOI 10.1038/35069004
   Leist M, 1997, J EXP MED, V185, P1481, DOI 10.1084/jem.185.8.1481
   Li LY, 2001, NATURE, V412, P95, DOI 10.1038/35083620
   LO AC, 1995, ARCH HISTOL CYTOL, V58, P139, DOI 10.1679/aohc.58.139
   Lorenzo HK, 2004, FEBS LETT, V557, P14, DOI 10.1016/S0014-5793(03)01464-9
   MAJNO G, 1995, AM J PATHOL, V146, P3
   Miller D K, 1997, Semin Immunol, V9, P35, DOI 10.1006/smim.1996.0058
   Nicholson DW, 1997, TRENDS BIOCHEM SCI, V22, P299, DOI 10.1016/S0968-0004(97)01085-2
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Pirvola U, 2000, J NEUROSCI, V20, P43
   Prats E, 1997, DNA CELL BIOL, V16, P1111, DOI 10.1089/dna.1997.16.1111
   Schafer P, 2004, J MOL BIOL, V338, P217, DOI 10.1016/j.jmb.2004.02.069
   SHI XR, 2003, EXPT BIOL M SAN DIEG
   Sperandio S, 2000, P NATL ACAD SCI USA, V97, P14376, DOI 10.1073/pnas.97.26.14376
   Strasser A, 2000, ANNU REV BIOCHEM, V69, P217, DOI 10.1146/annurev.biochem.69.1.217
   Susin SA, 1999, NATURE, V397, P441
   THOMPSON CB, 1995, SCIENCE, V267, P1456, DOI 10.1126/science.7878464
   Widlak P, 2001, MOL CELL BIOCHEM, V218, P125, DOI 10.1023/A:1007231822086
   Wu YF, 2004, NEUROSCI LETT, V364, P203, DOI 10.1016/j.neulet.2004.04.093
   Yamashita D, 2004, NEUROREPORT, V15, P2719
   Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015
   Ye H, 2002, NAT STRUCT BIOL, V9, P680, DOI 10.1038/nsb836
   Yu SW, 2002, SCIENCE, V297, P259, DOI 10.1126/science.1072221
   Yuan J, 2003, NEURON, V40, P401, DOI 10.1016/S0896-6273(03)00601-9
   Zhang JH, 2003, P NATL ACAD SCI USA, V100, P15782, DOI 10.1073/pnas.2636393100
NR 36
TC 25
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 85
EP 95
DI 10.1016/j.heares.2005.10.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500010
PM 16309861
ER

PT J
AU Phillips, DP
   Carmichael, ME
   Hall, SE
AF Phillips, DP
   Carmichael, ME
   Hall, SE
TI Interaction in the perceptual processing of interaural time and level
   differences
SO HEARING RESEARCH
LA English
DT Article
DE interaural level difference; interaural time difference; selective
   adaptation; auditory lateralization; opponent process model
ID SUPERIOR OLIVARY COMPLEX; PRIMARY AUDITORY-CORTEX; LOW-FREQUENCY
   NEURONS; SOUND-LOCALIZATION; BINAURAL INTERACTION; INFERIOR COLLICULUS;
   CAT; SENSITIVITY; LOCATION; INTENSITY
AB Phillips and Hall [Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level, Hear. Res., 202 (2005) 188-199.] recently described the frequency-specific, selective adaptation of perceptual channels for interaural differences in level (ILD) and time (ITD). Psychometric functions for laterality based on ITD or ILD were obtained before and after exposure to adaptor tones of two frequencies presented alternately and highly lateralized to opposite sides. Following adaptation, points of perceived centrality (PPCs) were displaced towards the sides of the adaptor tones, and in opposite directions for the two frequencies. That is, laterality judgements showed a shift away from the adapted side, particularly for test cue values near the middle of the range. These data were congruent with a two-channel, opponent-process model of sound laterality coding. The present study used the same general paradigm to explore the independence of perceptual ITD and ILD processing. Psychometric functions for laterality based on ITD or ILD were obtained for each of two frequencies concurrently, before and after exposure to adaptor tones lateralized using the complementary cue. Once again, PPCs derived from the psychometric functions were displaced towards the sides of the adaptor tones, consistent with an opponent-process account of sound laterality coding. The size of the adaptation effect was at least as great as that described in the earlier study. Thus, a quarter cycle ITD adapting stimulus effected a 3 dB shift in the mean ILD-based PPC, and a 12 dB ILD adapting stimulus effected a 100 mu s shift in the mean ITD-based PPC. These data offer new evidence concerning interaction in the processing of ITDs and ILDs. (c) 2005 Elsevier B.V. All rights reserved.
C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada.
RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, 1355 Oxford St, Halifax, NS B3H 4J1, Canada.
EM dennis.phillips@dal.ca
RI Phillips, Dennis/A-6496-2011
CR Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037
   Boehnke SE, 2005, PERCEPTION, V34, P371, DOI 10.1068/p5140
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   CAIRD D, 1983, EXP BRAIN RES, V52, P385
   Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843
   GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   HARI R, 1995, NEUROSCI LETT, V189, P29, DOI 10.1016/0304-3940(95)11443-Z
   Heffner H E, 1997, Acta Otolaryngol Suppl, V532, P22
   Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153
   JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
   JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
   JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043
   Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064
   KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746
   KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870
   KUWADA S, 1983, J NEUROPHYSIOL, V50, P981
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863
   MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
   MOISEFF A, 1983, J NEUROSCI, V3, P2553
   PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9
   PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5
   Phillips DP, 2002, PERCEPTION, V31, P875, DOI 10.1068/p3293
   Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3
   PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245
   Phillips DP, 2001, J ACOUST SOC AM, V110, P1539, DOI 10.1121/1.1396329
   Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001]
   Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4
   Shore DI, 1998, J ACOUST SOC AM, V103, P3730, DOI 10.1121/1.423093
   Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078
   TAKAHASHI T, 1984, J NEUROSCI, V4, P1781
   TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163
   Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544
   YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000
   YIN TCT, 1990, J NEUROPHYSIOL, V64, P465
NR 36
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 96
EP 102
DI 10.1016/j.heares.2005.10.005
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500011
PM 16309863
ER

PT J
AU Frisina, ST
   Mapes, F
   Kim, S
   Frisina, DR
   Frisina, RD
AF Frisina, ST
   Mapes, F
   Kim, S
   Frisina, DR
   Frisina, RD
TI Characterization of hearing loss in aged type II diabetics
SO HEARING RESEARCH
LA English
DT Article
DE presbycusis; age-related hearing loss; cochlea; auditory system; aging;
   geriatric; metabolic; insulin; type II diabetes
ID PROTEIN-KINASE-C; GUINEA-PIG COCHLEA; NITRIC-OXIDE; INFERIOR COLLICULUS;
   INSULIN-RESISTANCE; ENDOTHELIAL-CELLS; IV COLLAGEN; IN-VIVO;
   NEURODEGENERATIVE DISORDERS; ADVANCED GLYCOSYLATION
AB Presbycusis - age-related hearing loss - is the number one communicative disorder and a significant chronic medical condition of the aged. Little is known about how type II diabetes, another prevalent age-related medical condition, and presbyeusis interact. The present investigation aimed to comprehensively characterize the nature of hearing impairment in aged type II diabetics. Hearing tests measuring both peripheral (cochlea) and central (brainstem and cortex) auditory processing were utilized. The majority of differences between the hearing abilities of the aged diabetics and their age-matched controls were found in measures of inner ear function. For example, large differences were found in pure-tone audiograms, wideband noise and speech reception thresholds, and otoacoustic emissions. The greatest deficits tended to be at low frequencies. In addition, there was a strong tendency for diabetes to affect the right ear more than the left. One possible interpretation is that as one develops presbycusis, the right ear advantage is lost, and this decline is accelerated by diabetes. In contrast, auditory processing tests that measure both peripheral and central processing showed fewer declines between the elderly diabetics and the control group. Consequences of elevated blood sugar levels as possible underlying physiological mechanisms for the hearing loss are discussed. (c) 2005 Published by Elsevier B.V.
C1 Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA.
   Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Anat & Neurobiol, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA.
   Daegu Fatima Hosp, Dept Otorhinolaryngol, Taegu 701600, South Korea.
RP Frisina, RD (reprint author), Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA.
EM rdf@cq.ent.rochester.edu
CR Amano S, 2001, BRIT J OPHTHALMOL, V85, P52, DOI 10.1136/bjo.85.1.52
   Antcliff R J, 1999, Semin Ophthalmol, V14, P223, DOI 10.3109/08820539909069541
   BJORBAEK C, 1995, DIABETES, V44, P90, DOI 10.2337/diabetes.44.1.90
   Boue-Grabot E, 2000, J BIOL CHEM, V275, P10190, DOI 10.1074/jbc.275.14.10190
   BoydWhite J, 1996, DIABETES, V45, P348, DOI 10.2337/diabetes.45.3.348
   BROWNLEE M, 1999, ATLAS CLIN ENDOCRINO
   BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315
   BUCALA R, 1993, P NATL ACAD SCI USA, V90, P6434, DOI 10.1073/pnas.90.14.6434
   CAMERON NE, 1991, AM J PHYSIOL, V261, pE1
   Cameron N.F., 1997, DIABETES S2, V46, P31
   CASPARY DM, 1990, J NEUROSCI, V10, P2363
   Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9
   CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5
   Cavaghan MK, 2000, J CLIN INVEST, V106, P329, DOI 10.1172/JCI10761
   CHAPMAN T, 1999, J LARYNGOL OTOL, V113, P13
   CHARONIS AS, 1992, DIABETES, V41, P49
   Erdem T, 2003, EUR ARCH OTO-RHINO-L, V260, P62, DOI 10.1007/s00405-002-0519-1
   FELDMAN EL, 2003, ELLENBERG RIFKINS DI, P185
   Fong DS, 2003, DIABETES CARE, V26, P226, DOI 10.2337/diacare.26.1.226
   Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   Frisina Robert D., 2001, Seminars in Hearing, V22, P213, DOI 10.1055/s-2001-15627
   Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
   Gosepath K, 2000, EUR ARCH OTO-RHINO-L, V257, P418, DOI 10.1007/s004050000261
   GREENE DA, 1992, DIABETES CARE, V15, P1902, DOI 10.2337/diacare.15.12.1902
   GREENE DA, 1993, DIABETES METAB REV, V9, P189
   Gries A, 2003, CRIT CARE MED, V31, P1697, DOI 10.1097/01.CCM.0000063446.19696.D3
   Groop LC, 1999, DIABETES OBES METAB, V1, pS1
   HAITOGLOU CS, 1992, J BIOL CHEM, V267, P12404
   Harrison DG, 1996, JPN CIRC J, V60, P815, DOI 10.1253/jcj.60.815
   HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7
   Jung KY, 1997, KOREAN J GENETIC, V19, P1
   Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
   Kuboki K, 2000, CIRCULATION, V101, P676
   Lee AYW, 1999, FASEB J, V13, P23
   Levitt H. L., 1971, J ACOUST SOC AM, V<IT>49</IT>, P476
   LISOWSKA G, 2001, SCAND AUDIOL S, V52, P199
   Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3
   Ma FC, 1998, J LARYNGOL OTOL, V112, P835
   MALPAS S, 1989, NEW ZEAL MED J, V102, P434
   MATSUMURA T, 2000, DIABETES MELLITUS FU, P983
   Mattson MP, 2001, MECH AGEING DEV, V122, P757, DOI 10.1016/S0047-6374(01)00226-3
   MCCANCE DR, 1993, J CLIN INVEST, V91, P2470, DOI 10.1172/JCI116482
   Miller J M, 1998, Scand Audiol Suppl, V48, P53
   MIZISIN AP, 2003, TXB DIABETIC NEUROPA, P86
   NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469
   NISHIZUKA Y, 1995, FASEB J, V9, P484
   Oku H, 2001, INVEST OPHTH VIS SCI, V42, P1915
   Ologe FE, 2005, INT J PEDIATR OTORHI, V69, P387, DOI 10.1016/j.ijporl.2004.11.009
   Polonsky KS, 1996, NEW ENGL J MED, V334, P777
   Prolla TA, 2001, TRENDS NEUROSCI, V24, pS21, DOI 10.1016/S0166-2236(00)01957-3
   Ren TY, 1997, HEARING RES, V112, P87, DOI 10.1016/S0378-5955(97)00109-3
   Sasso FC, 1999, METABOLISM, V48, P1346, DOI 10.1016/S0026-0495(99)90141-5
   Sato Y, 1999, GLYCOBIOLOGY, V9, P655, DOI 10.1093/glycob/9.7.655
   Satoh H, 1998, EUR ARCH OTO-RHINO-L, V255, P285, DOI 10.1007/s004050050060
   Seidman MD, 1997, ARCH OTOLARYNGOL, V123, P1039
   Shi XR, 2002, HEARING RES, V172, P73, DOI 10.1016/S0378-5955(02)00513-0
   SHIBA T, 1993, AM J PHYSIOL, V265, pE783
   Si JQ, 2002, HEARING RES, V171, P167, DOI 10.1016/S0378-5955(02)00497-5
   SONGER TJ, 1997, INT TXB DIABETES MEL, V2, P1762
   STEVENS MJ, 2000, DIABETES MELLITUS FU, P972
   Stevens MJ, 1996, METABOLISM, V45, P865, DOI 10.1016/S0026-0495(96)90161-4
   Stitt AW, 2000, DIABETES: CURRENT PERSPECTIVES, P67
   Sweeney G, 1998, MOL CELL BIOCHEM, V182, P121, DOI 10.1023/A:1006805510749
   SZWERGOLD BS, 1990, SCIENCE, V247, P451, DOI 10.1126/science.2300805
   Tabuchi K, 2001, NEUROSCI LETT, V307, P29, DOI 10.1016/S0304-3940(01)01919-X
   Tadros SF, 2005, AUDIOL NEURO-OTOL, V10, P44, DOI 10.1159/000082307
   TAY HL, 1995, CLIN OTOLARYNGOL, V20, P130, DOI 10.1111/j.1365-2273.1995.tb00029.x
   THIEME H, 1995, DIABETES, V44, P98, DOI 10.2337/diabetes.44.1.98
   Tsuprun V, 2001, HEARING RES, V157, P65, DOI 10.1016/S0378-5955(01)00278-7
   VAAQ A, 1995, J CLIN INVEST, V95, P690
   VANE JR, 1990, NEW ENGL J MED, V323, P27
   VAUGHAN DE, 2003, ELLENBERG RIFKINS DI, P175
   VLASSARA H, 1995, MOL MED, V1, P447
   Ways D K, 2000, Vitam Horm, V60, P149, DOI 10.1016/S0083-6729(00)60019-5
   Williams B, 1997, DIABETES, V46, P1497, DOI 10.2337/diabetes.46.9.1497
   WILLIAMSON JR, 1993, DIABETES, V42, P801, DOI 10.2337/diabetes.42.6.801
   WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391
   WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312
   Willott JF, 1998, HEARING RES, V119, P27, DOI 10.1016/S0378-5955(98)00029-X
   WILLOTT JF, 1985, J COMP NEUROL, V237, P545, DOI 10.1002/cne.902370410
   WILLOTT JF, 1991, AGING AUDITORY SYSTE, P56
   WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F
   WRIGHT CE, 1986, ANNU REV BIOCHEM, V55, P427, DOI 10.1146/annurev.bi.55.070186.002235
NR 85
TC 49
Z9 57
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 103
EP 113
DI 10.1016/j.heares.2005.09.002
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500012
PM 16309862
ER

PT J
AU Bortone, DS
   Mitchell, K
   Manis, PB
AF Bortone, DS
   Mitchell, K
   Manis, PB
TI Developmental time course of potassium channel expression in the rat
   cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE auditory; ion channel; RT-PCR; mRNA; QPCR
ID KV4.2 MESSENGER-RNA; DIFFERENTIAL EXPRESSION; BRAIN-STEM;
   ELECTRICAL-PROPERTIES; AUDITORY NEURONS; K+ CURRENT; CURRENTS; CELLS;
   MOUSE; MICE
AB Voltage gated potassium channels play critical roles in determining the responses of auditory brainstem neurons to acoustic stimuli. In the present study, we examined the developmental expression of potassium channels in rat cochlear nucleus. Quantitative RT-PCR revealed that K(v)1.1, K(v)1.2 and K(v)3.1 showed a monotonic increase in mRNA levels from postnatal days 3-28 (P3-P28), after which mRNA level was relatively constant until P56. In contrast, K(v)4.2 mRNA levels were lower on average by a factor of 2 after P28 than before P28. Relative to K(v)1.1, K(v)3.1 and K(v)1.2 mRNA were more abundant before P10 and less abundant thereafter. To address the relationship between message and protein levels, we performed semi-quantitative Western blotting for K(v)1.2. The message for K(v)1.2 increased earlier in development than the protein levels. Immunocytochemistry revealed a broad expression of K(v)1.1 and K(v)1.2 in the VCN. Staining intensity increased from 7-28 days postnatal. K(v)1.2 immunostaining was less variable across cells than Kv1.1 staining. We conclude that maturation of potassium channel expression in the rat cochlear nucleus continues until at least 4 weeks postnatal. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA.
RP Manis, PB (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, 1123 Bioinformat Bldg,CB 7070,130 Mason Farm Rd, Chapel Hill, NC 27599 USA.
EM pmanis@med.unc.edu
CR Bal R, 2001, J NEUROPHYSIOL, V86, P2299
   Baro DJ, 1997, J NEUROSCI, V17, P6597
   Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250
   Fitzakerley JL, 2000, HEARING RES, V147, P31, DOI 10.1016/S0378-5955(00)00118-0
   Forster B, 2004, MICROSC RES TECHNIQ, V65, P33, DOI 10.1002/jemt.20092
   Friauf E, 1999, CELL TISSUE RES, V297, P187, DOI 10.1007/s004410051346
   Gamkrelidze G, 2000, EXP BRAIN RES, V134, P398, DOI 10.1007/s002210000501
   Gamkrelidze G, 1998, J NEUROSCI, V18, P1449
   Gan L, 1996, J BIOL CHEM, V271, P5859
   Glazebrook PA, 2002, J PHYSIOL-LONDON, V541, P467, DOI 10.1113/jphysiol.2001.018333
   Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2
   Hallows JL, 1998, J NEUROSCI, V18, P5682
   Hattori S, 2003, J NEUROPHYSIOL, V90, P175, DOI 10.1152/jn.00990.2002
   HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535
   Hopkins WF, 1998, J PHARMACOL EXP THER, V285, P1051
   Jang GM, 2004, J BIOL CHEM, V279, P47419, DOI 10.1074/jbc.M405885200
   Kanold PO, 1999, J NEUROSCI, V19, P2195
   Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032
   Liss B, 2001, EMBO J, V20, P5715, DOI 10.1093/emboj/20.20.5715
   Liu SQJ, 1998, J NEUROSCI, V18, P2881
   Liu SQJ, 1998, J NEUROSCI, V18, P8758
   MALETICSAVATIC M, 1995, J NEUROSCI, V15, P3840
   MANIS P, 2002, ASS RES OT MIDW M ST, V25
   MANIS PB, 1996, ADV SP HEAR A&B, V3, P213
   MANIS PB, 1991, J NEUROSCI, V11, P2865
   OERTEL D, 1983, J NEUROSCI, V3, P2043
   Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
   Pal B, 2005, HEARING RES, V199, P57, DOI 10.1016/j.heares.2004.07.020
   PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756
   Perney TM, 1997, J COMP NEUROL, V386, P178
   Popratiloff A, 2003, J COMP NEUROL, V461, P466, DOI 10.1002/cne.10702
   Rasband MN, 2004, J NEUROSCI RES, V76, P749, DOI 10.1002/jnr.20073
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3083, DOI 10.1152/jn.00126.2002
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002
   Schwarz DWF, 1998, J OTOLARYNGOL, V27, P311
   Serodio P, 1998, J NEUROPHYSIOL, V79, P1081
   Tkatch T, 2000, J NEUROSCI, V20, P579
   Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
   von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004
   Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005
   WHITE JA, 1994, J NEUROPHYSIOL, V71, P1774
   WU SH, 1987, HEARING RES, V30, P99
   Wymore RS, 1996, J BIOL CHEM, V271, P15629
   YOUNG E, 1998, SYNAPTIC ORG BRAIN
NR 45
TC 19
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2006
VL 211
IS 1-2
BP 114
EP 125
DI 10.1016/j.heares.2005.10.012
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 011KQ
UT WOS:000235267500013
PM 16337757
ER

PT J
AU Li, JP
   Kania, R
   Lecain, E
   Ar, A
   Sauvaget, E
   Huy, PTB
   Herman, P
AF Li, JP
   Kania, R
   Lecain, E
   Ar, A
   Sauvaget, E
   Huy, PTB
   Herman, P
TI In vivo demonstration of the absorptive function of the middle ear
   epithelium
SO HEARING RESEARCH
LA English
DT Article
DE absorptive function; sodium flux; middle ear epithelium; in vivo
ID ION-TRANSPORT; OTITIS-MEDIA; BIOELECTRIC PROPERTIES; SODIUM-TRANSPORT;
   CL-SECRETION; EXPRESSION; CLEARANCE; PRESSURE; CHANNELS; FLUID
AB The present study investigated in vivo fluid and ion transport across the middle ear epithelium. The tympanic membrane of rats was punctured under general anesthesia. A capillary tube was fitted to the external auditory canal and the bulla filled with various solutions. Middle ear (ME) fluid volume variations were then measured at constant pressure.
   When saline was used, a linear decrease of fluid volume was apparent. Replacement of sodium with a non-permeable cation (N-methyl-D-glucamin) reduced the absorption rate from 0.065 +/- 0.008 to 0.019 +/- 0.003 mu l/min (P < 0.05, n = 6). Similarly, amiloride (10(-3) M), a sodium channel antagonist, reduced the absorption rate to 0.027 +/- 0.006 mu l/min (P < 0.05, n = 6). Net absorption was abolished when chloride was substituted with gluconate: -0.008 +/- 0.004 mu l/min (P < 0.02, n = 6), which might have been related (i) to the role of chloride as a diffusible anion through the paracellular pathway, or (ii) to the secretion of chloride through apical channels. However in this condition, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, a chloride channel blocker, did not affect the rate of fluid exchange -0.008 +/- 0.007 mu l/min (P = 0.75, n = 6).
   This model provides the first in vivo evidence for the absorptive function of the ME. Fluid introduced into the ME cavity disappears due to active transport through the mucosa. This process is sodium-dependent and can be hindered by high concentration of amiloride. The rate of absorption is high enough to allow total clearance of fluid from the cavity of the middle ear within 13 h. This process might play a role in the maintaining a fluid-free and gas-filled middle ear cavity. (c) 2005 Published by Elsevier B.V.
C1 Hop Lariboisiere, Serv ORL, F-75475 Paris, France.
   Shanghai Med Univ, Ren Ji Hosp, Dept Otolaryngol Head & Neck Surg, Shanghai 200001, Peoples R China.
   APHP, Fac Lariboisiere St Louis, Lab Otol Expt, LNRS 7060,CNRS, Paris, France.
   Tel Aviv Univ, Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel.
RP Herman, P (reprint author), Hop Lariboisiere, Serv ORL, 2 Rue Ambroise Pare, F-75475 Paris, France.
EM philippe.herman@lrb.ap-hop-paris.fr
CR DESERRES LM, 1991, ARCH OTOLARYNGOL, V117, P416
   Furukawa M, 1998, ACTA PHYSIOL SCAND, V163, P103, DOI 10.1046/j.1365-201x.1998.00330.x
   Furukawa M, 1999, HEARING RES, V132, P109, DOI 10.1016/S0378-5955(99)00042-8
   Furukawa M, 1997, AM J PHYSIOL-CELL PH, V272, pC827
   Hergils L, 1998, ACTA OTO-LARYNGOL, V118, P697
   Herman P, 1997, AM J PHYSIOL-CELL PH, V272, pC184
   HERMAN P, 1993, J CELL PHYSIOL, V154, P615, DOI 10.1002/jcp.1041540321
   HERMAN P, 1992, AM J PHYSIOL, V262, pF373
   Hofmann T, 1998, AM J RESP CRIT CARE, V157, P1844
   Kania R, 2004, ACTA OTO-LARYNGOL, V124, P408, DOI 10.1080/00016480310000683
   Li HS, 2002, ACTA OTO-LARYNGOL, V122, P488, DOI 10.1080/00016480260092273
   Li HS, 2003, ACTA OTO-LARYNGOL, V123, P575, DOI 10.1080/00016480310002465
   Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1
   Mandell DL, 2003, AM J PHYSIOL-CELL PH, V285, pC618, DOI 10.1152/ajpcell.00553.2002
   Matalon S, 2002, J APPL PHYSIOL, V93, P1852, DOI 10.1152/japplphysiol.01241.2001
   Morineau O, 2001, ACTA OTO-LARYNGOL, V121, P371
   Portier F, 1999, AM J PHYSIOL-CELL PH, V276, pC312
   Priner R, 2003, AUDIOL NEURO-OTOL, V8, P100, DOI 10.1159/000068997
   Priner R, 2003, HEARING RES, V175, P133, DOI 10.1016/S0378-5955(02)00718-9
   ROBERTS DG, 1995, ARCH PEDIAT ADOL MED, V149, P873
   SCHWIEBERT EM, 1994, AM J PHYSIOL, V266, pC1464
   Sehgal A, 1996, AM J RESP CELL MOL, V15, P122
   Takeuchi K, 1991, Acta Otolaryngol Suppl, V483, P17
   Tan CT, 1997, ACTA OTO-LARYNGOL, V117, P284, DOI 10.3109/00016489709117788
   Tideholm B, 1998, ACTA OTO-LARYNGOL, V118, P369, DOI 10.1080/00016489850183458
   YEN PT, 1993, ACTA OTO-LARYNGOL, V113, P358, DOI 10.3109/00016489309135825
NR 26
TC 11
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 1
EP 8
DI 10.1016/j.heares.2005.04.011
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500001
PM 16256284
ER

PT J
AU Takahashi, H
   Nakao, M
   Kaga, K
AF Takahashi, H
   Nakao, M
   Kaga, K
TI Interfield differences in intensity and frequency representation of
   evoked potentials in rat auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE auditory cortex; functional organization; auditory evoked potential;
   surface microelectrode array; rat
ID POSTERIOR FIELD; SOUND INTENSITY; DISTRIBUTED REPRESENTATION;
   AMPLITUDE-MODULATION; INFERIOR COLLICULUS; FUNCTIONAL-ANATOMY; MAMMALIAN
   COCHLEA; CEREBRAL-CORTEX; STRIATE CORTEX; SINGLE NEURONS
AB Existing studies have demonstrated interfield differences in functional organizations and neuronal responsive properties at a single neuron level in the auditory cortex, suggesting complicated encoding of sound frequency and intensity. The objective of present work is, by characterizing cortical auditory evoked potentials (AEPs), to bridge neural characteristics between a single neuron and field levels and to identify the interfield differences in the auditory cortex specifically in terms of spatial representation, which will be useful in guiding future unit studies. The AEP mapping found that each of auditory fields, which could be identified by a different tonotopic representation, showed interfield differences in an intensity-dependent spatial change, amplitude, latency, and amplitude-SPL (sound pressure level) function. These results also showed that many aspects of cortical representation were based on the cochlear properties, yet some were inconsistent. The intensity-dependent shift of activation in AI paralleled the tonotopic axis, which was similar to the place code in cochlea, while the shift in AAF and VAF did not parallel. Nevertheless, the amplitude-SPL function suggested that an underlying mechanism of all these shifts can be a compressive nonlinearity to CF tone, which is possibly formed in the cochlea and still preserved in the cortex. These results suggest that each field modifies the representation to handle a different aspect of sound information, which can be better analyzed than the cochlear representation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Tokyo, Grad Sch Engn, Dept Engn Synth, Bunkyo Ku, Tokyo 1138656, Japan.
   Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Mechanoinformat, Bunkyo Ku, Tokyo 1138656, Japan.
   Univ Tokyo, Grad Sch Med, Dept Otolaryngol & Head & Neck Surg, Bunkyo Ku, Tokyo 1138656, Japan.
RP Takahashi, H (reprint author), Univ Tokyo, Grad Sch Engn, Dept Engn Synth, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan.
EM hiro@hnl.u-tokyo.ac.jp
CR AZIZI SA, 1985, EXP BRAIN RES, V59, P36
   BARTH DS, 1990, J NEUROPHYSIOL, V64, P1527
   BARTH DS, 1991, BRAIN RES, V565, P109, DOI 10.1016/0006-8993(91)91741-I
   Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
   CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383
   COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y
   Covey E, 1996, J NEUROSCI, V16, P3009
   DI S, 1992, J NEUROPHYSIOL, V68, P425
   Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
   EGGARMONT JJ, 1996, AUDIT NEUROSCI, V2, P79
   Frien A, 2000, EUR J NEUROSCI, V12, P1466, DOI 10.1046/j.1460-9568.2000.00026.x
   Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2
   Heil P, 1998, CEREB CORTEX, V8, P125, DOI 10.1093/cercor/8.2.125
   HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X
   Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100
   Heil P, 1997, J NEUROPHYSIOL, V77, P2626
   Heil P, 1997, J NEUROPHYSIOL, V77, P2642
   HORIKAWA J, 1988, P JPN ACAD B-PHYS, V64, P260, DOI 10.2183/pjab.64.260
   Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1
   KAGA K, 1980, ELECTROEN CLIN NEURO, V50, P254, DOI 10.1016/0013-4694(80)90153-4
   KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756
   Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1
   KREIG WJS, 1946, J COMP NEUROL, V84, P221
   KREIG WJS, 1946, J COMP NEUROL, V84, P277
   Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5
   Ohl FW, 2000, J NEUROPHYSIOL, V83, P3123
   PATTERSON HA, 1976, ANTROGRADE DEGENERAT
   PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674
   PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9
   PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
   Robles L, 2001, PHYSIOL REV, V81, P1305
   ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499
   Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5
   SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
   SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3
   SCHREINER CE, 1992, EXP BRAIN RES, V92, P105
   SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2
   Shi CJ, 1997, J COMP NEUROL, V382, P153
   STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8
   SUGA N, 1982, J NEUROPHYSIOL, V47, P225
   Takahashi H, 2004, NEUROREPORT, V15, P2061, DOI 10.1097/00001756-200409150-00013
   Takahashi H, 2004, NEUROREPORT, V15, P1565, DOI 10.1097/01.wnr.0000134848.63755.5c
   Takahashi H, 2005, NEUROREPORT, V16, P137, DOI 10.1097/00001756-200502080-00013
   Takahashi H, 2003, IEEE T BIO-MED ENG, V50, P510, DOI 10.1109/TBME.2003.809483
   TANIGUCHI I, 1993, NEUROSCI LETT, V151, P178, DOI 10.1016/0304-3940(93)90015-D
   TUNTURI AR, 1952, AM J PHYSIOL, V168, P712
   Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3
   Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2
   Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
   Zilles K., 1985, CORTEX RAT STEREOTAX
NR 50
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 9
EP 23
DI 10.1016/j.heares.2005.05.014
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500002
PM 16213681
ER

PT J
AU Zeftawi, MS
AF Zeftawi, MS
TI MMN to natural Arabic CV syllables: 2-cross language study
SO HEARING RESEARCH
LA English
DT Article
DE MMN; Arabic; phonetic; speech processing
ID MISMATCH NEGATIVITY MMN; HUMAN AUDITORY-CORTEX; SPEECH SOUNDS; HUMAN
   BRAIN; COGNITIVE NEUROSCIENCE; MEMORY TRACES; REPRESENTATION;
   PERCEPTION; POTENTIALS; PLASTICITY
AB Mismatch negativity response parameters; latency, amplitude, and duration - to natural Arabic and natural English CV syllables - were obtained from normal-hearing adult Egyptians, in two experiments. In the first experiment, MMN was obtained in response to English CV syllable paradigms (Ba-Wa) and (Ga-Da) differing in formant duration and start of third formant, respectively. In the second experiment, MMN response for Arabic paradigm (Baa-Waa), English paradigm (Ba-Wa), and for Arabic-English paradigm (Waa-Wa) was obtained. Results revealed that the three levels of speech representation; acoustic, phonetic and phonologic could be probed preattentatively by MMN. The acoustic properties of speech signal are processed earlier than the phonetic and phonologic properties. (c) 2005 Elsevier B.V. All rights reserved.
C1 Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt.
RP Zeftawi, MS (reprint author), Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt.
EM m.samir@medscape.com
CR Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512
   Binder JR, 1997, J NEUROSCI, V17, P353
   Dehaene-Lambertz G, 2000, J COGNITIVE NEUROSCI, V12, P635, DOI 10.1162/089892900562390
   Dehaene-Lambertz G, 1998, NEUROREPORT, V9, P1885, DOI 10.1097/00001756-199806010-00040
   DehaeneLambertz G, 1997, NEUROREPORT, V8, P919, DOI 10.1097/00001756-199703030-00021
   Gage N, 1998, BRAIN RES, V814, P236, DOI 10.1016/S0006-8993(98)01058-0
   Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027
   Khattab G., 2000, LEEDS WORKING PAPERS, V8, P95
   KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270
   KRAUS N, 1994, AM J AUDIOL, V94, P39
   LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009
   Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132
   MAISTE AC, 1995, EAR HEARING, V16, P68, DOI 10.1097/00003446-199502000-00006
   Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271
   Menning H, 2002, LEARN MEMORY, V9, P253, DOI 10.1101/lm.49402
   Moller A.R., 2000, HEARING ITS PHYSL PA
   Musiek FE, 2000, AUDIOLOGY DIAGNOSIS, P45
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   NAATANEN R, 1995, EAR HEARING, V16, P6
   NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9
   Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X
   Naatanen R, 2001, PSYCHOPHYSIOLOGY, V38, P1, DOI 10.1017/S0048577201000208
   Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0
   Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826
   Paavilainen P, 2001, NEUROSCI LETT, V301, P179, DOI 10.1016/S0304-3940(01)01635-4
   Phillips C, 2001, COGNITIVE SCI, V25, P711, DOI 10.1016/S0364-0213(01)00049-0
   Phillips C., 1995, MIT WORKING PAPERS L, V26, P125
   Phillips C, 2000, J COGNITIVE NEUROSCI, V12, P1038, DOI 10.1162/08989290051137567
   PHILLIPS C, 1997, MPEG STUDIES VOWEL P
   Pulvermuller F, 2001, NEUROIMAGE, V14, P607, DOI 10.1006/nimg.2001.0864
   Rivera-Gaxiola M, 2000, BEHAV BRAIN RES, V112, P1, DOI 10.1016/S0166-4328(00)00218-7
   Rivera-Gaxiola M, 2000, BEHAV BRAIN RES, V111, P13, DOI 10.1016/S0166-4328(00)00139-X
   SALVI R, 2000, AUDIOLOGY DIAGNOSIS, P19
   Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336
   SHARMA A, 1993, ELECTROEN CLIN NEURO, V88, P64, DOI 10.1016/0168-5597(93)90029-O
   Shtyrov Y, 2002, NEUROREPORT, V13, P521, DOI 10.1097/00001756-200203250-00033
   Steinschneider M, 1999, J NEUROPHYSIOL, V82, P2346
   Tiitinen H, 1999, COGNITIVE BRAIN RES, V8, P355, DOI 10.1016/S0926-6410(99)00028-2
   Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139
   Tremblay KL, 2002, J SPEECH LANG HEAR R, V45, P564, DOI 10.1044/1092-4388(2002/045)
   Winkler I, 1999, COGNITIVE BRAIN RES, V7, P357, DOI 10.1016/S0926-6410(98)00039-1
   Zeftawi MS, 2004, HEARING RES, V198, P69, DOI 10.1016/j.heares.2004.07.003
   ZHANG Y, 2000, 12 INT C BIOM ESP FI
NR 43
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 24
EP 29
DI 10.1016/j.heares.2005.06.012
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500003
PM 16055287
ER

PT J
AU Lyzenga, J
   Carlyon, RP
   Moore, BCJ
AF Lyzenga, J
   Carlyon, RP
   Moore, BCJ
TI Dynamic aspects of the continuity illusion: Perception of level and of
   the depth, rate, and phase of modulation
SO HEARING RESEARCH
LA English
DT Article
DE modulation rate; modulation depth; modulation phase; continuity illusion
ID FREQUENCY-MODULATION; AMPLITUDE-MODULATION; PERCEIVED CONTINUITY;
   DISCRIMINATION; TONES; CARRIERS; PITCH; COHERENCE; SOUNDS; GLIDES
AB The perception of modulation of a tone interrupted by a noise burst was investigated. The tone and its modulation were perceived as continuing through the noise. In experiment 1, subjects rated the similarity of an uninterrupted tone and a tone interrupted by noise, in terms of the perceived level and modulation depth of the sinusoidal carrier. The values of these parameters in the central portion of the uninterrupted tone were systematically varied. Both amplitude and frequency modulation (AM and FM) were used. The results indicated that the perceived level and modulation depth of the carrier did not change greatly during the noise burst. When the modulation rate differed before and after the noise burst, the modulation-rate transition was perceived to occur near the end of the noise burst for the FM stimuli. Hence, for these stimuli, the continuity illusion appears to be dominated by the portion of the tone before, rather than after, the interruption. Results for the AM stimuli showed a non-significant trend in the same direction. Experiment 2 used forced-choice tasks to evaluate the ability to detect a change in the ongoing phase of AM and FM following interruption by a noise burst. The results confirmed earlier findings for FM tones, and extended them to AM tones, showing that listeners lost track of the phase of the modulation, even though the modulation was perceived as continuous. (c) 2005 Elsevier B.V. All rights reserved.
C1 MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England.
   Univ Cambridge, Dept Expt Psychol, Cambridge CB3 3EB, England.
RP Lyzenga, J (reprint author), Vrije Univ Amsterdam, Med Ctr, Dept ENT Audiol, Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands.
EM j.lyzenga@vume.nl
RI Carlyon, Robert/A-5387-2010; Moore, Brian/I-5541-2012
CR Bregman AS., 1990, AUDITORY SCENE ANAL
   CARLYON RP, 1991, J ACOUST SOC AM, V89, P329, DOI 10.1121/1.400468
   CARLYON RP, 2004, J ACOUST SOC AM, V166, P3629
   CARLYON RP, 1994, J ACOUST SOC AM, V95, P949, DOI 10.1121/1.410012
   CARLYON RP, 1994, J ACOUST SOC AM, V95, P968, DOI 10.1121/1.410013
   Carlyon RP, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P185
   CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755
   Creelman C. D., 1991, DETECTION THEORY USE
   Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
   FANTINI DA, 2002, 25 MIDW RES M ASS RE
   Furukawa S, 1996, J ACOUST SOC AM, V100, P2299, DOI 10.1121/1.417939
   Furukawa S, 1997, J ACOUST SOC AM, V101, P1632, DOI 10.1121/1.418147
   Gockel H, 2001, J ACOUST SOC AM, V109, P701, DOI 10.1121/1.1342073
   HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048
   KLUENDER KR, 1992, PERCEPT PSYCHOPHYS, V51, P231, DOI 10.3758/BF03212249
   LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156
   Lemanska J., 2002, Archives of Acoustics, V27
   Lyzenga J, 2005, J ACOUST SOC AM, V117, P1314, DOI 10.1121/1.1856251
   Lyzenga J, 2004, J ACOUST SOC AM, V116, P491, DOI 10.1121/1.1756616
   MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584
   MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861
   Plack CJ, 2000, J ACOUST SOC AM, V108, P1162, DOI 10.1121/1.1287022
   PLOMP R, 1982, PSYCHOACOUSTICS MUSI
   SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
   Sek A, 2000, J ACOUST SOC AM, V107, P1598, DOI 10.1121/1.428444
   STRICKLAND EA, 1989, J ACOUST SOC AM, V86, P2160, DOI 10.1121/1.398476
   THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466
   WARREN RM, 1988, J ACOUST SOC AM, V84, P1338, DOI 10.1121/1.396632
   WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149
   YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556
NR 30
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 30
EP 41
DI 10.1016/j.heares.2005.07.002
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500004
PM 16125887
ER

PT J
AU Simpson, A
   McDermott, HJ
   Dowell, RC
AF Simpson, A
   McDermott, HJ
   Dowell, RC
TI Benefits of audibility for listeners with severe high-frequency hearing
   loss
SO HEARING RESEARCH
LA English
DT Article
DE high-frequency hearing impairment; hearing aids; cochlear dead regions
ID ARTICULATION INDEX PREDICTIONS; COCHLEAR DEAD REGIONS; IMPAIRED
   LISTENERS; PERCEPTION; SPEECH; MODEL
AB A consonant identification test was carried out with 10 hearing-impaired listeners under various low-pass filter conditions. Subjects were also tested for cochlear dead regions with the TEN test. All subjects had moderate-to-severe high-frequency hearing losses. Consonant recognition was tested under conditions in which the speech signals were highly audible to subjects for frequencies up to the low-pass filter cut-off. Extensive dead regions were found for one subject with the TEN test. The remaining subjects may have had dead regions above 3 kHz, because of the severity of their hearing losses, but these could not be demonstrated with the TEN test. Average consonant scores for the subject group improved significantly (p < 0.05) with increasing audibility of high-frequency components of the speech signal. There were no cases of speech perception being reduced with increasing bandwidth. Nine of the subjects showed improvements in scores with increasing audibility, whereas the remaining subject showed little change in scores. For this subject, speech perception results were consistent with the TEN test findings. In general, the results suggest that listeners with severe high-frequency losses are often able to make some use of high-frequency speech cues if these cues can be made audible. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Melbourne, Cooperat Res Ctr Cochelar Implant & Hearing Aid I, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Bion Ear Inst, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
RP Simpson, A (reprint author), Univ Melbourne, Cooperat Res Ctr Cochelar Implant & Hearing Aid I, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM asimpson@bionicear.org
CR Baer T, 2002, J ACOUST SOC AM, V112, P1133, DOI 10.1121/1.1498853
   BENTLER RA, 1989, EAR HEARING, V10, P58, DOI 10.1097/00003446-198902000-00010
   Byrne D, 2001, J Am Acad Audiol, V12, P37
   BYRNE D, 1994, J ACOUST SOC AM, V96, P2108, DOI 10.1121/1.410152
   CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330
   DUBNO JR, 1982, J SPEECH HEAR RES, V25, P141
   DYBALA PD, 2002, J ACOUST SOC AM, V112, P2356
   FLETCHER H, 1950, J ACOUST SOC AM, V22, P89, DOI 10.1121/1.1906605
   Fletcher H., 1953, SPEECH HEARING COMMU
   Hogan CA, 1998, J ACOUST SOC AM, V104, P432, DOI 10.1121/1.423247
   MARKHAM D, 2002, UCL WORK PROGR, V14, P1
   MILLER G, 1955, J ACOUST SOC AM, V27, P623
   Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
   Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102
   Moore BCJ, 1998, BRIT J AUDIOL, V32, P317, DOI 10.3109/03005364000000083
   Moore BCJ, 2002, J ACOUST SOC AM, V111, P2549, DOI 10.1121/1.1476923
   MOORE BCJ, 2000, DIAGNOSIS DEAD REGIO
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   Murray N., 1986, Australian Journal of Audiology, V8
   *NAT AC LAB, 2000, SPEECH NOIS HEAR AID
   Rankovic CM, 2002, J ACOUST SOC AM, V111, P2545, DOI 10.1121/1.1476922
   RANKOVIC CM, 1991, J SPEECH HEAR RES, V34, P391
   Simpson A, 2005, INT J AUDIOL, V44, P281, DOI 10.1080/14992020500060636
   Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905
   Stelmachowicz PG, 2001, J ACOUST SOC AM, V110, P2183, DOI 10.1121/1.1400757
   THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888
   VICKERS DA, 2001, BRIT J AUDIOL, V35, P148
NR 27
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 42
EP 52
DI 10.1016/j.heares.2005.07.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500005
PM 16137848
ER

PT J
AU Songer, JE
   Rosowski, JJ
AF Songer, JE
   Rosowski, JJ
TI The effect of superior canal dehiscence on cochlear potential in
   response to air-conducted stimuli in chinchilla
SO HEARING RESEARCH
LA English
DT Article
DE superior canal dehiscence; third-window hypothesis; auditory mechanisms
ID HEARING-LOSS; MECHANISMS; EARPHONES; VERTIGO; MODEL
AB A superior semicircular canal dehiscence (SCD) is a break or hole in the bony wall of the superior semicircular canal. Patients with SCD syndrome present with a variety of symptoms: some with vestibular symptoms, others with auditory symptoms (including low-frequency conductive hearing loss) and yet others with both. We are interested in whether or not mechanically altering the superior canal by introducing a dehiscence is sufficient to cause the low-frequency conductive hearing loss associated with SCD syndrome. We evaluated the effect of a surgically introduced dehiscence on auditory responses to air-conducted (AC) stimuli in 11 chinchilla ears. Cochlear potential (CP) was recorded at the round-window before and after a dehiscence was introduced. In each ear, a decrease in CP in response to low frequency (<2 kHz) sound stimuli was observed after the introduction of the dehiscence. The dehiscence was then patched with cyanoacrylate glue leading to a reversal of the dehiscence-induced changes in CP. The reversible decrease in auditory sensitivity observed in chinchilla is consistent with the elevated AC thresholds observed in patients with SCD. According to the 'third-window' hypothesis the SCD shunts sound-induced stapes velocity away from the cochlea, resulting in decreased auditory sensitivity to AC sounds. The data collected in this study are consistent with predictions of this hypothesis. (c) 2005 Elsevier B.V. All rights reserved.
C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA.
   Harvard Univ, MIT, Cambridge, MA 02138 USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
RP Songer, JE (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA.
EM jocelyns@mit.edu; John_Rosowski@meei.harvard.edu
CR Brantberg K, 2001, ACTA OTO-LARYNGOL, V121, P68
   Carey JP, 2004, OTOL NEUROTOL, V25, P345, DOI 10.1097/00129492-200405000-00024
   Carey JP, 2000, ARCH OTOLARYNGOL, V126, P137
   Cremer PD, 2000, NEUROLOGY, V55, P1833
   DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163
   Hirvonen TP, 2001, ARCH OTOLARYNGOL, V127, P1331
   KIM D, 1980, SOC NEUR ABSTR, V6, P41
   Mikulec AA, 2004, OTOL NEUROTOL, V25, P121, DOI 10.1097/00129492-200403000-00007
   Minor LB, 2000, AM J OTOL, V21, P9
   Minor LB, 1998, ARCH OTOLARYNGOL, V124, P249
   Minor LB, 2003, OTOL NEUROTOL, V24, P270, DOI 10.1097/00129492-200303000-00023
   RAVICZ M, 2001, 24 MIDW M ASS RES OT, P62
   RAVIRAJAN CT, 1992, LUPUS, V1, P157, DOI 10.1177/096120339200100307
   ROSOWSKI J, 1994, SPRINGER HDB AUDITOR, P172
   Rosowski JJ, 2004, OTOL NEUROTOL, V25, P323, DOI 10.1097/00129492-200405000-00021
   RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409
   Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6
   Songer JE, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P234
   VONBEKESY G, 1982, EXPT HEARING
   Voss SE, 2000, J ACOUST SOC AM, V107, P1548, DOI 10.1121/1.428440
   Voss SE, 2000, EAR HEARING, V21, P265, DOI 10.1097/00003446-200008000-00001
   ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 22
TC 34
Z9 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 53
EP 62
DI 10.1016/j.heares.2005.07.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500006
PM 16150562
ER

PT J
AU Brimijoin, WO
   O'Neill, WE
AF Brimijoin, WO
   O'Neill, WE
TI On the prediction of sweep rate and directional selectivity for FM
   sounds from two-tone interactions in the inferior colliculus
SO HEARING RESEARCH
LA English
DT Article
DE auditory midbrain; frequency modulation; spectrotemporal receptive
   field; mustached bat; neural delay lines; FM models; temporal processing
ID PRIMARY AUDITORY-CORTEX; FREQUENCY-MODULATED STIMULI;
   COMBINATION-SENSITIVE NEURONS; MEDIAL GENICULATE-BODY; ECHO-LOCATING
   BATS; MOUSTACHED BAT; SPECTRAL INTEGRATION; RESPONSE PROPERTIES;
   COCHLEAR NUCLEUS; SINGLE UNITS
AB Two-tone stimuli have traditionally been used to reveal regions of inhibition in auditory spectral receptive fields, particularly for neurons with low spontaneous rates. These techniques reveal how different frequencies excite or suppress the response to an excitatory frequency of a cell, but have often been assessed at a fixed masker-probe time interval. We used a variation of this methodology to determine whether two-tone spectrotemporal interactions can account for rate-dependent directional selectivity for frequency modulations (FM) in the mustached bat inferior colliculus (IC). First, we quantified the response to upward and downward sweeping, linear, fixed-bandwidth FM tones centered at a unit's characteristic frequency (CF) at 6 sweep durations ranging from 2 to 64 ins. Then, to examine how responses to instantaneous frequencies contained within the sweeps might interact in time, we varied the frequency and relative onset of a brief (4 ms) "conditioner" tone paired with a fixed 4-ms CF probe tone. We constructed "conditioned response areas" (CRA) depicting regions of suppression and facilitation of the probe tone caused by the conditioning tone. We classified the CRAs as predominantly excitatory (40.9%), inhibitory (22.7%), or mixed (36.4%). To generate FM response predictions, the CRAs were multiplied with spectrograms of the same sweeps used to assess response to FM. The predictions of FM rate and directionality were accurate by our criteria in approximately 20% of units. Conversely, the CRAs from the remaining units failed to predict FM responses as accurately, suggesting that most IC units respond differently to FM sweeps than they do to tone-pairs matched to the instantaneous frequencies contained in those sweeps. The implications of these results for models of FM directionality are discussed. (c) 2005 Elsevier B.V. All rights reserved.
C1 Ctr Navigat & Commun Sci, Rochester, NY 14642 USA.
   Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA.
   Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA.
RP O'Neill, WE (reprint author), Ctr Navigat & Commun Sci, 601 Elmwood Ave, Rochester, NY 14642 USA.
EM william_oneill@urmc.rochester.edu
CR BODENHAMER RD, 1979, BRAIN RES, V171, P530, DOI 10.1016/0006-8993(79)91057-6
   Brand A, 2000, J NEUROPHYSIOL, V84, P1790
   BRITT R, 1976, J NEUROPHYSIOL, V39, P179
   Brosch M, 1997, J NEUROPHYSIOL, V77, P923
   Brosch M, 1999, J NEUROPHYSIOL, V82, P1542
   Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155
   CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106
   CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
   Covey E, 1996, J NEUROSCI, V16, P3009
   DAVIS KA, 1995, J NEUROSCI METH, V57, P107, DOI 10.1016/0165-0270(94)00146-8
   EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5
   ERULKAR SD, 1968, J NEUROPHYSIOL, V31, P537
   Faure PA, 2003, J NEUROSCI, V23, P3052
   FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061
   Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059
   Gordon M, 2000, J COMP NEUROL, V426, P165, DOI 10.1002/1096-9861(20001016)426:2<165::AID-CNE1>3.0.CO;2-I
   Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2
   HEIL P, 1992, J COMP PHYSIOL A, V171, P583
   Heil P, 1998, J NEUROPHYSIOL, V79, P3041
   HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W
   Heil P, 1997, Acta Otolaryngol Suppl, V532, P99
   KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273
   KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513
   Leroy SA, 2000, J NEUROSCI, V20, P8533
   MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6
   MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X
   Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4
   OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254
   ONEILL WE, 1985, J COMP PHYSIOL A, V157, P797, DOI 10.1007/BF01350077
   O'Neill WE, 2002, J NEUROPHYSIOL, V88, P172, DOI 10.1152/jn.00966.2001
   ONEILL WE, 2003, ASS RES OTOLARYNGOLO, P26
   POON PWF, 1992, EXP BRAIN RES, V91, P94
   Rall W., 1964, NEURAL THEORY MODELI, P73
   RUFF PI, 1987, BIOL CYBERN, V57, P147, DOI 10.1007/BF00364147
   SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1
   SEGEV I, 1992, TRENDS NEUROSCI, V15, P414, DOI 10.1016/0166-2236(92)90003-Q
   Segev I, 1998, TRENDS NEUROSCI, V21, P453, DOI 10.1016/S0166-2236(98)01327-7
   SHANNONHARTMAN S, 1992, HEARING RES, V61, P179, DOI 10.1016/0378-5955(92)90049-S
   SUGA N, 1965, J PHYSIOL-LONDON, V179, P26
   Suga N., 1973, BASIC MECH HEARING, P675
   SUGA N, 1965, J PHYSIOL-LONDON, V181, P671
   SUGA N, 1974, J EXP BIOL, V61, P379
   SUGA N, 1973, J ACOUST SOC AM, V54, P174, DOI 10.1121/1.1913561
   TIAN B, 1994, J NEUROPHYSIOL, V71, P1959
   Tian B, 1998, J NEUROPHYSIOL, V79, P2629
   Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
NR 46
TC 15
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 63
EP 79
DI 10.1016/j.heares.2005.07.005
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500007
PM 16263230
ER

PT J
AU Gazzaz, B
   Weil, D
   Rais, L
   Akhyat, O
   Azeddoug, H
   Nadifi, S
AF Gazzaz, B
   Weil, D
   Rais, L
   Akhyat, O
   Azeddoug, H
   Nadifi, S
TI Autosomal recessive and sporadic deafness in Morocco: High frequency of
   the 35delG GJB2 mutation and absence of the 342-kb GJB6 variant
SO HEARING RESEARCH
LA English
DT Article
DE deafness; ARNSHL; sporadic; GJB2 and GJB6; Morocco
ID CONNEXIN 26 GENE; SENSORINEURAL HEARING-LOSS; PRELINGUAL DEAFNESS;
   CARRIER FREQUENCY; POPULATION; PREVALENCE; IMPAIRMENT; FORM
AB Deafness is a heterogeneous disorder showing different pattern of inheritance and involving a multitude of different genes. Mutations in the gene, GJB2 Gap junction type 1), encoding the gap junction protein connexin-26 on chromosome 13q11 may be responsible for up 50% of autosomal recessive nonsyndromic hearing loss cases (ARNSHL), and for 15-30% of sporadic cases. However, a large proportion (10-42%) of patients with GJB2 has only one GJB2 mutant allele. Recent reports have suggested that a 342-kb deletion truncating the GJB6 gene (encoding connexin-30), was associated with ARNSHL through either homozygous deletion of Cx30, or digenic inheritance of a Cx30 deletion and a Cx26 mutation in trans. Because mutations in Connexin-26 (Cx26) play an important role in ARNSHL and that distribution pattern of GJB2 variants differs considerably among ethnic groups, our objective was to find out the significance of Cx26 mutations in Moroccan families who had hereditary and sporadic deafness. One hundred and sixteen families with congenital deafness (including 38 multiplex families, and 78 families with sporadic cases) were included. Results show that the prevalence of the 35delG mutation is 31.58% in the family cases and 20.51% in the sporadic cases. Further screening for other GJB2 variants demonstrated the absence of other mutations; none of these families had mutations in exon 1 of GJB2 or the 342-kb deletion of GJB6. Thus, screening of the 35delG in the GJB2 gene should facilitate routinely used diagnostic for genetic counselling in Morocco. (c) 2005 Elsevier B.V. All rights reserved.
C1 Fac Med & Pharm, Med Genet Lab, Casablanca, Morocco.
   Fac Sci Ain Chock, Mol Biol Lab, Casablanca, Morocco.
   CHU Ibnou Rochd, Dept Ophthalmol, Casablanca, Morocco.
   Inst Pasteur, Unite Genet Deficits Sensoriels, Paris, France.
   Fac Sci Ibn Zohr, Mol Biol Lab, Agadir, Morocco.
RP Nadifi, S (reprint author), Fac Med & Pharm, Med Genet Lab, Casablanca, Morocco.
EM s.nadifi@caramail.com
CR Antoniadi T, 2000, HUM MUTAT, V16, P7, DOI 10.1002/1098-1004(200007)16:1<7::AID-HUMU2>3.0.CO;2-A
   Baris I, 2001, CLIN GENET, V60, P452, DOI 10.1034/j.1399-0004.2001.600608.x
   Ben Arab S, 2000, CLIN GENET, V57, P439, DOI 10.1034/j.1399-0004.2000.570607.x
   Brobby GW, 1998, NEW ENGL J MED, V338, P548, DOI 10.1056/NEJM199802193380813
   CALVO J, 2002, CONNEXINES DEAFNESS
   Cohen E.S., 1999, AM J MED GENET, V89, P130
   Cohen M.M., 1995, HEREDITARY HEARING L, P9
   del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1
   Fuse Y, 1999, NEUROREPORT, V10, P1853, DOI 10.1097/00001756-199906230-00010
   Gabriel H, 2001, Hum Mutat, V17, P521, DOI 10.1002/humu.1138
   Gasmelseed Nagla M A, 2004, Hum Mutat, V23, P206, DOI 10.1002/humu.9216
   Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406
   GUILFORD P, 1994, NAT GENET, V6, P24, DOI 10.1038/ng0194-24
   Hamelmann C, 2001, Hum Mutat, V18, P84, DOI 10.1002/humu.1156
   Kenneson A, 2002, GENET MED, V4, P258, DOI 10.1097/01.GIM.0000020750.60733.CA
   Lench NJ, 1998, J MED GENET, V35, P151, DOI 10.1136/jmg.35.2.151
   Liu GP, 2000, INT J SYST SCI, V31, P63, DOI 10.1080/002077200291460
   Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945
   Loffler J, 2001, EUR J HUM GENET, V9, P226, DOI 10.1038/sj.ejhg.5200607
   Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103
   Mueller RF, 1999, INT J PEDIATR OTORHI, V50, P3, DOI 10.1016/S0165-5876(99)00242-6
   Murgia A, 1999, J MED GENET, V36, P829
   Mustapha M, 2001, J Med Genet, V38, pE36, DOI 10.1136/jmg.38.10.e36
   NADOL JB, 1993, NEW ENGL J MED, V329, P1092, DOI 10.1056/NEJM199310073291507
   Pampanos A, 2002, INT J PEDIATR OTORHI, V65, P101, DOI 10.1016/S0165-5876(02)00177-5
   Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023
   Prasad S, 2000, HUM MUTAT, V16, P502
   RABIONET R, 2002, CONNEXINES DEAFNESS
   RAYMOND M, 1995, J HERED, V86, P248
   Rothrock CR, 2003, HUM GENET, V113, P18, DOI 10.1007/s00439-003-0944-2
   RUAZIDIN S, 2000, NAT GENET, V26, P431
   Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009
   Storm K, 1999, HUM MUTAT, V14, P263, DOI 10.1002/(SICI)1098-1004(1999)14:3<263::AID-HUMU10>3.0.CO;2-X
   TEKIN M, 2000, HUM GENET, V106, P399
   Van Camp G, 2003, HEREDITARY HEARING L
   Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273
NR 38
TC 21
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 80
EP 84
DI 10.1016/j.heares.2005.08.001
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500008
PM 16243461
ER

PT J
AU Braun, M
   Chaloupka, V
AF Braun, M
   Chaloupka, V
TI Carbamazepine induced pitch shift and octave space representation
SO HEARING RESEARCH
LA English
DT Article
DE carbamazepine; medial geniculate nucleus; inferior colliculus; octave
   mapping; fundamental frequeney fo; pitch
ID MEDIAL GENICULATE-BODY; CELLS IN-VITRO; ABSOLUTE-PITCH; INFERIOR
   COLLICULUS; LAMINAR STRUCTURE; ACTION-POTENTIALS; PERCEPTION;
   IDENTIFICATION; TRIMIPRAMINE; INHIBITION
AB Octave-circular pitch perception, the repetition of pitch scale qualities when surpassing the octave interval, has been observed in behavioral data from humans and monkeys, but the underlying anatomy and physiology is still unknown. Here we analyze octave circularity in a concert pianist with absolute pitch, both under medication with the neurotropic drug carbamazepine (CBZ) and without medication. Analysis of 4619 responses in a pitch identification task revealed an internal tone-scale representation, based on the norm-tone scale re A4 = 440 Hz, with an octave-circular pattern of strongly and weakly represented tones. CBZ caused a global down-shift of pitch (ca. 1 semitone at 500 Hz), but no down-shift of the octave-circular pattern of tone characteristics. This pattern was similar in the six tested octave ranges (32.7-2093 Hz), both under the control and the CBZ condition. Pattern repetition always occurred at octave intervals and did not reflect the stretched octaves of piano tuning. The results indicate that CBZ influences pitch detection peripheral of an octave-circular pitch representation. Thus they support previous evidence for pitch detection in the auditory midbrain and for octave-circular pitch mapping in the auditory thalamus. (c) 2005 Elsevier B.V. All rights reserved.
C1 Neurosci Music, S-67195 Klassbol, Sweden.
   Univ Washington, Dept Phys, Seattle, WA 98195 USA.
   Univ Washington, Sch Music, Seattle, WA 98195 USA.
RP Braun, M (reprint author), Neurosci Music, Gansbyn 14, S-67195 Klassbol, Sweden.
EM nombraun@telia.com
CR BEAUCHAMP G, 1992, NEUROPHARMACOLOGY, V31, P229, DOI 10.1016/0028-3908(92)90172-L
   Braun M, 2000, HEARING RES, V145, P130, DOI 10.1016/S0378-5955(00)00083-6
   Braun M., 2001, ACOUST RES LETT, V2, P85, DOI 10.1121/1.1376728
   Braun M, 1999, HEARING RES, V129, P71, DOI 10.1016/S0378-5955(98)00223-8
   Braun M., 2002, Acoustics Research Letters Online, V3, DOI 10.1121/1.1472336
   Cetas JS, 2003, J COMP NEUROL, V458, P307, DOI 10.1002/cne.10595
   Cetas JS, 2002, J COMP NEUROL, V445, P78, DOI 10.1002/cne.10164
   Cetas JS, 2001, HEARING RES, V155, P113, DOI 10.1016/S0378-5955(01)00257-X
   CHALOUPKA V, 1994, J ACOUST SOC AM, V96, P145, DOI 10.1121/1.411437
   CHALOUPKA V, 1992, J ACOUST SOC AM, V91, P2436, DOI 10.1121/1.403148
   DEMANY L, 1991, J ACOUST SOC AM, V90, P3019, DOI 10.1121/1.401776
   DEMANY L, 1988, J ACOUST SOC AM, V83, P687, DOI 10.1121/1.396164
   DEMANY L, 1990, J ACOUST SOC AM, V88, P2126, DOI 10.1121/1.400109
   Fujimoto A, 2004, J CLIN NEUROSCI, V11, P69, DOI 10.1016/S0967-5868(03)00068-7
   GALAZYUK AV, 2001, J NEUROSCI, V21, P1
   HIROSE G, 1990, ELECTROEN CLIN NEURO, V75, P543, DOI 10.1016/0013-4694(90)90140-F
   IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309
   JAPARIDZE G, 1993, EPILEPSIA, V34, P1105, DOI 10.1111/j.1528-1157.1993.tb02141.x
   Koerner C, 2003, PHARMACOPSYCHIATRY, V36, P241
   Konno S, 2003, INTERNAL MED, V42, P880, DOI 10.2169/internalmedicine.42.880
   Kuo CC, 1997, MOL PHARMACOL, V51, P1077
   LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4
   LANGNER G, 1998, PSYCHOPHYSICAL PHYSL, P277
   Langosch JM, 1998, EUR NEUROPSYCHOPHARM, V8, P209, DOI 10.1016/S0924-977X(97)00070-9
   LATTARD J, 1993, J ACOUST SOC AM, V94, P46, DOI 10.1121/1.407059
   LAVOIE PA, 1994, J PSYCHIATR NEUROSCI, V19, P208
   Macdonald RL, 1995, EPILEPSIA, V36, P2
   MARTIN DW, 1961, J ACOUST SOC AM, V33, P582, DOI 10.1121/1.1908730
   MCLEAN MJ, 1986, J PHARMACOL EXP THER, V238, P727
   MIYAZAKI K, 1988, PERCEPT PSYCHOPHYS, V44, P501, DOI 10.3758/BF03207484
   MIYAZAKI K, 1989, MUSIC PERCEPT, V7, P1
   MIYAZAKI K, 1990, MUSIC PERCEPT, V8, P177
   MOREL A, 1980, THESIS U LAUSANNE ZU, P1
   MOREST DK, 1965, J ANAT, V99, P143
   Rees A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P239, DOI 10.1007/978-1-4419-8712-9_22
   SCHIRRMACHER K, 1993, NEUROPSYCHOBIOLOGY, V27, P176, DOI 10.1159/000118976
   Schirrmacher K, 1995, EUR NEUROPSYCHOPHARM, V5, P501, DOI 10.1016/0924-977X(95)00043-O
   SCHWARZ DWF, 1993, ACTA OTO-LARYNGOL, V113, P266, DOI 10.3109/00016489309135807
   SIMPSON J, 1994, MUSIC PERCEPT, V12, P267
   Soler F, 2000, J BIOENERG BIOMEMBR, V32, P133, DOI 10.1023/A:1005519312463
   Ulrich ML, 2003, J PSYCHIATR NEUROSCI, V28, P115
   Walden J, 1992, Eur Neuropsychopharmacol, V2, P455, DOI 10.1016/0924-977X(92)90009-W
   Wright AA, 2000, J EXP PSYCHOL GEN, V129, P291, DOI 10.1037//0096-3445.129.3.291
   Yang YC, 2002, MOL PHARMACOL, V62, P1228, DOI 10.1124/mol.62.5.1228
   Yoshikawa H, 2003, BRAIN DEV-JPN, V25, P127, DOI 10.1016/S0387-7604(02)00155-9
NR 45
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 85
EP 92
DI 10.1016/j.heares.2005.05.015
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500009
PM 16181754
ER

PT J
AU Shwinska-Kowalska, M
   Rzadzinska, A
   Rajkowska, E
   Malczyk, M
AF Shwinska-Kowalska, M
   Rzadzinska, A
   Rajkowska, E
   Malczyk, M
TI Expression of bFGF and NGF and their receptors in chick's auditory organ
   following overexposure to noise
SO HEARING RESEARCH
LA English
DT Article
DE mRNA; hair cells; regeneration; immunohistochemistry; polyclonal
   antibody anti-CRF; polyclonal anti-tyrosine kinase antibody
ID FIBROBLAST-GROWTH-FACTOR; HAIR CELL REGENERATION; AVIAN INNER-EAR;
   ACOUSTIC TRAUMA; NEUROTROPHIC FACTOR; MESSENGER-RNAS; IN-VITRO;
   POTENTIAL ROLE; RAT COCHLEA; BASIC FGF
AB Growth factors are known to activate signaling cascades for DNA replication; they participate in the regulation of cell differentiation and are required as positive signals for cell survival. Thus, many of them may be regarded as potential candidates stimulating regeneration processes in the inner ear. We analyzed the expression of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) and their receptor (bFGFR and NGFR)-like immunoreactivity in chick basilar papillae, along with bFGF and NGF mRNA expression. The evaluation was made 1 and 5 days after exposure to wide-band noise with two increasing levels of acoustic energy.
   For both factors, the immunoreactivity was shown predominantly in the middle part of basilar papilla, in noise-exposed, but not control birds. It was localized in the cytoplasm of hair cells, nuclei of supporting cells and cytoplasm of ganglion cells. Strong immunoreactivity of bFGFR and NGFR was found both in control and noise-exposed animals, with the cell localization similar to that of growth factors. The increase in mRNA expression for bFGF and NGF was found in noise-exposed animals only after lower exposure to noise, on day 5 after exposure (p < 0.01). A lack of increased expression after higher exposure could be excused by larger damage of hair cells followed by the increase of mRNA for beta-actin to which the results were referred.
   The results suggest bFGF and NGF involvement in postinjury regeneration of the basilar papilla. (c) 2005 Elsevier B.V. All rights reserved.
C1 Nofer Inst Environm Med, Dept Phys Hazards, PL-91348 Lodz, Poland.
RP Shwinska-Kowalska, M (reprint author), Nofer Inst Environm Med, Dept Phys Hazards, Teresy St 8, PL-91348 Lodz, Poland.
EM marsliw@imp.lodz.pl
RI Pawelczyk, Malgorzata/C-9853-2011
CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3
   ADLER HJ, 1995, J NEUROCYTOL, V24, P111, DOI 10.1007/BF01181554
   Alvarez IS, 1998, DEV BIOL, V199, P42, DOI 10.1006/dbio.1998.8903
   AVILA MA, 1993, DEV BIOL, V159, P266, DOI 10.1006/dbio.1993.1239
   Bartlett SE, 1997, NEUROSCI LETT, V227, P87, DOI 10.1016/S0304-3940(97)00318-2
   BERND P, 1994, INT J DEV NEUROSCI, V12, P709, DOI 10.1016/0736-5748(94)90051-5
   Bernd P, 1999, DEV BRAIN RES, V116, P205, DOI 10.1016/S0165-3806(99)00082-6
   BRINDLE NPJ, 1993, CARDIOVASC RES, V27, P1162, DOI 10.1093/cvr/27.7.1162
   Chardin S, 1997, INT J DEV NEUROSCI, V15, P497, DOI 10.1016/S0736-5748(96)00106-2
   CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
   COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3
   Cristobal R, 2002, MOL BRAIN RES, V102, P83, DOI 10.1016/S0169-328X(02)00202-4
   Dai CF, 2004, HEARING RES, V187, P1, DOI 10.1016/S0378-5955(03)00277-6
   DEHAMER MK, 1994, NEURON, V13, P1083, DOI 10.1016/0896-6273(94)90047-7
   Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7
   ESCANDON E, 1990, DEV BIOL, V142, P293, DOI 10.1016/0012-1606(90)90350-R
   GENSBURGER C, 1987, FEBS LETT, V217, P1, DOI 10.1016/0014-5793(87)81230-9
   GHOSH A, 1995, SCIENCE, V268, P239, DOI 10.1126/science.7716515
   GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3
   GOMEZPINILLA F, 1992, J NEUROSCI, V12, P345
   HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H
   HASHINO E, 1992, P SENDAI S, V2, P63
   HOLLEY CM, 2003, INT J PEDIATR OTORHI, V67, pS1
   Kajikawa H, 1997, J NEUROCYTOL, V26, P501, DOI 10.1023/A:1018585508713
   Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P161, DOI 10.1159/000058303
   KIMURA N, 1999, ACTA OTOLARYNGOL, V119, P12, DOI 10.1080/00016489950181125
   Lee KH, 1996, HEARING RES, V94, P1, DOI 10.1016/0378-5955(95)00220-0
   LEFEBVRE PP, 1991, BRAIN RES, V567, P306, DOI 10.1016/0006-8993(91)90809-A
   LUO L, 1993, HEARING RES, V69, P182
   Pickles JO, 1997, DEV NEUROSCI-BASEL, V19, P476, DOI 10.1159/000111245
   QUIAN X, 1997, NEURON, V18, P81
   RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727
   ROBERSON DW, 1995, P ARO
   ROBERSON DW, 1996, AUDIT NEUROSCI
   SCHMIDT MF, 1993, DEV BIOL, V158, P228, DOI 10.1006/dbio.1993.1181
   Sekiya T, 2003, NEUROSURGERY, V52, P900, DOI 10.1227/01.NEU.0000053509.98561.16
   Sliwinska-Kowalska M, 2000, HEARING RES, V148, P197, DOI 10.1016/S0378-5955(00)00154-4
   Sukhov RR, 1997, J COMP NEUROL, V383, P123, DOI 10.1002/(SICI)1096-9861(19970630)383:2<123::AID-CNE1>3.0.CO;2-2
   UNEMOTO M, 1995, CELL TISSUE RES, V281, P435
   WILLIAMS EJ, 1994, DEV BIOL, P1029
   Wu DK, 1996, J NEUROSCI, V16, P6454
   Yamaguchi N, 2001, Lancet Oncol, V2, P88, DOI 10.1016/S1470-2045(00)00225-4
   YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
   Yokoyama Y, 1997, J NEUROCHEM, V68, P2212
   Zhai SQ, 2002, ACTA OTO-LARYNGOL, V122, P370, DOI 10.1080/00016480260000030
   Zhai SQ, 2004, ACTA OTO-LARYNGOL, V124, P124, DOI 10.1080/00016480310015939
   ZUNIGA A, 1993, DEV BIOL, V157, P110, DOI 10.1006/dbio.1993.1116
NR 47
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 93
EP 103
DI 10.1016/j.heares.2005.08.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500010
ER

PT J
AU Getzmann, S
AF Getzmann, S
TI Shifting the onset of a moving sound source: A Frohlich effect in
   spatial hearing
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 8th Tubinger Perception Conference
CY FEB, 2005
CL Tubingen, GERMANY
DE spatial hearing; acoustic target; motion perception; Frohlich effect;
   attention
ID AUDIBLE MOVEMENT ANGLE; HORIZONTAL PLANE; LOCALIZATION; ATTENTION;
   STIMULI; REPULSION; POSITION; AZIMUTH; CONTEXT; SPACE
AB When observers are presented with a visual target in motion, they typically remember its onset position to be displaced in the direction of motion. The present study investigated a similar effect in the auditory modality. In a dark anechoic environment, an auditory target (short noise pulses) appeared randomly at a peripheral or a central azimuthal position and moved from left to right or from right to left along the frontal horizontal plane. Relative judgments were made to determine the onset position of motion: Employing a two-alternative forced-choice task, listeners compared the onset position of the target to a 2-s visual reference stimulus presented at the left or right of the auditory onset position. In comparison with stationary targets, the onset positions of moving targets were localized as displaced in the direction of motion. The most prominent displacement occurred when the visual reference stimulus was presented after the auditory motion. With the reference stimulus presented before the auditory motion, the displacement was significantly reduced. Moreover, the displacement was stronger with peripheral than with central onset positions. These findings suggest the existence of a potential analogue of the Frohlich effect in the auditory modality. An auditory spatial attention mechanism is proposed that may have given rise to the observed pattern of results. (c) 2005 Elsevier B.V. All rights reserved.
C1 Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany.
RP Getzmann, S (reprint author), Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany.
EM Stephan.Getzmann@ruhr-uni-bochum.de
CR BALDO MVC, 1995, NATURE, V378, P565, DOI 10.1038/378565a0
   Blauert J., 1997, SPATIAL HEARING PSYC
   Braasch J, 2002, ACTA ACUST UNITED AC, V88, P942
   Breitmeyer BG, 2000, PERCEPT PSYCHOPHYS, V62, P1572, DOI 10.3758/BF03212157
   Bridgeman B, 1997, PSYCHOL RES-PSYCH FO, V60, P238, DOI 10.1007/BF00419408
   CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443
   Cox D. R., 1970, ANAL BINARY DATA
   Frohlich F. W., 1923, Z SINNESPHYSIOL, V54, P58
   Kerzel D, 2004, VISION RES, V44, P577, DOI 10.1016/j.visres.2003.10.011
   Kerzel D, 2002, EXP BRAIN RES, V145, P340, DOI 10.1007/s00221-002-1126-5
   Kirschfeld K, 1999, VISION RES, V39, P3702, DOI 10.1016/S0042-6989(99)00089-9
   Lewald J, 2000, BEHAV BRAIN RES, V108, P105, DOI 10.1016/S0166-4328(99)00141-2
   Lewald J, 1998, J ACOUST SOC AM, V104, P1586, DOI 10.1121/1.424371
   MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
   MONDOR TA, 1995, J EXP PSYCHOL HUMAN, V21, P387, DOI 10.1037//0096-1523.21.2.387
   Musseler J, 2004, VISION RES, V44, P2201, DOI 10.1016/j.visres.2004.04.007
   Musseler J, 2002, VIS COGN, V9, P120, DOI 10.1080/13506280143000359
   Musseler J, 1998, PERCEPT PSYCHOPHYS, V60, P683, DOI 10.3758/BF03206055
   PERROTT DR, 1977, J ACOUST SOC AM, V62, P1463, DOI 10.1121/1.381675
   RADEAU M, 1994, CAH PSYCHOL COGN, V13, P3
   Sach AJ, 2000, J EXP PSYCHOL HUMAN, V26, P717, DOI 10.1037/0096-1523.26.2.717
   Scharf B., 1998, ATTENTION, P75
   Sheth BR, 2001, VISION RES, V41, P329, DOI 10.1016/S0042-6989(00)00230-3
   Sheth BR, 2000, PERCEPTION, V29, P1279, DOI 10.1068/p3114
   SPENCE CJ, 1994, J EXP PSYCHOL HUMAN, V20, P555, DOI 10.1037//0096-1523.20.3.555
   STRYBEL TZ, 1992, HUM FACTORS, V34, P267
   Teder-Salejarvi WA, 1999, COGNITIVE BRAIN RES, V8, P213, DOI 10.1016/S0926-6410(99)00023-3
   Thornton IM, 2002, SPATIAL VISION, V15, P219, DOI 10.1163/15685680252875183
   Welch RB, 1986, HDB PERCEPTION HUMAN, V1, P1
   Whitney D, 2002, VIS COGN, V9, P139, DOI 10.1080/13506280143000368
NR 30
TC 6
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 104
EP 111
DI 10.1016/j.heares.2005.08.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500011
PM 16213116
ER

PT J
AU Otto, KJ
   Rousche, PJ
   Kipke, DR
AF Otto, KJ
   Rousche, PJ
   Kipke, DR
TI Microstimulation in auditory cortex provides a substrate for detailed
   behaviors
SO HEARING RESEARCH
LA English
DT Article
DE microelectrode; cortical microstimulation; auditory cortex; rat;
   behavior; discrimination; auditory prosthesis
ID HUMAN OCCIPITAL CORTEX; VISUAL AREA MT; INTRACORTICAL MICROSTIMULATION;
   CORTICAL MICROSTIMULATION; ELECTRICAL-STIMULATION; EYE-MOVEMENTS;
   PROSTHESIS; PERFORMANCE; DIRECTION; RAT
AB Sensory cortical prostheses have potential to aid people suffering from blindness, deafness and other sensory deficits. However, research to date has shown that sensation thresholds via epicortical stimulation are surprisingly large. These thresholds result in potentially deleterious electrical currents, as well as large activation volumes. Large activation volumes putatively limit the corresponding number of independent stimulation channels in a neural prosthesis. In this study, penetrating stimulation of the auditory cortex was tested for its ability to transmit salient information to behaving rat subjects. Here, we show that subjects that were previously trained to discriminate natural stimuli immediately discriminated different microstimulation cues more accurately and with shorter response latencies than the natural stimuli. Additionally, the cortical microstimulation resulted in a generalization gradient across locations within the cortex. The results demonstrate the efficacy of using closely spaced cortical microstimulation to efficiently transmit highly salient and discriminable information to a behaving subject. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA.
   Univ Michigan, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
   Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA.
RP Kipke, DR (reprint author), Univ Michigan, Dept Biomed Engn, 1107 Gerstacker,2200 Bonisteel Blvd, Ann Arbor, MI 48109 USA.
EM kjotto@umich.edu; dkipke@umich.edu
CR BAK M, 1990, MED BIOL ENG COMPUT, V28, P257, DOI 10.1007/BF02442682
   BARTLETT JR, 1980, ACTA NEUROBIOL EXP, V40, P713
   BRINDLEY GS, 1968, J PHYSIOL-LONDON, V196, P479
   Carmena J.M., 2003, PLOS BIOL, V1, P1, DOI DOI 10.1371/J0URNAL.PBI0.0000042
   CELEBRINI S, 1995, J NEUROPHYSIOL, V73, P437
   Creelman C. D., 1991, DETECTION THEORY USE
   DOBELLE WH, 1973, ANN OTO RHINOL LARYN, V82, P445
   DOBELLE WH, 1974, J PHYSIOL-LONDON, V243, P553
   Gage Gregory J, 2005, J Neural Eng, V2, P52, DOI 10.1088/1741-2560/2/2/006
   GREEN DM, 1966, SIGNAL DETECTION THE
   Groh JM, 1997, J NEUROSCI, V17, P4312
   Maynard EM, 1997, ELECTROEN CLIN NEURO, V102, P228, DOI 10.1016/S0013-4694(96)95176-0
   Moore T, 2001, P NATL ACAD SCI USA, V98, P1273, DOI 10.1073/pnas.021549498
   Normann RA, 1999, VISION RES, V39, P2577, DOI 10.1016/S0042-6989(99)00040-1
   Nunez P. L., 1981, ELECT FIELDS BRAIN N
   Otto Kevin J, 2005, J Neural Eng, V2, P42, DOI 10.1088/1741-2560/2/2/005
   Penfield W., 1950, CEREBRAL CORTEX MAN
   Romo R, 1998, NATURE, V392, P387, DOI 10.1038/32891
   Rousche P J, 1999, IEEE Trans Rehabil Eng, V7, P56, DOI 10.1109/86.750552
   Rousche PJ, 2003, HEARING RES, V179, P62, DOI 10.1016/S0378-5955(03)00081-9
   SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
   SALZMAN CD, 1992, J NEUROSCI, V12, P2331
   SALZMAN CD, 1990, NATURE, V346, P174, DOI 10.1038/346174a0
   Scheich H, 2002, AUDIOL NEURO-OTOL, V7, P191, DOI 10.1159/000058309
   Schmidt EM, 1996, BRAIN, V119, P507, DOI 10.1093/brain/119.2.507
   Serruya MD, 2002, NATURE, V416, P141, DOI 10.1038/416141a
   Skinner B. F., 1938, BEHAV ORGANISMS EXPT
   STONEY SD, 1968, J NEUROPHYSIOL, V31, P659
   Talwar SK, 2002, NATURE, V417, P37, DOI 10.1038/417037a
   Taylor DM, 2002, SCIENCE, V296, P1829, DOI 10.1126/science.1070291
   Troyk P, 2003, ARTIF ORGANS, V27, P1005, DOI 10.1046/j.1525-1594.2003.07308.x
   Williams JC, 1999, BRAIN RES PROTOC, V4, P303, DOI 10.1016/S1385-299X(99)00034-3
   WISE KD, 1975, IEEE T BIO-MED ENG, VBM22, P212, DOI 10.1109/TBME.1975.324562
NR 33
TC 39
Z9 39
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2005
VL 210
IS 1-2
BP 112
EP 117
DI 10.1016/j.heares.2005.08.004
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 991EQ
UT WOS:000233795500012
PM 16209915
ER

PT J
AU Kong, WJ
   Guo, CK
   Zhang, S
   Hao, J
   Wang, YJ
   Li, ZW
AF Kong, WJ
   Guo, CK
   Zhang, S
   Hao, J
   Wang, YJ
   Li, ZW
TI The properties of ACh-induced BK currents in guinea pig type II
   vestibular hair cells
SO HEARING RESEARCH
LA English
DT Article
DE ACh receptor; type II vestibular hair cells; large conductance;
   Ca2+-activated K+ currents
ID NICOTINIC ACETYLCHOLINE-RECEPTOR; ACTIVATED POTASSIUM CHANNELS;
   ION-DEPENDENT CONDUCTANCES; CA2+-ACTIVATED K+ CHANNELS; CHAT-LIKE
   IMMUNOREACTIVITY; HIGH-CALCIUM PERMEABILITY; PROTEIN-KINASE-A;
   CHOLINERGIC-RECEPTOR; SYNAPTIC-TRANSMISSION; MAMMALIAN COCHLEA
AB Molecular biological studies have demonstrated that both muscarinic receptor subtypes and nicotinic receptor subunits were located in mammalian vestibular sensorineural epithelium. However, the functional roles are Still unclear, with the exception of the well-known (alpha 9-containing nicotinic ACh receptor (alpha 9nAChR). In this study, the properties of acetylcholine (ACh)-induced currents were investigated by whole-cell patch clamp technique in isolated type It vestibular hair cells (VHCs II) of guinea pig. VHCs II displayed a sustained, non-inactivating current when extracellular application of ACh. ACh-induced currents restored gradually and it took about 60 s to get a complete recovery. ACh-induced current was not affected by extracellular Na+, but strongly affected by extracellular K+ and Ca2+. Depletion of the intracellular Ca2+ stores by intracellular application of inositol 1,4,5-trisphosphate (IP3) or blocking of the release of intracellular Ca2+ stores by intracellular application of heparin failed to inhibit this current. ACh-induced currents were inhibited by nifedipine, Cd2+, tetraethyl ammonium (TEA), charybdotoxin (CTX), iberiotoxin (IBTX), atropine and d-tubocurarine (DTC), respectively, but not by apamin. In conclusion, ACh stimulates a large conductance, Ca2+-activated K+ Current (BK) in guinea pig VHCs 11 by activation of the influx of Ca2+ ions, which is mediated by an ACh receptor that could not be defined to be the odd-number muscarinic receptor. (c) 2005 Elsevier BY. All rights reserved.
C1 Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China.
   Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Neurobiol, Wuhan, Peoples R China.
RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China.
EM wjkong889@yahoo.com
CR Anderson AD, 1997, BRAIN RES, V778, P409, DOI 10.1016/S0006-8993(97)01121-9
   Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x
   Armstrong CE, 1998, J NEUROSCI, V18, P2962
   ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49
   ASCHER P, 1979, J PHYSIOL-LONDON, V295, P139
   BANKS BEC, 1979, NATURE, V282, P415, DOI 10.1038/282415a0
   Blanchet C, 2001, BRAIN RES, V915, P11, DOI 10.1016/S0006-8993(01)02806-2
   Blanchet C, 1996, J NEUROSCI, V16, P2574
   BRAYDEN JE, 1992, SCIENCE, V256, P532, DOI 10.1126/science.1373909
   ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X
   Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798
   Evans MG, 1996, J PHYSIOL-LONDON, V491, P563
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FELDER CC, 1995, FASEB J, V9, P619
   FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4
   FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039
   FUCHS PA, 1992, J NEUROSCI, V12, P800
   GALVEZ A, 1990, J BIOL CHEM, V263, P11075
   GHOSH TK, 1988, J BIOL CHEM, V263, P11075
   Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366
   GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8
   GUIRAMAND J, 1990, BIOCHEM PHARMACOL, V39, P1913, DOI 10.1016/0006-2952(90)90609-O
   GUO CK, 2000, CHIN J OTORHINOLARYN, V37, P307
   Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3
   Hiel H, 1996, BRAIN RES, V738, P347, DOI 10.1016/S0006-8993(96)01046-3
   Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2
   HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065
   Hu HZ, 1997, NEUROSCIENCE, V77, P535, DOI 10.1016/S0306-4522(96)00451-4
   HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237
   Ishiyama A, 1997, AM J OTOL, V18, P648
   Jagger DJ, 1999, PFLUG ARCH EUR J PHY, V437, P409, DOI 10.1007/s004240050795
   Jagger DJ, 1999, NEUROSCI LETT, V263, P145, DOI 10.1016/S0304-3940(99)00128-7
   Jagger DJ, 2000, J PHYSIOL-LONDON, V527, P49, DOI 10.1111/j.1469-7793.2000.t01-1-00049.x
   KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227
   Katz E, 2000, HEARING RES, V141, P117, DOI 10.1016/S0378-5955(99)00214-2
   KIMITSUKI T, 1994, ACTA OTO-LARYNGOL, V114, P144, DOI 10.3109/00016489409126033
   Kong WJ, 1998, HEARING RES, V119, P96, DOI 10.1016/S0378-5955(98)00033-1
   KONG WJ, 1994, HEARING RES, V75, P191, DOI 10.1016/0378-5955(94)90070-1
   Kong WJ, 2002, HEARING RES, V167, P136, DOI 10.1016/S0378-5955(02)00382-9
   LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0
   LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M
   LOPEZ I, 1988, NEUROSCIENCE, V25, P13
   MCMANUS OB, 1991, J BIOENERG BIOMEMBR, V23, P537, DOI 10.1007/BF00785810
   Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8
   OHOEI H, 1985, J PHYSL, V359, P169
   Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6
   ROBERTS WM, 1990, J NEUROSCI, V10, P3664
   Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x
   RUDY B, 1988, NEUROSCIENCE, V25, P729, DOI 10.1016/0306-4522(88)90033-4
   SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127
   SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669
   Sridhar TS, 1997, J NEUROSCI, V17, P428
   SRIDHAR TS, 1995, J NEUROSCI, V15, P3667
   TANABE T, 1987, NATURE, V328, P313, DOI 10.1038/328313a0
   Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6
   VERNINO S, 1992, NEURON, V8, P127, DOI 10.1016/0896-6273(92)90114-S
   Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4
   Wackym PA, 1996, CELL BIOL INT, V20, P187, DOI 10.1006/cbir.1996.0023
   YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4
NR 59
TC 14
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2005.06.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900001
PM 16005587
ER

PT J
AU Tadros, SF
   Frisina, ST
   Mapes, F
   Frisina, DR
   Frisina, RD
AF Tadros, SF
   Frisina, ST
   Mapes, F
   Frisina, DR
   Frisina, RD
TI Higher serum aldosterone correlates with lower hearing thresholds: A
   possible protective hormone against presbycusis
SO HEARING RESEARCH
LA English
DT Article
DE aldosterone; hormone; mineralocorticoids; adrenal; age; hearing loss;
   presbycusis; HINT; otoacoustic emissions; stria vascularis
ID CORTICAL COLLECTING DUCT; NA+-K+-ATPASE; MESSENGER-RNA EXPRESSION;
   QUIET-AGED GERBILS; STRIA VASCULARIS; ION-TRANSPORT; INNER-EAR;
   TRANSEPITHELIAL VOLTAGE; INDUCED HYPERTENSION; EPITHELIAL-CELLS
AB Aldosterone hormone is a mineralocorticoid secreted by adrenal gland cortex and controls serum sodium (Na+) and potassium (K+) levels. Alclosterone has a stimulatory effect on expression of sodium-potassium ATPase (Na, K-ATPase) and sodium-potassium-chloride cotransporter (NKCC) in cell membranes. In the present investigation, the relation between serum aldosterone levels and age-related hearing loss (presbycusis) and the correlation between these levels versus the degree of presbycusis in humans were examined. Serum aldosterone concentrations were compared between normal hearing and presbycusic groups. Pure-tone audiometry, transient evoked otoacoustic emissions (TEOAE), hearing in noise test (HINT) and gap detection were tested for each subject and compared to the serum aldosterone levels. A highly significant difference between groups in serum aldosterone concentrations was found (p = 0.0003, t = 3.95, df = 45). Highly significant correlations between pure-tone thresholds in both right and left ears, and HINT scores versus serum aldosterone levels were also discovered. On the contrary, no significant correlations were seen in the case of TEOAEs and gap detection. We conclude that aldosterone hormone may have a protective effect on hearing in old age. This effect is more peripheral than central, appearing to affect inner hair cells more than outer hair cells. (c) 2005 Elsevier B.V. All rights reserved.
C1 Rochester Inst Technol, Int Ctr Hearing & Speech Res, Natl Tech Inst Deaf, Rochester, NY 14623 USA.
   Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA.
RP Frisina, RD (reprint author), Rochester Inst Technol, Int Ctr Hearing & Speech Res, Natl Tech Inst Deaf, 52 Lomb Mem Dr, Rochester, NY 14623 USA.
EM rdf@q.ent.rochester.edu
CR Azuma H, 2002, ACTA OTO-LARYNGOL, V122, P816, DOI 10.1080/003655402/000028051
   BELMIN J, 1994, DRUG AGING, V5, P391
   BHUTADA A, 1991, J BIOL CHEM, V266, P10859
   Bonvalet J P, 1998, Kidney Int Suppl, V65, pS49
   BORG E, 1987, HEARING RES, V30, P111, DOI 10.1016/0378-5955(87)90128-6
   CITRON L, 1956, BRIT MED BULL, V12, P101
   CRANE MG, 1976, J LAB CLIN MED, V87, P947
   CROUCH JD, 1999, J HISTOCHEM CYTOCHEM, V45, P773
   Dallos P., 1996, COCHLEA, P1
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   Derfoul A, 1998, J BIOL CHEM, V273, P20702, DOI 10.1074/jbc.273.33.20702
   Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579
   Dorup I, 1997, J ENDOCRINOL, V152, P49, DOI 10.1677/joe.0.1520049
   BAUER JH, 1993, DRUG AGING, V3, P238, DOI 10.2165/00002512-199303030-00005
   FARMAN N, 1994, AM J PHYSIOL, V266, pC423
   FULLER PJ, 1990, ENDOCRINOLOGY, V127, P32
   Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8
   Grillo C, 1997, BRAIN RES, V767, P120, DOI 10.1016/S0006-8993(97)00541-6
   Gross ND, 2002, LARYNGOSCOPE, V112, P298, DOI 10.1097/00005537-200202000-00018
   HALLENGREN B, 1992, AGING-CLIN EXP RES, V4, P341
   HASS M, 1994, AM J PHYSIOL, V267, pC869
   HAYHURST RA, 1988, AM J PHYSIOL, V254, pF689
   HEGSTAD R, 1983, AM J MED, V74, P442, DOI 10.1016/0002-9343(83)90971-3
   Itani OA, 2002, AM J PHYSIOL-ENDOC M, V283, pE971, DOI 10.1152/ajpendo.00021.2002
   Jiang GR, 2003, HYPERTENSION, V41, P1131, DOI 10.1161/01.HYP.0000066128.04083.CA
   JONES AW, 1975, CIRC RES, V37, P333
   Jones NS, 2000, CLIN OTOLARYNGOL, V25, P511, DOI 10.1046/j.1365-2273.2000.00408.x
   Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
   KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717
   KORNEL L, 1981, CLIN BIOCHEM, V14, P282, DOI 10.1016/S0009-9120(81)91012-2
   Li Sui, 2003, J Huazhong Univ Sci Technolog Med Sci, V23, P306
   MARCHANT HJ, 1987, P NIPR S POLAR BIOL, V0001
   MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123
   MARCUS DC, 1993, HEARING RES, V69, P124, DOI 10.1016/0378-5955(93)90100-F
   MARCUS DC, 1994, HEARING RES, V73, P101, DOI 10.1016/0378-5955(94)90287-9
   Marcus DC, 1999, HEARING RES, V134, P48, DOI 10.1016/S0378-5955(99)00074-X
   Muller OG, 2003, J AM SOC NEPHROL, V14, P1107, DOI 10.1097/01.ASN.0000061777.67332.77
   Naray-Fejes-Toth A, 2000, KIDNEY INT, V57, P1290, DOI 10.1046/j.1523-1755.2000.00964.x
   Oberleithner H, 2000, CELL PHYSIOL BIOCHEM, V10, P429, DOI 10.1159/000016379
   OGUCHI A, 1993, AM J PHYSIOL, V265, pH1167
   ONEIL RG, 1990, SEMIN NEPHROL, V10, P365
   Pace AJ, 2001, HEARING RES, V156, P17, DOI 10.1016/S0378-5955(01)00263-5
   PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D
   Ramirez-Gil JF, 1998, CARDIOVASC RES, V38, P451, DOI 10.1016/S0008-6363(98)00007-8
   Ravecca F, 1998, Acta Otorhinolaryngol Ital, V18, P42
   RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C
   Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7
   SALT AN, 1986, NEUROBIOLOGY HEARING, P109
   SALT AN, 1988, PHYSL EAR, P341
   Schafer C, 2002, P NATL ACAD SCI USA, V99, P7154, DOI 10.1073/pnas.092140799
   SCMIEDT RA, 1996, HEARING RES, V102, P125
   SELLICK PM, 1972, PFLUGERS ARCH, V36, P21
   SELLICK PM, 1972, PFLUGERS ARCH, V36, P28
   SHAHEDI M, 1993, AM J PHYSIOL, V264, pF1021
   Shigaev A, 2000, AM J PHYSIOL-RENAL, V278, pF613
   SMITH CA, 1954, LARYNGOSCOPE, V64, P141
   Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
   STERKERS O, 1988, PHYSIOL REV, V68, P1083
   SWEADNER KJ, 1989, BIOCHIM BIOPHYS ACTA, V988, P185, DOI 10.1016/0304-4157(89)90019-1
   TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P
   Therien AG, 2000, AM J PHYSIOL-CELL PH, V279, pC541
   Trune DR, 2000, LARYNGOSCOPE, V110, P1902, DOI 10.1097/00005537-200011000-00025
   TSUNODA K, 1986, J CLIN ENDOCR METAB, V62, P384
   VERREY F, 1987, J CELL BIOL, V104, P1231, DOI 10.1083/jcb.104.5.1231
   WADA J, 1979, ARCH OTO-RHINO-LARYN, V225, P79, DOI 10.1007/BF00455206
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   WATTS AG, 1991, P NATL ACAD SCI USA, V88, P7425, DOI 10.1073/pnas.88.16.7425
   Weber PC, 2001, LARYNGOSCOPE, V111, P1156, DOI 10.1097/00005537-200107000-00006
   WEIDMANN P, 1975, KIDNEY INT, V8, P325, DOI 10.1038/ki.1975.120
   WELLING PA, 1993, J BIOL CHEM, V268, P23469
   WIENER H, 1993, J MEMBRANE BIOL, V133, P203
   Williams JS, 2003, J CLIN ENDOCR METAB, V88, P2364, DOI 10.1210/jc.2003-030490
   Zakharieva S, 1982, Vutr Boles, V21, P70
NR 74
TC 14
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 10
EP 18
DI 10.1016/j.heares.2005.05.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900002
PM 16039078
ER

PT J
AU Hofman, R
   Segenhout, JM
   Albers, FWJ
   Wit, HP
AF Hofman, R
   Segenhout, JM
   Albers, FWJ
   Wit, HP
TI The relationship of the round window membrane to the cochlear aqueduct
   shown in three-dimensional imaging
SO HEARING RESEARCH
LA English
DT Article
DE round window membrane; cochlear aqueduct; OPFOS; perilymph; flow
   resistance
ID GUINEA-PIG; RECONSTRUCTION; ANATOMY
AB The round window membrane and cochlear aqueduct complex in the guinea pig are reconstructed with 3D-imaging, using orthogonal plane fluorescence optical sectioning (OPFOS).
   The 3D-images show that the periotic duct and the aqueduct are connected to a pouch-like extension of the round window. The function of this may be regulation of aqueduct flow resistance under the influence of a pressure difference between inner ear fluid and middle ear. (c) 2005 Published by Elsevier B.V.
C1 Univ Groningen Hosp, Dept Otolaryngol, NL-9700 RB Groningen, Netherlands.
RP Hofman, R (reprint author), Univ Groningen Hosp, Dept Otolaryngol, POB 30001, NL-9700 RB Groningen, Netherlands.
EM r.hofman@azg.kno.nl
CR COTUNGA DFA, 1761, THESIS
   DUCKERT L, 1974, ORL J OTORHINOLARYNG, V78, P21
   Duverney Joseph-Guichard, 1683, TRAITE ORGANE OUIE
   FEYEN RA, 2004, JARO-J ASSOC RES OTO, V5, P404
   Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6
   Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8
   LAURENSTHALEN EO, 2004, THESIS U GRONINGEN
   NISHIMURA S, 1981, ORL J OTO-RHINO-LARY, V43, P79
   Palva T, 1969, ACTA OTO-LARYNGOL, V246, P1
   Spalteholz W, 1914, UEBER DURCHSICHTIGMA
   Thalen E, 2002, EUR ARCH OTO-RHINO-L, V259, P174, DOI 10.1007/s00405-001-0431-0
   TORIYA R, 1991, ACTA OTO-LARYNGOL, V111, P699, DOI 10.3109/00016489109138402
   TORIYA R, 1991, ACTA OTO-LARYNGOL, V111, P917, DOI 10.3109/00016489109138430
   VOIE AH, 1993, J MICROSC-OXFORD, V170, P229
   Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8
   Voie AH, 2003, HEARING RES, V181, P144, DOI 10.1016/S0378-5955(03)00167-9
   Voie AH, 2002, HEARING RES, V171, P119, DOI 10.1016/S0378-5955(02)00493-8
   Wit HP, 2003, HEARING RES, V175, P190, DOI 10.1016/S0378-5955(02)00738-4
NR 18
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 19
EP 23
DI 10.1016/j.heares.2005.06.004
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900003
PM 16039079
ER

PT J
AU Choi, JY
   Shin, JH
   Kim, JL
   Jung, SH
   Son, EJ
   Song, MH
   Kim, SH
   Yoon, JH
AF Choi, JY
   Shin, JH
   Kim, JL
   Jung, SH
   Son, EJ
   Song, MH
   Kim, SH
   Yoon, JH
TI P2Y(2) agonist induces mucin secretion via Ca2+- and inositol
   1,4,5-triphosphate-dependent pathway in human middle ear epithelial
   cells
SO HEARING RESEARCH
LA English
DT Article
DE mucin; caffeine; signaling transduction; IP3; Ca2+
ID PROTEIN-KINASE-C; PANCREATIC ACINAR-CELLS; ION-TRANSPORT; RELEASE;
   CALCIUM; CA2+; ACTIVATION; EXPRESSION; RECEPTOR; ATP
AB Purinergic agonists regulate mucin secretion in the airway epithelial cells. This study examined the effects of the apical application of purinergic agonists on Ca2+ influx ([CU2+](i)), and mucin secretion along with their underlying signaling pathway in normal human middle ear epithelial (NHMEE) cells. The apical membrane of NHMEE cells were stimulated with various purinergic agonists, including UTP, and the [Ca2+](i) was measured using a miniature Ussing double perfusion chamber. P2Y(2) receptor in NHMEE cells was also localized by immunohistochemistry. UTP-induced mucin secretion was quantified by an immunoblotting assay. The order of the purinergic agonist potency with respect to [Ca2+](i) determined in this study was ATP = UTP > 2-MeSATP > UDP > adenosine which is consistent with that obtained from P2Y(2) receptor activation. The P2Y(2) receptor is expressed in the apical membrane of monolayered cultured NHMEE cells. Apical UTP-induced [Ca2+]i was inhibited by 2-aminoethoxydiphenyl borate (2-APB) but not by ryanodine. UTP-induced mucin secretion was inhibited by a Ca2+ chelating agent, BAPTA-AM, and was stimulated by ionomycin. UTP-induced mucin secretion was also Suppressed by U73122 and 2-APB, while Calphostin C suppressed it to a small extent and PD98059 was ineffective. Caffeine also inhibited the UTP-induced [Ca2+](i) and mucin secretion. These results suggest that the P2Y(2) receptor is expressed in NHMEE cells, and plays a major role in modulating the [Ca2+](i) from the IP3-sensitive intracellular Ca2+ store. UTP-induced mucin secretion in NHMEE cells is strongly dependent on Ca2+- and IP3. (c) 2005 Elsevier B.V. All rights reserved.
C1 Yonsei Univ, Coll Med, Dept Otorhinolaryngol, Seoul 120752, South Korea.
   Yonsei Univ, Coll Med, Brain Korea 21 Project Med Sci, Seoul, South Korea.
   Yonsei Univ, Coll Med, Airway Mucus Inst, Seoul, South Korea.
   Yonsei Univ, Dept Otorhinolaryngol, Wonju Coll Med, Wonju, South Korea.
RP Yoon, JH (reprint author), Yonsei Univ, Coll Med, Dept Otorhinolaryngol, 134 Shinchon Dong, Seoul 120752, South Korea.
EM jhyoon@yumc.yonsei.ac.kr
CR ABDULLAH LH, 1997, AM J PHYSIOL, V273, P201
   ALESSANDRA R, 2000, EUR ARCH OTO-RHINO-L, V257, P300
   Chen Y, 2001, AM J RESP CELL MOL, V25, P409
   Choi JY, 2003, ACTA OTO-LARYNGOL, V123, P1080, DOI 10.1080/00016480310002528
   Choi JY, 2003, ACTA OTO-LARYNGOL, V123, P362, DOI 10.1080/0036554021000028091
   Choi JY, 2002, ACTA OTO-LARYNGOL, V122, P270, DOI 10.1080/000164802753648141
   Dartt DA, 2000, EXP EYE RES, V71, P619, DOI 10.1006/exer.2000.0915
   DORMER RL, 1984, BIOCHEM BIOPH RES CO, V119, P876, DOI 10.1016/0006-291X(84)90855-6
   DrayCharier N, 1997, GASTROENTEROLOGY, V112, P978, DOI 10.1053/gast.1997.v112.pm9041261
   EHRLICH BE, 1994, TRENDS PHARMACOL SCI, V15, P145, DOI 10.1016/0165-6147(94)90074-4
   FRUKAWA M, 1997, AM J PHYSIOL, V272, P827
   Kemp PA, 2004, AM J RESP CELL MOL, V31, P446, DOI 10.1165/rcmb.2003-0211OC
   Kim KC, 1996, EUR RESPIR J, V9, P542, DOI 10.1183/09031936.96.09030542
   King BF, 1998, TRENDS PHARMACOL SCI, V19, P506, DOI 10.1016/S0165-6147(98)01271-1
   KNIGHT DE, 1989, TRENDS NEUROSCI, V12, P451, DOI 10.1016/0166-2236(89)90095-7
   Ko KH, 1997, AM J RESP CELL MOL, V16, P194
   Ko WH, 1999, J MEMBRANE BIOL, V170, P205, DOI 10.1007/s002329900550
   Lazarowski ER, 1997, P NATL ACAD SCI USA, V94, P2599, DOI 10.1073/pnas.94.6.2599
   Lee SJ, 1998, EXP CELL RES, V242, P328, DOI 10.1006/excr.1998.4070
   LIU CM, 1978, J BIOL CHEM, V253, P5892
   MEISSNER G, 1986, J BIOL CHEM, V261, P6300
   OSIPCHUK YV, 1990, EMBO J, V9, P697
   Ralevic V, 1998, PHARMACOL REV, V50, P413
   Scott CE, 1998, AM J PHYSIOL-CELL PH, V275, pC285
   von Kugelgen I, 2000, N-S ARCH PHARMACOL, V362, P310, DOI 10.1007/s002100000310
   Wu J, 2000, MOL PHARMACOL, V58, P1368
   Yang CM, 2000, AM J PHYSIOL-LUNG C, V279, pL235
   Yen PT, 1997, ORL J OTO-RHINO-LARY, V59, P170
   Yoon JH, 2000, ANN OTO RHINOL LARYN, V109, P594
NR 29
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 24
EP 31
DI 10.1016/j.heares.2005.05.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900004
PM 16139976
ER

PT J
AU Mortensen, MV
   Madsen, S
   Gjedde, A
AF Mortensen, MV
   Madsen, S
   Gjedde, A
TI Cortical responses to promontorial stimulation in postlingual deafness
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; PET; promontorial test; temporal processing
ID POSITRON-EMISSION-TOMOGRAPHY; COCHLEAR ELECTRICAL-STIMULATION;
   AUDITORY-CORTEX; TEMPORAL RESOLUTION; HUMAN BRAIN; SPEECH RECOGNITION;
   IMPLANT PATIENTS; FUNCTIONAL MRI; NORMAL-HEARING; PERCEPTION
AB dElectrical stimulation with a transtympanic electrode on the promontory of the middle ear allows the tasks of gap detection and temporal difference limen (TDL) to be carried out by both normally hearing and deaf subjects. Previous neuroirnaging of normally hearing subjects revealed a region in the right posterior temporal lobe that is crucial to duration discrimination. The present study tested the hypothesis that postlingually deaf subjects recruit this area when they make subtle temporal discriminations.
   Fourteen postlingually deaf adult cochlear implant candidates were stimulated in the ear chosen for implantation. Altered cerebral activity was recorded with positron emission tomography as incremental 15-O-labelled water uptake.
   On stimulation with tone bursts, we found bilateral activity close to the primary auditory cortex in all subjects. However, subjects performing well on the TDL task demonstrated right-lateralized fronto-temporal and left-lateralized temporal activity in the respective TDL and gap-detection tasks, while subjects who failed to detect duration differences of less than 200 ms in the TDL discrimination task only had frontal and occipital rather than temporal lobe activation. We conclude that the ability to involve the right posterior temporal region is important to duration discrimination. This ability can be evaluated pre-operatively. (c) 2005 Elsevier B.V. All rights reserved.
C1 Aarhus Univ Hosp, PET Ctr, DK-8000 Aarhus, Denmark.
   Aarhus Univ Hosp, ENT Dept, DK-8000 Aarhus, Denmark.
   Univ Aarhus, Ctr Functionally Integrat Neurosci, Aarhus, Denmark.
RP Mortensen, MV (reprint author), Aarhus Univ Hosp, PET Ctr, 44 Norrebrogade, DK-8000 Aarhus, Denmark.
EM malene@pet.auh.dk
RI Bonefeld, Birgit/B-7936-2010
CR Ackermann H, 1999, BRAIN LANG, V67, P228, DOI 10.1006/brln.1999.2056
   Belin P, 2002, NEUROPSYCHOLOGIA, V40, P1956, DOI 10.1016/S0028-3932(02)00062-3
   Belin P, 1998, J COGNITIVE NEUROSCI, V10, P536, DOI 10.1162/089892998562834
   Belin P, 1998, J NEUROSCI, V18, P6388
   Best CT, 1999, PSYCHOL SCI, V10, P65, DOI 10.1111/1467-9280.00108
   Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512
   Binder JR, 1997, J NEUROSCI, V17, P353
   Binder JR, 1999, J COGNITIVE NEUROSCI, V11, P80, DOI 10.1162/089892999563265
   BLACK FO, 1987, ANN OTO RHINOL LARYN, V96, P96
   BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342
   Bower JM, 1997, PROG BRAIN RES, V114, P463
   CAZALS Y, 1991, ANN OTO RHINOL LARYN, V100, P893
   Devlin JT, 2003, J NEUROSCI, V23, P11516
   Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X
   Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X
   Giraud AL, 2000, BRAIN, V123, P1391, DOI 10.1093/brain/123.7.1391
   Gjedde A, 1999, BRAIN, V122, P2013, DOI 10.1093/brain/122.11.2013
   Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637
   Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019
   Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140
   Harrington DL, 2004, BRAIN, V127, P561, DOI 10.1093/brain/awh065
   Ivry Richard B, 2004, Brain, V127, pE14, DOI 10.1093/brain/awh226
   Johnsrude IS, 2002, AUDIOL NEURO-OTOL, V7, P251, DOI 10.1159/000064446
   LADEFOGED P, 2000, VOWELS CONSONANTS IN
   MAZZIOTTA JC, 1982, NEUROLOGY, V32, P921
   Mesulam MM, 1998, BRAIN, V121, P1013, DOI 10.1093/brain/121.6.1013
   Moller AR, 1999, ACTA OTO-LARYNGOL, V119, P424, DOI 10.1080/00016489950180946
   Mortensen MV, 2005, HEARING RES, V205, P94, DOI 10.1016/j.heares.2005.03.007
   MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493
   Nicholls MER, 1998, J CLIN EXP NEUROPSYC, V20, P445, DOI 10.1076/jcen.20.4.445.1474
   Nicholls MER, 1999, NEUROPSY NEUROPSY BE, V12, P11
   PARDO JV, 1991, NATURE, V349, P61, DOI 10.1038/349061a0
   Pedersen CB, 2000, AUDIOLOGY, V39, P30
   Pouthas V, 2000, HUM BRAIN MAPP, V10, P49, DOI 10.1002/(SICI)1097-0193(200006)10:2<49::AID-HBM10>3.0.CO;2-8
   Rao SM, 2001, NAT NEUROSCI, V4, P317, DOI 10.1038/85191
   Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304
   ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9
   Ross B, 2004, J ACOUST SOC AM, V115, P2193, DOI 10.1121/1.1694996
   Schmidt AM, 2003, AM J NEURORADIOL, V24, P201
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   Shulman GL, 1997, J COGNITIVE NEUROSCI, V9, P648, DOI 10.1162/jocn.1997.9.5.648
   SILVERSTEIN H, 1994, AM J OTOL, V15, P101
   SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19
   Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841
   Springer JA, 1999, BRAIN, V122, P2033, DOI 10.1093/brain/122.11.2033
   Stoesz MR, 2003, INT J PSYCHOPHYSIOL, V50, P41, DOI 10.1016/S0167-8760(03)00123-5
   TRUY E, 1995, HEARING RES, V86, P34, DOI 10.1016/0378-5955(95)00052-6
   van Dijk JE, 1999, AUDIOLOGY, V38, P109
   Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883
   WALTZMAN SB, 1990, OTOLARYNG HEAD NECK, V103, P102
   Werner LA, 2001, J SPEECH LANG HEAR R, V44, P737, DOI 10.1044/1092-4388(2001/058)
   Wong D, 2002, HEARING RES, V166, P9, DOI 10.1016/S0378-5955(02)00311-8
   Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3
   WORSLEY KJ, 1992, J CEREBR BLOOD F MET, V12, P900
   Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7
   Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946
NR 56
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 32
EP 41
DI 10.1016/j.heares.2005.05.011
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900005
PM 16098697
ER

PT J
AU Kuypers, LC
   Dirckx, JJJ
   Decraemer, WF
   Timmermans, JP
AF Kuypers, LC
   Dirckx, JJJ
   Decraemer, WF
   Timmermans, JP
TI Thickness of the gerbil tympanic membrane measured with confocal
   microscopy
SO HEARING RESEARCH
LA English
DT Article
DE eardrum; pars tensa; pars flaccida; modeling middle ear; confocal
   fluorescence microscopy
ID EXPERIMENTAL OTITIS-MEDIA; MIDDLE-EAR DEVELOPMENT; MONGOLIAN GERBIL;
   PARS FLACCIDA; STATIC PRESSURE; EXPERIMENTAL CHOLESTEATOMA; DISPLACEMENT
   PATTERNS; ANNULUS FIBROSUS; SMOOTH-MUSCLE; EFFUSION
AB Thickness data for the gerbil tympanic membrane, an extremely thin biological membrane, are presented. Thickness measurements were performed on fresh material using fluorescence images taken perpendicular through the membrane with a commercial confocal microscope.
   Thickness varies strongly across the membrane. Similar thickness distributions in all samples (pars tensa n = 11; pars flaccida n = 3) were observed. The pars tensa has a rather constant thickness of about 7 mu m in the central region curving as a horse shoe upwards around the manubrium. In the most superior parts of the pars tensa thickness becomes gradually twice as large. Thickness increases also steeply from the central region towards the edges (about 35 mu m near the annulus and 20 mu m near the manubrium). A pronounced, local thickening of about 30 mu m is present close to the edge and extends as a ring along the entire annular periphery of the pars tensa. Overall, the pars flaccida is thicker than the pars tensa and has a rugged surface. Its central region has a mean thickness of about 24 mu m with a mean variation of about 4 mu m. The average thickness in the inferior region is slightly larger than in the superior region. The pars flaccida thickens steeply, up to about 80 mu m, near the edges. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Antwerp, Dept Phys, Lab Biomed Phys, B-2020 Antwerp, Belgium.
   Univ Antwerp, Dept Biomed Sci, Cell Biol & Histol Lab, B-2020 Antwerp, Belgium.
RP Kuypers, LC (reprint author), Univ Antwerp, Dept Phys, Lab Biomed Phys, Campus Middelheim,Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
EM Liesbeth.Kuypers@ua.ac.be
CR COHEN YE, 1993, AM J OTOLARYNG, V14, P191, DOI 10.1016/0196-0709(93)90029-7
   COHEN YE, 1992, HEARING RES, V62, P187, DOI 10.1016/0378-5955(92)90185-P
   Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2
   Dirckx JJJ, 1997, HEARING RES, V111, P153, DOI 10.1016/S0378-5955(97)00108-1
   Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8
   Fulghum R S, 1991, Ann Otol Rhinol Laryngol Suppl, V154, P23
   Fulghum RS, 1996, ANN OTO RHINOL LARYN, V105, P234
   FUNNELL WRJ, 2000, ASS RES OTOLARYNGOL, P4746
   FUNNELL WRJ, 1999, ASS RES OTOLARYNGOL, P799
   Henson MM, 2005, HEARING RES, V200, P29, DOI 10.1016/j.heares.2004.09.004
   HENSON OW, 1999, ASS RES OTOLARYNGOL, P304
   Kim HJ, 2002, OTOL NEUROTOL, V23, P840, DOI 10.1097/00129492-200211000-00005
   Kuypers LC, 2005, J MICROSC-OXFORD, V218, P68, DOI 10.1111/j.1365-2818.2005.01457.x
   KUYPERS LC, 2005, IN PRESS JARO, V6
   Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002
   Larsson C, 2001, OTOL NEUROTOL, V22, P558, DOI 10.1097/00129492-200107000-00025
   Larsson C, 1999, AM J OTOL, V20, P309
   Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0
   LIENING DA, 1995, OTOLARYNG HEAD NECK, V112, P303, DOI 10.1016/S0194-5998(95)70253-9
   Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286
   Nemechek AJ, 1997, OTOLARYNG HEAD NECK, V117, P475
   Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382
   Ravicz ME, 1997, J ACOUST SOC AM, V101, P2135, DOI 10.1121/1.418275
   RAVIRAJAN CT, 1992, LUPUS, V1, P157, DOI 10.1177/096120339200100307
   Rosowski JJ, 2002, HEARING RES, V174, P183, DOI 10.1016/S0378-5955(02)00655-X
   Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831
   Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6
   VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K
   von Unge M, 2003, INT J PEDIATR OTORHI, V67, P215, DOI 10.1016/S0165-5876(02)00371-3
   VONUNGE M, 1991, AM J OTOL, V12, P407
   vonUnge M, 1997, HEARING RES, V106, P123, DOI 10.1016/S0378-5955(97)00008-7
   VONUNGE M, 1994, AM J OTOL, V15, P663
   von Unge M, 1999, HEARING RES, V128, P1, DOI 10.1016/S0378-5955(98)00183-X
   VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S
   Yang XM, 2002, HEARING RES, V164, P105, DOI 10.1016/S0378-5955(01)00416-6
NR 35
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 42
EP 52
DI 10.1016/j.heares.2005.06.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900006
PM 16054789
ER

PT J
AU Fujimura, T
   Suzuki, H
   Shimizu, T
   Tokui, N
   Kitamura, T
   Udaka, T
   Doi, Y
AF Fujimura, T
   Suzuki, H
   Shimizu, T
   Tokui, N
   Kitamura, T
   Udaka, T
   Doi, Y
TI Pathological alterations of strial capillaries in dominant white
   spotting W/W-v mice
SO HEARING RESEARCH
LA English
DT Article
DE dominant white spotting mouse; strial capillaries; intermediate cells;
   basement membrane; IgG deposition; permeability
ID INNER-EAR; W-LOCUS; PROTO-ONCOGENE; VASCULARIS; MOUSE; MELANOCYTES;
   ABNORMALITIES; PIGMENTATION; MECHANISMS; DEAFNESS
AB Dominant white spotting W/W-v and W-v/W-v mice are well-known mutants that lack strial intermediate cells in their cochlea and manifest hereditary sensorineural hearing loss. We recently reported marked thickening of and lgG deposition on the basement membrane of strial capillaries in W/W-v mutant mice, similar to observations made in aged animals and in animals with autoimmune sensorineural hearing loss. The present study aimed to clarify the age-dependent changes in these pathological findings of strial capillaries in the W/W-v mice.
   Male WBB6FI +/+ and dominant white spotting W/W-v mutant mice were sacrificed by transcardiac perfusion with paraformaldehyde solution. The cochlear ducts were isolated and Subjected to light- and electron-microscopy, immunohistochemistry, immuno-electron microscopy. Alternatively, lanthanum chloride tracer examination in the isolated cochlear ducts was performed in order to compare the permeability of the strial capillaries between +/+ and W/W-v mice.
   In the W/W-v mice, thickening of and IgG deposition on the basement membrane of strial capillaries were observed as early as I week after birth and became more noticeable with age. Deposited IgG was preferentially localized to the thickened basement membrane and was also observed in partially the intercellular space between adjacent of endothelial cells. In addition, pinocytotic vesicles both in the apical and basal lesions of such cells also showed IgG deposition. Lanthanum chloride was retained along apical plasma membrane of the endothelial cells in the +/+ mice but penetrated through the enclothelial layer in the W/W-v mice.
   These results indicate that active transport via pinocytotic vesicles as well as increased permeability of strial capillaries in the W/W-v mice occur in the early stage after birth, resulting in the morphological alterations in the strial capillaries of these mice. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Occupat & Environm Hlth, Sch Med, Dept Otorhinolaryngol, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan.
   Univ Occupat & Environm Hlth, Sch Med, Dept Anat, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan.
RP Suzuki, H (reprint author), Univ Occupat & Environm Hlth, Sch Med, Dept Otorhinolaryngol, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan.
EM suzuhyde@med.uoeh-u.ac.jp
CR BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030
   CABLE J, 1995, MECH DEVELOP, V50, P139, DOI 10.1016/0925-4773(94)00331-G
   CHABOT B, 1988, NATURE, V335, P88, DOI 10.1038/335088a0
   DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019
   DEOL MS, 1970, J EMBRYOL EXP MORPH, V23, P773
   Fujimura T, 1999, HEARING RES, V128, P135, DOI 10.1016/S0378-5955(98)00206-8
   GEISSLER EN, 1988, CELL, V55, P185, DOI 10.1016/0092-8674(88)90020-7
   HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939
   Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4
   LIU XZ, 1995, AM J MED GENET, V55, P95, DOI 10.1002/ajmg.1320550123
   Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403
   MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077
   Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127
   Sakaguchi N, 1997, HEARING RES, V109, P83, DOI 10.1016/S0378-5955(97)00048-8
   SALT AN, 1987, LARYNGOSCOPE, V97, P984
   SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451
   Silvers WK, 1979, COAT COLORS MICE MOD
   SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W
   Spritz RA, 1998, AM J MED GENET, V75, P101, DOI 10.1002/(SICI)1096-8628(19980106)75:1<101::AID-AJMG20>3.0.CO;2-P
   STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0
   STEEL KP, 1989, DEVELOPMENT, V107, P453
   Takeuchi S, 2000, BIOPHYS J, V79, P2572
   Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4
   Wangemann P., 1996, COCHLEA, P130
   WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2
NR 25
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 53
EP 59
DI 10.1016/j.heares.2005.05.013
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900007
PM 16054310
ER

PT J
AU Varghese, GI
   Zhu, XX
   Frisina, RD
AF Varghese, GI
   Zhu, XX
   Frisina, RD
TI Age-related declines in distortion product otoacoustic emissions
   utilizing pure tone contralateral stimulation in CBA/CaJ mice
SO HEARING RESEARCH
LA English
DT Article
DE medial olivocochlear system; contralateral suppression; distortion
   product otoacoustic emissions; age-related hearing loss; CBA/CaJ mice;
   presbycusis; outer hair cells; efferent system; pure tone
ID COCHLEAR MICROMECHANICAL PROPERTIES; EFFERENT OLIVOCOCHLEAR NEURONS;
   AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; INFERIOR COLLICULUS;
   ACOUSTIC STIMULATION; CALBINDIN D-28K; HUMAN LISTENERS; GUINEA-PIG; CBA
   MOUSE
AB One role of the medial olivocochlear (MOC) auditory efferent system is to suppress cochlear outer hair cell (OHC) responses when presented with a contralateral sound. Using distortion product otoacoustic emissions (DPOAEs), the effects of active changes in OHC responses due to the MOC as a function of age can be observed when contralateral stimulation with a pure tone is applied. Previous studies have shown that there are age-related declines of the MOC when broad band noise is presented to the contralateral ear. In this study, we measured age-related changes in CBA/CaJ mice by comparing DPOAE generation with and without a contralateral pure tone at three different frequencies (12, 22, and 37 kHz). Young (n = 16), middle (n = 10) and old-aged (17 = 10) CBA mice were tested. DPOAE-grams were obtained using L1 = 65 and L2 = 50 dB SPL, F1/F2 = 1.25, using eight points per octave covering a frequency range from 5.6-44.8 kHz. The pure tone was presented contralaterally at 55 dB SPL. DPOAE-grams and ABR levels indicated age-related hearing loss in the old mice. In addition, there was an overall change in DPOAEs in the middle-aged and old groups relative to the young. Pure tone stimulation was not as effective as a suppressor compared to broadband noise. An increase in pure tone frequency from 12 to 22 kHz induced greater suppression of DPOAEs, but the 37 kHz was least effective. These results indicate that as the mouse ages, there are significant changes in the efficiency of the suppression mechanism as elicited by contralateral narrowband stimuli. These findings reinforce the idea that age-related changes in the MOC or the operating points of OHCs play a role in the progression of presbycusis-age-related hearing loss in mammals. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA.
   Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA.
   Rochester Inst Technol, Int Ctr Hearing Speech Res, Natl Tech Inst Deaf, Rochester, NY 14623 USA.
RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA.
EM rdf@q.ent.rochester.edu
CR CASTOR X, 1994, HEARING RES, V77, P1, DOI 10.1016/0378-5955(94)90248-8
   CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8
   COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   FRISINA RD, 2001, FUNCTIONAL NEUROBIOL, P565
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24
   Frisina RD, 1997, J ACOUST SOC AM, V101, P2741, DOI 10.1121/1.418562
   Giraud AL, 1997, NEUROREPORT, V8, P1779
   GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5
   GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8
   GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310
   GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X
   Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009
   Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159
   KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C
   Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047
   LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5
   LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
   Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286
   Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903
   Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490
   Manley GA, 1999, HEARING RES, V138, P1, DOI 10.1016/S0378-5955(99)00126-4
   MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3
   MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K
   Mulders WHAM, 2005, EXP BRAIN RES, V160, P235, DOI 10.1007/s00221-004-2003-1
   ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0
   PUEL JL, 1990, J ACOUST SOC AM, V99, P3572
   RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B
   VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104
   Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4
   VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724
   Walton JP, 1998, J NEUROSCI, V18, P2764
   WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
   WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391
   Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7
   Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8
   Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8
NR 37
TC 24
Z9 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 60
EP 67
DI 10.1016/j.heares.2005.06.006
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900008
PM 16061336
ER

PT J
AU Avan, P
   Bonfils, P
AF Avan, P
   Bonfils, P
TI Distortion-product otoacoustic emission spectra and high-resolution
   audiometry in noise-induced hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emissions; audiometry; noise-induced hearing loss; sensory
   cell loss
ID AUDITORY BRAIN-STEM; GUINEA-PIG; FREQUENCY SPECIFICITY;
   BASILAR-MEMBRANE; ACOUSTIC TRAUMA; CELL LOSS; LEVEL; COCHLEA; RESPONSES;
   DAMAGE
AB dDistortion product otoacoustic emissions (DPOAE) elicited by 60dB SPL pure tones at A and f2 were collected at 2f1-f2, in 1/10th octave steps, in a sample of 36 ears from 27 patients with noise-induced hearing loss (NIHL). They were analyzed in the frequency domain against the outcome of high-resolution pure-tone audiometry, performed with the help of a Bekesy sweep-frequency automatic audiometer. The characteristics of DPOAE level plots as a function of frequency (the so-called DP-grams), relative to the DPOAE levels of a control age-matched group, were compared to their alleged counterparts on the audiograms, i.e., the lower and upper frequency boundaries of the interval with hearing loss. Ears with NIHL split into two subgroups, one (n = 25) with a notch in the DP-gram such that its lower boundary matched the lower limit of the audiometric notch (linear regression with a slope of 0.91, r(2) = 0.644, p < 0.001). Likewise, when it existed, its upper boundary matched its upper counterpart on the audiogram (linear regression with a slope of 0.96, r(2) = 0.89, P < 0.001). In this respect, DP-grams performed better than transient-evoked OAE spectra, which exhibited poor correlations with audiogram patterns. The second subgroup (n = 11) exhibited normal DPOAEs at all frequencies despite audionnetric losses similar to those of the first subgroup. In all cases, DPOAE levels were poor predictors of the degree of hearing losses. It is hypothesized that NIHL in the second subgroup involves inner hair cells or auditory neurons, instead of outer hair cells in the first subgroup. Provided NIHL affected outer hair cells, DP-grams provided a comparatively accurate predictor of the spectral extent of hearing loss. (c) 2005 Elsevier B.V. All rights reserved.
C1 Sch Med, Lab Sensory Biophys, F-63000 Clermont Ferrand, France.
   UPRESA, CNRS, ENT Dept, European Hosp Georges Pompidou, F-7060 Paris, France.
RP Avan, P (reprint author), Sch Med, Lab Sensory Biophys, POB 38, F-63000 Clermont Ferrand, France.
EM paul.avan@u-clermont1.fr
CR Allen J. B, 1990, USER MANUAL CUBDIS D
   ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281
   Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285
   Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x
   AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866
   AVAN P, 1993, AUDIOLOGY, V32, P12
   BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609
   CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229
   Carvalho S, 2004, J ACOUST SOC AM, V116, P1639, DOI 10.1121/1.1777873
   Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3
   Dorn PA, 1999, EAR HEARING, V20, P149, DOI 10.1097/00003446-199904000-00006
   Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433
   Gorga MP, 1996, J ACOUST SOC AM, V100, P968, DOI 10.1121/1.416208
   Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Kemp D. T., 2002, OTOACOUSTIC EMISSION, P1
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297
   Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054
   Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1
   Lonsbury-Martin Brenda L., 2001, Seminars in Hearing, V22, P377, DOI 10.1055/s-2001-19111
   MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9
   MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30
   Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763
   Mills DM, 2003, J ACOUST SOC AM, V113, P914, DOI 10.1121/1.1535942
   Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699
   SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1
   Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X
NR 30
TC 11
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 68
EP 75
DI 10.1016/j.heares.2005.06.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900009
PM 16112827
ER

PT J
AU Keithley, EM
   Canto, C
   Zheng, QY
   Wang, XB
   Fischel-Ghodsian, N
   Johnson, KR
AF Keithley, EM
   Canto, C
   Zheng, QY
   Wang, XB
   Fischel-Ghodsian, N
   Johnson, KR
TI Cu/Zn superoxide dismutase and age-related hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE presbycusis; aging; cochlea; mice; hearing; mitochondria
ID HAIR-CELLS; TRANSGENIC MICE; INBRED STRAINS; C57BL/6J MICE; MN-SOD;
   COCHLEA; MOUSE; OVEREXPRESSION; DEGENERATION; LOCALIZATION
AB Mice, in which the genetics can be manipulated and the life span is relatively short, enable evaluation of the effects of specific gene expression on cochlear degeneration over time. Antioxidant enzymes such as Cu/Zn superoxide dismutase (SOD I) protect cells from toxic, reactive oxygen species and may be involved in age-related degeneration. The effects of SODI deletion and over-expression on the cochlea were examined in Sodl-null mice, Sodl transgenic mice and in age- and genetics-matched controls. Auditory brainstern responses (ABR) were measured and cochleae were histologically examined. The absence of SOD] resulted in hearing loss at an earlier age than in wildtype or heterozygous mice. The cochleae of the null mice had severe spiral ganglion cell degeneration at 7-9 months of age. The stria vascularis in the aged, null mice was thinner than in the heterozygous or wildtype mice. Over-expression of SODI did not protect against hearing loss except at 24 months of age. In conclusion, SOD] seems important for survival of cochlear neurons and the stria vascularis, however even half the amount is sufficient and an over abundance does not provide much protection from age-related hearing loss. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA.
   Vet Affairs Med Ctr, La Jolla, CA 92161 USA.
   Jackson Lab, Bar Harbor, ME 04609 USA.
   Steven Spielberg Pediat Res Ctr, Inst Med Genet, Ahmanson Dept Pediat, Cedars Sinai Res Inst, Los Angeles, CA 90048 USA.
   Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90048 USA.
   Xian Jiaotong Univ, Sch Med, Xian, Peoples R China.
RP Keithley, EM (reprint author), Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA.
EM ekeithley@ucsd.edu
RI Zheng, Qing/C-1731-2012
CR Ames BN, 2004, J ALZHEIMERS DIS, V6, P117
   Coling DE, 2003, FREE RADICAL BIO MED, V34, P873, DOI 10.1016/S0891-5849(02)01439-9
   Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1
   Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169
   ENGSTROM B, 1972, AUDIOLOGY, V11, P6
   ENGSTROM H, 1977, ACTA OTO-LARYNGOL, V83, P65, DOI 10.3109/00016487709128814
   Engström H, 1967, J Laryngol Otol, V81, P687, DOI 10.1017/S0022215100067657
   EPSTEIN CJ, 1987, P NATL ACAD SCI USA, V84, P8044, DOI 10.1073/pnas.84.22.8044
   Francis HW, 2004, BRAIN RES, V1016, P182, DOI 10.1016/j.brainres.2004.05.016
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   Huang TT, 2000, J GERONTOL A-BIOL, V55, pB5
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020
   Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
   KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306
   KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2
   Koay G, 2002, HEARING RES, V171, P111, DOI 10.1016/S0378-5955(02)00492-6
   Matzuk MM, 1998, ENDOCRINOLOGY, V139, P4008, DOI 10.1210/en.139.9.4008
   McFadden SL, 2001, AUDIOLOGY, V40, P313
   McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4
   McFadden SL, 1999, J COMP NEUROL, V413, P101
   MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1
   NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8
   PRZEDBORSKI S, 1992, J NEUROCHEM, V58, P1760, DOI 10.1111/j.1471-4159.1992.tb10051.x
   Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
   Rarey KE, 1996, ACTA OTO-LARYNGOL, V116, P833, DOI 10.3109/00016489609137935
   Reaume AG, 1996, NAT GENET, V13, P43, DOI 10.1038/ng0596-43
   RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0
   Salvi RJ, 2000, NOISE HEALTH, V2, P9
   SCHEFFLER IE, 1999, MITOCHONDRIA, P235
   Schwartz PJ, 1998, BRAIN RES, V789, P32, DOI 10.1016/S0006-8993(97)01469-8
   Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818
   Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
   SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527
   Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593
   Sugar J O, 1972, Acta Otolaryngol Suppl, V301, P61
   WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391
   Yao XF, 1996, HEARING RES, V96, P199, DOI 10.1016/0378-5955(96)00050-0
   YLIKOSKI J, 1978, ARCH OTOLARYNGOL, V104, P84
   Zhang XX, 2002, CHINESE MED J-PEKING, V115, P1390
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 45
TC 49
Z9 55
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 76
EP 85
DI 10.1016/j.heares.2005.06.009
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900010
PM 16055286
ER

PT J
AU Uemaetomari, I
   Tabuchi, K
   Hoshino, T
   Hara, A
AF Uemaetomari, I
   Tabuchi, K
   Hoshino, T
   Hara, A
TI Protective effect of calcineurin inhibitors on acoustic injury of the
   cochlea
SO HEARING RESEARCH
LA English
DT Article
DE acoustic injury; cochlea; calcineurin; cyclosporine A; FK506; rapamycin
ID CYCLOSPORINE-A; ISCHEMIA; NOISE; FK-506; CELLS
AB This study examined the effect of immunosuppressants, cyclosporin A. FK506 and rapamycin on functional recovery of the cochlea after acoustic overexposure,. in guinea pigs and mice. Thirty guinea pigs were exposed to a 2kHz pure tone at 120dB SPL for 10min. The compound action potential threshold shift induced by acoustic overexposure was examined. Twenty-five mice were exposed to a 4kHz pure tone at 128dB SPL for 4h. Auditory brainstem response was used to examine the hearing threshold shift. In both the guinea pig and mouse experiments, cyclosporin A and FK506, intraperitonally given just before acoustic overexposure, significantly decreased the hearing threshold shift one or two weeks after acoustic overexposure. However, neither rapamycin nor the FK506 and rapamycin combined treatment groups showed improvement of the threshold shift. The present findings suggest that these two calcineurin inhibitors have a protective effect against acoustic injury of the cochlea, whereas the non-calcineurin inhibitor, rapamycin, not only has no effect against acoustic injury, but rather blocked the effect of FK506. This indicated a possible role of calcineurin against acoustic injury. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan.
RP Hara, A (reprint author), Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.
EM haraakir@md.tsukuba.ac.jp
CR Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
   DUMONT FJ, 1990, J IMMUNOL, V144, P1418
   FRUMAN DA, 1992, P NATL ACAD SCI USA, V89, P3686, DOI 10.1073/pnas.89.9.3686
   HALESTRAP AP, 1990, BIOCHEM J, V268, P153
   Lautermilch NJ, 2000, J NEUROSCI, V20, P315
   Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   SHARKEY J, 1994, NATURE, V371, P336, DOI 10.1038/371336a0
   SPINGER JE, 2000, J NEUROSCI, V20, P7246
   Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9
   Uchino H, 1995, ACTA PHYSIOL SCAND, V155, P469, DOI 10.1111/j.1748-1716.1995.tb09999.x
   Wang HG, 1999, SCIENCE, V284, P339, DOI 10.1126/science.284.5412.339
   Wang J, 2002, NEUROSCIENCE, V111, P635
   Zajic G, 2001, HEARING RES, V159, P125, DOI 10.1016/S0378-5955(01)00319-7
NR 14
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 86
EP 90
DI 10.1016/j.heares.2005.06.010
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900011
PM 16084678
ER

PT J
AU Wangemann, P
   Wonneberger, K
AF Wangemann, P
   Wonneberger, K
TI Neurogenic regulation of cochlear blood flow occurs along the basilar
   artery, the anterior inferior cerebellar artery and at branch points of
   the spiral modiolar artery
SO HEARING RESEARCH
LA English
DT Article
DE sympathetic nervous system; electric field stimulation; cochlear blood
   flow
ID GUINEA-PIG; IN-VITRO; INNERVATION; VASOCONSTRICTION; VASODILATATION;
   RABBIT
AB The cochlea receives its main blood supply from the basilar artery via the anterior inferior cerebellar artery and the spiral modiolar artery. Morphologic studies have shown sympathetic innervation along the spiral rnodiolar artery of the gerbil and the guinea pig and functional studies in the isolated in vitro superfused spiral modiolar artery of the gerbil have demonstrated norepinephrine-induced vasoconstrictions via alpha(1A)-adrenergic receptors. It is Current unclear whether the sympathetic innervation is physiologically relevant. Stimulation of sympathetic ganglia in guinea pigs has been shown to alter cochlear blood flow in situ. Whether these changes originated from local or more systemic changes in the vascular diameter remained uncertain. The goal of the present study was to demonstrate the presence or absence of neurogenic changes in the diameter of the isolated in vitro superfused spiral modiolar artery, anterior inferior cerebellar artery and basilar artery from the gerbil and the guinea pig. Vascular diameter was monitored by videomicroscopy. Electric field stimulation Was used to elicit neurotransmitter release. A reversible inhibitory effect of 10(-6) M tetrodotoxin was taken as criterion to discriminate between neurogenic and myogenic changes in vascular diameter. Mesentery arteries of comparable diameter, which are known to respond with a neurogenic vasoconstriction to electric field stimulation, served as controls. Basilar artery, anterior inferior cerebellar artery, spiral modiolar artery and mesentery arteries constricted in response to electric field stimulation. No dilations were observed. Myogenic and neurogenic vasoconstrictions were observed in all vessels. These observations suggest that the sympathetic innervation of the basilar artery, the anterior inferior cerebellar artery and branch points of the spiral modiolar artery is involved in a physiologically relevant control of the vascular diameter in the gerbil and the guinea pig. (c) 2005 Elsevier B.V. All rights reserved.
C1 Kansas State Univ, Cell Physiol Lab, Anat & Physiol Dept, Manhattan, KS 66506 USA.
   Univ Regensburg, HNO Klin, D-8400 Regensburg, Germany.
RP Wangemann, P (reprint author), Kansas State Univ, Cell Physiol Lab, Anat & Physiol Dept, 205 Coles Hall, Manhattan, KS 66506 USA.
EM wange@vet.ksu.edu
RI Wangemann, Philine/N-2826-2013
CR Brau ME, 1998, EUR J ANAESTH, V15, P80
   BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566
   CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F
   Figueroa XF, 2003, CIRC RES, V92, P793, DOI 10.1161/01.RES.0000065918.90271.9A
   Gruber DD, 1998, HEARING RES, V119, P113, DOI 10.1016/S0378-5955(98)00036-7
   HALLIN RG, 1974, ACTA PHYSIOL SCAND, V92, P303, DOI 10.1111/j.1748-1716.1974.tb05749.x
   HELLSTRAND P, 1985, REGUL PEPTIDES, V12, P309, DOI 10.1016/0167-0115(85)90174-0
   HERZOG M, 2001, ASS RES OTOLARYNGOL, V24, P28
   LA M, 1993, CLIN EXP PHARMACOL P, V20, P355, DOI 10.1111/j.1440-1681.1993.tb01704.x
   LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M
   LAURIKAINEN EA, 1994, J PHYSIOL-LONDON, V480, P563
   Lyon MJ, 2000, HEARING RES, V141, P189, DOI 10.1016/S0378-5955(00)00004-6
   Qiu JH, 2001, HEARING RES, V155, P152, DOI 10.1016/S0378-5955(01)00231-3
   REN TY, 1993, ANN OTO RHINOL LARYN, V102, P378
   Spoendlin H, 1981, Adv Otorhinolaryngol, V27, P1
   Vass Z, 2004, NEUROSCIENCE, V124, P919, DOI 10.1016/j.neuroscience.2003.12.030
   Wangemann P, 1998, HEARING RES, V115, P113, DOI 10.1016/S0378-5955(97)00184-6
NR 17
TC 8
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 91
EP 96
DI 10.1016/j.heares.2005.06.011
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900012
PM 16054311
ER

PT J
AU Philibert, B
   Laudanski, J
   Edeline, JM
AF Philibert, B
   Laudanski, J
   Edeline, JM
TI Auditory thalamus responses to guinea-pig vocalizations: A comparison
   between rat and guinea-pig
SO HEARING RESEARCH
LA English
DT Article
DE medial geniculate body; neuronal selectivity; natural and time-reversed
   calls; single unit
ID SPECIES-SPECIFIC VOCALIZATIONS; SQUIRREL-MONKEY; CORTEX NEURONS;
   REPRESENTATION; STIMULI; CELLS; FOREBRAIN; MARMOSET; SONG
AB Although neuronal responses to species-specific vocalizations have long been described, very few between-species comparisons have been made. In a previous study, a differential representation of species-specific vocalizations was found in the auditory cortex (ACx): marmoset ACx neurons responded more, and more selectively, to marmoset calls than did cat ACx neurons [Wang, X., Kadia, S.C., 2001. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 86, 2616-2620]. The present study analyzed responses of guinea-pig and rat auditory thalamus neurons to four well-defined guinea-pig vocalizations. Neurons of guinea-pigs (n = 96) and rats (n = 87) displayed similar response strength to guinea-pig vocalizations, and did not exhibit a preference for the natural over the time-reversed version of the calls in both species. This difference with the study by Wang and Kadia might suggest that, in mammals, the selectivity for the natural version of species-specific vocalizations is prominent only at the cortical level. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Paris 11, CNRS, UMR 8620, NAMC, F-91405 Orsay, France.
RP Edeline, JM (reprint author), Univ Paris 11, CNRS, UMR 8620, NAMC, Batiment 446, F-91405 Orsay, France.
EM jean-marc.edeline@ibaic.u-psud.fr
CR ALLON N, 1985, BRAIN RES, V360, P75, DOI 10.1016/0006-8993(85)91222-3
   BERRYMAN JC, 1976, Z TIERPSYCHOL, V41, P80
   CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9
   CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87
   DErchia AM, 1996, NATURE, V381, P597, DOI 10.1038/381597a0
   Doupe AJ, 1997, J NEUROSCI, V17, P1147
   Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019
   Gehr DD, 2000, HEARING RES, V150, P27, DOI 10.1016/S0378-5955(00)00170-2
   GLASS I, 1979, EXP BRAIN RES, V34, P489
   GLASS I, 1983, HEARING RES, V9, P27, DOI 10.1016/0378-5955(83)90131-4
   Harper L. V., 1976, BIOL GUINEA PIG, P31
   HURLEY LM, 2005, J COMP PHYSL A
   Lee T, 2004, J NEUROSCI, V24, P3242, DOI 10.1523/JNEUROSCI.5382-03.2004
   MANLEY JA, 1978, EXP BRAIN RES, V32, P171
   Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004
   Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x
   Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003
   NEWMAN JD, 1974, BRAIN RES, V78, P125, DOI 10.1016/0006-8993(74)90358-8
   Pelleg-Toiba R., 1991, Journal of Basic and Clinical Physiology and Pharmacology, V2, P257
   Prather JF, 2004, CURR OPIN NEUROBIOL, V14, P496, DOI 10.1016/j.conb.2004.06.004
   Rotman Y, 2001, HEARING RES, V152, P110, DOI 10.1016/S0378-5955(00)00243-4
   Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002
   Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685
   Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616
NR 24
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 97
EP 103
DI 10.1016/j.heares.2005.07.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900013
PM 16139975
ER

PT J
AU Brumwell, CL
   Hossain, WA
   Morest, DK
   Wolf, B
AF Brumwell, CL
   Hossain, WA
   Morest, DK
   Wolf, B
TI Biotinidase reveals the morphogenetic sequence in cochlea and cochlear
   nucleus of mice
SO HEARING RESEARCH
LA English
DT Article
DE auditory system; hearing loss; immunohistochernistry; light microscopy;
   syndromic deafness; development; vestibular ganglion
ID IN-SITU HYBRIDIZATION; HEARING-LOSS; INNER-EAR; INNERVATION; DEFICIENCY;
   LOCALIZATION; MIGRATION; MOUSE; CELLS; DIFFERENTIATION
AB Hearing loss affects children with biotinidase deficiency, an inherited metabolic disorder in the recycling of biotin. The deficit appears shortly after birth during development of the auditory system. Using a mouse model, we sought to discover where and when biotinidase is expressed in the normal development of the cochlea and cochlear nucleus. In the process, we reconstructed the normal morphogenetic sequences of the constituent cells. Immunolabeling for biotinidase was localized to neurons and other cells of the adult and immature mouse, including the embryonic precursors of these regions dating from the stage of the otocyst. Its distribution was compared to the particular morphological changes occurring at each developmental stage. Biotinidase was localized in cells and their processes at the critical stages in their proliferation, migration, structural differentiation, and innervation, covering the entire span of their development. The prevalence of immunostaining peaked in the adult animal, including hair cells and ganglion cells of the cochlea and neurons of the cochlear nucleus. The findings suggest that biotinidase plays a role in the normal development of the auditory system. Besides the pattern of localization of biotinidase, this study provides the first systematic account of each developmental stage in a mammalian auditory system. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA.
   Univ Connecticut, Ctr Hlth, Dept Pediat, Farmington, CT 06030 USA.
   Univ Connecticut, Ctr Hlth, Dept Genet & Dev Biol, Farmington, CT 06030 USA.
   Connecticut Childrens Med Ctr, Hartford, CT USA.
RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, 263 Farmington Ave, Farmington, CT 06030 USA.
EM kentmorest@neuron.uchc.edu
CR ANGULO A, 1990, J ANAT, V168, P241
   BOOK KJ, 1990, J COMP NEUROL, V297, P55, DOI 10.1002/cne.902970105
   BRUMWELL C, 2005, ARO ABSTR, V28, P289
   Farinas I, 2001, J NEUROSCI, V21, P6170
   Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098
   HART PS, 1992, AM J HUM GENET, V50, P126
   Heard G.S., 1989, FASEB J, V3, P124
   Heller AJ, 2002, HEARING RES, V173, P62, DOI 10.1016/S0378-5955(02)00609-3
   HEMOND SG, 1991, DEV BRAIN RES, V61, P87, DOI 10.1016/0165-3806(91)90117-2
   Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L
   Ivanova A, 1998, DEV NEUROSCI-BASEL, V20, P495, DOI 10.1159/000017350
   Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6
   KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110
   Kim WY, 2001, DEVELOPMENT, V128, P417
   Larsell O, 1944, ARCHIV OTOLARYNGOL, V40, P233
   Liu M, 2000, GENE DEV, V14, P2839, DOI 10.1101/gad.840500
   MARTIN MR, 1981, J COMP NEUROL, V197, P169, DOI 10.1002/cne.901970113
   McKenzie E, 2004, DEV DYNAM, V229, P802, DOI 10.1002/dvdy.10500
   Montcouquiol M, 2003, J NEUROSCI, V23, P9469
   Morest DK, 2004, J NEUROSCI RES, V78, P455, DOI 10.1002/jnr.20283
   PIERCE ET, 1967, PROG BRAIN RES, V40, P53
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135
   Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1
   RUEDA J, 1987, ACTA OTO-LARYNGOL, V104, P417, DOI 10.3109/00016488709128269
   RYBAK LP, 1991, ANN OTO RHINOL LARYN, V100, P294
   Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676
   Sher A E, 1971, Acta Otolaryngol Suppl, V285, P1
   SIMMONNEAU L, 2003, J COMP NEUROL, V459, P113
   Simmons DD, 1998, MOL BRAIN RES, V56, P287, DOI 10.1016/S0169-328X(98)00056-4
   Stanley CM, 2004, MOL GENET METAB, V81, P300, DOI 10.1016/j.ymgme.2003.12.006
   Stanley JS, 2001, EUR J BIOCHEM, V268, P5424, DOI 10.1046/j.0014-2956.2001.02481.x
   Trettel J, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P279, DOI 10.1201/9781420038736.ch19
   WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P255, DOI 10.1016/0306-4522(85)90177-0
   Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9
   Willard Frank H., 1995, V2, P205, DOI 10.1016/B978-155938625-8/50010-7
   Wolf B, 2002, J PEDIATR-US, V140, P242, DOI 10.1067/mpd.2002.121938
   Wolf B, 2001, METABOLIC MOL BASES, P3935
   WOLFSON M, 1985, CONFLICT MANAG PEACE, V8, P1
NR 39
TC 3
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2005
VL 209
IS 1-2
BP 104
EP 121
DI 10.1016/j.heares.2005.06.013
PG 18
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 987JT
UT WOS:000233514900014
PM 16107307
ER

PT J
AU Matsumoto, N
   Kalinec, F
AF Matsumoto, N
   Kalinec, F
TI Prestin-dependent and prestin-independent motility of guinea pig outer
   hair cells
SO HEARING RESEARCH
LA English
DT Article
DE guinea pig; outer hair cells; OHCs motility; patch-clamp; video
   microscopy
ID INDUCED SLOW MOTILITY; MOTOR PROTEIN; MEMBRANE CAPACITANCE; COCHLEAR
   AMPLIFIER; FORCE GENERATION; ELECTROMOTILITY; MECHANISM; VOLTAGE;
   CALCIUM; ACETYLCHOLINE
AB The motile response of isolated guinea pig outer hair cells (OHCs) was investigated using a combination of whole-cell patch clamp recording and continuous video image analysis. OHC's length, width, and area were measured from video images and the cell volume estimated from these values. Morphological data was then correlated with electrophysiological recordings of whole-cell current, membrane potential and voltage-dependent non-linear capacitance. Electromotility was evoked either by manipulating the membrane potential under voltage-clamp conditions or by exposing OHCs to high K+ solutions. Other motile responses were investigated in voltage-clamp experiments at constant holding potential, or exposing OHCs to solutions that did not affect the membrane potential. We found that electrical stimulation evoked voltage-dependent changes in OHC's length, width and area but not in cell volume regardless of the time course of stimulation. Moreover, changes in cell area were always associated with both voltage-dependent motility and non-linear capacitance, suggesting prestin dependency. In contrast, voltage-independent motile responses at constant membrane potential, which are presumed to be prestin-in dependent, were associated with changes in cell length, width and volume without significant changes in area. Area measurements, then, become a tool to investigate the simultaneous occurrence of both prestin-dependent and prestin-independent OHC motilities, and for evaluating the individual contribution of each mechanism to the total cell movement. (c) 2005 Elsevier B.V. All rights reserved.
C1 House Ear Res Inst, Gonda Dept Cell & Mol Biol, Sect Cell Struct & Funct, Los Angeles, CA 90057 USA.
RP Kalinec, F (reprint author), House Ear Res Inst, Gonda Dept Cell & Mol Biol, Sect Cell Struct & Funct, 2100 W 3rd St, Los Angeles, CA 90057 USA.
EM fkalinec@hei.org
CR Adachi M, 2000, J ACOUST SOC AM, V108, P2299, DOI 10.1121/1.1314396
   ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0
   Belyantseva IA, 2000, J NEUROSCI, V20, P8996
   Brownell WE, 2001, ANNU REV BIOMED ENG, V3, P169, DOI 10.1146/annurev.bioeng.3.1.169
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   Chertoff M. E., 1994, AM J PHYSIOL, V266, P467
   Cohen J., 1988, STAT POWER ANAL BEHA, V2nd
   Dallos P, 1997, J NEUROSCI, V17, P2212
   DALLOS P, 1993, J NEUROPHYSIOL, V70, P299
   Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
   DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6
   DULON D, 1992, AM J OTOL, V13, P108
   Farkas Z, 2003, ACTA OTO-LARYNGOL, V123, P160, DOI 10.1080/0036554021000028127
   Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420
   Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2
   HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549
   Hallworth R, 1997, HEARING RES, V114, P204, DOI 10.1016/S0378-5955(97)00167-6
   Iwasa KH, 1997, BIOPHYS J, V73, P546
   IWASA KH, 1993, BIOPHYS J, V65, P492
   KAKEHATA S, 1995, BIOPHYS J, V68, P2190
   KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671
   Kalinec F, 2000, J BIOL CHEM, V275, P28000
   Lim D J, 1998, Kidney Int Suppl, V65, pS104
   Lohi H, 2000, GENOMICS, V70, P102, DOI 10.1006/geno.2000.6355
   Mayhew TM, 1996, J ANAT, V188, P1
   MAYHEW TM, 1992, J NEUROCYTOL, V21, P313, DOI 10.1007/BF01191700
   Nobili R, 1998, TRENDS NEUROSCI, V21, P159, DOI 10.1016/S0166-2236(97)01192-2
   Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658
   Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
   Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5
   Raphael RM, 2000, BIOPHYS J, V78, P2844
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4
   Santos-Sacchi J, 2002, PFLUG ARCH EUR J PHY, V444, P99, DOI 10.1007/s00424-002-0804-2
   Szonyi M, 2001, BRAIN RES, V922, P65, DOI 10.1016/S0006-8993(01)03150-X
   ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 38
TC 10
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 1
EP 13
DI 10.1016/j.heares.2005.03.030
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900001
PM 16000248
ER

PT J
AU Harris, KC
   Hu, BH
   Hangauer, D
   Henderson, D
AF Harris, KC
   Hu, BH
   Hangauer, D
   Henderson, D
TI Prevention of noise-induced hearing loss with Src-PTK inhibitors
SO HEARING RESEARCH
LA English
DT Article
DE noise trauma; cochlea; Src-PTK
ID N-TERMINAL KINASE; PP60(C-SRC) TYROSINE KINASE; ATP COMPETITIVE
   INHIBITORS; MESSENGER-RNA EXPRESSION; FOCAL ADHESION KINASE; HAIR
   CELL-DEATH; INDUCED APOPTOSIS; OXIDASE ACTIVITY; NAD(P)H OXIDASE; MOUSE
   COCHLEA
AB Studies from our lab show that noise exposure initiates cell death by multiple pathways [Nicotera, T.M., Hu, B.H., Henderson, D., 2003. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J. Assoc. Res. Otolaryngol. 4, 466-477] therefore, protection against noise may be most effective with a multifaceted approach. The Src protein tyrosine kinase (PTK) signaling cascade may be involved in both metabolic and mechanically induced initiation of apoptosis in sensory cells of the cochlea. The current study compares three Src-PTK inhibitors, KX1-004, KX1-005 and KX1-174 as potential protective drugs for NIHL. Chinchillas were used as subjects. A 30 mu l drop of one of the Src inhibitors was placed on the round window membrane of the anesthetized chinchilla; the vehicle (DMSO and buffered saline) alone was placed on the other ear. After the drug application, the middle ear was sutured and the subjects were exposed to noise. Hearing was measured before and several times after the noise exposure and treatment using evoked responses. At 20 days post-exposure, the animals were anesthetized their cochleae extracted and cochleograms were constructed. All three Src inhibitors provided protection from a 4 h, 4 kHz octave band noise at 106 dB. The most effective drug, KX1-004 was further evaluated by repeating the exposure with different doses, as well as, substituting an impulse noise exposure. For all conditions, the results suggest a role for Src-PTK activation in noise-induced hearing loss (NIHL), and that therapeutic intervention with a Src-PTK inhibitor may offer a novel approach in the treatment of NIHL. (c) 2005 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA.
   SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Chem, Buffalo, NY 14214 USA.
RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,POB 250550, Charleston, SC 29425 USA.
EM harriskc@musc.edu
CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X
   Almeida EAC, 2000, J CELL BIOL, V149, P741, DOI 10.1083/jcb.149.3.741
   Bachelder RE, 2001, J BIOL CHEM, V276, P34702, DOI 10.1074/jbc.M102806200
   Bachelder RE, 1999, J CELL BIOL, V147, P1063, DOI 10.1083/jcb.147.5.1063
   Bachelder RE, 1999, J BIOL CHEM, V274, P20733, DOI 10.1074/jbc.274.29.20733
   CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2
   De Keulenaer GW, 1998, CIRC RES, V82, P1094
   DERIJARD B, 1994, CELL, V76, P1025, DOI 10.1016/0092-8674(94)90380-8
   Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
   Frisch SM, 1996, J CELL BIOL, V135, P1377, DOI 10.1083/jcb.135.5.1377
   Frisch SM, 2001, CURR OPIN CELL BIOL, V13, P555, DOI 10.1016/S0955-0674(00)00251-9
   Fukui T, 1997, CIRC RES, V80, P45
   Giancotti FG, 1999, SCIENCE, V285, P1028, DOI 10.1126/science.285.5430.1028
   Griendling KK, 2000, REGUL PEPTIDES, V91, P21, DOI 10.1016/S0167-0115(00)00136-1
   HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
   HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321
   Henderson D., 1999, NOISE HEALTH, V2, P53
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   HU B, 2004, ASS RES OT MIDW M DA
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Ilic D, 1998, J CELL BIOL, V143, P547
   Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
   KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0
   Marsilje TH, 2000, BIOORG MED CHEM LETT, V10, P477, DOI 10.1016/S0960-894X(00)00039-1
   Milkiewicz KL, 2000, BIOORG MED CHEM LETT, V10, P483, DOI 10.1016/S0960-894X(00)00040-8
   Mollnau H, 2002, CIRC RES, V90, pE58, DOI 10.1161/01.RES.0000012569.55432.02
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845
   Pagano PJ, 1998, HYPERTENSION, V32, P331
   Pirvola U, 2000, J NEUROSCI, V20, P43
   QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
   RAFF MC, 1992, NATURE, V356, P397, DOI 10.1038/356397a0
   RYAN CME, 1982, BEHAV ANAL LETT, V2, P213
   Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
   SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5
   Seshiah PN, 2002, CIRC RES, V91, P406, DOI 10.1161/01.RES.0000033523.08033.16
   UshioFukai M, 1996, J BIOL CHEM, V271, P23317
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
NR 41
TC 33
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 14
EP 25
DI 10.1016/j.heares.2005.04.009
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900002
PM 15950415
ER

PT J
AU Nizami, L
AF Nizami, L
TI Dynamic range relations for auditory primary afferents
SO HEARING RESEARCH
LA English
DT Article
DE dynamic range; cat; intensity-difference limen; Signal Detection Theory
ID RATE-INTENSITY FUNCTIONS; DORSAL COCHLEAR NUCLEUS;
   CROSSED-OLIVOCOCHLEAR-BUNDLE; NERVE-FIBER RESPONSES; RATE-LEVEL
   FUNCTIONS; DISCHARGE PATTERNS; INFERIOR COLLICULUS; TONE BURSTS;
   GUINEA-PIG; PURE-TONES
AB Dynamic range is one of four attributes typically assigned to the plot of firing rate vs. stimulus level of an auditory primary afferent. Dynamic range is generally understood to be the contiguous range of sound-pressure-level over which the neuron can indicate some small level change. Typically, however, dynamic range has been quantified as the width in decibels between the endpoints of the rate-level plot, which is not a measure of sensitivity to level change. A sensitivity measure is provided here by first deriving an equation for the intensity-difference limen (DL) in terms of attributes of the rate-level curve. The result is a generally U-shaped curve of DL vs. level. Any given criterion DL corresponds to a horizontal line cutting the DL curve at two points, with the separation in decibels between those points providing a dynamic range for that DL criterion. Plotting the dynamic ranges vs. the respective DLs yields a dynamic range curve. These were made for 62 afferents from the cat. The dynamic ranges of sloping-saturating rate-level plots do not exceed those for sigmoidal plots until the DL criterion reaches 50 dB, supporting the conclusion of Palmer and Evans [Cochlear fibre rate-intensity functions: no evidence for basilar membrane nonlinearities, Hearing Research 2 (1980) 319-326] that sloping saturation is not a reflection of cochlear nonlinearity. (c) 2005 Elsevier B.V. All rights reserved.
C1 Boys Town Natl Res Hosp, Ctr Hearing Res, Omaha, NE 68131 USA.
RP Nizami, L (reprint author), 1312 Grayson Pl, Decatur, GA 30030 USA.
EM nizamii2@aol.com
CR AITKIN L, 1991, J NEUROPHYSIOL, V65, P383
   BRITT R, 1976, J NEUROPHYSIOL, V39, P162
   BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1138
   COSTALUPES JA, 1983, HEARING RES, V9, P43, DOI 10.1016/0378-5955(83)90133-8
   COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326
   Delgutte B, 1987, PSYCHOPHYSICS SPEECH, P333
   ELLIOTT DN, 1960, J ACOUST SOC AM, V32, P380, DOI 10.1121/1.1908071
   EVANS EF, 1980, EXP BRAIN RES, V40, P115
   Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454
   Gdowski GT, 1997, HEARING RES, V105, P85, DOI 10.1016/S0378-5955(96)00196-7
   GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228
   GERKEN GM, 1977, J ACOUST SOC AM, V61, P602, DOI 10.1121/1.381306
   GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940
   GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728
   GREEN DM, 1966, SIGNAL DETECTION THE
   GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8
   Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066
   HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5
   HELLMAN WS, 1990, J ACOUST SOC AM, V87, P1255, DOI 10.1121/1.398801
   Imaizumi K, 2001, J ACOUST SOC AM, V109, P1247, DOI 10.1121/1.1348004
   Imig TJ, 2000, J NEUROPHYSIOL, V83, P907
   Jackson BS, 1998, HEARING RES, V126, P75, DOI 10.1016/S0378-5955(98)00151-8
   Javel E, 2000, J ACOUST SOC AM, V107, P908, DOI 10.1121/1.428269
   Kryter KD, 1943, AM J PSYCHOL, V56, P501, DOI 10.2307/1417352
   LIBERMAN MC, 1988, HEARING RES, V34, P179, DOI 10.1016/0378-5955(88)90105-0
   LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736
   LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1
   LOWEN SB, 1996, COMPUTATIONAL NEUROS, P447
   Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1
   NEFF WD, 1955, J ACOUST SOC AM, V27, P480, DOI 10.1121/1.1907941
   Nizami L, 2003, HEARING RES, V175, P14, DOI 10.1016/S0378-5955(02)00706-2
   Nizami L., 1998, Society for Neuroscience Abstracts, V24, P901
   NIZAMI L, 1999, THESIS U TORONTO TOR
   NIZAMI L, 2003, ABS ARO, V26, P47
   Nizami L, 1997, MATH BIOSCI, V141, P1, DOI 10.1016/S0025-5564(96)00153-8
   Nizami L, 2002, HEARING RES, V167, P13, DOI 10.1016/S0378-5955(02)00293-9
   OLDFIELD BP, 1984, J COMP PHYSIOL, V155, P689, DOI 10.1007/BF00610855
   PALMER AR, 1980, HEARING RES, V2, P319, DOI 10.1016/0378-5955(80)90065-9
   PALMER AR, 1987, BRIT MED BULL, V43, P838
   PALMER AR, 1982, HEARING RES, V7, P305, DOI 10.1016/0378-5955(82)90042-9
   PALMER AR, 1979, HEARING MECHANISMS S, P19
   Pang XD, 1997, J ACOUST SOC AM, V102, P3564, DOI 10.1121/1.420147
   PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
   REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904
   RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159
   RHODE WS, 1986, J NEUROPHYSIOL, V56, P261
   SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521
   SCHAFER A, 1986, MOD PHYS LETT A, V1, P1, DOI 10.1142/S0217732386000026
   SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970
   SMITH RL, 1980, BRAIN RES, V184, P499, DOI 10.1016/0006-8993(80)90817-3
   Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667
   TEICH MC, 1985, J ACOUST SOC AM, V77, P1110, DOI 10.1121/1.392176
   TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296
   Viemeister N., 1988, AUDITORY FUNCTION NE, P213
   WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235
   WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5
   WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5
   Yates GK, 2000, J ACOUST SOC AM, V107, P2143, DOI 10.1121/1.428496
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
   YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530
   ZWISLOCK.JJ, 1973, KYBERNETIK, V12, P169, DOI 10.1007/BF00289170
NR 61
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 26
EP 46
DI 10.1016/j.heares.2005.05.002
PG 21
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900003
PM 16005586
ER

PT J
AU Gifford, RH
   Bacon, SP
AF Gifford, RH
   Bacon, SP
TI The effect of a steep high-frequency hearing loss on growth-of-masking
   functions in simultaneous masking for f(m) < f(s)
SO HEARING RESEARCH
LA English
DT Article
DE growth of masking; GOM; Equivalent Rectangular Band width, ERB; signal
   frequency, f(s); masker frequency, f(m)
ID LEVEL-DEPENDENT SHIFTS; BASILAR-MEMBRANE; CHINCHILLA COCHLEA; BEHAVIORAL
   MEASUREMENT; VIBRATION PATTERN; TUNING CURVES; MECHANICS; MASKERS;
   TONES; NONLINEARITIES
AB In normal-hearing subjects, the slope of the growth-of-masking (GOM) function obtained in simultaneous masking when the masker frequency (f(m)) is much less than the signal frequency (f(s)) often changes from a value near 2.0 to a value near 1.0 at high levels. The purpose of the present study was to evaluate whether this change in slope reflects a basal shift in the peak of the signal's basilar-membrane vibration pattern. To discourage the use of basally shifted peak excitation, GOM functions were obtained in seven subjects with a precipitously sloping high-frequency hearing loss. The signal was located at the normal-hearing edge of the loss, and the masker was located 3 equivalent rectangular bandwidths below f(s). In addition, GOM functions for an fs of 2000 Hz were obtained in four subjects with normal hearing, either "in quiet"' or in the presence of a restrictor tone with a frequency of 2400 or 2600 Hz and a level of 90 dB SPL. Overall, the results generally are not consistent with the change in slope at high levels being due to a basal shift in the peak of the signal's basilar-membrane vibration pattern. Instead, the results are consistent with a decrease in compression at high input levels at the place corresponding to f(s). (c) 2005 Elsevier B.V. All rights reserved.
C1 Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA.
RP Gifford, RH (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, POB 870102, Tempe, AZ 85287 USA.
EM Rene.Gifford@asu.edu
CR American National Standards Institute (ANSI), 1996, S361996 ANSI
   BACON SP, 1985, J ACOUST SOC AM, V78, P1220, DOI 10.1121/1.392890
   Bacon SP, 1999, J ACOUST SOC AM, V106, P341, DOI 10.1121/1.427060
   Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0
   DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
   de Boer E, 2000, J ACOUST SOC AM, V107, P1487, DOI 10.1121/1.428435
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   Gregan MJ, 1998, J ACOUST SOC AM, V103, P1012, DOI 10.1121/1.421247
   JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Moore BCJ, 2002, HEARING RES, V163, P101, DOI 10.1016/S0378-5955(01)00390-2
   Moore BCJ, 1996, J ACOUST SOC AM, V99, P3669, DOI 10.1121/1.414964
   Moore BCJ, 2003, HEARING RES, V175, P66, DOI 10.1016/S0378-5955(02)00711-6
   MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586
   Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
   NELSON DA, 1984, J ACOUST SOC AM, V75, P1570, DOI 10.1121/1.390866
   Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
   ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
   RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087
   RUGGERO MA, 1991, J NEUROSCI, V11, P1057
   SCHONE P, 1977, ACUSTICA, V37, P37
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   VANDERHEIJDEN M, 1995, J ACOUST SOC AM, V97, P1800, DOI 10.1121/1.412056
   ZWICKER E, 1976, ACUSTICA, V34, P138
   ZWICKER E, 1979, BIOL CYBERN, V35, P243, DOI 10.1007/BF00344207
NR 27
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 47
EP 53
DI 10.1016/j.heares.2005.05.001
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900004
PM 16039077
ER

PT J
AU Guo, YK
   Zhang, CX
   Du, XP
   Nair, U
   Yoo, TJ
AF Guo, YK
   Zhang, CX
   Du, XP
   Nair, U
   Yoo, TJ
TI Morphological and functional alterations of the cochlea in
   apolipoprotein E gene deficient mice
SO HEARING RESEARCH
LA English
DT Article
DE apolipoprotein E; hyperlipidemia; atherosclerosis; endothelial
   dysfunction; hearing loss; mouse
ID SENSORINEURAL HEARING-LOSS; E-KNOCKOUT MICE; SPIRAL MODIOLAR ARTERY;
   ENDOTHELIAL DYSFUNCTION; AUDITORY FUNCTION; NITRIC-OXIDE; EXPERIMENTAL
   HYPERCHOLESTEROLEMIA; ATHEROSCLEROTIC LESIONS; HYPERLIPIDEMIC MICE;
   NOISE EXPOSURE
AB The relationship between hyperlipidemia and sensorineural hearing loss remains obscure. In this study, we elucidate for the first time the cochlear morphological and auditory alterations and their relationships with hyperlipidemia, atherosclerosis, and endothelial dysfunction in apolipoprotem-E knockout (ApoE-KO) mice. Ten-week-old ApoE-KO mice were fed either atherosclerotic diet (1.25% cholesterol) or normal diet. Wild type mice (C57BL/6J) served as normal controls. Fourteen weeks later, marked hyperlipidemia, atherosclerosis, endothelial dysfunction, and hearing impairment, especially in the high frequencies, had developed in ApoE-KO mice as compared with C57BL/6J mice (P < 0.001). A high positive correlation between hearing loss and the extent of atherosclerosis and plasma total cholesterol levels was found. Hearing loss, especially at high frequencies, was detected in all ApoE-KO mice. Hair cell loss mainly at the base turn, thickening of vascular intima, and lumen stenosis of the spiral modiolar artery (SMA) in cochlea were also found; these histological changes were exacerbated by the atherosclerotic diet. Furthermore, endothelial nitric oxide synthase (eNOS) in aortic wall and cochlea was distinctly reduced in ApoE-KO mice. These results demonstrate that hyperlipidemia and atherosclerosis can induce alterations in cochlear morphology and function. The stenosis of SMA, which may cause cochlear ischemia and hypoxia, endothelial dysfunction, and low eNOS activity, may contribute to hearing loss. (c) 2005 Elsevier B.V. All rights reserved.
C1 Vet Adm Med Ctr, Coll Med, Dept Med, Div Allergy Immunol, Memphis, TN 38104 USA.
   Vet Adm Med Ctr, Coll Med, Dept Mol Sci, Div Allergy Immunol, Memphis, TN 38104 USA.
   Vet Adm Med Ctr, Coll Med, Dept Otolaryngol, Div Allergy Immunol, Memphis, TN 38104 USA.
   Vet Adm Med Ctr, Coll Med, Inst Neurosci, Memphis, TN 38104 USA.
   Cent S Univ, Xiangya Hosp 2, Dept Otolaryngol, Changsha 410011, Peoples R China.
   Cent S Univ, Xiangya Hosp 2, Inst Hearing Res, Changsha 410011, Peoples R China.
   Univ Tennessee, Coll Med, Vasc Biol Ctr Excellence, Memphis, TN 38163 USA.
RP Yoo, TJ (reprint author), Vet Adm Med Ctr, Coll Med, Dept Med, Div Allergy Immunol, Memphis, TN 38104 USA.
EM tyoo@utmem.edu
CR ANDERSON TJ, 1995, AM J CARDIOL, V75, pB71, DOI 10.1016/0002-9149(95)80017-M
   AXELSSON A, 1985, ACTA OTO-LARYNGOL, V100, P379, DOI 10.3109/00016488509126561
   Bonthu S, 1997, ARTERIOSCL THROM VAS, V17, P2333
   Breslow JL, 1996, SCIENCE, V272, P685, DOI 10.1126/science.272.5262.685
   d'Uscio LV, 2001, STROKE, V32, P2658, DOI 10.1161/hs1101.097393
   d'Uscio LV, 2002, CARDIOVASC RES, V53, P487, DOI 10.1016/S0008-6363(01)00469-2
   Faraci FM, 1998, AM J PHYSIOL-HEART C, V274, pH564
   GATES GA, 1993, ARCH OTOLARYNGOL, V119, P156
   Getz GS, 2000, ARTERIOSCL THROM VAS, V20, P2503
   GRATTON MA, 1992, HEARING RES, V61, P97, DOI 10.1016/0378-5955(92)90040-T
   Hartley CJ, 2000, AM J PHYSIOL-HEART C, V279, pH2326
   Jiang ZG, 2004, HEARING RES, V189, P92, DOI 10.1016/S0378-5955(03)00398-8
   Jones NS, 1999, CLIN OTOLARYNGOL, V24, P531, DOI 10.1046/j.1365-2273.1999.00310.x
   Jones NS, 2001, CLIN OTOLARYNGOL, V26, P189, DOI 10.1046/j.1365-2273.2000.00409.x
   Jones NS, 1999, CLIN OTOLARYNGOL, V24, P449, DOI 10.1046/j.1365-2273.1999.00294.x
   Jones NS, 2000, CLIN OTOLARYNGOL, V25, P511, DOI 10.1046/j.1365-2273.2000.00408.x
   Kauser K, 2000, AM J PHYSIOL-HEART C, V278, pH1679
   Kojima Y, 2001, ANN OTO RHINOL LARYN, V110, P105
   Lamping KG, 1999, AM J PHYSIOL-REG I, V276, pR1023
   MASLIAH E, 1995, EXP NEUROL, V136, P107, DOI 10.1006/exnr.1995.1088
   MORIZONO T, 1978, ANN OTO RHINOL LARYN, V87, P804
   MORIZONO T, 1982, OTOLARYNG HEAD NECK, V90, P814
   Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9
   NAKASHIMA Y, 1994, ARTERIOSCLER THROMB, V14, P133
   Niebauer J, 1999, AM J PHYSIOL-HEART C, V276, pH1346
   Oemar BS, 1998, CIRCULATION, V97, P2494
   Oitzl MS, 1997, BRAIN RES, V752, P189, DOI 10.1016/S0006-8993(96)01448-5
   PAIGEN B, 1987, ATHEROSCLEROSIS, V68, P231, DOI 10.1016/0021-9150(87)90202-4
   PIEDRAHITA JA, 1992, P NATL ACAD SCI USA, V89, P4471, DOI 10.1073/pnas.89.10.4471
   PILLSBURY HC, 1986, LARYNGOSCOPE, V96, P1112
   PLUMP AS, 1992, CELL, V71, P343, DOI 10.1016/0092-8674(92)90362-G
   Pulec JL, 1997, ENT-EAR NOSE THROAT, V76, P725
   Pulec J L, 1997, Ear Nose Throat J, V76, P716
   RAY J, 1991, J OTOLARYNGOL, V20, P336
   ROSEN S, 1965, ARCHIV OTOLARYNGOL, V82, P236
   ROSEN S, 1970, ACTA OTO-LARYNGOL, V70, P242
   ROSEN S, 1964, Trans Am Acad Ophthalmol Otolaryngol, V68, P433
   Rosenfeld ME, 2000, ARTERIOSCL THROM VAS, V20, P2587
   Satar B, 2001, OTOL NEUROTOL, V22, P786, DOI 10.1097/00129492-200111000-00012
   SELLKE FW, 1990, CIRCULATION, V81, P1586
   Seo HS, 1997, ARTERIOSCL THROM VAS, V17, P3593
   SIKORA MA, 1986, ACTA OTO-LARYNGOL, V102, P372, DOI 10.3109/00016488609119420
   SPENCER JT, 1973, LARYNGOSCOPE, V83, P639, DOI 10.1288/00005537-197305000-00002
   STROME M, 1988, LARYNGOSCOPE, V98, P165
   Suzuki K, 2000, LARYNGOSCOPE, V110, P1736, DOI 10.1097/00005537-200010000-00033
   TAMI TA, 1985, OTOLARYNG HEAD NECK, V93, P235
   Tsuji S, 2002, HEARING RES, V166, P72, DOI 10.1016/S0378-5955(02)00299-X
   Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51
   Wangemann P, 1998, HEARING RES, V115, P113, DOI 10.1016/S0378-5955(97)00184-6
   YAMAMOTO H, 1988, J CLIN INVEST, V81, P1752, DOI 10.1172/JCI113516
   Yang RH, 1999, ARTERIOSCL THROM VAS, V19, P2762
   ZEIHER AM, 1991, CIRCULATION, V83, P391
   Zhang CX, 2003, AM J PHYSIOL-HEART C, V285, pH2563, DOI 10.1152/ajpheart.00435.2003
   ZHANG SH, 1992, SCIENCE, V258, P468, DOI 10.1126/science.1411543
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 55
TC 30
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 54
EP 67
DI 10.1016/j.heares.2005.05.010
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900005
PM 16051453
ER

PT J
AU Parazzini, M
   Bell, S
   Thuroczy, G
   Molnar, F
   Tognola, G
   Lutman, ME
   Ravazzani, P
AF Parazzini, M
   Bell, S
   Thuroczy, G
   Molnar, F
   Tognola, G
   Lutman, ME
   Ravazzani, P
TI Influence on the mechanisms of generation of distortion product
   otoacoustic emissions of mobile phone exposure
SO HEARING RESEARCH
LA English
DT Article
DE distortion product otoacoustic emissions; DPOAE generation mechanism;
   mobile phone
ID ELECTROMAGNETIC-FIELDS; DPOAE; HEARING; WAVE
AB Mobile phones have become very commonly used throughout the world within a short period of time. Although there is no clear evidence to show harmful physiological effects of electromagnetic fields (EMF) at the levels used by mobile phones, there is widespread public concern that there may be potential for harm. Because mobile phones are usually held close to the ear, it is appropriate to study effects on hearing. In this study, the outer hair cell function of 15 subjects was assessed by DPOAE recording before and after a controlled EMF exposure. To increase the sensitivity of DPOAE recording to identify even small changes in hearing function, an inverse fast Fourier transform (IFFT) analysis and time-domain windowing was applied to separate the two generation mechanisms of DPOAE, the so-called place-fixed and wave-fixed mechanisms, in order to verify if EMF can affects the two DPOAE emission mechanisms. Statistical analysis of the data showed that 10 min of EMF exposure at the maximum power (2 W at 900 MHz or 1 W at 1800 MHz) does not induce any changes in either DPOAE generation mechanism. (c) 2005 Elsevier B.V. All rights reserved.
C1 CNR, ISIB, Ist Ingn Biomed, I-20133 Milan, Italy.
   Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England.
   Natl Res Inst Radiobiol & Radiohyg, Dept Non Ionizing Radiat, Budapest, Hungary.
RP Parazzini, M (reprint author), CNR, ISIB, Ist Ingn Biomed, Piazza Leonardo Vinci 32, I-20133 Milan, Italy.
EM marta.parazzini@polimi.it
RI Parazzini, Marta/J-8175-2014; Tognola, Gabriella/B-9025-2015; Ravazzani,
   Paolo/B-9139-2015
OI Parazzini, Marta/0000-0001-9008-7530; Ravazzani,
   Paolo/0000-0003-0282-3329
CR Arai N, 2003, CLIN NEUROPHYSIOL, V114, P1390, DOI 10.1016/S1388-2457(03)00124-X
   BELL SL, 2004, 2 IASTED INT C BIOM, P519
   *CENELEC EN, 2002, 50361 CENELEC EN
   *EU, 1999, OFFICIAL J EUROPEA L, V199
   GALLONI P, IN PRESS BIOELECTROM
   GRISANTI G, 1998, MICROWAVE S DIGEST I, V2, P771
   Hamblin DL, 2004, CLIN NEUROPHYSIOL, V115, P171, DOI 10.1016/S1388-2457(03)00313-4
   Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597
   Kellenyi L., 1999, Neurobiology (Budapest), V7, P79
   KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
   Kizilay A, 2003, AURIS NASUS LARYNX, V30, P239, DOI 10.1016/S0385-8146(03)00054-3
   Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351
   Knight RD, 1999, J ACOUST SOC AM, V106, P1420, DOI 10.1121/1.427145
   Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197
   Mallat S., 1998, WAVELET TOUR SIGNAL
   Marino C, 2000, RADIAT ENVIRON BIOPH, V39, P131, DOI 10.1007/s004110000049
   Ozturan O, 2002, ACTA OTO-LARYNGOL, V122, P289, DOI 10.1080/000164802753648178
   Papoulis A., 1962, FOURIER INTEGRAL ITS
   Parazzini M, 2005, HEARING RES, V205, P44, DOI 10.1016/j.heares.2005.02.010
   RAZAZZANI P, 2005, 28 ARO MIDW M NEW OR
   SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717
   Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
   ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
NR 23
TC 29
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 68
EP 78
DI 10.1016/j.heares.2005.04.013
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900006
PM 16054312
ER

PT J
AU Ton, C
   Parng, C
AF Ton, C
   Parng, C
TI The use of zebrafish for assessing ototoxic and otoprotective agents
SO HEARING RESEARCH
LA English
DT Article
DE ototoxicity; otoprotection; aminoglycoside; cisplatin; antioxidant; hair
   cells; zebrafish
ID CISPLATIN-INDUCED OTOTOXICITY; HAIR CELL-DEATH; INDUCED
   LIPID-PEROXIDATION; ROUND WINDOW APPLICATION; LATERAL-LINE SYSTEM;
   INDUCED APOPTOSIS; D-METHIONINE; DANIO-RERIO;
   AMINOGLYCOSIDE-OTOTOXICITY; INDIVIDUAL SENSITIVITY
AB Zebrafish and other fish exhibit hair cells in the lateral-fine neurornasts which Lire structurally and functionally similar to mammalian inner ear hair cells. To facilitate drug screening for ototoxic or otoprotective agents, we report a straightforward, quantitative in vivo assay to determine potential ototoxicity of drug candidates and to screen otoprotective agents in zebrafish larva. In this study, a fluorescent vital dye, DASPEI (2-(4-(dimetliylamino)styryl)-N-ethylpyridinium iodide), was used to stain zebrafish hair cells in vivo and morphometric analysis was performed to quantify fluorescence intensity and convert images to numerical endpoints. Various therapeutics, including gentamicin, cisplatin, vinblastine sulfate, quinine, and neomycin, which cause ototoxicity in humans, also resulted in hair cell loss in zebrafish. In addition, protection against cisplatin-induced ototoxicity was observed in zebrafish larva co-treated with cisplatin and different antioxidants including, ghutathione (GSH), allopurinol (ALO), N-acetyl L-cysteine (L-NAC), 2-oxothiazolidine-4-carboxylate (OTC) and D-methionine (D-MET). Our data indicate that results of ototoxicity and otoprotection in zebrafish correlated with results in humans, supporting use of zebrafish for preliminary drug screening. (c) 2005 Elsevier B.V. All rights reserved.
C1 Phylonix Pharmaceut Inc, Cambridge, MA 02139 USA.
RP Parng, C (reprint author), Phylonix Pharmaceut Inc, 100 Inman St, Cambridge, MA 02139 USA.
EM chuenlei@phylonix.com
CR Alexandre D, 1999, P NATL ACAD SCI USA, V96, P7558, DOI 10.1073/pnas.96.13.7558
   ANDERSON ME, 1990, FASEB J, V4, P3251
   ARSLAN E, 1999, ANN NY ACAD SCI, V28, P1
   AUGUSTIN AJ, 1994, INVEST OPHTH VIS SCI, V35, P3897
   BALAK KJ, 1990, J NEUROSCI, V10, P2502
   BEREITERHAHN J, 1976, BIOCHIM BIOPHYS ACTA, V423, P1, DOI 10.1016/0005-2728(76)90096-7
   Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7
   Bohm S, 1999, ONCOLOGY-BASEL, V57, P115, DOI 10.1159/000012017
   Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
   Campbell Kathleen, 2003, J Am Acad Audiol, V14, P121, DOI 10.3766/jaaa.14.3.2
   CAMPBELL KC, 1996, HEARING RES, V120, P90
   Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144
   CHITNIS AB, 1990, J NEUROSCI, V10, P1892
   Choe WT, 2004, OTOL NEUROTOL, V25, P910, DOI 10.1097/00129492-200411000-00009
   COLLEY JC, 1989, TOXICOLOGY, V54, P219, DOI 10.1016/0300-483X(89)90047-4
   Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023
   CORWIN JT, 1985, J COMP NEUROL, V239, P445, DOI 10.1002/cne.902390410
   CORWIN JT, 1991, ANNU REV NEUROSCI, V14, P301, DOI 10.1146/annurev.neuro.14.1.301
   Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0
   Erdinc M, 2000, EXP TOXICOL PATHOL, V52, P329
   Fawcett JP, 1996, EXP NEPHROL, V4, P248
   Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005
   FRITZSCH B, 1988, ACTA BIOL HUNG, V39, P305
   GANDARA DR, 1989, ANTICANCER RES, V9, P1121
   Gompel N, 2001, MECH DEVELOP, V105, P69, DOI 10.1016/S0925-4773(01)00382-3
   Gompel N, 2001, DEVELOPMENT, V128, P387
   HANNEMANN J, 1988, TOXICOLOGY, V51, P119
   Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x
   HENTSCHEL DM, 2004, AM J PHYSIOL-RENAL, V288, pF923
   Higgs DM, 2002, JARO, V3, P174, DOI 10.1007/s101620020035
   Higgs DM, 2003, J ACOUST SOC AM, V113, P1145, DOI 10.1121/1.1536185
   Holley MC, 2002, BRIT MED BULL, V63, P157, DOI 10.1093/bmb/63.1.157
   Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X
   Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5
   HUDSPETH AJ, 1989, NATURE, V341, P379
   Ikegami R, 1997, ZYGOTE, V5, P329
   Inohara N, 2000, CELL DEATH DIFFER, V7, P509, DOI 10.1038/sj.cdd.4400679
   Jarboe JK, 1999, HEARING RES, V132, P43, DOI 10.1016/S0378-5955(99)00031-3
   Jorgensen J.M., 1989, EVOLUTION OCTAVOLATE
   KIMMEL CB, 1995, DEV DYNAM, V203, P253
   Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x
   KORNBLUM HI, 1990, J COMP NEUROL, V301, P162, DOI 10.1002/cne.903010203
   Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299
   Lautermann J, 2004, LARYNGO RHINO OTOL, V83, P317, DOI 10.1055/s-2004-814280
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   Lynch ED, 2005, HEARING RES, V201, P81, DOI 10.1016/j.heares.2004.08.002
   Matsui Jonathan Isamu, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P418, DOI 10.1097/01.moo.0000136873.56878.56
   Mattsson JL, 2000, TOXICOL PATHOL, V28, P137, DOI 10.1177/019262330002800117
   McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0
   MILLER JM, 2002, AUDIOL NEURO-OTOL, V7, P157
   Moens CB, 1999, METHODS CELL BIOL, V59, P253
   Moss PE, 1999, ANN PHARMACOTHER, V33, P423, DOI 10.1345/aph.18288
   Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4
   NAKANO S, 1989, JPN J PHARMACOL, V50, P87, DOI 10.1254/jjp.50.87
   Nishida I, 1996, ORL J OTO-RHINO-LARY, V58, P68
   Parng C, 2002, ASSAY DRUG DEV TECHN, V1, P41, DOI 10.1089/154065802761001293
   Peters U, 2000, ANTI-CANCER DRUG, V11, P639, DOI 10.1097/00001813-200009000-00007
   Peters U, 2003, ANTICANCER RES, V23, P1249
   Petrioli R, 1996, CANCER, V77, P344, DOI 10.1002/(SICI)1097-0142(19960115)77:2<344::AID-CNCR18>3.0.CO;2-1
   Pichon F, 2004, EVOL DEV, V6, P187, DOI 10.1111/j.1525-142X.2004.04024.x
   PLAXE S, 1994, GYNECOL ONCOL, V55, P82, DOI 10.1006/gyno.1994.1252
   POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3
   Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K
   Raphael Y, 2002, BRIT MED BULL, V63, P25, DOI 10.1093/bmb/63.1.25
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   RAVI R, 1991, PHARMACOLOGIST, V33, P127
   Ray DE, 1997, CLIN EXP PHARMACOL P, V24, P857, DOI 10.1111/j.1440-1681.1997.tb02704.x
   Rybak LP, 1999, TOXICOL SCI, V47, P195, DOI 10.1093/toxsci/47.2.195
   Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004
   Rybak LP, 2000, AM J OTOL, V21, P513
   SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001
   Schweyer S, 2004, INT J ONCOL, V25, P1671
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   Stone JS, 1996, J NEUROSCI, V16, P6157
   Tange Rinze A., 1997, Auris Nasus Larynx, V24, P131, DOI 10.1016/S0385-8146(96)00031-4
   Thomas Dickey D, 2004, Hear Res, V193, P25, DOI 10.1016/j.heares.2004.02.007
   TROOST TAW, 1998, IATROGENIC NEUROLOGY
   WALKER EM, 1990, CLIN LAB MED, V10, P323
   Walshe P, 2003, CLIN OTOLARYNGOL, V28, P5, DOI 10.1046/j.1365-2273.2003.00658.x
   Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581
   Webb JF, 1997, BRAIN BEHAV EVOLUT, V50, P139, DOI 10.1159/000113328
   Westerfield M., 1993, ZEBRAFISH BOOK GUIDE
   Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3
   Wimmer C, 2004, OTOL NEUROTOL, V25, P33, DOI 10.1097/00129492-200401000-00007
   Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
NR 88
TC 94
Z9 106
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 79
EP 88
DI 10.1016/j.heares.2005.05.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900007
PM 16014323
ER

PT J
AU Meinke, DK
   Stagner, BB
   Martin, GK
   Lonsbury-Martin, BL
AF Meinke, DK
   Stagner, BB
   Martin, GK
   Lonsbury-Martin, BL
TI Human efferent adaptation of DPOAEs in the L-1,L-2 space
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emission; DPOAE; adaptation; efferent
ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION PRODUCTS;
   AUDITORY-NERVE FIBERS; COCHLEAR MICROMECHANICAL PROPERTIES;
   OLIVOCOCHLEAR-BUNDLE STIMULATION; CONTRALATERAL SOUND STIMULATION; OUTER
   HAIR-CELLS; BROAD-BAND NOISE; ELECTRICAL-STIMULATION; VISUAL-ATTENTION
AB The adaptive properties of distortion product otoacoustic emissions (DPOAEs) at 2f(1) -f(2) were investigated in 12 ears of normally hearing adults aged 18-30 years using long-lasting 1-s primary-tone on-times. In this manner, DPOAE adaptation at a single f(2) of 1.55 kHz (f(2)/f(1) = 1.21) was evaluated as a function of the levels of the primary tones in a matrix of L-1,L-2 settings, which varied from 45 to 80 dB SPL, in 5-dB steps. DPOAEs were elicited under both monaural and binaural stimulus-presentation conditions. Adaptation was defined as the difference in DPOAE levels between the initial 92-ms baseline measure using a standard protocol and one obtained during the final 92 ms of the prolonged 1-s primary-tones. These differences were averaged across subjects to create contour plots of mean adaptation in the L-1,L-2 space. The 2f(1) -f(2) DPOAE revealed consistent regions of suppression (<=-0.5 dB difference) or enhancement (>= +0.5 dB difference) with respect to baseline measures within the L-1,L-2 matrix for both acoustic-stimulation conditions. Specifically, 2f(1) - f(2) DPOAE suppressions of 1-2 dB occurred for both monaural and binaural presentations, typically at level combinations in which L-1 > L-2 In contrast, larger 2f(1) - f(2) DPOAE enhancements of 3-4 dB occurred for only the binaural condition, at primary-tone level combinations where L-1 < L-2. Although adaptation activity was also evaluated for the DPOAEs at f(2) - f(1), 2f(2) - f(1), and 3f(1) - 2f(2), these emissions were either immeasurable (e.g., f(2) - f(1)) or only present in a subset of subjects over a narrow range of primary-tone frequencies and levels that did not support a systematic analysis. In summary, the 2f(1) - f(2) results suggest that a potentially important area for adaptation measures exists in the L-1,L-2 space, when L-1 is lower than L-2. This combination of primary-tone levels can lead to large DPOAE adaptation effects that may be related to a notch in the DPOAE response/growth or input/output (I/O) function. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Colorado, Dept Speech Language & Hearing Sci, Boulder, CO 80309 USA.
   Jerry L Pettis Mem Vet Adm Med Ctr, Res Serv 151, Loma Linda, CA 92357 USA.
   Loma Linda Univ, Dept Surg, Div Otolaryngol Head & Neck Surg, Loma Linda, CA 92350 USA.
RP Meinke, DK (reprint author), Univ No Colorado, Dept Commun Disorders, Campus Box 140, Greeley, CO 80639 USA.
EM deanna.meinke@unco.edu
CR AGRAMA MT, 1998, ABST ASS RES OTOLARY, V21, P152
   Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4
   BERLIN CI, 1995, HEARING RES, V87, P96, DOI 10.1016/0378-5955(95)00082-F
   BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X
   BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S
   BROWN SE, 1990, ABSTR ASS RES OT, V13, P230
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8
   COLLET L, 1990, ADV AUDIOL, V7, P164
   COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326
   DAVIS H, 1983, HEARING RES, V9, P164
   Di Girolamo S, 2001, HEARING RES, V162, P80, DOI 10.1016/S0378-5955(01)00370-7
   Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
   FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D
   GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3
   GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728
   Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2
   GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8
   Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3
   GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X
   Kawase T, 1995, HEARING RES, V91, P1, DOI 10.1016/0378-5955(95)00145-X
   KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
   Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066
   KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S
   KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2
   Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047
   Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956
   LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779
   Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286
   LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242
   LUEBKE AE, 2002, JARO-J ASSOC RES OTO, V1, P16
   Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903
   Maison S, 1997, HEARING RES, V113, P89, DOI 10.1016/S0378-5955(97)00136-6
   Maison SF, 2000, J NEUROSCI, V20, P4701
   Martin GK, 2003, HEARING RES, V177, P111, DOI 10.1016/S0378-5955(03)00028-5
   Martin GK, 1999, HEARING RES, V136, P105, DOI 10.1016/S0378-5955(99)00119-7
   McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0
   MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K
   OATMAN LC, 1971, EXP NEUROL, V32, P341, DOI 10.1016/0014-4886(71)90003-3
   OATMAN LC, 1976, EXP NEUROL, V51, P41, DOI 10.1016/0014-4886(76)90052-2
   OATMAN LC, 1977, EXP NEUROL, V57, P200, DOI 10.1016/0014-4886(77)90057-7
   PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4
   PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410
   Rajan R, 1992, NOISE INDUCED HEARIN, P429
   RAJAN R, 1988, J NEUROPHYSIOL, V60, P549
   RELKIN EM, 2002, ASS RES OTOLARYNGOL
   RELKIN EM, 2001, ASS RES OTOLARYNGOL
   SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1
   SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303
   SUBRAMANIAM M, 1993, HEARING RES, V65, P234, DOI 10.1016/0378-5955(93)90216-N
   SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818
   VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724
   Warr W. B., 1986, NEUROBIOLOGY HEARING, P333
   WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203
   WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
   WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4
   WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959
   WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P130
   Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X
NR 59
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 89
EP 100
DI 10.1016/j.heares.2005.05.004
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900008
PM 16019174
ER

PT J
AU Morand-Villeneuve, N
   Veuillet, E
   Perrot, X
   Lemoine, P
   Gagnieu, MC
   Sebert, P
   Durrant, JD
   Collet, L
AF Morand-Villeneuve, N
   Veuillet, E
   Perrot, X
   Lemoine, P
   Gagnieu, MC
   Sebert, P
   Durrant, JD
   Collet, L
TI Lateralization of the effects of the benzodiazepine drug oxazepam on
   medial olivocochlear system activity in humans
SO HEARING RESEARCH
LA English
DT Article
DE benzodiazepines; descending auditory pathways; medial olivocochlear
   efferent bundle; left-right asymmetry; evoked otoacoustic emissions
ID COCHLEAR MICROMECHANICAL PROPERTIES; EVOKED OTOACOUSTIC EMISSIONS;
   SUPERIOR OLIVARY COMPLEX; STEM AUDITORY NUCLEI; PIG BRAIN-STEM; INFERIOR
   COLLICULUS; GUINEA-PIG; CORTICOFUGAL MODULATION; GABA-IMMUNOREACTIVITY;
   RECEPTOR SUBTYPES
AB Benzodiazepines (Bzd) are known to interact with GABAergic inhibitory neurotransmission. Previous research on their effect on human auditory efferent pathways-through evoked otoacoustic emissions Suppression by contralateral acoustic stimulation (CAS)-indicated a decrease in medial olivocochlear (MOC) efferent system inhibitory activity, after oral intake of oxazepam - representative of the Bzd drug class. To date, this pharmacological effect was only assessed in the right ear. Since a leftward asymmetry of Bzd receptors localization in human auditory cortex has been described recently.. we explored in this study the hypothesis of an asymmetrical action of Bzd on MOC efferent functioning. The results revealed a significant difference of Bzd effect probing the right ear versus the left ear, with CAS-induced suppression being less effective in the right than left ear after oxazepam intake. This finding raises the question of possible neurochernical left-right asymmetry in the descending auditory pathways. The potential localization of this asymmetry is discussed. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Lyon 1, Hop Edouard Herriot, CNRS UMR 5020, Lab Neurosci & Syst Sensoriels, F-69366 Lyon 07, France.
   Unite Clin Psychiat Biol, Bron, France.
   Hop Edouard Herriot, Pharmacol Lab, Lyon, France.
   Pharm CHS Vinatier, Bron, France.
   Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA.
   Univ Pittsburgh, Dept Otolaryngol, Pittsburgh, PA 15260 USA.
RP Veuillet, E (reprint author), Univ Lyon 1, Hop Edouard Herriot, CNRS UMR 5020, Lab Neurosci & Syst Sensoriels, 50 Av Tony Garnier,3 Pl Arsonval,Pavil U, F-69366 Lyon 07, France.
EM evelyne.veuillet@chu-lyon.fr
CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310
   BARBACCIA ML, 1988, ANNU REV PHARMACOL, V28, P451
   BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7
   BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7
   BURT DR, 1991, FASEB J, V5, P2916
   CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305
   CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909
   CHOI DW, 1977, NATURE, V269, P342, DOI 10.1038/269342a0
   COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E
   COLLET L, 1992, AUDIOLOGY, V31, P1
   DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356
   DELB W, 1994, LARYNGO RHINO OTOL, V73, P315, DOI 10.1055/s-2007-997138
   Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6
   DUPONT J, 1990, NEUROSCI LETT, V111, P263, DOI 10.1016/0304-3940(90)90272-B
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   GLICK SD, 1982, BRAIN RES, V234, P53, DOI 10.1016/0006-8993(82)90472-3
   GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310
   HELFERT RH, 1989, BRAIN RES, V501, P268
   HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108
   Hotz MA, 2000, BRIT J CLIN PHARMACO, V49, P72, DOI 10.1046/j.1365-2125.2000.00104.x
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   JUIZ JM, 1994, BRAIN RES, V639, P193, DOI 10.1016/0006-8993(94)91730-2
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   Khalfa S, 1998, EUR J NEUROSCI, V10, P2731, DOI 10.1046/j.1460-9568.1998.00286.x
   Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0
   Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008
   MACDONALD RL, 1978, SCIENCE, V200, P775, DOI 10.1126/science.205953
   Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109
   MERIC C, 1993, ACTA OTO-LARYNGOL, V113, P471, DOI 10.3109/00016489309135848
   MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F
   Morand N, 1998, HEARING RES, V121, P71, DOI 10.1016/S0378-5955(98)00068-9
   Morand N, 2001, ACTA OTO-LARYNGOL, V121, P293
   Mugnaini E, 1985, HDB CHEM NEUROANAT 1, V4, P436
   Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
   OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
   Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661
   Popelar J, 2002, HEARING RES, V170, P116, DOI 10.1016/S0378-5955(02)00397-0
   PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4
   RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204
   ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207
   ROSSOR M, 1980, J NEUROCHEM, V35, P743, DOI 10.1111/j.1471-4159.1980.tb03716.x
   Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3
   SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153
   Spangler K., 1991, NEUROBIOLOGY HEARING, P27
   Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9
   Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222
   Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807
   SUNEJA SK, 1995, J NEUROCHEM, V64, P147
   THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6
   Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X
   VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205
   VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X
   VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724
   Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
   Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
   Weedman DL, 1996, J COMP NEUROL, V371, P311
   WENTHOLD RJ, 1986, BRAIN RES, V380, P7, DOI 10.1016/0006-8993(86)91423-X
   Winer JA, 1998, J COMP NEUROL, V400, P147
   WINER JA, 1986, NEUROSCIENCE, V19, P771, DOI 10.1016/0306-4522(86)90298-8
   Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699
   Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786
   Yu YQ, 2004, J NEUROSCI, V24, P3060, DOI 10.1523/JNEUROSCI.4897-03.2004
   Zhang YF, 1997, NATURE, V387, P900
NR 67
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 101
EP 106
DI 10.1016/j.heares.2005.05.003
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900009
PM 15993014
ER

PT J
AU Okamoto, Y
   Nakagawa, S
   Fujimoto, K
   Tonoike, M
AF Okamoto, Y
   Nakagawa, S
   Fujimoto, K
   Tonoike, M
TI Intelligibility of bone-conducted ultrasonic speech
SO HEARING RESEARCH
LA English
DT Article
DE ultrasonic hearing; bone conduction; speech intelligibility;
   familiarity; confusion matrix
ID AUDITORY-CORTEX; PERCEPTION; HEARING
AB Ultrasound can be perceived through bone conduction by the profoundly deaf as well as by normal-hearing subjects. Moreover, speech signals modulated onto ultrasound can be detected through bone conduction. This study explored how well listeners can understand ultrasonic speech and the confusion patterns to evaluate and improve bone-conducted ultrasonic hearing. The intelligibility of Japanese words classified by familiarity and Japanese monosyllables with bone-conducted ultrasound was investigated. Results showed that the intelligibility of familiar words was higher than that of unfamiliar words. Further, the results of a monosyllable intelligibility test with bone-conducted ultrasound and those of a test with air-conducted sound showed a similar pattern of speech recognition with regard to the errors made. The relationship between speech intelligibility and sound level showed that the increase in the intelligibility of bone-conducted ultrasonic speech did not exceed the increase in the intelligibility of air-conducted speech as the sound level rose. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
   Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan.
RP Okamoto, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan.
EM yos-okamoto@aist.go.jp
CR ABRAMOVICH SJ, 1978, J LARYNGOL OTOL, V92, P861, DOI 10.1017/S0022215100086230
   AMANO S, 1995, PERCEPT PSYCHOPHYS, V57, P598, DOI 10.3758/BF03213265
   BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719
   CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804
   DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379
   DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548
   DOBIE RA, 1992, SCIENCE, V255, P1584, DOI 10.1126/science.1549785
   Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004
   GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053
   HAEFF AV, 1963, SCIENCE, P139
   Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9
   Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030
   Kennedy E, 1998, J ACOUST SOC AM, V103, P1098, DOI 10.1121/1.423108
   LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208
   MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526
   NAKAGAWA S, 2003, J ACOUST SOC JPN, V59, P464
   Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9
   PETERSON GE, 1952, J ACOUST SOC AM, V24, P175, DOI 10.1121/1.1906875
   PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0
   Sakamoto S., 1998, Journal of the Acoustical Society of Japan, V54
   Simpson A M, 1990, Acta Otolaryngol Suppl, V469, P101
NR 21
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 107
EP 113
DI 10.1016/j.heares.2005.05.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900010
PM 16019175
ER

PT J
AU Rzadzinska, AK
   Derr, A
   Kachar, B
   Noben-Trauth, K
AF Rzadzinska, AK
   Derr, A
   Kachar, B
   Noben-Trauth, K
TI Sustained cadherin 23 expression in young and adult cochlea of normal
   and hearing-impaired mice
SO HEARING RESEARCH
LA English
DT Article
DE age-related hearing loss; waltzer; cochlea; stereocilia; cadherin 23
ID MOUSE MODEL; INBRED STRAINS; FUNCTIONAL AGE; WALTZER MICE; STEREOCILIA;
   CDH23; MUTATIONS; CELLS; PRESBYCUSIS; PATHOLOGY
AB Cadherin 23 encodes a single-pass transmembrane protein with 27 extracellular cadherin-domains and localizes to stereocilia where it functions as an inter-stereocilia link. Cadherin 23-deficient mice show congenital deafness in combination with circling behavior as a result of organizational defects in the stereocilia hair bundle, common inbred mouse strains carrying the hypornorphic Cdh23(753A) allele are highly susceptible to sensorineural hearing loss. Here, we show that an antibody (N1086) directed against the intracellular carboxyterminus reacts specifically with cadherin 23 and detects with high sensitivity the isoform devoid of the peptide encoded by exon 68 (CDH23 Delta 68). Cochlea, vestibule.. eye, brain and testis produce the CDH23 Delta 68 isoform in abundance and form moieties with different molecular weight due to variations in glycosylation content. In the cochlea, CDH23 Delta 68 expression is highest at postnatal day 1 (P1) and P7; expression is down regulated through P14 and P21 and persists at a low steady-state level throughout adulthood (P160). Furthermore, CDH23 Delta 68 expression levels in young and adult cochlea are similar among normal and hearing deficient strains (C3HeB/FeJ, C57BL/6J and BUB/BnJ). Finally, by immunofluorescence using an antibody (Pb240) specific for ecto-domain 14, we show that cadherin 23 localizes to stereocilia during hair bundle development in late gestation and early postnatal days. Cadherin 23-specific labeling becomes weaker as the hair bundle matures but faint labeling concentrated near the top of stereocilia is still detectable at P35. No labeling of cochlea stereocilia was observed with N1086. In conclusion, our data describe a cadherin 23-specific antibody with high affinity to the CDH23 Delta 68 isoform, reveal a dynamic cochlea expression and localization profile and show sustained cadherin 23 levels in adult cochlea of normal and hearing-impaired mice. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Inst Deafness & Other Commun Disorders, Sect Struct Cell Biol, Lab Cellular Biol, NIH, Rockville, MD 20855 USA.
   Natl Inst Deafness & Other Commun Disorders, Mol Biol Lab, Neurogenet Sect, Rockville, MD 20855 USA.
RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Sect Struct Cell Biol, Lab Cellular Biol, NIH, Rockville, MD 20855 USA.
EM nobentk@nidcd.nih.gov
CR Boeda B, 2002, EMBO J, V21, P6689, DOI 10.1093/emboj/cdf689
   DEOL MS, 1956, PROC R SOC SER B-BIO, V145, P206, DOI 10.1098/rspb.1956.0028
   Di Palma F, 2001, GENE, V281, P31, DOI 10.1016/S0378-1119(01)00761-2
   Di Palma F, 2001, NAT GENET, V27, P103
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0
   HENRY KR, 1980, AUDIOLOGY, V19, P369
   Hequembourg S, 2001, JARO, V2, P118
   Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9
   Johnson EW, 1997, J BACK MUSCULOSKELET, V8, P3, DOI 10.3233/BMR-1997-8102
   Johnson KR, 2005, GENOMICS, V85, P582, DOI 10.1016/j.ygeno.2005.02.006
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   Lagziel A, 2005, DEV BIOL, V280, P295, DOI 10.1016/j.ydbio.2005.01.015
   Michel V, 2005, DEV BIOL, V280, P281, DOI 10.1016/j.ydbio.2005.01.014
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224
   Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9
   Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055
   Schwartz IR, 2002, HEARING RES, V171, P1, DOI 10.1016/S0378-5955(01)00396-3
   Shnerson A, 1981, Brain Res, V254, P65
   Shnerson A, 1981, Brain Res, V254, P77
   Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
   Siemens J, 2002, P NATL ACAD SCI USA, V99, P14946, DOI 10.1073/pnas.232579599
   Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484
   WILLIAMS MT, 1996, EARTH ISL J, V11, P2
   Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5
   Wilson SM, 2001, GENOMICS, V74, P228, DOI 10.1006/geno.2001.6554
   Yonezawa S, 1996, ACTA OTO-LARYNGOL, V116, P409, DOI 10.3109/00016489609137865
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
NR 29
TC 28
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2005
VL 208
IS 1-2
BP 114
EP 121
DI 10.1016/j.heares.2005.05.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 977TA
UT WOS:000232824900011
PM 16005171
ER

PT J
AU Winer, JA
AF Winer, JA
TI Decoding the auditory corticofugal systems
SO HEARING RESEARCH
LA English
DT Article
DE auditory thalamus; inferior colliculus; corticofugal; corticothalamic;
   corticocollicular; corticopontine
ID MEDIAL GENICULATE-BODY; SUPERIOR OLIVARY COMPLEX; COCHLEAR NUCLEUS;
   FUNCTIONAL ARCHITECTURE; CORTICAL PROJECTIONS; INFERIOR COLLICULUS;
   RESPONSE PROPERTIES; GUINEA-PIGS; LAYER V; CORTEX
AB The status of the organization of the auditory corticofugal systems is summarized. These are among the largest pathways in the brain, with descending connections to auditory and non-auditory thalamic, midbrain, and medullary regions. Auditory corticofugal influence thus reaches sites immediately presynaptic to the cortex, sites remote from the cortex, as in perolivary regions that may have a centrifugal role, and to the cochlear nucleus, which could influence early central events in hearing. Other targets include the striatum (possible premotor functions), the amygdala and central gray (prospective limbic and motivational roles), and the pontine nuclei (for precerebellar control). The size, specificity, laminar origins, and morphologic diversity of auditory corticofugal axons is consonant with an interpretation of multiple roles in parallel descending systems. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA.
RP Winer, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Room 289 Life Sci Addit, Berkeley, CA 94720 USA.
EM jaw@berkeley.edu
CR BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207
   BAJO VM, 1995, HEARING RES, V83, P161, DOI 10.1016/0378-5955(94)00199-Z
   Beneyto M, 2001, BRAIN RES BULL, V54, P485, DOI 10.1016/S0361-9230(00)00454-8
   BRODAL P, 1972, ARCH ITAL BIOL, V110, P119
   COLWELL SA, 1975, BRAIN RES, V92, P443, DOI 10.1016/0006-8993(75)90328-5
   Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x
   Crabtree JW, 1998, J COMP NEUROL, V390, P167
   CRICK F, 1984, P NATL ACAD SCI-BIOL, V81, P4586, DOI 10.1073/pnas.81.14.4586
   DEIS RP, 1984, EXP BRAIN RES, V55, P177
   Deschenes M, 1998, BRAIN RES REV, V28, P286, DOI 10.1016/S0165-0173(98)00017-4
   DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7
   DIAMOND ME, 1992, J COMP NEUROL, V319, P66, DOI 10.1002/cne.903190108
   Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
   Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6
   Driver J, 1998, CURR OPIN NEUROBIOL, V8, P245, DOI 10.1016/S0959-4388(98)80147-5
   DYKES RW, 1983, BRAIN RES REV, V6, P47, DOI 10.1016/0165-0173(83)90004-8
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   FRIGYESI T, 1972, CORTICOTHALAMIC PROJ
   Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626
   HUBEL DH, 1977, PROC R SOC SER B-BIO, V198, P1, DOI 10.1098/rspb.1977.0085
   JANE JA, 1965, J COMP NEUROL, V125, P165, DOI 10.1002/cne.901250203
   Jerison H. J., 1973, EVOLUTION BRAIN INTE
   King AJ, 1997, CURR BIOL, V7, pR85, DOI 10.1016/S0960-9822(06)00043-1
   Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006
   LEE CC, 2005, IN PRESS CEREB CORTE
   Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062
   LUETHKE LE, 1989, J COMP NEUROL, V285, P487, DOI 10.1002/cne.902850406
   Lund JS, 1994, CEREB CORTEX, P37
   Ma XF, 2001, J NEUROPHYSIOL, V85, P1078
   MARTIN KAC, 1994, CEREB CORTEX, V4, P1, DOI 10.1093/cercor/4.1.1
   MOREST DK, 1975, J COMP NEUROL, V162, P157, DOI 10.1002/cne.901620202
   Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
   Murphy PC, 1999, SCIENCE, V286, P1552, DOI 10.1126/science.286.5444.1552
   Prieto JJ, 1999, J COMP NEUROL, V404, P332, DOI 10.1002/(SICI)1096-9861(19990215)404:3<332::AID-CNE5>3.0.CO;2-R
   Przybyszewski AW, 1998, CURR BIOL, V8, pR135, DOI 10.1016/S0960-9822(98)70080-6
   Read HL, 2002, CURR OPIN NEUROBIOL, V12, P433, DOI 10.1016/S0959-4388(02)00342-2
   REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X
   ROMANSKI LM, 1993, CEREB CORTEX, V3, P515, DOI 10.1093/cercor/3.6.515
   Ryugo DK, 2003, EXP BRAIN RES, V153, P477, DOI 10.1007/s00221-003-1605-3
   Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5
   Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
   Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003
   SCHREINER CE, 1995, CURR OPIN NEUROBIOL, V5, P489, DOI 10.1016/0959-4388(95)80010-7
   SCHULLER G, 1991, EUR J NEUROSCI, V3, P648, DOI 10.1111/j.1460-9568.1991.tb00851.x
   Steriade M, 2000, NEUROSCIENCE, V101, P243, DOI 10.1016/S0306-4522(00)00353-5
   Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9
   Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9
   Treisman A, 1996, CURR OPIN NEUROBIOL, V6, P171, DOI 10.1016/S0959-4388(96)80070-5
   Ulinski P.S, 1983, DORSAL VENTRICULAR R
   VILLA AEP, 1991, EXP BRAIN RES, V86, P506
   Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
   Weinberg RJ, 1997, BRAIN RES BULL, V44, P113, DOI 10.1016/S0361-9230(97)00095-6
   Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8
   Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009
   Winer JA, 1998, J COMP NEUROL, V400, P147
   Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1
   Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222
   Winer JA, 2001, J COMP NEUROL, V430, P27
   Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183
   Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083
   WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212
   Winer JA, 1999, J COMP NEUROL, V413, P181
   WITTER MP, 1986, J COMP NEUROL, V252, P1, DOI 10.1002/cne.902520102
   WONG D, 1981, BRAIN RES, V230, P362, DOI 10.1016/0006-8993(81)90416-9
   Yeomans JS, 1996, BRAIN RES REV, V21, P301
NR 65
TC 37
Z9 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2005.06.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100001
PM 16091301
ER

PT J
AU Cousillas, H
   Leppelsack, HJ
   Leppelsack, E
   Richard, JP
   Mathelier, M
   Hausberger, M
AF Cousillas, H
   Leppelsack, HJ
   Leppelsack, E
   Richard, JP
   Mathelier, M
   Hausberger, M
TI Functional organization of the forebrain auditory centres of the
   European starling: A study based on natural sounds
SO HEARING RESEARCH
LA English
DT Article
DE field L; neuronal selectivity; categorization; backward correlation;
   mapping; starling
ID MALE ZEBRA FINCHES; FIELD-L-COMPLEX; WHITE-CROWNED SPARROW;
   STURNUS-VULGARIS; CORTEX ANALOG; TAENOPYGIA-GUTTATA; RECEPTIVE-FIELDS;
   SONG SYSTEM; NEURONS; NEOSTRIATUM
AB The field L complex is thought to be the highest auditory centre and the input in the song vocal nuclei. Different anatomical and functional subdivisions have been described in field L. Auditory neurons of field L are well activated by natural sounds and especially by species-specific sounds. A complex sound coding appears to exist in field L. However, until now, the spatial organization of the different functional subdivisions has been described only using artificial sounds. Here, we investigated the spatial distribution of neuronal responses in field L to species-specific songs. Starlings seemed to be a very appropriate species for this investigation, both because of their complex vocal behaviour that implies different levels of categorization and their neuronal responses towards complex song elements. Multi-unit recordings were performed in wild starlings that were awake. The method of backward correlation was used to visualize the functional organization and we represented the neuronal responses as both activity maps and correlation maps. The use of natural sounds allowed us to define several functional sub-areas with different neuronal processing. These results show that field L is involved in a more complex task than simple frequency processing. (c) 2005 Published by Elsevier B.V.
C1 Univ Rennes 1, CNRS, UMR 6552, F-35042 Rennes, France.
   Tech Univ Munich, Inst Zool, D-85747 Garching, Germany.
RP Cousillas, H (reprint author), Univ Rennes 1, CNRS, UMR 6552, 263 Ave Gen Leclerc, F-35042 Rennes, France.
EM hugo.cousillas@univ-rennes1.fr
CR BONKE D, 1979, J COMP PHYSIOL, V132, P243
   Capsius B, 1999, HEARING RES, V136, P91, DOI 10.1016/S0378-5955(99)00112-4
   Capsius B, 1996, HEARING RES, V96, P59, DOI 10.1016/0378-5955(96)00038-X
   Cohen YE, 1998, J NEUROPHYSIOL, V79, P879
   COHEN YE, 1995, J NEUROSCI, V15, P5139
   Cousillas H, 2004, EUR J NEUROSCI, V19, P3343, DOI 10.1111/j.1460-9568.2004.03376.x
   DOUPE AJ, 1991, P NATL ACAD SCI USA, V88, P11339, DOI 10.1073/pnas.88.24.11339
   FORTUNE ES, 1992, J COMP NEUROL, V325, P388, DOI 10.1002/cne.903250306
   FORTUNE ES, 1995, J COMP NEUROL, V360, P413, DOI 10.1002/cne.903600305
   Gehr DD, 1999, NEUROREPORT, V10, P375, DOI 10.1097/00001756-199902050-00030
   Gehr DD, 2000, DEV BRAIN RES, V125, P153, DOI 10.1016/S0165-3806(00)00131-0
   George I, 2004, BEHAV NEUROSCI, V118, P597, DOI 10.1037/0735-7044.118.3.597
   Grace JA, 2003, J NEUROPHYSIOL, V89, P472, DOI 10.1152/jn.00088.2002
   HALL WS, 1994, BRAIN BEHAV EVOLUT, V44, P133, DOI 10.1159/000113585
   Hausberger M, 2000, BEHAV BRAIN RES, V114, P89, DOI 10.1016/S0166-4328(00)00191-1
   Hausberger M., 1996, BEHAV PROCESS, V35, P83
   Hausberger Martine, 1997, P128, DOI 10.1017/CBO9780511758843.008
   Hausberger M., 1993, Etologia, V3, P171
   HEIL P, 1992, J COMP PHYSIOL A, V171, P583
   HEIL P, 1991, BRAIN RES, V539, P110, DOI 10.1016/0006-8993(91)90692-O
   KATZ LC, 1981, BRAIN RES, V221, P192, DOI 10.1016/0006-8993(81)91073-8
   LEPPELSACK EH, 1992, THESIS TU MUNCHEN
   LEPPELSACK HJ, 1976, J COMP PHYSIOL, V107, P263
   LEPPELSA.HJ, 1974, J COMP PHYSIOL, V88, P271, DOI 10.1007/BF00697959
   Lim Dukhwan, 1997, Auris Nasus Larynx, V24, P227, DOI 10.1016/S0385-8146(97)00014-X
   MARGOLIASH D, 1983, J NEUROSCI, V3, P1039
   MARGOLIASH D, 1986, J NEUROSCI, V6, P1643
   Mori K., 1992, Society for Neuroscience Abstracts, V18, P527
   Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8
   RICHARD JP, 1991, BIOACOUSTICS, V3, P45, DOI DOI 10.1080/09524622.1991.9753156
   RICHARD JP, 1995, J NEUROSCI METH, V61, P99, DOI 10.1016/0165-0270(95)00029-T
   SAINI KD, 1981, J COMP NEUROL, V98, P209
   Schreiner CE, 1998, AUDIOL NEURO-OTOL, V3, P104, DOI 10.1159/000013785
   SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284
   SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442
   Theunissen FE, 2000, J NEUROSCI, V20, P2315
   UNO H, 1991, J COMP PHYSIOL A, V169, P231, DOI 10.1007/BF00215870
   Vates GE, 1996, J COMP NEUROL, V366, P613, DOI 10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7
NR 38
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 10
EP 21
DI 10.1016/j.heares.2005.01.008
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100002
PM 15996840
ER

PT J
AU Furness, DN
   Katori, Y
   Mahendrasingam, S
   Hackney, CM
AF Furness, DN
   Katori, Y
   Mahendrasingam, S
   Hackney, CM
TI Differential distribution of beta- and gamma-actin in guinea-pig
   cochlear sensory and supporting cells
SO HEARING RESEARCH
LA English
DT Article
DE isoactins; actin filaments; auditory system; hair cells; stereocilia
ID OUTER HAIR-CELLS; INNER-EAR; IMMUNOFLUORESCENT LOCALIZATION; MOLECULAR
   TREADMILL; CHINCHILLA COCHLEA; CROSS-LINKS; F-ACTIN; ORGAN; STEREOCILIA;
   ISOFORMS
AB Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Keele, Sch Life Sci, MacKay Inst Commun & Neurosci, Keele ST5 5BG, Staffs, England.
   Tohoku Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Sendai, Miyagi 9808574, Japan.
   Univ Wisconsin, Dept Anat, Madison, WI 53706 USA.
RP Furness, DN (reprint author), Univ Keele, Sch Life Sci, MacKay Inst Commun & Neurosci, Keele ST5 5BG, Staffs, England.
EM coa14@keele.ac.uk
CR Allen PG, 1996, BIOCHEMISTRY-US, V35, P14062, DOI 10.1021/bi961326g
   Bannister L H, 1988, Prog Brain Res, V74, P213
   CARLISLE L, 1988, HEARING RES, V33, P201, DOI 10.1016/0378-5955(88)90033-0
   Daudet N, 2002, CELL MOTIL CYTOSKEL, V53, P326, DOI 10.1002/cm.10092
   Dehmelt L, 2004, J NEUROBIOL, V58, P18, DOI 10.1002/neu.10284
   DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641
   Dumont RA, 2002, JARO, V3, P375, DOI 10.1007/s101620020049
   Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
   ERBA HP, 1988, MOL CELL BIOL, V8, P1775
   FLOCK A, 1981, J NEUROCYTOL, V10, P133, DOI 10.1007/BF01181749
   FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0
   FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339
   FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755
   Frolenkov GI, 2004, NAT REV GENET, V5, P489, DOI 10.1038/nrg1377
   FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3
   Garcia JA, 1998, J NEUROSCI, V18, P8637
   GIMONA M, 1994, CELL MOTIL CYTOSKEL, V27, P108, DOI 10.1002/cm.970270203
   Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4
   Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
   HENDERSON CG, 1995, J CELL SCI, V108, P37
   Herman IM, 1993, CURR OPIN CELL BIOL, V5, P48, DOI 10.1016/S0955-0674(05)80007-9
   HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249
   Hofer D, 1997, J CELL SCI, V110, P765
   HOLLEY MC, 1990, J CELL SCI, V96, P283
   HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0
   Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0
   JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693
   Khaitlina SY, 2001, INT REV CYTOL, V202, P35, DOI 10.1016/S0074-7696(01)02003-4
   KIKUCHI T, 1991, ACTA OTO-LARYNGOL, V111, P286, DOI 10.3109/00016489109137389
   LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4
   Loomis PA, 2003, J CELL BIOL, V163, P1045, DOI 10.1083/jcb.200309093
   Mahendrasingam S, 1998, HEARING RES, V126, P151, DOI 10.1016/S0378-5955(98)00164-6
   Matsubara A, 1996, J NEUROSCI, V16, P4457
   Micheva KD, 1998, EUR J NEUROSCI, V10, P3785, DOI 10.1046/j.1460-9568.1998.00391.x
   NAKAZAWA K, 1995, HEARING RES, V89, P121, DOI 10.1016/0378-5955(95)00129-8
   OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331
   OSHIMA T, 1992, BRAIN RES, V590, P53, DOI 10.1016/0006-8993(92)91081-O
   OTEY CA, 1987, J CELL BIOCHEM, V34, P113, DOI 10.1002/jcb.240340205
   Pataky F, 2004, P NATL ACAD SCI USA, V101, P2601, DOI 10.1073/pnas.0308620100
   Prassler J, 1997, MOL BIOL CELL, V8, P83
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055
   SATO N, 1992, J CELL SCI, V103, P131
   Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a
   SHERTERLINE P, 1998, ACTIN PROTEIN PROFIL
   SKALLI O, 1987, DIFFERENTIATION, V33, P232, DOI 10.1111/j.1432-0436.1987.tb01562.x
   SLEPECKY N, 1985, HEARING RES, V20, P245, DOI 10.1016/0378-5955(85)90029-2
   SLEPECKY N, 1986, CELL TISSUE RES, V245, P229
   SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9
   SLEPECKY N, 1982, CELL TISSUE RES, V224, P15, DOI 10.1007/BF00217262
   SLEPECKY NB, 1992, HEARING RES, V57, P201, DOI 10.1016/0378-5955(92)90152-D
   SLEPECKY NB, 1994, HEARING RES, V73, P16, DOI 10.1016/0378-5955(94)90278-X
   TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244
   Tolomeo JA, 1997, DIVERSITY AUDITORY M, P556
   Tolomeo JA, 1997, BIOPHYS J, V73, P2241
   VANDEKERCKHOVE J, 1981, EUR J BIOCHEM, V113, P595, DOI 10.1111/j.1432-1033.1981.tb05104.x
   VANDEKERCKHOVE J, 1978, J MOL BIOL, V126, P783, DOI 10.1016/0022-2836(78)90020-7
   WIJK E, 2003, J MED GENET, V40, P879
   YAO XB, 1995, MOL BIOL CELL, V6, P541
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   Zhu M, 2003, AM J HUM GENET, V73, P1082, DOI 10.1086/379286
   ZINE EA, 1993, NEUROREPORT, V4, P1350, DOI 10.1097/00001756-199309150-00016
NR 62
TC 24
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 22
EP 34
DI 10.1016/j.heares.2005.05.006
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100003
PM 16024192
ER

PT J
AU Bielefeld, EC
   Hu, BH
   Harris, KC
   Henderson, D
AF Bielefeld, EC
   Hu, BH
   Harris, KC
   Henderson, D
TI Damage and threshold shift resulting from cochlear exposure to
   Paraquat-generated superoxide
SO HEARING RESEARCH
LA English
DT Article
DE Paraquat; superoxide; NADPH oxidase; cochlea
ID INDUCED HEARING-LOSS; OXYGEN SPECIES GENERATION; CISPLATIN OTOTOXICITY;
   FREE-RADICALS; D-METHIONINE; HAIR-CELLS; INNER-EAR; GENTAMICIN EXPOSURE;
   NOISE EXPOSURE; GUINEA-PIG
AB Superoxide has been implicated as a contributing factor to cochlear pathology from a number of sources, including noise and ototoxic drugs. The effects of NADPH oxidase-dependent superoxide on the cochlea were investigated in the current study using paraquat (PQ). PQ is a toxic herbicide that causes tissue damage by generating superoxide through reduction of molecular oxygen in a reaction catalyzed by NADPH oxidase. The current study examined the effects of round window PQ administration on inferior colliculus (IC) evoked potential thresholds (EVP) and hair cell damage. Using implanted IC electrodes, chinchillas were tested for IC EVP thresholds before and after PQ exposure. Ears were exposed to PQ at one of four concentrations: 10, 5, 3 mM, and vehicle control. Thresholds were increased in a dose-dependent manner, and peaked between one and seven days post-exposure. Thresholds then showed a small amount of recovery before reaching PTS by Day 22. Outer and inner hair cell losses were consistent with PTS. The similarities between PQ ototoxicity and noise-induced hearing loss suggest the possibility of similar biochemical pathways involving superoxide. (c) 2005 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Bielefeld, EC (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM ecb2@buffalo.edu
RI Bielefeld, Eric/D-2015-2012
CR BOHEIM K, 1985, ARCH OTO-RHINO-LARYN, V242, P1, DOI 10.1007/BF00464398
   BUS JS, 1984, ENVIRON HEALTH PERSP, V55, P37, DOI 10.2307/3429690
   Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8
   Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6
   Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171
   Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   Halliwell B, 1999, FREE RADICALS BIOL D
   HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321
   Heyworth PG, 1992, BIOL OXIDANTS GENERA, P43
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Husain K, 2001, HEARING RES, V159, P14, DOI 10.1016/S0378-5955(01)00306-9
   Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1
   Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3
   Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001
   Kopke RD, 1997, AM J OTOL, V18, P559
   Laurell G, 2002, HEARING RES, V173, P198, DOI 10.1016/S0378-5955(02)00613-5
   Lockwood DS, 2000, AUDIOL NEURO-OTOL, V5, P263, DOI 10.1159/000013890
   NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876
   NICOTERA TM, 2002, 25 ANN MIDW M ASS RE
   Nicotera TM, 2004, AUDIOL NEURO-OTOL, V9, P353, DOI 10.1159/000081284
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   Puel JL, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P36
   QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
   Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   Rybak LP, 2000, AM J OTOL, V21, P513
   Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4
   SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Sha SH, 1999, LAB INVEST, V79, P807
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   SNYDER DL, 1994, LAB ANIMAL, V23, P42
   SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
   Suntres ZE, 2002, TOXICOLOGY, V180, P65, DOI 10.1016/S0300-483X(02)00382-7
   Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643
   THALMANN R, 1975, OTOLARYNG CLIN N AM, V8, P313
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7
NR 50
TC 16
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 35
EP 42
DI 10.1016/j.heares.2005.03.025
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100004
PM 15935579
ER

PT J
AU Dalamon, V
   Beheran, A
   Diamante, F
   Pallares, N
   Diamante, V
   Elgoyhen, AB
AF Dalamon, V
   Beheran, A
   Diamante, F
   Pallares, N
   Diamante, V
   Elgoyhen, AB
TI Prevalence of GJB2 mutations and the del(GJB6-D13S1830) in Argentinean
   non-syndromic deaf patients
SO HEARING RESEARCH
LA English
DT Article
DE deafness; GJB2; GJB6; c.35delG mutation; delGJB6-D13S1830; connexin 26;
   connexin 30
ID CONNEXIN 26 GENE; GAP-JUNCTION CHANNELS; HEARING-LOSS; SENSORINEURAL
   DEAFNESS; RECESSIVE DEAFNESS; DFNB1; EXPRESSION; FREQUENCY; CHILDREN
AB Genetically caused congenital deafness is a common trait affecting 1 in 2000 children and it is predominantly inherited in an autosomal recessive fashion. Several mutations in the GJB2 gene and a deletion of 342 kb in GJB6 (delGJB6-D13S1830) have been identified worldwide in patients with hearing impairment. The aim of this study was to determine the prevalence of these mutations in Argentina. Non-syndromic 46 probands (17 familial and 29 sporadic cases) were genetically evaluated. Mutations in GJB2 and/or delGJB6-D13S1830 were found in 19 patients, accounting for 41.3% of the sample. Of the 46 patients investigated in this study, 12 (26.1%) were diagnosed to carry sequence variations in both alleles; all but one, were considered causative for hearing impairment in those patients. In 7 out of 46 patients (15.2%) only one mutant allele was detected. of their 38 chromosomes, 71% resulted with mutations in the GJB2 gene and 11% in GJB6. The most frequent mutation in GJB2 (24%) was c.35delG(11% homozygous and 13% heterozygous and compound heterozygous). In addition, 11 sequence variations different from c.35delG, were identified in the coding region of the GJB2 gene: T8M, V27I, M34T, E47X, R75W, W77R, 182M, L90P, E129K, V1531, M163V. The delGJB6-D13S1830 mutation was found in 4 patients (9%), 3 of them associated with GJB2 mutations, resulting in compound heterozygous for the DFNB1 locus. The present study demonstrates that mutations in the GJB2 gene and the delGJB6-D13S1830 are prevalent in the Argentinean population. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, RA-1428 Buenos Aires, DF, Argentina.
   Ctr Implantes Cocleares Prof Dr Vicente Diamante, RA-1028 Buenos Aires, DF, Argentina.
RP Dalamon, V (reprint author), Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, Vuelta Obligado 2490, RA-1428 Buenos Aires, DF, Argentina.
EM dalamon@dna.uba.ar
CR Bayazit YA, 2003, INT J PEDIATR OTORHI, V67, P1331, DOI 10.1016/j.ijporl.2003.08.003
   Bruzzone R, 2003, FEBS LETT, V533, P79, DOI 10.1016/S0014-5793(02)03755-9
   Cryns K, 2004, AUDIOL NEURO-OTOL, V9, P2, DOI 10.1159/000074183
   del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205
   DELCASTILLO IV, 2000, NEW ENGL J MED, V346, P243
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2
   Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406
   Green GE, 1999, JAMA-J AM MED ASSOC, V281, P2211, DOI 10.1001/jama.281.23.2211
   Griffith AJ, 2000, AM J HUM GENET, V67, P745, DOI 10.1086/303045
   Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Kenna MA, 2001, ARCH OTOLARYNGOL, V127, P1037
   Kiang DT, 1997, GENE, V199, P165, DOI 10.1016/S0378-1119(97)00365-X
   Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001
   Kupka Susan, 2002, Hum Mutat, V20, P77, DOI 10.1002/humu.9044
   Lee MJ, 1998, MOL CELLS, V8, P295
   Marlin S, 2001, ARCH OTOLARYNGOL, V127, P927
   Martin PEM, 1999, HUM MOL GENET, V8, P2369, DOI 10.1093/hmg/8.13.2369
   Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103
   MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
   Oshima A, 2003, J BIOL CHEM, V278, P1807, DOI 10.1074/jbc.M207713200
   Prasad S, 2000, HUM MUTAT, V16, P502
   Rabionet R, 2000, HUM GENET, V106, P40, DOI 10.1007/s004390051007
   Richard G, 1998, HUM GENET, V103, P393, DOI 10.1007/s004390050839
   Roux Anne-Françoise, 2004, BMC Med Genet, V5, P5, DOI 10.1186/1471-2350-5-5
   Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8
   Skerrett IM, 2004, FASEB J, V18, P860, DOI 10.1096/fj.03-0763fje
   Thonnissen E, 2002, HUM GENET, V111, P190, DOI 10.1007/s00439-002-0750-2
   Venail F, 2004, LARYNGOSCOPE, V114, P566, DOI 10.1097/00005537-200403000-00033
   Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273
   Wu BL, 2002, GENET MED, V4, P279, DOI 10.1097/01.GIM.0000020823.93575.C2
   Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605
   ZOLL B, 2002, HUM MUTAT, V21, P98
NR 34
TC 25
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 43
EP 49
DI 10.1016/j.heares.2005.04.012
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100005
PM 15964725
ER

PT J
AU Happich, M
   von Lengerke, T
AF Happich, M
   von Lengerke, T
TI Valuing the health state 'tinnitus': Differences between patients and
   the general public
SO HEARING RESEARCH
LA English
DT Article
DE tinnitus valuation; patients; general public; standard gamble; time
   trade-off
ID VISUAL ANALOG SCALES; QUALITY-OF-LIFE; PROSPECT-THEORY; STANDARD-GAMBLE;
   PREFERENCES; UTILITIES; VALUES; RISK; CARE; MULTICENTER
AB Objective: In recent years, prioritisation in health care has gained increasing attention. However, rankings of interventions might depend on whom valuations of health states are elicited from. This paper's objective is to compare tinnitus. valuations by patients and the general public.
   Methods: Groups of 210 patients and 210 adults not (currently) affected were interviewed to elicit valuations using visual analogue scale (VAS), time trade-off (TTO) and standard gamble (SG). MANOVA is used to test for group differences, controlling for sex and age.
   Results: For all elicitation methods, valuations significantly differ in that patients report higher values than the general public respondents. Most notably, on the visual analogue scale which varies between 0 ('worst imaginable health') and 1 ('best imaginable health'), patients elicit a mean score of 0.54, and the general public 0.34 (those with former tinnitus experience) and 0.35 (without experience), respectively (F(2,377) = 55.67, p < 0.001). That is, patients valuate tinnitus as less severe than unaffected people.
   Conclusion: As for other health states, tinnitus valuations differ depending on whether values of patients or the general public are elicited. These differences should be taken into account in health care evaluation and planning. (c) 2005 Elsevier B.V. All rights reserved.
C1 GSF, Natl Res Ctr Environm & Hlth, Inst Hlth Econ & Hlth Care Management, D-85758 Neuherberg, Germany.
   Hannover Med Sch, D-30625 Hannover, Germany.
RP Happich, M (reprint author), GSF, Natl Res Ctr Environm & Hlth, Inst Hlth Econ & Hlth Care Management, POB 1129, D-85758 Neuherberg, Germany.
EM michael.happich@gsf.de
CR Ahmad N, 2004, DRUG AGING, V21, P297, DOI 10.2165/00002512-200421050-00002
   Arrow K., 1963, SOCIAL CHOICE INDIVI
   BIRCH S, 1994, HEALTH POLICY, V28, P133, DOI 10.1016/0168-8510(94)90031-0
   Bleichrodt H, 2002, HEALTH ECON, V11, P447, DOI 10.1002/hec.688
   BOMBARDIER C, 1986, AM J MED, V81, P565, DOI 10.1016/0002-9343(86)90539-5
   BOYD NF, 1990, MED DECIS MAKING, V10, P58, DOI 10.1177/0272989X9001000109
   CHRISTENSENSZALANSKI JJJ, 1984, MED DECIS MAKING, V4, P47, DOI 10.1177/0272989X8400400108
   Cookson R, 2000, BRIT MED J, V321, P954, DOI 10.1136/bmj.321.7266.954
   Cunningham SJ, 2000, EUR J ORTHODONT, V22, P335, DOI 10.1093/ejo/22.3.335
   Dolan P, 1999, MED DECIS MAKING, V19, P482, DOI 10.1177/0272989X9901900416
   Drummond M, 1997, METHODS EC EVALUATIO, V2nd
   DRUMMOND M, 1995, HEALTH POLICY, V31, P231, DOI 10.1016/0168-8510(94)00719-U
   Erlandsson SI, 2001, NOISE HEALTH, V3, P39
   FELDMANN H, 1998, TINNITUS GRUNDLAGEN
   GOEBEL G, 1995, OTO RHINO LARYN NOVA, V5, P178
   GOEBEL G, 1994, HNO, V42, P166
   Gold MR, 1996, COST EFFECTIVENESS H
   Green C, 2000, PHARMACOECONOMICS, V17, P151, DOI 10.2165/00019053-200017020-00004
   HADORN DC, 1991, SOC SCI MED, V32, P773, DOI 10.1016/0277-9536(91)90303-T
   Happich M, 2002, Eur J Health Econ, V3, P40, DOI 10.1007/s10198-001-0089-y
   JAKES SC, 1986, AUDIOLOGY, V25, P92
   Jansen SJT, 2001, MED DECIS MAKING, V21, P295, DOI 10.1177/02729890122062596
   Jansen SJT, 2000, MED DECIS MAKING, V20, P62, DOI 10.1177/0272989X0002000108
   KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185
   KAPLAN RM, 1995, UTILITY ASSESSMENT E
   KAPLAN RM, 1993, J ROY SOC MED, V86, P277
   Krabbe PFM, 1996, MED DECIS MAKING, V16, P120, DOI 10.1177/0272989X9601600204
   LENARZ T, 1992, AUDIOL AKUST, V6, P184
   Lenert LA, 1999, MED CARE, V37, P479, DOI 10.1097/00005650-199905000-00007
   Levine G., 1991, GUIDE SPSS ANAL VARI
   LLEWELLYNTHOMAS HA, 1992, MED DECIS MAKING, V12, P115, DOI 10.1177/0272989X9201200204
   LLEWELLYNTHOMAS HA, 1993, MED CARE, V31, P1002, DOI 10.1097/00005650-199311000-00003
   Meikle M, 1984, J Laryngol Otol Suppl, V9, P17
   NORD E, 1992, SOC SCI MED, V34, P559, DOI 10.1016/0277-9536(92)90211-8
   OCONNOR AMC, 1987, J CHRON DIS, V40, P811, DOI 10.1016/0021-9681(87)90133-0
   Penner M. J., 1996, INT TINNITUS J, V2, P3
   PLISKIN JS, 1980, OPER RES, V28, P206, DOI 10.1287/opre.28.1.206
   Postulart D, 2000, MED DECIS MAKING, V20, P186, DOI 10.1177/0272989X0002000204
   Rawls J, 1971, THEORY JUSTICE
   Robinson A, 2001, MED DECIS MAKING, V21, P17
   SACKETT DL, 1978, J CHRON DIS, V31, P697, DOI 10.1016/0021-9681(78)90072-3
   Torrance G W, 1972, Health Serv Res, V7, P118
   Torrance GW, 2001, MED DECIS MAKING, V21, P329, DOI 10.1177/02729890122062622
   TORRANCE GW, 1986, J HEALTH ECON, V5, P1, DOI 10.1016/0167-6296(86)90020-2
   Treadwell JR, 1999, MED DECIS MAKING, V19, P344, DOI 10.1177/0272989X9901900313
   Unterrainer J, 2001, Int Tinnitus J, V7, P109
   VERHOEF LCG, 1994, MED DECIS MAKING, V14, P194, DOI 10.1177/0272989X9401400213
   von Neumann J., 1947, THEORY GAMES EC BEHA
   Wilson C, 2002, INT J AUDIOL, V41, P216, DOI 10.3109/14992020209078334
NR 49
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 50
EP 58
DI 10.1016/j.heares.2005.04.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100006
PM 15919164
ER

PT J
AU Jeong, HJ
   Hong, SH
   Park, RK
   Shin, T
   An, NH
   Kim, HM
AF Jeong, HJ
   Hong, SH
   Park, RK
   Shin, T
   An, NH
   Kim, HM
TI Hypoxia-induced IL-6 production is associated with activation, of MAP
   kinase, HIF-1, and NF-kappa B on HEI-OC1 cells
SO HEARING RESEARCH
LA English
DT Article
DE cochlear auditory cells; hypoxia; IL-6; MAPK; HIF-1 alpha; NF-kappa B
ID INDUCIBLE FACTOR-I; ENDOTHELIAL GROWTH-FACTOR; OXYGEN-SENSING
   MECHANISMS; NECROSIS-FACTOR-ALPHA; DNA-BINDING ACTIVITY; NITRIC-OXIDE;
   INNER-EAR; MESSENGER-RNA; SIGNAL-TRANSDUCTION; GENE-TRANSCRIPTION
AB In the present study, we investigated the signal transduction pathways of expression of IL-6 in the desferrioxamine (DFX)-stimulated cochlear auditory cell line, HEI-OC1 cells. DFX increased the expression of HIF-1 alpha and NF-kappa B in HEI-OC1 cells. DFX significantly increased the production of IL-6 (P < 0.05) and expression of IL-6 mRNA but did not affect TNF-alpha production. DFX also induced the activation of mitogen-activated protein kinase (MAPK) including p38, ER K, and JNK on HEI-OC1. Increased IL-6 by DFX was significantly inhibited by p38 inhibitor, SB203580 (about 72% inhibition, P = 0.027) but not ERK inhibitor, PD98059 or JNK inhibitor, SP600125. SB203580 inhibited the expression of IL-6 mRNA. Increased IL-6 production was partially inhibited by treatment of iron (HIF-1 inhibitor) or pyrriolidine-dithiocarbamate (PDTC, NF-kappa B inhibitor). DFX also induced IL-6 production and HIF-1 alpha expression in the inner ear. We demonstrated the regulatory effects of MAPK, HIF-1 alpha, and NF-kappa B on DFX-induced IL-6 production in a HEI-OC1 for the first time. In conclusion, these data indicate that regulation of inflammatory cytokine IL-6 by DFX, through mimicking hypoxic conditions, might explain its beneficial effect in the treatment of hypoxia-induced inner ear diseases. (c) 2005 Elsevier B.V. All rights reserved.
C1 Kyung Hee Univ, Coll Oriental Med, Seoul 130701, South Korea.
   Wonkwang Univ, Coll Pharm, VestibuloCochlear Res Ctr, Iksan 570749, Jeonbuk, South Korea.
   Wonkwang Univ, Dept Microbiol & Immunol, VestibuloCochlear Res Ctr, Iksan 570749, Jeonbuk, South Korea.
   Cheju Natl Univ, Inst Life Sci, Dept Vet Med, Cheju 690756, South Korea.
RP Kim, HM (reprint author), Kyung Hee Univ, Coll Oriental Med, 1 Hoegi Dong, Seoul 130701, South Korea.
EM hmkim@khu.ac.kr
CR Alfranca A, 2002, MOL CELL BIOL, V22, P12, DOI 10.1128/MCB.22.1.12-22.2002
   Ankoma-Sey V, 2000, HEPATOLOGY, V31, P141, DOI 10.1002/hep.510310122
   Benyo DF, 2001, J CLIN ENDOCR METAB, V86, P2505, DOI 10.1210/jc.86.6.2505
   Bernaudin M, 2000, GLIA, V30, P271, DOI 10.1002/(SICI)1098-1136(200005)30:3<271::AID-GLIA6>3.0.CO;2-H
   Charlier N, 2002, MOL BRAIN RES, V104, P21, DOI 10.1016/S0169-328X(02)00198-5
   Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8
   Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   Duyndam MCA, 2003, J BIOL CHEM, V278, P6885, DOI 10.1074/jbc.M206320200
   Fiorini E, 2000, Dev Immunol, V7, P195, DOI 10.1155/2000/48239
   Galien R, 1996, MOL ENDOCRINOL, V10, P713, DOI 10.1210/me.10.6.713
   GOLDBERG MA, 1994, J BIOL CHEM, V269, P4355
   Gross J, 2003, HEARING RES, V183, P73, DOI 10.1016/S0378-5955(03)00222-3
   HELFMAN T, 1993, AM J MED SCI, V306, P37, DOI 10.1097/00000441-199307000-00010
   Hess A, 2002, BRAIN RES, V956, P236, DOI 10.1016/S0006-8993(02)03545-X
   JELKMANN W, 1992, PHYSIOL REV, V72, P449
   Jeong HJ, 2003, BIOCHEM BIOPH RES CO, V306, P805, DOI 10.1016/S0006-291X(03)01073-8
   Jeong HJ, 2002, CELL SIGNAL, V14, P633, DOI 10.1016/S0898-6568(02)00005-0
   Jung TTK, 2003, OTOL NEUROTOL, V24, P682, DOI 10.1097/00129492-200307000-00025
   Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
   Khan TA, 2004, J THORAC CARDIOV SUR, V127, P806, DOI 10.1016/j.jtcvs.2003.04.001
   Kumar S, 1997, BIOCHEM BIOPH RES CO, V235, P533, DOI 10.1006/bbrc.1997.6849
   Lewis TS, 1998, ADV CANCER RES, V74, P49, DOI 10.1016/S0065-230X(08)60765-4
   Li ZJ, 1996, BIOCHEM BIOPH RES CO, V228, P334, DOI 10.1006/bbrc.1996.1662
   Liu LX, 2002, BIOCHEM BIOPH RES CO, V291, P908, DOI 10.1006/bbrc.2002.6551
   Ludwig S, 1998, J BIOL CHEM, V273, P1917, DOI 10.1074/jbc.273.4.1917
   MINAMI M, 1991, BIOCHEM BIOPH RES CO, V176, P593, DOI 10.1016/S0006-291X(05)80225-6
   Mottet D, 2003, J CELL PHYSIOL, V194, P30, DOI 10.1002/jcp.10176
   Pirvola U, 2000, J NEUROSCI, V20, P43
   RAO A, 1994, IMMUNOL TODAY, V15, P274, DOI 10.1016/0167-5699(94)90007-8
   Sandau KB, 2001, J BIOL CHEM, V276, P39805, DOI 10.1074/jbc.M107689200
   Sandau KB, 2001, BLOOD, V97, P1009, DOI 10.1182/blood.V97.4.1009
   Satoh H, 2002, LARYNGOSCOPE, V112, P1627, DOI 10.1097/00005537-200209000-00019
   Satoh H, 2003, JARO, V4, P139, DOI 10.1007/s10162-002-3025-7
   SCHRECK R, 1992, J EXP MED, V175, P1181, DOI 10.1084/jem.175.5.1181
   Semenza GL, 1997, KIDNEY INT, V51, P553, DOI 10.1038/ki.1997.77
   SEMENZA GL, 1994, J BIOL CHEM, V269, P23757
   Semenza GL, 2001, TRENDS MOL MED, V7, P345, DOI 10.1016/S1471-4914(01)02090-1
   Shemirani B, 2002, ORAL ONCOL, V38, P251, DOI 10.1016/S1368-8375(01)00052-5
   Simakajornboon N, 2001, Brain Res Dev Brain Res, V127, P175
   Smouha EE, 2003, LARYNGOSCOPE, V113, P1439, DOI 10.1097/00005537-200309000-00003
   Stanimirovic D, 2001, J NEUROIMMUNOL, V119, P365, DOI 10.1016/S0165-5728(01)00402-7
   Tabuchi K, 1999, ACTA OTO-LARYNGOL, V119, P179
   WANG GL, 1995, J BIOL CHEM, V270, P1230
   WANG GL, 1993, BLOOD, V82, P3610
   WANG GL, 1993, J BIOL CHEM, V268, P21513
   Wang XB, 2003, OTOL NEUROTOL, V24, P52, DOI 10.1097/00129492-200301000-00012
   Wanner RM, 2000, BLOOD, V96, P1558
   Yamashita K, 2001, J BIOL CHEM, V276, P12645, DOI 10.1074/jbc.M011344200
   Zhong H, 2001, BIOCHEM BIOPH RES CO, V284, P352, DOI 10.1006/bbrc.2001.4981
NR 50
TC 26
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 59
EP 67
DI 10.1016/j.heares.2005.04.003
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100007
PM 15913932
ER

PT J
AU Borko, R
   Batta, TJ
   Sziklai, I
AF Borko, R
   Batta, TJ
   Sziklai, I
TI Slow motility, electromotility and lateral wall stiffness in the
   isolated outer hair cells
SO HEARING RESEARCH
LA English
DT Article
DE protein phosphorylation; cytoskeleton; ocadaic acid; inner ear
   protective mechanism; protein phosphatase; cochlear amplifier
ID COCHLEAR AMPLIFIER; GUINEA-PIG; PROTEIN-KINASE; MOTOR PROTEIN;
   RHO-KINASE; PHOSPHORYLATION; ACETYLCHOLINE; PHOSPHATASE; PRESTIN; ACTIN
AB Slow motile length changes of isolated, apical turn outer hair cells (OHCs) (n = 36) were induced by perfusion of saline (flow rate: 0.6 mu l/min) as a mechanical challenge or by perfusion of 12.5 mM KC1 solution for 90 s as a chemical and mechanical challenge with and without ocadaic acid (OA), a serine/threonine protein phosphatase inhibitor. Electromotility was evoked by square pulses from +/- 35 mV to +/- 240 mV during the slow shortening and recovery period (n = 36). Stiffness of the lateral wall was measured by the micropipette aspiration technique (n = 20).
   Saline perfusion caused a reversible shortening of 774 +/- 87 nm (n = 9) as well as K+ of 1465 +/- 159 nm (n = 9). Slow shortening increased lateral wall stiffness (1.25 +/- 0.02 to 1.52 +/- 0.03 nN/mu m) (n = 5-5). Simultaneously, electromotility magnitude decreased (n = 9). Ocadaic acid blocked slow shortening, increased lateral wall stiffness, and decreased the magnitude of electromotility. Mechanical or mechanical + chemical stimulation of ocadaic acid treated OHCs do not further change stiffness or electromotility.
   Isolated OHCs respond with slow shortening and consutive cell stiffness increase to mechanical insult. This phenomenon seems operating with calcium-, and phosphorylation-dependent modifications of the cytoskeletal proteins. The subsequent electromotility gain decrease suggests a slow OHC shortening driven regulation of the cochlear amplifier with simultaneous safety control of the auditory periphery against overstimulation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Debrecen, ORL Clin, Hlth Sci Ctr, H-4012 Debrecen, Hungary.
RP Sziklai, I (reprint author), Univ Debrecen, ORL Clin, Hlth Sci Ctr, Nagyerderi Krt 98, H-4012 Debrecen, Hungary.
EM isziklai@jaguar.unideb.hu
CR AMBERG GC, 2001, AM J PHYSIOL-CELL PH, V281, P2020
   ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   Batta TJ, 2003, PFLUG ARCH EUR J PHY, V447, P328, DOI 10.1007/s00424-003-1186-9
   BORKO R, IN PRESS ACTA OTOLAR
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   CLARK BA, 1990, PFLUG ARCH EUR J PHY, V415, P490, DOI 10.1007/BF00373629
   Dallos P, 1997, J NEUROSCI, V17, P2212
   Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
   Dallos P, 2000, JARO-J ASSOC RES OTO, V1, P283, DOI 10.1007/s101620010048
   Dallos P, 2003, JARO, V4, P416, DOI 10.1007/s0162-002-3049-z
   Davare MA, 2000, J BIOL CHEM, V275, P39710, DOI 10.1074/jbc.M005462200
   DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4
   DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6
   DULON D, 1992, AM J OTOL, V13, P108
   EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6
   Farkas Z, 2003, ACTA OTO-LARYNGOL, V123, P160, DOI 10.1080/0036554021000028127
   Fernandez JJ, 2002, CURR MED CHEM, V9, P229
   Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9
   GUMMER AW, 2003, BIOPHYSICS COCHLEA, P587
   He DZZ, 2003, J NEUROSCI, V23, P9089
   HOLLEY MC, 1990, J CELL SCI, V96, P283
   HOLLEY MC, 1992, J CELL SCI, V102, P569
   Inada H, 1999, J BIOL CHEM, V274, P34932, DOI 10.1074/jbc.274.49.34932
   Kalinec F, 2000, J BIOL CHEM, V275, P28000
   Kimura K, 1998, J BIOL CHEM, V273, P5542, DOI 10.1074/jbc.273.10.5542
   Kohler B, 2002, PLANT J, V32, P185, DOI 10.1046/j.1365-313X.2002.01414.x
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   Meyer J, 1998, J NEUROSCI, V18, P6748
   Minamino M, 1998, BRAIN RES, V781, P275, DOI 10.1016/S0006-8993(97)01255-9
   Oghalai JS, 1998, J NEUROSCI, V18, P48
   SLEPECKY N, 1989, CELL TISSUE RES, V257, P69
   Sziklai I, 2004, EUR ARCH OTO-RHINO-L, V261, P517, DOI 10.1007/s00405-004-0745-9
   Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3
   Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153
   Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6
   TOLOMEO JA, 1995, J ACOUST SOC AM, V97, P3006, DOI 10.1121/1.411865
   Ulfendahl M, 1998, PFLUG ARCH EUR J PHY, V436, P9, DOI 10.1007/s004240050598
   ZENNER HP, 1988, ACTA OTO-LARYNGOL, V105, P39, DOI 10.3109/00016488809119443
   ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8
   ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1
   Zhang M, 2003, J BIOL CHEM, V278, P35644, DOI 10.1074/jbc.M301668200
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   ZWISLOCKI JJ, 2002, AUDITORY SOUND TRANS, P212
NR 43
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 68
EP 75
DI 10.1016/j.heares.2005.04.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100008
PM 15950414
ER

PT J
AU Withnell, RH
   Dhar, S
   Thomsen, A
AF Withnell, RH
   Dhar, S
   Thomsen, A
TI A comparison of OAEs arising from different generation mechanisms in
   guinea pig
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emission; guinea pig; traveling wave; signal onset delay
ID PRODUCT OTOACOUSTIC EMISSIONS; BASILAR-MEMBRANE NONLINEARITY;
   STIMULUS-FREQUENCY; FINE-STRUCTURE; TRAVELING WAVES; MODEL; PHASE;
   COCHLEA; ORIGIN; DPOAE
AB Otoacoustic emissions provide unambiguous evidence that the cochlea supports energy propagation both towards, and away from, the stapes. The standard wave model for energy transport and cochlear mechanical amplification provides for compressional and inertial waves to transport this energy, the compressional wave through the fluids and the inertial wave along the basilar membrane via fluid coupling. It is generally accepted that energy propagation away from the stapes is dominated by a traveling wave mechanism along the basilar membrane. The mechanism by which energy is predominantly transported back to the stapes remains controversial. Here, we compared signal onset delay measurements and rise/steady-state/fall times for SFOAEs and 2f(1) - f(2) OAEs (f(2)/f(1) = 1.2) obtained using a pulsed-tone paradigm in guinea pig. Comparison of 2f(1) - f(2) OAE signal onset delay for the OAE arising from the f(2) region with SFOAE signal onset delay (matched to the f(2) stimulus frequency) based on signal onset occurring at 10% of the peak signal amplitude was suggestive of a bi-directional traveling wave mechanism. However, significant variability in signal onset delay and signal rise, steady-state duration, and fall times for both the 2f(1) - f(2) OAE and SFOAE was found, qualifying this interpretation. Such variability requires explanation, awaiting further studies. (c) 2005 Elsevier B.V. All rights reserved.
C1 Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA.
RP Withnell, RH (reprint author), Indiana Univ, Dept Speech & Hearing Sci, 200 S Jordan Ave, Bloomington, IN 47405 USA.
EM rwithnel@indiana.edu; s-dhar@northwestern.edu; athomsen@indiana.edu
RI Dhar, Sumitrajit/B-6319-2009
CR Bekesy G, 1960, EXPT HEARING
   Bell A, 2004, J ACOUST SOC AM, V116, P1016, DOI [10.1121/1.1766053, 10.1121/01.1766053]
   Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X
   Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290
   Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KEMP DT, 1990, EAR HEARING, V11, P93
   KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0
   KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0
   Konrad-Martin D, 2003, J ACOUST SOC AM, V114, P2021, DOI 10.1121/1.1596170
   LIGHTHILL J, 1991, J VIB ACOUST, V113, P1
   Ren TY, 2004, NAT NEUROSCI, V7, P333, DOI 10.1038/nn1216
   Schneider S, 2003, J ACOUST SOC AM, V113, P3285, DOI 10.1121/1.1568753
   Shera CA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P439, DOI 10.1142/9789812704931_0062
   Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211
   Shera CA, 2000, J ACOUST SOC AM, V108, P2933, DOI 10.1121/1.1323234
   Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
   SOUTER M, 1995, HEARING RES, V90, P1, DOI 10.1016/0378-5955(95)00124-9
   Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584
   Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012
   Tubis A, 2000, J ACOUST SOC AM, V108, P1772, DOI 10.1121/1.1310666
   Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065
   WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8
   Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9
   Withnell RH, 1998, HEARING RES, V123, P87, DOI 10.1016/S0378-5955(98)00100-2
   YATES GK, 1995, HEARING
   YATES GK, 1998, STRUCTURE INFORMATIO, V5
   ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
   ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P986, DOI 10.1121/1.1907231
NR 29
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 76
EP 86
DI 10.1016/j.heares.2005.04.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100009
PM 15935577
ER

PT J
AU Templin, T
   Simmons, AM
AF Templin, T
   Simmons, AM
TI Cellular and spatial changes in the anuran superior olive across
   metamorphosis
SO HEARING RESEARCH
LA English
DT Article
DE stereology; cell counting; auditory; brainstem; Rana; tadpole
ID NEUROGLIAL CELLS OLIGODENDROCYTES; BULLFROG RANA-CATESBEIANA;
   SPINAL-CORD; BRAIN-STEM; SEX-DIFFERENTIATION; ELECTRON-MICROSCOPY;
   AUDITORY NUCLEI; GERM-CELLS; NUMBER; FROG
AB In many vertebrate species, the superior olive in the auditory brainstem plays an essential role in sound source localization. Little is known, however, about the structural and functional changes in this nucleus during development when alterations in head size and shape as well as in inner ear projections are expected to affect the perception of binaural cues. Using stereological techniques, we investigated the changes in several cellular and spatial features of the bullfrog superior olive across metamorphosis, the time period during which the animal transforms from a totally aquatic larva to a semiterrestrial adult. The total number of cells shows a strongly linear increase from hatchling through late larval stages. The number of neurons decreases during metamorphic climax stages, and recovers to pre-metamorphic climax levels in the early post-metamorphic froglet stage. The number of glial cells increases during the early larval period, and remains relatively stable, with no systematic variation, from late larval to froglet stages. The volume of the superior olive increases rapidly in early larval stages, followed by a much-attenuated rate of growth between late larval and froglet stages. These morphological changes may provide a substrate for the functional restructuring of the bullfrog superior olive, shortly before the switch from aquatic to mostly atmospheric hearing. (c) 2005 Elsevier B.V. All rights reserved.
C1 Brown Univ, Dept Psychol, Providence, RI 02912 USA.
   Brown Univ, Dept Neurosci, Providence, RI 02912 USA.
RP Simmons, AM (reprint author), Brown Univ, Dept Psychol, Providence, RI 02912 USA.
EM andrea_simmons@brown.edu
CR Andersen BB, 1999, J MICROSC-OXFORD, V196, P69
   Bendsen E, 2003, HUM REPROD, V18, P13, DOI 10.1093/humrep/deg057
   Boatright-Horowitz SS, 1997, P NATL ACAD SCI USA, V94, P14877, DOI 10.1073/pnas.94.26.14877
   CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D
   CHETVERUKHIN VK, 1993, CELL TISSUE RES, V271, P341, DOI 10.1007/BF00318621
   Chvatal A, 2001, NEUROSCI RES, V40, P23, DOI 10.1016/S0168-0102(01)00211-5
   CONOVER WJ, 1981, AM STAT, V35, P124, DOI 10.2307/2683975
   DIFIORE MSH, 1981, ATLAS HUMAN HISTOLOG
   Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x
   Duffell SJ, 2000, TOXICOL PATHOL, V28, P157, DOI 10.1177/019262330002800120
   Eckery DC, 2002, BIOL REPROD, V66, P346, DOI 10.1095/biolreprod66.2.346
   FENG AS, 1978, J NEUROPHYSIOL, V41, P43
   FRITZSCH B, 1984, J COMP NEUROL, V229, P451, DOI 10.1002/cne.902290312
   FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P107
   Gosner K. L., 1960, Herpetologica, V16, P183
   GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229
   Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x
   GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3
   HANKER JS, 1977, HISTOCHEM J, V9, P789, DOI 10.1007/BF01003075
   HETHERINGTON TE, 1987, ZOOMORPHOLOGY, V106, P289, DOI 10.1007/BF00312003
   HOROWITZ SS, 2004, 7 C INT SOC NEUR PRO
   Horowitz SS, 2001, HEARING RES, V154, P12, DOI 10.1016/S0378-5955(00)00266-5
   Howard CV, 1998, UNBIASED STEREOLOGY
   Hughes A., 1976, P856
   Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E
   JACOBY J, 1984, BRAIN RES, V292, P378, DOI 10.1016/0006-8993(84)90774-1
   Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X
   Kumaresan V, 1998, BRAIN BEHAV EVOLUT, V52, P111, DOI 10.1159/000006556
   Lannoo MJ, 1999, TADPOLES, P149
   Larsell O, 1934, J COMP NEUROL, V60, P473, DOI 10.1002/cne.900600306
   Lewandowski Thomas A, 2003, Brain Res Dev Brain Res, V141, P117
   McCormick C.A., 1999, COMP HEARING FISH AM, P155
   McDiarmid RW, 1999, TADPOLES, P7
   *MICROBRIGHTFIELD, 2000, STER INV 2000
   NIEUWENHUYS R, 1976, FROG NEUROBIOLOGY, P811
   OPDAM P, 1976, J COMP NEUROL, V165, P307, DOI 10.1002/cne.901650304
   RUBINSON K, 1968, BRAIN BEHAV EVOLUT, V1, P529, DOI 10.1159/000125524
   Samuelsen GB, 2003, CEREB CORTEX, V13, P115, DOI 10.1093/cercor/13.2.115
   SASAKI H, 1977, J COMP NEUROL, V176, P101, DOI 10.1002/cne.901760107
   Scheaffer R. L., 1996, ELEMENTARY SURVEY SA
   Schmitz C, 2000, J CHEM NEUROANAT, V20, P93, DOI 10.1016/S0891-0618(00)00066-1
   Schmitz C, 2005, NEUROSCIENCE, V130, P813, DOI 10.1016/j.neuroscience.2004.08.050
   BOATRIGHTHOROWITZ SS, 1995, J COMP PHYSIOL A, V177, P577
   Simmons AM, 2002, BRAIN BEHAV EVOLUT, V60, P189, DOI 10.1159/000066701
   STENSAAS LJ, 1968, Z ZELLFORSCH MIK ANA, V86, P184, DOI 10.1007/BF00348524
   STENSAAS LJ, 1968, Z ZELLFORSCH MIK ANA, V84, P473
   Swingle WW, 1926, J MORPHOL PHYSIOL, V41, P441, DOI 10.1002/jmor.1050410207
   TELFORD IR, 1995, INTRO FUNCTIONAL HIS
   URAY NJ, 1977, J COMP NEUROL, V176, P559, DOI 10.1002/cne.901760407
   Wadhwa S, 1997, J BIOSCIENCE, V22, P407, DOI 10.1007/BF02703187
   WALKER SF, 1980, BRIT J PSYCHOL, V71, P329
   West MJ, 1999, TRENDS NEUROSCI, V22, P51, DOI 10.1016/S0166-2236(98)01362-9
NR 52
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 87
EP 98
DI 10.1016/j.heares.2005.04.006
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100010
PM 15950413
ER

PT J
AU Harte, JM
   Elliott, SJ
   Kapadia, S
   Lutman, ME
AF Harte, JM
   Elliott, SJ
   Kapadia, S
   Lutman, ME
TI Dynamic nonlinear cochlear model predictions of click-evoked otoacoustic
   emission suppression
SO HEARING RESEARCH
LA English
DT Article
DE cochlear mechanical nonlinearities; dynamic nonlinear model; nonlinear
   interaction; otoacoustic emissions; suppression; click response
ID WIENER-KERNEL ANALYSIS; RELAXATION DYNAMICS; EXTERNAL TONES; TEMPORAL
   INTERACTIONS; SINGLE-TONE; INNER-EAR; NOISE; INTENSITY; FEEDBACK;
   HEARING
AB A comprehensive set of results from 2-click suppression experiments on otoacoustic emissions (OAEs) have been presented by Kapadia and Lutman [Kapadia, S., Lutman, M.E., 2000a. Nonlinear temporal interactions in click-evoked otoacoustic emissions. 1. Assumed model and polarity-symmetry. Hear. Res. 146, 89-100]. They found that the degree of suppression of an OAE evoked by a test click varied systematically with the timing and the level of a suppressor click, being greatest for suppressor clicks occurring some time before the test click, particularly at lower levels of suppression. Kapadia and Lutman also showed that although the general shape of the graph of suppression against suppressor click timing could be predicted by a static power law model, this did not predict the asymmetry with respect to the timing of the suppressor click. A generalised automatic gain control (AGC) is presented as a simple example of a dynamic nonlinear system. Its steady state nonlinear behaviour, as quantified by its level curve, and its dynamic behaviour, as quantified by its transient response, can be independently set by the feedback gain law and detector time constant, respectively. The previously reported suppression results, with the asymmetry in the timing, are found to be predicted better by such an AGC having a level curve with a slope of about 0.5 dB/dB, and a detector time constant of about twice the period at the characteristic frequency. Although this gives adequate predictions for high suppression levels, it under predicts the suppression and the asymmetry for lower levels. Further research is required to establish whether simple peripheral feedback models can explain OAE suppression of this type. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
RP Harte, JM (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England.
EM jmh@isvr.soton.ac.uk
CR DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704
   ELLIOTT SJ, 2003, 913 U SOUTH I SOUND
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   GRANDORI F, 1993, BRIT J AUDIOL, V27, P97, DOI 10.3109/03005369309077898
   HARTE JM, 2004, THESIS U SOUTHAMPTON
   KANIS LJ, 1993, J ACOUST SOC AM, V94, P3199, DOI 10.1121/1.407225
   Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7
   Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9
   Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057
   Keefe DH, 1998, J ACOUST SOC AM, V103, P3499, DOI 10.1121/1.423058
   KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3
   Kevanishvili Z, 1996, SCAND AUDIOL, V25, P161, DOI 10.3109/01050399609047999
   LINAGRANADE G, 1995, HEARING RES, V87, P55, DOI 10.1016/0378-5955(95)00078-I
   Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197
   LYON RF, 1990, P MECH BIOPH HEAR C, P395
   LYON RF, 1988, IEEE T ACOUST SPEECH, V36, P1119, DOI 10.1109/29.1639
   MCFADDEN D, 1983, J ACOUST SOC AM, V74, P1185, DOI 10.1121/1.390042
   Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357
   Murphy WJ, 1996, J ACOUST SOC AM, V100, P3979, DOI 10.1121/1.417217
   MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3702, DOI 10.1121/1.412387
   MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3711, DOI 10.1121/1.412388
   PFEIFFER R R, 1970, Journal of the Acoustical Society of America, V48, P1373, DOI 10.1121/1.1912294
   Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
   Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775
   TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568
   vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8
   van Dijk P, 1997, BRIT J AUDIOL, V31, P473, DOI 10.3109/03005364000000041
   VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009
   WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X
   YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M
   ZWICKER E, 1986, J ACOUST SOC AM, V80, P154, DOI 10.1121/1.394176
   ZWICKER E, 1979, BIOL CYBERN, V35, P243, DOI 10.1007/BF00344207
   ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175
NR 33
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 99
EP 109
DI 10.1016/j.heares.2005.04.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100011
PM 15935578
ER

PT J
AU Rivkin, AZ
   Palacios, SD
   Pak, K
   Bennett, T
   Ryan, AF
AF Rivkin, AZ
   Palacios, SD
   Pak, K
   Bennett, T
   Ryan, AF
TI The role of Fas-mediated apoptosis in otitis media: Observations in the
   lpr/lpr mouse
SO HEARING RESEARCH
LA English
DT Article
DE otitis media; middle ear; Fas; Fas ligand; apoptosis
ID LIGAND-INDUCED APOPTOSIS; TUMOR-NECROSIS-FACTOR; MIDDLE-EAR MUCOSA;
   EXPRESSION; LANGUAGE; EFFUSION; ANTIGEN; SPEECH
AB Apoptosis, or programmed cell death, is a critical regulatory mechanism involved in the function, homeostasis and stimulus response of many organ systems. In the middle ear, apoptosis could participate in mucosal remodeling or leukocyte clearance during otitis media (OM). Fas is a death receptor that can contribute to apoptosis in a variety of cell types. To assess the role of Fas signaling in OM, we probed for expression of Fas and Fas ligand (FasL) by polymerase chain reaction (PCR) during bacterial OM in the rat. In addition, we assessed the response of the middle ear to endotoxin, an inflammatory bacterial product that has been used as a model for otitis media in the mouse, in normal and Fas deficient mice. We saw evidence of increased expression of Fas and Fas ligand during bacterial OM. Moreover, the intensity of the mucosal response to endotoxin was significantly greater and the resolution of the response was prolonged in Fas deficient mice. Prolonged resolution of mucosal hyperplasia may reflect reduced apoptosis of the hyperplastic mucosal cells. Elucidation of the pathways that regulate the mucosal hyperplastic response during otitis media brings us closer to manipulating them in the interest of reducing the chronic complications of this disease. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Calif San Diego, Sch Med, Div Otolaryngol, Dept Surg, La Jolla, CA 92093 USA.
   VA Med Ctr, La Jolla, CA 92093 USA.
RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Div Otolaryngol, Dept Surg, 9500 Gilman Dr 0666,Fir Bldg,Room 106, La Jolla, CA 92093 USA.
EM aryan@ucsd.edu
CR ALLAN DJ, 1992, J PATHOL, V167, P25, DOI 10.1002/path.1711670106
   BERNSTEIN JM, 1991, OTOLARYNG CLIN N AM, V24, P845
   Bluestone CD, 1996, PEDIAT OTOLARYNGOLOG, P388
   DeMaria TF, 1997, LARYNGOSCOPE, V107, P369, DOI 10.1097/00005537-199703000-00017
   GRIFFITH TS, 1995, SCIENCE, V270, P1189, DOI 10.1126/science.270.5239.1189
   HERMANSSON A, 1988, AM J OTOLARYNG, V9, P97, DOI 10.1016/S0196-0709(88)80013-9
   HOPWOOD D, 1976, J PATHOL, V119, P159
   Kenna MA, 1998, HEAD NECK SURG OTOLA, P1297
   KIMURA K, 1994, BIOCHEM BIOPH RES CO, V198, P666, DOI 10.1006/bbrc.1994.1097
   Li JH, 1998, J IMMUNOL, V161, P3943
   LIM DJ, 1971, ANN OTO RHINOL LARYN, V80, P838
   LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P36
   Nagata S, 1999, ANNU REV GENET, V33, P29, DOI 10.1146/annurev.genet.33.1.29
   Palacios SD, 2002, J INFECT DIS, V186, P1761, DOI 10.1086/345798
   SUDA T, 1993, CELL, V75, P1169, DOI 10.1016/0092-8674(93)90326-L
   TEELE DW, 1990, J INFECT DIS, V162, P685
   TEELE DW, 1984, PEDIATRICS, V74, P282
   Wagner S, 1997, GASTROENTEROLOGY, V113, P1836, DOI 10.1016/S0016-5085(97)70003-9
   WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0
   Yeh WC, 1999, IMMUNOL REV, V169, P283, DOI 10.1111/j.1600-065X.1999.tb01323.x
   ZAJICEK G, 1991, CELL PROLIFERAT, V24, P375, DOI 10.1111/j.1365-2184.1991.tb01166.x
NR 21
TC 9
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2005
VL 207
IS 1-2
BP 110
EP 116
DI 10.1016/j.heares.2005.04.010
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 970OS
UT WOS:000232320100012
PM 15978756
ER

PT J
AU Schofield, BR
   Coomes, DL
AF Schofield, BR
   Coomes, DL
TI Projections from auditory cortex contact cells in the cochlear nucleus
   that project to the inferior colliculus
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE auditory system; descending pathways; efferent
ID SUPERIOR OLIVARY COMPLEX; GUINEA-PIG; CORTICOFUGAL MODULATION; RAT;
   DORSAL; SYSTEM; CAT; PATHWAYS; PATTERNS; MIDBRAIN
AB Anterograde and retrograde tracing techniques were combined to determine whether auditory cortical axons contact cells in the cochlear nucleus that project to the inferior colliculus. FluoroRuby or fluorescein dextran was injected into auditory cortex to label cortical axons by anterograde transport. Different fluorescent tracers (Fast Blue, FluoroGold, FluoroRuby or fluorescein dextran) were injected into one or both inferior colliculi to label cells in the cochlear nucleus. After 12-15 days, the brain was processed for fluorescence microscopy and the cochlear nuclei were examined for apparent contacts between cortical axons and retrogradely labeled cochlear nucleus cells. The results suggest that axons from the ipsilateral or contralateral cortex contact fusiform and giant cells in the dorsal cochlear nucleus and multipolar cells in the ventral cochlear nucleus that project directly to the inferior colliculus. The contacts occur on cell bodies and dendrites. The target cells in the cochlear nucleus include cells that project ipsilaterally, contra-laterally or bilaterally to the inferior colliculus. The results suggest that auditory cortex is in a position to exert direct effects on the monaural pathways that ascend from the cochlear nucleus. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Louisville, Dept Anat Sci & Neurobiol, Louisville, KY 40202 USA.
RP Schofield, BR (reprint author), Univ Louisville, Dept Anat Sci & Neurobiol, 500 S Preston St, Louisville, KY 40202 USA.
EM brscho0l@gwise.louisville.edu
CR Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   Casseday JH, 2002, SPR HDB AUD, V15, P238
   Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x
   Doucet JR, 2003, EXP BRAIN RES, V153, P461, DOI 10.1007/s00221-003-1604-4
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
   Helfert RH, 1997, CENTRAL AUDITORY SYS, P193
   ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
   Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2
   Jen PHS, 2002, HEARING RES, V168, P196, DOI 10.1016/S0378-5955(02)00358-1
   Kudo M., 1987, AUDITORY PATHWAY STR, P171
   Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001
   OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202
   Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6
   OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104
   Pollak GD, 1989, NEURAL BASIS ECHOLOC
   Popelar J, 2003, PHYSIOL RES, V52, P615
   RAPISARDA C, 1990, SOMATOSENS MOT RES, V7, P289
   REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402
   REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
   Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003
   SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409
   Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9
   Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A
   Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
   Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222
   SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3
   Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X
   Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9
   Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
   Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
   Weedman DL, 1996, J COMP NEUROL, V371, P311
   WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3
   Wolff A, 1997, NEUROSCI LETT, V221, P125, DOI 10.1016/S0304-3940(96)13305-X
   Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L
   Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x
NR 36
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 3
EP 11
DI 10.1016/j.heares.2005.03.005
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100002
PM 16080994
ER

PT J
AU Cant, NB
   Benson, CG
AF Cant, NB
   Benson, CG
TI An atlas of the inferior colliculus of the gerbil in three dimensions
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE auditory system; brain atlas; gerbil; inferior colliculus; neuroanatomy
ID DORSAL COCHLEAR NUCLEUS; CYTOCHROME-OXIDASE HISTOCHEMISTRY; SUPERIOR
   OLIVARY NUCLEUS; SINGLE-UNIT RESPONSES; AUDITORY-SYSTEM; DESCENDING
   PROJECTIONS; ASCENDING PROJECTIONS; EFFERENT PROJECTIONS; CAT; RAT
AB An atlas of the inferior colliculus of the gerbil is presented in three dimensions. Sections were cut in the transverse (coronal), horizontal or saggital planes and fit to a common cartesian coordinate grid. The sections used for the atlas were reacted for cytochrome oxidase activity, a functional marker that can be used to distinguish different areas in the brainstem. The atlas can be used for representation, comparison and correlation of neuro anatomical, neurophysiological, neurochemical and other data that can be spatially mapped in the inferior colliculus. (c) 2005 Elsevier B.V. All rights reserved.
C1 Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA.
RP Cant, NB (reprint author), Duke Univ, Med Ctr, Dept Neurobiol, POB 3209, Durham, NC 27710 USA.
EM nellcant@neuro.duke.edu
CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305
   ADAMS JC, 1980, NEUROSCI LETT, V19, P1, DOI 10.1016/0304-3940(80)90246-3
   AITKIN L, 1985, HEARING RES, V17, P87, DOI 10.1016/0378-5955(85)90134-0
   AITKIN LM, 1984, NEUROSCI LETT, V44, P259, DOI 10.1016/0304-3940(84)90032-6
   BRUCKNER S, 1995, HEARING RES, V86, P1, DOI 10.1016/0378-5955(95)00048-9
   BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P704
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   Casseday JH, 2002, SPR HDB AUD, V15, P238
   Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249
   Chernock ML, 2004, HEARING RES, V188, P12, DOI 10.1016/S0378-5955(03)00340-X
   COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204
   Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001
   Davis KA, 1999, J NEUROPHYSIOL, V82, P164
   Ehret G., 1997, CENTRAL AUDITORY SYS, P259
   FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050
   GONZALEZLIMA F, 1994, NEUROSCIENCE, V63, P559, DOI 10.1016/0306-4522(94)90550-9
   HENKEL CK, 1983, J COMP NEUROL, V221, P416, DOI 10.1002/cne.902210405
   HEVNER RF, 1995, NEUROSCIENCE, V65, P313, DOI 10.1016/0306-4522(94)00514-6
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302
   Irvine D.R.F., 1986, Progress in Sensory Physiology, V7, P1
   KIANG NYS, 1975, J COMP NEUROL, V162, P221, DOI 10.1002/cne.901620205
   KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5
   Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070
   MAFFI CL, 1987, HEARING RES, V26, P211, DOI 10.1016/0378-5955(87)90113-4
   MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206
   OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202
   Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J
   Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6
   OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104
   Poremba A, 1998, EUR J NEUROSCI, V10, P3035, DOI 10.1046/j.1460-9568.1998.00304.x
   Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152
   ROSS LS, 1989, J NEUROSCI, V9, P2819
   ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407
   RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0
   Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
   SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308
   SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403
   SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626
   SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406
   Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861
   Swanson LW, 1992, BRAIN MAPS STRUCTURE
   Tucci DL, 2001, JARO-J ASSOC RES OTO, V3, P89
   WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5
   WONGRILEY MTT, 1989, TRENDS NEUROSCI, V12, P94, DOI 10.1016/0166-2236(89)90165-3
   Wong-Riley Margaret T.T., 1994, Cerebral Cortex, V10, P141
   Young E.D., 2004, SYNAPTIC ORG BRAIN, P125
NR 47
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 12
EP 27
DI 10.1016/j.heares.2005.02.014
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100003
PM 16080995
ER

PT J
AU Tong, L
   Altschuler, RA
   Holt, AG
AF Tong, L
   Altschuler, RA
   Holt, AG
TI Tyrosine hydroxylase in rat auditory midbrain: Distribution and changes
   following deafness
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE hearing; deafness; dopamine; cochlear ablation; Sprague Dawley rats
ID MONOAMINE NEURON SYSTEMS; INFERIOR COLLICULUS; BRAIN-STEM; COCHLEAR
   NUCLEUS; PLASTICITY; PROJECTIONS; IMMUNOREACTIVITY; LOCALIZATION;
   INHIBITION; RECEPTORS
AB Tyrosine hydroxylase (TH), a key enzyme in the catecholaminergic pathway, allows for the differentiation of dopaminergic neurons. We previously showed decreases in TH gene expression in the rat inferior colliculus (IC) 3 and 21 days following deafness. In the present study, we characterized the normal distribution of TH as well as changes following deafness (bilateral cochlear ablation) in the IC and nuclei of the lateral lemniscus. Immunostaining was compared in three groups of rats: normal hearing (n = 8), 21 day deaf (n = 5) and 90 days following deafening (n = 5). Many TH immunoreactive fibers and puncta were identified in the IC and nuclei of the lateral lemniscus of normal hearing animals and labeling was most dense in the external cortex of the IC. We also identified immunolabeling for fibers and puncta for another catecholaminergic enzyme, dopamine beta hydroxylase (DBH), but not phenylethanolamine-N-methyltranferase (PNMT). Neurons immunopositive for TH but not DBH or PNMT were observed in the dorsal cortex and dorsal horn of the central nucleus of the IC and ventral and intermediate lemniscus. In the central nucleus of the IC and dorsal lateral lemniscus many lightly labeled TH neurons were also DBH positive. Although the number of immunopositive cells in the IC and lemniscus declined 3 weeks and 3 months after deafening, the decline was not significant at three weeks in the VNLL nor after three months in the dorsal cortex. Immunolabeling for TH decreased significantly in IC and lemniscus 3 weeks and 3 months following deafening. These results suggest a role for dopaminergic neurons and fibers in deafness-related plasticity. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA.
RP Holt, AG (reprint author), Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM avrilhol@umich.edu
CR ALTMAN JA, 1976, EXP BRAIN RES, V26, P285
   Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038
   Behrend O, 2002, J NEUROPHYSIOL, V87, P2915, DOI 10.1152/jn.01018.2002
   Behrens EG, 2002, BRAIN RES, V955, P34, DOI 10.1016/S0006-8993(02)03351-6
   Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
   Brandao ML, 2003, EUR J PHARMACOL, V463, P225, DOI 10.1016/S0014-2999(03)01284-6
   CICERO TJ, 1972, J NEUROCHEM, V19, P2241, DOI 10.1111/j.1471-4159.1972.tb05136.x
   DRUGA R, 1984, NEUROSCI LETT, V45, P247, DOI 10.1016/0304-3940(84)90234-9
   Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P243, DOI 10.1201/9781420038736.ch18
   Gabriele ML, 2000, J NEUROSCI, V20, P6939
   GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210
   GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E
   HALASZ N, 1977, BRAIN RES, V126, P455, DOI 10.1016/0006-8993(77)90597-2
   HOKFELT T, 1976, MED BIOL, V54, P427
   HOKFELT T, 1977, MED BIOL, V55, P21
   HOLT AG, 2004, ASS RES OT 27 ANN MI, P309
   Illing RB, 2001, AUDIOL NEURO-OTOL, V6, P319, DOI 10.1159/000046844
   Jaeger C B, 1983, Brain Res, V313, P128
   Ji WQ, 2001, J NEUROPHYSIOL, V86, P211
   KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H
   LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110
   MOLLER AR, 2005, ANATOMICAL PHYSL BAS, P1
   Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6
   Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X
   Niu X, 2004, NEUROSCIENCE, V125, P725, DOI 10.1016/j.neuroscience.2004.02.023
   Niu XZ, 2002, HEARING RES, V174, P124, DOI 10.1016/S0378-5955(02)00646-9
   RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4
   Reuss S, 1999, CELL TISSUE RES, V297, P13, DOI 10.1007/s004410051329
   ROGER M, 1989, J COMP NEUROL, V287, P339, DOI 10.1002/cne.902870306
   Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x
   Ryu JR, 2000, BRAIN RES BULL, V53, P777, DOI 10.1016/S0361-9230(00)00373-7
   Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6
   Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6
   THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9
   TOKUNAGA A, 1984, J HIRNFORSCH, V25, P461
   Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
   VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205
   VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U
   VINCENT SR, 1988, J COMP NEUROL, V268, P584, DOI 10.1002/cne.902680408
   Webster DB, 1992, MAMMALIAN AUDITORY P
   Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X
   Wynne B, 1997, J CHEM NEUROANAT, V12, P259, DOI 10.1016/S0891-0618(97)00219-6
   Wynne B, 1996, Audiol Neurootol, V1, P54
   Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5
NR 44
TC 14
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 28
EP 41
DI 10.1016/j.heares.2005.03.006
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100004
PM 16080996
ER

PT J
AU Cramer, KS
AF Cramer, KS
TI Eph proteins and the assembly of auditory circuits
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE auditory pathways; auditory nerve; axon guidance; Eph receptor; ephrin
ID MEDIAL SUPERIOR OLIVE; INTERAURAL TIME DIFFERENCES; RECEPTOR TYROSINE
   KINASES; CHICK BRAIN-STEM; MOUSE INNER-EAR; COCHLEAR GANGLION;
   TRANSMEMBRANE LIGANDS; RETINOTECTAL SYSTEM; HIPPOCAMPAL AXONS; TRAPEZOID
   BODY
AB Many kinds of information are carried in the acoustic signal that reaches auditory receptor cells in the cochlea. The analysis of this information is possible in large part because of the neuronal architecture of the auditory system. The mechanisms that establish the precise circuitry that underlies auditory processing have not yet been identified. The Eph receptor tyrosine kinases and their ligands are proteins that regulate axon guidance and have been shown to contribute to the establishment of topographic projections in several areas of the nervous system. Several studies have begun to investigate whether these proteins are involved in the formation of auditory system connections. Studies of gene expression show that Eph proteins are extensively expressed in structures of the inner ear as well as in neurons in the peripheral and central components of the auditory system. Functional studies have demonstrated that Eph signaling influences the assembly of auditory pathways. These studies suggest that Eph protein signaling has a significant role in the formation of auditory circuitry. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA.
RP Cramer, KS (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, 2205 McGaugh Hall, Irvine, CA 92697 USA.
EM cramerk@uci.edu
CR Bianchi LM, 1998, HEARING RES, V117, P161, DOI 10.1016/S0378-5955(98)00010-0
   Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x
   Bianchi LM, 2002, J HISTOCHEM CYTOCHEM, V50, P1641
   Braisted JE, 1997, DEV BIOL, V191, P14, DOI 10.1006/dbio.1997.8706
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707
   Bruckner K, 1997, SCIENCE, V275, P1640, DOI 10.1126/science.275.5306.1640
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8
   CANT NB, 1992, COCHLEAR NUCL NEURON
   CARR CE, 1990, J NEUROSCI, V10, P3227
   CHENG HJ, 1995, CELL, V82, P371, DOI 10.1016/0092-8674(95)90426-3
   Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5
   Cowan CA, 2001, NATURE, V413, P174, DOI 10.1038/35093123
   Cramer KS, 2004, DEV BIOL, V269, P26, DOI 10.1016/j.ydbio.2004.01.002
   CRAMER KS, 2002, SOC NEUR ABSTR
   Cramer KS, 2002, J COMP NEUROL, V452, P51, DOI 10.1002/cne.10399
   Cramer KS, 2000, J COMP NEUROL, V426, P270
   Cramer KS, 2000, DEV BIOL, V224, P138, DOI 10.1006/dbio.2000.9779
   Cutforth T, 2003, CELL, V114, P311, DOI 10.1016/S0092-8674(03)00568-3
   Davy A, 1999, GENE DEV, V13, P3125, DOI 10.1101/gad.13.23.3125
   Dufour A, 2003, NEURON, V39, P453, DOI 10.1016/S0896-6273(03)00440-9
   Eberhart J, 2004, J NEUROSCI, V24, P1070, DOI 10.1523/JNEUROSCI.4719-03.2004
   ELLIS J, 1995, MECH DEVELOP, V52, P319, DOI 10.1016/0925-4773(95)00411-S
   Feldheim DA, 2004, J NEUROSCI, V24, P2542, DOI 10.1523/JNEUROSCI.0239-03.2004
   Feldheim DA, 1998, NEURON, V21, P1303, DOI 10.1016/S0896-6273(00)80650-9
   Feldheim DA, 2000, NEURON, V25, P563, DOI 10.1016/S0896-6273(00)81060-0
   Flanagan JG, 1998, ANNU REV NEUROSCI, V21, P309, DOI 10.1146/annurev.neuro.21.1.309
   Friauf E, 1999, CELL TISSUE RES, V297, P187, DOI 10.1007/s004410051346
   Gale NW, 1996, NEURON, V17, P9, DOI 10.1016/S0896-6273(00)80276-7
   Gao PP, 1999, P NATL ACAD SCI USA, V96, P4073, DOI 10.1073/pnas.96.7.4073
   Gao PP, 1996, P NATL ACAD SCI USA, V93, P11161, DOI 10.1073/pnas.93.20.11161
   GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210
   GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192
   Grothe B, 2003, NAT REV NEUROSCI, V4, P540, DOI 10.1038/nrn1136
   Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2
   Hansen MJ, 2004, NEURON, V42, P717, DOI 10.1016/j.neuron.2004.05.009
   Helmbacher F, 2000, DEVELOPMENT, V127, P3313
   HENKEMEYER M, 1994, ONCOGENE, V9, P1001
   Himanen JP, 2004, NAT NEUROSCI, V7, P501, DOI 10.1038/nn1237
   Hindges R, 2002, NEURON, V35, P475, DOI 10.1016/S0896-6273(02)00799-7
   Holash JA, 1997, DEV BIOL, V182, P256, DOI 10.1006/dbio.1996.8496
   Holland SJ, 1996, NATURE, V383, P722, DOI 10.1038/383722a0
   Hornberger MR, 1999, NEURON, V22, P731, DOI 10.1016/S0896-6273(00)80732-1
   Howard MA, 2003, HEARING RES, V178, P118, DOI 10.1016/S0378-5955(03)00068-6
   Huai JS, 2001, J BIOL CHEM, V276, P6689, DOI 10.1074/jbc.M008127200
   Janis LS, 1999, J NEUROSCI, V19, P4962
   Kalo MS, 2001, J BIOL CHEM, V276, P38940, DOI 10.1074/jbc.M105815200
   Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F
   Kim WY, 2001, DEVELOPMENT, V128, P417
   Knoll B, 2002, TRENDS NEUROSCI, V25, P145, DOI 10.1016/S0166-2236(00)02093-2
   Krull CE, 2004, DEV DYNAM, V229, P433, DOI 10.1002/dvdy.10473
   Kubke MF, 2000, HEARING RES, V147, P1, DOI 10.1016/S0378-5955(00)00116-7
   Kullander K, 2002, NAT REV MOL CELL BIO, V3, P475, DOI 10.1038/nrm856
   Kury P, 2000, MOL CELL NEUROSCI, V15, P123, DOI 10.1006/mcne.1999.0812
   KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406
   Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006
   Leake PA, 2002, J COMP NEUROL, V448, P6, DOI 10.1002/cne.10176
   Lee AM, 1996, DNA CELL BIOL, V15, P817, DOI 10.1089/dna.1996.15.817
   Lyckman AW, 2001, J NEUROSCI, V21, P7684
   Mann F, 2002, NEURON, V35, P461, DOI 10.1016/S0896-6273(02)00786-9
   Mellitzer G, 1999, NATURE, V400, P77
   Menzel P, 2001, DEV BIOL, V230, P74, DOI 10.1006/dbio.2000.0109
   Molea D, 2003, J COMP NEUROL, V466, P577, DOI 10.1002/cne.10896
   O'Leary DDM, 1999, CELL, V96, P255
   OVERHOLT EM, 1992, J NEUROSCI, V12, P1698
   Person AL, 2004, J NEUROBIOL, V60, P28, DOI 10.1002/neu.10330
   Pickles JO, 2002, J COMP NEUROL, V449, P207, DOI 10.1002/cne.10231
   Pickles JO, 2003, HEARING RES, V178, P44, DOI 10.1016/S0378-5955(03)00029-7
   Prakash N, 2000, J NEUROSCI, V20, P5841
   Rogers A, 1999, HEALTH CARE ANAL, V7, P225, DOI 10.1023/A:1009409111428
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   Rubel EW, 2002, J COMP NEUROL, V448, P1, DOI 10.1002/cne.10255
   SANES DH, 1988, J NEUROSCI, V8, P682
   Siddiqui SA, 2005, J COMP NEUROL, V482, P309, DOI 10.1002/cne.20396
   Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x
   Vanderhaeghen P, 2000, NAT NEUROSCI, V3, P358
   van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6
   Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2
   Yin Y, 2004, NEUROSCI RES, V48, P285, DOI 10.1016/j.neures.2003.11.009
   YOUNG SR, 1983, J NEUROSCI, V3, P1373
   Yue Y, 2002, P NATL ACAD SCI USA, V99, P10777, DOI 10.1073/pnas.162354599
   Zhang JH, 1996, J NEUROSCI, V16, P7182
NR 83
TC 38
Z9 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 42
EP 51
DI 10.1016/j.heares.2004.11.024
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100005
PM 16080997
ER

PT J
AU Fritzsch, B
   Pauley, S
   Matel, V
   Katz, DM
   Xiang, MQ
   Tessarollo, L
AF Fritzsch, B
   Pauley, S
   Matel, V
   Katz, DM
   Xiang, MQ
   Tessarollo, L
TI Mutant mice reveal the molecular and cellular basis for specific sensory
   connections to inner ear epithelia and primary nuclei of the brain
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE ear sensory neurons; vestibular neurons; spiral ganglia; pathfinding;
   neurotropins
ID BACTERIAL ARTIFICIAL CHROMOSOME; HAIR-CELLS; NEUROTROPHIC FACTOR; SYSTEM
   DEVELOPMENT; STATOACOUSTIC NEURONS; POSTNATAL REFINEMENT; FATE
   DETERMINATION; AUDITORY-SYSTEM; NERVOUS-SYSTEM; HEARING-LOSS
AB We review the in vivo evidence for afferent fiber guidance to the inner ear sensory epithelia and the central nuclei of termination. Specifically, we highlight our current molecular understanding for the role of hair cells and sensory epithelia in guiding afferents, how disruption of certain signals can alter fiber pathways, even in the presence of normal hair cells, and what role neurotrophins play in fiber guidance of sensory neurons to hair cells. The data suggest that the neurotrophin BDNF is the most important molecule known for inner ear afferent fiber guidance to hair cells in vivo. This suggestion is based on experiments on Ntf3 transgenic mice expressing BDNF under Ntf3 promoter that show deviations of fiber growth in the ear to areas that express BDNF but have no hair cells. However, fiber growth can occur in the absence of BDNF as demonstrated by double mutants for BDNF and Bax. We directly tested the significance of hair cells or sensory epithelia for fiber guidance in mutants that lose hair cells (Pou4f3) or do not form a posterior crista (Fgf10). While these data emphasize the role played by BDNF, normally released from hair cells, there is some limited capacity for directed growth even in the absence of hair cells, BDNF, or sensory epithelia. This directed growth may rely on semaphorins or other matrix proteins because targeted ablation of the sema3 docking site on the sema receptor Npn1 results in targeting errors of fibers even in the presence of hair cells and BDNF. Overall, our data support the notion that targeting of the afferent processes in the ear is molecularly distinct from targeting processes in the central nuclei. This conclusion is derived from data that show no recognizable central projection deviation, even if fibers are massively rerouted in the periphery, as in Ntf3(tgBDNF) mice in which vestibular fibers project to the cochlea. (c) 2005 Elsevier B.V. All rights reserved.
C1 Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA.
RP Fritzsch, B (reprint author), Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA.
EM fritzsch@creighton.edu
CR Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378
   Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837
   BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247
   Bianchi LM, 1996, DEVELOPMENT, V122, P1965
   Bianchi LM, 1999, ANAT REC, V254, P127
   BIANCHI LM, 1991, DEV BRAIN RES, V64, P167, DOI 10.1016/0165-3806(91)90221-4
   Brumwell CL, 2000, EXP NEUROL, V162, P121, DOI 10.1006/exnr.2000.7317
   CARNEY PR, 1983, J COMP NEUROL, V215, P359, DOI 10.1002/cne.902150402
   Chen P, 2002, DEVELOPMENT, V129, P2495
   Cloutier JF, 2002, NEURON, V33, P877, DOI 10.1016/S0896-6273(02)00635-9
   Coppola V, 2001, DEVELOPMENT, V128, P4315
   Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5
   Cutforth T, 2003, CELL, V114, P311, DOI 10.1016/S0092-8674(03)00568-3
   Echteler SM, 2000, J COMP NEUROL, V425, P436
   Eddison M, 2000, P NATL ACAD SCI USA, V97, P11692, DOI 10.1073/pnas.97.22.11692
   Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0
   ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5
   Farinas I, 2001, J NEUROSCI, V21, P6170
   FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0
   Fekete DM, 1998, J NEUROSCI, V18, P7811
   Feldheim DA, 2004, J NEUROSCI, V24, P2542, DOI 10.1523/JNEUROSCI.0239-03.2004
   Fritzsch B, 2003, ZOOLOGY, V106, P243
   Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098
   Fritzsch B., 1995, AUDIT NEUROSCI, V1, P401
   Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
   Fritzsch B, 2001, DEV GENES EVOL, V211, P388, DOI 10.1007/s004270100166
   Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7
   Fritzsch B, 2003, BRAIN RES BULL, V60, P423, DOI 10.1016/S0361-9230(03)00048-0
   Fritzsch B, 1997, J NEUROSCI, V17, P6213
   FRITZSCH B, 2005, IN PRESS DEV DYN
   Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2
   HATAKEYAMA J, 2004, DEVELOPMENT
   Hellard D, 2004, DEV BIOL, V275, P34, DOI 10.1016/j.ydbio.2004.07.021
   HEMOND SG, 1991, DEV BRAIN RES, V61, P87, DOI 10.1016/0165-3806(91)90117-2
   Hertzano R, 2004, HUM MOL GENET, V13, P2143, DOI 10.1093/hmg/ddh218
   Hood L, 2004, SCIENCE, V306, P640, DOI 10.1126/science.1104635
   Huang EJ, 2001, DEVELOPMENT, V128, P2421
   Kim WY, 2001, DEVELOPMENT, V128, P417
   Leake PA, 2002, J COMP NEUROL, V448, P6, DOI 10.1002/cne.10176
   Li SG, 2002, DEVELOPMENT, V129, P3523
   Liebl DJ, 1997, J NEUROSCI, V17, P9113
   Liu M, 2000, GENE DEV, V14, P2839, DOI 10.1101/gad.840500
   Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5
   Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017
   Maklad A, 2003, BRAIN RES BULL, V60, P497, DOI 10.1016/S0361-9230(03)00054-6
   Maklad Adel, 2003, Brain Res Dev Brain Res, V140, P223
   McLaughlin T, 2003, CURR OPIN NEUROBIOL, V13, P57, DOI 10.1016/S0959-4388(03)00014-X
   Miyazaki N, 1999, NEUROSCI LETT, V261, P127, DOI 10.1016/S0304-3940(98)00988-4
   Mombaerts P, 1996, CELL, V87, P675, DOI 10.1016/S0092-8674(00)81387-2
   Murakami Y, 2001, DEV DYNAM, V220, P246, DOI 10.1002/1097-0177(20010301)220:3<246::AID-DVDY1112>3.0.CO;2-2
   Ohyama T, 2004, GENESIS, V38, P195, DOI 10.1002/gene.20017
   O'Leary DDM, 1999, CURR OPIN NEUROBIOL, V9, P65, DOI 10.1016/S0959-4388(99)80008-7
   Pasterkamp RJ, 2001, BRAIN RES REV, V35, P36, DOI 10.1016/S0165-0173(00)00050-3
   Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297
   PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
   Pirvola U, 2002, NEURON, V35, P671, DOI 10.1016/S0896-6273(02)00824-3
   Qian Y, 2001, GENE DEV, V15, P2533, DOI 10.1101/gad.921501
   Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x
   Sobkowicz HM, 1992, DEV AUDITORY VESTIBU, V2, P59
   Stankovic KM, 2003, HEARING RES, V185, P97, DOI 10.1016/S0378-5955(03)00298-3
   Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004
   Tian Y, 2004, DEV DYNAM, V231, P199, DOI 10.1002/dvdy.20106
   Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950
   Wallis D, 2003, DEVELOPMENT, V130, P221, DOI 10.1242/dev.00190
   Wright TJ, 2003, DEVELOPMENT, V130, P3379, DOI 10.1242/dev/00555
   Wright TJ, 2003, CURR TOP DEV BIOL, V57, P225, DOI 10.1016/S0070-2153(03)57008-9
   Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445
   Xiang MQ, 1998, DEVELOPMENT, V125, P3935
   Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2
   Zine A, 2001, J NEUROSCI, V21, P4712
   Zou DJ, 2004, SCIENCE, V304, P1976, DOI 10.1126/science.1093468
NR 73
TC 35
Z9 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 52
EP 63
DI 10.1016/j.heares.2004.11.025
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100006
PM 16080998
ER

PT J
AU Godfrey, DA
   Godfrey, MA
   Ding, DL
   Chen, KJ
   Salvi, RJ
AF Godfrey, DA
   Godfrey, MA
   Ding, DL
   Chen, KJ
   Salvi, RJ
TI Amino acid concentrations in chinchilla cochlear nucleus at different
   times after carboplatin treatment
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE auditory; ototoxicity; aspartate; glutamate; gamma-aminobutyrate;
   glycine
ID HAIR CELL LOSS; AUDITORY-NERVE LESION; ASPARTIC-ACID; GLUTAMIC-ACID;
   BRAIN-STEM; INNER; DEGENERATION; OTOTOXICITY; MAGNITUDE; CHILDREN
AB Amino acid concentrations were measured in the cochlear nucleus for a group of 20 chinchillas: four each of control and 4, 8, 29, and 85 days after treatment with the ototoxic anti-tumor drug carboplatin (100mg/kg, i.p.). The treated chinchillas showed various extents of inner hair cell loss, generally more complete at longer survival times, but little loss of outer hair cells. Aspartate concentration in rostral anteroventral cochlear nucleus (AVCN) showed a decline to 28% less than the control value at 29 and 85 days after treatment, whereas glutamate concentration showed little change through 29 days, then dropped by 22% at 85 days after treatment. In caudal posteroventral cochlear nucleus (PVCN), the aspartate concentration decreased by 32% at 29 days, in animals with significant inner hair cell loss, and 48% at 85 days after treatment, while the glutamate concentration showed no decrease through 29 days and 40% decrease at 85 days. The concentration of gamma-aminobutyrate (GABA) was about 18% lower than control in caudal PVCN at all survival times. Significant correlations were found between the proportion of inner hair cells remaining and glutamate and aspartate concentrations in PVCN and AVCN, but not GABA or other amino acids. (c) 2005 Elsevier B.V. All rights reserved.
C1 Med Coll Ohio, Dept Surg, Div Otolaryngol, Toledo, OH 43614 USA.
   SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
RP Godfrey, DA (reprint author), Med Coll Ohio, Dept Surg, Div Otolaryngol, 3065 Arlington Ave, Toledo, OH 43614 USA.
EM dgodfrey@mco.edu
CR Bartus RT, 2000, J PHARMACOL EXP THER, V293, P903
   BONOMI P, 1991, SEMIN ONCOL, V18, P2
   Ding D, 2001, AUDITORY PSYCHOBIOLO, P189
   Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x
   Ding DL, 2002, JARO, V3, P68, DOI 10.1007/s101620020004
   Freilich RJ, 1996, MED PEDIATR ONCOL, V26, P95
   GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P679
   GODFREY DA, 2004, ASS RES OT ABSTR, V188
   Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8
   Hofstetter P, 1997, AUDIOLOGY, V36, P301
   Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X
   Humason GL, 1972, ANIMAL TISSUE TECHNI
   Li YZ, 2002, HEARING RES, V165, P19, DOI 10.1016/S0378-5955(01)00389-6
   Lorente de No R, 1981, PRIMARY ACOUSTIC NUC
   Lowry OH, 1972, FLEXIBLE SYSTEM ENZY
   MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151
   May BJ, 2004, ARCH OTOLARYNGOL, V130, P1411, DOI 10.1001/archotol.130.12.1411
   MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228
   Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205
   Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4
   MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207
   OSEN KK, 1970, ARCH ITAL BIOL, V108, P21
   Pagano M, 1993, PRINCIPLES BIOSTATIS
   Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9
   Ross CD, 1995, NEUROCHEM RES, V20, P1483, DOI 10.1007/BF00970598
   SNEDECOR GW, 1940, STAT METHODS
   Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800
   WAKE M, 1993, J LARYNGOL OTOL, V107, P397
   WAKE M, 1994, LARYNGOSCOPE, V104, P488
   WENTHOLD RJ, 1978, BRAIN RES, V143, P544, DOI 10.1016/0006-8993(78)90365-7
   WENTHOLD RJ, 1993, NATO ADV SCI INST SE, V239, P179
   WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9
   WONGRILEY MTT, 1986, J COMP NEUROL, V245, P41, DOI 10.1002/cne.902450104
NR 35
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 64
EP 73
DI 10.1016/j.heares.2005.03.004
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100007
PM 16080999
ER

PT J
AU Morley, BJ
AF Morley, BJ
TI Nicotinic cholinergic intercellular communication: Implications for the
   developing auditory system
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE developing auditory brainstem; nicotinic acetylcholine receptors;
   calcium permeability; gene expression; nicotine; language development
ID CENTRAL-NERVOUS-SYSTEM; ACETYLCHOLINE-RECEPTOR SUBUNIT;
   ALPHA-BUNGAROTOXIN BINDING; SUPERIOR OLIVARY COMPLEX; IN-SITU
   HYBRIDIZATION; EXCITATORY SYNAPTIC-TRANSMISSION; ACETYLTRANSFERASE
   MESSENGER-RNA; ALTERNATIVE SPLICE VARIANT; VENTRAL COCHLEAR NUCLEUS; RAT
   SENSORY CORTEX
AB In this paper, research on the temporal and spatial distribution of cholinergic-related molecules in the lower auditory brainstem, with an emphasis on nicotinic acetylcholine receptors (nAChRs), is reviewed. The possible functions of acetylcholine (ACh) in driving selective auditory neurons before the onset of hearing, inducing glutamate receptor gene expression, synaptogenesis, differentiation, and cell survival are discussed. Experiments conducted in other neuronal and non-neuronal systems are drawn on extensively to discuss putative functions of ACh and nAChRs. Data from other systems may provide insight into the functions of ACh and nAC-hRs in auditory processing. The mismatch of presynaptic and postsynaptic markers and novel endogenous agonists of nAChRs are discussed in the context of non-classical interneuronal communication. The molecular mechanism that may underlie the many functions of ACh and its agonists is the regulation of intracellular calcium through nAChRs. The possible reorganization that may take place in the auditory system by the exposure to nicotine during critical developmental periods is also briefly considered. (c) 2005 Elsevier B.V. All rights reserved.
C1 Boys Town Natl Res Hosp, Neurochem Lab, Omaha, NE 68131 USA.
RP Morley, BJ (reprint author), Boys Town Natl Res Hosp, Neurochem Lab, 555 N 30th St, Omaha, NE 68131 USA.
EM morley@boystown.org
CR Adams CE, 2002, DEV BRAIN RES, V139, P175, DOI 10.1016/S0165-3806(02)00547-3
   Adams JC, 1997, AUDIT NEUROSCI, V3, P335
   AGNATI LF, 1995, NEUROSCIENCE, V69, P711, DOI 10.1016/0306-4522(95)00308-6
   Ahuja TK, 2000, HEARING RES, V149, P33, DOI 10.1016/S0378-5955(00)00159-3
   Albuquerque EX, 2000, BEHAV BRAIN RES, V113, P131, DOI 10.1016/S0166-4328(00)00208-4
   Alkondon M, 1997, EUR J NEUROSCI, V9, P2734, DOI 10.1111/j.1460-9568.1997.tb01702.x
   Alkondon M, 2001, J NEUROPHYSIOL, V86, P3043
   ALTSCHULER RA, 1985, BRAIN RES, V338, P1, DOI 10.1016/0006-8993(85)90242-2
   Aramakis VB, 2000, J NEUROSCI, V20, P6106
   Aramakis VB, 1998, J NEUROSCI, V18, P8485
   ARIMATSU Y, 1981, J COMP NEUROL, V198, P603, DOI 10.1002/cne.901980405
   Arredondo J, 2002, J CELL BIOL, V159, P325, DOI 10.1083/jcb.200206096
   Arroyo-Jimenez MD, 1999, J NEUROSCI, V19, P6475
   Arvidsson U, 1997, J COMP NEUROL, V378, P454
   Atluri P, 2001, DEV BIOL, V240, P143, DOI 10.1006/dbio.2001.0453
   Bansal A, 2000, J NEUROSCI, V20, P7672
   BENJANIN S, 1994, J BIOL CHEM, V269, P21944
   Bennett-Clarke CA, 1999, SOMATOSENS MOT RES, V16, P269
   BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106
   Berg DK, 2002, J NEUROBIOL, V53, P512, DOI 10.1002/neu.10116
   Berger F, 1998, J NEUROSCI, V18, P6871
   BERSE B, 1995, J BIOL CHEM, V270, P22101
   Bigbee JW, 2000, BRAIN RES, V861, P354, DOI 10.1016/S0006-8993(00)02046-1
   Bina KG, 1998, J COMP NEUROL, V397, P1
   BONDY CA, 1991, J NEUROSCI, V11, P3442
   Brandon EP, 2004, J NEUROSCI, V24, P5459, DOI 10.1523/JNEUROSCI.1106-04.2004
   Brimijoin S, 1996, NEUROSCIENCE, V71, P555, DOI 10.1016/0306-4522(95)00457-2
   BROIDE RS, 1995, NEUROSCIENCE, V67, P83, DOI 10.1016/0306-4522(94)00623-D
   BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410
   BRUGGE JF, 1984, J ACOUST SOC AM, V75, P1548, DOI 10.1121/1.390826
   Brumwell CL, 2002, J NEUROSCI, V22, P8101
   Bruses JL, 2001, J NEUROSCI, V21, P504
   Catone C, 2003, J NEUROSCI RES, V72, P46, DOI 10.1002/jnr.10550
   CHAN CC, 1993, CORNEA, V12, P451, DOI 10.1097/00003226-199309000-00013
   Chang KT, 1999, J NEUROSCI, V19, P3701
   Chernyavsky AI, 2004, J CELL SCI, V117, P5665, DOI 10.1242/jcs.01492
   Clark JD, 1985, AFR ARCHAEOL REV, V3, P3, DOI DOI 10.1007/BF01117453
   Coleman BA, 1996, J BIOL CHEM, V271, P4410
   Conroy WG, 2000, NEUROPHARMACOLOGY, V39, P2699, DOI 10.1016/S0028-3908(00)00132-5
   Contant C, 1996, NEUROSCIENCE, V71, P937, DOI 10.1016/0306-4522(95)00507-2
   Cooper ST, 1997, J NEUROCHEM, V68, P2140
   Coronas V, 2000, NEUROSCIENCE, V98, P213, DOI 10.1016/S0306-4522(00)00143-3
   COUTURIER S, 1990, NEURON, V5, P847, DOI 10.1016/0896-6273(90)90344-F
   Dani JA, 2004, BIOORG MED CHEM LETT, V14, P1837, DOI 10.1016/j.bmcl.2003.07.036
   Day T, 2004, EXP BRAIN RES, V155, P500, DOI 10.1007/s00221-003-1757-1
   DELTORO ED, 1994, J COMP NEUROL, V349, P325, DOI 10.1002/cne.903490302
   Descarries L, 1998, J PHYSIOL-PARIS, V92, P215, DOI 10.1016/S0928-4257(98)80013-2
   Descarries L, 1997, PROG NEUROBIOL, V53, P603, DOI 10.1016/S0301-0082(97)00050-6
   Devillers-Thiery A, 2003, BIOL CELL, V95, P373, DOI 10.1016/S0248-4900(03)00084-4
   Dineley KT, 2000, J BIOL CHEM, V275, P13974, DOI 10.1074/jbc.275.18.13974
   Dmitrieva NA, 2003, J COMP NEUROL, V456, P167, DOI 10.1002/cne.10520
   Downes GB, 2004, DEV BIOL, V270, P232, DOI 10.1016/j.ydbio.2004.02.027
   Drescher DG, 2004, NEUROSCIENCE, V127, P737, DOI 10.1016/j.neuroscience.2004.05.037
   ECKENSTEIN F, 1983, J NEUROSCI, V3, P2286
   ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X
   Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798
   Ene FA, 2003, J NEUROPHYSIOL, V90, P2581, DOI 10.1152/jn.00238.2003
   FARLEY GR, 1983, HEARING RES, V11, P73, DOI 10.1016/0378-5955(83)90046-1
   FENG G, 1998, J NEUROSCI, V19, P4166
   Ferguson SM, 2003, J NEUROSCI, V23, P9697
   Ferguson SM, 2004, P NATL ACAD SCI USA, V101, P8762, DOI 10.1073/pnas.0401667101
   Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001
   Francis N, 2002, J BIOL CHEM, V277, P6511, DOI 10.1074/jbc.M105616200
   FREEDMAN R, 1993, J NEUROSCI, V13, P1965
   Fried PA, 1997, NEUROTOXICOL TERATOL, V19, P171, DOI 10.1016/S0892-0362(97)00015-9
   Fried PA, 2003, NEUROTOXICOL TERATOL, V25, P427, DOI 10.1016/S0892-0362(03)00029-1
   FUCHS JL, 1989, BRAIN RES, V501, P223, DOI 10.1016/0006-8993(89)90640-9
   Fucile S, 2004, NEUROSCIENCE, V127, P53, DOI 10.1016/j.neuroscience.2004.04.017
   Fucile S, 2004, CELL CALCIUM, V35, P1, DOI 10.1016/j.ceca.2003.08.006
   Fujino K, 2001, J NEUROSCI, V21, P7372
   Gabriele ML, 2000, J COMP NEUROL, V416, P368, DOI 10.1002/(SICI)1096-9861(20000117)416:3<368::AID-CNE8>3.0.CO;2-C
   GEULA C, 1993, DEV BRAIN RES, V76, P23, DOI 10.1016/0165-3806(93)90119-U
   GODFREY DA, 1987, HEARING RES, V28, P237, DOI 10.1016/0378-5955(87)90052-9
   GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8
   Grando S A, 1997, J Investig Dermatol Symp Proc, V2, P41
   Greenfield SA, 2004, J NEUROCHEM, V90, P325, DOI 10.1111/j.1471-4159.2004.02494.x
   Grisaru D, 1999, EUR J BIOCHEM, V264, P672, DOI 10.1046/j.1432-1327.1999.00693.x
   Hafidi A, 1999, INT J DEV NEUROSCI, V17, P285, DOI 10.1016/S0736-5748(99)00043-X
   Hanson MG, 2003, J NEUROSCI, V23, P587
   HAPPE HK, 2004, MOL BRAIN RES, V153, P29
   Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z
   HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114
   Hiel H, 1996, BRAIN RES, V738, P347, DOI 10.1016/S0006-8993(96)01046-3
   HILL JA, 1993, J NEUROSCI, V13, P1551
   Hohmann CF, 1998, PERSPECT DEV NEUROBI, V5, P401
   Horvath M, 2000, J COMP NEUROL, V422, P95
   Horvath M, 1997, J COMP NEUROL, V382, P104, DOI 10.1002/(SICI)1096-9861(19970526)382:1<104::AID-CNE7>3.0.CO;2-5
   Hsieh CY, 2002, DEV BRAIN RES, V133, P19, DOI 10.1016/S0165-3806(01)00314-5
   HUNT SP, 1978, BRAIN RES, V142, P152, DOI 10.1016/0006-8993(78)90185-3
   Ichikawa T, 1997, J CHEM NEUROANAT, V13, P23, DOI 10.1016/S0891-0618(97)00021-5
   Ji D, 2001, NEURON, V31, P131, DOI 10.1016/S0896-6273(01)00332-4
   Jones AK, 2004, BIOESSAYS, V26, P39, DOI 10.1002/bies.10377
   Jones TA, 2001, J NEUROSCI, V21, P8129
   KAMIYA HO, 1982, BRAIN RES BULL, V8, P431, DOI 10.1016/0361-9230(82)90078-8
   Kanayama H, 2003, NEUROSCIENCE, V118, P243, DOI 10.1016/S0306-4522(02)00868-0
   KANDLER K, 1995, EUR J NEUROSCI, V7, P1773, DOI 10.1111/j.1460-9568.1995.tb00697.x
   KANDLER K, 1995, J NEUROSCI, V15, P6890
   KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202
   KATER SB, 1991, J NEUROSCI, V11, P891
   Kawashima K, 2004, FRONT BIOSCI, V9, P2063, DOI 10.2741/1390
   Kim G, 2003, NAT NEUROSCI, V6, P282, DOI 10.1038/nn1015
   Koenigsberger C, 1997, J NEUROCHEM, V69, P1389
   KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611
   Kotak VC, 1998, J NEUROSCI, V18, P4646
   Kotak VC, 1996, J NEUROSCI, V16, P1836
   KRISTT DA, 1983, NEUROSCIENCE, V10, P923, DOI 10.1016/0306-4522(83)90230-0
   KRISTT DA, 1981, ANAT EMBRYOL, V163, P31, DOI 10.1007/BF00315768
   KUES WA, 1995, EUR J NEUROSCI, V7, P1376, DOI 10.1111/j.1460-9568.1995.tb01129.x
   Kullmann PHM, 2001, DEV BRAIN RES, V131, P143, DOI 10.1016/S0165-3806(01)00271-1
   Lansdell SJ, 2004, J NEUROCHEM, V90, P479, DOI 10.1111/j.1471-4159.2004.02499.x
   LAUTERBORN JC, 1993, MOL BRAIN RES, V17, P59, DOI 10.1016/0169-328X(93)90073-X
   LENOVERE N, 1995, J MOL EVOL, V40, P155
   Lester RAJ, 2004, BIOORG MED CHEM LETT, V14, P1897, DOI 10.1016/j.bmcl.2004.02.081
   Levy RB, 2002, J NEUROSCI, V22, P5001
   LIPPE WR, 1994, J NEUROSCI, V14, P1486
   LIPTON SA, 1989, TRENDS NEUROSCI, V12, P265, DOI 10.1016/0166-2236(89)90026-X
   Liu Y, 2001, J NEUROSCI, V21, P5660
   Lohmann C, 1998, J NEUROBIOL, V34, P97, DOI 10.1002/(SICI)1097-4695(19980205)34:2<97::AID-NEU1>3.0.CO;2-6
   Lukas RJ, 1999, PHARMACOL REV, V51, P397
   MacDermott AB, 1999, ANNU REV NEUROSCI, V22, P443, DOI 10.1146/annurev.neuro.22.1.443
   Maggi L, 2003, P NATL ACAD SCI USA, V100, P2059, DOI 10.1073/pnas.0437947100
   Marchi M, 2002, J NEUROCHEM, V80, P1071, DOI 10.1046/j.0022-3042.2002.00805.x
   Marks MJ, 1996, MOL BRAIN RES, V39, P207, DOI 10.1016/0169-328X(96)00027-7
   MCGEHEE DS, 1995, SCIENCE, V269, P1692, DOI 10.1126/science.7569895
   Mechawar N, 2002, J COMP NEUROL, V443, P250, DOI 10.1002/cne.10114
   MEISTER M, 1991, SCIENCE, V252, P939, DOI 10.1126/science.2035024
   Mesulam MM, 2002, NEUROSCIENCE, V110, P627, DOI 10.1016/S0306-4522(01)00613-3
   Misgeld T, 2002, NEURON, V36, P635, DOI 10.1016/S0896-6273(02)01020-6
   MISHINA M, 1986, NATURE, V321, P406, DOI 10.1038/321406a0
   Moore JK, 1999, AUDIOL NEURO-OTOL, V4, P311, DOI 10.1159/000013855
   Morley BJ, 2002, DEV BRAIN RES, V139, P87, DOI 10.1016/S0165-3806(02)00514-X
   Morley BJ, 2004, JARO-J ASSOC RES OTO, V5, P391, DOI 10.1007/s10162-004-5015-4
   Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6
   Morley BJ, 1998, MOL BRAIN RES, V54, P170, DOI 10.1016/S0169-328X(97)00355-0
   Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6
   Morley BJ, 1997, MOL BRAIN RES, V48, P407, DOI 10.1016/S0169-328X(97)00159-9
   Mukherjee RS, 2004, MOL BRAIN RES, V129, P54, DOI 10.1016/j.molbrainres.2004.06.014
   MULLE C, 1992, NEURON, V8, P135, DOI 10.1016/0896-6273(92)90115-T
   Nagavarapu U, 2001, J BIOL CHEM, V276, P16749, DOI 10.1074/jbc.M009712200
   Nicke A, 2004, FEBS LETT, V575, P52, DOI 10.1016/j.febslet.2004.08.035
   Obel C, 1998, PAEDIATR PERINAT EP, V12, P37
   O'Donovan MJ, 1999, CURR OPIN NEUROBIOL, V9, P94, DOI 10.1016/S0959-4388(99)80012-9
   Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773
   Oertel D, 2001, AUDIOL NEURO-OTOL, V6, P161, DOI 10.1159/000046825
   Ogawa H, 2003, LIFE SCI, V72, P2127, DOI 10.1016/S0024-3205(03)00072-9
   Olivera S, 2003, MOL CELL NEUROSCI, V23, P96, DOI 10.1016/S1044-7431(03)00021-6
   Olivera S, 2003, INT J DEV NEUROSCI, V21, P49, DOI 10.1016/S0736-5748(02)00083-7
   OSEN KK, 1984, ARCH ITAL BIOL, V122, P169
   Papke RL, 2002, BRIT J PHARMACOL, V137, P49, DOI 10.1038/sj.bjp.0704833
   Pfeil U, 2004, HISTOCHEM CELL BIOL, V122, P121, DOI 10.1007/s00418-004-0687-8
   Pugh PC, 2000, MOL CELL NEUROSCI, V15, P113, DOI 10.1006/mcne.1999.0810
   Raji-Kubba J, 2002, J CHEM NEUROANAT, V24, P75, DOI 10.1016/S0891-0618(02)00022-4
   Rakhilin S, 1999, J CELL BIOL, V146, P203
   Reeves DC, 2002, MOL MEMBR BIOL, V19, P11, DOI 10.1080/09687680110110048
   ROBERTSON RT, 1991, DEV BRAIN RES, V58, P81, DOI 10.1016/0165-3806(91)90240-J
   Role LW, 1996, NEURON, V16, P1077, DOI 10.1016/S0896-6273(00)80134-8
   Rosenberg MM, 2002, J NEUROBIOL, V53, P542, DOI 10.1002/neu.10112
   Roth AL, 2003, J COMP NEUROL, V465, P195, DOI 10.1002/cne.10856
   RUIZGOMEZ A, 1990, BIOCHEMISTRY-US, V29, P7033, DOI 10.1021/bi00482a012
   RYAN AF, 1990, J COMP NEUROL, V300, P572, DOI 10.1002/cne.903000410
   Saragoza PA, 2003, MOL BRAIN RES, V117, P15, DOI 10.1016/S0169-328X(03)00261-4
   SARGENT PB, 1993, ANNU REV NEUROSCI, V16, P403, DOI 10.1146/annurev.ne.16.030193.002155
   Schafer MKH, 1998, NEUROSCIENCE, V84, P331, DOI 10.1016/S0306-4522(97)00516-2
   SEGUELA P, 1993, J NEUROSCI, V13, P596
   Severance EG, 2004, MOL PHARMACOL, V66, P420, DOI 10.1124/mol.104.000059
   Sgard F, 2002, MOL PHARMACOL, V61, P150, DOI 10.1124/mol.61.1.150
   SHAPIRA M, 1994, P NATL ACAD SCI USA, V91, P9072, DOI 10.1073/pnas.91.19.9072
   Shatz CJ, 1996, P NATL ACAD SCI USA, V93, P602, DOI 10.1073/pnas.93.2.602
   SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8
   SHERRIFF FE, 1994, BRAIN RES, V636, P119, DOI 10.1016/0006-8993(94)90185-6
   Shoop RD, 2000, J NEUROSCI, V20, P4021
   Shoop RD, 1999, J NEUROSCI, V19, P692
   Shoop RD, 2002, J NEUROSCI, V22, P748
   Simmons DD, 1998, MOL BRAIN RES, V56, P287, DOI 10.1016/S0169-328X(98)00056-4
   SIMON JR, 1976, J NEUROCHEM, V27, P93, DOI 10.1111/j.1471-4159.1976.tb01549.x
   SIMON JR, 1976, J NEUROCHEM, V26, P909, DOI 10.1111/j.1471-4159.1976.tb06472.x
   Single S, 2002, J NEUROPHYSIOL, V87, P1616, DOI 10.1152/jn.00215.2001
   Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x
   Soreq H, 2001, NAT REV NEUROSCI, V2, P294, DOI 10.1038/35067589
   Sudhof TC, 2004, ANNU REV NEUROSCI, V27, P509, DOI 10.1146/annurev.neuro.26.041002.131412
   Svedberg MM, 2002, J MOL NEUROSCI, V18, P211, DOI 10.1385/JMN:18:3:211
   Temburni MK, 2000, J PHYSIOL-LONDON, V525, P21, DOI 10.1111/j.1469-7793.2000.00021.x
   Tooyama I, 2000, J CHEM NEUROANAT, V17, P217, DOI 10.1016/S0891-0618(99)00043-5
   Torrao AS, 2003, DEV BRAIN RES, V143, P115, DOI 10.1016/S0165-3806(03)00109-3
   Tsuneki H, 2003, J PHYSIOL-LONDON, V547, P169, DOI 10.1113/jphysiol.2002.036368
   Umbriaco D, 1995, HIPPOCAMPUS, V5, P605, DOI 10.1002/hipo.450050611
   USDIN TB, 1995, TRENDS NEUROSCI, V18, P218, DOI 10.1016/0166-2236(95)93906-E
   Uteshev VV, 2003, J NEUROPHYSIOL, V89, P1797, DOI 10.1152/jn.00943.2002
   VACA K, 1988, BRAIN RES REV, V13, P261, DOI 10.1016/0165-0173(88)90009-4
   Valor LM, 2002, BIOCHEMISTRY-US, V41, P7931, DOI 10.1021/bi025831r
   VETTER DE, 1993, NATO ADV SCI INST SE, V239, P279
   Vinson PN, 1997, J NEUROSCI METH, V73, P61, DOI 10.1016/S0165-0270(96)02213-3
   Vizi ES, 2004, NEUROCHEM INT, V45, P443, DOI 10.1016/j.neuint.2003.11.016
   Vizi ES, 2000, PHARMACOL REV, V52, P63
   VOLICELLIDALEY LA, 2003, MOL PHARMACOL, V64, P1309
   Wang H, 2003, NATURE, V421, P384, DOI 10.1038/nature01339
   Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0
   WARR WB, 1992, ANATOMY MAMMALIAN AU, P410
   Weihe E, 1996, P NATL ACAD SCI USA, V93, P3547, DOI 10.1073/pnas.93.8.3547
   Wessler I, 1998, PHARMACOL THERAPEUT, V77, P59, DOI 10.1016/S0163-7258(97)00085-5
   WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206
   Williams BM, 1998, NAT NEUROSCI, V1, P557
   WinzerSerhan UH, 1997, J COMP NEUROL, V386, P540, DOI 10.1002/(SICI)1096-9861(19971006)386:4<540::AID-CNE2>3.0.CO;2-2
   WONG ROL, 1995, NATURE, V374, P716, DOI 10.1038/374716a0
   Wonnacott S, 1997, TRENDS NEUROSCI, V20, P92, DOI 10.1016/S0166-2236(96)10073-4
   WU DH, 1994, J NEUROCHEM, V62, P1653
   Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3
   Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L
   Yao WP, 1997, NEUROSCI LETT, V229, P21, DOI 10.1016/S0304-3940(97)00400-X
   Yao WP, 1999, J HISTOCHEM CYTOCHEM, V47, P83
   YAO WP, 1995, HEARING RES, V89, P76, DOI 10.1016/0378-5955(95)00123-7
   Yasuhara O, 2003, J NEUROSCI, V23, P2872
   Zbarsky V, 2004, NEUROBIOL DIS, V16, P283, DOI 10.1016/j.nbd.2004.02.009
   ZHENG JQ, 1994, NATURE, V368, P140, DOI 10.1038/368140a0
   Zhou XD, 2004, J NEUROSCI, V24, P4340, DOI 10.1523/JNEUROSCI.0055-04.2004
NR 215
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 74
EP 88
DI 10.1016/j.heares.2005.02.012
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100008
PM 16081000
ER

PT J
AU Kamke, MR
   Brown, M
   Irvine, DRF
AF Kamke, MR
   Brown, M
   Irvine, DRF
TI Origin and immunolesioning of cholinergic basal forebrain innervation of
   cat primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE AI; acetylcholine; immunohistochemistry; immunotoxin; retrograde
ID RECEPTIVE-FIELD PLASTICITY; TONE-EVOKED RESPONSES; 192 IGG-SAPORIN;
   NUCLEUS BASALIS; HORSERADISH-PEROXIDASE; RETROGRADE TRANSPORT;
   INTRAPARENCHYMAL INFUSIONS; TONOTOPIC ORGANIZATION; CORTICAL
   PROJECTIONS; MUSCARINIC AGONISTS
AB Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BE were cholinergic, with the vast majority or these cells arising from the more lateral BE nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity. (c) 2005 Elsevier B.V. All rights reserved.
C1 Monash Univ, Fac Med Nursing & Hlth Sci, Dept Psychol, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia.
RP Kamke, MR (reprint author), Monash Univ, Fac Med Nursing & Hlth Sci, Dept Psychol, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia.
EM Marc.Kamke@med.monash.edu.au
RI Irvine, Dexter/F-7474-2011; Kamke, Marc/J-4059-2014
OI Kamke, Marc/0000-0003-0248-9682
CR ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106
   Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
   Baskerville KA, 1997, NEUROSCIENCE, V80, P1159, DOI 10.1016/S0306-4522(97)00064-X
   Beach TG, 2000, NEUROSCI LETT, V283, P9, DOI 10.1016/S0304-3940(00)00916-2
   BEAR MF, 1985, J COMP NEUROL, V234, P411, DOI 10.1002/cne.902340402
   Berman A.L., 1982, THALAMUS BASAL TELEN
   Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467
   BUTCHER LL, 1983, HDB CHEM NEUROANATOM, V1, P1
   Conner JM, 2003, NEURON, V38, P819, DOI 10.1016/S0896-6273(03)00288-5
   DELIMA AD, 1986, J COMP NEUROL, V250, P324, DOI 10.1002/cne.902500306
   Dimyan MA, 1999, BEHAV NEUROSCI, V113, P691, DOI 10.1037/0735-7044.113.4.691
   EDELINE JM, 1994, EXP BRAIN RES, V97, P373
   Ferreira G, 2001, NEUROSCIENCE, V106, P103, DOI 10.1016/S0306-4522(01)00265-2
   Fine A, 1997, NEUROSCIENCE, V81, P331, DOI 10.1016/S0306-4522(97)00208-X
   FISHER RS, 1988, J COMP NEUROL, V272, P489, DOI 10.1002/cne.902720404
   Gorbachevskaya A I, 1981, Neurosci Behav Physiol, V11, P520, DOI 10.1007/BF01182809
   Gritti I, 1998, NEUROSCIENCE, V85, P149, DOI 10.1016/S0306-4522(97)00573-3
   HARS B, 1993, NEUROSCIENCE, V56, P61, DOI 10.1016/0306-4522(93)90562-T
   IRLE E, 1984, BRAIN RES BULL, V12, P493, DOI 10.1016/0361-9230(84)90165-5
   JAYARAMAN A, 1980, BRAIN RES, V195, P29, DOI 10.1016/0006-8993(80)90863-X
   Kamke MR, 2003, J COMP NEUROL, V459, P355, DOI 10.1002/cne.10586
   KAMKE MR, 2004, P AUST NEUR SOC, V15, P92
   Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
   KIMURA H, 1981, J COMP NEUROL, V200, P151, DOI 10.1002/cne.902000202
   Lai YY, 1999, J COMP NEUROL, V408, P419, DOI 10.1002/(SICI)1096-9861(19990607)408:3<419::AID-CNE8>3.0.CO;2-4
   Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001
   McGaughy J, 2000, BEHAV BRAIN RES, V115, P251, DOI 10.1016/S0166-4328(00)00262-X
   MCKENNA TM, 1988, SYNAPSE, V2, P54, DOI 10.1002/syn.890020109
   MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105
   Mesulam M., 1982, TRACING NEURAL CONNE
   MESULAM MM, 1986, BRAIN RES, V367, P301, DOI 10.1016/0006-8993(86)91607-0
   MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106
   MESULAM MM, 1983, NEUROSCIENCE, V10, P1185, DOI 10.1016/0306-4522(83)90108-2
   METHERATE R, 1991, BRAIN RES, V559, P163, DOI 10.1016/0006-8993(91)90301-B
   METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204
   METHERATE R, 1989, BRAIN RES, V480, P372, DOI 10.1016/0006-8993(89)90210-2
   Miasnikov AA, 2001, NEUROREPORT, V12, P1537, DOI 10.1097/00001756-200105250-00047
   Oda Y, 1999, PATHOL INT, V49, P921, DOI 10.1046/j.1440-1827.1999.00977.x
   OLESHKO NN, 1993, NEUROSCIENCE, V57, P683, DOI 10.1016/0306-4522(93)90015-8
   PARENT A, 1981, BRAIN RES, V230, P356, DOI 10.1016/0006-8993(81)90415-7
   Pizzo DP, 1999, J NEUROSCI METH, V91, P9, DOI 10.1016/S0165-0270(99)00057-6
   RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X
   REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X
   REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207
   ROUILLER EM, 1989, HEARING RES, V40, P233, DOI 10.1016/0378-5955(89)90164-0
   RYE DB, 1984, J HISTOCHEM CYTOCHEM, V32, P1145
   Sarter M, 2000, J NEUROSCI METH, V96, P169, DOI 10.1016/S0165-0270(99)00196-X
   Sarter M, 1997, BRAIN RES REV, V23, P28, DOI 10.1016/S0165-0173(96)00009-4
   STERIADE M, 1987, BRAIN RES, V408, P372, DOI 10.1016/0006-8993(87)90408-2
   TAGO H, 1986, J HISTOCHEM CYTOCHEM, V34, P1431
   Tremere LA, 2000, NEUROREPORT, V11, P2177, DOI 10.1097/00001756-200007140-00023
   WAHLE P, 1984, NEUROSCI LETT, V44, P223, DOI 10.1016/0304-3940(84)90026-0
   Wiley RG, 2000, J NEUROSCI METH, V103, P73, DOI 10.1016/S0165-0270(00)00297-1
   Zhu XO, 1998, CEREB CORTEX, V8, P63, DOI 10.1093/cercor/8.1.63
NR 56
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 89
EP 106
DI 10.1016/j.heares.2004.12.014
PG 18
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100009
PM 16081001
ER

PT J
AU Vale, C
   Caminos, E
   Martinez-Galan, JR
   Juiz, JM
AF Vale, C
   Caminos, E
   Martinez-Galan, JR
   Juiz, JM
TI Expression and developmental regulation of the K(+)-Cl(-) cotransporter
   KCC2 in the cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE GABA; glycine; inhibition; chloride transport; development; auditory;
   brain stem
ID INHIBITORY SYNAPTIC-TRANSMISSION; NEURONAL-SPECIFIC ISOFORM; DORSAL HORN
   NEURONS; BRAIN-STEM; RAT-BRAIN; INTRACELLULAR CHLORIDE; INFERIOR
   COLLICULUS; HIPPOCAMPAL-NEURONS; EXCITATORY ACTIONS; PYRAMIDAL NEURONS
AB KCC2 is a neuron-specific Cl(-) transporter whose role in adult central neurons is to maintain low intracellular Cl(-) concentrations and, therefore, generate an inward-directed electrochemical gradient for Cl(-) needed for the hyperpolarizing responses to the inhibitory amino acids GABA and glycine. We report that the KCC2 protein is intensely expressed in CN neurons and preferentially associated with plasma membrane domains, consistent with GABA and glycinergic-mediated inhibition in this auditory nucleus. Postnatal KCC2 expression and distribution patterns are similar in developing and adult CN neurons and do not match the time course of GABergic or glycinergic synaptogenesis. Therefore, in the CN, neither KCC2 protein upregulation nor progressive integration in the plasma membrane seem to be involved in KCC2 developmental regulation. Considering that GABA and glycine are depolarizing during early postnatal development, it is conceivable that KCC2 is in place but inactive during early postnatal development in the CN and becomes active as inhibitory synaptogenesis proceeds. This notion is supported by the finding that the phosphorylation state of KCC2 differs from developing to adult CN, with the phosphorylated form predominating in the latter. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Castilla La Mancha, Sch Med, Albacete 02005, Spain.
   Univ Castilla La Mancha, Ctr Reg Invest Biomed, Albacete 02005, Spain.
RP Juiz, JM (reprint author), Univ Castilla La Mancha, Sch Med, Campus Albacete, Albacete 02005, Spain.
EM JoseManuel.Juiz@uclm.es
RI Vale, Carmen/L-5287-2014; Caminos, Elena/F-2612-2015
OI Vale, Carmen/0000-0002-9842-6223; Caminos, Elena/0000-0003-1538-2366
CR Alvarez-Leefmans F. J., 2001, CELL PHYSL SOURCEBOO, P301, DOI 10.1016/B978-012656976-6/50112-8
   Balakrishnan V, 2003, J NEUROSCI, V23, P4134
   BenAri Y, 1997, TRENDS NEUROSCI, V20, P523, DOI 10.1016/S0166-2236(97)01147-8
   Ben-Ari Y, 2002, NAT REV NEUROSCI, V3, P728, DOI 10.1038/nrn920
   BLAESSE P, 2004, 3 S MOL MECH CENTR A, P24
   BORMANN J, 1987, J PHYSIOL-LONDON, V385, P243
   Campos ML, 2001, NEUROSCIENCE, V102, P625, DOI 10.1016/S0306-4522(00)00525-X
   CASPARY DM, 1993, NATO ADV SCI INST SE, V239, P239
   Chen G, 1996, J PHYSIOL-LONDON, V494, P451
   CHERUBINI E, 1990, INT J DEV NEUROSCI, V8, P481, DOI 10.1016/0736-5748(90)90080-L
   CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D
   DeFazio RA, 2000, J NEUROSCI, V20, P8069
   DELPIRE E, 1994, J BIOL CHEM, V269, P25677
   Delpire E, 2002, ANNU REV PHYSIOL, V64, P803, DOI 10.1146/annurev.physiol.64.081501.155847
   ECCLES JC, 1966, ANN NY ACAD SCI, V137, P473, DOI 10.1111/j.1749-6632.1966.tb50176.x
   EHRLICH I, 1999, J PHYSIOL-LONDON, V520, P131
   Gulyas AI, 2001, EUR J NEUROSCI, V13, P2205, DOI 10.1046/j.0953-816x.2001.01600.x
   HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549
   Huang B, 1996, VISUAL NEUROSCI, V13, P441
   Hubner CA, 2001, NEURON, V30, P515, DOI 10.1016/S0896-6273(01)00297-5
   Jarolimek W, 1999, J NEUROSCI, V19, P4695
   Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G
   Kaila K, 1997, J NEUROSCI, V17, P7662
   Kakazu Y, 1999, J NEUROSCI, V19, P2843
   KANDLER K, 1995, J NEUROSCI, V15, P6804
   Kelsch W, 2001, J NEUROSCI, V21, P8339
   KRNJEVIC K, 1974, PHYSIOL REV, V54, P418
   Kullmann PHM, 2002, EUR J NEUROSCI, V15, P1093, DOI 10.1046/j.1460-9568.2002.01946.x
   LoTurco JJ, 1995, NEURON, V15, P1287, DOI 10.1016/0896-6273(95)90008-X
   Lu J, 1999, J NEUROBIOL, V39, P558, DOI 10.1002/(SICI)1097-4695(19990615)39:4<558::AID-NEU9>3.0.CO;2-5
   LUHMANN HJ, 1991, J NEUROPHYSIOL, V65, P247
   Owens DF, 1996, J NEUROSCI, V16, P6414
   Payne JA, 1997, AM J PHYSIOL-CELL PH, V273, pC1516
   Payne JA, 1996, J BIOL CHEM, V271, P16245
   Payne JA, 2003, TRENDS NEUROSCI, V26, P199, DOI 10.1016/S0166-2236(03)00068-7
   REICHLING DB, 1994, J PHYSIOL-LONDON, V476, P411
   Rivera C, 1999, NATURE, V397, P251
   Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249
   Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011
   Singer JH, 1998, J NEUROPHYSIOL, V80, P2608
   Stein V, 2004, J COMP NEUROL, V468, P57, DOI 10.1002/cne.10983
   Strange K, 2000, AM J PHYSIOL-CELL PH, V279, P860
   THOMPSON SM, 1989, J NEUROPHYSIOL, V61, P501
   Vale C, 2000, J NEUROSCI, V20, P1912
   Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x
   Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
   Vale C, 2003, J NEUROSCI, V23, P7516
   WANG J, 1994, EUR J NEUROSCI, V6, P1275, DOI 10.1111/j.1460-9568.1994.tb00317.x
   Wenthold RJ, 1991, NEUROBIOLOGY HEARING, P121
   Williams JR, 1999, J BIOL CHEM, V274, P12656, DOI 10.1074/jbc.274.18.12656
   WU SH, 1986, J NEUROSCI, V6, P2691
   WU WI, 1992, J NEUROSCI, V12, P3935
   YUSTE R, 1991, NEURON, V6, P333, DOI 10.1016/0896-6273(91)90243-S
NR 53
TC 24
Z9 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 107
EP 115
DI 10.1016/j.heares.2005.03.012
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100010
PM 16081002
ER

PT J
AU Brew, HM
   Forsythe, ID
AF Brew, HM
   Forsythe, ID
TI Systematic variation of potassium current amplitudes across the
   tonotopic axis of the rat medial nucleus of the trapezoid body
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE potassium; channel; capacitance; MNTB; tonotopic
ID LATERAL SUPERIOR OLIVE; STEM AUDITORY NUCLEI; ANTEROVENTRAL COCHLEAR
   NUCLEUS; MOUSE-BRAIN SLICE; K+ CHANNELS; DIFFERENTIAL EXPRESSION;
   PRINCIPAL CELLS; HAIR-CELLS; NEURONS; TIME
AB Many central auditory nuclei preserve the tonotopic organization of their afferent inputs, generating a frequency "map" across the nucleus. In the medial nucleus of the trapezoid body (MNTB) the most medial neurons receive inputs corresponding to the highest frequency sounds and the most lateral neurons have the lowest characteristic frequencies. Whole-cell patch recording from MNTB principal neurons in rat brainstem slices demonstrates a corresponding tonotopic organization of voltage-gated outward potassium currents. Medial MNTB neurons had larger total outward K+ current amplitudes than lateral neurons and similar medial to-lateral gradients were observed for two K+ current subtypes distinguished by their low and high voltage activation thresholds. In contrast, a third K+ conductance with an intermediate voltage threshold and slower kinetics showed an inverse gradient (being smallest in medial NINTB). The orthogonal axes of NINTB did not exhibit potassium current gradients (dorsal-to-ventral, or rostral-to-caudal). The input resistance was unchanged across the MNTB, but a slow capacitative component was enhanced in lateral neurons. These data demonstrate that the intrinsic properties of rat MNTB neurons are tuned across the tonotopic axis so as to promote shorter action potentials, faster firing and therefore greater accuracy in transmission of auditory information in the high characteristic frequency regions. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England.
   Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA.
RP Brew, HM (reprint author), Univ Leicester, Dept Cell Physiol & Pharmacol, POB 138, Leicester LE1 9HN, Leics, England.
EM hbrew@u.washington.edu; idf@le.ac.uk
CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244
   Akhtar S, 2002, J BIOL CHEM, V277, P16376, DOI 10.1074/jbc.M109698200
   ALTMAN J, 1980, J COMP NEUROL, V194, P877, DOI 10.1002/cne.901940410
   BANKS MI, 1992, J NEUROSCI, V12, P2819
   Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x
   BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   Brew HM, 1995, J NEUROSCI, V15, P8011
   BREW HM, 1996, J PHYSL, V495, P57
   BREW HM, 1994, BRIT J AUDIOL, V29, P51
   Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568
   CARR CE, 1993, ANNU REV NEUROSCI, V16, P223, DOI 10.1146/annurev.ne.16.030193.001255
   CARR CE, 1993, J COMP NEUROL, V334, P337, DOI 10.1002/cne.903340302
   CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377
   CROWLEY DE, 1966, J COMP PHYSIOL PSYCH, V62, P427, DOI 10.1037/h0023953
   DEBIASI M, 1993, BIOPHYS J, V65, P1235
   Dodson PD, 2002, J NEUROSCI, V22, P6953
   FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P151, DOI 10.1098/rspb.1993.0022
   FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x
   Fukui I, 2004, J NEUROSCI, V24, P7514, DOI 10.1523/JNEUROSCI.0566-04.2004
   Gentet LJ, 2000, BIOPHYS J, V79, P314
   Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2
   GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
   Hamill OP, 1991, CEREB CORTEX, V1, P48, DOI 10.1093/cercor/1.1.48
   HOPKINS WF, 1994, PFLUG ARCH EUR J PHY, V428, P382, DOI 10.1007/BF00724522
   JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037
   Joris PX, 1998, J NEUROPHYSIOL, V79, P253
   KANDLER K, 1995, EUR J NEUROSCI, V7, P1773, DOI 10.1111/j.1460-9568.1995.tb00697.x
   KUWABARA N, 1991, J COMP NEUROL, V314, P707, DOI 10.1002/cne.903140406
   Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279
   LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211
   LLANO I, 1991, J PHYSIOL-LONDON, V434, P183
   Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E
   Magistretti J, 1996, TRENDS NEUROSCI, V19, P530, DOI 10.1016/S0166-2236(96)40004-2
   MANIS PB, 1991, J NEUROSCI, V11, P2865
   MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7
   MOREST D K, 1968, Zeitschrift fuer Anatomie und Entwicklungsgeschichte, V127, P201, DOI 10.1007/BF00526129
   OERTEL D, 1983, J NEUROSCI, V3, P2043
   Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
   Pantelias AA, 2001, HEARING RES, V156, P81, DOI 10.1016/S0378-5955(01)00269-6
   Parameshwaran S, 2001, J NEUROSCI, V21, P485
   Parameshwaran-Iyer S, 2003, J NEUROBIOL, V55, P165, DOI 10.1002/neu.10198
   PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756
   Puel J L, 1987, Brain Res, V465, P179
   Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135
   Rubsamen R., 1998, DEV AUDITORY SYSTEM, P193
   SMITH DJ, 1979, J COMP NEUROL, V186, P213, DOI 10.1002/cne.901860207
   SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
   SOMMER I, 1993, EXP BRAIN RES, V95, P223
   STANSFELD C, 1988, NEUROSCI LETT, V93, P49, DOI 10.1016/0304-3940(88)90011-0
   Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
   UZIEL A, 1981, AUDIOLOGY, V20, P89
   Wada T., 1923, American Anatomical Memoir, Vno. 10, P1
   WANG H, 1993, NATURE, V365, P75, DOI 10.1038/365075a0
   WANG H, 1994, J NEUROSCI, V14, P4588
   Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
   WEISER M, 1994, J NEUROSCI, V14, P949
   Wigmore MA, 2000, J PHYSIOL-LONDON, V527, P493, DOI 10.1111/j.1469-7793.2000.t01-1-00493.x
   WU SH, 1992, J NEUROPHYSIOL, V68, P1151
   WU SH, 1993, HEARING RES, V68, P189
   WU SH, 1991, J NEUROPHYSIOL, V65, P230
NR 61
TC 29
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 116
EP 132
DI 10.1016/j.heares.2004.12.012
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100011
PM 16081003
ER

PT J
AU Kaczmarek, LK
   Bhattacharjee, A
   Desai, R
   Gan, L
   Song, P
   von Hehn, CAA
   Whim, MD
   Yang, B
AF Kaczmarek, LK
   Bhattacharjee, A
   Desai, R
   Gan, L
   Song, P
   von Hehn, CAA
   Whim, MD
   Yang, B
TI Regulation of the timing of MNTB neurons by short-term and long-term
   modulation of potassium channels
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
ID CENTRAL-NERVOUS-SYSTEM; FREQUENCY FIRING NEURONS; AUDITORY NEURONS;
   TRAPEZOID BODY; MEDIAL NUCLEUS; K+ CHANNEL; COCHLEAR NUCLEUS; OUTWARD
   CURRENTS; DIFFERENTIAL EXPRESSION; BRAIN-STEM
AB The firing patterns of neurons in central auditory pathways encode specific features of sound stimuli, such as frequency, intensity and localization in space. The generation of the appropriate pattern depends, to a major extent, on the properties of the voltage-dependent potassium channels in these neurons. The mammalian auditory pathways that compute the direction of a sound source are located in the brainstem and include the connection from bushy cells in the anteroventral cochlear nucleus (AVCN) to the principal neurons of the medial nucleus of the trapezoid body (MNTB). To preserve the fidelity of timing of action potentials that is required for Sound localization, these neurons express several types of potassium channels, including the Kv3 and Kv1 families of voltage-dependent channels and the Slick and Slack sodium-dependent channels. These channels determine the pattern of action potentials and the amount of neurotransmitter released during repeated stimulation. The amplitude of currents carried by one of these channels, the Kv3.1b channel, is regulated in the short term by protein phosphorylation, and in the long term, by changes in gene expression, such that the intrinsic excitability of the neurons is constantly being regulated by the ambient auditory environment. (c) 2005 Elsevier B.V. All rights reserved.
C1 Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA.
   Univ Calif San Francisco, Dept Neurol, Gladstone Inst Neurol Dis, San Francisco, CA 94158 USA.
   Penn State Univ, Dept Biol, State Coll, PA 16802 USA.
RP Kaczmarek, LK (reprint author), Yale Univ, Sch Med, Dept Pharmacol, 333 Cedar St, New Haven, CT 06520 USA.
EM leonard.kaczmarck@yale.edu
CR BANKS MI, 1992, J NEUROSCI, V12, P2819
   Bhattacharjee A, 2002, J COMP NEUROL, V454, P241, DOI 10.1002/cne.10439
   Bhattacharjee A, 2003, J NEUROSCI, V23, P11681
   Bhattacharjee Arin, 2005, J Comp Neurol, V484, P80, DOI 10.1002/cne.20462
   Borst JGG, 1995, J PHYSIOL-LONDON, V489, P825
   Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0
   Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a
   Brew HM, 1995, J NEUROSCI, V15, P8011
   Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568
   BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7
   CRITZ SD, 1993, J NEUROCHEM, V60, P1175, DOI 10.1111/j.1471-4159.1993.tb03273.x
   DESAI R, 2003, SOC NEUR ABSTR CD RO
   Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250
   Dodson PD, 2004, TRENDS NEUROSCI, V27, P210, DOI 10.1016/j.tins.2004.02.012
   Dodson PD, 2002, J NEUROSCI, V22, P6953
   FORSYTHE ID, 1994, J PHYSIOL-LONDON, V479, P381
   Gan L, 1999, J NEUROCHEM, V73, P1350, DOI 10.1046/j.1471-4159.1999.0731350.x
   Gan L, 1998, J NEUROBIOL, V37, P69, DOI 10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6
   Gan L, 1996, J BIOL CHEM, V271, P5859
   Goldstein SAN, 2001, NAT REV NEUROSCI, V2, P175, DOI 10.1038/35058574
   Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2
   GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
   Ho CS, 1997, P NATL ACAD SCI USA, V94, P1533, DOI 10.1073/pnas.94.4.1533
   HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500
   Ishikawa T, 2003, J NEUROSCI, V23, P10445
   ITO Y, 1992, P ROY SOC B-BIOL SCI, V248, P95, DOI 10.1098/rspb.1992.0047
   Joiner WJ, 1998, NAT NEUROSCI, V1, P462, DOI 10.1038/2176
   Jonas EA, 1996, CURR OPIN NEUROBIOL, V6, P318, DOI 10.1016/S0959-4388(96)80114-0
   JONAS EA, 1999, NEUROTRANSMISSION NE, P83
   KANEMASA T, 1995, J NEUROPHYSIOL, V74, P207
   Kanold PO, 1999, J NEUROSCI, V19, P2195
   KETCHUM KA, 1995, NATURE, V376, P690, DOI 10.1038/376690a0
   KONISHI M, 1989, AUDITORY FUNCTION
   Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199
   Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5
   KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263
   Lesage F, 1997, FEBS LETT, V402, P28, DOI 10.1016/S0014-5793(96)01491-3
   Lesage F, 1996, EMBO J, V15, P1004
   LI W, 2001, J COMP NEUROL, V437, P106
   Liu SQJ, 1998, J NEUROSCI, V18, P2881
   Liu SQJ, 1998, J NEUROSCI, V18, P8758
   LUNEAU CJ, 1991, P NATL ACAD SCI USA, V88, P3932, DOI 10.1073/pnas.88.9.3932
   Macica CM, 2003, J NEUROSCI, V23, P1133
   Macica CM, 2001, J NEUROSCI, V21, P1160
   MANIS PB, 1991, J NEUROSCI, V11, P2865
   Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x
   Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294
   Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
   Oertel D, 1991, Curr Opin Neurobiol, V1, P221, DOI 10.1016/0959-4388(91)90082-I
   Patel AJ, 2001, TRENDS NEUROSCI, V24, P339, DOI 10.1016/S0166-2236(00)01810-5
   PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756
   Perney TM, 1997, J COMP NEUROL, V386, P178
   Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824
   Rudy B, 1999, ANN NY ACAD SCI, V868, P304, DOI 10.1111/j.1749-6632.1999.tb11295.x
   SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599
   Smith PH, 1998, J NEUROPHYSIOL, V79, P3127
   SONG P, 2004, SOC NEUR ABSTR
   SUN H, 2004, SOC NEUR ABSTR
   Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6
   Taschenberger H, 2000, J NEUROSCI, V20, P9162
   Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
   von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004
   Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645
   Wang LY, 1998, P NATL ACAD SCI USA, V95, P1882, DOI 10.1073/pnas.95.4.1882
   Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
   WARCHOL ME, 1990, J COMP PHYSIOL A, V166, P721
   WEISER M, 1995, J NEUROSCI, V15, P4298
   WEISER M, 1994, J NEUROSCI, V14, P949
   Whim MD, 1998, J NEUROSCI, V18, P9171
   WU SH, 1993, HEARING RES, V68, P189
   YANG B, 2004, SOC NEUR ABSTR
   Yuan A, 2003, NEURON, V37, P765, DOI 10.1016/S0896-6273(03)00096-5
NR 72
TC 40
Z9 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 133
EP 145
DI 10.1016/j.heares.2004.11.023
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100012
PM 16081004
ER

PT J
AU Metherate, R
   Kaur, S
   Kawai, H
   Lazar, R
   Liang, K
   Rose, HJ
AF Metherate, R
   Kaur, S
   Kawai, H
   Lazar, R
   Liang, K
   Rose, HJ
TI Spectral integration in auditory cortex: Mechanisms and modulation
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE thalamocortical; intracortical; acetylcholine; receptive field;
   intracellular; synapse
ID FREQUENCY RECEPTIVE-FIELDS; CAT VISUAL-CORTEX; THALAMOCORTICAL SYNAPTIC
   TRANSMISSION; COCHLEAR NUCLEUS NEURONS; VOLTAGE-CLAMP ANALYSIS;
   GUINEA-PIG; IN-VIVO; RESPONSE PROPERTIES; SINGLE NEURONS; CHOLINERGIC
   MODULATION
AB Auditory cortex contributes to the processing and perception of spectro temporally complex stimuli. However, the mechanisms by which this is accomplished are not well understood. In this review, we examine evidence that single cortical neurons receive input covering much of the audible spectrum. We then propose an anatomical framework by which spectral information converges on single neurons in primary auditory cortex, via a combination of thalamocortical and intracortical "horizontal" pathways. By its nature, the framework confers sensitivity to specific, spectrotemporally complex stimuli. Finally, to address how spectral integration can be regulated, we show how one neuromodulator, acetylcholine, could act within the hypothesized framework to alter integration in single neurons. The results of these studies promote a cellular understanding of information processing in auditory cortex. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA.
RP Metherate, R (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, 2205 McGaugh Hall, Irvine, CA 92697 USA.
EM rmethera@uci.edu
CR ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106
   Bakin JS, 1996, CEREB CORTEX, V6, P120, DOI 10.1093/cercor/6.2.120
   Bringuier V, 1999, SCIENCE, V283, P695, DOI 10.1126/science.283.5402.695
   BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005
   Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x
   Buonomano DV, 1998, J NEUROPHYSIOL, V80, P1765
   CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9
   CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124
   Clark JD, 1985, AFR ARCHAEOL REV, V3, P3, DOI DOI 10.1007/BF01117453
   CLARKE PBS, 1984, BRAIN RES, V323, P390, DOI 10.1016/0006-8993(84)90320-2
   CLARKE PBS, 2003, PROG BRAIN RES, V145, P253
   COX CL, 1992, BRAIN RES BULL, V28, P401, DOI 10.1016/0361-9230(92)90039-Z
   COX CL, 1994, SYNAPSE, V16, P123, DOI 10.1002/syn.890160206
   Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361
   Dancause N, 2001, BRAIN RES, V910, P67, DOI 10.1016/S0006-8993(01)02630-0
   Debarbieux F, 1998, J NEUROPHYSIOL, V79, P2911
   DYKES RW, 1984, J NEUROPHYSIOL, V52, P1066
   EDELINE JM, 1994, EXP BRAIN RES, V97, P373
   Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0
   Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x
   Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P79
   Elhilali M, 2004, J NEUROSCI, V24, P1159, DOI 10.1523/JNEUROSCI.3825-03.2004
   EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263
   Foeller E, 2001, JARO, V2, P279
   Fox K, 2003, J NEUROSCI, V23, P8380
   Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
   Galvan VV, 2001, JARO, V2, P199
   Gil Z, 1997, NEURON, V19, P679, DOI 10.1016/S0896-6273(00)80380-3
   Gilbert CD, 1998, PHYSIOL REV, V78, P467
   Gioanni Y, 1999, EUR J NEUROSCI, V11, P18, DOI 10.1046/j.1460-9568.1999.00403.x
   HajDahmane S, 1996, J NEUROSCI, V16, P3848
   HALLIWELL JV, 1982, BRAIN RES, V250, P71, DOI 10.1016/0006-8993(82)90954-4
   Harrington IA, 2001, NEUROREPORT, V12, P1217, DOI 10.1097/00001756-200105080-00032
   Hasselmo ME, 1999, TRENDS COGN SCI, V3, P351, DOI 10.1016/S1364-6613(99)01365-0
   HASSELMO ME, 1995, BEHAV BRAIN RES, V67, P1, DOI 10.1016/0166-4328(94)00113-T
   HASSELMO ME, 1992, J NEUROPHYSIOL, V67, P1222
   HEIL P, 1992, J COMP PHYSIOL A, V171, P583
   Heil P, 1997, J NEUROPHYSIOL, V78, P2438
   Hess A, 1996, NEUROREPORT, V7, P2643, DOI 10.1097/00001756-199611040-00047
   HICKS TP, 1986, EXP BRAIN RES, V63, P248
   HIND JE, 1963, J NEUROPHYSIOL, V26, P321
   Horikawa J, 1996, J PHYSIOL-LONDON, V497, P629
   HOUNSGAARD J, 1978, EXP NEUROL, V62, P787, DOI 10.1016/0014-4886(78)90284-4
   Hsieh CY, 2000, BRAIN RES, V880, P51, DOI 10.1016/S0006-8993(00)02766-9
   IMIG TJ, 1984, J COMP NEUROL, V227, P511, DOI 10.1002/cne.902270405
   Johnston D, 1996, ANNU REV NEUROSCI, V19, P165
   Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003
   Kawashima M, 2004, INT J ACAROL, V30, P9
   KELLY JB, 1971, J NEUROPHYSIOL, V34, P802
   Kiang NY-s, 1965, DISCHARGE PATTERNS S
   Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
   Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1
   KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165
   KRNJEVIC K, 1971, J PHYSIOL-LONDON, V215, P247
   KURT S, 2004, SOC NEUR ABSTR, V30
   LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4
   Lavine N, 1997, J COMP NEUROL, V380, P175, DOI 10.1002/(SICI)1096-9861(19970407)380:2<175::AID-CNE3>3.0.CO;2-0
   LeBeau FEN, 2001, J NEUROSCI, V21, P7303
   LEE SM, 1994, J NEUROPHYSIOL, V71, P1716
   Li CX, 1996, NEUROREPORT, V7, P2261, DOI 10.1097/00001756-199610020-00003
   LIANG K, 2003, SOC NEUR ABSTR, V29
   LONDON ED, 1985, NEUROSCI LETT, V53, P179, DOI 10.1016/0304-3940(85)90182-X
   MADISON DV, 1987, J NEUROSCI, V7, P733
   Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003
   MATSUBARA JA, 1988, J COMP NEUROL, V268, P38, DOI 10.1002/cne.902680105
   MCCORMICK DA, 1986, J PHYSIOL-LONDON, V375, P169
   MCKENNA TM, 1988, SYNAPSE, V2, P54, DOI 10.1002/syn.890020109
   MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105
   Mendelson JR, 1997, J COMP PHYSIOL A, V181, P615, DOI 10.1007/s003590050145
   MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6
   METHERATE R, 1990, SYNAPSE, V6, P364, DOI 10.1002/syn.890060409
   METHERATE R, 1994, J PHYSIOL-LONDON, V481, P331
   Metherate R, 2004, LEARN MEMORY, V11, P50, DOI 10.1101/lm.69904
   METHERATE R, 1993, J NEUROSCI, V13, P5312
   Metherate R, 1999, DEV BRAIN RES, V115, P131, DOI 10.1016/S0165-3806(99)00058-9
   METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206
   METHERATE R, 1992, J NEUROSCI, V12, P4701
   METHERATE R, 1988, J NEUROPHYSIOL, V59, P1231
   Miller LM, 2002, J NEUROPHYSIOL, V87, P516
   Miller LM, 2001, J NEUROSCI, V21, P8136
   MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403
   Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6
   MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673
   Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x
   Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5
   Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497
   Ohl FW, 2000, J PHYSIOLOGY-PARIS, V94, P549, DOI 10.1016/S0928-4257(00)01091-3
   Ohl FW, 1999, LEARN MEMORY, V6, P347
   Ojima H, 1991, CEREB CORTEX, V1, P80, DOI 10.1093/cercor/1.1.80
   Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079
   PALOMBI PS, 1992, J NEUROPHYSIOL, V67, P738
   PARKINSON D, 1988, EXP BRAIN RES, V73, P553, DOI 10.1007/BF00406614
   PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443
   PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718
   Phillips Dennis P., 1998, Seminars in Hearing, V19, P319, DOI 10.1055/s-0028-1082980
   PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U
   Phillips Dennis P., 1992, Cerebral Cortex, V2, P425, DOI 10.1093/cercor/2.5.425
   PRUSKY GT, 1987, BRAIN RES, V412, P131, DOI 10.1016/0006-8993(87)91447-8
   Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
   RECANZONE GH, 1993, J NEUROSCI, V13, P87
   RIBAUPIE.FD, 1972, BRAIN RES, V48, P185
   Roberts B, 2003, ELECTRON BUS, V29, P15
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Role LW, 1996, NEURON, V16, P1077, DOI 10.1016/S0896-6273(00)80134-8
   ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499
   ROSE HJ, 2004, SOC NEUR ABSTR, V30
   ROSE HJ, 2003, ABSTR ASS RES OT, V26, P314
   SAHIN M, 1992, BRAIN RES, V579, P135, DOI 10.1016/0006-8993(92)90752-U
   SANES DH, 1985, J NEUROSCI, V5, P1152
   Sarter M, 2001, BRAIN RES REV, V35, P146, DOI 10.1016/S0165-0173(01)00044-3
   Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501
   Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410
   SEGAL M, 1989, SYNAPSE, V4, P305, DOI 10.1002/syn.890040406
   SEGAL M, 1982, BRAIN RES, V246, P77, DOI 10.1016/0006-8993(82)90144-5
   SILLITO AM, 1975, J PHYSIOL-LONDON, V250, P305
   SILLITO AM, 1993, PROG BRAIN RES, V98, P371
   SILLITO AM, 1983, BRAIN RES, V289, P143, DOI 10.1016/0006-8993(83)90015-X
   Smith AL, 2004, EUR J NEUROSCI, V19, P3059, DOI 10.1111/j.1460-9568.2004.03379.x
   SMITS E, 1991, J NEUROPHYSIOL, V66, P688
   Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002
   Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003
   Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003
   Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477
   VALENTINO RJ, 1981, J NEUROSCI, V1, P784
   Velenovsky DS, 2003, J NEUROSCI, V23, P308
   VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y
   WALLACE MN, 1991, EXP BRAIN RES, V86, P527
   Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
   Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8
   Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
   Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366
   Wetzel W, 1998, NEUROSCI LETT, V252, P115, DOI 10.1016/S0304-3940(98)00561-8
   WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655
   Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2
   Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796
NR 135
TC 55
Z9 56
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 146
EP 158
DI 10.1016/j.heares.2005.01.014
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100013
PM 16081005
ER

PT J
AU Fritz, J
   Elhilali, M
   Shamma, S
AF Fritz, J
   Elhilali, M
   Shamma, S
TI Active listening: Task-dependent plasticity of spectrotemporal receptive
   fields in primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE auditory; cortex; plasticity; attention; adaptive; behavior
ID PRIMARY VISUAL-CORTEX; PUPILLARY CONDITIONED-RESPONSE; PRIMARY
   SOMATOSENSORY CORTEX; SINGLE-UNIT RESPONSES; WAKING GUINEA-PIG;
   PHYSIOLOGICAL PLASTICITY; TEMPORAL PLASTICITY; NUCLEUS BASALIS;
   REPRESENTATIONAL PLASTICITY; CORTICAL REORGANIZATION
AB Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectroternporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Maryland, Ctr Auditory & Acoust Res, College Pk, MD 20742 USA.
RP Fritz, J (reprint author), Univ Maryland, Ctr Auditory & Acoust Res, College Pk, MD 20742 USA.
EM ripple@isr.umd.edu
RI Elhilali, Mounya/A-3396-2010; Shamma, Shihab/F-9852-2012
OI Elhilali, Mounya/0000-0003-2597-738X; 
CR Ahissar E, 1998, NEUROPHARMACOLOGY, V37, P633, DOI 10.1016/S0028-3908(98)00068-9
   Bakin JS, 1996, BEHAV NEUROSCI, V110, P905
   Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
   BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A
   Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293
   BARBAS H, 2005, CEREBRAL CORTEX 0105
   Beitel RE, 2003, P NATL ACAD SCI USA, V100, P11070, DOI 10.1073/pnas.1334187100
   Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467
   Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099
   Bouret S, 2004, EUR J NEUROSCI, V20, P791, DOI 10.1111/j.1460-9568.2004.03526.x
   Boynton GM, 2004, NAT NEUROSCI, V7, P8, DOI 10.1038/nn0104-8
   BROSCH M, AUDITORY CORTEX SYNT
   Butefisch CM, 2000, P NATL ACAD SCI USA, V97, P3661, DOI 10.1073/pnas.050350297
   Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2
   CONNER JM, 2003, NEURON, V38, P818
   Crist RE, 2001, NAT NEUROSCI, V4, P519
   Cruikshank SJ, 1996, BRAIN RES REV, V22, P191, DOI 10.1016/S0165-0173(96)00015-X
   DAS A, 1995, NATURE, V375, P780, DOI 10.1038/375780a0
   Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220
   DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471
   DIAMOND DM, 1986, BRAIN RES, V372, P357, DOI 10.1016/0006-8993(86)91144-3
   DIAMOND DM, 1984, BEHAV NEUROSCI, V98, P189, DOI 10.1037/0735-7044.98.2.189
   Dimyan MA, 1999, BEHAV NEUROSCI, V113, P691, DOI 10.1037/0735-7044.113.4.691
   Dinse HR, 2003, SCIENCE, V301, P91, DOI 10.1126/science.1085423
   Dorris M. C., 2000, J NEUROSCI, V20, P1
   DUQUE A, 2003, SOC NEUR M NEW ORL
   Durif C, 2003, EXP BRAIN RES, V153, P614, DOI 10.1007/s00221-003-1613-3
   EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82
   EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539
   Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0
   Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x
   Edeline JM, 1999, PROG NEUROBIOL, V57, P165
   ELHILALI M, 2005, ASS RES OT ARO M NEW
   Escabi MA, 2003, BIOL CYBERN, V89, P350, DOI 10.1007/S00422-003-0440-8
   Finnerty GT, 1999, NATURE, V400, P367
   Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
   FRITZ JB, 2004, AUDITORY CORTEX SYNT
   FRITZ JB, 2004, UNPUB DIFFERENTIAL R
   FRITZ JB, 2005, ASS RES OT ARO M NEW
   FRITZ JB, 2003, SOC NEUR M NEW ORL
   FRITZ JB, 2004, SOC NEUR M SAN DIEG
   Fu KMG, 2003, J NEUROSCI, V23, P7510
   Fuster J, 1995, MEMORY CEREBRAL CORT
   Galvan VV, 2001, JARO, V2, P199
   Galvan VV, 2002, NEUROBIOL LEARN MEM, V77, P78, DOI 10.1006/nlme.2001.4044
   Gandolfo F, 2000, P NATL ACAD SCI USA, V97, P2259, DOI 10.1073/pnas.040567097
   Ghose GM, 2004, CURR OPIN NEUROBIOL, V14, P513, DOI 10.1016/j.conb.2004.07.003
   GONZALEZLIMA F, 1986, BEHAV BRAIN RES, V20, P281, DOI 10.1016/0166-4328(86)90228-7
   Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X
   Handel S, 1989, LISTENING INTRO PERC
   Harris JA, 2002, J NEUROSCI, V22, P8720
   Heffner H. E., 1995, METHODS COMP PSYCHOA, P79
   Huntley GW, 1997, CEREB CORTEX, V7, P143, DOI 10.1093/cercor/7.2.143
   Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007
   Iriki A, 1996, NEUROREPORT, V7, P2325
   IRVINE D, 2004, AUDITORY CORTEX SYNT
   Ito M, 1999, NEURON, V22, P593, DOI 10.1016/S0896-6273(00)80713-8
   IWAMURA Y, 2000, SOMATOSENSORY PROCES
   Jäncke L, 2001, Brain Res Cogn Brain Res, V12, P479
   KILGARD M, 2002, P NATL ACAD SCI USA, V19, P2309
   Kilgard MP, 2001, AUDIOL NEURO-OTOL, V6, P196, DOI 10.1159/000046832
   Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
   Kilgard MP, 2002, BIOL CYBERN, V87, P333, DOI 10.1007/s00422-002-0352-z
   Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326
   Kisley MA, 2001, EUR J NEUROSCI, V13, P1993, DOI 10.1046/j.0953-816x.2001.01568.x
   Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183
   Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503
   KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513
   Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524
   Lafuente V., 2003, NAT NEUROSCI, V6, P792
   Laubach M, 2000, NATURE, V405, P567, DOI 10.1038/35014604
   Leopold DA, 1999, TRENDS COGN SCI, V3, P254, DOI 10.1016/S1364-6613(99)01332-7
   LI CSR, 2001, NEURON, V30, P592
   Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001
   MANUNTA Y, 2004, J NEUROPHYSIOLO 0414
   Maravita A, 2004, TRENDS COGN SCI, V8, P79, DOI 10.1016/j.tics.2003.12.008
   Mazer JA, 2003, NEURON, V40, P1241, DOI 10.1016/S0896-6273(03)00764-5
   McAdams CJ, 1999, J NEUROSCI, V19, P431
   Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032
   Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167
   Miller EK, 2002, PHILOS T ROY SOC B, V357, P1123, DOI 10.1098/rstb.2002.1099
   Miller LM, 2002, J NEUROPHYSIOL, V87, P516
   MOTTER BC, 1993, J NEUROPHYSIOL, V70, P909
   MOUNTCASTLE VB, 1995, CEREB CORTEX, V5, P377, DOI 10.1093/cercor/5.5.377
   Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x
   Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076
   Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150
   Ozaki I, 2004, CLIN NEUROPHYSIOL, V115, P1592, DOI 10.1016/j.clinph.2004.02.011
   Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256
   RECANZONE GH, 1993, J NEUROSCI, V13, P87
   Reynolds JH, 2004, ANNU REV NEUROSCI, V27, P611, DOI 10.1146/annurev.neuro.26.041002.131039
   Reynolds JH, 2000, NEURON, V26, P703, DOI 10.1016/j.neuron.2009.01.002
   Rioult-Pedotti MS, 2000, SCIENCE, V290, P533, DOI 10.1126/science.290.5491.533
   Rioult-Pedotti MS, 1998, NAT NEUROSCI, V1, P230, DOI 10.1038/678
   Roelfsema PR, 1998, NATURE, V395, P376, DOI 10.1038/26475
   Romo R, 2001, ANNU REV NEUROSCI, V24, P107, DOI 10.1146/annurev.neuro.24.1.107
   Romo R, 2003, NAT REV NEUROSCI, V4, P203, DOI 10.1038/nrn1058
   Schaefer M, 2004, NEUROREPORT, V15, P1293, DOI 10.1097/01.wnr.0000129573.36301.db
   Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9
   Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222
   Sun W, 2005, NEUROSCI LETT, V374, P63, DOI 10.1016/j.neulet.2004.10.032
   Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003
   Treue S, 2001, TRENDS NEUROSCI, V24, P295, DOI 10.1016/S0166-2236(00)01814-2
   Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
   Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004
   Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
   Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8
   WEINBERGER NM, 2003, SPRINGER HDB AUDITOR
   Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850
   Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366
   WEINBERGER NM, 2001, MODEL SYSTEMS NEUROB
   WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1
   WEINBERGER NM, 1984, BEHAV NEUROSCI, V98, P171, DOI 10.1037/0735-7044.98.2.171
   Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699
   Yang TM, 2004, J NEUROSCI, V24, P1617, DOI 10.1523/JNEUROSCI.4442-03.2004
   YIN PB, 2001, ABSTR SOC NEUR M SAN
   YIN PB, 2005, UNPUB CONTEXT RELATE
NR 117
TC 98
Z9 99
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 159
EP 176
DI 10.1016/j.heares.2005.01.015
PG 18
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100014
PM 16081006
ER

PT J
AU Syka, J
   Suta, D
   Popelar, J
AF Syka, J
   Suta, D
   Popelar, J
TI Responses to species-specific vocalizations in the auditory cortex of
   awake and anesthetized guinea pigs
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE anesthesia; ketamine; vocalization; guinea pig; auditory cortex;
   multiple-unit activity
ID SINGLE-UNIT ACTIVITY; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; NEURONS;
   ANESTHESIA; CAT; THALAMUS; KETAMINE; SLEEP; STATE
AB Species-specific vocalizations represent an important acoustical signal that must be decoded in the auditory system of the listener. We were interested in examining to what extent anesthesia may change the process of signal decoding in neurons of the auditory cortex in the guinea pig. With this aim, the multiple-unit activity, either spontaneous or acoustically evoked, was recorded in the auditory cortex of guinea pigs, at first in the awake state and then after the injection of anesthetics (33 mg/kg ketamine with 6.6 mg/kg xylazine). Acoustical stimuli, presented in free-field conditions, consisted of four typical guinea pig calls (purr, chatter, chirp and whistle), a time-reversed version of the whistle and a broad-band noise burst. The administration of anesthesia typically resulted in a decrease in the level of spontaneous activity and in changes in the strength of the neuronal response to acoustical stimuli. The effect of anesthesia was mostly, but not exclusively, suppressive. Diversity in the effects of anesthesia led in some recordings to an enhanced response to one call accompanied by a suppressed response to another call. The temporal pattern of the response to vocalizations was changed in some cases under anesthesia, which may indicate a change in the synaptic input of the recorded neurons. In summary, our results suggest that anesthesia must be considered as an important factor when investigating the processing of complex sounds such as species-specific vocalizations in the auditory cortex. (c) 2005 Elsevier B.V. All rights reserved.
C1 Acad Sci Czech Republ, Inst Expt Med, Prague 14220, Czech Republic.
   Charles Univ, Fac Med 3, Prague, Czech Republic.
RP Syka, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, Prague 14220, Czech Republic.
EM syka@biomed.cas.cz
RI Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014; Suta,
   Daniel/H-2577-2014
CR Anderson MJ, 2004, HEARING RES, V188, P29, DOI 10.1016/S0378-5955(03)00348-4
   Astl J, 1996, AUDIOLOGY, V35, P335
   BOCK GR, 1974, BRAIN RES, V76, P150, DOI 10.1016/0006-8993(74)90521-6
   Cotillon-Williams N, 2003, J NEUROPHYSIOL, V89, P1968, DOI 10.1152/jn.00728.2002
   Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x
   ELHILALI M, 2002, ASS RES OT ABST, V162, P42
   ERULKAR SD, 1956, B JOHNS HOPKINS HOSP, V99, P55
   EVANS EF, 1973, EXP BRAIN RES, V17, P402
   EVANS EF, 1964, J PHYSIOL-LONDON, V171, P476
   FRANKS NP, 1994, NATURE, V367, P607, DOI 10.1038/367607a0
   Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062
   Gaese BH, 2003, EUR J NEUROSCI, V18, P2638, DOI 10.1046/j.1460-9568.2003.03007.x
   GERSTEIN GL, 1964, EXP NEUROL, V10, P1, DOI 10.1016/0014-4886(64)90083-4
   Harper L. V., 1976, BIOL GUINEA PIG, P31
   HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279
   KANWAL JS, 2002, ECHOLOCATION BATS DO
   KATSUKI Y, 1959, P IMP JAPAN ACAD, V36, P435
   Kisley MA, 1999, J NEUROSCI, V19, P10451
   KUWADA S, 1989, J NEUROPHYSIOL, V61, P269
   Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003
   PATEL IM, 1990, ANESTH ANALG, V70, P635
   Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002
   Syka J, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P431, DOI 10.1007/978-1-4419-8712-9_39
   THOMAS LB, 1952, ELECTROEN CLIN NEURO, V4, P376
   THOMSON AM, 1985, NATURE, V313, P479, DOI 10.1038/313479a0
   Torterolo P, 2002, BRAIN RES, V935, P9, DOI 10.1016/S0006-8993(02)02235-7
   Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843
   WILLOW M, 1983, INT REV NEUROBIOL, V24, P15, DOI 10.1016/S0074-7742(08)60219-6
   ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4
NR 29
TC 32
Z9 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 177
EP 184
DI 10.1016/j.heares.2005.01.013
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100015
PM 16081007
ER

PT J
AU Illing, RB
   Kraus, KS
   Meidinger, MA
AF Illing, RB
   Kraus, KS
   Meidinger, MA
TI Reconnecting neuronal networks in the auditory brainstem following
   unilateral deafening
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE superior olivary complex; synaptic remodeling; cochlear lesion;
   plasticity; adult CNS; regeneration
ID VENTRAL COCHLEAR NUCLEUS; EXPERIENCE-DEPENDENT PLASTICITY; MESSENGER-RNA
   EXPRESSION; SUPERIOR OLIVARY COMPLEX; EAR OSSICLE REMOVAL; ADULT-RAT;
   PROTEIN GAP-43; VISUAL-CORTEX; OLIVOCOCHLEAR NEURONS; SYNAPTIC
   PLASTICITY
AB When we disturbed the auditory input of the adult rat by cochleotomy or noise trauma on one side, several substantial anatomical, cellular, and molecular changes took place in the auditory brainstem. We found that: (1) cochleotomy or severe noise trauma both lead to a considerable increase of immunoreactivity of the growth-associated protein GAP-43 in the ventral cochlear nucleus (VCN) of the affected side; (2) the expression of GAP-43 in VCN is restricted to presynaptic endings and short fiber segments; (3) axon collaterals of the cholinergic medial olivocochlear (MOC) neurons are the path along which GAP-43 reaches VCN; (4) partial cochlear lesions induce the emergence of GAP-43 positive presynaptic endings only in regions tonotopically corresponding to the extent of the lesion; (5) judging from the presence of immature fibers and growth cones in VCN on the deafened side, at least part of the GAP-43 positive presynaptic endings appear to be newly formed neuronal contacts following axonal sprouting while others may be modified pre-existing contacts; and (6) GAP-43 positive synapses are formed only on specific postsynaptic profiles, i.e., glutamatergic, glycinergic and calretinin containing cell bodies, but not GABAergic cell bodies. We conclude that unilateral deafening, be it partial or total, induces complex patterns of reconnecting neurons in the adult auditory brainstem, and we evaluate the possibility that the deafness-induced chain of events is optimized to remedy the loss of a bilaterally balanced activity in the auditory brainstem. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, D-79106 Freiburg, Germany.
RP Illing, RB (reprint author), Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, Hugstetter Str 55, D-79106 Freiburg, Germany.
EM robert.illing@uniklinik-freiburg.de
CR AIGNER L, 1995, CELL, V83, P269, DOI 10.1016/0092-8674(95)90168-X
   Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038
   BAEKELANDT V, 1994, EUR J NEUROSCI, V6, P754, DOI 10.1111/j.1460-9568.1994.tb00987.x
   Baekelandt V, 1996, NEUROSCI LETT, V208, P113, DOI 10.1016/0304-3940(96)12558-1
   Baimoukhametova DV, 2004, J NEUROSCI, V24, P5162, DOI 10.1523/JNEUROSCI.4979-03.2004
   Baskerville KA, 1997, NEUROSCIENCE, V80, P1159, DOI 10.1016/S0306-4522(97)00064-X
   Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
   Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2
   BENOWITZ LI, 1987, TRENDS NEUROSCI, V10, P527, DOI 10.1016/0166-2236(87)90135-4
   BENOWITZ LI, 1988, J NEUROSCI, V8, P339
   BENOWITZ LI, 1991, PROG BRAIN RES, V89, P69, DOI 10.1016/S0079-6123(08)61716-1
   Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054
   BOETTCHER FA, 1993, J ACOUST SOC AM, V94, P123
   Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149
   Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2
   Calford MB, 2003, J NEUROSCI, V23, P6434
   CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3
   Colgin LL, 2003, P NATL ACAD SCI USA, V100, P2872, DOI 10.1073/pnas.0530289100
   DARIANSMITH C, 1994, NATURE, V368, P737, DOI 10.1038/368737a0
   DEGRAAN PNE, 1985, NEUROSCI LETT, V61, P235, DOI 10.1016/0304-3940(85)90470-7
   DUNNMEYNELL AA, 1992, J COMP NEUROL, V315, P160, DOI 10.1002/cne.903150204
   Feig SL, 2004, J COMP NEUROL, V468, P96, DOI 10.1002/cne.10969
   Florentine M, 1976, J Am Audiol Soc, V1, P243
   FRIAUF E, 1995, BEHAV BRAIN RES, V66, P217, DOI 10.1016/0166-4328(94)00147-8
   GISPEN WH, 1991, MOL NEUROBIOL, V5, P61, DOI 10.1007/BF02935540
   Goda Y, 2003, NEURON, V40, P243, DOI 10.1016/S0896-6273(03)00608-1
   GODFREY DA, 1983, HEARING RES, V11, P133, DOI 10.1016/0378-5955(83)90076-X
   Hafidi A, 1999, J NEUROBIOL, V41, P267
   Horvath M, 2000, J COMP NEUROL, V422, P95
   Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W
   Illing RB, 2002, EXP NEUROL, V175, P226, DOI 10.1006/exnr.2002.7895
   ILLING RB, 1995, NEUROSCI LETT, V194, P9, DOI 10.1016/0304-3940(95)11706-3
   Illing RB, 2001, AUDIOL NEURO-OTOL, V6, P319, DOI 10.1159/000046844
   Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4
   Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E
   Ito J, 1998, NEUROREPORT, V9, P3815, DOI 10.1097/00001756-199812010-00009
   KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637
   Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6
   Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
   KNYIHARCSILLIK E, 1992, J NEUROSCI RES, V32, P93, DOI 10.1002/jnr.490320112
   Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080
   MAHALIK TJ, 1992, DEV BRAIN RES, V67, P75, DOI 10.1016/0165-3806(92)90027-T
   MARTY A, 1995, CURR OPIN NEUROBIOL, V5, P335, DOI 10.1016/0959-4388(95)80046-8
   MCINTOSH H, 1990, BRAIN RES, V518, P324, DOI 10.1016/0006-8993(90)90991-J
   Meiri KF, 1998, J NEUROSCI, V18, P10429
   MERZENICH MM, 1984, J COMP NEUROL, V224, P591, DOI 10.1002/cne.902240408
   Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
   Moore D R, 1993, J Am Acad Audiol, V4, P277
   Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   MOWER GD, 1993, MOL BRAIN RES, V20, P254, DOI 10.1016/0169-328X(93)90048-T
   Ohara S, 1995, BRAIN RES, V705, P325, DOI 10.1016/0006-8993(95)01164-1
   PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106
   Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd
   Pesavento E, 2002, EUR J NEUROSCI, V15, P1030, DOI 10.1046/j.1460-9568.2002.01937.x
   PFALZ REINHARD K. J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1472, DOI 10.1121/1.1918372
   Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   Russell FA, 2002, HEARING RES, V173, P43, DOI 10.1016/S0378-5955(02)00606-8
   Saint Marie RL, 1999, J COMP NEUROL, V404, P258, DOI 10.1002/(SICI)1096-9861(19990208)404:2<258::AID-CNE9>3.0.CO;2-U
   Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1
   SCHAECHTER JD, 1993, J NEUROSCI, V13, P4361
   Schmitt AB, 1999, NEUROBIOL DIS, V6, P122, DOI 10.1006/nbdi.1998.0231
   Schwab ME, 1996, INT J DEV NEUROSCI, V14, P379, DOI 10.1016/S0736-5748(96)00024-X
   SHEA TB, 1991, J NEUROSCI, V11, P1685
   SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W
   SKENE JHP, 1989, ANNU REV NEUROSCI, V12, P127, DOI 10.1146/annurev.neuro.12.1.127
   SKENE JHP, 1981, J NEUROSCI, V1, P419
   STRITTMATTER SM, 1995, CELL, V80, P445, DOI 10.1016/0092-8674(95)90495-6
   Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
   Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644
   Thiel CM, 2002, NEURON, V35, P567, DOI 10.1016/S0896-6273(02)00801-2
   Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x
   VERHAAGEN J, 1994, MOL BRAIN RES, V26, P26, DOI 10.1016/0169-328X(94)90070-1
   VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104
   Watroba L, 2001, EUR J NEUROSCI, V14, P1021, DOI 10.1046/j.0953-816x.2001.01720.x
   WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X
   WIDMER F, 1993, J CELL BIOL, V120, P503, DOI 10.1083/jcb.120.2.503
   Woodin MA, 2003, NEURON, V39, P807, DOI 10.1016/S0896-6273(03)00507-5
   YAMADA KM, 1971, J CELL BIOL, V49, P614, DOI 10.1083/jcb.49.3.614
   YANKNER BA, 1990, MOL BRAIN RES, V7, P39, DOI 10.1016/0169-328X(90)90071-K
   Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3
   Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L
   Yao WP, 1996, AUDIT NEUROSCI, V2, P241
   Zepeda A, 2004, J NEUROSCI, V24, P1812, DOI 10.1523/JNEUROSCI.3213-03.2004
NR 85
TC 30
Z9 30
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 185
EP 199
DI 10.1016/j.heares.2005.01.016
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100016
PM 16081008
ER

PT J
AU Kaltenbach, JA
   Zhang, JS
   Finlayson, P
AF Kaltenbach, JA
   Zhang, JS
   Finlayson, P
TI Tinnitus as a plastic phenomenon and its possible neural underpinnings
   in the dorsal cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE tinnitus; plasticity; dorsal cochlear nucleus; tinnitus mechanisms;
   neural correlates of tinnitus; tinnitus generation; tinnitus modulation;
   deafferentation; mechanisms
ID GAZE-EVOKED TINNITUS; AUDITORY BRAIN-STEM; HAIR-CELL LOSS; PARALLEL
   FIBER STIMULATION; LOCUS COERULEUS NEURONS; SHORT-TERM POTENTIATION;
   CONDUCTIVE HEARING-LOSS; INTENSE SOUND EXPOSURE; EAR OSSICLE REMOVAL;
   PROTEIN-KINASE-A
AB Tinnitus displays many features suggestive of plastic changes in the nervous system. These can be categorized based oil the types of manipulations that induce them. We have categorized the various forms of plasticity that characterize tinnitus and searched for their neural underpinnings in the dorsal cochlear nucleus (DCN). This structure has been implicated as a possible site for the generation of tinnitus-producing signals owing to its tendency to become hyperactive following exposure to tinnitus inducing agents such as intense sound and cisplatin. In this paper, we review the many forms of plasticity that have been uncovered in anatomical, physiological and neurochemical Studies of the DCN. Some of these plastic changes have been observed as consequences of peripheral injury or as fluctuations in the behavior and chemical activities of DCN neurons, while others can be induced by stimulation of auditory or even non-auditory structures. We show that many parallels can be drawn between the various forms of plasticity displayed by tinnitus and the various forms of neural plasticity which have been defined in the DCN. These parallels lend further support to the hypothesis that the DCN is an important site for the generation and modulation of tinnitus-producing signals. (c) 2005 Elsevier B.V. All rights reserved.
C1 Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA.
RP Kaltenbach, JA (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol, 5E-UHC, Detroit, MI 48201 USA.
EM jkalten@med.wayne.edu
CR ALBERTI PW, 1987, J OTOLARYNGOL, V16, P34
   ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288
   AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983
   Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6
   BACSIK RD, 1973, J COMP NEUROL, V147, P281, DOI 10.1002/cne.901470209
   Barrs DM, 1984, J LARYNGOL OTOL S, V9, P287
   Bauer CA, 2001, JARO, V2, P54
   Bauer CA, 2003, OTOLARYNG CLIN N AM, V36, P267, DOI 10.1016/S0030-6665(02)00171-8
   Benson TE, 2004, JARO-J ASSOC RES OTO, V5, P111, DOI 10.1007/s10162-003-4012-3
   BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9
   Bernhardt O, 2004, J ORAL REHABIL, V31, P311, DOI 10.1046/j.1365-2842.2003.01249.x
   Biggs NDW, 2002, CLIN OTOLARYNGOL, V27, P338, DOI 10.1046/j.1365-2273.2002.00591.x
   Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
   Bilak MM, 1996, NEUROSCIENCE, V75, P1075, DOI 10.1016/0306-4522(96)00197-2
   BROWN MC, 1994, J NEUROPHYSIOL, V71, P1835
   BROWN MC, 1990, HEARING RES, V49, P105, DOI 10.1016/0378-5955(90)90098-A
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   BURNS EM, 1984, AUDIOLOGY, V23, P426
   CACACE AT, 1994, AUDIOLOGY, V33, P291
   Cacace AT, 2003, HEARING RES, V175, P112, DOI 10.1016/S0378-5955(02)00717-7
   Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9
   CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5
   Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5
   CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909
   CHUNG DY, 1984, AUDIOLOGY, V23, P441
   Coad ML, 2001, OTOL NEUROTOL, V22, P650, DOI 10.1097/00129492-200109000-00016
   Coles R. R. A., 1995, MECH TINNITUS, P11
   COLES R, 1988, NEW YORK TIMES BK R, P1
   Cook RD, 2002, HEARING RES, V164, P127, DOI 10.1016/S0378-5955(01)00424-5
   CURTIS AW, 1980, OTOLARYNG HEAD NECK, V88, P361
   DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
   Dandy W, 1941, SURG GYNECOL OBSTET, V72, P421
   Davis KA, 1996, J NEUROPHYSIOL, V76, P3012
   Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010
   Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0
   El-Kashlan HK, 2004, HEARING RES, V189, P25, DOI 10.1016/S0378-5955(03)00393-9
   FELDMANN H, 1971, AUDIOLOGY, V10, P138
   FOOTE SL, 1980, P NATL ACAD SCI-BIOL, V77, P3033, DOI 10.1073/pnas.77.5.3033
   Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9
   Fujino K, 2003, P NATL ACAD SCI USA, V100, P265, DOI 10.1073/pnas.0135345100
   Furue H, 2004, NEUROSCI RES, V48, P361, DOI 10.1016/j.neures.2003.12.005
   Garcia MM, 2000, HEARING RES, V147, P113, DOI 10.1016/S0378-5955(00)00125-8
   Gardner G., 1984, J LARYNGOL OTOL S9, V9, P311
   GEORGE RN, 1989, J SPEECH HEAR RES, V32, P366
   Giraud AL, 1999, NEUROREPORT, V10, P1, DOI 10.1097/00001756-199901180-00001
   Godfrey DA, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P139, DOI 10.1007/978-1-4419-8712-9_13
   GODFREY DA, 1990, HEARING RES, V49, P259, DOI 10.1016/0378-5955(90)90108-2
   Goldstein B A, 2001, Int Tinnitus J, V7, P122
   GOODWIN PE, 1980, ACTA OTO-LARYNGOL, V90, P353, DOI 10.3109/00016488009131736
   GRAHAM JT, 1962, ARCHIV OTOLARYNGOL, V75, P162
   Hancock KE, 1997, BIOL CYBERN, V76, P419, DOI 10.1007/s004220050355
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961
   Hazell JW, 1992, P 4 INT TINN SEM BOR, P245
   HAZELL JWP, 1990, J OTOLARYNGOL, V19, P6
   Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
   Henry J A, 2000, J Am Acad Audiol, V11, P138
   House J W, 1981, Ciba Found Symp, V85, P204
   Hurd LB, 1999, SYNAPSE, V33, P83
   ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
   Jagger DJ, 2003, J PHYSIOL-LONDON, V552, P525, DOI 10.1113/jphysiol.2003.052589
   Jannetta P J, 1986, Clin Neurosurg, V33, P645
   Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053
   JASTREBOFF PJ, 1994, HEARING RES, V80, P216, DOI 10.1016/0378-5955(94)90113-9
   Jastreboff PJ, 2003, OTOLARYNG CLIN N AM, V36, P321, DOI 10.1016/S0030-6665(02)00172-X
   Ji Ru-Rong, 2004, Current Drug Targets - Inflammation and Allergy, V3, P299, DOI 10.2174/1568010043343804
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F
   KALTENBACH JA, 1996, P 5 INT TINN SEM AM, P34
   Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
   Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1
   KALTENBACH JA, 2001, NOISE INDUCED HEARIN, P153
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57
   Kanold PO, 2001, J NEUROSCI, V21, P7848
   Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212
   Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211
   Kim SC, 1997, J ENDOUROL, V11, P103, DOI 10.1089/end.1997.11.103
   Kimura A, 2000, J NEUROPHYSIOL, V84, P1894
   Kowalska Sylwia, 2001, Medycyna Pracy, V52, P305
   KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908
   Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1
   Levine RA, 2003, EXP BRAIN RES, V153, P643, DOI 10.1007/s00221-003-1747-3
   LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8
   Linke R, 2000, LARYNGO RHINO OTOL, V79, P517
   Liu B, 1996, Zhonghua Er Bi Yan Hou Ke Za Zhi, V31, P231
   Lockwood AH, 2001, NEUROLOGY, V56, P472
   Lockwood AH, 1998, NEUROLOGY, V50, P114
   LOEB M, 1967, J ACOUST SOC AM, V43, P453
   LONSBURYMARTIN BL, 1981, J NEUROPHYSIOL, V46, P563
   LONSBURYMARTIN BL, 2004, TINNITUS THEORY MANA, P69
   Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005
   MAN A, 1981, AUDIOLOGY, V20, P70
   MANIS PB, 1989, J NEUROPHYSIOL, V61, P149
   Manis PB, 1996, J NEUROPHYSIOL, V76, P1639
   MCKEE GJ, 1992, AUDIOLOGY, V31, P313
   MCSHANE DP, 1988, CLIN OTOLARYNGOL, V13, P323, DOI 10.1111/j.1365-2273.1988.tb00760.x
   Meikle M., 1987, P 3 INT TINN SEM MUN, P175
   Meikle M. B., 1991, TINNITUS DIAGNOSIS T, P416
   Meikle M. B., 1995, MECH TINNITUS, P181
   Melamed SB, 2000, AUDIOLOGY, V39, P24
   MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T
   MILLS RP, 1984, INT J PEDIATR OTORHI, V7, P21, DOI 10.1016/S0165-5876(84)80050-6
   MITCHELL C, 1996, P 5 INT TINN SEM AM, P180
   Mitchell C R, 1993, J Am Acad Audiol, V4, P139
   Moller A R, 2000, J Am Acad Audiol, V11, P115
   Moller AR, 2001, NEUROL RES, V23, P565, DOI 10.1179/016164101101199009
   MOLLER AR, 1992, LARYNGOSCOPE, V102, P187
   MOLLER MB, 1993, LARYNGOSCOPE, V103, P421
   Moore J.K., 1988, AUDITORY PATHWAY STR, P123
   MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306
   MOREST DK, 1983, HEARING RES, V9, P145, DOI 10.1016/0378-5955(83)90024-2
   Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4
   MORGAN DH, 1992, CRANIO, V10, P124
   Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011
   Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37
   NODAR RH, 1965, HEAD NECK SURG, V82, P28
   Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156
   NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011
   Ochi K, 2003, LARYNGOSCOPE, V113, P427, DOI 10.1097/00005537-200303000-00007
   OLIVER DL, 1983, J NEUROSCI, V3, P455
   Onishi Ektor Tsuneo, 2004, Int Tinnitus J, V10, P13
   PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X
   PENNER MJ, 1992, J SPEECH HEAR RES, V35, P694
   PENNER MJ, 1994, EAR HEARING, V15, P416, DOI 10.1097/00003446-199412000-00002
   Penner M.J., 1995, INT TINNITUS J, V1, P79
   PENNER MJ, 1983, J SPEECH HEAR RES, V26, P263
   Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9
   Petralia RS, 1996, J COMP NEUROL, V372, P356
   Pośpiech Lucyna, 2003, Otolaryngol Pol, V57, P905
   Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X
   Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641
   PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
   Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3
   RAMACHANDRAN VS, 1998, PHANTOMS BRAIN PROBI, P328
   Robertson D, 1999, HEARING RES, V136, P151, DOI 10.1016/S0378-5955(99)00120-3
   RUBINSTEIN B, 1990, Journal of Craniomandibular Disorders, V4, P186
   Rubinstein B, 1993, Swed Dent J Suppl, V95, P1
   Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
   Salvi RJ, 2000, NOISE HEALTH, V2, P9
   Salvi R J, 1999, Scand Audiol Suppl, V51, P1
   Satar Bülent, 2003, Kulak Burun Bogaz Ihtis Derg, V10, P177
   Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1
   SCHOFIELD BR, 2005, HEARING RES, P89
   Schuknecht HF, 1993, PATHOLOGY EAR, P672
   SHEA JJ, 1975, OTOLARYNG CLIN N AM, V8, P263
   Sheldrake J. B., 1992, P 4 INT TINN SEM, P395
   Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9
   Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
   SHORE SE, 2004, ARO ABS, P410
   SHORE SE, 2004, TINNITUS THEORY MANA, P125
   SILVERSTEIN H, 1976, LARYNGOSCOPE, V86, P1777
   SOUSSI T, 1994, ACTA OTO-LARYNGOL, V114, P135, DOI 10.3109/00016489409126031
   SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004
   Sułkowski W, 1999, Int J Occup Med Environ Health, V12, P177
   Suneja SK, 2002, BRAIN RES, V957, P366, DOI 10.1016/S0006-8993(02)03679-X
   Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
   Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644
   Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946
   Temmel AFP, 1999, WIEN KLIN WOCHENSCHR, V111, P891
   TERRAHE K, 1985, LARYNG RHINOL OTOL V, V64, P292, DOI 10.1055/s-2007-1008141
   Terry A M, 1983, Br J Audiol, V17, P245, DOI 10.3109/03005368309081485
   THOMAS RJ, 1995, J AM GERIATR SOC, V43, P1279
   TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2
   Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8
   Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1
   TYLER RS, 1983, J SPEECH HEAR RES, V26, P59
   TYLER RS, 1984, J SPEECH HEAR RES, V27, P466
   Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272
   WAGNER PG, 1991, RESP PHYSIOL, V83, P129, DOI 10.1016/0034-5687(91)90098-4
   WALL M, 1987, NEUROLOGY, V37, P1034
   Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1
   Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2
   Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8
   Weedman DL, 1996, J COMP NEUROL, V371, P311
   WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3
   WEISS AD, 1984, J LARYNGOL OTOL S, V9, P82
   Whittaker C K, 1982, Am J Otol, V4, P188
   Willott JF, 1997, J COMP NEUROL, V385, P405
   WILSON RH, 1971, J ACOUST SOC AM, V49, P1254, DOI 10.1121/1.1912488
   WILSON TD, 1975, CLIN N AM, V8, P259
   Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L
   Wright E, 1997, INT TINNITUS J, V3, P55
   YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X
   YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743
   Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0
   Zhang J, 2003, J NEUROSCI RES, V74, P81, DOI 10.1002/jnr.10731
   Zhang J, 2004, J NEUROSCI RES, V75, P361, DOI 10.1002/jnr.10850
   Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0
   Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4
   Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343
NR 195
TC 92
Z9 99
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 200
EP 226
DI 10.1016/j.heares.2005.02.013
PG 27
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100017
PM 16081009
ER

PT J
AU Brozoski, TJ
   Bauer, CA
AF Brozoski, TJ
   Bauer, CA
TI The effect of dorsal cochlear nucleus ablation on tinnitus in rats
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function,
   Plasticity and Disorder
CY JUN 25-27, 2004
CL Jackson Hole, WY
DE tinnitus; dorsal cochlear nucleus; ablation; animal model
ID CENTRAL NEUROPLASTICITY; PATHOLOGICAL PAIN; LIMBIC SYSTEM; PLASTICITY;
   HEARING; MODEL; CAT
AB A growing body of evidence implies that the dorsal cochlear nucleus (DCN) plays an important role in tinnitus. To test the hypothesis that the rostral Output of the DCN is necessary for the experience of chronic tinnitus, the dorsal DCN and the dorsal acoustic stria of rats with psychophysical evidence of tinnitus was ablated. If the DCN plays a necessary role in the generation of chronic tinnitus, ablating the DCN should decrease the evidence of tinnitus in subjects previously shown to have tinnitus. Contrary to prediction, bilateral dorsal DCN ablation did not significantly (n = 11, p = 0.707) affect the psychophysical evidence of tinnitus, and ipsilateral dorsal DCN ablation appeared to increase the evidence of tinnitus (n = 9, p = 0.018) compared to pre-ablation performance. It was concluded that the DCN does not act as a simple feed-forward source of chronic tinnitus. Alternative hypotheses were considered, among them that elevated DCN activity following acoustic trauma triggers persistent pathological changes distributed across more than one level of the auditory system. In addition to serving as a trigger, the DCN may also modify the experience of tinnitus, since the evidence of tinnitus was enhanced by ipsilateral DCN ablation. (c) 2005 Elsevier B.V. All rights reserved.
C1 So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62794 USA.
RP Brozoski, TJ (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62794 USA.
EM tbrozoski@siLimed.edu
CR BAUER CA, 1999, BEHAV EVIDENCE CHRON
   Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8
   Bauer CA, 2001, JARO, V2, P54
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   CODERRE TJ, 1993, PAIN, V52, P259, DOI 10.1016/0304-3959(93)90161-H
   ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1
   Lockwood AH, 1998, NEUROLOGY, V50, P114
   Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005
   MASTERTON RB, 1994, HEARING RES, V73, P209, DOI 10.1016/0378-5955(94)90237-2
   Melzack R, 2001, ANN NY ACAD SCI, V933, P157
   Moller A R, 2000, J Am Acad Audiol, V11, P115
   Moller AR, 1997, AM J OTOL, V18, P577
   Nelken I, 1996, J Basic Clin Physiol Pharmacol, V7, P199
   OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206
   OSEN KK, 1969, ACTA OTO-LARYNGOL, V67, P352, DOI 10.3109/00016486909125462
   Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X
   SHORE SE, 2004, 3 S MOL MECH CENTR A
   Sindhusake D, 2003, INT J AUDIOL, V42, P289, DOI 10.3109/14992020309078348
   Wu CL, 2002, ANESTHESIOLOGY, V96, P841, DOI 10.1097/00000542-200204000-00010
   YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743
NR 24
TC 51
Z9 54
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2005
VL 206
IS 1-2
SI SI
BP 227
EP 236
DI 10.1016/j.heares.2004.12.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 957EJ
UT WOS:000231352100018
PM 16081010
ER

PT J
AU Gomide, VC
   de Francisco, AC
   Chadi, G
AF Gomide, VC
   de Francisco, AC
   Chadi, G
TI Localization of neurotensin immunoreactivity in neurons and organ of
   corti of rat cochlea
SO HEARING RESEARCH
LA English
DT Article
DE neurotensin; auditory; inner ear; neurotransmitter
ID FIBROBLAST-GROWTH-FACTOR; TOPOGRAPHICAL DISTRIBUTION; REACTIVE
   ASTROCYTES; SUBSTANCE-P; GUINEA-PIG; RECEPTORS; BRAIN; PEPTIDES;
   NUCLEUS; SYSTEM
AB The distribution of neurotensin-containing cell bodies and fibers has been observed in the central and peripheral nervous system, including sensory ganglia, but no description has been found in the peripheral auditory system. Here, we investigated the presence of neurotensin immunoreactivity in the cochlea of the adult Wistar rat. Strong neurotensin immunoreactivity was detected in the cytoplasm of the inner hair cells (IHC) and Deiters' cells of the organ of Corti. Outer hair cells (OHC) show weak immunoreaction. Neurotensin immunoreactivity was also found in the neurons and fibers of the spiral ganglia. Quantitative microdensitometric image analysis of the neurotensin immunoreactivity showed a strong immunoreaction in the hair cells of organ of Corti and a moderate to strong labeling in the spiral ganglion neurons. A series of double immunolabeling experiments demonstrated a strong neurotensin immunoreactivity in the parvalbumin immunoreactive IHC and also in the calbindin immunoreactive Deiters' cells. Weak neurotensin immunoreactivity was seen in the calbindin positive OHC. Neurofilament and parvalbumin immunoreactive neurons and fibers in the spiral ganglia showed neurotensin immunoreactivity. Calbindin immunoreactivity was not detected in the spiral ganglion neurons, which are labeled by neurotensin immunoreactivity. The presence of neurotensin in the cochlea may be related to its modulation of neurotransmission in the peripheral auditory pathway. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Lab Neuroregenerat, BR-05508900 Sao Paulo, Brazil.
RP Chadi, G (reprint author), Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Lab Neuroregenerat, Av Prof Lineu Prestes,2415, BR-05508900 Sao Paulo, Brazil.
EM gerchadi@usp.br
CR ALTSCHULER RA, 1986, AM J OTOLARYNG, V7, P100, DOI 10.1016/S0196-0709(86)80038-2
   ATOJI Y, 1995, J COMP NEUROL, V353, P67, DOI 10.1002/cne.903530108
   Cerutti SM, 2000, CELL BIOL INT, V24, P35, DOI 10.1006/cbir.1999.0451
   CHADI G, 1993, EXP BRAIN RES, V97, P145
   CHADI G, 1993, NEUROSCI LETT, V160, P171, DOI 10.1016/0304-3940(93)90406-B
   DESPRES G, 1991, NEUROREPORT, V2, P639, DOI 10.1097/00001756-199111000-00001
   Dufourny L, 1998, J NEUROENDOCRINOL, V10, P165, DOI 10.1046/j.1365-2826.1998.00190.x
   FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4
   Gomide VC, 1999, BRAIN RES, V835, P162, DOI 10.1016/S0006-8993(99)01557-7
   Hermans E, 1998, PHARMACOL THERAPEUT, V79, P89, DOI 10.1016/S0163-7258(98)00009-6
   HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577
   JENNES L, 1982, J COMP NEUROL, V210, P211, DOI 10.1002/cne.902100302
   JOHNSON GD, 1981, J IMMUNOL METHODS, V43, P349, DOI 10.1016/0022-1759(81)90183-6
   Jolas T, 1997, PROG NEUROBIOL, V52, P455, DOI 10.1016/S0301-0082(97)00025-7
   KALIVAS PW, 1982, J COMP NEUROL, V210, P225, DOI 10.1002/cne.902100303
   KESSLER JP, 1989, J HISTOCHEM CYTOCHEM, V29, P577
   KITABGI P, 1985, Reviews in Clinical and Basic Pharmacology, V5, P397
   Li AH, 2001, J NEUROPHYSIOL, V85, P1479
   OSBAHR AJ, 1981, J PHARMACOL EXP THER, V217, P645
   ROSTENE W, 1992, ANN NY ACAD SCI, V668, P217, DOI 10.1111/j.1749-6632.1992.tb27352.x
   Rostene WH, 1997, FRONT NEUROENDOCRIN, V18, P115, DOI 10.1006/frne.1996.0146
   ROWE W, 1992, ANN NY ACAD SCI, V668, P365, DOI 10.1111/j.1749-6632.1992.tb27378.x
   Samsam M, 2002, REV NEUROLOGIA, V34, P724
   STAPELFELDT WH, 1989, J PHYSIOL-LONDON, V411, P325
   Tyler-McMahon BM, 2000, REGUL PEPTIDES, V93, P125, DOI 10.1016/S0167-0115(00)00183-X
   UHL GR, 1979, BRAIN RES, V167, P77, DOI 10.1016/0006-8993(79)90264-6
   Vincent JP, 1999, TRENDS PHARMACOL SCI, V20, P302, DOI 10.1016/S0165-6147(99)01357-7
   Vincent JP, 1995, CELL MOL NEUROBIOL, V15, P501, DOI 10.1007/BF02071313
   YLIKOSKI J, 1985, ACTA OTO-LARYNGOL, V99, P353, DOI 10.3109/00016488509108923
   Zamboni L, 1967, J CELL BIOL, V35, P148
   ZHANG X, 1993, NEUROSCIENCE, V57, P365, DOI 10.1016/0306-4522(93)90069-R
   ZHANG X, 1995, J NEUROSCI, V15, P2733
   Zhao CQ, 1998, CHINESE MED J-PEKING, V111, P644
NR 33
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 1
EP 6
DI 10.1016/j.heares.2005.02.011
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400001
PM 15953510
ER

PT J
AU Fay, RR
AF Fay, RR
TI Perception of pitch by goldfish
SO HEARING RESEARCH
LA English
DT Article
DE fish; harmonic complex; periodicity pitch; residue pitch
ID AUDITORY STREAM SEGREGATION; CARASSIUS-AURATUS; ACOUSTIC RESPONSE;
   NERVE-FIBERS; SOUND; HEARING; SIGNALS; MODELS; NOISE; FISH
AB Classical conditioning and stimulus generalization methods have revealed much about the sense of hearing in non-human animals, and are now used here to investigate how goldfish perceive a variety of complex sounds, including multi-harmonic complexes and rippled noise (RN). In several experiments, animals were conditioned to respond to one type of complex sound, and were then tested for generalization to other sounds differing along one or more acoustic dimensions from the conditioning sounds. Overall, generalization occurred only to the extent that the conditioning and test sounds were essentially similar in spectral range and, in most cases, waveform periodicity. For example, goldfish showed inverted V-shaped generalization gradients to harmonic complexes varying in fundamental frequency after conditioning to complexes having a fundamental frequency of 100 Hz. In several cases, similar gradients were observed whether the fundamental frequency component was present or absent in conditioning and testing complexes, indicating that goldfish, like other vertebrate listeners, do not "miss the fundamental" when it is missing. This generalization pattern tended to disappear when harmonic complexes were used that had random phase relations among the components, or slight mistuning of all components. In a few cases, patterns of generalization were determined by as yet unidentified acoustic features. Goldfish did not generalize to RN or harmonic complexes after conditioning to tones, and vice versa, in spite of the three signal types having fundamental frequency components and periodicity in common. Moreover, goldfish did not generalize robustly to infinitely iterated rippled noise after conditioning to harmonic complexes with a prominent periodic envelope, and vice versa, in spite of the two signal types having similar spectra and pitches as judged by human listeners. These and other results suggest that the pitch of harmonic complexes is prominent in goldfish generalization behavior and that this pitch-like dimension arises primarily from the signal's periodicity. The perceptions of single tones, RNs, and harmonic complexes having the sane fundamental frequency are fundamentally different. It is concluded that the different perceptions of these signals arise in part from differences in periodic envelope prominence and spectral envelope, and possibly in the stochastic versus deterministic natures of their respective waveforms. (c) 2005 Elsevier B.V. All rights reserved.
C1 Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA.
   Loyola Univ, Dept Psychol, Chicago, IL 60626 USA.
RP Fay, RR (reprint author), Loyola Univ, Parmly Hearing Inst, 6525 N Sheridan Rd, Chicago, IL 60626 USA.
EM rfay@luc.edu
CR BRANTLY RK, 1994, ETHOLOGY, V96, P132
   Crawford JD, 1997, J COMP PHYSIOL A, V180, P439, DOI 10.1007/s003590050061
   CYNX J, 1986, J COMP PSYCHOL, V100, P356
   DECHEVEIGNE A, 2005, PITCH NEURAL MODELIN
   Fay R. R., 1997, DIVERSITY AUDITORY M, P69
   FAY RR, 1992, HEARING RES, V59, P101, DOI 10.1016/0378-5955(92)90107-X
   FAY RR, 1972, J ACOUST SOC AM, V52, P660, DOI 10.1121/1.1913155
   FAY RR, 1970, J EXP ANAL BEHAV, V14, P353, DOI 10.1901/jeab.1970.14-353
   FAY R, 1969, J AUD RES, V9, P112
   FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X
   Fay RR, 1998, HEARING RES, V120, P17, DOI 10.1016/S0378-5955(98)00048-3
   FAY RR, 1978, J ACOUST SOC AM, V63, P136, DOI 10.1121/1.381705
   FAY RR, 1994, HEARING RES, V76, P158, DOI 10.1016/0378-5955(94)90097-3
   FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8
   FAY RR, 1986, J ACOUST SOC AM, V79, P1883, DOI 10.1121/1.393196
   Fay RR, 2000, HEARING RES, V149, P1, DOI 10.1016/S0378-5955(00)00168-4
   Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015
   Fay RR, 1996, AUDIT NEUROSCI, V2, P377
   Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6
   Guttman N, 1963, PSYCHOL STUDY SCI, V5
   Hartmann W. M., 1998, SIGNALS SOUND SENSAT
   Hartmann W. M., 1988, AUDITORY FUNCTION, P623
   HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951
   LU Z, 1993, J COMP PHYSIOL A, V173, P33
   MCCORMICK CA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P323
   PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1409, DOI 10.1121/1.410285
   PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1419, DOI 10.1121/1.410286
   SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
   Schouten J. F., 1970, FREQUENCY ANAL PERIO, P41
   Shofner W. P., 1995, AUDIT NEUROSCI, V1, P127
   Terhardt E., 1970, FREQUENCY ANAL PERIO, P278
   TOMLINSON RWW, 1988, J ACOUST SOC AM, V84, P560, DOI 10.1121/1.396833
   Von Frisch K, 1936, BIOL REV CAMB PHILOS, V11, P210
   YOST WA, 1978, J ACOUST SOC AM, V63, P1166, DOI 10.1121/1.381824
   Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873
NR 35
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 7
EP 20
DI 10.1016/j.heares.2005.02.006
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400002
PM 15953511
ER

PT J
AU Stevens, HE
   Wickesberg, RE
AF Stevens, HE
   Wickesberg, RE
TI Auditory nerve representation of naturally-produced vowels with variable
   acoustics
SO HEARING RESEARCH
LA English
DT Article
ID TEMPORAL DISCHARGE PATTERNS; STEADY-STATE VOWELS; PIG COCHLEAR-NERVE;
   STOP CONSONANTS; COMPLEX TONES; FIBERS; RESPONSES; SPEECH; SOUNDS;
   SYLLABLES
AB This investigation compared the encoding of naturally-produced, whispered and normally-voiced vowels by auditory nerve fibers. Speech syllables containing the vowels /o/ and /ae/ were produced by two female speakers and presented at three intensities to ketamine-anesthetized chinchillas. Six different representations of the spectral components in the vowels in the responses of the auditory nerve fibers were evaluated. For both normal and whispered vowels over a 30 dB range, the formant peaks in the vowel were best displayed using rate-place representations. The spectral detail in the vowel was revealed by average localized synchronized rates (ALSR) and autocorrelations of individual peristimulus time histograms. The average localized interval rates (ALIR), autocorrelations of ensemble responses, and autocorrelations of individual spike trains demonstrated poor representations of vowel spectra, although the frequency components of normally-voiced vowels had better representations than those of whispered vowels. These analyses suggest that rate-based and synchronization-based measures yields two very different pieces of information, but only a normalized rate-based measure consistently identified the formants of both the whispered and normally-voiced vowels. (c) 2005 Published by Elsevier B.V.
C1 Univ Illinois, Dept Psychol, Champaign, IL 61820 USA.
   Univ Illinois, Neurosci Program, Urbana, IL 61801 USA.
RP Wickesberg, RE (reprint author), Univ Illinois, Dept Psychol, Champaign, IL 61820 USA.
EM hesteven@uiuc.edu; wickesbe@uiuc.edu
CR BREGMAN AS, 1985, PERCEPT PSYCHOPHYS, V37, P483, DOI 10.3758/BF03202881
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197
   DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596
   Denes P. B., 1993, SPEECH CHAIN
   DENG L, 1987, J ACOUST SOC AM, V82, P1977, DOI 10.1121/1.395642
   Hillenbrand JM, 2003, J ACOUST SOC AM, V113, P1044, DOI 10.1121/1.1513647
   KALLAIL KJ, 1984, J PHONETICS, V12, P175
   KALLAIL KJ, 1985, J PHONETICS, V13, P11
   Kewley-Port D, 1998, J ACOUST SOC AM, V103, P1654, DOI 10.1121/1.421264
   MCADAMS S, 1989, J ACOUST SOC AM, V86, P2148, DOI 10.1121/1.398475
   MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816
   Olive J. P., 1993, ACOUSTICS AM ENGLISH
   PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633
   PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329
   Pickett J. M., 1980, SOUNDS SPEECH COMMUN
   Recio A, 2002, J ACOUST SOC AM, V111, P2213, DOI 10.1121/1.1468878
   SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098
   SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   SINEX DG, 1983, J ACOUST SOC AM, V79, P1896
   Stevens HE, 1999, HEARING RES, V131, P47, DOI 10.1016/S0378-5955(99)00014-3
   TARTTER VC, 1989, J ACOUST SOC AM, V86, P1678, DOI 10.1121/1.398598
   TARTTER VC, 1991, PERCEPT PSYCHOPHYS, V49, P365, DOI 10.3758/BF03205994
   VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8
   YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532
NR 27
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 21
EP 34
DI 10.1016/j.heares.2005.02.008
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400003
PM 15953512
ER

PT J
AU Bobbin, RP
   Salt, AN
AF Bobbin, RP
   Salt, AN
TI ATP-gamma-S shifts the operating point of outer hair cell transduction
   towards scala tympani
SO HEARING RESEARCH
LA English
DT Article
DE ATP receptor; ATP-gamma-S; operating point; cochlear microphonic;
   basilar membrane mechanics
ID GUINEA-PIG COCHLEA; LOW-FREQUENCY TONES; MECHANOELECTRICAL TRANSDUCTION;
   PHARMACOLOGICAL EVIDENCE; PURINERGIC RECEPTORS; SUPPORTING CELLS;
   ADAPTATION; MOVEMENT; CALCIUM; SENSITIVITY
AB ATP receptor agonists and antagonists alter cochlear mechanics as measured by changes in distortion product otoacoustic emissions (DPOAE). Some of the effects on DPOAEs are consistent with the hypothesis that ATP affects mechano-electrical transduction and the operating point of the outer hair cells (OHCs). This hypothesis was tested by monitoring the effect of ATP-gamma-S on the operating point of the OHCs. Guinea pigs anesthetized with urethane and with sectioned middle ear muscles were used. The cochlear microphonic (CM) was recorded differentially (scala vestibuli referenced to scala tympani) across the basal turn before and after perfusion (20 min) of the perilymph compartment with artificial perilymph (AP) and ATP-gamma-S dissolved in AP. The operating point was derived from the cochlear microphonics (CM) recorded in response low frequency (200 Hz) tones at high level (106, 112 and 118 dB SPL). The analysis procedure used a Boltzmann function to simulate the CM waveform and the Boltzmann parameters were adjusted to best-fit the calculated waveform to the CM. Compared to the initial perfusion with AP, ATP-gamma-S (333 mu M) enhanced peak clipping of the positive peak of the CM (that occurs during organ of Corti displacements towards scala tympani), which was in keeping with ATP-induced displacement of the transducer towards scala tympani. CM waveform analysis quantified the degree of displacement and showed that the changes were consistent with the stimulus being centered on a different region of the transducer curve. The change of operating point meant that the stimulus was applied to a region of the transducer curve where there was greater saturation of the output on excursions towards scala tympani and less saturation towards scala vestibuli. A significant degree of recovery of the operating point was observed after washing with AP. Dose response curves generated by perfusing ATP-gamma-S (333 mu M) in a cumulative manner yielded an EC50 of 19.8 mu M. The ATP antagonist PPADS (0.1 mM) failed to block the effect of ATP-gamma-S on operating point, suggesting the response was due to activation of metabotropic and not ionotropic ATP receptors. Multiple perfusions of AP had no significant effect (118 and 112 dB) or moved the operating point slightly (106 dB) in the direction opposite of ATP-gamma-S. Results are consistent with an ATP-gamma-S induced transducer change comparable to a static movement of the organ of Corti or reticular lamina towards scala tympani. (c) 2005 Elsevier B.V. All rights reserved.
C1 Louisiana State Univ, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, New Orleans, LA 70112 USA.
   Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Bobbin, RP (reprint author), Louisiana State Univ, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, 533 Bolivar St,5th Floor, New Orleans, LA 70112 USA.
EM rbobbi@lsuhsc.edu
CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109
   ASSAD JA, 1989, P NATL ACAD SCI USA, V86, P2918, DOI 10.1073/pnas.86.8.2918
   Bian L, 1998, J ACOUST SOC AM, V104, P2261, DOI 10.1121/1.423739
   Bobbin RP, 2001, NEUROREPORT, V12, P2923, DOI 10.1097/00001756-200109170-00034
   BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185
   BOBBIN RP, 2000, GENETICS HEARING LOS, P87
   BOBBIN RP, 2001, HAIR CELLS MICROMECH, P129
   Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848
   Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7
   CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405
   Dulon D., 1995, ACTIVE HEARING, P195
   DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841
   Flock A, 1999, J NEUROSCI, V19, P4498
   Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
   HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113
   Kemp DT, 1998, OTOACOUSTIC EMISSION, P1
   Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4
   Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6
   KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4
   Lagostena L, 2001, J PHYSIOL-LONDON, V531, P693, DOI 10.1111/j.1469-7793.2001.0693h.x
   Le Prell CG, 2001, PHYSL EAR, P575
   MILLS DM, 1998, OTOACOUSTIC EMISSION, P85
   Parker BS, 2003, CANCER BIOL THER, V2, P14
   Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7
   PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S
   PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7
   Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x
   Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x
   Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z
   Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479
   Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2
   Slepecky N. B., 1996, COCHLEA, P44
   Sueta T, 2003, HEARING RES, V183, P97, DOI 10.1016/S0378-5955(03)00221-1
   VALAJKOVIC SM, 1996, HEARING RES, V99, P31
   Wu YC, 1999, J NEUROPHYSIOL, V82, P2171
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 36
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 35
EP 43
DI 10.1016/j.heares.2005.02.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400004
PM 15953513
ER

PT J
AU Parazzini, M
   Hall, AJ
   Lutman, ME
   Kapadia, S
AF Parazzini, M
   Hall, AJ
   Lutman, ME
   Kapadia, S
TI Effect of aspirin on phase gradient of 2F1-F2 distortion product
   otoacoustic emissions
SO HEARING RESEARCH
LA English
DT Article
DE distortion product otoacoustic emissions; aspirin; phase gradient
ID ACOUSTIC EMISSIONS; GUINEA-PIG; HUMAN EAR; SALICYLATE; MECHANISMS;
   DPOAE; MICROSTRUCTURE
AB It is well known that aspirin consumption temporarily reduces overall otoacoustic emission (OAE) amplitude in humans. However, little is known about changes in the separate components of distortion product otoacoustic emissions (DPOAE), which may be distinguished by examining phase gradients. The effects of aspirin on the phase gradient of the DPOAE 2F1-F2 obtained with fixed frequency ratio sweeps were studied longitudinally in a group of twelve subjects in whom a temporary hearing loss was induced by aspirin consumption. DPOAE were recorded daily for two days pre-aspirin consumption, during the three days of aspirin consumption and two days afterwards. DP-grams were recorded over a restricted frequency range centered on 2, 3, 4 and 6 kHz with the following stimulus levels: L1/L2 of 60/50-80/70 in 10-dB steps. The effects of aspirin on the phase gradients varied between the subjects and across frequency: the general trend was that the phase gradient became steeper across successive sessions for the higher frequencies, while no significant effect was found at the lower frequencies. These results suggest that aspirin may have more persistent effects on cochlear function than are disclosed by measurements of hearing threshold level or DPOAE amplitude. Particularly, DPOAE phase gradient appears to be increased by aspirin consumption and has not recovered two days after cessation of aspirin intake, despite almost complete recovery of DPOAE amplitude and hearing threshold levels. These findings may suggest differential effects on the distortion and reflection mechanisms considered to underlie DPOAE generation. (c) 2005 Elsevier B.V. All rights reserved.
C1 CNR, Ist Ingn Biomed ISIB, I-20133 Milan, Italy.
   Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England.
RP Parazzini, M (reprint author), CNR, Ist Ingn Biomed ISIB, Piazza Leonardo Vinci 32, I-20133 Milan, Italy.
EM marta.parazzini@polimi.it
RI Parazzini, Marta/J-8175-2014
OI Parazzini, Marta/0000-0001-9008-7530
CR Beveridge HA, 1996, HEARING RES, V99, P110, DOI 10.1016/S0378-5955(96)00091-3
   BROWN AM, 1993, J ACOUST SOC AM, V93, P3298, DOI 10.1121/1.405714
   CARLYON RP, 1993, HEARING RES, V66, P233, DOI 10.1016/0378-5955(93)90143-O
   Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7
   Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048
   FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S
   Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
   GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732
   Janssen T, 2000, J ACOUST SOC AM, V107, P1790, DOI 10.1121/1.428578
   Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351
   Knight RD, 1999, J ACOUST SOC AM, V106, P1420, DOI 10.1121/1.427145
   Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197
   KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N
   LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633
   LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651
   LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X
   MCCOY MJ, 1990, ASHA MONOGR, P37
   MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585
   RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309
   SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403
   Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948
   STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E
   TUNSTALL MJ, 1994, BRIT J AUDIOL, V27, P332
   WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970
   ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320
NR 27
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 44
EP 52
DI 10.1016/j.heares.2005.02.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400005
PM 15953514
ER

PT J
AU Junius, D
   Dau, T
AF Junius, D
   Dau, T
TI Influence of cochlear traveling wave and neural adaptation on auditory
   brainstem responses
SO HEARING RESEARCH
LA English
DT Article
DE auditory brainstem response; frequency following response; cochlear
   traveling wave; stimulus rate; neural adaptation
ID SHORT-TERM ADAPTATION; HIGH CLICK RATE; RISE-FALL TIME; EVOKED-RESPONSE;
   NERVE FIBERS; INTERSTIMULUS-INTERVAL; FREQUENCY SPECIFICITY; MASKING
   FUNCTIONS; HEARING-LOSS; TONE-BURSTS
AB The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz exhibited the same amplitude as that to the chirp presented in the traditional single-stimulus;paradigm at a rate of 13 Hz. For a corresponding experiment with bandlimited chirps of 4 ms duration, where the within-train rate was 250 Hz, a clear reduction of the response amplitude was observed. This nonlinearity in terms of temporal processing most likely reflects effects of short-term adaptation. Overall, the results of the present study further demonstrate the importance of cochlear processing for the formation of brainstem potentials. The data may provide constraints on future models of peripheral processing in the human auditory system. The findings might also be useful for the development of effective stimulation paradigms in clinical applications. (c) 2005 Elsevier B.V. All rights reserved.
C1 Carl Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
   Tech Univ Denmark, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark.
RP Dau, T (reprint author), Carl Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
EM tda@oersted.dtu.dk
CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477
   AREHOLE S, 1987, HEARING RES, V30, P23, DOI 10.1016/0378-5955(87)90179-1
   AREHOLE S, 1989, AUDIOLOGY, V28, P92
   BEKESY, 1990, EXPT HEARING
   BURKARD R, 1983, J ACOUST SOC AM, V74, P1214, DOI 10.1121/1.390025
   Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438
   Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833
   DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3
   DEBRUYNE F, 1982, ORL J OTO-RHINO-LARY, V44, P36
   DON M, 1977, ANN OTO RHINOL LARYN, V86, P186
   Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523
   GORGA MP, 1981, J ACOUST SOC AM, V70, P1310, DOI 10.1121/1.387145
   GORGA MP, 1989, EAR HEARING, V10, P217, DOI 10.1097/00003446-198908000-00002
   Granzow M., 2001, Zeitschrift fur Audiologie, V40
   HARKINS SW, 1979, INT J NEUROSCI, V10, P7
   HECOX K, 1976, J ACOUST SOC AM, V60, P1187, DOI 10.1121/1.381194
   JACOBSON JT, 1980, J OTOLARYNGOL, V9, P493
   JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517
   JIANG ZD, 1991, AUDIOLOGY, V30, P173
   KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T
   KIANG NYS, 1975, NERVOUS SYSTEM, V3, P81
   Kiang NY-s, 1965, DISCHARGE PATTERNS S
   KODERA K, 1977, Scandinavian Audiology, V6, P205, DOI 10.3109/01050397709043122
   KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186
   LASKY RE, 1991, DEV PSYCHOBIOL, V24, P51, DOI 10.1002/dev.420240105
   Polyakov A, 2003, CLIN NEUROPHYSIOL, V114, P366, DOI 10.1016/S1388-2457(02)00372-3
   PRATT H, 1976, ARCH OTO-RHINO-LARYN, V212, P85, DOI 10.1007/BF00454268
   Pratt H, 2004, HEARING RES, V193, P83, DOI 10.1016/j.heares.2004.03.004
   Riedel H., 2001, Zeitschrift fur Audiologie, V40
   Rupp A, 2002, HEARING RES, V174, P19, DOI 10.1016/S0378-5955(02)00614-7
   SCOTT ML, 1978, INT J NEUROSCI, V8, P147, DOI 10.3109/00207457809150392
   SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898
   SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970
   SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098
   THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0
   VanCampen LE, 1997, HEARING RES, V103, P35, DOI 10.1016/S0378-5955(96)00161-X
   WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J
   Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805
   WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7
   WESTERMAN LA, 1985, HEARING RES, V17, P197, DOI 10.1016/0378-5955(85)90022-X
   WESTERMAN LA, 1987, J ACOUST SOC AM, V81, P680, DOI 10.1121/1.394836
NR 41
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 53
EP 67
DI 10.1016/j.heares.2005.03.001
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400006
PM 15953515
ER

PT J
AU de Groot, JCMJ
   Hendriksen, EGJ
   Smoorenburg, GF
AF de Groot, JCMJ
   Hendriksen, EGJ
   Smoorenburg, GF
TI Reduced expression of sialoglycoconjugates in the outer hair cell
   glycocalyx after systemic aminoglycoside administration
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; outer hair cells; glycocalyx sialoglycoconjugates;
   aminoglycoside ototoxicity; gentamicin; neomycin
ID PIG INNER-EAR; ENDOPLASMIC-RETICULUM STRESS; WHEAT-GERM-AGGLUTININ;
   GUINEA-PIG; IN-VITRO; GENTAMICIN OTOTOXICITY; COCHLEAR CULTURES;
   HYDROPIC COCHLEAS; DRUG OTOTOXICITY; LECTIN-BINDING
AB In this study we investigated the effect of systemic aminoglycoside administration on the expression of sialoglycoconjugates in the outer hair cell (OHC) glycocalyx of the adult guinea pig. Sialoglycoconjugates were visualized by means of ultrastructural lectin cytochemistry, using Lunax flavus agglutinin (LFA) and wheat germ agglutinin (WGA) as probes. Labelling densities were determined for the apical membranes (including the stereocilia and stereociliary cross-links) and basolateral membranes of OHCs in the respective (basal, middle and apical) cochlear turns from animals that had been treated with gentamicin or neomycin for 5 or 15 consecutive days. Our results indicate that: (1) sialoglycoconjugate expression in the OHC glycocalyx demonstrates an intracochlear gradient decreasing towards the apical turn; (2) OHCs demonstrate a polarity in sialoglycoconjugate expression, in that the basolateral membranes contain more sialoglycoconjugates per surface area than the apical membranes; (3) aminoglycoside administration results in reduced expression of sialoglycoconjugates in the OHC glycocalyx; in this respect, basal-turn OHCs are more susceptible than those in the middle and apical turns; (4) reduction in sialoglycoconjugate expression after aminoglycoside administration is more prominent in the basolateral membranes; and (5) the difference in ototoxic potencies between gentamicin and neomycin is not reflected at the level of sialoglycoconjugate expression. The present data support our earlier hypothesis that aminoglycosides, already at an early phase of intoxication, interfere with the function of the endoplasmic reticulum and/or the Golgi apparatus, implying that these organelles play a crucial role in the initial phase of aminoglycoside-induced OHC degeneration. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Utrecht, Ctr Med, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands.
RP de Groot, JCMJ (reprint author), Univ Utrecht, Ctr Med, Dept Otorhinolaryngol, Hearing Res Labs, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands.
EM J.C.M.J.deGroot@kmb.azu.nl
CR ARAN JM, 1995, HEARING RES, V82, P179, DOI 10.1016/0378-5955(94)00175-P
   Bertolaso L, 2003, AUDIOL NEURO-OTOL, V8, P38, DOI 10.1159/000067890
   Bertolaso L, 2001, AUDIOLOGY, V40, P327
   Bobbin RP, 2003, HEARING RES, V184, P51, DOI 10.1016/S0378-5955(03)00230-2
   Bodmer D, 2003, LARYNGOSCOPE, V113, P452, DOI 10.1097/00005537-200303000-00012
   DAMJANOV I, 1987, LAB INVEST, V57, P5
   DEGROOT JCMJ, 1994, IMMUNOBIOLOGY IN OTORHINOLARYNGOLOGY, P313
   DEGROOT JCMJ, 1991, ACTA OTO-LARYNGOL, V111, P273, DOI 10.3109/00016489109137387
   DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J
   DEGROOT JCMJ, 1988, HEARING RES, V35, P39, DOI 10.1016/0378-5955(88)90038-X
   Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6
   Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
   DULON D, 1993, CR ACAD SCI III-VIE, V316, P682
   FIKES JD, 1994, TOXICOL PATHOL, V22, P15
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357
   GARETZ SL, 1996, HDB AUDITORY RES, V7, P116
   GILLOYZAGA P, 1988, HEARING RES, V34, P149, DOI 10.1016/0378-5955(88)90102-5
   GOVAERTS PJ, 1990, TOXICOL LETT, V52, P227, DOI 10.1016/0378-4274(90)90033-I
   GRIFFITHS G, 1984, J ULTRA MOL STRUCT R, V89, P65, DOI 10.1016/S0022-5320(84)80024-6
   Griffiths G., 1993, FINE STRUCTURE IMMUN, P371
   Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3
   Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6
   HIEL H, 1992, ACTA OTO-LARYNGOL, V112, P272
   HIEL H, 1993, AUDIOLOGY, V32, P78
   Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
   Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7
   Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
   Katori Y, 1996, J ELECTRON MICROSC, V45, P207
   Kaufman RJ, 1999, GENE DEV, V13, P1211, DOI 10.1101/gad.13.10.1211
   KOSSL M, 1990, HEARING RES, V44, P217, DOI 10.1016/0378-5955(90)90082-Z
   Leathem AJ, 1986, IMMUNOCYTOCHEMISTRY, P167
   LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0
   MCDOWELL B, 1989, HEARING RES, V40, P221, DOI 10.1016/0378-5955(89)90163-9
   PLINKERT PK, 1992, EUR ARCH OTO-RHINO-L, V249, P67
   POSTMA DS, 1978, HISTOCHEM J, V10, P53, DOI 10.1007/BF01003414
   Rao RV, 2001, J BIOL CHEM, V276, P33869, DOI 10.1074/jbc.M102225200
   Rao RV, 2002, J BIOL CHEM, V277, P21836, DOI 10.1074/jbc.M202726200
   Riché G., 1989, Cahiers de la Recherche-Développement, P57
   RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E
   ROTH J, 1993, HISTOCHEM J, V25, P687
   RUEDA J, 1991, 14 MIDW M ASS RES OT, P15
   RYBAK LP, 1986, ANNU REV PHARMACOL, V26, P79
   Sandoval RM, 2004, AM J PHYSIOL-RENAL, V286, pF617, DOI 10.1152/ajprenal.00130.2003
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   SIMONS K, 1985, ANNU REV CELL BIOL, V1, P243
   Stein MP, 2002, TRENDS CELL BIOL, V12, P374, DOI 10.1016/S0962-8924(02)02331-0
   Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5
   Sundin DP, 2001, J AM SOC NEPHROL, V12, P114
   TACHIBANA M, 1990, EUR ARCH OTO-RHINO-L, V247, P240
   TACHIBANA M, 1987, HEARING RES, V27, P239, DOI 10.1016/0378-5955(87)90005-0
   TAKUMIDA M, 1989, ACTA OTO-LARYNGOL, V107, P39, DOI 10.3109/00016488909127477
   TAKUMIDA M, 1989, J LARYNGOL OTOL, V103, P133
   TAKUMIDA M, 1989, ARCH OTO-RHINO-LARYN, V246, P26, DOI 10.1007/BF00454130
   Takumida M, 1988, Acta Otolaryngol Suppl, V458, P84
   Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643
   TAKUMIDA M, 1989, J LARYNGOL OTOL, V103, P357, DOI 10.1017/S0022215100108953
   THORNE PR, 1987, HEARING RES, V30, P253, DOI 10.1016/0378-5955(87)90141-9
   TOKUYASU KT, 1989, HISTOCHEM J, V21, P163, DOI 10.1007/BF01007491
   VANBENTHEM PPG, 1992, ACTA OTO-LARYNGOL, V112, P976, DOI 10.3109/00016489209137498
   VANBENTHEM PPG, 1993, EUR ARCH OTO-RHINO-L, V250, P73
   Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X
   Zhang J, 1991, Zhonghua Er Bi Yan Hou Ke Za Zhi, V26, P3
NR 63
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 68
EP 82
DI 10.1016/j.heares.2005.03.002
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400007
PM 15953516
ER

PT J
AU Khan, AM
   Whiten, DM
   Nadol, JB
   Eddington, DK
AF Khan, AM
   Whiten, DM
   Nadol, JB
   Eddington, DK
TI Histopathology of human cochlear implants: Correlation of psychophysical
   and anatomical measures
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implantation; spiral ganglion cells; psychophysics
ID SENSORINEURAL HEARING-LOSS; SPIRAL GANGLION-CELLS; SPEECH-RECOGNITION;
   ELECTRODE DISCRIMINATION; TEMPORAL BONES; COST-UTILITY; PLACE-PITCH;
   PERCEPTION; PATIENT; RECONSTRUCTION
AB The cadavaric temporal bones of five subjects who underwent cochlear implantation during life (2 Nucleus and 3 Ineraid) were analyzed using two-dimensional (2D) reconstruction of serial sections to determine the number of surviving spiral ganglion cells (SGCs) in the region of each electrode of the implanted arrays. The last psychophysical threshold and maximum-comfortable sensation level treasured for each electrode were compared to their respective SGC count to determine the across-electrode psychophysical variance accounted for by the SGC counts. Significant correlations between psychophysical measures and SGC counts were found in only two of the five subjects: one Nucleus implantee (e.g., r=-0.71; p < 0.001 for threshold vs. count) and one Ineraid implantee (e.g., r=-0.86; p < 0.05 for threshold vs. count). A three-dimensional (3D) model of the implanted cochlea was formulated using the temporal-bone anatomy of the Nucleus subject for whom the 2D analysis did not result in significant correlations between counts and psychophysical measures. Predictions of the threshold vs. electrode profile were closer to the measured profile for the 3D model than for the 2D analysis. These results lead us to hypothesize that 3D techniques will be required to asses the impact of peripheral anatomy on the benefit patients derive from cochlear implantation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, Boston, MA 02114 USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA.
   MIT, Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02369 USA.
   MIT, Elect Res Lab, Cambridge, MA 02369 USA.
RP Eddington, DK (reprint author), Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, 243 Charles St, Boston, MA 02114 USA.
EM dke@cirl.meei.harvard.edu
CR Anderson Ilona, 2002, Ear Nose Throat J, V81, P229
   Blamey P, 1996, Audiol Neurootol, V1, P293
   BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342
   CAZALS Y, 1994, J ACOUST SOC AM, V96, P2048, DOI 10.1121/1.410146
   Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1
   COLLINS LM, 1994, J ACOUST SOC AM, V96, P2731, DOI 10.1121/1.411279
   Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989
   Dawson PW, 2000, EAR HEARING, V21, P597, DOI 10.1097/00003446-200012000-00007
   Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449
   Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1
   FAYAD J, 1991, ANN OTO RHINOL LARYN, V100, P807
   Francis HW, 2002, LARYNGOSCOPE, V112, P1482, DOI 10.1097/00005537-200208000-00028
   FRIJNS JHM, 1995, COCHLEAR IMPLANTS MO
   Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
   Guild SR, 1921, ANAT REC, V22, P141
   Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772
   Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900
   Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711
   Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
   JOHNSSON LG, 1982, ANN OTO RHINOL LARYN, V91, P74
   JOHNSSON LG, 1979, LARYNGOSCOPE, V89, P759
   Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313
   KNUTSON JF, 1991, ANN OTO RHINOL LARYN, V100, P817
   LINTHICUM FH, 1991, AM J OTOL, V12, P245
   LINTHICUM FH, 1983, ANN OTO RHINOL LARYN, V92, P610
   MARSH MA, 1992, AM J OTOL, V13, P241
   MARSH MA, 1993, AM J OTOL, V14, P386
   NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
   Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
   NADOL JB, 1994, LARYNGOSCOPE, V104, P299
   Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
   NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3
   NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317
   Neter J., 1978, APPL STAT
   OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695
   Osberger MJ, 2000, ADV OTO-RHINO-LARYNG, V57, P421
   OTTE J, 1978, LARYNGOSCOPE, V88, P1231
   Park KS, 2002, KOREAN J GENETIC, V24, P41
   Schuknecht HF, 1993, PATHOLOGY EAR
   SHANNON RV, 1993, COCHLEAR IMPLANTS AU, P357
   Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013
   SKINNER MW, 1995, J SPEECH HEAR RES, V38, P677
   SMMERFIELD AQ, 1997, AM J OTOL, V18, pS166
   Summerfield AQ, 2002, ARCH OTOLARYNGOL, V128, P1255
   TERR LI, 1989, LARYNGOSCOPE, V99, P1171
   Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275
   WHITEN DM, 2003, THRESHOLD PREDICTION
   Wyatt JR, 1996, LARYNGOSCOPE, V106, P816, DOI 10.1097/00005537-199607000-00006
   ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914
   Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401
NR 50
TC 25
Z9 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 83
EP 93
DI 10.1016/j.heares.2005.03.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400008
PM 15953517
ER

PT J
AU Mortensen, MV
   Madsen, S
   Gjedde, A
AF Mortensen, MV
   Madsen, S
   Gjedde, A
TI Use of time differences in normal hearing - cortical processing of
   promontorial stimuli
SO HEARING RESEARCH
LA English
DT Article
DE PET; duration discrimination; promontory; stimulation; temporal
   analysis; speech perception; somatosensory cortex
ID POSITRON EMISSION TOMOGRAPHY; AUDITORY BRAIN-STEM;
   ELECTRICAL-STIMULATION; DURATION DISCRIMINATION; SPEECH RECOGNITION;
   COCHLEAR IMPLANTS; FRONTAL-CORTEX; ROUND WINDOW; ACTIVATION; MEMORY
AB To test the hypothesis that ability to discriminate small duration differences is positively correlated with activity in the right temporal lobe, we used positron emission tomography in six normally hearing subjects, stimulated via the promontory in a procedure that mimics the auditory nerve stimulation with a cochlear implant. Stimulus consisted of electrical bursts, and tasks included gap detection and temporal difference limen (TDL). TDL is a measure of discriminatory processing of sound duration in cochlear implant candidates, demonstrated to predict outcome. Good speech perception after cochlear implantation is associated with activity in right temporal areas.
   Although perceived variably by the subjects, the stimulus itself activated bilateral secondary somatosensory cortex, suggesting differential stimulation of multiple sensory modalities. Only TDL raised blood flow in both posterior middle temporal gyri (MTG) and the right prefrontal cortex. As the right posterior MTG is known to be active during duration discrimination of different modalities and in the perception of words containing manipulated phonemes, we conclude that recruitment of this part of the right hemisphere is important to the comprehension of speech containing mostly temporal cues. The study shows that stimulus-induced activation reflects the goal of the task rather than the nature of the stimulus. (c) 2005 Elsevier B.V. All rights reserved.
C1 Aarhus Univ Hosp, PET Ctr, DK-8000 Aarhus, Denmark.
   Aarhus Univ Hosp, Dept ENT, DK-8000 Aarhus, Denmark.
   Aarhus Univ, Ctr Funct Integrat Neurosci, Aarhus, Denmark.
RP Mortensen, MV (reprint author), Aarhus Univ Hosp, PET Ctr, 44 Norrebrogade, DK-8000 Aarhus, Denmark.
EM malene@pet.auh.dk
CR Belin P, 2002, NEUROPSYCHOLOGIA, V40, P1956, DOI 10.1016/S0028-3932(02)00062-3
   Belin P, 1998, J COGNITIVE NEUROSCI, V10, P536, DOI 10.1162/089892998562834
   Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198
   Binder JR, 1997, J NEUROSCI, V17, P353
   BLACK FO, 1987, ANN OTO RHINOL LARYN, V96, P96
   BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342
   BRUNIA CHM, 1988, ELECTROEN CLIN NEURO, V69, P234, DOI 10.1016/0013-4694(88)90132-0
   Buchel C, 1998, NATURE, V394, P274, DOI 10.1038/28389
   BURIAN K, 1986, OTOLARYNG CLIN N AM, V19, P313
   Cohen JD, 1997, NATURE, V386, P604, DOI 10.1038/386604a0
   COHEN NL, 1993, NEW ENGL J MED, V328, P233, DOI 10.1056/NEJM199301283280403
   Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X
   Fischer B, 2004, DYSLEXIA, V10, P105, DOI 10.1002/dys.268
   Friston KJ, 1997, TRENDS COGN SCI, V1, P21, DOI 10.1016/S1364-6613(97)01001-2
   FRITZE W, 1984, ARCH OTO-RHINO-LARYN, V239, P263, DOI 10.1007/BF00464253
   GANTZ BJ, 1993, ADV OTO-RHINO-LARYNG, V48, P153
   GANTZ BJ, 1988, LARYNGOSCOPE, V98, P1100
   GIBBON J, 1984, ANN NY ACAD SCI, V423, P52, DOI 10.1111/j.1749-6632.1984.tb23417.x
   GIBSON WPR, 1987, ANN OTO RHINOL LARYN, V96, P92
   Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459
   Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637
   Griffiths TD, 2000, NEUROREPORT, V11, P919, DOI 10.1097/00001756-200004070-00004
   Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019
   HOUSE WF, 1974, LARYNGOSCOPE, V84, P2163, DOI 10.1288/00005537-197412000-00007
   ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7
   KNAUTH M, 1994, HEARING RES, V74, P247, DOI 10.1016/0378-5955(94)90193-7
   KRISTOFFERSON AB, 1984, ANN NY ACAD SCI, V423, P3, DOI 10.1111/j.1749-6632.1984.tb23413.x
   LADEFOGED P, 2000, VOWELS CONSONANTS IN
   Lamme VAF, 2000, TRENDS NEUROSCI, V23, P571, DOI 10.1016/S0166-2236(00)01657-X
   LUXFORD WM, 1989, AM J OTOL, V10, P95
   Lyxell B, 2003, INT J AUDIOL, V42, pS86
   Maguire EA, 1997, J NEUROSCI, V17, P7103
   MCINTOSH AR, 1994, J NEUROSCI, V14, P655
   MESULAM MM, 1986, ANN NEUROL, V19, P320, DOI 10.1002/ana.410190403
   Mesulam MM, 1998, BRAIN, V121, P1013, DOI 10.1093/brain/121.6.1013
   MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165
   Moller A.R., 2003, SENSORY SYSTEMS ANAT
   Moller A.R., 2000, HEARING ITS PHYSL PA
   MORTENSEN MV, UNPUB DIFFERENTIAL L
   MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493
   PARDO JV, 1991, NATURE, V349, P61, DOI 10.1038/349061a0
   Pedersen CB, 2000, AUDIOLOGY, V39, P30
   Penfield W., 1950, CEREBRAL CORTEX MAN
   Penhune VB, 1998, J COGNITIVE NEUROSCI, V10, P752, DOI 10.1162/089892998563149
   PETRIDES M, 1993, P NATL ACAD SCI USA, V90, P878, DOI 10.1073/pnas.90.3.878
   PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282
   Rao SM, 2001, NAT NEUROSCI, V4, P317, DOI 10.1038/85191
   ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9
   ROLAND PE, 1993, BRAIN ACTIVITY, P365
   ROLAND PE, 1993, BRAIN ACTIVATION, P141
   Ruben J, 2001, CEREB CORTEX, V11, P463, DOI 10.1093/cercor/11.5.463
   Scao Y L, 1993, Am J Otol, V14, P70
   Schmidt AM, 2003, AM J NEURORADIOL, V24, P201
   SEECK M, 1995, ANN NEUROL, V37, P538, DOI 10.1002/ana.410370417
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   SHIPP DB, 1991, ANN OTO RHINOL LARYN, V100, P889
   Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0
   Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M
   SILVERSTEIN H, 1994, AM J OTOL, V15, P101
   Smith EE, 1999, SCIENCE, V283, P1657, DOI 10.1126/science.283.5408.1657
   SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19
   TALBOT JD, 1991, SCIENCE, V251, P1355, DOI 10.1126/science.2003220
   Truy E, 1999, INT J PEDIATR OTORHI, V47, P131, DOI 10.1016/S0165-5876(98)00131-1
   TRUY E, 1995, HEARING RES, V86, P34, DOI 10.1016/0378-5955(95)00052-6
   van Dijk JE, 1999, AUDIOLOGY, V38, P109
   Vass Z, 1997, NEUROSCIENCE, V79, P605, DOI 10.1016/S0306-4522(96)00641-0
   Videbech P, 2001, PSYCHOL MED, V31, P1147
   WALTZMAN SB, 1990, OTOLARYNG HEAD NECK, V103, P102
   Werner LA, 2001, J SPEECH LANG HEAR R, V44, P737, DOI 10.1044/1092-4388(2001/058)
   WILSON FAW, 1993, SCIENCE, V260, P1955, DOI 10.1126/science.8316836
   Worsley J. J., 1992, J CEREBRAL BLOOD FLO, V12, P900
   Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7
   Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946
NR 73
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 94
EP 101
DI 10.1016/j.heares.2005.03.007
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400009
PM 15953518
ER

PT J
AU Cheng, PW
   Liu, SH
   Hsu, CJ
   Lin-Shiau, SY
AF Cheng, PW
   Liu, SH
   Hsu, CJ
   Lin-Shiau, SY
TI Correlation of increased activities of Na+, K+-ATPase and Ca2+-ATPase
   with the reversal of cisplatin ototoxicity induced by D-methionine in
   guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE auditory brainstem response; Ca2+-ATPase; cisplatin; D-methionine; Na+;
   K+-ATPase; ototoxicity
ID TEMPORAL BONE HISTOPATHOLOGY; INNER-EAR; LATERAL WALL; ANTIOXIDANT
   SYSTEM; STRIA VASCULARIS; COCHLEAR DUCT; MARGINAL CELLS; CIS-PLATINUM;
   CA++-ATPASE; LOCALIZATION
AB Na+, K+-ATPase and Ca2+-ATPase in the cochlear lateral wall play an important role in maintaining ionic homeostasis and physiologic function of the cochlea. The present study was designed to test whether the changes of Na+, K+-ATPase and Ca2+-ATPase activities of the cochlear lateral wall and the brainstem of guinea pigs after receiving cisplatin for seven consecutive days were correlated with the altered auditory brainstem responses (ABR). Furthermore, whether a chemoprotective agent, D-methionine reversed the increased ABR threshold induced by cisplatin accompanied with the increased ATPase activities was also evaluated. The results obtained showed that cisplatin exposure caused not only a significant increase of threshold but also altered various absolute wave and interwave latencies of ABR. In addition, cisplatin significantly decreased the Na+, K+-ATPase and Ca2+-ATPase activities in the cochlear lateral wall with a good dose-response relationship. Regression analysis indicated that an increase of ABR threshold was well correlated with a decrease of both Na+, K+-ATPase and Ca2+-ATPase activities in the cochlear lateral wall. A chemoprotectant, D-methionine indeed reversed both abnormalities of ABR and ATPase activities in a well correlation function. The selectivity of these observed changes induced by cisplatin and D-methionine was revealed by the findings that cisplatin-treated guinea pigs had normal III-V interwave latency of ABR and no reduction of Na+, K+-ATPase and Ca2+-ATPase specific activities in the brainstem, which is in accordance with the nonpenetrable cisplatin across the blood brain barrier. Taken all together, the present findings suggest that biochemical damage and ionic disturbance may contribute to cisplatin-induced ototoxicity to some extent, which can be reversed by D-methionine. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Taiwan Univ, Coll Med, Inst Toxicol, Taipei 10764, Taiwan.
   Natl Taiwan Univ, Coll Med, Inst Pharmacol, Taipei 10764, Taiwan.
   Far Eastern Mem Hosp, Dept Otolaryngol, Taipei, Taiwan.
   Natl Taiwan Univ, Coll Med, Dept Otolaryngol, Taipei 10764, Taiwan.
RP Lin-Shiau, SY (reprint author), Natl Taiwan Univ, Coll Med, Inst Toxicol, Taipei 10764, Taiwan.
EM syl@ha.mc.ntu.edu.tw
CR Agrup C, 1999, ACTA OTO-LARYNGOL, V119, P437
   BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3
   BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P219, DOI 10.3109/00016488009131718
   Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144
   Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   Cheng PW, 2001, OTOLARYNG HEAD NECK, V125, P411, DOI 10.1067/mhn.2001.117408
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2
   Curtis LM, 1997, ACTA OTO-LARYNGOL, V117, P553, DOI 10.3109/00016489709113436
   De Lauretis A, 1999, SCAND AUDIOL, V28, P139
   Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0
   Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8
   GUO YC, 1994, J LARYNGOL OTOL, V108, P310
   HINOJOSA R, 1995, AM J OTOL, V16, P731
   Hoistad DL, 1998, OTOLARYNG HEAD NECK, V118, P825, DOI 10.1016/S0194-5998(98)70276-1
   ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037
   IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353
   KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9
   Kopke RD, 1997, AM J OTOL, V18, P559
   LANZETTA PA, 1979, ANAL BIOCHEM, V100, P95, DOI 10.1016/0003-2697(79)90115-5
   Lee JE, 2004, ORL J OTO-RHINO-LARY, V66, P111, DOI 10.1159/000079329
   MEES K, 1983, ACTA OTO-LARYNGOL, V95, P277, DOI 10.3109/00016488309130944
   Nario K, 1998, ACTA OTO-LARYNGOL, V118, P198
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   ROSENBERG B, 1985, CANCER, V55, P2303, DOI 10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L
   Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173
   RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100
   SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127
   SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K
   Sie KCY, 1997, OTOLARYNG HEAD NECK, V116, P585, DOI 10.1016/S0194-5998(97)70232-8
   STRAUSS M, 1983, LARYNGOSCOPE, V93, P1554, DOI 10.1288/00005537-198312000-00007
   VANBENTHEM PPG, 1994, HEARING RES, V77, P9, DOI 10.1016/0378-5955(94)90249-6
   WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   WEATHERLY RA, 1991, LARYNGOSCOPE, V101, P917
   WRIGHT CG, 1982, LARYNGOSCOPE, V92, P1408
   YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P395, DOI 10.1007/BF00464650
   YOSHIHARA T, 1987, ACTA OTO-LARYNGOL, V103, P161, DOI 10.3109/00016488709107779
NR 39
TC 28
Z9 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 102
EP 109
DI 10.1016/j.heares.2005.03.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400010
PM 15953519
ER

PT J
AU Bobbin, RP
   Bledsoe, SC
AF Bobbin, RP
   Bledsoe, SC
TI Asphyxia and depolarization increase adenosine levels in perilymph
SO HEARING RESEARCH
LA English
DT Article
DE ATP; cochlea; neurotransmitter; release
ID GUINEA-PIG COCHLEA; CENTRAL-NERVOUS-SYSTEM; ELECTRICAL-STIMULATION;
   HIPPOCAMPAL SLICES; CHINCHILLA COCHLEA; SKELETAL-MUSCLE; INDUCED
   RELEASE; VAS-DEFERENS; RAT COCHLEA; RECEPTOR
AB Extracellular adenosine has been suggested as a modulator of cochlear function. To date the release of adenosine into the extracellular spaces of the cochlea has not been demonstrated. Therefore, experiments were designed to examine whether adenosine release into perilymph could be detected in response to depolarization by high potassium concentrations or in response to asphyxia. For this purpose, the perilymph compartment of guinea pigs was perfused with an artificial perilymph and the effluent assayed for ATP, ADP, AMP and adenosine. Results indicate that potassium induced a slight, significant increase and asphyxia induced a very large, significant increase in adenosine levels in perilymph effluent. No changes in the levels of the other compounds were measured. It is concluded that depolarization and asphyxia can induce the release of adenosine into perilymph. (c) 2005 Elsevier B.V. All rights reserved.
C1 Louisiana State Univ, Hlth Sci Ctr, Sch Med, Kresge Hearing Res Lab,Dept Otolaryngol, New Orleans, LA 70112 USA.
   Univ Michigan, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Bobbin, RP (reprint author), Louisiana State Univ, Hlth Sci Ctr, Sch Med, Kresge Hearing Res Lab,Dept Otolaryngol, 533 Bolivar St,5th Floor, New Orleans, LA 70112 USA.
EM rbobbi@lsuhsc.edu
CR BOBBIN RP, 1990, HEARING RES, V46, P83, DOI 10.1016/0378-5955(90)90141-B
   BOBBIN RP, 2001, HAIR CELLS MICROMECH, P129
   Brooke RE, 2004, J NEUROSCI, V24, P127, DOI 10.1523/JNEUROSCI.4591-03.2004
   BRYANT GM, 1987, HEARING RES, V30, P231, DOI 10.1016/0378-5955(87)90139-0
   Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848
   Dunwiddie TV, 2001, ANNU REV NEUROSCI, V24, P31, DOI 10.1146/annurev.neuro.24.1.31
   Ford MS, 1997, HEARING RES, V105, P130, DOI 10.1016/S0378-5955(96)00204-3
   Housley GD, 1999, J NEUROSCI, V19, P8377
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4
   Latini S, 2001, J NEUROCHEM, V79, P463, DOI 10.1046/j.1471-4159.2001.00607.x
   LATINI S, 1995, NEUROCHEM INT, V27, P239, DOI 10.1016/0197-0186(95)00042-7
   Le Prell CG, 2001, PHYSL EAR, P575
   LEVITT B, 1984, ANAL BIOCHEM, V137, P93, DOI 10.1016/0003-2697(84)90352-X
   LLOYD HGE, 1993, NEUROCHEM INT, V23, P173, DOI 10.1016/0197-0186(93)90095-M
   Marshall JM, 2002, CLIN EXP PHARMACOL P, V29, P843, DOI 10.1046/j.1440-1681.2002.03734.x
   Marshall JM, 2001, ADV EXP MED BIOL, V502, P349
   MCKENZIE JE, 1982, AM J PHYSIOL, V242, pH24
   MEGHJI P, 1989, J NEUROCHEM, V53, P1852, DOI 10.1111/j.1471-4159.1989.tb09252.x
   MIHAYLOVATODOROVA, 2002, J PHARMACOL EXP THER, V302, P992
   MOCKETT BG, 1994, J NEUROSCI, V14, P6992
   MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5
   Olah Mark E, 2003, Mol Interv, V3, P370, DOI 10.1124/mi.3.7.370
   Parker BS, 2003, CANCER BIOL THER, V2, P14
   Parker MS, 1998, HEARING RES, V121, P62, DOI 10.1016/S0378-5955(98)00065-3
   PEDATA F, 1991, N-S ARCH PHARMACOL, V344, P538
   Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7
   RAMKUMAR V, 1994, AM J PHYSIOL, V267, pC731
   Stone TW, 2002, ADV EXP MED BIOL, V513, P249
   Todorov LD, 1996, J PHYSIOL-LONDON, V496, P731
   Vlajkovic SM, 2002, J HISTOCHEM CYTOCHEM, V50, P1435
   Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2
   Vlajkovic SM, 2002, HEARING RES, V170, P127, DOI 10.1016/S0378-5955(02)00460-4
   Whitworth CA, 2004, BIOCHEM PHARMACOL, V67, P1801, DOI 10.1016/j.bcp.2004.01.010
NR 34
TC 3
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 110
EP 114
DI 10.1016/j.heares.2005.03.009
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400011
PM 15953520
ER

PT J
AU Lu, W
   Xu, J
   Shepherd, RK
AF Lu, W
   Xu, J
   Shepherd, RK
TI Cochlear implantation in rats: A new surgical approach
SO HEARING RESEARCH
LA English
DT Article
DE cochlear histopathology; cochlear implant; electrically evoked auditory
   brainstem response; stapedial artery
ID CHRONIC ELECTRICAL-STIMULATION; PERSISTENT STAPEDIAL ARTERY;
   SENSORINEURAL HEARING-LOSS; TYMPANI ELECTRODE ARRAY; AUDITORY
   BRAIN-STEM; MIDDLE-EAR; INFERIOR COLLICULUS; ANIMAL-MODEL; GUINEA-PIG;
   NERVE
AB The laboratory rat has been used extensively in auditory research but has had limited use in cochlear implant related research due mainly to the surgically restricted access to the scala tympani. We have developed a new surgical method for cochlear implantation in rats. The key to this protocol was cauterizing the stapedial artery (SA) and making a small cochleostomy near the round window in order to enlarge the surgical access to the scala tympani. Five normal hearing Hooded Wistar rats were used to investigate the effect of cauterizing the SA on hearing and auditory nerve survival. Results showed that cauterizing the SA was surgically feasible, afforded excellent exposure of the round window niche for cochleostomy, and did not adversely affect acoustic thresholds measured electrophysiologically. Moreover, there was no difference in spiral ganglion cell densities for any cochlear turn when compared with the contralateral control ears. Three deafened rats were subsequently implanted with a scala tympani electrode array using this new surgical approach. Electrically evoked auditory brainstem responses using bipolar stimulation, and subsequent cochlear histopathology demonstrated that cochlear implantation using a custom-made rat electrode array was safe and effective. The surgical approach presented in this paper presents a safe and effective procedure for acute or chronic cochlear implantation in the rat model. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
   Bion Ear Inst, Melbourne, Vic 3002, Australia.
   Zhengzhou Univ, Dept Otolaryngol, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China.
RP Shepherd, RK (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, 32 Gisborne St, Melbourne, Vic 3002, Australia.
EM rshepherd@bionicear.org
RI Shepherd, Robert/I-6276-2012
CR ALBIIN N, 1985, ANAT REC, V212, P17, DOI 10.1002/ar.1092120103
   ALBIIN N, 1983, ACTA ANAT, V115, P134
   Araujo MF, 2002, ARCH OTOLARYNGOL, V128, P456
   Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
   GOVAERTS PJ, 1993, ANN OTO RHINOL LARYN, V102, P724
   Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3
   HEBEL R, 1986, ANATOMY EMBRYOLOGY L, P102
   HELLSTROM S, 1982, ACTA ANAT, V112, P346
   Hellstrom SOM, 1998, OTOLARYNG HEAD NECK, V119, P556
   Hessel H, 1997, AM J OTOL, V18, pS21
   Hsu WC, 2001, J COMP NEUROL, V438, P226, DOI 10.1002/cne.1311
   Judkins RF, 1997, OTOLARYNG HEAD NECK, V117, P438, DOI 10.1016/S0194-5998(97)70011-1
   Kadner A, 2000, AUDIOL NEURO-OTOL, V5, P23, DOI 10.1159/000013862
   Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
   Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
   MCGUINNESS SL, 2005, IN PRESS OTOL NEUROT
   Miller AL, 2000, HEARING RES, V144, P175, DOI 10.1016/S0378-5955(00)00066-6
   MILLER CA, 1993, HEARING RES, V69, P35, DOI 10.1016/0378-5955(93)90091-E
   MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599
   Nagase S, 2000, HEARING RES, V147, P242, DOI 10.1016/S0378-5955(00)00134-9
   Paolini AG, 1998, BRAIN RES BULL, V46, P317, DOI 10.1016/S0361-9230(98)00017-3
   PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5
   PFINGST BE, 1979, ANN OTO RHINOL LARYN, V88, P613
   PFINGST BE, 1995, HEARING RES, V85, P76, DOI 10.1016/0378-5955(95)00037-5
   Pinilla M, 2001, OTOLARYNG HEAD NECK, V124, P515, DOI 10.1067/mhn.2001.115370
   Praetorius M, 2001, AUDIOL NEURO-OTOL, V6, P250, DOI 10.1159/000046130
   RYAN AF, 1990, HEARING RES, V50, P57, DOI 10.1016/0378-5955(90)90033-L
   SHEPHERD R, 2005, IN PRESS J COMP NEUR
   Shepherd RK, 2002, HEARING RES, V172, P92, DOI 10.1016/S0378-5955(02)00517-8
   SHEPHERD RK, 1995, AM J OTOL, V16, P186
   Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x
   SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3
   SOHMER H, 1992, HEARING RES, V61, P189, DOI 10.1016/0378-5955(92)90050-W
   STEEL KP, 1984, HEARING RES, V15, P59, DOI 10.1016/0378-5955(84)90225-9
   Vischer M, 1997, AM J OTOL, V18, pS27
   Wu HC, 2003, EUR J NEUROSCI, V17, P2540, DOI 10.1046/j.1460-9568.2003.02691.x
   Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1
   Yamamoto H, 2003, HEARING RES, V186, P69, DOI 10.1016/S0378-5955(03)00310-1
NR 38
TC 13
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 115
EP 122
DI 10.1016/j.heares.2005.03.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400012
PM 15953521
ER

PT J
AU Barrenas, ML
   Bratthall, A
   Dahlgren, J
AF Barrenas, ML
   Bratthall, A
   Dahlgren, J
TI The association between short stature and sensorineural hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE hearing; stature; hypertension; phenotype; genotype; thrifty
ID GROWTH-FACTOR-I; THRIFTY PHENOTYPE HYPOTHESIS; PERSONAL CASSETTE
   PLAYERS; RISK-FACTORS; BLOOD-PRESSURE; PRESCHOOL-CHILDREN; PRENATAL
   EXPOSURE; ABDOMINAL OBESITY; NOISE EXPOSURE; BIRTH-WEIGHT
AB In order to test the Thrifty Phenotype Hypothesis on hearing, data from two cross-sectional studies on hearing were re-evaluated. The data sets comprised 500 18-year-old conscripts, and 483 noise-exposed male employees. Sensorineural hearing loss (SNHL) was over-represented among conscripts with a short stature (odds ratio = 2.2) or hearing loss in the family (odds ration = 4.2), but not among noise-exposed conscripts (odds ratio = 0.9-1.3). Among noise-exposed short employees, hypertension and age exhibited a negative impact on high frequency hearing thresholds, while among tall employees hypertension had no effect on hearing and the influence of age was less pronounced (p < 0.01 for body height; p < 0.02 for age, hypertension and the interaction between body height and hypertension; p < 0.05 for the interaction between body height and age). This suggests that mechanisms linked to fetal programming and growth retardation and/or insulin-like growth factor 1 levels during fetal life, such as a delayed cell cycle during the time window when the cochlea develops, may cause SNHL in adulthood. (c) 2005 Elsevier B.V. All rights reserved.
C1 Gothenburg Univ, Inst Hlth Women & Children, Dept Pediat, GP GRC, S-41685 Gothenburg, Sweden.
RP Barrenas, ML (reprint author), Gothenburg Univ, Inst Hlth Women & Children, Dept Pediat, GP GRC, S-41685 Gothenburg, Sweden.
EM marie-louise.barrenas@vgregion.se
CR Aitkin M., 1990, STAT MODELLING GLIM
   AXELSSON A, 1981, SCAND AUDIOL, V10, P91, DOI 10.3109/01050398109076167
   AXELSSON A, 1985, ACTA OTO-LARYNGOL, V100, P379, DOI 10.3109/00016488509126561
   AXELSSON A, 1987, SCAND AUDIOL, V16, P137, DOI 10.3109/01050398709042168
   AXELSSON A, 1994, SCAND AUDIOL, V23, P129, DOI 10.3109/01050399409047497
   AXELSSON A, 1981, AM IND HYG ASSOC J, V42, P229, DOI 10.1080/15298668191419631
   BARKER DJP, 1995, EUR J CLIN INVEST, V25, P457, DOI 10.1111/j.1365-2362.1995.tb01730.x
   Barker DJP, 2004, PHILOS T ROY SOC B, V359, P1359, DOI 10.1098/rstb.2004.1518
   BARR B, 1973, AUDIOLOGY, V12, P426
   Barrenas ML, 2000, HEARING RES, V144, P21, DOI 10.1016/S0378-5955(00)00040-X
   Bonapace G, 2003, J MED GENET, V40, P913, DOI 10.1136/jmg.40.12.913
   Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1
   CARTER N, 1984, Australian Journal of Audiology, V6, P45
   Costa O A, 1988, Scand Audiol Suppl, V30, P25
   Darin N, 1997, DEV MED CHILD NEUROL, V39, P797
   Das VK, 1996, ARCH DIS CHILD, V74, P8
   Eriksson JG, 2002, DIABETOLOGIA, V45, P342, DOI 10.1007/s00125-001-0757-6
   Eriksson JG, 2000, STROKE, V31, P869
   Fall CHD, 1998, DIABETIC MED, V15, P220, DOI 10.1002/(SICI)1096-9136(199803)15:3<220::AID-DIA544>3.3.CO;2-F
   Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037
   Fortnum HM, 2001, BRIT MED J, V323, P536, DOI 10.1136/bmj.323.7312.536
   FUORTES LJ, 1995, AM J IND MED, V28, P275, DOI 10.1002/ajim.4700280211
   Garcia A M, 1993, Schriftenr Ver Wasser Boden Lufthyg, V88, P212
   Gluckman P D, 1996, Acta Paediatr Suppl, V417, P3
   Green J, 2002, PEDIATRICS, V109, P987, DOI 10.1542/peds.109.5.987
   Hales CN, 1997, DIABETIC MED, V14, P189
   HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248
   Job A, 2000, REV EPIDEMIOL SANTE, V48, P227
   KLOCKHOFF I, 1986, SCAND AUDIOL, V15, P217, DOI 10.3109/01050398609042146
   KLOCKHOFF I, 1982, SCAND AUDIOL, V11, P257, DOI 10.3109/01050398209087476
   LASSARRE C, 1991, PEDIATR RES, V29, P219, DOI 10.1203/00006450-199103000-00001
   Leon DA, 1998, BRIT MED J, V317, P241
   LINDEMAN HE, 1987, AUDIOLOGY, V26, P65
   LIPSCOMB D M, 1972, Audiology (London), V11, P231
   Lopuhaa CE, 2000, THORAX, V55, P555, DOI 10.1136/thorax.55.7.555
   MARIN P, 1993, INT J OBESITY, V17, P83
   MeyerBisch C, 1996, AUDIOLOGY, V35, P121
   Nafstad P, 2002, PEDIATRICS, V110, DOI 10.1542/peds.110.3.e30
   Niskar AS, 2001, PEDIATRICS, V108, P40, DOI 10.1542/peds.108.1.40
   Olsen J, 2001, EPIDEMIOLOGY, V12, P235, DOI 10.1097/00001648-200103000-00017
   Olsen J, 2000, EPIDEMIOL REV, V22, P76
   PYYKKO I, 1989, BRIT J IND MED, V46, P439
   PYYKKO I, 1987, INT ARCH OCC ENV HEA, V59, P439, DOI 10.1007/BF00377838
   RICHARDSON K, 1977, DEV MED CHILD NEUROL, V9, P797
   Roseboom TJ, 2001, J HYPERTENS, V19, P29, DOI 10.1097/00004872-200101000-00004
   Roseboom TJ, 2000, AM J CLIN NUTR, V72, P1101
   Rosmond R, 1998, INT J OBESITY, V22, P1184
   RYTZNER B, 1981, SCAND AUDIOL, V10, P213, DOI 10.3109/01050398109076183
   Sayer AA, 1998, AGE AGEING, V27, P579, DOI 10.1093/ageing/27.5.579
   SCHMIDT JM, 1994, AUDIOLOGY, V33, P185
   SEHLIN P, 1990, SCAND AUDIOL, V19, P193, DOI 10.3109/01050399009070772
   Sichieri R, 2000, PUBLIC HEALTH NUTR, V3, P77, DOI 10.1017/S1368980000000094
   Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5
   Sutton GJ, 1997, BRIT J AUDIOL, V31, P39, DOI 10.3109/03005364000000007
   TALBOTT EO, 1990, J OCCUP ENVIRON MED, V32, P690
   TARTER SK, 1990, J OCCUP ENVIRON MED, V32, P685
   THIRINGER K, 1984, DEV MED CHILD NEUROL, V26, P799
   Tuvemo T, 1999, HORM RES, V52, P186, DOI 10.1159/000023459
   Van Naarden K, 1999, PEDIATRICS, V104, P905, DOI 10.1542/peds.104.4.905
   Varela-Nieto I, 2004, HEARING RES, V196, P19, DOI 10.1016/j.heares.2003.12.022
   WEBER HJ, 1967, J SPEECH HEAR DISORD, V32, P343
   WONG TW, 1990, PUBLIC HEALTH, V104, P327, DOI 10.1016/S0033-3506(05)80524-4
   Woods K A, 1997, Acta Paediatr Suppl, V423, P39
NR 63
TC 12
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 123
EP 130
DI 10.1016/j.heares.2005.03.019
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400013
PM 15953522
ER

PT J
AU Philibert, B
   Collet, L
   Vesson, JF
   Veuillet, E
AF Philibert, B
   Collet, L
   Vesson, JF
   Veuillet, E
TI The auditory acclimatization effect in sensorineural hearing-impaired
   listeners: Evidence for functional plasticity
SO HEARING RESEARCH
LA English
DT Article
DE auditory acclimatization; hearing aid; asymmetry; auditory brainstem
   response; rehabilitation
ID FREQUENCY DISCRIMINATION; INTENSITY DISCRIMINATION; CORTICAL
   REORGANIZATION; LOUDNESS PERCEPTION; PRESENTATION LEVEL; COCHLEAR
   DAMAGE; ORGAN DAMAGE; AID USE; CORTEX; BRAIN
AB The present study provides new data on perceptual and physiological modifications associated with hearing aid (HA) fitting. Eight sensorineural hearing-impaired (SNHI) listeners participated. They had symmetrical hearing loss and were being fitted with binaural HAs for the first time. Perceptual performances were measured four times during auditory rehabilitation, using an intensity discrimination task and a loudness-scaling task. Pure tones of two different frequencies were used, one well amplified by HAs and the other weakly amplified. Two intensity levels were also tested, one rated 'soft' by SNHI listeners and the other 'loud'. Auditory brainstem responses (ABRs) to click stimulation were recorded. All measures were performed without HA. Results were consistent with the auditory acclimatization effect: most modifications induced by HA fitting were found at loud intensity levels and at high frequency, i.e., for acoustic information that was newly available to the listener. While both ears had similar hearing loss and aided gains, some differences between ears appeared in both perceptual tasks and in ABRs. In the right ear, a shortening of wave V latency paralleled perceptual modifications. The present results suggest that HA-fitting induces functional plasticity at the peripheral level of the auditory system. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Lyon 1, Hospices Civils Lyon, CNRS, GDR 2213,UMR 5020,Lab Neurosci & Syst Sensoriels, F-69366 Lyon, France.
RP Philibert, B (reprint author), Univ Paris 11, Lab Neurobiol Apprentissage Mem & Commun, CNRS, UMR 8620, Batiment 446, F-91405 Orsay, France.
EM benedicte.philibert@ibaic.u-psud.fr
CR Arlinger S., 1996, EAR HEAR S, V17, p87S
   AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819
   Bilecen D, 2000, NEUROLOGY, V54, P765
   Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056
   COX LC, 1980, HEAR INSTRUM, V31, P12
   Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9
   Florence SL, 2001, EUR J NEUROSCI, V13, P1755, DOI 10.1046/j.0953-816x.2001.01555.x
   Fowler EP, 1936, ARCHIV OTOLARYNGOL, V24, P731
   Gatehouse S., 1996, PSYCHOACOUSTICS SPEE, P319
   GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469
   Giraux P, 2001, NAT NEUROSCI, V4, P691, DOI 10.1038/89472
   GREEN DM, 1995, J ACOUST SOC AM, V97, P3749, DOI 10.1121/1.412390
   GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696
   GU X, 1994, J ACOUST SOC AM, V96, P93, DOI 10.1121/1.410378
   Hagermann B, 1999, SCAND AUDIOL, V28, P102, DOI 10.1080/010503999424833
   HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812
   He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127
   HECOX K, 1975, J ACOUST SOC AM, V57, pS63, DOI 10.1121/1.1995348
   Hugdahl K, 2000, ACTA PSYCHOL, V105, P211, DOI 10.1016/S0001-6918(00)00062-7
   ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
   JOANETTE Y, 1994, NEUROPSYCHOLOGIE HUM, P342
   Job A, 1998, HEARING RES, V122, P119, DOI 10.1016/S0378-5955(98)00104-X
   Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8
   Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008
   KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25
   McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
   MCGILL WJ, 1968, J ACOUST SOC AM, V44, P576, DOI 10.1121/1.1911123
   Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032
   MERZENICH MM, 1990, COLD SH Q B, V55, P873
   MONRADKROHN G, 1993, 3 ELEMENT SPEECH PRO
   Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340
   Munro KJ, 2003, J ACOUST SOC AM, V114, P484, DOI 10.1121/1.1577556
   Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005
   OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
   Olsen SO, 1999, AUDIOLOGY, V38, P202
   Palmer CV, 1998, J ACOUST SOC AM, V103, P1705, DOI 10.1121/1.421050
   Philibert B, 2003, ACTA OTO-LARYNGOL, V123, P172, DOI 10.1080/00016480310001033
   Philibert B, 1998, NEUROSCI LETT, V253, P99, DOI 10.1016/S0304-3940(98)00615-6
   Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4
   PIRILA T, 1991, ACTA OTOLARYNGOL, P111
   PONTON CW, 1996, EAR HEARING, pS78
   Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388
   Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   RECANZONE GH, 1993, J NEUROSCI, V13, P87
   ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230
   Robinson K, 1996, J ACOUST SOC AM, V99, P1255, DOI 10.1121/1.414637
   ROWE MJ, 1981, EAR HEARING, V2, P41, DOI 10.1097/00003446-198101000-00008
   Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156
   SCHWABER MK, 1993, AM J OTOL, V14, P252
   Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257
   Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905
   STOCKARD JJ, 1977, NEUROLOGY, V27, P316
   Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044
   Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228
   Wang Y, 2003, J COGNITIVE NEUROSCI, V15, P1019, DOI 10.1162/089892903770007407
   Weinberger NM, 1998, AUDIOL NEURO-OTOL, V3, P145, DOI 10.1159/000013787
   Williams D, 1996, TRENDS PHARMACOL SCI, V17, P66
   WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329
NR 59
TC 25
Z9 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 131
EP 142
DI 10.1016/j.heares.2005.03.013
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400014
PM 15953523
ER

PT J
AU Briaire, JJ
   Frijns, JHM
AF Briaire, JJ
   Frijns, JHM
TI Unraveling the electrically evoked compound action potential
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; electrical volume conduction; auditory nerve; CAP
ID MYELINATED NERVE-FIBERS; ROTATIONALLY SYMMETRICAL MODEL; HUMAN COCHLEAR
   NEURON; STIMULATED COCHLEA; SPEECH-PERCEPTION; VOLUME CONDUCTION;
   PROSTHESIS DESIGN; IMPLANT; RESPONSES; ELECTROCOCHLEOGRAPHY
AB With the advent of eCAP recording tools such as NRT and NRI for cochlear implants, neural monitoring has become widely used to ascertain the integrity of the neural/electrode interface as well as for assisting in the setting of program levels. The basic concepts of eCAP recordings are deduced from the acoustical equivalent of the electrocochleogram. There are, however, indications that under electrical stimulation some of these do not hold, like the unitary response concept (i.e., the principle that every fiber produces the same contribution to the eCAP). Computer modeling has proven to be a valuable tool for gaining insight into the functioning of electrical stimulation. In this study the extension of a three-dimensional human cochlea, incorporating back-measuring capabilities, is described. Using this new model, the contribution of single fiber action potentials (SFAPs) to the measured eCAP is investigated. The model predicts that contrary to common belief - the compound action potential as measured by the cochlear implant system does not necessarily reflect the propagated action potential along the auditory nerve. (c) 2005 Elsevier B.V. All rights reserved.
C1 Leiden Univ, Ctr Med, ENT Dept, NL-2300 RC Leiden, Netherlands.
RP Briaire, JJ (reprint author), Leiden Univ, Ctr Med, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands.
EM J.J.Briaire@LUMC.nl
RI Briaire, Jeroen/A-7972-2008; Frijns, Johan/H-6249-2011
OI Briaire, Jeroen/0000-0003-4302-817X; 
CR ABBAS PJ, 2000, COCHLEAR IMPLANTS, P117
   Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
   Briaire JJ, 2000, SIMULAT PRACT THEORY, V8, P57, DOI 10.1016/S0928-4869(00)00007-0
   Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
   Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
   Firszt JB, 2003, EAR HEARING, V24, P184, DOI 10.1097/01.AUD.0000061230.58992.9A
   Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
   FRIJNS JHM, 1996, IEEE 18 ANN INT C EN, V17, P2
   Frijns JHM, 2000, SIMULAT PRACT THEORY, V8, P75, DOI 10.1016/S0928-4869(00)00008-2
   FRIJNS JHM, 1994, MED BIOL ENG COMPUT, V32, P391, DOI 10.1007/BF02524690
   FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
   FRIJNS JHM, 1999, 1999 C IMPL AUD PROS
   FRIJNS JHM, 1994, IEEE T BIO-MED ENG, V41, P556, DOI 10.1109/10.293243
   Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497
   HALTER JA, 1991, J THEOR BIOL, V148, P345, DOI 10.1016/S0022-5193(05)80242-5
   Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005
   HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500
   HOUBEN V, 2000, 5 EUR S PEAD COCHL I, P41
   Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901
   Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005
   Miller CA, 2003, HEARING RES, V175, P200
   Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
   Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003
   NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8
   Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4
   Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
   Schoonhoven R, 1996, EAR HEARING, V17, P266, DOI 10.1097/00003446-199606000-00009
   SCHOONHOVEN R, 1991, CRIT REV BIOMED ENG, V19, P47
   Schoonhoven R, 1999, AUDIOLOGY, V38, P141
   SCHWARZ JR, 1987, PFLUG ARCH EUR J PHY, V409, P569, DOI 10.1007/BF00584655
   Seyle K, 2002, EAR HEARING, V23, p72S, DOI 10.1097/00003446-200202001-00009
   Smoorenburg GF, 2002, AUDIOL NEURO-OTOL, V7, P335, DOI 10.1159/000066154
   VERSNEL H, 1992, HEARING RES, V59, P157, DOI 10.1016/0378-5955(92)90112-Z
   Wesselink W. A., 1999, Medical and Biological Engineering and Computing, V37, P228, DOI 10.1007/BF02513291
NR 36
TC 34
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 143
EP 156
DI 10.1016/j.heares.2005.03.020
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400015
PM 15953524
ER

PT J
AU Damaschke, J
   Riedel, H
   Kollmeier, B
AF Damaschke, J
   Riedel, H
   Kollmeier, B
TI Neural correlates of the precedence effect in auditory evoked potentials
SO HEARING RESEARCH
LA English
DT Article
DE precedence effect; auditory evoked potential; discrimination; mismatch
   negativity
ID HUMAN BRAIN-STEM; INFERIOR COLLICULUS; SIMULATED ECHOES; MAXIMUM LENGTH;
   CLICK-PAIRS; RESPONSES; LOCALIZATION; SUPPRESSION; CAT; INHIBITION
AB The precedence effect in subjective localization tasks reflects the dominance of directional information of a direct sound (lead) over the information provided by one or several reflections (lags) for short delays. By collecting data of both psych oacoustical measurements and auditory evoked potentials the current study aims at neurophysiological correlates for the precedence effect in humans. In order to investigate whether the stimulus features or the perception of the stimulus is reflected on the ascending stages of the human auditory pathway, auditory brainstem responses (ABRs) as well as cortical auditory evoked potentials (CAEPs) using double click-pairs were recorded. Potentials were related to the results of the psychoacoustical data.
   ABRs to double click-pairs with lead-lag delays from 0 to 20 ms and interaural time differences (ITDs) in the lag click of 0 and 300 mu s show an emerging second wave V for lead-lag delays larger than 2 ms. The amplitudes of the first and second wave V are the same for a lead-lag delay of about 5 ms. For the lag-ITD stimuli the latency of the second wave V was prolonged by approximately ITD/2 compared to the stimuli without lag-ITD. As the amplitudes of the second wave V were not decreased for a lead-lag delay around 5 ms as could be expected from psychoacoustical measurements of the precedence effect, ABRs reflect stimulus features rather than the perceptive qualities of the stimulus.
   The mismatch negativity (MMN) component of the CAEP for double click-pairs was determined using a diotic standard and a deviant with an ITD of 800 mu s in the lag click. The comparison between the MMN components and the psychoacoustical data shows that the MMN is related to the perception of the stimulus, i.e., to the precedence effect.
   Generally, the findings of the present study suggest that the precedence effect is not a result of a poor sensitivity of the peripheral bottom-up processing. Rather, the precedence effect seems to be reflected by the MMN, i.e., cognitive processes on higher stages of the auditory pathway. (c) 2005 Elsevier B.V. All rights reserved.
C1 Carl Von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
RP Damaschke, J (reprint author), Carl Von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany.
EM joerg.damaschke@uni-oldenburg.de
CR Blauert J., 1997, SPATIAL HEARING PSYC
   BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413
   BURKARD R, 1991, J ACOUST SOC AM, V90, P1398, DOI 10.1121/1.401931
   CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802
   CORNELISSE LE, 1987, NEUROPSYCHOLOGIA, V25, P449, DOI 10.1016/0028-3932(87)90033-9
   EYSHOLDT U, 1982, AUDIOLOGY, V21, P242
   Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469
   Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199
   FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955
   Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339
   HEY M, 2001, THESIS U OLDENBURG
   HOCHSTER ME, 1981, NEUROPSYCHOLOGIA, V19, P49, DOI 10.1016/0028-3932(81)90043-9
   JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495
   Keller CH, 1996, J COMP PHYSIOL A, V178, P499
   LANG AH, 1990, PSYCHOPHYSIOLOGICAL, V1, P294
   Liebenthal E, 1999, J ACOUST SOC AM, V106, P291, DOI 10.1121/1.427057
   Liebenthal Einat, 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P181
   Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1285
   Litovsky RY, 2002, HEARING RES, V165, P177, DOI 10.1016/S0378-5955(02)00304-0
   Litovsky RY, 1998, J ACOUST SOC AM, V103, P3139, DOI 10.1121/1.423072
   Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
   Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223
   Litovsky RY, 2002, J NEUROPHYSIOL, V87, P976, DOI 10.1152/jn.00568.2001
   LITOVSKY RY, 2001, PHYSL PSYCHOPHYSICAL
   MOLLER AR, 1994, ELECTROEN CLIN NEURO, V92, P215, DOI 10.1016/0168-5597(94)90065-5
   MOLLER AR, 1982, ELECTROEN CLIN NEURO, V53, P612, DOI 10.1016/0013-4694(82)90137-7
   NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9
   Parham K, 1996, J NEUROPHYSIOL, V76, P17
   Riedel H., 2001, Zeitschrift fur Audiologie, V40
   Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8
   SABERI K, 1990, J ACOUST SOC AM, V87, P1732, DOI 10.1121/1.399422
   SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1
   Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4
   Tollin DJ, 2003, J NEUROPHYSIOL, V90, P2149, DOI 10.1152/jn.00381.2003
   WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275
   Wickesberg RE, 1996, J ACOUST SOC AM, V100, P1691, DOI 10.1121/1.416067
   WICKESBERG RE, 1990, J NEUROSCI, V10, P1762
   YIN TCT, 1994, J NEUROSCI, V14, P5170
   Zurek P M, 1980, J Acoust Soc Am, V67, P953
NR 39
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 157
EP 171
DI 10.1016/j.heares.2005.03.014
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400016
PM 15953525
ER

PT J
AU Lopez-Poveda, EA
   Plack, CJ
   Meddis, R
   Blanco, JL
AF Lopez-Poveda, EA
   Plack, CJ
   Meddis, R
   Blanco, JL
TI Cochlear compression in listeners with moderate sensorineural hearing
   loss
SO HEARING RESEARCH
LA English
DT Article
DE basilar membrane; cochlear compression; recovery from forward masking;
   hearing loss; inner hair cell; outer hair cell
ID BASILAR-MEMBRANE NONLINEARITY; GUINEA-PIG COCHLEA; PERIPHERAL
   COMPRESSION; CHINCHILLA COCHLEA; MOSSBAUER TECHNIQUE; RESPONSES; INNER;
   FREQUENCIES; MECHANICS; REGION
AB Psychophysical estimates of basilar membrane (BM) responses suggest that normal-hearing (NH) listeners exhibit constant compression for tones at the characteristic frequency (CF) across the CF range from 250 to 8000 Hz. The frequency region over which compression occurs is broadest for low CFs. This study investigates the extent that these results differ for three hearing-impaired (HI) listeners with sensorineural hearing loss. Temporal masking curves (TMCs) were measured over a wide range of probe (500-8000 Hz) and masker frequencies (0.5-1.2 times the probe frequency). From these, estimated BM response functions were derived and compared with corresponding functions for NH listeners. Compressive responses for tones both at and below CF occur for the three HI ears across the CF range tested. The maximum amount of compression was uncorrelated with absolute threshold. It was close to normal for two of the three HI ears, but was either slightly (at CFs <= 1000 Hz) or considerably (at CFs >= 4000 Hz) reduced for the third ear. Results are interpreted in terms of the relative damage to inner and outer hair cells affecting each of the HI ears. Alternative interpretations for the results are also discussed, some of which cast doubts on the assumptions of the TMC-based method and other behavioral methods for estimating human BM compression. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Salamanca, Inst Neurociencias Castilla & Leon, Salamanca 37007, Spain.
   Univ Essex, Dept Psychol, Colchester CO4 3SQ, Essex, England.
   Oticon Espana SA, Alcobendas 28108, Madrid, Spain.
   Soniotica SL, Albacete 02003, Spain.
RP Lopez-Poveda, EA (reprint author), Univ Salamanca, Inst Neurociencias Castilla & Leon, Ave Alfonso X El Sabio S-N, Salamanca 37007, Spain.
EM ealopezpoveda@usal.es
CR Bacon Sid P., 2004, VVolume 17, P107
   Cheatham MA, 2001, J ACOUST SOC AM, V110, P2034, DOI 10.1121/1.1397357
   DRGA V, 2003, 26 ANN MIDW RES M AS
   Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003
   Levitt H, 1971, J ACOUST SOC AM, V49, P466
   LIBERMAN MC, 1986, BASIC APPL ASPECTS N, P163
   Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838
   Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
   Nelson DA, 2004, J ACOUST SOC AM, V115, P2221, DOI 10.1121/1.1689341
   Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732
   Oxenham Andrew J., 2004, VVolume 17, P62
   Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
   Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852
   Patuzzi R., 1996, COCHLEA, P186
   PATUZZI R, 1983, J ACOUST SOC AM, V74, P1734, DOI 10.1121/1.390282
   Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812
   Plack CJ, 2000, J ACOUST SOC AM, V107, P501, DOI 10.1121/1.428318
   Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247
   Rhode WS, 1996, AUDIT NEUROSCI, V3, P101
   Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
   RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485
   Robles L, 2001, PHYSIOL REV, V81, P1305
   ROSENGARD PS, 2003, 26 ANN MIDW RES M AS
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
   Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23
   RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670
   Williams EJ, 2005, HEARING RES, V201, P44, DOI 10.1016/j.heares.2004.10.006
NR 29
TC 31
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 172
EP 183
DI 10.1016/j.heares.2005.03.015
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400017
PM 15953526
ER

PT J
AU Green, KMJ
   Julyan, PJ
   Hastings, DL
   Ramsden, RT
AF Green, KMJ
   Julyan, PJ
   Hastings, DL
   Ramsden, RT
TI Auditory cortical activation and speech perception in cochlear implant
   users: Effects of implant experience and duration of deafness
SO HEARING RESEARCH
LA English
DT Article
DE auditory cortex; cochlear implantation; cortical activation; positron
   emission tomography; speech perception performance
ID POSITRON-EMISSION-TOMOGRAPHY; SOUND STIMULATION; FUNCTIONAL-ACTIVITY;
   PET; CORTEX; BRAIN; PERFORMANCE; PREDICTORS; RESPONSES; LANGUAGE
AB This study aimed to investigate the relationship between outcome following cochlear implantation and auditory cortical activation. It also studied the effects of length of implant use and duration of deafness on the auditory cortical activations. Cortical activity resulting from auditory stimulation was measured using [F-18]FDG positron emission tomography. In a group of 18 experienced adult cochlear implant users, we found a positive correlation between speech perception and activations in both the primary and association auditory cortices. This correlation was present in a subgroup of experienced implant users but absent in a group of new implant users with similar speech perception abilities. There was a significant negative correlation between duration of deafness and auditory cortical activation. This study gives insights into the relationship between implant speech perception and auditory cortical activation and the influence of duration of preceding deafness and implant experience. (c) 2005 Elsevier B.V. All rights reserved.
C1 Manchester Royal Infirm, Dept Otolaryngol, Manchester, Lancs, England.
   Christie Hosp, NW Med Phys, Manchester, Lancs, England.
   Christie Hosp, Manchester PET Ctr, Manchester, Lancs, England.
RP Green, KMJ (reprint author), Manchester Royal Infirm, Dept Otolaryngol, Manchester, Lancs, England.
EM kmjgreen@rcsed.ac.uk
CR ALAVI A, 1981, SEMIN NUCL MED, V11, P24, DOI 10.1016/S0001-2998(81)80050-5
   Albu S., 1997, Acta Oto-Rhino-Laryngologica Belgica, V51, P11
   Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078
   Blamey P, 1996, Audiol Neurootol, V1, P293
   BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342
   DEGUINE O, 1993, ADV OTO-RHINO-LARYNG, V48, P142
   Frost JA, 1999, BRAIN, V122, P199, DOI 10.1093/brain/122.2.199
   Fujiki Nobuya, 1999, Auris Nasus Larynx, V26, P229, DOI 10.1016/S0385-8146(99)00009-7
   Fujiki N, 1998, ACTA OTO-LARYNGOL, V118, P797, DOI 10.1080/00016489850182468
   Fujiki N, 2000, ADV OTO-RHINO-LARYNG, V57, P32
   GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909
   Gibson WPR, 2000, ADV OTO-RHINO-LARYNG, V57, P250
   Giraud AL, 2001, AUDIOL NEURO-OTOL, V6, P381, DOI 10.1159/000046847
   Grafton S T, 2000, Adv Neurol, V83, P87
   GREENBERG JH, 1981, SCIENCE, V212, P678, DOI 10.1126/science.6971492
   HERZOG H, 1991, J COMPUT ASSIST TOMO, V15, P369, DOI 10.1097/00004728-199105000-00005
   Hirano S, 1997, EXP BRAIN RES, V113, P75, DOI 10.1007/BF02454143
   Honjo I, 2000, ADV OTO-RHINO-LARYNG, V57, P42
   HOWARD D, 1992, BRAIN, V115, P1769, DOI 10.1093/brain/115.6.1769
   ITO J, 1993, ADV OTO-RHINO-LARYNG, V48, P29
   Jancke L, 2002, HEARING RES, V170, P166, DOI 10.1016/S0378-5955(02)00488-4
   Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027
   Kim CS, 1997, ADV OTO-RHINO-LARYNG, V52, P24
   Makhdoum MJA, 1997, J LARYNGOL OTOL, V111, P1008
   Mawman DJ, 2004, CLIN OTOLARYNGOL, V29, P331, DOI 10.1111/j.1365-2273.2004.00839.x
   Naito Y, 2000, HEARING RES, V143, P139, DOI 10.1016/S0378-5955(00)00035-6
   Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426
   NAITO Y, 1995, COGNITIVE BRAIN RES, V2, P207, DOI 10.1016/0926-6410(95)90009-8
   Okazawa H, 1996, BRAIN, V119, P1297, DOI 10.1093/brain/119.4.1297
   PHELPS ME, 1979, ANN NEUROL, V6, P371, DOI 10.1002/ana.410060502
   Rorden C, 2000, BEHAV NEUROL, V12, P191
   ITO J, 1993, ANN OTO RHINOL LARYN, V102, P797
   Salvi RJ, 2002, HEARING RES, V170, P96, DOI 10.1016/S0378-5955(02)00386-6
   SHEA JJ, 1990, LARYNGOSCOPE, V100, P223
   Suarez H, 1999, ACTA OTO-LARYNGOL, V119, P239
   Summerfield A Q, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P105
   Suzuki M, 2002, HEARING RES, V163, P37, DOI 10.1016/S0378-5955(01)00367-7
   Talairach J., 1988, COPLANAR STEREOTAXIC
   van Dijk JE, 1999, AUDIOLOGY, V38, P109
   Waltzman S B, 1995, Ann Otol Rhinol Laryngol Suppl, V165, P15
   Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645
   Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3
NR 42
TC 38
Z9 43
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 184
EP 192
DI 10.1016/j.heares.2005.03.016
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400018
PM 15953527
ER

PT J
AU Choi, CH
   Oghalai, JS
AF Choi, CH
   Oghalai, JS
TI Predicting the effect of post-implant cochlear fibrosis on residual
   hearing
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; intracochlear scarring; residual hearing; passive
   cochlear model; damping
ID IMPLANT PERFORMANCE; ELECTRODE ARRAY; DEAFENED ADULTS; HAIR-CELLS;
   MODEL; TRANSDUCTION; RECOGNITION
AB Intracochlear scarring is a well-described sequela of cochlear implantation. We developed a mathematical model of passive cochlear mechanics to predict the impact that this might have upon residual acoustical hearing after implantation. The cochlea was modeled using lumped impedance terms for scala vestibuli (SV), scala tympani (ST), and the cochlear partition (Cl?). The damping of ST and CP was increased in the basal one half of the cochlea to simulate the effect of scar tissue. We found that increasing the damping of the ST predominantly reduced basilar membrane vibrations in the apex of the cochlea while increasing the damping of the CP predominantly reduced basilar membrane vibrations in the base of the cochlea. As long as intracochlear scarring continues to occur with cochlear implantation, there will be limitations on hearing preservation. Newer surgical techniques and electrode technologies that do not result in as much scar tissue formation will permit improved hearing preservation. (c) 2005 Elsevier B.V. All rights reserved.
C1 Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, Houston, TX 77030 USA.
RP Oghalai, JS (reprint author), Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, 1 Baylor Plaza,NA 102, Houston, TX 77030 USA.
EM cchoi@bcm.tmc.edu; jso@bcm.tmc.edu
CR Alexiades G, 2001, LARYNGOSCOPE, V111, P1608, DOI 10.1097/00005537-200109000-00022
   ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198
   Araki S, 2000, OTOLARYNG HEAD NECK, V122, P425, DOI 10.1016/S0194-5998(00)70060-X
   Bekesy G., 1960, EXPT HEARING
   BOGGESS WJ, 1989, LARYNGOSCOPE, V99, P1002
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   CHOI CH, 2004, 27 ANN MIDW RES M AS, V27, P346
   Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P22
   DEBOER E, 1996, COCHLEA, V8, P258
   Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012
   Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D
   Hodges A, 1997, AM J OTOL, V18, P179
   HUDSPETH AJ, 1982, J NEUROSCI, V2, P1
   Ketten D R, 1998, Ann Otol Rhinol Laryngol Suppl, V175, P1
   Miyamoto RT, 1997, AM J OTOL, V18, P60
   Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
   NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674
   NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091
   Richter B, 2002, J LARYNGOL OTOL, V116, P507
   RIZER FM, 1988, OTOLARYNG HEAD NECK, V98, P203
   Rubinstein JT, 1999, AM J OTOL, V20, P445
   Skarzynski H, 2002, ORL J OTO-RHINO-LARY, V64, P247, DOI 10.1159/000064134
   Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013
   Wenzel GI, 2004, LASER SURG MED, V35, P174, DOI 10.1002/lsm.20091
NR 24
TC 27
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 193
EP 200
DI 10.1016/j.heares.2005.03.018
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400019
PM 15953528
ER

PT J
AU Kim, TS
   Nakagawa, T
   Kitajiri, S
   Endo, T
   Takebayashi, S
   Iguchi, F
   Kita, T
   Tamura, T
   Ito, J
AF Kim, TS
   Nakagawa, T
   Kitajiri, S
   Endo, T
   Takebayashi, S
   Iguchi, F
   Kita, T
   Tamura, T
   Ito, J
TI Disruption and restoration of cell-cell junctions in mouse vestibular
   epithelia following aminoglycoside treatment
SO HEARING RESEARCH
LA English
DT Article
DE inner ear; adherens junction; tight junction; aminoglycoside
   ototoxicity; E-cadherin
ID EAR SENSORY EPITHELIA; MAMMALIAN INNER-EAR; E-CADHERIN; BETA-CATENIN;
   HAIR-CELLS; REGENERATIVE PROLIFERATION; ADHESION MOLECULE; 2 MODES;
   ORGAN; GENTAMICIN
AB The intracellular junction complexes, which consist of tight junctions (TJ), adherens junctions (AJ), and desmosomes, mediate cell-cell adhesion in epithelial cells. E-cadherin, which is a major component of AJ, plays a role not only in the maintenance of cell-cell junctions, but also in repressing cell proliferation. In this study, we examined changes of E-cadherin expression in mouse vestibular epithelia following local application of neomycin using immunohistochemistry and western blotting, and morphology of cell-cell junctions by transmission electron microscopy (TEM). Immunohistochemistry and western blotting revealed down-expression of E-cadherin and its consecutive recovery. TEM demonstrated temporal disruption of cell-cell junctions. Morphology of cell-cell junctions was more rapidly restored than recovery of E-cadherin expression. Transient disruption of cell-cell junctions and down-expression of E-cadherin is a rational response for the deletion of dying hair cells, and may be associated with a limited capacity for cell proliferations in mammalian vestibular epithelia following their rapid restoration. (c) 2005 Elsevier B.V. All rights reserved.
C1 Kyoto Univ, Grad Sch med, Dept Otolaryngol Head & Neck Surg, Sakyo Ku, Kyoto 6068507, Japan.
   Kyoto Univ, Dept Cell Biol, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan.
   Kyoto Univ, Grad Sch Med, Horizontal Med Res Org, Sakyo Ku, Kyoto, Japan.
   Japan Sci & Technol Corp, Solut Oriented Res Sci & Technol, Sakyo Ku, Kyoto 6068507, Japan.
RP Nakagawa, T (reprint author), Kyoto Univ, Grad Sch med, Dept Otolaryngol Head & Neck Surg, Sakyo Ku, 54 Shogoin, Kyoto 6068507, Japan.
EM kim@ent.kuhp.kyoto-u.ac.jp; tnakagawa@ent.kuhp.kyoto-u.ac.jp
CR BIRCHMEIER W, 1994, BBA-REV CANCER, V1198, P11, DOI 10.1016/0304-419X(94)90003-5
   Ciruna B, 2001, DEV CELL, V1, P37, DOI 10.1016/S1534-5807(01)00017-X
   Conacci-Sorrell M, 2003, J CELL BIOL, V163, P847, DOI 10.1083/jcb.200308162
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405
   Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003
   ENGSTROM H, 1961, Acta Otolaryngol Suppl, V163, P30
   FARQUHAR MG, 1963, J CELL BIOL, V17, P375, DOI 10.1083/jcb.17.2.375
   FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
   FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
   Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X
   GUMBINER B, 1988, J CELL BIOL, V107, P1575, DOI 10.1083/jcb.107.4.1575
   Hackett L, 2002, EXP CELL RES, V278, P19, DOI 10.1006/excr.2002.5574
   HEASMAN J, 1994, CELL, V79, P791, DOI 10.1016/0092-8674(94)90069-8
   Hirose K, 2004, J COMP NEUROL, V470, P164, DOI 10.1002/cne.11046
   Kelley MW, 2003, CURR TOP DEV BIOL, V57, P321, DOI 10.1016/S0070-2153(03)57011-9
   KIM TS, 2004, ACTA OTO-LARYNGOL, V551, P22
   Kim TS, 2002, NEUROSCI LETT, V329, P173, DOI 10.1016/S0304-3940(02)00657-2
   Lee J. E., 2004, ACTA OTO-LARYNGOL, V551, P69
   Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5
   Li L., 1995, AUDIT NEUROSCI, V1, P111
   LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307
   MEITELES LZ, 1994, HEARING RES, V79, P26, DOI 10.1016/0378-5955(94)90124-4
   Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2
   Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303
   Nelson WJ, 2004, SCIENCE, V303, P1483, DOI 10.1126/science.1094291
   OESTERLE EC, 2003, J COMP NEUROL, V18, P177
   Ogata Y, 1999, HEARING RES, V133, P53, DOI 10.1016/S0378-5955(99)00057-X
   RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307
   Sanson B, 1996, NATURE, V383, P627, DOI 10.1038/383627a0
   Simonneau L, 2003, J COMP NEUROL, V459, P113, DOI 10.1002/cne.10604
   Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3
   TAKEBAYASHI S, 2004, BETA CATENIN DISTRIB
   TAKEICHI M, 1991, SCIENCE, V251, P1451, DOI 10.1126/science.2006419
   Tsukita Shoichiro, 1992, Current Opinion in Cell Biology, V4, P834, DOI 10.1016/0955-0674(92)90108-O
   Vleminckx K, 1999, BIOESSAYS, V21, P211, DOI 10.1002/(SICI)1521-1878(199903)21:3<211::AID-BIES5>3.0.CO;2-P
   WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285
   Whitlon DS, 1999, J NEUROCYTOL, V28, P955, DOI 10.1023/A:1007038609456
   WHITLON DS, 1993, J NEUROCYTOL, V22, P1030, DOI 10.1007/BF01235747
   YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152
   Zheng JL, 1997, J NEUROSCI, V17, P8270
   Zheng JL, 1999, J NEUROCYTOL, V28, P901, DOI 10.1023/A:1007078307638
   Zheng JL, 1999, J NEUROSCI, V19, P2161
NR 43
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 201
EP 209
DI 10.1016/j.heares.2005.03.017
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400020
PM 15953529
ER

PT J
AU Carlyon, RP
   van Wieringen, A
   Deeks, JM
   Long, CJ
   Lyzenga, J
   Wouters, J
AF Carlyon, RP
   van Wieringen, A
   Deeks, JM
   Long, CJ
   Lyzenga, J
   Wouters, J
TI Effect of inter-phase gap on the sensitivity of cochlear implant users
   to electrical stimulation
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; thresholds; inter-phase gap
ID PSYCHOPHYSICAL DETECTION THRESHOLDS; ACROSS-SPECIES COMPARISONS;
   AUDITORY-NERVE; BALANCED STIMULI; INNER-EAR; SINGLE; DURATION;
   PERCEPTION; RESPONSES; MODEL
AB Human behavioral thresholds for trains of biphasic pulses applied to a single channel of Nucleus CI24 and LAURA cochlear implants were measured as a function of inter-phase gap (IPG). Experiment 1 used bipolar stimulation, a 100-pps pulse rate, and a 400-ms stimulus duration. In one condition, the two phases of each pulse had opposite polarity. Thresholds continued to drop by 910 dB as IPG was increased from near zero to the longest value tested (2900 mu s for CI24, 4900 mu s for LAURA). This time course is much longer than reported for single-cell recordings from animals. In a second condition, the two phases of each pulse had the same polarity, which alternated from pulse to pulse. Thresholds were independent of IPG, and similar to those in condition 1 at IPG=4900 mu s. Experiment 2 used monopolar stimulation. One condition was similar to condition 1 of experiment 1, and thresholds also dropped up to the longest IPG studied (2900 mu s). This also happened when the pulse rate was reduced to 20 pps, and when only a single pulse was presented on each trial. Keeping IPG constant at 8 mu s and adding an extra biphasic pulse x ms into each period produced thresholds that were roughly independent of x, indicating that the effect of IPG in the other conditions was not due to a release from refractoriness at sites central to the auditory nerve. Experiment 3 measured thresholds at three IPGs, which were less than, equal to, and more than one half of the interval between successive pulses. Thresholds were lowest at the intermediate IPG. The results of all experiments could be fit by a linear model consisting of a lowpass filter based on the function relating threshold to the frequency of sinusoidal electrical stimulation. The data and model have implications for reducing the power consumption of cochlear implants. (c) 2005 Elsevier B.V. All rights reserved.
C1 MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England.
   Katholieke Univ Leuven, Lab Exp ORL, B-3000 Louvain, Belgium.
RP Carlyon, RP (reprint author), MRC, Cognit & Brain Sci Unit, 15 Chaucer Rd, Cambridge CB2 2EF, England.
EM bob.carlyon@mrc-cbu.cam.ac.uk
RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015
CR GLASS I, 1983, HEARING RES, V12, P223, DOI 10.1016/0378-5955(83)90108-9
   KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714
   Laneau J, 2005, J NEUROSCI METH, V142, P131, DOI 10.1016/j.jneumeth.2004.08.015
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1
   McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316
   Miller AL, 1999, HEARING RES, V134, P89, DOI 10.1016/S0378-5955(99)00072-6
   Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1
   Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X
   Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6
   MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U
   OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108
   PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6
   Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2
   SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1
   SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
   SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3
   SHANNON RV, 1993, COCHLEAR IMPLANTS AU, P357
   Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
   Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621
   SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421
   SMITH DW, 1995, J ACOUST SOC AM, V98, P211, DOI 10.1121/1.413755
   SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310
   SWANSON B, 1994, INT COCHL IMPL SPEEC
   TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
   van Wieringen A, 2005, HEARING RES, V200, P73, DOI 10.1016/j.heares.2004.08.006
   VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7
NR 27
TC 25
Z9 26
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 210
EP 224
DI 10.1016/j.heares.2005.03.021
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400021
PM 15953530
ER

PT J
AU Spicer, SS
   Schulte, BA
AF Spicer, SS
   Schulte, BA
TI Pathologic changes of presbycusis begin in secondary processes and
   spread to primary processes of strial marginal cells
SO HEARING RESEARCH
LA English
DT Article
DE ultrastructure; stria vascularis; aging; mitochondria; oxidation;
   deafness
ID AGE-RELATED-CHANGES; SENSORINEURAL HEARING-LOSS; SPIRAL LIGAMENT
   PATHOLOGY; AUDITORY-NERVE FIBERS; MOUSE INNER-EAR; COCHLEAR
   DEGENERATION; INTERMEDIATE CELLS; GERBIL COCHLEA; ION-TRANSPORT;
   VASCULARIS
AB Strial atrophy underlying age-related hearing loss was investigated by ultrastructural comparisons in young and senescent gerbils. In young animals strial marginal cells (MCs) projected primary processes which gave rise to and were connected by numerous ultrathin secondary processes. In 30-36-month-old gerbils, the MC secondary processes degenerated into lamellar or amorphous profiles as the first manifestation of strial atrophy. Some short primary processes shorn of projecting and connecting secondaries coalesced to form mitochondria-filled lobules. Strial involution appeared to progress with transformation of the degenerating processes and lobules into permanent residues of laminated amorphous substance. A second apparently unique form of degeneration was observed in which areas filled with homogeneous granular material replaced the processes that comprise the basal half of the normal MC. An abrupt line of transition separated this structureless degradation product below from the viable upper half of the MC. The terminally involuted stria consisted of MC bodies lining scala media, along with vestigial remnants of MC processes, nearby normal appearing intermediate cells (ICs) and unaltered basal cells. The only age-related change in ICs involved incorporation of melanosomes into very large, matrix-filled lysosomes. A profile of one MC in apparent necrosis provided evidence for an infrequent occurrence of MC death. These data support a progression of pathologic changes beginning with the demise of MC secondary processes and ending with ablation of secondary and primary processes. The initial injury apparently occurs as a result of oxidative self-damage to mitochondria in the MCs primary processes, leading to insufficient ATP for the Na, K-ATPase of the secondary processes. The reduced ATP level may cause cytotoxic alteration of the cytosolic Na+/K+ ratio first in MC secondary processes and later in the primaries, with consequent degeneration of these structures. (c) 2005 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA.
RP Spicer, SS (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,suite 309,Box 250908, Charleston, SC 29425 USA.
EM schulteb@musc.edu
CR Beckman KB, 1998, PHYSIOL REV, V78, P547
   BORGERS M, 1993, CARDIOVASC PATHOL, V2, P237, DOI 10.1016/1054-8807(93)90030-6
   CABLE J, 1991, PIGM CELL RES, V4, P87, DOI 10.1111/j.1600-0749.1991.tb00320.x
   CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3
   Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9
   GRATTON MA, 1995, HEARING RES, V82, P44
   Hequembourg S, 2001, JARO, V2, P118
   JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P364
   KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2
   KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2
   Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4
   MARCUS DC, 2002, AM J PHYSIOL-CELL PH, V282, P403
   MILLS JH, 2003, OTORHINOLARYNGOLOGY, pCH21
   Mills J.H., 2001, NOISE INDUCED HEARIN, P497
   MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7
   NADOL JB, 1980, AGING COMMUNICATION, P63
   NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981
   OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2
   PAULER M, 1988, LARYNGOSCOPE, V98, P754
   Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3
   SALT AN, 1987, LARYNGOSCOPE, V97, P984
   SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9
   Schmiedt R.A, 1993, SENSORY RES MULTIMOD
   SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6
   Schmiedt RA, 1992, NOISE INDUCED HEARIN, P246
   SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1
   SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777
   SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369
   SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0
   SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K
   Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   Spicer SS, 2003, ANAT REC PART A, V271A, P342, DOI 10.1002/ar.a.10041
   Spicer SS, 1997, HEARING RES, V111, P93, DOI 10.1016/S0378-5955(97)00097-X
   Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6
   Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006
   TAKAHASH.T, 1971, ANN OTO RHINOL LARYN, V80, P721
   Takeuchi S, 2000, BIOPHYS J, V79, P2572
   TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V
   Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4
   Ueda N, 1998, LARYNGOSCOPE, V108, P580, DOI 10.1097/00005537-199804000-00022
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6
NR 43
TC 31
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 225
EP 240
DI 10.1016/j.heares.2005.03.022
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400022
PM 15953531
ER

PT J
AU van Ruijven, MWM
   de Groot, JCMJ
   Klis, SFL
   Smoorenburg, GF
AF van Ruijven, MWM
   de Groot, JCMJ
   Klis, SFL
   Smoorenburg, GF
TI The cochlear targets of cisplatin: An electrophysiological and
   morphological time-sequence study
SO HEARING RESEARCH
LA English
DT Article
DE cisplatin ototoxicity; guinea pig; cochlea; spiral ganglion; organ of
   Corti; histology; electrocochlcography
ID ALBINO GUINEA-PIG; INDUCED HEARING-LOSS; STRIA VASCULARIS; SPIRAL
   GANGLION; CIS-DIAMMINEDICHLOROPLATINUM; INDUCED OTOTOXICITY; ACTH((4-9))
   ANALOG; RECOVERY; RAT; PROTECTS
AB Cisplatin ototoxicity has at least three major targets in the cochlea: the stria vascularis, the organ of Corti, and the spiral ganglion. This study aims to differentiate between these three targets. In particular, we address the question of whether the effects at the level of the organ of Corti and spiral ganglion are mutually dependent or whether they develop in parallel. This question was approached by studying the ototoxic effects while they develop electrophysiologically and comparing these to earlier presented histological data [Van Ruijven et al., 2004. Hear. Res. 197, 44-54]. Guinea pigs were treated with intraperitoneal injections of cisplatin at a dose of 2 mg/kg/day for either 4, 6, or 8 consecutive days. This time sequence has not revealed any evidence of one ototoxic process triggering another. Therefore, we have to stay with the conclusion of Van Ruijven et al. (2004) that both processes run in parallel. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Utrecht, Med Ctr, Hearing Res Labs, Dept Otorhinolaryngol, NL-3508 GA Utrecht, Netherlands.
RP van Ruijven, MWM (reprint author), Univ Utrecht, Med Ctr, Hearing Res Labs, Dept Otorhinolaryngol, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands.
EM m.vanruijven@kmb.azu.nl
CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7
   Cardinaal RM, 2004, ACTA OTO-LARYNGOL, V124, P144, DOI 10.1080/00016480310015164
   Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9
   deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4
   DEOLIVEIRA JAA, 1989, AUDIOVESTIBULAR TOXI, V2, P181
   Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005
   Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2
   GAIBAIZADEH R, 1997, ACTA OTOLARYNGOL STO, V117, P232
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515
   HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23
   HAMERS FPT, 1997, NEUROPROTECTION CNS, P513
   Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4
   Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2
   Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9
   Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037
   Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7
   KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275
   KOMUNE S, 1995, ANN OTO RHINOL LARYN, V104, P149
   KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9
   LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1
   Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6
   NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876
   O'Leary SJ, 2002, ANTICANCER RES, V22, P1525
   O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315
   SCHWEITZER VG, 1993, LARYNGOSCOPE S59, V103
   Sie KCY, 1997, OTOLARYNG HEAD NECK, V116, P585, DOI 10.1016/S0194-5998(97)70232-8
   Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0
   Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4
   Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6
   Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9
   van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014
   Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1
   Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x
   ZHENG JL, 1995, J NEUROSCI, V15, P5079
NR 40
TC 46
Z9 49
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 241
EP 248
DI 10.1016/j.heares.2005.03.023
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400023
PM 15953532
ER

PT J
AU Jedrzejczak, WW
   Blinowska, KJ
   Konopka, W
AF Jedrzejczak, WW
   Blinowska, KJ
   Konopka, W
TI Time-frequency analysis of transiently evoked otoacoustic emissions of
   subjects exposed to noise
SO HEARING RESEARCH
LA English
DT Article
DE transiently evoked otoacoustic emissions; noise exposure; time-frequency
   distribution; adaptive approximations
ID NORMAL-HEARING; NORMAL EARS; CLICK
AB Transiently evoked otoacoustic emissions (TEOAE) were measured from 124 ears from two subject groups: healthy subjects (62 ears), and workers (62 ears) exposed to noise of jet engines. The recordings were analyzed using the method of adaptive approximations based on a matching pursuit (MP) algorithm. The method allows for description of the signal components in terms of their amplitude, frequency, latency, and time-span (or duration). The purpose of this work was to determine the repeatability and usefulness of these parameters in studies of hearing impairment of populations exposed to potentially harmful noise. Good distinction between the two datasets was achieved in all investigated frequency bands when amplitude was used as a discrimination parameter. Also latency was affected in frequency bands starting at 2000 Hz, while the time-span parameter associated with the duration of the waveform was less influenced by noise. (c) 2005 Elsevier B.V. All rights reserved.
C1 Warsaw Univ, Inst Phys Expt, Dept Biomed Phys, PL-00681 Warsaw, Poland.
   Med Univ Lodz, Dept Otolaryngol, PL-90549 Lodz, Poland.
RP Blinowska, KJ (reprint author), Warsaw Univ, Inst Phys Expt, Dept Biomed Phys, Ul Hoza 69, PL-00681 Warsaw, Poland.
EM katarzyna.blinowska@fuw.edu.pl
RI Konopka, Wieslaw/P-2401-2014
CR Jedrzejczak WW, 2004, J ACOUST SOC AM, V115, P2148, DOI 10.1121/1.1690077
   Lucertini M, 2002, J ACOUST SOC AM, V111, P928
   Moleti A, 2002, HEARING RES, V174, P290, DOI 10.1016/S0378-5955(02)00703-7
   NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750
   Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794
   PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3
   PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547
   Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5
NR 10
TC 34
Z9 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 249
EP 255
DI 10.1016/j.heares.2005.03.024
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400024
PM 15953533
ER

PT J
AU Soeta, Y
   Nakagawa, S
   Tonoike, M
AF Soeta, Y
   Nakagawa, S
   Tonoike, M
TI Auditory evoked magnetic fields in relation to iterated rippled noise
SO HEARING RESEARCH
LA English
DT Article
DE magnetoencephalography; auditory evoked response; Nlm; iterated rippled
   noise; autocorrelation function
ID PITCH STRENGTH; TONOTOPIC ORGANIZATION; COMPLEX SOUNDS; HUMAN BRAIN;
   CORTEX; REPRESENTATION; MAGNETOENCEPHALOGRAPHY; SENSITIVITY; RECORDINGS;
   PERIPHERY
AB Auditory evoked magnetic fields in relation to iterated rippled noise (IRN) were examined by magnetoencephalography (MEG). IRN was used as the sound stimulus to control the peak amplitude of the autocorrelation function of the sound. The IRN was produced by a delay-and-add algorithm applied to bandpass noise that was filtered using fourth-order Butterworth filters between 4002200 Hz. All sound signals had the same sound pressure level. The stimulus duration was 0.5 s, with rise and fall ramps of 10 ms. Ten normal-hearing subjects took part in the study. Auditory evoked fields were recorded using a 122 channel whole-head magnetometer in a magnetically shielded room. The results showed that the peak amplitude of N1m, which was found above the left and right temporal lobes around 100 ms after the stimulus onset, increased with increase in the number of iterations of the IRN. The latency and estimated equivalent current dipole (ECD) locations of N1m did not show any systematic variation as a function of the number of iterations. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
RP Soeta, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
CR Ando Y., 1998, ARCHITECTURAL ACOUST
   Ando Y, 1999, COMPUTATIONAL ACOUST, P63
   BILSEN FA, 1966, ACUSTICA, V17, P295
   Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   ELBERLING C, 1982, ACTA NEUROL SCAND, V65, P553
   FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9
   Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x
   Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459
   GRIFFITHS TD, 1998, NAT NEUROSCI, V1, P421
   HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413
   KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60
   KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163
   Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765
   Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148
   LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
   MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725
   PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4
   PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8
   PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
   PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456
   ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770
   Sato S, 2002, J SOUND VIB, V250, P47, DOI 10.1006/jsvi.2001.3888
   Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x
   Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
   Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012
   WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592
   YOST WA, 1979, J ACOUST SOC AM, V66, P400, DOI 10.1121/1.382942
   Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593
   Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
NR 30
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 256
EP 261
DI 10.1016/j.heares.2005.03.026
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400025
PM 15953534
ER

PT J
AU Iida, K
   Tsumoto, K
   Ikeda, K
   Kumagai, I
   Kobayashi, T
   Wada, H
AF Iida, K
   Tsumoto, K
   Ikeda, K
   Kumagai, I
   Kobayashi, T
   Wada, H
TI Construction of an expression system for the motor protein prestin in
   Chinese hamster ovary cells
SO HEARING RESEARCH
LA English
DT Article
DE outer hair cell; prestin; Chinese hamster ovary cell; cloning; stable
   expression
ID OUTER HAIR-CELLS; MECHANICAL RESPONSES; COCHLEAR AMPLIFIER; VOLTAGE
   SENSOR; MEMBRANE; CAPACITANCE; MOTILITY
AB The electromotility of outer hair cells (OHCs) is believed to be a major factor in cochlear amplification that enables the high sensitivity of hearing in mammals. This motility is thought to be based on voltage-dependent conformational changes of a motor protein embedded in the lateral wall of the OHC. In 2000, this motor protein was identified and termed prestin. To obtain knowledge on the function of prestin, research at the molecular level is necessary. For this purpose, a method of obtaining a large amount of prestin is required. In this study, an attempt was therefore made to construct an expression system for prestin. Prestin cDNA was introduced into Escherichia coli (E. coli), insect cells and Chinese hamster ovary (CHO) cells, and the expression of prestin was examined by Western blotting. As CHO cells expressed prestin well, we generated prestin-expressing cell lines using CHO cells by limiting dilution cloning. The stable expression and the activity of prestin in generated cell lines were then confirmed. Finally, to obtain prestin from these cell lines efficiently, culture conditions of the cells were examined, and it was clarified that cells should be cultured in serum-free medium and harvested around 48 h after passage. (c) 2005 Elsevier B.V. All rights reserved.
C1 Tohoku Univ, Detp Bioengn & Robot, Sendai, Miyagi 9808579, Japan.
   Tohoku Univ, Dept Biomol Engn, Sendai, Miyagi 9808579, Japan.
   Juntendo Univ, Sch Med, Dept Otorhinolaryngol, Bunkyo Ku, Tokyo 1138421, Japan.
   Tohoku Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Sendai, Miyagi 9808575, Japan.
RP Wada, H (reprint author), Tohoku Univ, Detp Bioengn & Robot, 6-6-01 Aoba Yama, Sendai, Miyagi 9808579, Japan.
EM wada@cc.mech.tohoku.ac.jp
CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   AVGERINOS GC, 1990, BIO-TECHNOL, V8, P54, DOI 10.1038/nbt0190-54
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   DALLOS P, 1992, J NEUROSCI, V12, P4575
   FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870
   Frolenkov GI, 2000, J NEUROSCI, V20, P5940
   HUANG GJ, 1993, BIOPHYS J, V65, P2228
   KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498
   Matsuda K, 2004, J NEUROCHEM, V89, P928, DOI 10.1111/j.1471-4159.2004.02377.x
   NEHER E, 1982, P NATL ACAD SCI-BIOL, V79, P6712, DOI 10.1073/pnas.79.21.6712
   Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
   SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
   Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x
   SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X
   Wu XD, 2004, MOL BRAIN RES, V126, P30, DOI 10.1016/j.molbrainres.2004.03.020
   ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032
NR 20
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 262
EP 270
DI 10.1016/j.heares.2005.03.027
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400026
PM 15953535
ER

PT J
AU Liu, YX
   Li, XP
   Ma, CS
   Liu, JX
   Lu, H
AF Liu, YX
   Li, XP
   Ma, CS
   Liu, JX
   Lu, H
TI Salicylate blocks L-type calcium channels in rat inferior colliculus
   neurons
SO HEARING RESEARCH
LA English
DT Article
DE calcium currents; inferior colliculus; patch clamp; salicylate; tinnitus
ID HIPPOCAMPAL-NEURONS; CA2+ CHANNELS
AB To investigate the effects of the tinnitus inducer sodium salicylate on L-type voltage-gated calcium channels, we studied freshly (-)dissociated inferior colliculus neurons of rats by the whole-cell voltage clamp method. Salicylate's blocking of L-type calcium Channels was concentration dependent, and the IC50 value of salicylate was estimated to be 1.99 mM. An amount of 1 mM salicylate significantly shifted the steady-state inactivation curve of L-type calcium channels about 9mV in the hyperpolarizing direction and significantly delayed calcium channel recovery. Our results suggest that salicylate's blocking of L-type calcium channels may contribute to salicylate-induced tinnitus by decreasing GABA release in the inferior colliculus. (c) 2005 Elsevier B.V. All rights reserved.
C1 Peking Univ, Third Hosp, Dept Otorhinolaryngol, Beijing 100083, Haidian Dist, Peoples R China.
   Hebei Med Univ, Dept Neurobiol, Shijiazhuang 050017, Peoples R China.
   Hebei Med Univ, Hosp 2, Dept Otorhinolaryngol, Shijiazhuang 050000, Peoples R China.
RP Li, XP (reprint author), Peking Univ, Third Hosp, Dept Otorhinolaryngol, 49 Huayuan Rd, Beijing 100083, Haidian Dist, Peoples R China.
EM liuyanxing75@sohu.com; drlixuepei@sohu.com
CR Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1
   BRUMMETT RE, 1995, MECH TINNITUS, P7
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S
   GRAHAM JDP, 1948, Q J MED, V17, P153
   JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004
   JASTREBOFF PJ, 1991, TINNITUS 91, P109
   JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050
   Jensen K, 1999, J NEUROPHYSIOL, V81, P1225
   Jensen K, 2001, NAT NEUROSCI, V4, P975, DOI 10.1038/nn722
   Liu SQJ, 1998, J NEUROSCI, V18, P8758
   Liu YX, 2004, HEARING RES, V193, P68, DOI 10.1016/j.heares.2004.03.006
   Liu YX, 2004, NEUROSCI LETT, V369, P115, DOI 10.1016/j.neulet.2004.07.037
   Marrion NV, 1998, NATURE, V395, P900, DOI 10.1038/27674
   Murakami N, 2002, BRAIN RES, V951, P121, DOI 10.1016/S0006-8993(02)03148-7
   MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483
   N'Gouemo P, 2003, NEUROSCIENCE, V120, P815, DOI 10.1016/S0306-4522(03)00323-3
   N'Gouemo P, 2000, NEUROSCIENCE, V96, P753, DOI 10.1016/S0306-4522(00)00006-3
   PENNER MJ, 1966, CLIN ASPECTS HEARING, P258
   WESTENBROEK RE, 1990, NATURE, V347, P281, DOI 10.1038/347281a0
NR 20
TC 20
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 271
EP 276
DI 10.1016/j.heares.2005.03.028
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400027
PM 15953536
ER

PT J
AU Yang, TH
   Young, YH
AF Yang, TH
   Young, YH
TI Click-evoked myogenic potentials recorded on alert guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE guinea pigs; vestibular evoked myogenic potential; clip electrode;
   caloric nystagmus
ID NECK; RESPONSES; MUSCLES; RAT
AB The aim of this study was to establish an animal model of acoustically evoked vestibulo-collie reflex using guinea pigs. A special clamp was applied to restrain the head and body of the guinea pigs, but leaving its four legs free. Each animal underwent vestibular evoked inyogenic potential (VEMP) and caloric tests using clip electrode method without general anesthesia or decerebrate surgery. The response rates for the myogenic potentials on the neck of guinea pigs using 100, 90, 80 and 70 dB monaural acoustic stimulation with unilateral recording were 100%, 62%, 50'% and 0%, respectively. The mean latencies of the positive and negative peaks for the myogenic potentials were 7.24 +/- 0.49 and 9.15 +/- 10.47 ms, 7.09 +/- 0.43 and 9.28 +/- 0.42 ins, as well as 7.03 +/- 0.59 and 9.14 +/- 0.56 ms, when elicited by 100, 90 and 80 dB acoustic stimulation, respectively. The median (minimum-maximum) peak-to-peak amplitudes were 11.93 (6.14-16.86), 10.99 (5.28-19.40), and 11.17 (5.02-20.72) mu V, when elicited by 100, 90 and 80 dB acoustic stimulation, respectively. We found no significant relationship between the stimulus intensity and the mean latencies or peak-to-peak amplitude of the myogenic potentials in guinea pigs. For those treated with gentamicin unilaterally, all guinea pigs showed absent caloric responses on the lesion side, and absent myogenic potentials on the neck when using ipsi-lesional acoustic stimulation, while the hearing was preserved. Hence, the use of gentamicin-treated animals, along with normal controls and auditory brainstem responses, results in convincing results that the recorded myogenic potentials are in fact of vestibular origin. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan.
   Natl Taiwan Univ, Coll Med, Taipei 10018, Taiwan.
RP Young, YH (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 1 Chang Te St, Taipei, Taiwan.
EM youngyh@ha.mc.mu.edu.tw
CR BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x
   COLEBATCH JG, 1992, NEUROLOGY, V42, P1635
   DIDIER A, 1989, HEARING RES, V37, P123, DOI 10.1016/0378-5955(89)90034-8
   Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6
   MATTHEWS PBC, 1986, J PHYSIOL-LONDON, V374, P73
   Minor LB, 1999, AM J OTOL, V20, P209
   Miyazato H, 1999, BRAIN RES, V822, P60, DOI 10.1016/S0006-8993(99)01074-4
   MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174
   Sakakura K, 2003, HEARING RES, V185, P57, DOI 10.1016/S0378-5955(03)00232-6
   Uchino Y, 1997, J NEUROPHYSIOL, V77, P3003
   Wang CT, 2004, HEARING RES, V191, P59, DOI 10.1016/j.heares.2004.01.004
   Wang SJ, 2003, HEARING RES, V185, P43, DOI 10.1016/S0378-5955(03)00256-9
   YOUNG ED, 1977, ACTA OTOLARYNGOL, V84, P252
   Young YH, 2001, TOXICOL APPL PHARM, V177, P103, DOI 10.1006/taap.2001.9285
   YOUNG YH, 1992, ANN OTO RHINOL LARYN, V101, P612
   YOUNG YH, 1991, EUR ARCH OTO-RHINO-L, V248, P331
NR 16
TC 18
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUL
PY 2005
VL 205
IS 1-2
BP 277
EP 283
DI 10.1016/j.heares.2005.03.029
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 941UJ
UT WOS:000230239400028
PM 15953537
ER

PT J
AU Reyes, SA
   Lockwood, AH
   Salvi, RJ
   Coad, ML
   Wack, DS
   Burkard, RF
AF Reyes, SA
   Lockwood, AH
   Salvi, RJ
   Coad, ML
   Wack, DS
   Burkard, RF
TI Mapping the 40-Hz auditory steady-state response using current density
   reconstructions
SO HEARING RESEARCH
LA English
DT Article
DE auditory steady-state response; source localization; auditory pathways;
   evoked potentials; LORETA; MinNorm
ID AMPLITUDE-MODULATED TONES; 40 HZ; EVOKED-POTENTIALS; CORTEX; FREQUENCY;
   PHASE; ACTIVATION; ATTENTION; HUMANS; FIELDS
AB We mapped the 40-Hz aSSR from nine normal subjects using PET-independent low-resolution electroencephalographic tomography (LORETA) as well as PET-weighted LORETA and minimum norm (MinNorm) current density reconstructions. In grand mean data, PET-independent LORETA identified seven sites with peaks in current density in right temporal lobe, right brainstem/cerebellum, right parietal lobe, left cerebellum/temporal lobe, and right frontal lobe. PET-weighted LORETA found six of the same sites as the PET-independent LORETA: the right brainstem source was eliminated and two right-frontal sources were added. Both LORETA analyses revealed considerable phase dispersion across identified sources. In both LORETA analyses, the relative time course of activation measured from an arbitrary starting phase progressed from right temporal lobe to right mid-frontal lobe to right parietal-frontal to right inferior parietal and finally to left cerebellum and left temporal lobe. MinNorm analysis incorporating PET information identified sources in the same locations as specified in the PET data. These sources were synchronized, with their amplitudes peaking almost simultaneously.
   Both PET-independent and PET-weighted LORETA results suggest that the aSSR is: (1) the result of a reverberating network with two or more groups of sources that recurrently excite each other or (2) the result of sequential auditory processing through various levels of a hierarchical network. In contrast, the PET-weighted MinNorm results suggest that the 40-Hz response represents simultaneous activation over widely spaced areas of the brain, perhaps due to synchronization of gamma-band activity to a common neural clock. (c) 2004 Published by Elsevier B.V.
C1 SUNY Buffalo, Dept Commun Sci & Disorders, Buffalo, NY 14214 USA.
   SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   SUNY Buffalo, Sch Med & Biomed Sci, Buffalo, NY 14214 USA.
   Vet Adm Western New York Healthcare Syst, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Neurol, Buffalo, NY 14214 USA.
   SUNY Buffalo, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Nucl Med, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA.
   VA Western NY Healthcare Syst, Buffalo, NY 14215 USA.
RP Reyes, SA (reprint author), Univ Miami, Dept Otolaryngol, Miami, FL 33101 USA.
EM reyes@myrealbox.com; rfb@acsu.buffalo.edu
CR AOYAGI M, 1993, AUDIOLOGY, V32, P293
   Diesch E, 2004, EUR J NEUROSCI, V19, P1093, DOI 10.1111/j.1460-9568.2004.03191.x
   Dobie RA, 1998, J ACOUST SOC AM, V104, P3482, DOI 10.1121/1.423931
   FRACKOWIAK R, 1997, FUNCTIONAL MAPPING H
   FRANOWICZ MN, 1995, J NEUROPHYSIOL, V74, P96
   Frith CD, 1996, NEUROIMAGE, V4, P210, DOI 10.1006/nimg.1996.0072
   Fuchs M, 1999, J CLIN NEUROPHYSIOL, V16, P267, DOI 10.1097/00004691-199905000-00006
   Fuchs M, 1998, IEEE T BIO-MED ENG, V45, P980, DOI 10.1109/10.704867
   GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643
   Gilron I, 1998, CAN J ANAESTH, V45, P115
   Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588
   Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X
   HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093
   Herdman AT, 2003, NEUROIMAGE, V20, P995, DOI 10.1016/S1053-8119(03)00403-8
   John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9
   Kiren T, 1994, Acta Otolaryngol Suppl, V511, P28
   Kraus N., 1995, CLIN NEUROPHYSIOL, V44, P93
   MAKELA JP, 1990, HEARING RES, V45, P41, DOI 10.1016/0378-5955(90)90181-N
   *NEUR LABS, 2000, CURR V4 5 UPD GUID 2
   *NEUR LABS, 1999, CURR 4 0 US GUID
   Nunez P. L., 1981, ELECT FIELDS BRAIN N
   Pantev C, 2004, EUR J NEUROSCI, V19, P2337, DOI 10.1111/j.1460-9568.2004.03296.x
   Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5
   PARK HJ, 2001, CDRSPM 1 0
   Pastor MA, 2002, J NEUROSCI, V22, P10501
   Patel AD, 2000, NATURE, V404, P80, DOI 10.1038/35003577
   Patel AD, 2004, CEREB CORTEX, V14, P35, DOI 10.1093/cercor/bhg089
   Picton TW, 1999, AUDIOL NEURO-OTOL, V4, P64, DOI 10.1159/000013823
   PLOURDE G, 1993, INT ANESTHESIOL CLIN, V31, P107, DOI 10.1097/00004311-199331040-00010
   REYES SA, 2004, MULTIMODAL SOURCE LO
   Reyes SA, 2004, HEARING RES, V194, P73, DOI 10.1016/j.heares.2004.04.001
   RIBARY U, 1991, P NATL ACAD SCI USA, V88, P11037, DOI 10.1073/pnas.88.24.11037
   Rickards F.W., 1984, EVOKED POTENTIAL, VII, P163
   ROMANI GL, 1982, EXP BRAIN RES, V47, P381
   Santarelli R, 1999, Scand Audiol Suppl, V51, P23
   SNYDER AZ, 1992, ELECTROEN CLIN NEURO, V84, P257, DOI 10.1016/0168-5597(92)90007-X
   SPYDELL JD, 1985, ELECTROEN CLIN NEURO, V62, P193, DOI 10.1016/0168-5597(85)90014-0
   Talairach J., 1988, COPLANAR STEREOTAXIC
   TallonBaudry C, 1997, NEUROREPORT, V8, P1103, DOI 10.1097/00001756-199703240-00008
   TIITINEN H, 1993, NATURE, V364, P59, DOI 10.1038/364059a0
   WAGNER M, 1999, NEUROIMAGE, V9, pS202
   WAGNER M, 2000, COMMUNICATION
   WAGNER M, 1999, RECENT ADV BIOMAGNET, P137
   Weisz N, 2004, CLIN NEUROPHYSIOL, V115, P1249, DOI 10.1016/j.clinph.2003.12.034
NR 44
TC 5
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 1
EP 15
DI 10.1016/j.heares.2004.11.016
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200001
PM 15925187
ER

PT J
AU Rose, MM
   Moore, BCJ
AF Rose, MM
   Moore, BCJ
TI The relationship between stream segregation and frequency discrimination
   in normally hearing and hearing-impaired subjects
SO HEARING RESEARCH
LA English
DT Article
DE stream segregation; frequency discrimination; hearing impairment;
   perceptual grouping
ID SPEECH RECEPTION; ELDERLY SUBJECTS; TONE SEQUENCES; GAP DETECTION;
   LISTENERS; NOISE; INTELLIGIBILITY; SELECTIVITY; SENTENCES; LOUDNESS
AB We examined the relationship between the fission boundary (FB) at which a sequence of pure tones alternating between two frequencies cannot be heard as two separate streams and the frequency difference limen (FDL), using normally hearing subjects and subjects with cochlear hearing loss. The stimuli used in the two tasks were as similar as possible in duration and inter-tone interval. The frequency range examined was 250-8000 Hz for the normally hearing subjects and 250-2000 Hz for the hearing-impaired subjects. For normally hearing subjects, the FBs were almost invariant with frequency when expressed as ERBN values; the mean FB was about 0.4 ERBN. The FDLs, also expressed as ERBN values, increased for frequencies above 2000 Hz. The ratio FB/FDL was roughly constant at 7-9 in the frequency region 250-2000 Hz, but decreased for higher frequencies, reaching about 1 at 8000 Hz. For the hearing-impaired subjects, FB/FDL ratios varied over a large range (1-40), and were not systematically related to the amount of hearing loss. These results suggest that the FB is not determined solely by the discriminability of successive tones. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Rose, MM (reprint author), Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England.
EM rosemm@aston.ac.uk
RI Moore, Brian/I-5541-2012
CR BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640
   BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176
   Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8
   Beauvois MW, 1996, J ACOUST SOC AM, V99, P2270, DOI 10.1121/1.415414
   Bregman AS., 1990, AUDITORY SCENE ANAL
   FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256
   FLORENTINE M, 1987, J ACOUST SOC AM, V81, P1528, DOI 10.1121/1.394505
   GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   HALL JW, 1984, J SPEECH HEAR RES, V27, P252
   HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155
   JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Mackersie CL, 2001, J SPEECH LANG HEAR R, V44, P19, DOI 10.1044/1092-4388(2001/002)
   McCabe SL, 1997, J ACOUST SOC AM, V101, P1611, DOI 10.1121/1.418176
   Moore B., 1998, COCHLEAR HEARING LOS
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   MOORE BCJ, 1974, J ACOUST SOC AM, V55, P359, DOI 10.1121/1.1914512
   Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321
   Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320
   MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240
   MOORE BCJ, 2005, IN PRESS BITCH PERCE
   Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
   Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839
   MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925
   Nejime Y, 1997, J ACOUST SOC AM, V102, P603, DOI 10.1121/1.419733
   NELSON DA, 1986, J ACOUST SOC AM, V79, P799, DOI 10.1121/1.393470
   Patterson RD, 1986, FREQUENCY SELECTIVIT, P123
   PLOMP R, 1994, EAR HEARING, V15, P2
   Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108
   Rose MM, 2000, J ACOUST SOC AM, V108, P1209, DOI 10.1121/1.1287708
   SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
   Stainsby TH, 2004, J ACOUST SOC AM, V115, P1665, DOI [10.1121/1.1650288, 10.1121/1.1650288]]
   TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950
   TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813
   TURNER CW, 1982, J SPEECH HEAR RES, V25, P34
   TYLER RS, 1983, J ACOUST SOC AM, V74, P1190, DOI 10.1121/1.390043
   van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T
   VANNOORDEN LPA, 1971, IPO ANN PROG REP, V6, P9
NR 39
TC 20
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 16
EP 28
DI 10.1016/j.heares.2004.12.004
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200002
PM 15925188
ER

PT J
AU Bibikov, NG
   Elepfandt, A
AF Bibikov, NG
   Elepfandt, A
TI Auditory evoked potentials from medulla and midbrain in the clawed frog,
   Xenopus laevis laevis
SO HEARING RESEARCH
LA English
DT Article
DE frog; Xenopus; auditory evoked potential; click rate; audiogram; pulse
   shape
ID ANURAN AMPHIBIANS; LATERAL-LINE; UNDERWATER HEARING; HYLA-VERSICOLOR;
   GRAY TREEFROG; BRAIN; SENSITIVITY; COMMUNICATION; TEMPERATURE; BULLFROG
AB Auditory evoked potentials (AEPs) to clicks and tonal pulses were recorded from medulla and midbrain in Xenopus laevis laevis. They comprise three components: an initial peak (I) at 2.2-3 ms latency, a fast series of peaks (F) at 5-15 ins latency, and a slow negative wave (S) at 20-40 ins latency. In medullary recordings, the initial peak was largest, whereas in inidbrain recordings typically the two other components prevailed. For all components and animals, response threshold at 4 clicks/s was approximately 69 dB SPL. In response to tonal stimuli, AEP amplitudes were maximal at 1.3-2.0 and 3.5 kHz. Raising the click rate to 100/s gradually reduced the amplitude of the I and the first F peaks, whereas later F peaks and the S wave Virtually disappeared at 20-40 clicks/s. On the other hand. extending the plateau duration of tonal stimuli from 4 to 10 ins hardly affected the I and F peaks but doubled the S amplitude. This suggests two systems for stimulus processing, a fast system capable to follow clicks LIP to high repetition rates and a slow system with longer integration time. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Konstanz, Fak Biol, D-7750 Constance, Germany.
   Acoust Acad Sci, NN Andreev Acoust Inst, Moscow, Russia.
   Humboldt Univ, Inst Biol, D-10115 Berlin, Germany.
RP Elepfandt, A (reprint author), Univ Konstanz, Fak Biol, D-7750 Constance, Germany.
EM andreas.elepfandt@rz.hu-berlin.de
CR ALTMAN JS, 1981, J PHYSIOL-LONDON, V317, pP78
   BIBIKOV NG, 1974, ACUSTICA, V31, P310
   BIBIKOV NG, 1993, MODERN PROBLEMS PHYS, P50
   BIBIKOV NG, 1970, SOV PHYS ACOUST+, V16, P168
   CAREY MB, 1993, HEARING RES, V70, P216, DOI 10.1016/0378-5955(93)90160-3
   CHRISTENSENDALSGAA, 1995, J COMP PHYSIOL A, V176, P317
   CORWIN JT, 1982, ELECTROEN CLIN NEURO, V54, P629, DOI 10.1016/0013-4694(82)90117-1
   DIEKAMP B, 1995, J COMP PHYSIOL A, V177, P173
   DIEKAMP BM, 1992, J COMP PHYSIOL A, V171, P245
   ELEPFANDT A, 1987, J COMP PHYSIOL A, V160, P667, DOI 10.1007/BF00611939
   Elepfandt A, 2000, J EXP BIOL, V203, P3621
   ELEPFANDT A, 1996, BIOL XENOPUS, V68, P177
   FENG AS, 1998, COMP HEARING FISH AM, P218
   Fuzessery Z.M., 1988, P253
   Gerhardt C. H., 2002, ACOUSTIC COMMUNICATI
   Gerhardt HC, 1999, J COMP PHYSIOL A, V185, P33, DOI 10.1007/s003590050363
   GERSHUNI GV, 1973, BASIC MECH HEARING, P923
   Hall J, 1992, HDB AUDITORY EVOKED
   HETHERINGTON TE, 1982, J EXP BIOL, V98, P49
   Kobel HR, 1996, BIOL XENOPUS, P9
   KOYAMA H, 1982, BRAIN RES, V250, P168, DOI 10.1016/0006-8993(82)90964-7
   LOFTUSHI.JJ, 1970, J ACOUST SOC AM, V47, P1131, DOI 10.1121/1.1912015
   LOMBARD RE, 1981, J EXP BIOL, V91, P57
   LOUMONT C, 1981, MONIT ZOOL ITAL, V15, P23
   LOWE DA, 1986, J COMP NEUROL, V245, P498, DOI 10.1002/cne.902450406
   PICKER M, 1980, S AFR J ZOOL, V15, P150
   POTTER HD, 1965, J NEUROPHYSIOL, V28, P1132
   Rogers P.H., 1988, P131
   SEAMAN RL, 1991, HEARING RES, V51, P301, DOI 10.1016/0378-5955(91)90046-C
   TOBIAS ML, 1987, J NEUROSCI, V7, P3191
   VIGNY C, 1979, J ZOOL, V188, P103
   Walkowiak W., 1988, P275
   WALKOWIAK W, 1980, BEHAV PROCESS, V5, P363, DOI 10.1016/0376-6357(80)90019-4
   WILCZYNSKI W, 1984, J COMP PHYSIOL, V155, P577, DOI 10.1007/BF00610843
   WILL U, 1984, VERH DTSCH ZOOL GES, V77, P345
   YAGER D D, 1992, Bioacoustics, V4, P1
   ZITTLAU KE, 1985, NEUROSCI LETT, V60, P77, DOI 10.1016/0304-3940(85)90384-2
NR 37
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 29
EP 36
DI 10.1016/j.heares.2004.12.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200003
PM 15925189
ER

PT J
AU Richardson, RT
   O'Leary, S
   Wise, A
   Hardman, J
   Clark, G
AF Richardson, RT
   O'Leary, S
   Wise, A
   Hardman, J
   Clark, G
TI A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion
   neurons and provides trophic support
SO HEARING RESEARCH
LA English
DT Article
DE neurotrophin; cochlea; sensorineural hearing loss; spiral ganglion
   neurons; I-125; autoradiography
ID NERVE GROWTH-FACTOR; RETROGRADE AXONAL-TRANSPORT; RAT SYMPATHETIC
   NEURONS; HAIR CELL LOSS; ELEMENTS FOLLOWING DISRUPTION; GUINEA-PIG
   COCHLEA; AUDITORY NEURONS; ULTRASTRUCTURAL CHANGES;
   HORSERADISH-PEROXIDASE; COMPARTMENTED CULTURES
AB Degeneration of spiral ganglion neurons (SGNs) in the cochlea following sensorineural hearing loss is preventable by the infusion of neurotrophins into the scala tympani. This study investigates the trophic effects and distribution of a single bolus infusion of neurotrophin-3 (NT3) into the scala tympani of the cochlea. The left cochleae of 28-day deafened guinea pigs were infused with 0, 100 or 140 ng I-125 NT3 via a cochleostomy in the scala tympani of the basal turn. Seven days post-infusion, cochlear sections were processed for measurements of trophic effect's on SGNs and autoradiography. A single infusion of NT3 increased the soma size of SGNs in a dose-dependent and significant manner but did not contribute to SGN survival. Following infusion of 140ng I-125 NT3 into the cochlea, 0.31% of the total I-125 NT3 signal in the basal turn was detected in Rosenthal's canal, 2.4% was in peripheral processes and 0.35% was in the modiolar auditory nerve. Despite influencing SGN soma size, I-125 NT3 was not observed to accumulate in SGN cell bodies. The data suggest that only a small proportion of neurotrophins infused into the scala tympani diffuses to the SGNs and their processes and produces trophic effects on SGN cell bodies. (c) 2005 Elsevier B.V. All rights reserved.
C1 Bion Ear Inst, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
RP Richardson, RT (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM rrichardson@bionicear.org
RI Wise, Andrew/B-5943-2014
OI Wise, Andrew/0000-0001-9715-8784
CR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012
   Bachor E, 1999, AM J OTOL, V20, P612
   DUVALL AJ, 1972, ANN OTO RHINOL LARYN, V81, P705
   Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
   Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
   Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019
   Ginty DD, 2002, CURR OPIN NEUROBIOL, V12, P268, DOI 10.1016/S0959-4388(02)00326-4
   Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8
   HENDRY IA, 1974, BRAIN RES, V82, P117, DOI 10.1016/0006-8993(74)90897-X
   HENDRY IA, 1974, BRAIN RES, V68, P103, DOI 10.1016/0006-8993(74)90536-8
   LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4
   Lee FS, 2001, CURR OPIN NEUROBIOL, V11, P281, DOI 10.1016/S0959-4388(00)00209-9
   MacInnis BL, 2002, SCIENCE, V295, P1536, DOI 10.1126/science.1064913
   Miller FD, 2001, NEURON, V32, P767, DOI 10.1016/S0896-6273(01)00529-3
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
   Reynolds AJ, 2000, BRAIN RES REV, V33, P169, DOI 10.1016/S0165-0173(00)00028-X
   Reynolds AJ, 1999, BRAIN RES PROTOC, V3, P308, DOI 10.1016/S1385-299X(98)00054-3
   Richardson RT, 2004, HEARING RES, V198, P25, DOI 10.1016/j.heares.2004.02.012
   Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014
   Salt AN, 1998, HEARING RES, V123, P137, DOI 10.1016/S0378-5955(98)00106-3
   SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X
   Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140
   Senger DL, 1997, J CELL BIOL, V138, P411, DOI 10.1083/jcb.138.2.411
   SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2
   Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
   Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4
   Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
   Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9
   Steljes TPV, 1999, J NEUROBIOL, V41, P295, DOI 10.1002/(SICI)1097-4695(19991105)41:2<295::AID-NEU11>3.0.CO;2-W
   STOCKEL K, 1975, BRAIN RES, V99, P1, DOI 10.1016/0006-8993(75)90604-6
   Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180
   TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136
   TERAYAMA Y, 1977, ACTA OTO-LARYNGOL, V83, P291, DOI 10.3109/00016487709128848
   Ure DR, 1997, J NEUROSCI, V17, P1282
   URE DR, 1994, DEV BIOL, V162, P339, DOI 10.1006/dbio.1994.1091
   vonBartheld CS, 1996, J NEUROSCI, V16, P2995
   WISE A, IN PRESS J COMP NEUR
   Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
   Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562
   YEO SW, 1995, LARYNGOSCOPE, V105, P623, DOI 10.1288/00005537-199506000-00012
   YIP HK, 1986, J NEUROCYTOL, V15, P789, DOI 10.1007/BF01625195
   Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
   Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P23
   YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
NR 45
TC 35
Z9 39
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 37
EP 47
DI 10.1016/j.heares.2005.01.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200004
PM 15925190
ER

PT J
AU Smittkamp, SE
   Girod, DA
   Durham, D
AF Smittkamp, SE
   Girod, DA
   Durham, D
TI Role of cochlear integrity in cochlear nucleus glucose metabolism and
   neuron number after cochlea removal in aging broiler chickens
SO HEARING RESEARCH
LA English
DT Article
DE auditory; avian; deafferentation; nucleus magnocellularis
ID STEM AUDITORY NUCLEI; CYTOCHROME-OXIDASE ACTIVITY; NERVE
   ELECTRICAL-ACTIVITY; BRAIN-STEM; AFFERENT INFLUENCES; CELL-DEATH; BREED
   DIFFERENCES; VISUAL-SYSTEM; ADULT MONKEYS; RAPID CHANGES
AB In the chicken auditory system, cochlear nucleus (nucleus magnocellularis, NM) neurons receive their only excitatory input from the ipsilateral cochlea. Cochlea removal (CR) results in an immediate decrease in NM neuron electrical activity, followed by death of similar to 30% of NM neurons. Previous work showed a decrease in NM activity and subsequent loss of NM neurons in all chicks. Egg layer adults showed NM neuron loss after CR, while neuron number remained stable in broiler adults. This suggested that effects of CR on NM were age- and breed-dependent. We now know that most aging egg layer chickens maintain largely normal cochleae throughout adulthood. Some exhibit cochlear damage with age. The converse is true of broiler chickens. Most aging broiler chickens display cochlear degeneration, with some maintaining normal cochlear anatomy throughout adulthood. The presence of extensive cochlear damage may alter the effect of CR on NM, leading to the described differences. Here, we examine the effect of unilateral CR on NM glucose metabolism and neuron number in 2, 30, 39, and 52 week-old broiler chickens found to have normal cochleae. Chickens with damaged cochleae were excluded. Using 2-deoxyglucose uptake to evaluate bilateral NM glucose metabolism, we found significantly decreased uptake ipsilateral to CR at each age examined. Bilateral cell counts revealed significant neuron loss ipsilateral to CR at each age examined. This suggests that NM glucose metabolism decreases and subsequent neuron death occurs in aging broiler chickens when a normal cochlea is removed. The status of the cochlea must play a role in the effect of deafferentation on NM glucose metabolism and neuron survival. The effect of CR appears to be dependent upon neither age nor breed, but upon cochlear integrity instead. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA.
   Univ Kansas, Med Ctr, Dept Speech & Hearing, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA.
RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Smith Mental Retardat Res Ctr, 3901 Rainbow Blvd,MS 3010, Kansas City, KS 66160 USA.
EM ddurham@kume.edu
CR BOORD RL, 1969, ANN NY ACAD SCI, V167, P186, DOI 10.1111/j.1749-6632.1969.tb20444.x
   BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A
   BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403
   Capurso SA, 1997, J NEUROSCI, V17, P7372
   Chen L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P43
   CHINO YM, 1992, VISION RES, V32, P789, DOI 10.1016/0042-6989(92)90021-A
   Chino YM, 1995, CAN J PHYSIOL PHARM, V73, P1323
   Churchill JD, 1998, EXP BRAIN RES, V118, P189, DOI 10.1007/s002210050271
   COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3
   DIETRICH WD, 1985, J NEUROSCI, V5, P874
   DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5
   DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105
   DURHAM D, 1985, J COMP NEUROL, V231, P446, DOI 10.1002/cne.902310404
   Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
   Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4
   HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402
   Horton JC, 1998, J NEUROSCI, V18, P5433
   HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302
   Jain N, 2000, P NATL ACAD SCI USA, V97, P5546, DOI 10.1073/pnas.090572597
   JEFFERY G, 1987, EXP BRAIN RES, V67, P651
   Leung CHW, 2003, BRAIN RES, V984, P182, DOI 10.1016/S0006-8993(03)03129-9
   LEVAY S, 1980, J COMP NEUROL, V191, P1, DOI 10.1002/cne.901910102
   LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9
   Mandairon N, 2003, NEUROSCIENCE, V119, P507, DOI 10.1016/S0306-4522(03)00172-6
   MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410
   Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0
   Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9
   PARK DL, 2003, ARO ABSTR, V26, P94
   PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303
   PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403
   PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6
   Rubel EW, 1988, AUDITORY FUNCTION NE, P3
   RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112
   SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407
   Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1
   Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008
   Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
   STEWART GA, 1985, HYPERFINE INTERACT, V23, P1, DOI 10.1007/BF02060135
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443
   WESTRUM LE, 1986, J COMP NEUROL, V243, P195, DOI 10.1002/cne.902430205
   WONGRILEY M, 1984, NATURE, V307, P262, DOI 10.1038/307262a0
   Woods TM, 2000, J NEUROSCI, V20, P3884
   Xu J, 1999, J NEUROSCI, V19, P7578
   Yinon U, 1995, CAN J PHYSIOL PHARM, V73, P1378
NR 47
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 48
EP 59
DI 10.1016/j.heares.2004.12.011
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200005
PM 15925191
ER

PT J
AU Nakajima, HH
   Ravicz, ME
   Merchant, SN
   Peake, WT
   Rosowski, JJ
AF Nakajima, HH
   Ravicz, ME
   Merchant, SN
   Peake, WT
   Rosowski, JJ
TI Experimental ossicular fixations and the middle ear's response to sound:
   Evidence for a flexible ossicular chain
SO HEARING RESEARCH
LA English
DT Article
DE middle-ear function; sound-induced ossicular motion; middle-ear
   pathology; evolution of the middle ear
ID DOPPLER VIBROMETER LDV; TYMPANIC MEMBRANE; MALLEUS FIXATION; HEARING;
   EVOLUTION; TRANSMISSION; WINDOWS; EARDRUM; MOTION; MODEL
AB A human temporal-bone preparation was used to determine the effects of various degrees of artificial ossicular fixation on the sound-induced velocity at the input-side (the umbo of the malleus) and the output-side (the stapes) of the ossicular chain. Construction of various degrees of attachment between an ossicle and the surrounding temporal bone provided a range of reduction in ossicular mobility or "fixations". The results demonstrate different effects of the fixations on the umbo and stapes velocity: fixations of the stapes or incus produce larger reductions in sound-induced stapes velocity (as much as 40-50 dB with extensive stapes fixation), than reductions in umbo velocity (typically less than 10 dB). Fixations of the malleus produce similar-sized changes in both umbo and stapes velocity. These differential effects are consistent with significant flexibility in the ossicular joints (the incudo-malleolar joint and the incudo-stapedial joint) that permits relative motion between the coupled ossicles. The existence of flexibility in the ossicular joints indicates that joints in the ossicular chain can effect a loss of sound-induced mechanical energy between the umbo and the stapes, with a concomitant reduction in the sound-induced motion of the stapes. The introduction of such losses in sound transmission by the joints raises questions concerning the utility of three ossicles in the mammalian ear. The consequences of ossicular flexibility to ossicular-chain reconstruction is discussed. Also, as examined in a more clinically directed paper [Laryngoscope 115 (2005) 147], the different effects of the various ossicular fixations on the motion of the umbo and malleus may be useful in the diagnosis of the site of fixations in humans with conductive hearing losses caused by such pathologies. (c) 2005 Elsevier B.V. All rights reserved.
C1 Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
   Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
   MIT, Elect Res Lab, Cambridge, MA 02139 USA.
   Harvard Univ, MIT, Speech & Hearing Biosci & Technol Program, Div Hlth Sci & Technol, Cambridge, MA 02139 USA.
RP Rosowski, JJ (reprint author), Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
EM john_rosowski@meei.harvard.edu
CR ALLIN DF, 1992, EVOLUTIONARY BIOL HE, P587
   ALLIN EF, 1975, J MORPHOL, V147, P403, DOI 10.1002/jmor.1051470404
   Bekesy G., 1960, EXPT HEARING
   CROMPTON AW, 1978, AM SCI, V66, P192
   Decraemer W., 1999, FUNCTION MECH NORMAL, P23
   DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R
   Decraemer W. F, 2004, MIDDLE EAR MECH RES, P3, DOI 10.1142/9789812703019_0001
   Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3
   Fleischer G, 1978, Adv Anat Embryol Cell Biol, V55, P3
   FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694
   GOODE RL, 2004, ABSTR AM OTOL SOC, V7
   Goode RL, 1996, AM J OTOL, V17, P813
   GOODE RL, 1994, AM J OTOL, V15, P145
   GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
   GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702
   Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39
   Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31
   Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
   Hüttenbrink K B, 1988, Acta Otolaryngol Suppl, V451, P1
   Jerison H. J., 1973, EVOLUTION BRAIN INTE
   Kermack DM, 1984, EVOLUTION MAMMALIAN
   KERMACK KA, 1983, ACTA PALAENTOL POL, V28, P148
   KOHLLOFFEL LUE, 1984, HEARING RES, V13, P73, DOI 10.1016/0378-5955(84)90096-0
   KONISHI T, 1973, J ACOUST SOC AM, V53, P325, DOI 10.1121/1.1982336
   KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746
   MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574
   Mehta RP, 2002, ANN OTO RHINOL LARYN, V111, P246
   MERCHANT SN, 2003, SURG EAR, P59
   NAKAJIMA HH, 2004, MIDDLE EAR MECH RES, P189, DOI 10.1142/9789812703019_0027
   Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7
   Pang X-D, 1986, PERIPHERAL AUDITORY, P36
   PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G
   POWERS WH, 1967, ARCH OTOLARYNGOL, V85, P73
   RAVICZ ME, 2004, MIDDLE EAR MECH RES, P91, DOI 10.1142/9789812703019_0013
   RAVICZ ME, 2004, HEARING RES, V195, P105
   ROSOWSKI JJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P615
   ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403
   Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008
   Rosowski JJ, 2003, JARO, V4, P371, DOI 10.1007/s10162-002-3047-1
   Saunders J. C., 2000, COMP HEARING BIRDS R, P13
   Schuknecht HF, 1993, PATHOLOGY EAR
   Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
   von Bekesy G., 1941, AKUST Z, V6, P1
   VONBEKESY G, 1936, AKUST Z, V1, P13
   VOSS SE, 1998, THESIS MIT
   WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19
   Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0
   Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9
   WILLI UB, 2004, THESIS U ZURICH ZUR
   WILLI UB, 2004, MIDDLE EAR MECH RES, P56, DOI 10.1142/9789812703019_0008
   ZWISLOCKI J, 1963, J ACOUST SOC AM, V35, P1034, DOI 10.1121/1.1918650
   ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 52
TC 45
Z9 46
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 60
EP 77
DI 10.1016/j.heares.2005.01.002
PG 18
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200006
PM 15925192
ER

PT J
AU Gordon, KA
   Papsin, BC
   Harrison, RV
AF Gordon, KA
   Papsin, BC
   Harrison, RV
TI Effects of cochlear implant use on the electrically evoked middle
   latency response in children
SO HEARING RESEARCH
LA English
DT Article
DE deafness; congenital; pre-lingual; peri-lingual; evoked potentials;
   electrical stimulation; sensitive periods; auditory; human; children;
   thalamus; cortex; synchrony; development; plasticity
ID PRELINGUALLY DEAF-CHILDREN; AUDITORY BRAIN-STEM; SPEECH-PERCEPTION
   ABILITIES; GRADED-PROFILE-ANALYSIS; CROSS-MODAL PLASTICITY; CONGENITALLY
   DEAF; SIGN-LANGUAGE; INFERIOR COLLICULUS; GENERATING-SYSTEM;
   HEARING-LOSS
AB The electrically evoked middle latency response (eMLR) reflects central auditory activity in cochlear implant users. This response was recorded repeatedly in 50 children over the first year of cochlear implant use and in 31 children with 5.3 +/- 2.9 years of implant experience. The eMLR was rarely detected at the time of implantation in anaesthetized or sedated children and was detected in only 35% of awake children at initial device stimulation. The detectability of the eMLR increased over the first year of implant use becoming 100%, detectable in children after at least one year. Acutely evoked responses were more likely to be present in older children despite longer periods of auditory deprivation. Within six months of implant use. most children had detectable eMLRs. At early stages of device use, eMLR amplitudes were lower in children implanted below the age of 5 years compared to children implanted at older ages; amplitudes increased over time in both groups. Latencies after six months of implant use were prolonged in the Younger group and decreased with implant use. EMLR changes with chronic cochlear implant use suggest an activity-dependent plasticity of the central auditory system. Results suggest that the pattern of electrically evoked activity and development in the auditory thalamo-cortical pathways will be dependent upon the duration or auditory deprivation Occurring in early childhood. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Toronto, Hosp Sick Children, Dept Otolaryngol, Toronto, ON M5G 1X8, Canada.
   Univ Toronto, Hosp Sick Children, Brain & Behav Program, Toronto, ON M5G 1X8, Canada.
RP Gordon, KA (reprint author), Univ Toronto, Hosp Sick Children, Dept Otolaryngol, 100 Coll St, Toronto, ON M5G 1X8, Canada.
EM karen.gordon@utoronto.ca
CR ARMONY JL, 1995, BEHAV NEUROSCI, V109, P246, DOI 10.1037//0735-7044.109.2.246
   Bavelier D, 2001, J NEUROSCI, V21, P8931
   CLARCY JC, 1992, MAMMALIAN AUDITORY P, V2, P232
   *COCHL, 1999, NUCL TECHN REF MAN
   COLLET L, 1988, BRAIN DEV-JPN, V10, P169
   DAWSON PW, 1992, J SPEECH HEAR RES, V35, P401
   Daya H, 1999, INT J PEDIATR OTORHI, V49, P135, DOI 10.1016/S0165-5876(99)00112-3
   El-Hakim Hamdy, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P102
   FEINMAN GR, 1996, GUIDELINES FUNCTIONA
   Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763
   Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002
   FRYAUFBERTSCHY H, 1992, J SPEECH HEAR RES, V35, P913
   Gao WJ, 1999, J NEUROSCI, V19, P7940
   Geers Ann, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P127
   Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X
   Gordon Karen A, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P32
   Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4
   Groenen P, 1997, AUDIOLOGY, V36, P83
   Hall J, 1992, HDB AUDITORY EVOKED
   HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P31, DOI 10.3109/00016489309135763
   HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R
   Hassanzadeh S, 2002, OTOLARYNG HEAD NECK, V126, P524, DOI 10.1067/mhn.2002.125110
   KILENY PR, 1989, AM J OTOL, V10, P23
   KILENY PR, 1991, AM J OTOL, V12, P43
   KILENY PR, 1991, AM J OTOL, V12, P37
   Kirk Karen Iler, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P69
   Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
   Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714
   Kral A, 2001, AUDIOL NEURO-OTOL, V6, P346, DOI 10.1159/000046845
   Kraus N, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P93
   KRAUS N, 1985, ELECTROEN CLIN NEURO, V62, P343, DOI 10.1016/0168-5597(85)90043-7
   KRAUS N, 1989, EAR HEARING, V10, P339, DOI 10.1097/00003446-198912000-00004
   Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
   MacDonald L, 2004, INT CONGR SER, V1273, P215, DOI 10.1016/j.ics.2004.07.040
   MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2
   KRAUS N, 1993, EAR HEARING, V14, P36, DOI 10.1097/00003446-199302000-00006
   MCGEE T, 1993, EAR HEARING, V14, P76, DOI 10.1097/00003446-199304000-00002
   Miller GL, 2003, J NEUROSCI, V23, P1059
   Miyamoto RT, 1999, AM J OTOL, V20, P596
   Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2
   Moore CM, 2002, HEARING RES, V164, P82, DOI 10.1016/S0378-5955(01)00415-4
   Neville HJ, 1997, BRAIN LANG, V57, P285, DOI 10.1006/brln.1997.1739
   Nikolopoulos T. P., 1999, INT J PEDIAT OTOR S1, V49, P189, DOI 10.1016/S0165-5876(99)00158-5
   Nikolopoulos TP, 1999, LARYNGOSCOPE, V109, P595, DOI 10.1097/00005537-199904000-00014
   Nishimura H, 2000, NEUROREPORT, V11, P811, DOI 10.1097/00001756-200003200-00031
   Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376
   OSBERGER MJ, 1991, ANN OTO RHINOL LARYN, V100, P883
   Pallas SL, 2001, TRENDS NEUROSCI, V24, P417, DOI 10.1016/S0166-2236(00)01853-1
   Papsin B C, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P38
   Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013
   Ponton CW, 2001, AUDIOL NEURO-OTOL, V6, P363, DOI 10.1159/000046846
   Seldon HL, 1996, HEARING RES, V95, P108, DOI 10.1016/0378-5955(96)00028-7
   SHALLOP JK, 1990, EAR HEARING, V11, P5, DOI 10.1097/00003446-199002000-00004
   Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004
   Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030
   Shipp D, 1997, ADV OTO-RHINO-LARYNG, V52, P74
   SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S
   Staller S, 1997, OTOLARYNG HEAD NECK, V117, P236, DOI 10.1016/S0194-5998(97)70180-3
   Stanton SG, 2000, J COMP NEUROL, V426, P117, DOI 10.1002/1096-9861(20001009)426:1<117::AID-CNE8>3.0.CO;2-S
   Tyler R, 1997, SCAND AUDIOL, V26, P65
   Tyler RS, 1997, OTOLARYNG HEAD NECK, V117, P180, DOI 10.1016/S0194-5998(97)70172-4
   Waltzman SB, 1997, AM J OTOL, V18, P342
NR 62
TC 24
Z9 28
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 78
EP 89
DI 10.1016/j.heares.2005.01.003
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200007
PM 15925193
ER

PT J
AU Harding, GW
   Bohne, BA
   Vos, JD
AF Harding, GW
   Bohne, BA
   Vos, JD
TI The effect of an age-related hearing loss gene (Ahl) on noise-induced
   hearing loss and cochlear damage from low-frequency noise
SO HEARING RESEARCH
LA English
DT Article
DE Ahl gene; TTS; PTS; ABR; DPOAE; histopathology; C57BL/6J; B6.CAST
ID PRODUCT OTOACOUSTIC EMISSIONS; MOUSE COCHLEA; F1-HYBRID STRAINS;
   ACOUSTIC TRAUMA; C57BL/6J MICE; OCTAVE BANDS; EXPOSURE; SUSCEPTIBILITY;
   DEGENERATION; SENSITIVITY
AB Inbred C57BL/6J mice carry two copies of an age-related hearing loss gene (Ahl). It has been shown that these mice begin losing high-frequency hearing at two months. Several functional studies have reported that the AN gene renders mice more susceptible to noise-induced hearing loss (NIHL) than strains which do not carry this gene [e.g., Hear. Res. 93 (1996) 181 ;, Hear. Res. 155 (2001) 81 J. Assoc. Res. Otolaryngol. 2 (2001) 233]. Johnson et al. [Hear. Res. 114 (1997) 83] developed a congenic B6.CAST-+(Ahl) mouse which carries the wild-type allele from Mus musculus castancus at the Ahl locus. Five cacti of young C57BL/6J males and females, and B6.CAST- +(Ahl) males were exposed to a 4-kHz octave band of noise at 108 dB SPL for 4 It. Non-noise-exposed mice of the same strains and age served as controls. The noise-exposed mice were functionally tested for ABR thresholds and DPOAE levels pre-exposure and three times post-exposure: 0 days to determine the magnitude of temporary threshold shift (TTS); 6 days to determine rate of recovery; and 20 days to determine the magnitude of permanent threshold shift (PTS). At 20 days post-exposure, the animals underwent cardiac perfusion to fix their cochleae. The isolated cochleae were embedded in plastic and dissected into flat preparations. By phase-contrast microscopy, each cochlea was evaluated from apex to base to quantify the losses of hair cells, nerve fibers and stria vascularis and to localize stereocilia damage. Functional data from each mouse were aligned with the cytocochleogram using the frequency-place map of Ou et al. [Hear. Res. 145 (2000) 111; Hear. Res. 145 (2000) 123]. Sizable variation in the magnitude of TTS, PTS and hair-cell loss was found among mice of the same genetic strain. The congenic B6.CAST-+(Ahl) male mice had significantly less TTS immediately post-exposure than C57BL/6J males or females but not less PTS or hair-cell losses at 20 days post-exposure. These results indicate that, at one month of age, mice carrying two copies of the AN gene have an increased susceptibility to TTS from a low-frequency noise before they have any indication of age-related hearing or hair-cell loss. However, this appeared not to be the case for PTS. The AN gene appears to play a role in susceptibility to NIHL but, other genes as well as systemic and local factors must also be involved. (c) 2005 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115, St Louis, MO 63110 USA.
EM hardingg@wustl.edu
RI Bohne, Barbara/A-9113-2008; Legarth, Jonas/A-9156-2012
OI Bohne, Barbara/0000-0003-3874-7620; 
CR ALFORD BR, 1963, ANN OTO RHINOL LARYN, V72, P237
   BAGGOT PJ, 1987, J ACOUST SOC AM, V81, P1499, DOI 10.1121/1.394502
   Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283
   Bohne BA, 2000, AM J OTOL, V21, P505
   Bohne BA, 1997, HEARING RES, V109, P34, DOI 10.1016/S0378-5955(97)00019-1
   Bohne BA, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P171
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007
   Davis R R, 2003, Noise Health, V5, P19
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   Flock A, 1999, J NEUROSCI, V19, P4498
   HENRY KR, 1984, BEHAV NEUROSCI, V98, P107, DOI 10.1037/0735-7044.98.1.107
   Jimenez AM, 2001, JARO, V2, P233
   Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4
   LI HS, 1993, HEARING RES, V68, P19, DOI 10.1016/0378-5955(93)90060-E
   LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496
   Martinez Cachero JM, 2002, INSULA, V57, P25
   McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007
   MCGILL TJI, 1976, LARYNGOSCOPE, V86, P1293, DOI 10.1288/00005537-197609000-00001
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X
   Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
   Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313
   SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447
   SAUNDERS JC, 1979, BRAIN RES, V185, P1
   Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017
   WANG L, 1994, CHINESE MED J-PEKING, V107, P500
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   WELLESCHIK B, 1980, LARYNG RHINOL OTOL V, V59, P681, DOI 10.1055/s-2007-1008914
   Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5
NR 37
TC 27
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 90
EP 100
DI 10.1016/j.heares.2005.01.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200008
PM 15925194
ER

PT J
AU Hawley, ML
   Melcher, JR
   Fullerton, BC
AF Hawley, ML
   Melcher, JR
   Fullerton, BC
TI Effects of sound bandwidth on fMRI activation in human auditory
   brainstem nuclei
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 25th Midwinter Research Meeting of the
   Association-for-Research-in-Otolaryngology
CY JAN 27-31, 2002
CL ST PETERSBURG, FL
SP Assoc Res Otolaryngol
DE functional imaging; human auditory processing; cochlear nucleus;
   superior olivary complex; inferior colliculus
ID INFERIOR COLLICULUS; SENSORY STIMULATION; ACOUSTIC NOISE; SCANNER NOISE;
   STIMULUS RATE; TIME-COURSE; CORTEX; FREQUENCY; SIGNAL; TONES
AB Few neuro-imaging studies of the auditory system have examined the dependence of brain activation on sound bandwidth, a fundamental stimulus parameter, and none have examined bandwidth dependencies in the brainstem. The present study examined the effect of bandwidth on human brainstem activation using fMRI, an indicator Of Population neural activity. The studied stimuli (broadband, two-. one-. and third-octave continuous noise) activated three brainstem centers: cochlear nucleus, superior olivary complex, and inferior colliculus. Activation could be confidently attributed to these nuclei because it was appropriately punctate (given the small size of the imaged nuclei) and appropriately located (as determined from histological atlases). Activation in all three imaged centers increased monotonically with increasing bandwidth when either Stimulus spectrum level or energy was held constant. Supplementary experiments indicated that the measured bandwidth dependencies were not contaminated by the extraneous sounds produced by the scanner. Increases in fMRI activation with increasing bandwidth would be expected from Populations of neurons having a single best frequency and only excitatory responses to sound, but not necessarily from lower auditory system neurons with their often more complex responses. Our results provide basic information for designing auditory neuro-imaging studies that need to control for, or manipulate sound bandwidth. (c) 2005 Elsevier B.V. All rights reserved.
C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA.
   MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technlol Program, Cambridge, MA 02139 USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
RP Melcher, JR (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA.
EM jrm@epi.meei.harvard.edu
CR BANDETTINI PA, 1992, MAGNET RESON MED, V25, P390, DOI 10.1002/mrm.1910250220
   BINDER JR, 1994, COGNITIVE BRAIN RES, V2, P31, DOI 10.1016/0926-6410(94)90018-3
   Bonifacino JS, 2002, DEV CELL, V2, P1, DOI 10.1016/S1534-5807(01)00114-9
   Brechmann A, 2002, J NEUROPHYSIOL, V87, P423
   Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N
   EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5
   FRISTON KJ, 1995, HUMAN BRAIN MAPPING, V2, P165
   Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588
   Guimaraes AR, 1998, HUM BRAIN MAPP, V6, P33, DOI 10.1002/(SICI)1097-0193(1998)6:1<33::AID-HBM3>3.0.CO;2-M
   Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R
   Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N
   Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697
   Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002
   HART HC, 2002, HEARING RES, V171, P170
   Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X
   HAWLEY ML, 2002, 25 ANN MIDW RES M AS, P244
   JANCKE L, 1998, NEUROIMAGE, V7, pS938
   KIANG NYS, 1984, ADV AUDIOL, V1, P6
   KWONG KK, 1992, P NATL ACAD SCI USA, V89, P5675, DOI 10.1073/pnas.89.12.5675
   Lasota KJ, 2003, J COMPUT ASSIST TOMO, V27, P213, DOI 10.1097/00004728-200303000-00018
   LEVINE RA, 1993, HEARING RES, V68, P59, DOI 10.1016/0378-5955(93)90065-9
   Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65
   Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005
   Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058
   Mohr CM, 1999, J ACOUST SOC AM, V105, P2738, DOI 10.1121/1.426942
   OGAWA S, 1992, P NATL ACAD SCI USA, V89, P5951, DOI 10.1073/pnas.89.13.5951
   PRICE C, 1992, NEUROSCI LETT, V146, P179, DOI 10.1016/0304-3940(92)90072-F
   Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083
   Ravicz ME, 2000, J ACOUST SOC AM, V108, P1683, DOI 10.1121/1.1310190
   RUGGERO MA, 1973, J NEUROPHYSIOL, V36, P569
   Sigalovsky I, 2001, NEUROIMAGE, V13, pS939
   Tanaka H, 2000, NEUROREPORT, V11, P2045, DOI 10.1097/00001756-200006260-00047
   Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108
   YAKOVLEV PI, 1970, NEUROPATHOLOGY METHO, P371
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
NR 35
TC 23
Z9 24
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 101
EP 110
DI 10.1016/j.heares.2005.01.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200009
PM 15925195
ER

PT J
AU Basta, D
   Todt, I
   Eisenschenk, A
   Ernst, A
AF Basta, D
   Todt, I
   Eisenschenk, A
   Ernst, A
TI Vestibular evoked myogenic potentials induced by intraoperative
   electrical stimulation of the human inferior vestibular nerve
SO HEARING RESEARCH
LA English
DT Article
DE vestibulocollic reflex; VEMP; inferior vestibular nerve; intraoperative
   neurophysiologic monitoring
ID GALVANIC STIMULATION; GUINEA-PIG; RESPONSES; REFLEX; DEAFFERENTATION;
   PRESERVATION; NEURONS; SURGERY; SYSTEM; SOUND
AB Vestibular evoked myogenic potentials (VEMPs) can be recorded from sternocleidomastoid muscle (SCM) in clinical practice. The aim of the present Study was to investigate VEMPs upon direct electrical stimulation of the human inferior vestibular nerve to evidence the vestibulocollic reflex arch and their saccular origin, respectively.
   Seven subjects were stimulated at the inferior (IVN) and superior (SVN) vestibular nerve. The EMG signals of the SCM were recorded. These recordings were compared to air- and bone-conduction evoked VEMPs with respect to latency and shape.
   All subjects showed normal VEMPs upon acoustic stimulation with a latency of 12.8 +/- 1.4 ms for P13, and 22.7 +/- 2.0 ms for the N23 pre-operatively. Upon direct electrical Stimulation of the IVN, the mean latency of the positive peak was 9.1 +/- 2.2 and 13.2 +/- 2.3 ms for the negative one. No contralateral SCM response was found. Electrical stimulation of the SVN did not result in any EMG response of the SCM.
   The study shows experimental evidence of the vestibulocollic reflex by direct electrical stimulation of the human IVN for the first time. The method can be utilized to map VIIIth nerve Subdivisions and to intraoperatively monitor IVN integrity in a real-time mode. (c) 2005 Elsevier B.V. All rights reserved.
C1 Hosp Univ Berlin, Charite Med Sch, Dept Otolaryngol, D-12683 Berlin, Germany.
   Hosp Univ Berlin, Charite, Dept Microsurg, D-12683 Berlin, Germany.
RP Ernst, A (reprint author), Hosp Univ Berlin, Charite Med Sch, Dept Otolaryngol, Warener Str 7, D-12683 Berlin, Germany.
EM basta@rz.uni-potsdam.de; ArneborgE@ukb.de
CR Akin F W, 2001, J Am Acad Audiol, V12, P445
   Berryhill WE, 2001, OTOL NEUROTOL, V22, P944, DOI 10.1097/00129492-200111000-00040
   CAZALS Y, 1985, ARCH OTO-RHINO-LARYN, V242, P155, DOI 10.1007/BF00454415
   Clarke AH, 1998, EXP BRAIN RES, V121, P457, DOI 10.1007/s002210050481
   COLEBATCH JG, 1992, NEUROLOGY, V42, P1635
   COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190
   Dieterich M, 1999, NEUROREPORT, V10, P3283, DOI 10.1097/00001756-199911080-00007
   ERNST A, IN PRESS OTOLARYNGOL
   Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002
   Halmagyi GM, 1999, ANN NY ACAD SCI, V871, P195, DOI 10.1111/j.1749-6632.1999.tb09185.x
   HALMAGYI GM, 1995, NEUROLOGY, V45, P1927
   Halmagyi G M, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P1
   LENARZ T, 1994, ORL J OTO-RHINO-LARY, V56, P31
   Magliulo G, 2003, OTOL NEUROTOL, V24, P308, DOI 10.1097/00129492-200303000-00029
   Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6
   MCCUE MP, 1994, J NEUROSCI, V14, P6058
   McCue MP, 1997, AM J OTOL, V18, P355
   MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M
   Moller AR, 1995, INTRAOPERATIVE NEURO
   Monobe H, 2004, CLIN NEUROPHYSIOL, V115, P807, DOI 10.1016/j.clinph.2003.11.035
   Murofushi T, 2002, CLIN NEUROPHYSIOL, V113, P305, DOI 10.1016/S1388-2457(01)00738-6
   MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174
   Patko T, 2003, CLIN NEUROPHYSIOL, V114, P1344, DOI 10.1016/S1388-2457(03)00119-6
   Schultz A, 2003, ANN OTO RHINOL LARYN, V112, P1050
   Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
   Skurczynski W, 1989, Acta Otolaryngol Suppl, V468, P341
   Watson SRD, 1998, J PHYSIOL-LONDON, V513, P587, DOI 10.1111/j.1469-7793.1998.587bb.x
   Watson SRD, 1998, ELECTROMYOGR MOTOR C, V109, P471, DOI 10.1016/S0924-980X(98)00033-2
   Welgampola MS, 2003, J NEUROL NEUROSUR PS, V74, P771, DOI 10.1136/jnnp.74.6.771
NR 29
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 111
EP 114
DI 10.1016/j.heares.2005.01.006
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200010
PM 15925196
ER

PT J
AU Wallace, MN
   Shackleton, TM
   Anderson, LA
   Palmer, AR
AF Wallace, MN
   Shackleton, TM
   Anderson, LA
   Palmer, AR
TI Representation of the purr call in the guinea pig primary auditory
   cortex
SO HEARING RESEARCH
LA English
DT Article
DE phase-locking; vocalization; cortical column; communication
ID ALARM CALLS; VOCALIZATIONS; RESPONSES; MARMOSET; NEURONS; ORGANIZATION;
   STIMULI; SOUNDS; AREAS; CAT
AB Guinea pigs produce the low-frequency purr or rumble call as all alerting signal. A digitised example of the call was presented to anaesthetised guinea pigs via a closed sound system while recording from the primary auditory cortex. The exemplar used ill this study had 9 regular phrases each spaced with their centres about 80 ins apart. Low-frequency ( <= 1.1 kHz) units responded best to the call but within this population there were four separate groups: (1) cells that responded vigorously to many or all of the 9 phrases;, (2) cells that gave an onset response;, (3) cells that only responded to a click embedded in the call; (4) cells that did not respond. Particular response types were often grouped together. Thus when orthogonal electrode tracks were used most units gave a similar response. There was no correlation between the type of response and the cortical depth. A similar range of response types was also found in the thalamus and there was no evidence of a distinct response in the cortex that was due to intracortical processing. Cells in the cortex were able to represent the temporal structure Of the purr With the same fidelity Lis cells in the thalamus. (c) 2005 Elsevier B.V. All rights reserved.
C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England.
RP Wallace, MN (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England.
EM markw@ihr.mrc.ac.uk
CR ARVOLA A, 1974, Annales Zoologici Fennici, V11, P1
   BERRYMAN JC, 1976, Z TIERPSYCHOL, V41, P80
   Bieser A, 1998, EXP BRAIN RES, V122, P139, DOI 10.1007/s002210050501
   CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87
   Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019
   Gehr DD, 2000, HEARING RES, V150, P27, DOI 10.1016/S0378-5955(00)00170-2
   Ghazanfar AA, 2001, CURR OPIN NEUROBIOL, V11, P712, DOI 10.1016/S0959-4388(01)00274-4
   Greene E, 1998, ANIM BEHAV, V55, P511, DOI 10.1006/anbe.1997.0620
   HUBEL DH, 1977, PROC R SOC SER B-BIO, V198, P1, DOI 10.1098/rspb.1977.0085
   Lu T, 2001, J NEUROPHYSIOL, V85, P2364
   MARDIA KV, 2000, DIRECTIONAL STAT, P94
   MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084
   Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
   MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403
   Nagarajan SS, 2002, J NEUROPHYSIOL, V87, P1723, DOI 10.1152/jn.00632.2001
   POPELAR J, 2003, PHYSIOL RES, V55, P615
   REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402
   REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
   Rood J.P., 1972, Animal Behav Monogr, V5, P1
   Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3
   SLOBODCHIKOFF CN, 1991, ANIM BEHAV, V42, P713, DOI 10.1016/S0003-3472(05)80117-4
   Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002
   SUTA J, 2004, ASS RES OTOLARYNGOL, V27, P197
   Syka J, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P431, DOI 10.1007/978-1-4419-8712-9_39
   TANAKA H, 1991, JPN J PHYSIOL, V41, P817, DOI 10.2170/jjphysiol.41.817
   Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911
   Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9
   Wallace MN, 2000, BRIT J AUDIOL, V34, P92
   Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
   Wallace MN, 1999, NEUROREPORT, V10, P2095, DOI 10.1097/00001756-199907130-00019
   Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4
   Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843
   Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685
   Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616
NR 34
TC 23
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 115
EP 126
DI 10.1016/j.heares.2005.01.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200011
PM 15925197
ER

PT J
AU So, HS
   Park, C
   Kim, HJ
   Lee, JH
   Park, SY
   Lee, JH
   Lee, ZW
   Kim, HM
   Kalinec, F
   Lim, DJ
   Park, R
AF So, HS
   Park, C
   Kim, HJ
   Lee, JH
   Park, SY
   Lee, JH
   Lee, ZW
   Kim, HM
   Kalinec, F
   Lim, DJ
   Park, R
TI Protective effect of T-type calcium channel blocker flunarizine on
   cisplatin-induced death of auditory cells
SO HEARING RESEARCH
LA English
DT Article
DE cisplatin; ototoxicity; flunarizine; organ of Corti
ID OUTER HAIR-CELLS; GUINEA-PIG; IN-VITRO; ANTAGONIST FLUNARIZINE;
   ORGANOTYPIC CULTURES; INDUCED OTOTOXICITY; LIPID-PEROXIDATION; INDUCED
   APOPTOSIS; INDUCED DAMAGE; NEURONS
AB Changes in intracellular Ca2+ level are involved in a number of intracellular events, including triggering of apoptosis. The role of intracellular calcium mobilization in cisplatin-induced hair cell death, however, is still unknown. In this study, the effect of calcium channel blocker flunarizine (Sibelium (TM)), Which is used to prescribe for vertigo and tinnitus, on cisplatin-induced hair cell death was investigated in a cochlear organ of Corti-derived cell line, HEI-OCI, and the neonatal (P2) rat organ of Corti explant. Cisplatin induced apoptotic cell death showing nuclear fragmentation, DNA ladder, and TUNEL positive in both HEI-OCI and primary organ of Corti explant. Flunarizine significantly inhibited the cisplatin-induced apoptosis. Unexpectedly, flunarizine increased the intracellular calcium ([Ca2+](i)) levels of HEI-OCI. However, the protective effect of flunarizine against cisplatin was not mediated by modulation of intracellular calcium level. Treatment of cisplatin resulted in ROS generation and lipid peroxidation in HEI-OCI. Flunarizine did not attenuate ROS production but inhibited lipid peroxidation and mitochondrial permeability transition in cisplatin-treated cells. This result suggests that the protective mechanism of flunarizine on cisplatin-induced cytotoxicity is associated with direct inhibition of lipid peroxidation and mitochondrial permeability transition. (c) 2005 Elsevier B.V. All rights reserved.
C1 Korea Basic Sci Inst, Vestibulocochlear Res Ctr, Taejon 305333, South Korea.
   Korea Basic Sci Inst, Dept Microbiol, Taejon 305333, South Korea.
   Korea Basic Sci Inst, Biomol Res Team, Taejon 305333, South Korea.
   Kyung Hee Univ, Coll Oriental Med, Dept Pharmacol, Seoul, South Korea.
   House Ear Res Inst, Gonda Dept Cell & Mol Biol, Los Angeles, CA 90057 USA.
RP Park, R (reprint author), Wonkwang Univ, Sch Med, Dept Microbiol, 344-7 Shinyong Dong, Iksan 570749, Jeonbuk, South Korea.
EM rkpark@wonkwang.ac.ar
CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   APPENROTH D, 1993, RENAL FAILURE, V15, P135, DOI 10.3109/08860229309046144
   Blanchet C, 1996, J NEUROSCI, V16, P2574
   BUDIHARDJO I, 1999, ANNU REV CELL DEV BI, P15269
   Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Davis CA, 2001, J AM SOC NEPHROL, V12, P2683
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x
   DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K
   EICHLER ME, 1994, J NEUROCHEM, V62, P2148
   Elimadi A, 1998, EUR J PHARMACOL, V348, P115, DOI 10.1016/S0014-2999(98)00135-6
   ESCHWEILER GW, 1993, J NEUROL SCI, V116, P34, DOI 10.1016/0022-510X(93)90086-E
   ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638
   Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x
   Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005
   Fram Robert J., 1992, Current Opinion in Oncology, V4, P1073, DOI 10.1097/00001622-199212000-00012
   Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778
   GONCALVES T, 1991, EUR J PHARMACOL, V204, P315, DOI 10.1016/0014-2999(91)90858-N
   GREENBERG DA, 1987, BRAIN RES, V410, P143, DOI 10.1016/S0006-8993(87)80036-7
   HANNEMANN J, 1988, TOXICOLOGY, V51, P119
   Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5
   Humes HD, 1999, ANN NY ACAD SCI, V884, P15
   Jordan P, 2000, CELL MOL LIFE SCI, V57, P1229, DOI 10.1007/PL00000762
   Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059
   Kartalou M, 2001, MUTAT RES-FUND MOL M, V478, P1, DOI 10.1016/S0027-5107(01)00142-7
   KONRAD T, 1995, RES EXP MED, V195, P61, DOI 10.1007/BF02576775
   Kopke RD, 1997, AM J OTOL, V18, P559
   LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427
   Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3
   MURAI K, 1992, AM J OTOL, V13, P454
   OLESEN J, 1988, ANN NY ACAD SCI, V522, P690, DOI 10.1111/j.1749-6632.1988.tb33414.x
   Rizzuto R, 2003, ONCOGENE, V22, P8619, DOI 10.1038/sj.onc.1207105
   Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004
   SAITO T, 1991, HEARING RES, V56, P143, DOI 10.1016/0378-5955(91)90163-4
   Santi CM, 2002, J NEUROSCI, V22, P396
   Schierle GS, 1999, EXP NEUROL, V157, P338, DOI 10.1006/exnr.1999.7066
   SEILER SM, 1987, BIOCHEM PHARMACOL, V36, P3331, DOI 10.1016/0006-2952(87)90307-8
   SPIERINGS ELH, 1988, ANN NY ACAD SCI, V522, P676, DOI 10.1111/j.1749-6632.1988.tb33413.x
   TAKEI M, 1994, NEUROCHEM RES, V19, P1199, DOI 10.1007/BF00965156
   TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261
   Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2
   Teranishi M, 2003, INT J PEDIATR OTORHI, V67, P133, DOI 10.1016/S0165-5876(02)00353-1
   THOMAS PG, 1990, BIOCHIM BIOPHYS ACTA, V1030, P211, DOI 10.1016/0005-2736(90)90297-2
   THOMAS PG, 1993, BIOCHEM J, V291, P397
   THOMAS PG, 1988, BIOCHIM BIOPHYS ACTA, V946, P439, DOI 10.1016/0005-2736(88)90421-X
   Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9
   VOGELGESANG R, 1990, EUR J PHARM-MOLEC PH, V188, P17, DOI 10.1016/0922-4106(90)90243-Q
   VOGELGESANG R, 1988, BIOCHEM PHARMACOL, V37, P1597, DOI 10.1016/0006-2952(88)90023-8
   Watanabe K, 2002, CHEMOTHERAPY, V48, P82, DOI 10.1159/000057667
   YAMAMOTO T, 1994, BRAIN RES, V648, P296, DOI 10.1016/0006-8993(94)91130-4
   Yamoah EN, 1998, J NEUROSCI, V18, P610
   Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x
NR 53
TC 38
Z9 43
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 127
EP 139
DI 10.1016/j.heares.2005.01.011
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200012
PM 15925198
ER

PT J
AU Sone, M
   Hayashi, H
   Yamamoto, H
   Hoshino, T
   Mizushima, T
   Nakashima, T
AF Sone, M
   Hayashi, H
   Yamamoto, H
   Hoshino, T
   Mizushima, T
   Nakashima, T
TI Upregulation of HSP by geranylgeranylacetone protects the cochlear
   lateral wall from endotoxin-induced inflammation
SO HEARING RESEARCH
LA English
DT Article
DE GGA; HSP; inner ear; otitis media; cochlear trauma
ID RAT COCHLEA; MOLECULAR CHAPERONES; OTITIS-MEDIA; NITRIC-OXIDE;
   HEAT-SHOCK-PROTEIN-70; EXPRESSION; INDUCTION; STRESS; INJURY;
   HYPERTHERMIA
AB We investigated whether an acyclic polyisoprenoid antiulcer drug, geranylgeranylacetone (GGA), induces the expression of HSP70 in the rat cochlea. Immunoblotting revealed upregulation of HSP70 in the cochlea at 12 h after transtympanic (local) or oral (systemic) administration of GGA, and this increased at 24 It after administration. Positive immunohistochemical staining of HSP70 was observed in the hair cells, the spiral ganglion, the stria vascularis, the spiral ligament, and the perivascular portion of modiolar vessels. We therefore subsequently studied the effects of GGA as an HSP-inducer on inner ear trauma due to inflammation. Damage to the lateral wall due to inflammation induced by lipopolysaccharide inoculation was protected against by pretreatment with GGA, as assessed physiologically by measurement of cochlear blood flow and morphologically by electron microscopy. The results of the present study suggest that GGA can protect the cochlea against other injuries including those induced by noise, ototoxic drugs, and ischemia by upregulating HSP70. (c) 2005 Elsevier B.V. All rights reserved.
C1 Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan.
   Kumamoto Univ, Grad Sch Med & Pharmaceut Sci, Dept Microbiol, Kumamoto, Japan.
RP Sone, M (reprint author), Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsursmai Cho, Nagoya, Aichi 4668550, Japan.
EM michsone@med.nagoya-u.ac.jp
RI Nakashima, Tsutomu/B-8259-2012
OI Nakashima, Tsutomu/0000-0003-3930-9120
CR Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301
   BECKER J, 1994, EUR J BIOCHEM, V219, P11, DOI 10.1111/j.1432-1033.1994.tb19910.x
   CHOPP M, 1989, NEUROLOGY, V39, P1396
   Dobbin CA, 2002, J IMMUNOL, V169, P958
   Fairfield DA, 2004, HEARING RES, V188, P1, DOI 10.1016/S0378-5955(03)00369-1
   Fujiki M, 2003, BRAIN RES, V991, P254, DOI 10.1016/S0006-8993(03)03540-6
   Hauser GJ, 1996, AM J PHYSIOL-HEART C, V271, pH2529
   Hayes SA, 1996, J CELL BIOL, V132, P255, DOI 10.1083/jcb.132.3.255
   HIRAKAWA T, 1996, GASTROENTEROLOGY, V111, P354
   Ikeyama S, 2001, J HEPATOL, V35, P53, DOI 10.1016/S0168-8278(01)00053-8
   JACQUIERSARLIN MR, 1994, EXPERIENTIA, V50, P1031, DOI 10.1007/BF01923458
   LIM HH, 1993, HEARING RES, V69, P146
   Matsuda H, 2000, LIFE SCI, V66, P2151, DOI 10.1016/S0024-3205(00)00542-7
   MINOWADA G, 1995, J CLIN INVEST, V95, P3, DOI 10.1172/JCI117655
   Nikaido H, 2004, CIRCULATION, V110, P1839, DOI 10.1161/01.CIR.0000142615.88444.31
   Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
   Oda H, 2002, J GASTROINTEST SURG, V6, P464, DOI 10.1016/S1091-255X(01)00043-9
   Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146
   Ooie T, 2001, CIRCULATION, V104, P1837, DOI 10.1161/hc3901.095771
   Sone M, 2003, EUR J PHARMACOL, V482, P313, DOI 10.1016/j.ejphar.2003.09.051
   Sone M, 2004, ANN OTO RHINOL LARYN, V113, P450
   Suzuki K, 1997, J CLIN INVEST, V99, P1645, DOI 10.1172/JCI119327
   Unoshima M, 2003, ANTIMICROB AGENTS CH, V47, P2914, DOI 10.1128/AAC.47.9.2914-2921.2003
   Weiss YG, 2002, J CLIN INVEST, V110, P801, DOI 10.1172/JCI200215888
   YAMAMOTO H, 2003, HEARING RES, P186
   Yoshida N, 1999, J NEUROSCI, V19, P10116
NR 26
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 140
EP 146
DI 10.1016/j.heares.2005.01.012
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200013
PM 15925199
ER

PT J
AU Mulders, WHAM
   Robertson, D
AF Mulders, WHAM
   Robertson, D
TI Noradrenergic modulation of brainstem nuclei alters cochlear neural
   output
SO HEARING RESEARCH
LA English
DT Article
DE noradrenaline; superior olivary complex; hearing; olivocochlear
   efferents; guinea pig
ID AUDITORY-NERVE FIBERS; CROSSED OLIVOCOCHLEAR BUNDLE; GUINEA-PIG COCHLEA;
   TEMPORARY THRESHOLD SHIFTS; SUPERIOR OLIVARY COMPLEX;
   ELECTRICAL-STIMULATION; INFERIOR COLLICULUS; ROUND-WINDOW; OTOACOUSTIC
   EMISSIONS; EFFERENT STIMULATION
AB The peripheral auditory sense organ, the cochlea, receives innervation from lateral and medial olivocochlear neurons in the brainstem. These neurons are able to modulate cochlear neural output. Anatomical studies have shown that one of the neurotransmitters which is present in varicosities surrounding the olivocochlear neurons in the brainstem is noradrenaline and previous work on brainstem slices has demonstrated a generally excitatory effect of noradrenaline on medial olivococlilear neurons. In order to assess in vivo the function of the noradrenergic inputs to olivocochlear neurons, we injected noradrenaline in the brainstem of anaesthetised guinea pigs and recorded ipsilateral cochlear electrical activity. Injections of noradrenaline close to the lateral olivocochlear neurons evoked increases in the sound-driven neural activity from the cochlea, measured as Compound action potential (CAP) amplitude, as well as in the spontaneous activity, measured as amplitude of the 900 Hz peak of the spectrum of the neural noise in the cochlear fluids. In contrast, noradrenaline in the vicinity of the medial olivocochlear neurons evoked inhibitory effects on both the CAP amplitude and 900 Hz peak. These results indicate most likely an excitatory action of noradrenaline on both the lateral and medial olivocochlear neurons in the brainstem. and show that such noradrenergic inputs can modulate cochlear function. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Discipline Physiol, Perth, WA 6009, Australia.
RP Mulders, WHAM (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Discipline Physiol, Perth, WA 6009, Australia.
EM hmulders@cyllene.uwa.edu.au
CR ASTONJONES G, 1981, J NEUROSCI, V1, P876
   Aston-Jones G, 1999, BIOL PSYCHIAT, V46, P1309, DOI 10.1016/S0006-3223(99)00140-7
   Attias J, 1996, ACTA OTO-LARYNGOL, V116, P534, DOI 10.3109/00016489609137885
   BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625
   Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9
   DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374
   DEWSON JH, 1968, J NEUROPHYSIOL, V30, P817
   DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054
   Ebert U, 1996, EUR J NEUROSCI, V8, P1306, DOI 10.1111/j.1460-9568.1996.tb01299.x
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2
   Giraud AL, 1997, NEUROREPORT, V8, P1779
   Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003
   GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5
   GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8
   Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066
   GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X
   Hazell JWP, 1996, P 5 INT TINN SEM AM, P51
   Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4
   JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
   KEMP DT, 1988, HEARING RES, V34, P49, DOI 10.1016/0378-5955(88)90050-0
   LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X
   LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1
   May BJ, 1995, AUDIT NEUROSCI, V1, P385
   McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2
   Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X
   Mulders WHAM, 2000, HEARING RES, V144, P53, DOI 10.1016/S0378-5955(00)00045-9
   Mulders WHAM, 2001, J CHEM NEUROANAT, V21, P313, DOI 10.1016/S0891-0618(01)00118-1
   Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
   Mulders WHAM, 2005, EXP BRAIN RES, V160, P235, DOI 10.1007/s00221-004-2003-1
   Murugasu E, 1996, J NEUROSCI, V16, P325
   Patuzzi RB, 1999, HEARING RES, V138, P147, DOI 10.1016/S0378-5955(99)00161-6
   Patuzzi RB, 2004, HEARING RES, V190, P87, DOI 10.1016/S0378-5955(03)00405-2
   RAJAN R, 1988, J NEUROPHYSIOL, V60, P569
   RAJAN R, 1988, J NEUROPHYSIOL, V60, P549
   ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7
   ROBERTSON D, 1987, HEARING RES, V25, P69, DOI 10.1016/0378-5955(87)90080-3
   Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x
   RUGGERO MA, 1991, J NEUROSCI, V11, P1057
   Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2
   THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309
   VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U
   VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596
   Walsh EJ, 1998, J NEUROSCI, V18, P3859
   Wang XY, 1997, HEARING RES, V106, P20, DOI 10.1016/S0378-5955(96)00211-0
   Wang XY, 1997, J NEUROPHYSIOL, V78, P1800
   WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
   WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4
   WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6
   WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206
   WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235
   WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234
   WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110
   Woods CI, 1999, BRAIN RES, V836, P9, DOI 10.1016/S0006-8993(99)01541-3
NR 54
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 147
EP 155
DI 10.1016/j.heares.2005.01.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200014
PM 15925200
ER

PT J
AU Myrdal, SE
   Johnson, KC
   Steyger, PS
AF Myrdal, SE
   Johnson, KC
   Steyger, PS
TI Cytoplasmic and intra-nuclear binding of gentamicin does not require
   endocytosis
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 27th Midwinter Research Meeting of the
   Association-for-Research-in-Otolaryngology
CY FEB, 2004
CL Daytona Beach, FL
SP Assoc Res Otolaryngol
DE gentamicin; aminoglycoside; non-endocytotic; cytoplasmic; drug uptake
ID PREMATURE STOP MUTATIONS; SACCULAR HAIR-CELLS; PIG INNER-EAR;
   AMINOGLYCOSIDE ANTIBIOTICS; GUINEA-PIG; LLC-PK1 CELLS; GOLGI-COMPLEX;
   INDUCED NEPHROTOXICITY; TRANSDUCTION CHANNEL; PROXIMAL TUBULE
AB Understanding the cellular mechanism(s) by which the oto- and nephrotoxic aminoglycoside antibiotics penetrate cells, and the precise intracellular distribution of these molecules, will enable identification of aminoglycoside-sensitive targets, and potential uptake blockers. Clones of two kidney cell lines, OK and MDCK, were treated with the aminoglycoside gentamicin linked to the fluorophore Texas Red (GTTR). As in earlier reports, endosomal accumulation was observed in live cells, or cells fixed with formaldehyde only. However, delipidation of fixed cells revealed GTTR fluorescence in cytoplasmic and nuclear compartments. Immunolabeling of both GTTR and unconjugated gentamicin corresponded to the cytoplasmic distribution of GTTR fluorescence. Intra-nuclear GTTR binding co-localized with labeled RNA in the nucleoli and trans-nuclear tubules. Cytoplasmic and nuclear distribution of GTTR was quenched by phosphatidylinositol-bisphosphate (PIP2), a known ligand for gentamicin. Cytoplasmic and nuclear GTTR binding increased over time (at 37 degrees C, or on ice to inhibit endocytosis), and was serially competed off by increasing concentrations of unconjugated gentamicin, i.e., GTTR binding is saturable. In contrast, little or no reduction of endocytotic GTTR uptake was observed when cells were co-incubated with up to 4mg/mL unconjugated gentamicin. Thus, cytoplasmic and nuclear GTTR uptake is time-dependent, weakly temperature-dependent and saturable, suggesting that it occurs via an endosome-independent mechanism, implicating ion channels, transporters or pores in the plasma membrane as bioregulatory routes for gentamicin entry into cells. (c) 2005 Elsevier B.V. All rights reserved.
C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
RP Steyger, PS (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM steygerp@ohsu.edu
CR Aran J M, 1993, Rev Laryngol Otol Rhinol (Bord), V114, P125
   BAGGERSJOBACK D, 1988, ACTA OTO-LARYNGOL, V106, P19, DOI 10.3109/00016488809107366
   BEAUCHAMP D, 1991, ANTIMICROB AGENTS CH, V35, P2173
   Bedwell DM, 1997, NAT MED, V3, P1280, DOI 10.1038/nm1197-1280
   BEGG EJ, 1995, BRIT J CLIN PHARMACO, V39, P597
   Belus A, 2001, EUR J PHARMACOL, V412, P121, DOI 10.1016/S0014-2999(01)00717-8
   Clancy JP, 2001, AM J RESP CRIT CARE, V163, P1683
   Clemens P R, 2001, Curr Neurol Neurosci Rep, V1, P89, DOI 10.1007/s11910-001-0080-0
   COREY DP, 1983, J NEUROSCI, V3, P962
   Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066
   Cortright DN, 2001, BIOCHEM BIOPH RES CO, V281, P1183, DOI 10.1006/bbrc.2001.4482
   Decorti G, 1999, LIFE SCI, V65, P1115, DOI 10.1016/S0024-3205(99)00345-8
   de Jager P, 2002, INT J TUBERC LUNG D, V6, P622
   DELACHAPELLEGROZ B, 1988, EUR J PHARMACOL, V152, P111, DOI 10.1016/0014-2999(88)90841-2
   Ding D, 1997, Zhonghua Er Bi Yan Hou Ke Za Zhi, V32, P348
   Ding D, 1995, Zhonghua Er Bi Yan Hou Ke Za Zhi, V30, P323
   Dunn KW, 2003, NEPHRON EXP NEPHROL, V94, pE7, DOI 10.1159/000070813
   ELLISON DH, 1987, MINER ELECTROL METAB, V13, P422
   Fabrizii V, 1997, WIEN KLIN WOCHENSCHR, V109, P830
   FIEKERS JF, 1983, J PHARMACOL EXP THER, V225, P496
   FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
   Furness DN, 1996, HEARING RES, V93, P136, DOI 10.1016/0378-5955(95)00224-3
   Gale JE, 2001, J NEUROSCI, V21, P7013
   GILBERT DN, 1989, J INFECT DIS, V159, P945
   Goldhill JM, 1996, J PHARM PHARMACOL, V48, P651
   Gonzalez-Mariscal L, 2000, KIDNEY INT, V57, P2386, DOI 10.1046/j.1523-1755.2000.00098.x
   HALL JW, 1986, INT J PEDIATR OTORHI, V12, P187, DOI 10.1016/S0165-5876(86)80075-1
   Harris DCH, 2001, EXP NEPHROL, V9, P205
   Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3
   Haugland R. P., 1996, HDB FLUORESCENT PROB
   Haugland R.P., 2004, HDB FLUORESCENT PROB
   Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200
   HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G
   Hille B., 1992, IONIC CHANNELS EXCIT, V2nd
   HOCK R, 1995, J CRIT CARE, V10, P33, DOI 10.1016/0883-9441(95)90029-2
   Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
   JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577
   KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9
   Kang HS, 2000, CAN J PHYSIOL PHARM, V78, P595, DOI 10.1139/cjpp-78-8-595
   Keeling KM, 2002, J MOL MED-JMM, V80, P367, DOI 10.1007/s00109-001-0317-z
   KEMPSON SA, 1989, J BIOL CHEM, V264, P18451
   KIDWELL DT, 1994, EUR J PHARM-ENVIRON, V270, P97, DOI 10.1016/0926-6917(94)90085-X
   KUHN K, 1975, CELL TISSUE RES, V160, P193
   LEEHEY DJ, 1993, J AM SOC NEPHROL, V4, P81
   Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4
   LOVELESS MO, 1984, J LAB CLIN MED, V103, P294
   Lynch SR, 2001, J MOL BIOL, V306, P1023, DOI 10.1006/jmbi.2000.4419
   Meyers JR, 2003, J NEUROSCI, V23, P4054
   MILLER JJ, 1985, HDB OTOTOXICITY
   MORIN JP, 1984, CHEMIOTERAPIA, V3, P33
   MYRDAL SE, 2004, ARO MIDW M, V27, P135
   Nauli SM, 2004, BIOESSAYS, V26, P844, DOI 10.1002/bies.20069
   QUAMME GA, 1986, MAGNESIUM, V5, P248
   Richardson GP, 1997, J NEUROSCI, V17, P9506
   Sandoval R, 1998, J AM SOC NEPHROL, V9, P167
   Sandoval RM, 2004, AM J PHYSIOL-RENAL, V286, pF617, DOI 10.1152/ajprenal.00130.2003
   Sandoval RM, 2002, AM J PHYSIOL-RENAL, V283, pF1422, DOI 10.1152/ajprenal.00095.2002
   Sandoval RM, 2000, AM J PHYSIOL-RENAL, V279, pF884
   SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236
   SCHAEFFER SF, 1978, J CELL BIOL, V79, P802, DOI 10.1083/jcb.79.3.802
   Schulz A, 2002, J CLIN ENDOCR METAB, V87, P5247, DOI 10.1210/jc.2002-020286
   Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5
   STEYGER PS, 2004, ARO MIDW M ABSTR, V27, P135
   Strotmann R, 2000, NAT CELL BIOL, V2, P695
   TIEDEMANN K, 1983, ANAT EMBRYOL, V168, P241, DOI 10.1007/BF00315819
   TULKENS PM, 1989, TOXICOL LETT, V46, P107, DOI 10.1016/0378-4274(89)90121-5
   van Lent-Evers NAEM, 1999, THER DRUG MONIT, V21, P63, DOI 10.1097/00007691-199902000-00010
   WEDEEN RP, 1983, LAB INVEST, V48, P212
   WILLIAMS SE, 1987, BIOCHEM PHARMACOL, V36, P89, DOI 10.1016/0006-2952(87)90385-6
   WILLIAMS SE, 1987, HEARING RES, V30, P11, DOI 10.1016/0378-5955(87)90177-8
   Wolfrum U, 1998, CELL MOTIL CYTOSKEL, V40, P261, DOI 10.1002/(SICI)1097-0169(1998)40:3<261::AID-CM5>3.0.CO;2-G
   Yoshizawa S, 1998, EMBO J, V17, P6437, DOI 10.1093/emboj/17.22.6437
   Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002
   Zhou LM, 2002, AATCC REV, V2, P29
   Zhou Y, 2001, NEUROSCI LETT, V315, P98, DOI 10.1016/S0304-3940(01)02356-4
NR 75
TC 49
Z9 49
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 156
EP 169
DI 10.1016/j.heares.2005.02.002
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200015
PM 15925201
ER

PT J
AU Myrdal, SE
   Steyger, PS
AF Myrdal, SE
   Steyger, PS
TI TRPV1 regulators mediate gentamicin penetration of cultured kidney cells
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 27th Midwinter Research Meeting of the
   Association-for-Research-in-Otolaryngology
CY FEB, 2004
CL Daytona Beach, FL
SP Assoc Res Otolaryngol
DE aminoglycosides; cytoplasmic drug uptake; non-endocytotic uptake; TRP
   channel
ID VANILLOID RECEPTOR VR1; SACCULAR HAIR-CELLS; CAPSAICIN RECEPTOR; CATION
   CHANNEL; FUNCTIONAL-CHARACTERIZATION; AMINOGLYCOSIDE ANTIBIOTICS;
   NOCICEPTIVE NEURONS; GANGLIA NEURONS; FREEZE-FRACTURE; ION-CHANNEL
AB Transient receptor potential (TRP) receptors are, typically, calcium-permeant cation channels that transduce environmental stimuli. Both kidney epithelial and inner ear sensory cells express TRPV1, are mechanosensors and accumulate the aminoglycoside antibiotic gentamicin. Recently, we showed that Texas Red-conjugated gentamicin (GTTR) enters kidney cells via an endosome-independent pathway. Here, we used GTTR to investigate this non-endocytotic mechanism of gentamicin uptake. In serum-free buffers, GTTR penetrated MDCK cells within 30 s and uptake was modulated by extracellular, multivalent cations (Ca2+, La3+, Gd3+) or protons. We verified the La3+ modulation of GTTR uptake using immunocytochemical detection of unconjugated gentamicin. Membrane depolarization, induced by high extracellular K+ or valinomycin, also reduced GTTR uptake, suggesting electrophoretic permeation through ion channels.
   GTTR uptake was enhanced by the TRPV1 agonists, resiniferatoxin and anandamide, in Ca2+-free media. Competitive antagonists of the TRPV1 cation current, iodo-resiniferatoxin and SB366791, also enhanced GTTR uptake independently of Ca2+ reinforcing these antagonists' potential as latent agonists in specific Situations. Ruthenium Red blocked GTTR uptake in the presence or absence of these TRPV1-agonists and antagonists. In addition, GTTR uptake was blocked by RTX in the presence of more physiological levels (2 mM) of Ca2+. Thus gentamicin enters cells via cation channels, and gentamicin uptake can be modulated by regulators of the TRPVI channel. (c) 2005 Elsevier B.V. All rights reserved.
C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
RP Steyger, PS (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA.
EM steygerp@ohsu.edu
CR Acs G, 1997, J NEUROSCI, V17, P5622
   Acs G, 1996, LIFE SCI, V59, P1899, DOI 10.1016/S0024-3205(96)00537-1
   BAGGERSJOBACK D, 1988, ACTA OTO-LARYNGOL, V106, P19, DOI 10.3109/00016488809107366
   Barry PH, 1999, CLIN EXP PHARMACOL P, V26, P935, DOI 10.1046/j.1440-1681.1999.03149.x
   BEGG EJ, 1995, BRIT J CLIN PHARMACO, V39, P597
   Benham CD, 2002, NEUROPHARMACOLOGY, V42, P873, DOI 10.1016/S0028-3908(02)00047-3
   BERTOLERO F, 1982, RES COMMUN CHEM PATH, V36, P273
   BONGARD RD, 1993, DRUG METAB DISPOS, V21, P428
   Caterina MJ, 1997, NATURE, V389, P816
   Chuang HH, 2001, NATURE, V411, P957, DOI 10.1038/35082088
   COREY DP, 1983, J NEUROSCI, V3, P962
   Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066
   Cortright DN, 2001, BIOCHEM BIOPH RES CO, V281, P1183, DOI 10.1006/bbrc.2001.4482
   CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369
   Crider BP, 2003, J BIOL CHEM, V278, P44281, DOI 10.1074/jbc.M307372200
   DAVIS JB, 2001, SOC NEUR ABSTR 9105, V27
   de Jager P, 2002, INT J TUBERC LUNG D, V6, P622
   De Lalla F, 1999, J CHEMOTHERAPY, V11, P440
   FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
   Fowler CJ, 2003, BIOCHEM PHARMACOL, V66, P757, DOI 10.1016/S0006-2952(03)00392-7
   FRENCH RJ, 1985, J GEN PHYSIOL, V85, P669, DOI 10.1085/jgp.85.5.669
   Gale JE, 2001, J NEUROSCI, V21, P7013
   Gillo B, 1996, P NATL ACAD SCI USA, V93, P14146, DOI 10.1073/pnas.93.24.14146
   GITTER AH, 1993, ORL J OTO-RHINO-LARY, V55, P1
   Gong XD, 2002, J PHYSIOL-LONDON, V540, P39, DOI 10.1113/jphysiol.2001.013235
   Gonzalez-Mariscal L, 2000, KIDNEY INT, V57, P2386, DOI 10.1046/j.1523-1755.2000.00098.x
   Goodman MB, 2003, ANNU REV PHYSIOL, V65, P429, DOI 10.1146/annurev.physiol.65.092101.142659
   Grimm C, 2003, J BIOL CHEM, V278, P21493, DOI 10.1074/jbc.M300945200
   Guidoni L, 1999, BIOCHEMISTRY-US, V38, P8599, DOI 10.1021/bi990540c
   Guler AD, 2002, J NEUROSCI, V22, P6408
   Gunthorpe MJ, 2004, NEUROPHARMACOLOGY, V46, P133, DOI 10.1016/S0028-3908(03)00305-8
   Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3
   Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200
   Hofmann T, 2003, CURR BIOL, V13, P1153, DOI 10.1016/S0960-9822(03)00431-7
   Humes HD, 1999, ANN NY ACAD SCI, V884, P15
   Inoue R, 2003, J PHARMACOL SCI, V91, P271
   JACKSON GG, 1984, J ANTIMICROB CHEMOTH, V13, P1
   KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9
   Keeling KM, 2002, J MOL MED-JMM, V80, P367, DOI 10.1007/s00109-001-0317-z
   Kessel M, 1999, EUR J CLIN PHARMACOL, V55, P369, DOI 10.1007/s002280050642
   Kondoh M, 2003, COMP BIOCHEM PHYS B, V134, P417, DOI 10.1016/S1096-4959(02)00255-5
   Koplas PA, 1997, J NEUROSCI, V17, P3525
   KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3
   KUHN K, 1975, CELL TISSUE RES, V160, P193
   Launay P, 2002, CELL, V109, P397, DOI 10.1016/S0092-8674(02)00719-5
   LEEHEY DJ, 1993, J AM SOC NEPHROL, V4, P81
   Lesniak W, 2003, CARBOHYD RES, V338, P2853, DOI 10.1016/j.carres.2003.08.005
   Meyers JR, 2003, J NEUROSCI, V23, P4054
   MILLER JJ, 1985, HDB OTOTOXICITY
   Mutai H, 2003, CELL CALCIUM, V33, P471, DOI 10.1016/S0143-4160(03)00062-9
   Nauli SM, 2004, BIOESSAYS, V26, P844, DOI 10.1002/bies.20069
   Nilius B, 2003, J BIOL CHEM, V278, P30813, DOI 10.1074/jbc.M305127200
   Numazaki M, 2003, P NATL ACAD SCI USA, V100, P8002, DOI 10.1073/pnas.1337252100
   Olah Z, 2001, J BIOL CHEM, V276, P31163, DOI 10.1074/jbc.M101607200
   Petho G, 2004, PAIN, V109, P284, DOI 10.1016/j.pain.2004.01.038
   Prescott ED, 2003, SCIENCE, V300, P1284, DOI 10.1126/science.1083646
   Qu ZQ, 2000, J GEN PHYSIOL, V116, P825, DOI 10.1085/jgp.116.6.825
   Ren YL, 2001, AM J PHYSIOL-RENAL, V281, pF1102
   Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x
   Riccio A, 2002, J BIOL CHEM, V277, P12302, DOI 10.1074/jbc.M112313200
   Runnels LW, 2002, NAT CELL BIOL, V4, P329, DOI 10.1038/ncb781
   Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004
   Sandoval RM, 2004, AM J PHYSIOL-RENAL, V286, pF617, DOI 10.1152/ajprenal.00130.2003
   SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236
   Schlingmann KP, 2002, NAT GENET, V31, P166, DOI 10.1038/ng889
   Schulz A, 2002, J CLIN ENDOCR METAB, V87, P5247, DOI 10.1210/jc.2002-020286
   Smith GD, 2002, NATURE, V418, P186, DOI 10.1038/nature00894
   Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5
   STEYGER PS, 2004, ARO MIDW M ABSTR, V27, P135
   Story GM, 2003, CELL, V112, P819, DOI 10.1016/S0092-8674(03)00158-2
   Tanaka F, 2003, HEARING RES, V177, P21, DOI 10.1016/S0378-5955(02)00771-2
   Thut PD, 2003, NEUROSCIENCE, V119, P1071, DOI 10.1016/S0306-4522(03)00225-2
   TIEDEMANN K, 1983, ANAT EMBRYOL, V168, P241, DOI 10.1007/BF00315819
   Tikhonov DB, 1999, BIOPHYS J, V77, P1914
   Tominaga M, 1998, NEURON, V21, P531, DOI 10.1016/S0896-6273(00)80564-4
   Toth A, 2003, LIFE SCI, V73, P487, DOI 10.1016/S0024-3205(03)00310-2
   Trebak M, 2002, J BIOL CHEM, V277, P21617, DOI 10.1074/jbc.M202549200
   Tsiokas L, 1999, P NATL ACAD SCI USA, V96, P3934, DOI 10.1073/pnas.96.7.3934
   Urbach V, 1999, J MEMBRANE BIOL, V168, P29, DOI 10.1007/s002329900495
   Vellani V, 2001, J PHYSIOL-LONDON, V534, P813, DOI 10.1111/j.1469-7793.2001.00813.x
   Vennekens R, 2002, CELL CALCIUM, V31, P253, DOI 10.1016/S0143-4160(02)00055-6
   Voets T, 2003, J MEMBRANE BIOL, V192, P1, DOI 10.1007/s00232-002-1059-8
   Wahl P, 2001, MOL PHARMACOL, V59, P9
   Walker RL, 2002, AM J PHYSIOL-CELL PH, V283, pC1637, DOI 10.1152/ajpcell.00266.2002
   WILLIAMS SE, 1987, HEARING RES, V30, P11, DOI 10.1016/0378-5955(87)90177-8
   Wuttke MS, 2000, J NEUROGENET, V14, P43, DOI 10.3109/01677060009083476
   Xu HS, 2003, J BIOL CHEM, V278, P11520, DOI 10.1074/jbc.M211061200
   Xu HX, 2002, NATURE, V418, P181, DOI 10.1038/nature00882
   ZENNER HP, 1986, ARCH OTO-RHINO-LARYN, V243, P108, DOI 10.1007/BF00453760
   Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002
NR 90
TC 51
Z9 53
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 170
EP 182
DI 10.1016/j.heares.2005.02.005
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200016
PM 15925202
ER

PT J
AU Gross, J
   Machulik, A
   Amarjargal, N
   Fuchs, J
   Mazurek, B
AF Gross, J
   Machulik, A
   Amarjargal, N
   Fuchs, J
   Mazurek, B
TI Expression of prestin mRNA in the organotypic culture of rat cochlea
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; hypoxia; ischemia; prestin mRNA
ID OUTER HAIR-CELLS; POLYMERASE CHAIN-REACTION; LOUD SOUND EXPOSURE; MOTOR
   PROTEIN; GUINEA-PIG; POSTNATAL-DEVELOPMENT; ACOUSTIC EXPOSURE;
   GENE-EXPRESSION; BLOOD-FLOW; RT-PCR
AB To quantitate in absolute terms the prestin mRNA levels in the explant Culture Of rat cochlea, we used competitive RT-PCR with a synthetic internal cRNA standard. Prestin gene expression was found at levels of 100 fg specific mRNA/Pg total RNA oil postnatal day 3, which corresponds to about 300 copies per outer hair cell (OHC) and is indicative of an intermediate level of expression. Two days of culturing resulted in ail increase of prestin mRNA levels and in the formation of an apical-basal gradient (p < 0.001). To elucidate the variations the prestin mRNA levels undergo as a result of damage to the organ of Corti, we exposed the explant cultures to ischemia and hypoxia. While total RNA was observed to remain unchanged, the numbers of OHCs and the prestin mRNA levels were found to decrease by about 20% and 35%, respectively, compared to normoxia.
   In conclusion, we showed that the prestin mRNA levels during in vitro development increase and form an apical-basal gradient within 2 days in culture, similar to the postnatal in vivo development. Hypoxia and ischemia result in a decrease of the prestin mRNA level ill parallel with OHC loss. The prestin mRNA level call therefore be used as marker of damage to or loss of OHCs. (c) 2005 Elsevier B.V. All rights reserved.
C1 Humboldt Univ, Charite Hosp, Dept Otorhinolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany.
   Hlth Sci Univ, Dept Hearing Res, Pediat Clin, Matern & Child Hlth Res Ctr, Ulaanbaatar, Mongol Peo Rep.
RP Gross, J (reprint author), Humboldt Univ, Charite Hosp, Dept Otorhinolaryngol, Mol Biol Res Lab, Spandauer Damm 130, D-14050 Berlin, Germany.
EM johann.gross@charite.de
CR Belyantseva I.A., 2000, J NEUROSCI, V20, P1
   Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6
   Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143
   Grabe N, 2002, IN SILICO BIOL, V2, pS1
   HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9
   Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6
   Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089
   Lamm K, 1996, Audiol Neurootol, V1, P148
   LEE KH, 1995, HEARING RES, V87, P9, DOI 10.1016/0378-5955(95)00072-C
   Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6
   Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498
   Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5
   ODRISCOLL L, 1993, CYTOTECHNOLOGY, V12, P289, DOI 10.1007/BF00744669
   Oliver D, 1999, J PHYSIOL-LONDON, V519, P791, DOI 10.1111/j.1469-7793.1999.0791n.x
   Orita Y, 2002, OTOL NEUROTOL, V23, P34, DOI 10.1097/00129492-200201000-00009
   ROTH B, 1992, ANAT EMBRYOL, V185, P571, DOI 10.1007/BF00185616
   RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0
   Sagerstrom CG, 1997, ANNU REV BIOCHEM, V66, P751, DOI 10.1146/annurev.biochem.66.1.751
   SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281
   SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y
   Schweinfurth JM, 2000, AM J OTOL, V21, P636
   Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x
   Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5
   THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481
   THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9
   WANG AM, 1989, P NATL ACAD SCI USA, V86, P9717, DOI 10.1073/pnas.86.24.9717
   Weber T, 2002, P NATL ACAD SCI USA, V99, P2901, DOI 10.1073/pnas.052609899
   WEBER U, 1997, ANTISENSE TECHNOLOGY, P75
   Wenger RH, 2002, FASEB J, V16, DOI 10.1096/fj.01-0944rev
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 30
TC 12
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 183
EP 190
DI 10.1016/j.heares.2005.02.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200017
PM 15925203
ER

PT J
AU Supin, AY
   Popov, VV
   Milekhina, ON
   Tarakanov, MB
AF Supin, AY
   Popov, VV
   Milekhina, ON
   Tarakanov, MB
TI Rippled-spectrum resolution dependence on masker-to-probe ratio
SO HEARING RESEARCH
LA English
DT Article
DE spectrum-pattern resolution; rippled noise; dependence on level;
   masking; humans
ID AUDITORY-NERVE FIBERS; 2-TONE SUPPRESSION; SIMULTANEOUS MASKING;
   BASILAR-MEMBRANE; FILTER SHAPES; TUNING CURVES; FREQUENCY-SELECTIVITY;
   DENSITY RESOLUTION; RESOLVING POWER; NOTCHED-NOISE
AB Resolution of rippled sound spectrum (probe) in the presence of additional noise band (masker) was studied as a function of rnasker-to-probe ratio and Sound level in normal listeners. The probe bands were 0.5-oct wide (ERB) centered at 2 kHz; the masker band either coincided with the probe (on-frequency masker), or was 3/4 octaves below (low-frequency masker), or 3/4 octaves above the probe (high-frequency masker). Ripple-density resolution in the probe band was measured by finding the highest ripple density at which an interchange of ripple peaks and valleys was detectable (the phase-reversal test). (i) The effect of the low-frequency masker increased (resolution decreased) when masker-to-probe ratio changed from -25 dB to +20 dB; the effect increased (resolution decreased) with sound level increase. (ii) The effect of the on-frequency masker steeply increased (resolution abruptly decreased) when masker-to-probe ratio exceeded 0 dB; the effect was little dependent on Sound level. (iii) The high-frequency masker was little effective unless the masker-to-probe ratio reached 30-40 dB; the effect increased (resolution decreased) with sound level decrease. Thus, different position of the masker band relative to the probe resulted in qualitatively different kinds of spectrum-pattern resolution dependence on both the masker-to-probe ratio and sound level. (c) 2005 Elsevier B.V. All rights reserved.
C1 Russian Acad Sci, Inst Ecol & Evolut, Moscow 117071, Russia.
RP Supin, AY (reprint author), Russian Acad Sci, Inst Ecol & Evolut, 33 Leninsky Prosp, Moscow 117071, Russia.
EM alex_supin@sevin.ru
CR Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795
   DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891
   Dubno JR, 2001, J ACOUST SOC AM, V110, P1058, DOI 10.1121/1.1381024
   Gifford RH, 2000, J ACOUST SOC AM, V107, P2188, DOI 10.1121/1.428499
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   GLASBERG BR, 1984, J ACOUST SOC AM, V75, P536, DOI 10.1121/1.390487
   Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291
   Green D, 1986, AUDITORY FREQUENCY S, P351
   Green DM, 1987, PROFILE ANAL AUDITOR
   HARRIS DM, 1979, HEARING RES, V1, P133, DOI 10.1016/0378-5955(79)90024-8
   HOUTGAST T, 1977, J ACOUST SOC AM, V62, P409, DOI 10.1121/1.381541
   Houtgast T., 1974, FACTS MODELS HEARING, P258
   HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048
   KIANG NYS, 1974, J ACOUST SOC AM, V55, P620, DOI 10.1121/1.1914572
   Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321
   Moore BCJ, 1997, J ACOUST SOC AM, V102, P2284, DOI 10.1121/1.419638
   OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691
   Oxenham AJ, 1998, J ACOUST SOC AM, V104, P3500, DOI 10.1121/1.423933
   Pang XD, 1997, J ACOUST SOC AM, V102, P3564, DOI 10.1121/1.420147
   PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914
   PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652
   PATTERSON RD, 1977, J ACOUST SOC AM, V62, P649, DOI 10.1121/1.381578
   Pick G., 1977, PSYCHOPHYSICS PHYSL, P273
   PICK GF, 1980, J ACOUST SOC AM, V68, P1085, DOI 10.1121/1.384979
   PICKLES JO, 1984, HEARING RES, V14, P245, DOI 10.1016/0378-5955(84)90053-4
   POPOV VV, 1984, DOKL AKAD NAUK SSSR+, V278, P1012
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P493
   RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2
   RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087
   SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947
   SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2
   Shamma S, 1995, AUDIT NEUROSCI, V1, P233
   SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969
   SUPIN AY, 1994, HEARING RES, V78, P31, DOI 10.1016/0378-5955(94)90041-8
   Supin AY, 1997, HEARING RES, V108, P17, DOI 10.1016/S0378-5955(97)00035-X
   Supin A Ia, 1987, Fiziol Cheloveka, V13, P28
   Supin AY, 1999, J ACOUST SOC AM, V106, P2800, DOI 10.1121/1.428105
   Supin AY, 2001, HEARING RES, V151, P157, DOI 10.1016/S0378-5955(00)00223-9
   Supin AY, 2003, HEARING RES, V185, P1, DOI 10.1016/S0378-5955(03)00215-6
   Supin AY, 1998, J ACOUST SOC AM, V103, P2042, DOI 10.1121/1.421351
   TYLER RS, 1986, AUDITORY FREQUENCY S, P323
   WILSON JP, 1971, 7 INT C AC, V3, P397
   Zwicker E., 1974, FACTS MODELS HEARING, P132
   ZWICKER E, 1970, FREQUENCY ANAL PERIO
   ZWICKER E, 1982, PSYCHOACUSTIC
   ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141
NR 46
TC 1
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 191
EP 199
DI 10.1016/j.heares.2005.01.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200018
PM 15925204
ER

PT J
AU Andrianov, GN
   Puyal, J
   Raymond, J
   Venteo, S
   Dememes, D
   Ryzhova, IV
AF Andrianov, GN
   Puyal, J
   Raymond, J
   Venteo, S
   Dememes, D
   Ryzhova, IV
TI Immunocytochemical and pharmacological characterization of metabotropic
   glutamate receptors of the vestibular end organs in the frog
SO HEARING RESEARCH
LA English
DT Article
DE metabotropic receptors; neuromodulation; afferent synapse; semicircular
   canal; frog
ID GROUP-I; SYNAPTIC-TRANSMISSION; SEMICIRCULAR CANALS; GANGLION NEURONS;
   NMDA RECEPTORS; HAIR-CELLS; AGONISTS; RELEASE; MGLUR2; LOCALIZATION
AB Using immunocytochemistry and multiunit recording of afferent activity of the whole vestibular nerve, we investigated the role of metabotropic glutamate receptors (mGluR) in the afferent neurotransmission in the frog semicircular canals (SCC). Group I (rnGluR1 alpha) and group II (mGluR2/3) mGluR immunoreactivitics were distributed to the vestibular ganglion neurons, and this can be attributed to a postsynaptic locus of metabotropic regulation of rapid excitatory transmission. The effects of group I/II mGluR agonist (IS,3R)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) on resting and chemically induced afferent activity were studied. ACPD (10-100 mu M) enhanced the resting discharge frequency. MCPG (5-100 mu M) led to a concentration-dependent decrease of both resting activity and ACPD-induced responses. If the discharge frequency had previously been restored by L-glutainate (L-Glu) in high-Mg2+ solution, ACPD elicited a transient increase in the firing rate in the afferent nerve suggesting that ACPD acts on postsynaptic receptors. The L-Glu agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA), were tested during application of ACPD. AMPA and NMDA-induced responses were higher in the presence than absence of ACPD. implicating mGluR in the modulation of ionotropic glutamate receptors. These results indicate that activation of mGluR potentiates AMPA and NMDA responses through a postsynaptic interaction. We conclude that ACPD may exert modulating postsynaptic effects on vestibular afferents and that this process is activity-dependent. (c) 2005 Elsevier B.V. All rights reserved.
C1 Russian Acad Sci, Lab Physiol Recept, IP Pavlov Physiol Inst, St Petersburg 199034, Russia.
   Univ Lausanne, Dept Cell Biol & Morphol, CH-1005 Lausanne, Switzerland.
   Univ Montpellier 2, F-34095 Montpellier, France.
   Hop St Eloi, INSERM U583, INM, F-34295 Montpellier, France.
RP Andrianov, GN (reprint author), Russian Acad Sci, Lab Physiol Recept, IP Pavlov Physiol Inst, Nab Makarova 6, St Petersburg 199034, Russia.
EM andryu@infran.ru
CR AKOEV GN, 1993, SENSORY HAIR CELLS S, P194
   ANDRIANOV GN, 1992, COMP BIOCHEM PHYS C, V103, P65, DOI 10.1016/0742-8413(92)90229-Z
   Andrianov GN, 1999, NEUROSCIENCE, V93, P801, DOI 10.1016/S0306-4522(99)00159-1
   Andrianov GN, 2000, NEUROREPORT, V11, P183, DOI 10.1097/00001756-200001170-00036
   ANNONI JM, 1984, J NEUROSCI, V4, P2106
   Anwyl R, 1999, BRAIN RES REV, V29, P83, DOI 10.1016/S0165-0173(98)00050-2
   Awad H, 2000, J NEUROSCI, V20, P7871
   Bandrowski AE, 2001, EXP BRAIN RES, V136, P25, DOI 10.1007/s002210000556
   BLEDSOE SC, 1998, PHYSL HEARING, P385
   BOND A, 1995, NEUROPHARMACOLOGY, V34, P1015, DOI 10.1016/0028-3908(95)00046-9
   Bordi F, 1999, PROG NEUROBIOL, V59, P55, DOI 10.1016/S0301-0082(98)00095-1
   Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205
   Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3
   Guth PS, 1998, HEARING RES, V125, P154, DOI 10.1016/S0378-5955(98)00145-2
   Hendricson AW, 2002, NEUROREPORT, V13, P1765, DOI 10.1097/00001756-200210070-00014
   Hendricson AW, 2002, HEARING RES, V172, P99, DOI 10.1016/S0378-5955(02)00519-1
   JANE DE, 1993, NEUROPHARMACOLOGY, V32, P725, DOI 10.1016/0028-3908(93)90088-K
   JONES MW, 1995, NEUROPHARMACOLOGY, V34, P1025, DOI 10.1016/0028-3908(95)00055-B
   Kleinlogel S, 1999, NEUROREPORT, V10, P1879, DOI 10.1097/00001756-199906230-00015
   Liu XB, 1998, J COMP NEUROL, V395, P450, DOI 10.1002/(SICI)1096-9861(19980615)395:4<450::AID-CNE3>3.0.CO;2-0
   Lujan R, 1997, J CHEM NEUROANAT, V13, P219, DOI 10.1016/S0891-0618(97)00051-3
   MASU M, 1991, NATURE, V349, P760, DOI 10.1038/349760a0
   NAKANISHI S, 1994, NEURON, V13, P1031, DOI 10.1016/0896-6273(94)90043-4
   NICOLAS MT, 2003, HEARING RES, V4707, P1
   OHISHI H, 1994, NEURON, V13, P55, DOI 10.1016/0896-6273(94)90459-6
   Peng BG, 2004, NEUROSCIENCE, V123, P221, DOI 10.1016/j.neuroscience.2003.09.010
   Petralia RS, 1996, NEUROSCIENCE, V71, P949, DOI 10.1016/0306-4522(95)00533-1
   PIN JP, 1995, NEUROPHARMACOLOGY, V34, P1, DOI 10.1016/0028-3908(94)00129-G
   PRIGIONI I, 1994, NEUROREPORT, V5, P516, DOI 10.1097/00001756-199401120-00038
   PRIGIONI I, 1995, AMINO ACIDS, V9, P265, DOI 10.1007/BF00805957
   Puyal J, 2003, J PHYSIOL-LONDON, V553, P427, DOI 10.1113/jphysiol.2003.051995
   Rabejac D, 1997, EUR J NEUROSCI, V9, P221, DOI 10.1111/j.1460-9568.1997.tb01393.x
   REID SNM, 1995, J COMP NEUROL, V355, P470, DOI 10.1002/cne.903550311
   VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2
   Zhong J, 2000, BRAIN RES, V887, P359, DOI 10.1016/S0006-8993(00)03066-3
   ZUCCA G, 1992, HEARING RES, V63, P52, DOI 10.1016/0378-5955(92)90073-V
   ZUCCA G, 1993, NEUROREPORT, V4, P403, DOI 10.1097/00001756-199304000-00015
NR 37
TC 4
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 200
EP 209
DI 10.1016/j.heares.2005.02.003
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200019
PM 15925205
ER

PT J
AU Fujimoto, K
   Nakagawa, S
   Tonoike, M
AF Fujimoto, K
   Nakagawa, S
   Tonoike, M
TI Nonlinear explanation for bone-conducted ultrasonic hearing
SO HEARING RESEARCH
LA English
DT Article
DE ultrasonic hearings; bone conduction; pitch perception; amplitude
   modulation; nonlinearity
ID FREQUENCY DISCRIMINATION; AUDITORY-CORTEX; PERCEPTION
AB Human listeners can perceive speech from a voice-modulated ultrasonic carrier presented via a bone-conduction stimulator. This study explored the psychoacoustic characteristics and underlying mechanisms of ultrasonic hearing by measuring difference limens for frequency (DLF) for pure tones modulated onto ultrasonic carriers. Human subjects were presented with two pulsed tones and asked to judge whether the first or the second had the higher pitch. When amplitude modulation was based on a double side-band trans-milled carrier, the DLFs were as small as those from the air-conducted pure tones at 0.25-4 kHz. Ultrasounds yielded larger DLFs for tones with low (0.125 kHz) and high (6-8 kHz) frequencies. Results were essentially identical between the two types of carriers, sine wave (30 kHz) and bandpass noise (30 +/- 4 kHz), despite the different bandwidths in the ultrasonic range. When amplitude modulation was based on a double side-band Suppressed carrier, DLFs corresponded to those from tones with double frequencies. These results suggest nonlinear conduction that demodulates audible signals from ultrasounds and provides inputs to the cochlea. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
RP Fujimoto, K (reprint author), Kwansei Gakuin Univ, Sch Human, Dept Psychol, 1-1-155 Uegahara, Nishinomiya, Hyogo 6628501, Japan.
EM kys.fujitnoto@kwansei.ac.jp; s-nakagawa@aist.go.jp
CR Bekesy G., 1960, EXPT HEARING
   DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379
   DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548
   DOBIE RA, 1992, SCIENCE, V255, P1584, DOI 10.1126/science.1549785
   GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053
   Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9
   Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030
   Lenhardt Martin L, 2003, Int Tinnitus J, V9, P69
   LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603
   NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579
   Nishimura T, 2002, NEUROSCI LETT, V327, P119, DOI 10.1016/S0304-3940(02)00409-3
   Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9
   Pickles JO, 1988, INTRO PHYSL HEARING
   PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0
   SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968
NR 17
TC 19
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 210
EP 215
DI 10.1016/j.heares.2005.02.004
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200020
PM 15925206
ER

PT J
AU Nagy, I
   Bodmer, M
   Schmid, S
   Bodmer, D
AF Nagy, I
   Bodmer, M
   Schmid, S
   Bodmer, D
TI Promyelocytic leukemia zinc finger protein localizes to the cochlear
   outer hair cells and interacts with prestin, the outer hair cell motor
   protein
SO HEARING RESEARCH
LA English
DT Article
DE organ of Corti; PLZF; prestin; yeast two-hybrid
ID MEMBRANE MOTOR; GENE-EXPRESSION; PLZF PROTEIN; REPRESSION; TENSION
AB Hair cells in the auditory sensory organ are specialized mechanoreceptors common to mammalian and non-mammalian species. The mammalian cochlear outer hair cells (OHC) possess a distinct motile property, dubbed membrane-based electromotility, that enhances the receptor function. This electromotility is believed to be the basis of cochlear amplification that increases sensitivity of the mammalian ear to sound. Prestin, a unique voltage-sensitive motor molecule localized in the lateral membrane of OHC, is presumably responsible for OHC electromotility. It has been documented that prestin null-animals lack electromotility and suffer from similar to 50 dB loss of hearing sensitivity. To identify proteins that interact with prestin we carried out a yeast two-hybrid library screen using the C-terminal intracellular domain of prestin as bait. Seven bait-dependent prey clones were identified independently. Further analysis revealed that they encode partially over-lapping regions of a single protein: a transcriptional repressor, promyleocytic leukemia zinc finger protein (PLZF). PLZF encodes a POZ/domain Kruppel-type zinc finger transcription factor reported to have pro-apoptotic and anti-proliferative activity. The interaction between endogenous prestin and PLZF proteins in the cochlea was confirmed by co-immunoprecipitation using organ of Corti lysates. Furthermore, immunohistochemical studies strongly suggest that PLZF co-localizes with prestin near the lateral membrane of cochlear OHC. The physiological significance of this interaction remains to be explored. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Zurich Hosp, ENT Dept, Inner Ear Res Lab, CH-8091 Zurich, Switzerland.
   ETH, Zurich, Switzerland.
RP Bodmer, D (reprint author), Univ Zurich Hosp, ENT Dept, Inner Ear Res Lab, NORD 2 Frauenklin Str 24, CH-8091 Zurich, Switzerland.
EM Ivana.Nagy@usz.ch; daniel.bodiner@usz.ch
CR Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8
   AVANTAGGIATO V, 1995, J NEUROSCI, V15, P4927
   Barna M, 2000, NAT GENET, V25, P166
   Barna M, 2002, DEV CELL, V3, P499, DOI 10.1016/S1534-5807(02)00289-7
   Belyantseva I.A., 2000, J NEUROSCI, V20, P1
   Buaas FW, 2004, NAT GENET, V36, P647, DOI 10.1038/ng1366
   CHEN CY, 1993, MICROPOROUS MATER, V2, P17, DOI 10.1016/0927-6513(93)80058-3
   COOK M, 1995, P NATL ACAD SCI USA, V92, P2249, DOI 10.1073/pnas.92.6.2249
   Costoya JA, 2004, NAT GENET, V36, P653, DOI 10.1038/ng1367
   David G, 1998, ONCOGENE, V16, P2549, DOI 10.1038/sj.onc.1202043
   Dong XX, 2004, BIOPHYS J, V86, P1201
   GEIZ RD, 2001, BIOTECHNIQUES, V30, P816
   GYURIS J, 1993, CELL, V75, P791, DOI 10.1016/0092-8674(93)90498-F
   Hyman J, 2000, J CELL BIOL, V149, P537, DOI 10.1083/jcb.149.3.537
   Ivins S, 2003, ONCOGENE, V22, P3685, DOI 10.1038/sj.onc.1206328
   Kolonin MG, 2000, METHOD ENZYMOL, V328, P26
   Li J.H., 1997, GEOLOGICAL J CHINA U, V3, P272
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498
   Matsuda K, 2004, J NEUROCHEM, V89, P928, DOI 10.1111/j.1471-4159.2004.02377.x
   Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
   REID A, 1995, BLOOD, V86, P4544
   Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x
   Senbonmatsu T, 2003, EMBO J, V22, P6471, DOI 10.1093/emboj/cdg637
   Serebriiskii IG, 2000, ANAL BIOCHEM, V285, P1, DOI 10.1006/abio.2000.4672
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 26
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JUN
PY 2005
VL 204
IS 1-2
BP 216
EP 222
DI 10.1016/j.heares.2005.02.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 938HJ
UT WOS:000229990200021
PM 15925207
ER

PT J
AU Lee, HJ
   Kang, E
   Oh, SH
   Kang, H
   Lee, DS
   Lee, MC
   Kim, CS
AF Lee, HJ
   Kang, E
   Oh, SH
   Kang, H
   Lee, DS
   Lee, MC
   Kim, CS
TI Preoperative differences of cerebral metabolism relate to the outcome of
   cochlear implants in congenitally deaf children
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implants; brain imaging; PET; deafness
ID POSITRON EMISSION TOMOGRAPHY; VERBAL WORKING-MEMORY; HUMAN
   AUDITORY-CORTEX; SPEECH-PERCEPTION; CORTICAL ACTIVATION; PREFRONTAL
   CORTEX; VISUAL-ATTENTION; NORMAL-HEARING; PET; PLASTICITY
AB In congenitally deaf children, chronological age is generally accepted as a critical factor that affects successful rehabilitation following cochlear implantation (0). However, a wide variance among patients is known to exist regardless of the age at CI [Sarant, J.Z., Blarney, P.J., Dowell, R.C., Clark, G.M., Gibson, W.P., 2001. Variation in speech perception scores among children with cochlear implants. Ear Hear. 22, 18-28]. In a previous study, we reported that prelingually deaf children in the age range 5-7 years at implantation showed greatest outcome variability [Oh S.H., Kim C.S., Kang E.J., Lee D.S., Lee H.J., Chang S.O., Ahn S.H., Hwang C.H., Park H.J., Koo J.W., 2003. Speech perception after cochlear implantation over a 4-year time period. Acta Otolaryngol. 123, 148-153]. Eleven children who underwent CI between the age of 5 and 7 1/2 years were subdivided into a good (above 65%: GOOD) and a poor (below 45%: POOR) group based on the performance in a speech perception test given 2 years after CI. The preoperative F-18-FDG-PET (F-18 fluorodeoxyglucose positron emission tomography) images were compared between the two groups in order to examine if regional glucose metabolic difference preexisted before the CI surgery. In the GOOD group, metabolic activity was greater in diverse fronto-parietal regions compared to the POOR group. In the POOR group, the regions related to the ventral visual pathway showed greater metabolic activity relative to the GOOD group. These findings suggest that the deaf children who had developed greater executive and visuospatial functions subserved by the prefrontal and parietal cortices might be successful in auditory language learning after CI. On the contrary, greater dependency on the visual function subserved by the occipito-temporal region due to auditory deprivation may interfere with acquisition of auditory language after CI. (c) 2004 Elsevier B.V. All rights reserved.
C1 Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul, South Korea.
   Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul 110744, South Korea.
RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul, South Korea.
EM shaoh@snu.ac.kr
RI Lee, Dong Soo/J-2778-2012; Oh, Seung Ha/J-5540-2012
CR Audoin B, 2003, HUM BRAIN MAPP, V20, P51, DOI 10.1002/hbm.10128
   Bavelier D, 2000, J NEUROSCI, V20
   Boussaoud D, 1995, BEHAV BRAIN RES, V72, P1, DOI 10.1016/0166-4328(96)00055-1
   CACCAMISE F, 1984, J ACAD REHABIL AUDIO, V17, P106
   Crottaz-Herbette S, 2004, NEUROIMAGE, V21, P340, DOI 10.1016/j.neuroimage.2003.09.019
   Dawson PW, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/064)
   Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098
   FLETCHER PC, 1995, NEUROIMAGE, V2, P195, DOI 10.1006/nimg.1995.1025
   FryaufBertschy H, 1997, J SPEECH LANG HEAR R, V40, P183
   Gerlach C, 1999, BRAIN, V122, P2159, DOI 10.1093/brain/122.11.2159
   Giraud AL, 2001, BRAIN, V124, P1307, DOI 10.1093/brain/124.7.1307
   Giraud AL, 2001, AUDIOL NEURO-OTOL, V6, P381, DOI 10.1159/000046847
   Giraud AL, 2000, BRAIN, V123, P1391, DOI 10.1093/brain/123.7.1391
   Hammes Dianne M, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P74
   HAXBY JV, 1991, P NATL ACAD SCI USA, V88, P1621, DOI 10.1073/pnas.88.5.1621
   Herath P, 2001, HUM BRAIN MAPP, V12, P110, DOI 10.1002/1097-0193(200102)12:2<110::AID-HBM1008>3.0.CO;2-0
   Ishai A, 1999, P NATL ACAD SCI USA, V96, P9379, DOI 10.1073/pnas.96.16.9379
   Kammer T, 1997, MAGN RESON IMAGING, V15, P879, DOI 10.1016/S0730-725X(97)00021-0
   Kirk K. I., 2000, COCHLEAR IMPLANTS, P252
   Koechlin E, 1999, NATURE, V399, P148
   Krause BJ, 1999, BRAIN, V122, P255, DOI 10.1093/brain/122.2.255
   Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
   MIYAMOTO RT, 1994, LARYNGOSCOPE, V104, P1120
   Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052
   Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
   Naito Y, 2000, HEARING RES, V143, P139, DOI 10.1016/S0378-5955(00)00035-6
   Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426
   Nikolopoulos TP, 1999, LARYNGOSCOPE, V109, P595, DOI 10.1097/00005537-199904000-00014
   O'Donoghue GM, 2000, LANCET, V356, P466, DOI 10.1016/S0140-6736(00)02555-1
   Oh SH, 2003, ACTA OTO-LARYNGOL, V123, P148, DOI 10.1080/0036554021000028111
   Owen AM, 1996, EUR J NEUROSCI, V8, P353, DOI 10.1111/j.1460-9568.1996.tb01219.x
   Paus T, 1996, EUR J NEUROSCI, V8, P2236, DOI 10.1111/j.1460-9568.1996.tb01187.x
   PETRIDES M, 1993, P NATL ACAD SCI USA, V90, P878, DOI 10.1073/pnas.90.3.878
   Pisoni DB, 2003, EAR HEARING, V24, p106S, DOI 10.1097/01.AUD.0000051692.05140.8E
   Pisoni D B, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P92
   Proksch J, 2002, J COGNITIVE NEUROSCI, V14, P687, DOI 10.1162/08989290260138591
   Ptito M, 2003, NEUROIMAGE, V19, P246, DOI 10.1016/S1053-8119(03)00082-X
   ROLAND PS, 2001, LARYNGOSCOPE, V11, P77
   Sarant JZ, 2001, EAR HEARING, V22, P18, DOI 10.1097/00003446-200102000-00003
   Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004
   SUROWIECKI VN, 2002, ANN OTO RHINOL LARYN, V18, P119
   Talairach J., 1988, COPLANAR STEREOTAXIC
   Ungerleider Leslie G., 1994, Current Opinion in Neurobiology, V4, P157, DOI 10.1016/0959-4388(94)90066-3
   WALTZMAN S, 1998, AM J OTOL, V19, P177
   Waltzmann SB, 2002, OTOL NEUROTOL, V23, P333, DOI 10.1097/00129492-200205000-00018
   Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3
NR 46
TC 29
Z9 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 2
EP 9
DI 10.1016/j.heares.2004.11.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300001
PM 15855024
ER

PT J
AU Pandya, PK
   Moucha, R
   Engineer, ND
   Rathbun, DL
   Vazquez, J
   Kilgard, MP
AF Pandya, PK
   Moucha, R
   Engineer, ND
   Rathbun, DL
   Vazquez, J
   Kilgard, MP
TI Asynchronous inputs alter excitability, spike timing, and topography in
   primary auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE cortical plasticity; map reorganization; activity-dependent hebbian
   plasticity; sensory input; rat; auditory cortex; nucleus basalis
ID ADULT OWL MONKEYS; TEMPORAL RESPONSE PROPERTIES; BASAL FOREBRAIN;
   SYNAPTIC MODIFICATION; CORTICAL PLASTICITY; NUCLEUS BASALIS; CONVERGENT
   STRABISMUS; SOMATOSENSORY CORTEX; PHYSIOLOGICAL MEMORY; DISCRIMINATION
   TASK
AB Correlation-based synaptic plasticity provides a potential cellular mechanism for learning and memory. Studies in the visual and somatosensory systems have shown that behavioral and surgical manipulation of sensory inputs leads to changes in cortical organization that are consistent with the operation of these learning rules. In this study, we examine how the organization of primary auditory cortex (A1I) is altered by tones designed to decrease the average input correlation across the frequency map. After one month of separately pairing nucleus basalis stimulation with 2 and 14 kHz tones, a greater proportion of A1 neurons responded to frequencies below 2 kHz and above 14 kHz. Despite the expanded representation of these tones, cortical excitability was specifically reduced in the high and low frequency regions of A1, as evidenced by increased neural thresholds and decreased response strength. In contrast, in the frequency region between the two paired tones, driven rates were unaffected and spontaneous firing rate was increased. Neural response latencies were increased across the frequency map when nucleus basalis stimulation was associated with asynchronous activation of the high and low frequency regions of A1. This set of changes did not occur when pulsed noise bursts were paired with nucleus basalis stimulation. These results are consistent with earlier observations that sensory input statistics can shape cortical map organization and spike timing. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Texas, Program Neurosci, Sch Behav & Brain Sci, Richardson, TX 75083 USA.
RP Pandya, PK (reprint author), Univ Texas, Program Neurosci, Sch Behav & Brain Sci, POB 830688,GR 41, Richardson, TX 75083 USA.
EM pritesh@utdallas.edu
CR AHISSAR E, 1992, SCIENCE, V257, P1412, DOI 10.1126/science.1529342
   ALLARD T, 1991, J NEUROPHYSIOL, V66, P1048
   ARMSTRONGJAMES M, 1994, J NEUROSCI, V14, P6978
   Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
   Bao SW, 2003, J NEUROSCI, V23, P10765
   Bi GQ, 1999, NATURE, V401, P792, DOI 10.1038/44573
   Bi GQ, 2001, ANNU REV NEUROSCI, V24, P139, DOI 10.1146/annurev.neuro.24.1.139
   Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149
   CHINO YM, 1983, J NEUROPHYSIOL, V50, P265
   CHINO YM, 1988, EXP BRAIN RES, V72, P264
   CLARK SA, 1988, NATURE, V332, P444, DOI 10.1038/332444a0
   Conner JM, 2003, NEURON, V38, P819, DOI 10.1016/S0896-6273(03)00288-5
   CONSTANTINEPATON M, 1978, SCIENCE, V202, P639, DOI 10.1126/science.309179
   EDELINE JM, 1994, EXP BRAIN RES, V97, P373
   Edeline JM, 1999, PROG NEUROBIOL, V57, P165
   Engineer ND, 2004, J NEUROPHYSIOL, V92, P73, DOI 10.1152/jn.00059.2004
   ESCHWEILER GW, 1993, EUR J NEUROSCI, V5, P1501, DOI 10.1111/j.1460-9568.1993.tb00218.x
   Feldman DE, 2000, NEURON, V27, P45, DOI 10.1016/S0896-6273(00)00008-8
   Froemke RC, 2002, NATURE, V416, P433, DOI 10.1038/416433a
   Hebb D, 1949, ORG BEHAV
   HUBEL DH, 1965, J NEUROPHYSIOL, V28, P1041
   Humphrey AL, 1998, J NEUROPHYSIOL, V80, P3005
   JENKINS WM, 1990, J NEUROPHYSIOL, V63, P82
   Kandel ER, 2001, SCIENCE, V294, P1030, DOI 10.1126/science.1067020
   Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133
   KAUR S, 2004, J NEUROPHYSIOL
   Kilgard MP, 2001, AUDIOL NEURO-OTOL, V6, P196, DOI 10.1159/000046832
   Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
   Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
   Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1
   Kilgard MP, 2002, BIOL CYBERN, V87, P333, DOI 10.1007/s00422-002-0352-z
   Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326
   Kilgard MP, 2002, P NATL ACAD SCI USA, V99, P3205, DOI 10.1073/pnas.261705198
   Mercado E, 2001, NEUROREPORT, V12, P2283, DOI 10.1097/00001756-200107200-00047
   METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206
   MOUCHA R, IN PRESS EXP BRAIN R
   RASMUSSON DD, 1988, EXP BRAIN RES, V70, P276
   Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898
   RECANZONE GH, 1993, J NEUROSCI, V13, P87
   RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1071
   RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1031
   ROELFSEMA PR, 1994, EUR J NEUROSCI, V6, P1645, DOI 10.1111/j.1460-9568.1994.tb00556.x
   Schuett S, 2001, NEURON, V32, P325, DOI 10.1016/S0896-6273(01)00472-X
   Song S, 2000, NAT NEUROSCI, V3, P919
   Song S, 2001, NEURON, V32, P339, DOI 10.1016/S0896-6273(01)00451-2
   STENT GS, 1973, P NATL ACAD SCI USA, V70, P997, DOI 10.1073/pnas.70.4.997
   Stryker MP, 1984, INVEST OPHTHALMOL  S, V25, P278
   WANG XQ, 1995, NATURE, V378, P71, DOI 10.1038/378071a0
   Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850
   Yao HS, 2001, NEURON, V32, P315, DOI 10.1016/S0896-6273(01)00460-3
   Zhang LI, 1998, NATURE, V395, P37
NR 51
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 10
EP 20
DI 10.1016/j.heares.2004.11.018
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300002
PM 15855025
ER

PT J
AU Caye-Thomasen, P
   Wagner, N
   Frederiksen, BL
   Asal, K
   Thomsen, J
AF Caye-Thomasen, P
   Wagner, N
   Frederiksen, BL
   Asal, K
   Thomsen, J
TI Erythropoietin and erythropoietin receptor expression in the guinea pig
   inner ear
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; spiral ganglion neurons; Deiters' cells; fibrocytes; phalangeal
   cells; EPO; EPO receptor
ID CENTRAL-NERVOUS-SYSTEM; PLEIOTROPIC FUNCTIONS; IN-VITRO; BRAIN;
   NEUROPROTECTION; NEURONS; CELLS; LOCALIZATION; ISCHEMIA; PROTECTS
AB The erythropoietin receptor (EPOR) is expressed in the brain and erythropoietin (EPO) has been shown to have neurotrophic and neuroprotective functions in the central nervous system and in the retina. These findings may be applied to the inner ear, pending EPO receptor presence. Accordingly, this study determines expression of EPO and EPOR in the inner ear of the guinea pig. Normal guinea pig inner ears were processed for immunohistochemistry, using poly-clonal antibodies against EPO and the EPO receptor. EPO expression was exclusively found in most, but not all spiral ganglion neurons. Expression of the EPO receptor was found in the cytoplasm of the inner and outer phalangeal cells (Deiters' cells), as well as the inner sulcus cells and the supporting cells of the organ of Corti (Hensen, Claudius and some Boettcher cells). Some spiral ganglion neurons or glial cells expressed the receptor, as did spiral ligament fibrocytes, some intermediate cells of stria vascularis and the endothelial cells of some modiolar vessels. No parts of the vestibular system stained positive for either antibody. We conclude, that EPO is expressed by spiral ganglion neurons and that the EPO receptor is widely expressed by several cell types within the guinea pig cochlea. We hypothesize on the existence of a local paracrine system and that EPO treatment may be feasible following inner ear damage. (c) 2004 Published by Elsevier B.V.
C1 Gentofte Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, DK-2900 Hellerup, Denmark.
RP Caye-Thomasen, P (reprint author), Gentofte Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, DK-2900 Hellerup, Denmark.
EM peca@gentoftehosp.kbhamt.dk
CR Bernaudin M, 2000, GLIA, V30, P271, DOI 10.1002/(SICI)1098-1136(200005)30:3<271::AID-GLIA6>3.0.CO;2-H
   Brines ML, 2000, P NATL ACAD SCI USA, V97, P10526, DOI 10.1073/pnas.97.19.10526
   Buemi M, 2003, J NEUROPATH EXP NEUR, V62, P228
   CERAMI A, 2002, NEPHROL DIAL TRANS S, V1, P8
   Chattopadhyay A, 2000, BIOCHEM PHARMACOL, V59, P419, DOI 10.1016/S0006-2952(99)00277-4
   Chikuma M., 2000, AM J PHYSIOL-ENDOC M, V279, P1242
   Digicaylioglu M, 2001, NATURE, V412, P641, DOI 10.1038/35088074
   Fisher JW, 2003, EXP BIOL MED, V228, P1
   FUKUSHIMA Y, 1990, TOHOKU J EXP MED, V160, P129, DOI 10.1620/tjem.160.129
   Grimm C, 2002, NAT MED, V8, P718, DOI 10.1038/nm723
   Ihle J N, 1993, Semin Immunol, V5, P375, DOI 10.1006/smim.1993.1043
   Junk AK, 2002, P NATL ACAD SCI USA, V99, P10659, DOI 10.1073/pnas.152321399
   JUUL S, 2002, ACTA PAEDIATR, V438, P36
   Juul SE, 1998, PEDIATR RES, V43, P40, DOI 10.1203/00006450-199801000-00007
   Juul SE, 1999, PEDIATR DEVEL PATHOL, V2, P148, DOI 10.1007/s100249900103
   Kawakami M, 2001, J BIOL CHEM, V276, P39469, DOI 10.1074/jbc.M105832200
   Marti HH, 2000, NEWS PHYSIOL SCI, V15, P225
   Marti HH, 1997, KIDNEY INT, V51, P416, DOI 10.1038/ki.1997.55
   MASUDA S, 1993, J BIOL CHEM, V268, P11208
   Morishita E, 1997, NEUROSCIENCE, V76, P105
   Ogilvie M, 2000, J BIOL CHEM, V275, P39754, DOI 10.1074/jbc.M004999200
   Renzi MJ, 2002, MOL BRAIN RES, V104, P86, DOI 10.1016/S0169-328X(02)00323-6
   SANAKA M, 1998, P NATL ACAD SCI USA, V95, P4635
   Sasaki R, 2001, NEWS PHYSIOL SCI, V16, P110
   Sasaki R, 2000, BIOSCI BIOTECH BIOCH, V64, P1775, DOI 10.1271/bbb.64.1775
   Sasaki R, 2003, INTERNAL MED, V42, P142, DOI 10.2169/internalmedicine.42.142
   Shingo T, 2001, J NEUROSCI, V21, P9733
   Siren AL, 2001, ACTA NEUROPATHOL, V101, P271
   Siren AL, 2001, EUR ARCH PSY CLIN N, V251, P179, DOI 10.1007/s004060170038
   Springborg JB, 2002, BRIT J PHARMACOL, V135, P823, DOI 10.1038/sj.bjp.0704521
   WESTENFELDER C, 1999, KIDNEY INT, V56, P1159
   Yoshimura A, 1998, Curr Opin Hematol, V5, P171, DOI 10.1097/00062752-199805000-00004
NR 32
TC 16
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 21
EP 27
DI 10.1016/j.heares.2004.11.017
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300003
PM 15855026
ER

PT J
AU Kulahli, I
   Balci, K
   Koseoglu, E
   Yuce, L
   Cagli, S
   Senturk, M
AF Kulahli, I
   Balci, K
   Koseoglu, E
   Yuce, L
   Cagli, S
   Senturk, M
TI Audio-vestibular disturbances in Behcet's patients: report of 62 cases
SO HEARING RESEARCH
LA English
DT Article
DE Behcet's syndrome; hearing loss; vestibular disturbance;
   audio-vestibular test; HLA-B51
ID DISEASE; INVOLVEMENT; HEARING
AB This study was carried out to determine the characteristics and incidence of hearing loss and vestibular disturbance in Behcet's syndrome with a large number of patients.
   Sixty-two patients with Behcet's syndrome were included in this study, 34 men and 28 women whose mean age was 33.7 (15-60). Sixty-two healthy normal control subjects (38 male and 24 female) were included. Patient and control groups were questioned about any history of audio-vestibular disturbance and underwent physical and ENT examination and the following audiologic tests: pure tone audiometric test (0.25, 0.5, 1, 2, 4, and 6 kHz), tympanogram, speech discrimination, short increment sensitivity index, tone-decay test, auditory brainstem response. Vestibular system was evaluated by videonistagmogram and caloric test. Cranial and brainstem magnetic resonance imagine (MRI) of patients who have vestibular disturbances were practiced to examine the central nervous system. Both the patient and the control groups were tested with the HLA-B51 antigen.
   Pure tone audiogram showed sensory-neural hearing loss (>= 25 dB hearing level in at least two frequencies) in 20 of the 62 (32%) Behcet's patients while the control group were normal. There was a hearing loss involving high frequencies in the audiograms of Belicet's patients with hearing disturbances. The recruitment investigation tests and auditory brain stem response confirmed cochlear involvement in all 20 patients. Caloric stimulation tests revealed a normal vestibular function in all patient and control group. In electronystagmography, 21 (34%) patients had hypometric or hypermetric saccades and smooth pursuit tests showing that 4 (6%) patients had pathological changes while the control group was normal. HLA-B51 antigen was found positive in 15 of 20 Belicet's patient with hearing loss.
   Conclusion: (1) The hearing and vestibular disturbances in Behcet's syndrome is more prevalent than previously recognized; (2) Hearing loss in high frequencies in Behcet's patients is an indicator of cochlear involvement in this disease; (3) There is a higher prevalence of central vestibular syndrome in Belicet's patients than it was thought before; (4) HLA-B51 antigen may be able to be a prognostic factor for sensorineural hearing loss in Belicet's patients. (c) 2004 Elsevier B.V. All rights reserved.
C1 Talas Yolu Erciyes Univ Kulak Burun Bogaz, Erciyes Univ, Ear Nose Throat KBB, TR-38015 Kayseri, Turkey.
   Yozgat Devlet Hastanesi, Yozgat, Turkey.
   Talas Yolu Erciyes Univ, Erciyes Univ, Noro Ji ABD, TR-38015 Kayseri, Turkey.
   Lokman Hekim Tip Merkezi, Kayseri, Turkey.
RP Yuce, L (reprint author), Talas Yolu Erciyes Univ Kulak Burun Bogaz, Erciyes Univ, Ear Nose Throat KBB, TR-38015 Kayseri, Turkey.
EM imdatyuce@hotmail.com
CR ALAJOUANINE T, 1961, PRESSE MED, V25, P2579
   ANDREOLI C, 1989, AM J OTOL, V10, P466
   Belkahia A, 1982, Ann Otolaryngol Chir Cervicofac, V99, P469
   BRAMA I, 1980, ARCH OTOLARYNGOL, V106, P215
   CHAJEK T, 1975, MEDICINE, V54, P179, DOI 10.1097/00005792-197505000-00001
   COHEN SB, 1981, SEMIN ARTHRITIS RHEU, V11, P190, DOI 10.1016/0049-0172(81)90100-1
   Evereklioglu C, 2001, J LARYNGOL OTOL, V115, P704
   GEMIGNANI G, 1991, ANN OTO RHINOL LARYN, V100, P459
   LARRY NS, 1994, AM J OTOL, V15, P286
   ODUFFY JD, 1976, AM J MED, V61, P170, DOI 10.1016/0002-9343(76)90166-2
   SOYLU L, 1995, ANN OTO RHINOL LARYN, V104, P864
   The International Study Group for Behcet's disease, 1990, LANCET, V1335, P1078
NR 12
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 28
EP 31
DI 10.1016/j.heares.2004.11.020
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300004
PM 15855027
ER

PT J
AU Szalda, K
   Burkard, R
AF Szalda, K
   Burkard, R
TI The effects of nembutal anesthesia on the auditory steady-state response
   (ASSR) from the inferior colliculus and auditory cortex of the
   chinchilla
SO HEARING RESEARCH
LA English
DT Article
DE auditory steady-state response; difference tone; auditory evoked
   potential; anesthesia; chinchilla; nembutal
ID MODULATION FOLLOWING RESPONSE; EVOKED-POTENTIALS; TONES; FREQUENCY;
   SLEEP; HUMANS
AB We examined the effects of nembutal anesthesia on the amplitude of the auditory steady-state response (ASSR) in the inferior colliculus (IC) and auditory cortex (AC) of the chinchilla. Tungsten electrodes were chronically implanted following anesthesia with ketamine/acepromazine. After a recovery period, the chinchillas were placed in a passive restraining device and put in a sound-attenuating booth. Recordings were made from the right IC and AC simultaneously, while a two-tone stimulus was presented to the left ear. The stimuli consisted of two equal-level tones (F1 and F2) that were mixed acoustically; F1 remained constant at 2000 Hz, while F2 varied between 2029 and 2249 Hz, in steps of similar to 20 Hz. The Stimuli decreased in 10 dB steps from 80 to 30 dB pSPL. Animals were evaluated when unanesthetized, as well as when anesthetized with nembutal (on separate days).
   In the IC, the administration of nembutal resulted in either no change in ASSR amplitude or an amplitude increase for difference tone (DT) frequencies below 90 Hz, while an amplitude decrease was typically seen for DT frequencies at or above 90 Hz. In the AC, a decrease in amplitude was seen across DT frequencies and stimulus levels after the administration of nembutal anesthesia. Our results suggest that both the AC and IC may contribute to the scalp-recorded ASSR in the awake state. However, in the nembutal -anesthetized state, it seems unlikely that the AC contributes substantially to the surface-recorded ASSR, as the AC response was greatly attenuated under nembutal anesthesia. In contrast, the IC ASSR responses remained robust, which makes it a likely contributor to the surface-recorded responses under nembutal anesthesia. (c) 2004 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA.
   SUNY Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA.
RP Szalda, K (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, 137 Cary Hall, Buffalo, NY 14214 USA.
EM kmszalda@acsu.buffalo.edu
CR Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7
   AOYAGI M, 1993, HEARING RES, V65, P253, DOI 10.1016/0378-5955(93)90218-P
   Arnold S, 2002, J ACOUST SOC AM, V112, P590, DOI 10.1121/1.1494991
   COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050
   Cone-Wesson Barbara, 2002, J Am Acad Audiol, V13, P173
   Dimitrijevic Andrew, 2002, J Am Acad Audiol, V13, P205
   Dobie RA, 1998, J ACOUST SOC AM, V104, P3482, DOI 10.1121/1.423931
   DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382
   Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305
   GALAMBOS R, 1992, J ACOUST SOC AM, V92, P2683, DOI 10.1121/1.404383
   Gilron I, 1998, CAN J ANAESTH, V45, P115
   Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X
   JERGER J, 1986, EAR HEARING, V7, P240, DOI 10.1097/00003446-198608000-00004
   Johnsrude IS, 2002, AUDIOL NEURO-OTOL, V7, P251, DOI 10.1159/000064446
   Kiren T, 1994, Acta Otolaryngol Suppl, V511, P28
   KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9
   Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188
   LEVI EC, 1993, HEARING RES, V68, P42, DOI 10.1016/0378-5955(93)90063-7
   LINDEN RD, 1985, EAR HEARING, V6, P167, DOI 10.1097/00003446-198505000-00008
   MAKELA JP, 1990, HEARING RES, V45, P41, DOI 10.1016/0378-5955(90)90181-N
   MOLLER A, 1994, PRINCIPLES APPL AUDI
   Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5
   PLOURDE G, 1990, ANESTH ANALG, V71, P460
   RANCE G, 1995, EAR HEARING, V16, P499, DOI 10.1097/00003446-199510000-00006
   REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3
   REYES S, 2003, 2003 ASS RES OT M DA
   TIITINEN H, 1993, NATURE, V364, P59, DOI 10.1038/364059a0
NR 27
TC 10
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 32
EP 44
DI 10.1016/j.heares.2004.11.014
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300005
PM 15855028
ER

PT J
AU Lukashkin, AN
   Russell, IJ
AF Lukashkin, AN
   Russell, IJ
TI Dependence of the DPOAE amplitude pattern on acoustical biasing of the
   cochlear partition
SO HEARING RESEARCH
LA English
DT Article
DE otoacoustic emissions; cochlear mechanics; hair cell transducer
ID PRODUCT OTOACOUSTIC EMISSIONS; CELL MECHANOELECTRICAL TRANSDUCER;
   GUINEA-PIG COCHLEA; HAIR-CELLS; DISTORTION PRODUCTS; LOW-LEVEL; 2F1-F2;
   ORIGIN; PRIMARIES; RESPONSES
AB Distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs in response to simultaneous increases in the levels of high frequency primary tones in the presence of a low frequency biasing tone of 30 Hz at 120 dB SPL. The DPOAE amplitudes plotted as functions of the biasing tone phase angle show distinctive repeatable minima, which are identical to the amplitude notches observed for the distortion products at the output of a single saturating non-linearity. The number of the amplitude minima grows with increasing order of the DPOAE, a feature that is also reproduced by the model. The model of DPOAE generation due to a single saturating non-linearity does not explain the experimentally observed asymmetry of the response of the DPOAEs to rising and falling half cycles of the biasing tone. This asymmetry is attributed to a hypothetical mechanism, which adjusts the operating point of the outer hair cell's mechanoelectrical transducer. Experimental data were consistent with a hypothesis that, for the parameters of stimulation used in this study, both lower and upper sideband DPOAEs are dominated by emission generated from a single and spatially localized place in the cochlea. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England.
RP Lukashkin, AN (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England.
EM a.lukashkin@sussex.ac.uk
CR Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285
   Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943
   Bian L, 2004, J ACOUST SOC AM, V115, P2159, DOI 10.1121/1.1690081
   BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3
   BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5
   Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209
   CODY AR, 1987, J PHYSIOL-LONDON, V383, P551
   CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405
   Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048
   Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4
   Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7
   Frolenkov GI, 1998, HEARING RES, V126, P67, DOI 10.1016/S0378-5955(98)00150-6
   GELEOC GSG, 1997, P ROY SOC LOND B BIO, V264, P521
   KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X
   Legan PK, 2000, NEURON, V28, P273, DOI 10.1016/S0896-6273(00)00102-1
   Liberman MC, 2004, J ACOUST SOC AM, V116, P1649, DOI 10.1121/1.1775275
   Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151
   Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096
   Lukashkin AN, 1998, J ACOUST SOC AM, V103, P973, DOI 10.1121/1.421214
   MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9
   NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219
   PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0
   RUSSELL IJ, 1992, PHILOS T ROY SOC B, V336, P317, DOI 10.1098/rstb.1992.0064
   RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179
   SANTOS-SACCHI J, 1993, BIOPHYS J, V65, P2217
   Shera CA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P439, DOI 10.1142/9789812704931_0062
   WHITEHEAD ML, 1990, LECT NOTES BIOMATH, V87, P243
   WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472
   Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9
   Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4
NR 30
TC 16
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 45
EP 53
DI 10.1016/j.heares.2004.11.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300006
PM 15855029
ER

PT J
AU Wardrop, P
   Whinney, D
   Rebscher, SJ
   Roland, JT
   Luxford, W
   Leake, PA
AF Wardrop, P
   Whinney, D
   Rebscher, SJ
   Roland, JT
   Luxford, W
   Leake, PA
TI A temporal bone study of insertion trauma and intracochlear position of
   cochlear implant electrodes. 1: comparison of Nucleus banded and Nucleus
   Contour (TM) electrodes
SO HEARING RESEARCH
LA English
DT Article
ID ELECTRICAL-STIMULATION; SPEECH-PERCEPTION; AUDITORY-NERVE; ARRAY;
   HEARING; PATIENT; HISTOPATHOLOGY; CONFIGURATION; RECOGNITION; EXCITATION
AB In recent years, new designs of cochlear implant electrodes have been introduced in an attempt to improve efficiency and performance by locating stimulation sites closer to spiral ganglion neurons and deeper into the scala tympani. The goal of this study was to document insertion depth, intracochlear position and insertion trauma with the Nucleus Contour (TM) electrode and to compare results to those observed with the earlier generation Nucleus banded electrode.
   For this comparison eight Nucleus banded electrodes and 18 Contour (TM) electrodes were implanted in cadaver temporal bones using a realistic surgical exposure. Two experienced cochlear implant surgeons and two otology fellows with specialized training in cochlear implant surgery were selected for the study to represent a range of surgical experience similar to that of surgeons currently performing the procedure throughout the world. Following insertion of the electrodes, specimens were imaged using plain film X-ray, embedded in acrylic resin, cut in radial sections with the electrodes in place, and each cut surface was polished. Insertion depth was measured in digitized X-ray images, and trauma was assessed in each cross-section.
   The Contour (TM) electrode inserted more deeply (mean depth = 17.9 mm or 417 degrees) than the banded electrode (mean depth = 15.3 mm or 285 degrees). The incidence and severity of trauma varied Substantially among the temporal bones studied. However, the nature and frequency of injuries observed with the two devices were very similar. The Contour (TM) electrode was clearly positioned closer to the modiolus than the banded model, and also appeared easier to use. Based on this difference in position and data from previous studies we conclude that the Contour- electrode may provide lower thresholds and improved channel selectivity, but the incidence of trauma remains a problem with the newer design. The relative influences of electrode positioning and neural degeneration that may result from trauma are as yet unclear. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, San Francisco, CA 94143 USA.
   Crosshouse Hosp, Dept Otolaryngol, Kilmarnock KA2 0BE, Ayr, Scotland.
   Royal Cornwall Hosp, Dept Otolaryngol, Truro TR1 3LJ, Cornwall, England.
   NYU, Med Ctr, Dept Otol Neurotol, New York, NY 10016 USA.
   House Ear Res Inst, Los Angeles, CA 90057 USA.
RP Rebscher, SJ (reprint author), Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, 533 Parnassus Ave,Room C401, San Francisco, CA 94143 USA.
EM peterwardrop@doctors.org.uk; reb@itsa.ucsf.edu; tom.roland@med.nyu.edu;
   leake@itsa.ucsf.edu
CR Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
   Chen JM, 1999, AM J OTOL, V20, P192
   *COCHL CORP, MAN GUID SURG C124M
   Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3
   Eyles J A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P356
   FINLEY C C, 1990, P55
   Fu QJ, 1999, EAR HEARING, V20, P321, DOI 10.1097/00003446-199908000-00005
   Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Gstoettner W, 1997, ACTA OTO-LARYNGOL, V117, P274, DOI 10.3109/00016489709117786
   Gstoettner W, 1999, ACTA OTO-LARYNGOL, V119, P229
   Gstoettner WK, 2001, ACTA OTO-LARYNGOL, V121, P216
   Hodges AV, 1999, AM J OTOL, V20, P53
   JOHNSSON LG, 1982, ANN OTO RHINOL LARYN, V91, P74
   KENNEDY DW, 1987, LARYNGOSCOPE, V97, P42
   KETTEN DR, 1991, 14 MIDW RES M ASS RE, P114
   Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1
   KILENY PR, 1992, AM J OTOL, V13, P117
   Kumakawa K, 1997, ADV OTO-RHINO-LARYNG, V52, P129
   Laszig R, 2002, J LARYNGOL OTOL, V116, P371
   Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
   LEAKE PA, 2000, COCHLEAR IMPLANTS, P31
   LEHNHARDT E, 1993, ADV OTO-RHINO-LARYNG, V48, P62
   LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395
   LOEB GE, 1983, MED BIOL ENG COMPUT, V21, P241, DOI 10.1007/BF02478489
   LUXFORD WM, 1994, NEUROTOLOGY, P1371
   Marrinan MS, 2004, OTOL NEUROTOL, V25, P290, DOI 10.1097/00129492-200405000-00015
   MARSH MA, 1992, AM J OTOL, V13, P241
   NADOL JB, 1994, LARYNGOSCOPE, V104, P299
   Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
   OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695
   Parkinson AJ, 2002, EAR HEARING, V23, p41S, DOI 10.1097/00003446-200202001-00005
   Pasanisi E, 2002, LARYNGOSCOPE, V112, P1653, DOI 10.1097/00005537-200209000-00023
   Pfingst BE, 2001, JARO, V2, P87
   Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115
   Rebscher SJ, 1999, IEEE T BIO-MED ENG, V46, P340, DOI 10.1109/10.748987
   Rebscher SJ, 1996, J NEUROSCI METH, V64, P105, DOI 10.1016/0165-0270(95)00116-6
   Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023
   Roland J T Jr, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P64
   Roland JT, 2000, AM J OTOL, V21, P218, DOI 10.1016/S0196-0709(00)80012-5
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   SHEPHERD RK, 1985, ANN OTO RHINOL LARYN, V94, P55
   Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013
   TYCOCINSKI M, 2001, OTOL NEUROTOL, V22, P33
   VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
   von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695
   WELLING DB, 1993, LARYNGOSCOPE, V103, P995
   ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914
NR 48
TC 58
Z9 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 54
EP 67
DI 10.1016/j.heares.2004.11.006
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300007
PM 15855030
ER

PT J
AU Wardrop, P
   Whinney, D
   Rebscher, SJ
   Luxford, W
   Leake, P
AF Wardrop, P
   Whinney, D
   Rebscher, SJ
   Luxford, W
   Leake, P
TI A temporal bone study of insertion trauma and intracochlear position of
   cochlear implant electrodes. II: Comparison of Spiral Clarion (TM) and
   HiFocus II (TM) electrodes
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; insertion; trauma; electrodes
ID ELECTRICALLY STIMULATED COCHLEA; SCALA TYMPANI; AUDITORY-NERVE;
   HISTOPATHOLOGY; SELECTIVITY; DIMENSIONS; PATTERNS; DEAFNESS; PATIENT;
   ARRAY
AB In recent years, several new designs of cochlear implant electrodes have been introduced clinically with the goal of optimizing perimodiolar placement of stimulation sites. Previous studies suggest that perimodiolar electrodes may increase both the efficiency and performance of a cochlear implant. This is the second of two studies designed to examine the positioning of electrodes and the occurrence of insertion-related injury with these newer designs and to directly compare two perimodiolar electrodes to their predecessors. In our previous report we compared the Nucleus (TM) banded electrode with the Nucleus Contour (TM) perimodiolar electrode. In the present study, using the same protocol, we examine the Spiral Clarion (TM) electrode and its successor, the HiFocus II (TM) electrode with attached positioner.
   Eight Spiral Clarion (TM) arrays and 20 HiFocus II (TM) electrodes with positioners were inserted into human cadaver temporal bones. Following insertion, the specimens were embedded in acrylic resin, cut in quarters with a diamond saw and polished. Insertion depth, proximity to the modiolus and trauma were evaluated in X-ray images and light microscopy.
   The newer electrode was consistently positioned closer to the modiolus than the previous device whereas the angular depth of insertion measured for the two electrodes was similar. The incidence of trauma was minimal when either electrode was inserted to a depth of less than 400 degrees. However, severe trauma was observed in every case in which the HiFocus II (TM) with positioner was inserted beyond 400 degrees and in some cases in which the Spiral Clarion (TM) was inserted beyond 400 degrees. To evaluate the possible role of electrode size in the trauma observed we modeled both devices relative to the dimensions of the scala tympani. We found that the fully inserted HiFocus II (TM) electrode with positioner was larger than the scala tympani in approximately 70% of temporal bones measured. The results suggest that both the Clarion (TM) spiral and HiFocus II (TM) with positioner can be inserted with minimal trauma, but in many cases not to the maximum depth allowed by the design. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, San Francisco, CA 94143 USA.
   Crosshouse Hosp, Dept Otolaryngol, Kilmarnock KA2 0BE, Ayr, Scotland.
   Royal Cornwall Hosp, Dept Otolaryngol, Truro TR1 3LJ, Cornwall, England.
   House Ear Res Inst, Los Angeles, CA 90057 USA.
RP Rebscher, SJ (reprint author), Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, San Francisco, CA 94143 USA.
EM peterwardrop@doctors.org.uk; reb@itsa.ucsf.edu; leake@itsa.ucsf.edu
CR *ADV BION CORP, 1996, SPIR CLAR SURG MAN
   Aschendorff A, 2003, J LARYNGOL OTOL, V117, P527
   Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0
   Briggs R J, 2001, Cochlear Implants Int, V2, P135, DOI 10.1002/cii.45
   Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3
   Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005
   Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55
   Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   Fu QJ, 1999, EAR HEARING, V20, P321, DOI 10.1097/00003446-199908000-00005
   HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871
   IGARASHI M, 1976, ARCH OTOLARYNGOL, V102, P428
   Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3
   LEAKE PA, 2000, COCHLEAR IMPLANTS, P31
   Lenarz T, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P16
   MARSH MA, 1992, AM J OTOL, V13, P241
   Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
   Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883
   Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115
   Rebscher SJ, 1999, IEEE T BIO-MED ENG, V46, P340, DOI 10.1109/10.748987
   Reefhuis J, 2003, NEW ENGL J MED, V349, P435, DOI 10.1056/NEJMoa031101
   Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023
   Roland J T Jr, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P64
   Roland JT, 2000, AM J OTOL, V21, P218, DOI 10.1016/S0196-0709(00)80012-5
   Schindler R A, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P4
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   TYCOCINSKI M, 2001, OTOL NEUROTOL, V22, P33
   WARDROP PJ, 2005, HEAR RES
   ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914
   ZRUNEK M, 1980, ARCH OTO-RHINO-LARYN, V229, P159, DOI 10.1007/BF02565517
NR 30
TC 47
Z9 48
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 68
EP 79
DI 10.1016/j.heares.2004.11.007
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300008
PM 15855031
ER

PT J
AU Cappaert, NLM
   Klis, SFL
   Wijbenga, J
   Smoorenburg, GF
AF Cappaert, NLM
   Klis, SFL
   Wijbenga, J
   Smoorenburg, GF
TI Acceleration of cisplatin ototoxicity by perilymphatic application of
   4-methylthiobenzoic acid
SO HEARING RESEARCH
LA English
DT Article
DE cisplatin; 4-methylthiobenzoic acids sodium thiosulfate; compound action
   potential; summating potential; guinea pig
ID ALBINO GUINEA-PIG; INDUCED HEARING-LOSS; STRIA VASCULARIS; D-METHIONINE;
   SODIUM THIOSULFATE; COCHLEAR POTENTIALS; ROUND WINDOW;
   ANTITUMOR-ACTIVITY; PROTECTIVE AGENTS; RECOVERY
AB The antitumor agent cisplatin has dose-limiting side effects such as ototoxicity. Systemical co-treatment with anti-oxidants like 4-methylthiobenzoic acid (MTBA) and sodium thiosulfate (STS) provides protection against cisplatin ototoxicity. However, systemically administered protective agents may reduce the chemotherapeutic effect of cisplatin. Local application of the protective agents could avoid this undesirable effect. In the present study, we aimed at suppressing cisplatin -induced ototoxicity in guinea pigs by administering MTBA or STS perilymphatically through cochlear perfusion. Guinea pig cochleas were perfused for 10 min with artificial perilymph (ArtP) containing cisplatin at 0.3 mg/ml, either alone, or in combination with MTBA (0. 1 or 1.0 mg/ml) or STS (0.75 or 3.0 mg/ml). The compound action potential (CAP) and the summating potential (SP), evoked by 8 kHz tone bursts, and the endocochlear potential (EP; MTBA only) were measured just before and 1, 2, 3 and 4 h after perfusion. Cisplatin gradually reduced the CAP amplitude in time. Adding MTBA only accelerated this ototoxic effect. After cisplatin treatment a decline was found in the EP, irrespective of co-treatment, i.e., addition of MTBA did not accelerate the EP decrease. In contrast to MTBA, STS ameliorated the ototoxic effect of cisplatin. In conclusion, focal application of anti-oxidants can ameliorate cisplatin ototoxicity but this is not a feature of all anti-oxidants. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands.
RP Klis, SFL (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands.
EM s.klis@kmb.azu.nl
CR BOOGAARD PJ, 1991, BIOCHEM PHARMACOL, V41, P1997, DOI 10.1016/0006-2952(91)90141-Q
   Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9
   CHARY KK, 1977, CANCER TREAT REP, V61, P367
   CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D
   DEOLIVIERA JAA, 1989, AUDIOVESTIBULAR TOXI
   Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0
   Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2
   Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515
   HAYES DM, 1977, CANCER, V39, P1372, DOI 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J
   Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2
   Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9
   KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1
   KLIS SFL, 1994, HEARING RES, V75, P114, DOI 10.1016/0378-5955(94)90062-0
   Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037
   Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7
   KOHN S, 1988, LARYNGOSCOPE, V98, P865
   Kohn S, 1997, ULTRASTRUCT PATHOL, V21, P289
   KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275
   Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299
   LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1
   Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3
   MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E
   Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6
   Muldoon LL, 2000, CLIN CANCER RES, V6, P309
   NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876
   O'Leary SJ, 2002, ANTICANCER RES, V22, P1525
   O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5
   OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1
   Reser D, 1999, NEUROTOXICOLOGY, V20, P731
   Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173
   Rybak LP, 1999, ANN NY ACAD SCI, V884, P143
   Rybak LP, 2000, AM J OTOL, V21, P513
   Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003
   Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989
   SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759
   Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0
   Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9
   vanEmst MG, 1997, HEARING RES, V114, P93, DOI 10.1016/S0378-5955(97)00156-1
   Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1
NR 41
TC 2
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 80
EP 87
DI 10.1016/j.heares.2004.10.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300009
PM 15855032
ER

PT J
AU Kalay, E
   Caylan, R
   Kremer, H
   de Brouwer, APM
   Karaguzel, A
AF Kalay, E
   Caylan, R
   Kremer, H
   de Brouwer, APM
   Karaguzel, A
TI GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel
   mutations
SO HEARING RESEARCH
LA English
DT Article
DE hearing loss; connexin 26; GJB2; GJB6; 35delG
ID NONSYNDROMIC HEARING-LOSS; SENSORINEURAL DEAFNESS; CHILDHOOD DEAFNESS;
   CONNEXIN-26 MUTATIONS; PRELINGUAL DEAFNESS; MOLECULAR-BASIS;
   GAP-JUNCTIONS; GENE; POPULATION; DFNB1
AB Mutations in the connexin 26 gene (GJB2) cause a significant proportion of prelingual non-syndromic autosomal recessive deafness in all populations studied so far. To determine the percentage of hearing loss attributed to GJB2 in northeast Turkey, 93 unrelated patients with autosomal recessive non-syndromic hearing loss (ARNSHL) were screened. Seven different mutations were found in 29 of the patients with severe to profound hearing loss. The 35delG mutation was the most common mutation, accounting for 76% of all mutant GJB2 alleles. Four already described mutations, W24X, 310del14, delE120 and R184P and two novel mutations, Q80K and P173S, were identified. The allelic Delta(GJB6-D13S1830), which can cause hearing loss in combination with GJB2 mutations, was not present in our patients. Our results are comparable to those reported in other regions in Turkey and indicate that GJB2 mutations account for about 30% of Turkish patients with ARNSHL. Besides 35delG, W24X and delE120 occur more than once in the Turkish ARNSHL population with a frequency of about 5%. (c) 2004 Elsevier B.V. All rights reserved.
C1 Radboud Univ, Nijmegen Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands.
   Radboud Univ, Nijmegen Med Ctr, Dept Otorhinolaryngol, Nijmegen, Netherlands.
   Karadeniz Tech Univ, Fac Med, Dept Otorhinolaryngol, Trabzon, Turkey.
   Karadeniz Tech Univ, Fac Med, Dept Med Biol, Trabzon, Turkey.
RP Kalay, E (reprint author), Radboud Univ, Nijmegen Med Ctr, Dept Human Genet, POB 9101, NL-6500 HB Nijmegen, Netherlands.
EM e.kalay@antrg.umcn.nl
RI Kremer, Hannie/F-5126-2010
CR Ahmad S, 2003, BIOCHEM BIOPH RES CO, V307, P362, DOI 10.1016/S0006-291X(03)01166-5
   Bayazit YA, 2003, INT J PEDIATR OTORHI, V67, P1331, DOI 10.1016/j.ijporl.2003.08.003
   Brobby GW, 1998, NEW ENGL J MED, V338, P548, DOI 10.1056/NEJM199802193380813
   Bruzzone R, 1996, EUR J BIOCHEM, V238, P1, DOI 10.1111/j.1432-1033.1996.0001q.x
   Chang EH, 2003, EAR HEARING, V24, P314, DOI 10.1097/01.AUD.0000079801.55588.13
   Cryns K, 2004, J MED GENET, V41, P147, DOI 10.1136/jmg.2003.013896
   del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Erbe CB, 2004, LARYNGOSCOPE, V114, P607, DOI 10.1097/00005537-200404000-00003
   Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406
   Gorlin R.J., 1995, HEREDITARY HEARING L
   Günther Barbara, 2003, Hum Mutat, V22, P180, DOI 10.1002/humu.9167
   Hamelmann C, 2001, Hum Mutat, V18, P84, DOI 10.1002/humu.1156
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Kelsell David P., 2000, European Journal of Human Genetics, V8, P469
   KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783
   Kudo T, 2000, AM J MED GENET, V90, P141, DOI 10.1002/(SICI)1096-8628(20000117)90:2<141::AID-AJMG10>3.0.CO;2-G
   Kudo T, 2001, OTOL NEUROTOL, V22, P858, DOI 10.1097/00129492-200111000-00025
   Lerer I, 2000, AM J MED GENET, V95, P53, DOI 10.1002/1096-8628(20001106)95:1<53::AID-AJMG11>3.0.CO;2-2
   Loffler J, 2001, EUR J HUM GENET, V9, P226, DOI 10.1038/sj.ejhg.5200607
   Maestrini E, 1999, HUM MOL GENET, V8, P1237, DOI 10.1093/hmg/8.7.1237
   MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504
   Mason JA, 1998, PEDIATRICS, V101, P221, DOI 10.1542/peds.101.2.221
   MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215
   Minarik G, 2003, GEN PHYSIOL BIOPHYS, V22, P549
   Morle L, 2000, J MED GENET, V37, P368, DOI 10.1136/jmg.37.5.368
   MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
   Rabionet R, 2000, HUM GENET, V106, P40, DOI 10.1007/s004390051007
   Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I
   Rabionet R, 2002, TRENDS MOL MED, V8, P205, DOI 10.1016/S1471-4914(02)02327-4
   Richard G, 2000, HUM GENET, V106, P321, DOI 10.1007/s004390051045
   Richard G, 2002, AM J HUM GENET, V70, P1341, DOI 10.1086/339986
   Rothrock CR, 2003, HUM GENET, V113, P18, DOI 10.1007/s00439-003-0944-2
   Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8
   Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009
   Stinckens C, 2004, ANN OTO RHINOL LARYN, V113, P587
   Tekin Mustafa, 2003, Hum Mutat, V21, P552, DOI 10.1002/humu.9137
   Uyguner O, 2003, CLIN GENET, V64, P65, DOI 10.1034/j.1399-0004.2003.00101.x
   Uyguner O, 2002, CLIN GENET, V62, P306, DOI 10.1034/j.1399-0004.2002.620409.x
   Wang YC, 2002, EUR J HUM GENET, V10, P495, DOI 10.1038/sj.ejhg.5200838
   Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605
   2004, CONNEXIN DEAFNESS HO
NR 42
TC 32
Z9 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 88
EP 93
DI 10.1016/j.heares.2004.11.022
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300010
PM 15855033
ER

PT J
AU Chen, YS
   Tseng, FY
   Liu, TC
   Lin-Shiau, SY
   Hsu, CJ
AF Chen, YS
   Tseng, FY
   Liu, TC
   Lin-Shiau, SY
   Hsu, CJ
TI Involvement of nitric oxide generation in noise-induced temporary
   threshold shift in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE nitric oxide; noise; temporary threshold shift
ID COCHLEAR BLOOD-FLOW; NA+/K+-ATPASE ACTIVITY; INDUCED HEARING-LOSS;
   LATERAL WALL; LOUD SOUND; REPERFUSION INJURY; ACOUSTIC TRAUMA;
   SUPEROXIDE; APOPTOSIS; ISCHEMIA
AB The present study explored the role of endogenous nitric oxide (NO) in the temporary threshold shift caused by acoustic trauma. Guinea pigs were exposed to broadband white noise at a level of 105 +/- 2 dB sound pressure level (SPL) for 10 min, causing a temporary threshold shift (TTS). The guinea pigs were divided into six groups (N-1 to N-6) according to survival days after noise exposure (0, 1, 2, 3, 7, 28 days). Auditory brainstem responses (ABR) were recorded before noise exposure, immediately after noise exposure and before sacrifice. Immediately after animals were sacrificed, the stria vascularis and the spiral ligament of the lateral wall of each individual cochlea were harvest as a unit and prepared for assay of NO. There was a significant correlation (P < 0.001) between the NO concentration and final ABR threshold in the noise exposure groups. But the return of ABR threshold to pre-noise-exposed level is early than that of NO concentration.
   An average 16.2 dB threshold shift was found immediately after noise exposure. The threshold returned to the pre-noise-exposed level on the second post-exposure day. Comparing to unexposed control animals, the NO concentration increased nearly threefold immediately following noise exposure and decreased to twofold when the hearing threshold had returned to the pre-noise-exposed level. On the seventh post-exposure day the NO concentration was not different from that in unexposed control animals.
   Those findings indicate that endogenous NO is generated in the noise-induced temporal threshold shift and its concentration is correlated with the hearing loss. (c) 2005 Elsevier B.V. All rights reserved.
C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan.
   Natl Taiwan Univ Hosp, Dept Internal Med, Taipei, Taiwan.
   Natl Taiwan Univ, Coll Med, Inst Pharmacol, Taipei, Taiwan.
RP Chen, YS (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan.
EM sos008@ha.mc.ntu.edu.tw; cjhsu@ha.mc.ntu.edu.tw
CR AXELSSON A, 1981, ACTA OTOLARYNGOL, V88, P45
   BONFOCO E, 1995, P NATL ACAD SCI USA, V92, P7162, DOI 10.1073/pnas.92.16.7162
   BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8
   BUTTERFIELD DA, 1994, BIOCHEM BIOPH RES CO, V200, P710, DOI 10.1006/bbrc.1994.1508
   CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2
   CAO W, 1988, NEUROSCI LETT, V88, P233, DOI 10.1016/0304-3940(88)90132-2
   CRISTOL JP, 1993, BRIT J PHARMACOL, V109, P188
   DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368
   Dimmeler S, 1997, NITRIC OXIDE-BIOL CH, V1, P275, DOI 10.1006/niox.1997.0133
   Estevez AG, 1998, J NEUROSCI, V18, P923
   ESTEVEZ AG, 1995, J NEUROCHEM, V65, P1543
   Estevez AG, 2002, ANN NY ACAD SCI, V962, P207
   GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V
   GUO YC, 1994, J LARYNGOL OTOL, V108, P310
   GUPTA S, 1994, AM J PHYSIOL, V266, pH2146
   HALL NC, 1995, NEUROSCIENCE, V64, P81, DOI 10.1016/0306-4522(94)00385-I
   HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x
   HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001
   HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903
   HENSLEY K, 1994, FREE RADICAL BIO MED, V17, P321, DOI 10.1016/0891-5849(94)90018-3
   Hsu CJ, 2000, HEARING RES, V142, P203, DOI 10.1016/S0378-5955(00)00020-4
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   HULTCRANTZ E, 1979, ARCH OTO-RHINO-LARYN, V224, P103, DOI 10.1007/BF00455231
   Kroncke KD, 1997, NITRIC OXIDE-BIOL CH, V1, P107, DOI 10.1006/niox.1997.0118
   Lamm K, 1996, Audiol Neurootol, V1, P148
   LIN CH, 1999, NEUROSCI LETT, V276, P141
   LIPTON SA, 1993, NATURE, V364, P626, DOI 10.1038/364626a0
   Margaill I, 1997, BRIT J PHARMACOL, V120, P160, DOI 10.1038/sj.bjp.0700889
   MULROY MJ, 1990, HEARING RES, V49, P79, DOI 10.1016/0378-5955(90)90096-8
   Muriel P, 2000, NITRIC OXIDE-BIOL CH, V4, P333, DOI 10.1006/niox.2000.0285
   Nakai Y, 1988, Acta Otolaryngol Suppl, V447, P23
   OHLSEN A, 1993, ACTA OTO-LARYNGOL, V113, P55, DOI 10.3109/00016489309135767
   Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9
   QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
   RICHARD V, 1995, BRIT J PHARMACOL, V115, P1532
   Ruan RS, 2002, ANN NY ACAD SCI, V962, P260
   Sato T, 1995, BRAIN RES, V704, P117, DOI 10.1016/0006-8993(95)01165-X
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Shi XR, 2002, HEARING RES, V164, P49
   Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9
   SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7
   Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P342
   Tamir S, 1996, CHEM RES TOXICOL, V9, P821, DOI 10.1021/tx9600311
   THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9
   VANBENTHEM PPG, 1994, HEARING RES, V77, P9, DOI 10.1016/0378-5955(94)90249-6
   Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5
   WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2
   Weitzberg E, 1998, NITRIC OXIDE-BIOL CH, V2, P1, DOI 10.1006/niox.1997.0162
   Wink DA, 1998, FREE RADICAL BIO MED, V25, P434, DOI 10.1016/S0891-5849(98)00092-6
   Yamane H, 1997, HEARING RES, V108, P65, DOI 10.1016/S0378-5955(97)00041-5
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   Zweier JL, 1999, BBA-BIOENERGETICS, V1411, P250, DOI 10.1016/S0005-2728(99)00018-3
NR 52
TC 18
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 94
EP 100
DI 10.1016/j.heares.2004.12.006
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300011
PM 15855034
ER

PT J
AU Kaiser, CL
   Girod, DA
   Durham, D
AF Kaiser, CL
   Girod, DA
   Durham, D
TI Breed-dependent susceptibility to acute sound exposure in young chickens
SO HEARING RESEARCH
LA English
DT Article
DE avian; auditory; sound damage; cochlea; basilar papilla
ID INDUCED HEARING-LOSS; HAIR CELL LOSS; INTENSE AUDITORY-STIMULATION;
   NOISE-INDUCED APOPTOSIS; SEVERE ACOUSTIC TRAUMA; AVIAN INNER-EAR;
   BASILAR PAPILLA; COCHLEAR INTEGRITY; TECTORIAL MEMBRANE; DAMAGE
AB Commercially available chickens fall into two categories: egg layers and broilers. Durham et a]. (Hear. Res. 166 (2002) 82-95) showed that despite similar noisy living environments, cochleae of most adult broilers show extensive damage, while cochleae of adult egg layers are largely normal. This finding suggests that egg layers and broilers differ in their susceptibility to noise damage. Here, we evaluate breed differences in susceptibility to acoustic trauma. Young egg layers and broilers (10-17 weeks) were exposed to a 1500 Hz pure tone (120 dB SPL; 24 h) and killed 24 or 72 h later. Cochleae were prepared for scanning electron microscopy and photomicrographs of the cochlear surface were used to determine location and severity of damage. Cochleae were grouped based upon damage severity (moderate or severe). While location and area of damage were similar between both breeds at each recovery time, cochlear damage at 72 h was more extensive than at 24 h. We found no quantitative breed differences within either damage category or recovery time. However, more egg layers (25/27) than broilers (16/32) displayed severely damaged cochleae. Our findings conflict with those reported by Durham et al. (2002). Our results identify a breed-dependent difference in susceptibility to acute sound exposure, with young egg layers displaying increased sensitivity. (c) 2004 Elsevier B. V. All rights reserved.
C1 Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66103 USA.
   Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66103 USA.
RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66103 USA.
EM ddurham@kumc.edu
CR ADLER HJ, 1993, HEARING RES, V71, P214, DOI 10.1016/0378-5955(93)90037-2
   ADLER HJ, 1995, J NEUROCYTOL, V24, P111, DOI 10.1007/BF01181554
   BESS FH, 2003, AUDIOLOGY FUNDAMENTA, P145
   Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9
   Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8
   CLARK WW, 1992, OTOLARYNG HEAD NECK, V106, P669
   CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X
   COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5
   COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0
   COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3
   COTANCHE DA, 1992, EXP NEUROL, V115, P23, DOI 10.1016/0014-4886(92)90215-C
   Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852
   Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9
   COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1
   Cryns V, 1998, GENE DEV, V12, P1551, DOI 10.1101/gad.12.11.1551
   Dagli S, 1997, HEARING RES, V104, P39, DOI 10.1016/S0378-5955(96)00179-7
   Davis R R, 2003, Noise Health, V5, P19
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
   Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R
   Freeman S, 1999, AUDIOL NEURO-OTOL, V4, P207, DOI 10.1159/000013844
   GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3
   HENDERSON D, 1993, EAR HEARING, V14, P152, DOI 10.1097/00003446-199306000-00002
   HENRY WJ, 1988, OTOLARYNG HEAD NECK, V98, P607
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129
   MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9
   Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ofsie MS, 1996, J COMP NEUROL, V370, P281
   Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2
   Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9
   Perez R, 2004, HEARING RES, V192, P101, DOI 10.1016/j.heares.2004.01.018
   POJE CP, 1995, HEARING RES, V82, P197, DOI 10.1016/0378-5955(94)00177-R
   RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408
   RAPHAEL Y, 1991, HEARING RES, V53, P173, DOI 10.1016/0378-5955(91)90052-B
   ROYSTER JD, 1996, HEARING DISORDERS, P177
   RUBEL EW, 1982, ACTA OTO-LARYNGOL, V93, P31, DOI 10.3109/00016488209130849
   RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873
   RYALS BM, 1985, HEARING RES, V19, P73, DOI 10.1016/0378-5955(85)90099-1
   RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2
   Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2
   Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2
   SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A
   SIEDMAN MD, 2002, AGEING RES REV, V1, P331
   Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008
   Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
NR 53
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 101
EP 111
DI 10.1016/j.heares.2004.11.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300012
PM 15855035
ER

PT J
AU van Ruijven, MWM
   de Groot, JCMJ
   Hendriksen, F
   Smoorenburg, GF
AF van Ruijven, MWM
   de Groot, JCMJ
   Hendriksen, F
   Smoorenburg, GF
TI Immunohistochemical detection of platinated DNA in the cochlea of
   cisplatin-treated guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE cisplatin ototoxicity; cisplatin-DNA adducts; cochlea; guinea pig; organ
   of Corti; stria vascularis
ID X-RAY-MICROANALYSIS; STRIA VASCULARIS; ELECTRON-MICROSCOPY; OTOTOXICITY;
   LOCALIZATION; DEGENERATION; ADDUCTS; CIS-DIAMMINEDICHLOROPLATINUM(II);
   CRYOULTRAMICROTOMY; MORPHOLOGY
AB Cisplatin-induced ototoxicity is correlated with functional and morphological changes in the organ of Corti, the stria vascularis and the spiral ganglion. However, the cochlear sites of cisplatin uptake and accumulation have not been property identified. Therefore, we have developed an immunohistochemical method to, indirectly, detect cisplatin in semithin cryosections of the guinea pig cochlea (basal turn) using an antiserum containing antibodies against cisplatin-DNA adducts. Platinated DNA was present in the nuclei of most cells in the organ of Corti and the lateral wall after cisplatin administration. Nuclear immunostaining was most pronounced in the outer hair cells, the marginal cells and the spiral ligament fibrocytes. This study is the first to demonstrate the presence of cisplatin in histological sections of the cochlea. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands.
RP van Ruijven, MWM (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands.
EM m.vanruijven@kmb.azu.nl
CR ANNIKO M, 1986, AM J OTOLARYNG, V7, P276, DOI 10.1016/S0196-0709(86)80050-3
   Bergstrom P, 1997, EUR J CANCER, V33, P153, DOI 10.1016/S0959-8049(96)00339-5
   BERRY JP, 1982, CANCER TREAT REP, V66, P1529
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   Cardinaal RM, 2004, ACTA OTO-LARYNGOL, V124, P144, DOI 10.1080/00016480310015164
   Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9
   Chabner BA, 1996, CANC CHEMOTHERAPY BI, P357
   DEOLIVEIRA JAA, AUDIOVESTIBULAR TOXI, V2, P181
   Endo T, 2002, NEUROSCI LETT, V334, P173, DOI 10.1016/S0304-3940(02)01115-1
   ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638
   FLOCK A, 1981, ARCH OTO-RHINO-LARYN, V233, P55, DOI 10.1007/BF00464275
   Fuertes MA, 2003, CURR MED CHEM, V10, P257
   Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515
   JOHNSSON A, 1995, CANCER CHEMOTH PHARM, V37, P23
   Kartalou M, 2001, MUTAT RES-FUND MOL M, V478, P1, DOI 10.1016/S0027-5107(01)00142-7
   KHAN MUA, 1978, CHEM-BIOL INTERACT, V21, P227, DOI 10.1016/0009-2797(78)90021-2
   KOHN S, 1988, LARYNGOSCOPE, V98, P865
   LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427
   MAKITA T, 1986, CELL BIOL INT REP, V10, P447, DOI 10.1016/0309-1651(86)90040-8
   MARUYAMA K, 1993, J OTOLARYNGOL JAPAN, V96, P1758
   Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6
   Meijer C, 1999, NEUROTOXICOLOGY, V20, P883
   Meijer C, 2001, BIOCHEM PHARMACOL, V61, P573, DOI 10.1016/S0006-2952(00)00584-0
   Ramirez-Camacho R, 2004, LARYNGOSCOPE, V114, P533
   SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315
   SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P310
   SCHWEITZER VG, 1993, LARYNGOSCOPE S, V103, P59
   TAKAGI I, 1994, IMMUNOBIOLOGY IN OTORHINOLARYNGOLOGY, P297
   TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261
   TERHEGGEN PMAB, 1991, CANCER CHEMOTH PHARM, V28, P185, DOI 10.1007/BF00685507
   TERHEGGEN PMAB, 1987, CANCER RES, V47, P6719
   TERHEGGEN PMAB, 1989, TOXICOL APPL PHARM, V99, P334, DOI 10.1016/0041-008X(89)90015-X
   TOKUYASU KT, 1989, HISTOCHEM J, V21, P163, DOI 10.1007/BF01007491
   van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014
   Verschraagen M, 2002, J CHROMATOGR B, V772, P273, DOI 10.1016/S1570-0232(02)00108-3
   Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1
   WELB R, 1995, THESIS UNIV DUSSELDO
NR 37
TC 22
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 112
EP 121
DI 10.1016/j.heares.2004.12.007
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300013
PM 15855036
ER

PT J
AU Hine, JE
   Thornton, ARD
AF Hine, JE
   Thornton, ARD
TI Transient evoked otoacoustic emissions recorded using maximum length
   sequences from patients with sensorineural hearing loss
SO HEARING RESEARCH
LA English
DT Article
DE evoked otoacoustic emissions; maximum length sequences; hearing loss
ID STIMULUS RATE; THRESHOLDS; NOISE
AB Much research has shown that transient evoked otoacoustic emissions (TEOAEs) can successfully separate normally hearing and hearing impaired populations. However, this finding comes from TEOAEs recorded using conventional averaging at low stimulation rates. Presenting clicks according to maximum length sequences (MLSs) enables TEOAEs to be recorded at very high stimulation rates. This study compares conventional and MLS TEOAEs in normally hearing and hearing impaired adults. Stimulus presentation rates of 40 clicks/s (conventional) and 5000 clicks/s (MLS) were used. The 'linear' TEOAEs (i.e., the directly recorded waveforms), the 'level nonlinear' (LNL) TEOAEs (i.e., those derived from two linear waveforms separated by a known difference in stimulus level) and the 'rate nonlinear' (RNL) TEOAEs (i.e., obtained by subtracting the emission recorded at 5000 clicks/s from that at 40 clicks/s at a fixed stimulus level) were examined to compare how they separated the normally hearing and hearing impaired subjects. When compared to the results for both conventional and MLS linear or LNL TEOAEs, the present study found that the RNL results best reflected the patients' hearing loss, although the conventional linear and LNL responses performed nearly as well. Only two impaired ears (2%), both with a best threshold of 30 dB HL at 1000 Hz, produced RNL responses with amplitude within the range produced by 95% of the normal group. (c) 2004 Elsevier B.V. All rights reserved.
C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England.
RP Hine, JE (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England.
EM j.kwint@soton.ac.uk
CR BONFILS P, 1989, ANN OTO RHINOL LARYN, V98, P326
   BONFILS P, 1988, ARCH OTO-RHINO-LARYN, V245, P53, DOI 10.1007/BF00463550
   COLLET L, 1993, EAR HEARING, V14, P141, DOI 10.1097/00003446-199304000-00009
   Cope Y., 1988, PAEDIATRIC AUDIOLOGY, P221
   Fitzgerald TS, 1997, J SPEECH LANG HEAR R, V40, P1164
   GRANDORI F, 1994, ADV OTOACOUSTIC EMIS, V1, P46
   Hall AJ, 1999, AUDIOLOGY, V38, P277
   Harris FP, 2002, OTOACOUSTIC EMISSION, P213
   Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4
   Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004
   Hussain DM, 1998, EAR HEARING, V19, P434, DOI 10.1097/00003446-199812000-00005
   KEMP DT, 1990, EAR HEARING, V11, P93
   Moleti A, 2002, HEARING RES, V174, P290, DOI 10.1016/S0378-5955(02)00703-7
   PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001
   PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715
   Rasmussen AN, 1998, BRIT J AUDIOL, V32, P355, DOI 10.3109/03005364000000087
   STEVENS J C, 1988, British Journal of Audiology, V22, P45
   THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900
   THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519
   Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9
   THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512
   THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090
   Tognola G, 2001, EAR HEARING, V22, P182, DOI 10.1097/00003446-200106000-00002
   VONSPECHT H, 2001, SCAND AUDIOL S, V52, P116
NR 24
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 122
EP 133
DI 10.1016/j.heares.2004.11.019
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300014
PM 15855037
ER

PT J
AU Sharma, A
   Dorman, MF
   Kral, A
AF Sharma, A
   Dorman, MF
   Kral, A
TI The influence of a sensitive period on central auditory development in
   children with unilateral and bilateral cochlear implants
SO HEARING RESEARCH
LA English
DT Article
DE central auditory development; sensitive period; PI cortical auditory
   evoked potential; cochlear implant; bilateral implants
ID CORTICAL MATURATION; EVOKED-POTENTIALS; NORMAL-HEARING; BRAIN-STEM;
   CORTEX; PLASTICITY; DEAFNESS; DEPRIVATION; PERCEPTION; RESPONSES
AB We examined the longitudinal development of the cortical auditory evoked potential (CAEP) in 21 children who were fitted with unilateral cochlear implants and in two children who were fitted with bilateral cochlear implants either before age 3.5 years or after age 7 years. The age cut-offs (<3.5 years for early-implanted and >7 years for late-implanted) were based on the sensitive period for central auditory development described in [Ear Hear. 23 (6), 532.] Our results showed a fundamentally different pattern of development of CAEP morphology and PI cortical response latency for early- and late-implanted children. Early-implanted children and one child who received bilateral implants by age 3.5 years showed rapid development in CAEP waveform morphology and PI latency. Late-implanted children showed aberrant waveform morphology and significantly slower decreases in P1 latency postimplantation. In the case of a child who received his first implant by age 3.5 years and his second implant after age 7 years, CAEP responses elicited by the second implant were similar to late-implanted children. Our results are consistent with animal models of central auditory development after implantation and confirm the presence of a relatively brief sensitive period for central auditory development in young children. 2005 Elsevier B.V. All rights reserved.
C1 Univ Texas, Callier Ctr Commun Disorders, Dallas, TX 75206 USA.
   Arizona State Univ, Tempe, AZ 85287 USA.
   Univ Klinikum Hamburg Eppendorf, Inst Neurophysiol & Pathophysiol, Hamburg, Germany.
RP Sharma, A (reprint author), Univ Texas, Callier Ctr Commun Disorders, 1966 Inwood Rd, Dallas, TX 75206 USA.
EM anu.sharma@utdallas.edu
CR Conel J. L, 1939, POSTNATAL DEV HUMAN, V1-8
   Cunningham J, 2000, EAR HEARING, V21, P554, DOI 10.1097/00003446-200012000-00003
   Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098
   Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763
   GILLEY P, 2004, ASS RES OTOLARYNGOLO
   Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4
   Granier-Deferre C, 1985, Acta Otolaryngol Suppl, V421, P93
   Huttenlocher PR, 1997, J COMP NEUROL, V387, P167, DOI 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z
   Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729
   Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714
   Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797
   KRAL A, IN PRESS CEREB CORTE
   KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003
   Kraus N., 1995, CLIN NEUROPHYSIOL, V44, P93
   Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
   Maurer D, 1999, SCIENCE, V286, P108, DOI 10.1126/science.286.5437.108
   Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2
   Moore Jean K, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P7
   MOORE JK, 2004, NHS C LAK COM IT
   Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052
   Mostafapour SP, 2002, J NEUROSCI, V22, P4670
   Neville H, 2002, PROG BRAIN RES, V138, P177, DOI 10.1016/S0079-6123(02)38078-6
   Nishimura H, 2000, NEUROREPORT, V11, P811, DOI 10.1097/00001756-200003200-00031
   Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376
   Paus T, 1999, SCIENCE, V283, P1908, DOI 10.1126/science.283.5409.1908
   Petitto LA, 2000, P NATL ACAD SCI USA, V97, P13961, DOI 10.1073/pnas.97.25.13961
   Ponton C W, 1999, Scand Audiol Suppl, V51, P13
   Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9
   Ponton CW, 1996, EAR HEARING, V17, P430, DOI 10.1097/00003446-199610000-00009
   Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013
   Ponton CW, 2001, AUDIOL NEURO-OTOL, V6, P363, DOI 10.1159/000046846
   Roder B, 2002, EUR J NEUROSCI, V16, P930, DOI 10.1046/j.1460-9568.2002.02147.x
   RUBEL EW, 1985, ACTA OTO-LARYNGOL, P114
   SALAMY A, 1984, PRINCIPLES APLLICATI, P287
   Sharma Anu, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P38
   Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004
   Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6
   Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030
   Sharma A, 2004, ARCH OTOLARYNGOL, V130, P511, DOI 10.1001/archotol.130.5.511
   Singh S, 2004, EAR HEARING, V25, P598, DOI 10.1097/00003446-200412000-00008
   WEITZMAN L, 1967, CLIN NEUROPHYSIOL, V23, P82
   YAKOVLEV PL, 1967, REGIONAL DEV BRAIN E, P1
NR 42
TC 159
Z9 172
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 134
EP 143
DI 10.1016/j.heares.2004.12.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300015
PM 15855038
ER

PT J
AU Lelbovici, M
   Verpy, E
   Goodyear, RJ
   Zwaenepoel, I
   Blanchard, S
   Laine, S
   Richardson, GP
   Petit, C
AF Lelbovici, M
   Verpy, E
   Goodyear, RJ
   Zwaenepoel, I
   Blanchard, S
   Laine, S
   Richardson, GP
   Petit, C
TI Initial characterization of kinocilin, a protein of the hair cell
   kinocilium
SO HEARING RESEARCH
LA English
DT Article
DE kinocilin; kinocilium; stereocilia; inner ear; testis; manchette;
   microtubules
ID INNER-EAR; MYOSIN-VIIA; STEREOCILIARY BUNDLES; SENSORY EPITHELIA;
   SUPPORTING CELLS; APICAL-SURFACE; MOUSE; MICROTUBULES; COCHLEA; ORGAN
AB A subtracted library prepared from vestibular sensory areas [Nat. Genet. 26 (2000) 51] was used to identify a 960 bp murine transcript preferentially expressed in the inner ear and testis. The cDNA predicts a basic 124 aa protein that does not share any significant sequence homology with known proteins. Immunofluorescence and immunoelectron microscopy revealed that the protein is located mainly in the kinocilium of sensory cells in the inner ear. The protein was thus named kinocilin. In the mouse, kinocilin is first detected in the kinocilia of vestibular and auditory hair cells at embryonic days 14.5, and 18.5, respectively. In the mature vestibular hair cells, kinocilin is still present in the kinocilium. As the auditory hair cells begin to lose the kinocilium during postnatal development, kinocilin becomes distributed in an annular pattern at the apex of these cells, where it co-localizes with the tubulin belt [Hear. Res. 42 (1989) 1]. In mature auditory hair cells, kinocilin is also present at the level of the cuticular plate, at the base of each stereocilium. In addition, as the kinocilium regresses from developing auditory hair cells, kinocilin begins to be expressed by the pillar cells and Deiters cells, that both contain prominent transcellular and apical bundles of microtubules. By contrast, kinocilin was not detected in the supporting cells in the vestibular end organs. The protein is also present in the manchette of the spermatids, a transient structure enriched in interconnected microtubules. We propose that kinocilin has a role in stabilizing dense microtubular networks or in vesicular trafficking. 2005 Published by Elsevier B.V.
C1 Inst Pasteur, INSERM, U587, Unite Genet Deficits Sensoriels, F-75724 Paris, France.
   Univ Sussex, Sch Biol Sci, Brighton BN1 9QG, E Sussex, England.
RP Lelbovici, M (reprint author), Inst Pasteur, INSERM, U587, Unite Genet Deficits Sensoriels, 25 Rue Dr Roux, F-75724 Paris, France.
EM mleibo@pasteur.fr
CR ANGELBOR.C, 1972, ACTA OTO-LARYNGOL, P49
   Boeda B, 2001, HUM MOL GENET, V10, P1581, DOI 10.1093/hmg/10.15.1581
   CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999
   Cohen-Salmon M, 1997, P NATL ACAD SCI USA, V94, P14450, DOI 10.1073/pnas.94.26.14450
   COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7
   Cyr JL, 2002, J NEUROSCI, V22, P2487
   Dabdoub A, 2003, DEVELOPMENT, V130, P2375, DOI 10.1242/dev.00448
   Denman-Johnson K, 1999, J NEUROCYTOL, V28, P821, DOI 10.1023/A:1007061819934
   DEVEREUX J, NUCLEIC ACIDS RES, V12, P387
   ElAmraoui A, 1996, HUM MOL GENET, V5, P1171, DOI 10.1093/hmg/5.8.1171
   ERNSTSON S, 1986, ACTA OTO-LARYNGOL, V101, P395, DOI 10.3109/00016488609108624
   FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817
   FURNESS DN, 1990, J ELECTRON MICR TECH, V15, P261, DOI 10.1002/jemt.1060150306
   Goodyear RJ, 2003, J NEUROSCI, V23, P4878
   Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287
   HENDERSON CG, 1995, J CELL SCI, V108, P37
   Holt JR, 1997, J NEUROSCI, V17, P8739
   HUBANK M, 1994, NUCLEIC ACIDS RES, V22, P5640, DOI 10.1093/nar/22.25.5640
   Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0
   KELLEY MW, 1992, HEARING RES, V59, P108
   Kierszenbaum AL, 2002, MOL REPROD DEV, V63, P1, DOI 10.1002/mrd.10179
   KIKUCHI T, 1988, ACTA OTO-LARYNGOL, V106, P200, DOI 10.3109/00016488809106426
   KIKUCHI T, 1989, ACTA OTO-LARYNGOL, V108, P26, DOI 10.3109/00016488909107388
   Kussel-Andermann P, 2000, EMBO J, V19, P6020, DOI 10.1093/emboj/19.22.6020
   Leonova EV, 1999, HEARING RES, V130, P137, DOI 10.1016/S0378-5955(99)00004-0
   Ohtoshi A, 2002, MECH DEVELOP, V110, P241, DOI 10.1016/S0925-4773(01)00587-1
   Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9
   ROSS MD, 1987, ACTA OTO-LARYNGOL, V104, P56, DOI 10.3109/00016488709109047
   RUSSELL LD, 1991, AM J ANAT, V192, P97, DOI 10.1002/aja.1001920202
   Senes A, 2000, J MOL BIOL, V296, P921, DOI 10.1006/jmbi.1999.3488
   SOBKOWICZ HM, 1995, J NEUROCYTOL, V24, P633, DOI 10.1007/BF01179815
   STEYGER PS, 1989, HEARING RES, V42, P1, DOI 10.1016/0378-5955(89)90113-5
   Strausberg RL, 2002, P NATL ACAD SCI USA, V99, P16899, DOI 10.1073/pnas.242603899
   Thorpe JR, 1999, J HISTOCHEM CYTOCHEM, V47, P1633
   Thorpe Jr, 1999, METH MOL B, V117, P99
   Tsujikawa M, 2004, NEURON, V42, P703, DOI 10.1016/S0896-6273(04)00268-5
   TUCKER JB, 1993, CELL MOTIL CYTOSKEL, V25, P49, DOI 10.1002/cm.970250107
   Verpy E, 2000, NAT GENET, V26, P51
   Viberg A, 2004, HEARING RES, V197, P1, DOI 10.1016/j.heares.2004.04.016
   VONHEIJNE G, 1986, NUCLEIC ACIDS RES, V14, P4683, DOI 10.1093/nar/14.11.4683
   Wolfrum U, 1998, CELL MOTIL CYTOSKEL, V40, P261, DOI 10.1002/(SICI)1097-0169(1998)40:3<261::AID-CM5>3.0.CO;2-G
   Zwaenepoel I, 2002, P NATL ACAD SCI USA, V99, P6240, DOI 10.1073/pnas.082515999
NR 42
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 144
EP 153
DI 10.1016/j.heares.2004.12.002
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300016
ER

PT J
AU Falkenius-Schmidt, K
   Rydmarker, S
   Horner, KC
AF Falkenius-Schmidt, K
   Rydmarker, S
   Horner, KC
TI Hyperprolactinemia in some Meniere patients even in the absence of
   incapacitating vertigo
SO HEARING RESEARCH
LA English
DT Article
DE Meniere's disease; stress; hyperprolactinemia; pituitary adenoma;
   hearing; vertigo
ID PROLACTIN RECEPTOR; STRESS; HORMONES; DISEASE; SYSTEM; VASOPRESSIN;
   HOMEOSTASIS; GUIDELINES; DISORDERS; DIZZINESS
AB Stress can be a significant factor influencing ear pathologies and is often reported to trigger the symptoms of Meniere's disease. Both physiological and psychological stress provokes the release of prolactin from the pituitary thus allowing the classification of prolactin as a major stress hormone. We investigated the level of the stress hormone prolactin in a Swedish population with early symptoms of Meniere's disease. The median prolactin level in the Meniere patients (n = 33) was not significantly different from that of non-Meniere patients (n = 23). However, in the Meniere group one female (90 year old) had prolactin levels in the upper normal range for women, one male (77 year old) had prolactin levels above the normal limit for men, and a third patient (76 year old female) presented hyper prolactinemia with more than twice the normal level. MR1 confirmed a pituitary adenoma in this patient. This study provides further support for the recent report of hyperprolactinemia in some patients with long-standing Meniere's disease and presenting incapacitating vertigo in France. The data emphasize the likely implication of stress in this pathology where the stress hormone prolactin is likely to represent one actor in a complex hormonal imbalance affecting the inner ear. (c) 2004 Elsevier B.V. All rights reserved.
C1 Angelholm Hosp, Dept Otorhinolaryngol, SE-26281 Angelholm, Sweden.
   Malmo Univ Hosp, Dept Otorhinolaryngol, SE-20502 Malmo, Sweden.
   CNRS, UMR 6153, Fac Sci St Jerome, Lab Physiol Neurovegetat, F-13397 Marseille, France.
RP Falkenius-Schmidt, K (reprint author), Angelholm Hosp, Dept Otorhinolaryngol, SE-26281 Angelholm, Sweden.
EM karolina.falkenius@telia.com
CR Andersson G, 1997, J PSYCHOSOM RES, V43, P595, DOI 10.1016/S0022-3999(97)00184-0
   Biller BMK, 1999, J REPROD MED, V44, P1075
   Blagoveshchenskaia N S, 1988, Zh Vopr Neirokhir Im N N Burdenko, P24
   BOIKO V, 1991, KOSM BIOL AVIAKOSM, V25, P46
   Bole-Feysot C, 1998, ENDOCR REV, V19, P225, DOI 10.1210/er.19.3.225
   Dorshkind K, 2001, BIOESSAYS, V23, P288, DOI 10.1002/1521-1878(200103)23:3<288::AID-BIES1039>3.0.CO;2-P
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FOWLER EP, 1952, JAMA-J AM MED ASSOC, V148, P1265
   Freeman ME, 2000, PHYSIOL REV, V80, P1523
   Gaborjan A, 2001, NEUROREPORT, V12, P3327
   Hebert S, 2004, HEARING RES, V190, P1, DOI [10.1016/S0378-5955(04)00021-8, 10.1016/S037-5955(04)00021-8]
   Horner K C, 2003, Noise Health, V5, P29
   Horner KC, 2002, NEUROPSYCHOPHARMACOL, V26, P135, DOI 10.1016/S0893-133X(01)00356-6
   Horner KC, 2003, NEUROSCI BIOBEHAV R, V27, P437, DOI 10.1016/S0149-7634(03)00071-X
   Job A, 2004, HEARING RES, V193, P31, DOI 10.1016/j.heares.2004.02.010
   Juhn SK, 1999, AM J OTOL, V20, P800
   Juhn S K, 2001, Int Tinnitus J, V7, P72
   KANT GJ, 1992, PHYSIOL BEHAV, V51, P1285, DOI 10.1016/0031-9384(92)90323-T
   Kitano H, 1994, Ear Nose Throat J, V73, P921
   KJAER A, 1993, NEUROENDOCRINOLOGY, V57, P314
   MERCHANT SN, 1995, EUR ARCH OTO-RHINO-L, V252, P63
   MEYERHOFF JL, 1988, PSYCHOSOM MED, V50, P295
   MONSELL EM, 1995, OTOLARYNG HEAD NECK, V113, P176, DOI 10.1016/S0194-5998(95)70100-1
   NAFTALIN L, 1994, EUR ARCH OTO-RHINO-L, V251, P173
   PETROSINI L, 1993, ARCH ITAL BIOL, V131, P159
   Reavley S, 1997, CLIN ENDOCRINOL, V47, P343, DOI 10.1046/j.1365-2265.1997.2701073.x
   Roberts CGP, 2004, LANCET, V363, P793, DOI 10.1016/S0140-6736(04)15696-1
   ROYSTER M, 1995, ENDOCRINOLOGY, V136, P3892, DOI 10.1210/en.136.9.3892
   RYBAK LP, 1995, OTOLARYNG HEAD NECK, V112, P128, DOI 10.1016/S0194-5998(95)70312-8
   Seemungal BM, 2001, CURR OPIN NEUROL, V14, P27, DOI 10.1097/00019052-200102000-00005
   Sobrinho LG, 1998, PSYCHOTHER PSYCHOSOM, V67, P133, DOI 10.1159/000012273
   STEPHENS SDG, 1975, J LARYNGOL OTOL, V89, P479, DOI 10.1017/S0022215100080646
   Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X
   Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219
   Torner L, 2001, J NEUROSCI, V21, P3207
   Yardley L, 1998, BRIT J GEN PRACT, V48, P1131
   Yardley L, 1999, LANCET, V353, P2069, DOI 10.1016/S0140-6736(05)77883-1
   Yazigi RA, 1997, FERTIL STERIL, V67, P215, DOI 10.1016/S0015-0282(97)81900-0
NR 38
TC 4
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 154
EP 158
DI 10.1016/j.heares.2004.11.015
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300017
PM 15855040
ER

PT J
AU Irfan, N
   Zhang, HM
   Wu, SH
AF Irfan, N
   Zhang, HM
   Wu, SH
TI Synaptic transmission mediated by ionotropic glutamate, glycine and GABA
   receptors in the rat's ventral nucleus of the lateral lemniscus
SO HEARING RESEARCH
LA English
DT Article
DE auditory system; intracellular recording; AMPA receptor; postsynaptic
   potential; brain slice
ID AUDITORY BRAIN-STEM; SUPERIOR OLIVARY COMPLEX; IN-SITU HYBRIDIZATION;
   BAT EPTESICUS-FUSCUS; BUSHY CELL AXONS; BIG BROWN BAT; INFERIOR
   COLLICULUS; COCHLEAR NUCLEUS; GUINEA-PIG; PHYSIOLOGICAL-PROPERTIES
AB The synaptic pharmacology of the ventral nucleus of the lateral lemniscus (VNLL) was investigated in brain slices obtained from rat's of 14-37 days old using intracellular recording techniques. Excitatory and inhibitory synaptic potentials (EPSPs and IPSPs) were elicited by electrical stimulation of the lemniscal pathway and recorded from neurons with five types of intrinsic firing patterns (onset, pause, adapting, regular and bursting types). Synaptic receptors that mediated the EPSPs and IPSPs were identified using AMPA, NMDA, GABA(A) and glycine receptor antagonists. The early/short EPSPs were mediated by AMPA receptors. The late/long EPSPs, encountered only in neurons of younger animals, were mediated by NMDA receptors. The IPSPs in most neurons were mediated by glycine receptors. In some neurons the IPSPs were mediated by GABA(A) receptors or both glycine and GABA(A) receptors. The temporal dynamics of fast AMPA EPSPs and glycinergic IPSPs were very similar. AMPA EPSPs and glycinergic (and/or GABAergic) IPSPs could be encountered in a single neuron. The results suggest that the VNLL not only relays incoming signals rapidly from the lower brainstem to the inferior colliculus, but also integrates excitatory and inhibitory inputs to modify and process auditory information. (c) 2004 Elsevier B.V. All rights reserved.
C1 Carleton Univ, Inst Neurosci, Ottawa, ON K1S 5B6, Canada.
RP Wu, SH (reprint author), Carleton Univ, Inst Neurosci, 335 Life Sci Res Bldg,1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada.
EM shwu@ces.carleton.ca
CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3
   Adams JC, 1997, AUDIT NEUROSCI, V3, P335
   AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421
   BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387
   Batra R, 2002, J NEUROPHYSIOL, V88, P666, DOI 10.1152/jn.00954.2001
   Batra R, 1999, J NEUROPHYSIOL, V82, P1097
   Batra R, 1997, J NEUROPHYSIOL, V78, P511
   BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410
   Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x
   Campos ML, 2001, NEUROSCIENCE, V102, P625, DOI 10.1016/S0306-4522(00)00525-X
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   Cant NB, 1992, MAMMALIAN AUDITORY P, P66
   CANT NB, 1998, DEV AUDITORY SYSTEM, P315
   Chery N, 1999, J NEUROSCI, V19, P7342
   COVEY E, 1991, J NEUROSCI, V11, P3455
   COVEY E, 1986, J NEUROSCI, V6, P2926
   Cull-Candy S, 2001, CURR OPIN NEUROBIOL, V11, P327, DOI 10.1016/S0959-4388(00)00215-4
   FRIAUF E, 1988, EXP BRAIN RES, V73, P263
   Friauf E, 1997, J COMP NEUROL, V385, P117, DOI 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5
   GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4
   GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210
   GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409
   GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E
   GUINAN JJ, 1972, INT J NEUROSCI, V4, P147
   GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165
   HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302
   HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6
   Helfert RH, 1997, CENTRAL AUDITORY SYS, P193
   HUFFMAN RF, 1995, J COMP NEUROL, V357, P532, DOI 10.1002/cne.903570405
   Huffman RF, 1998, HEARING RES, V126, P161, DOI 10.1016/S0378-5955(98)00165-8
   Huffman RF, 1998, HEARING RES, V126, P181, DOI 10.1016/S0378-5955(98)00166-X
   ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964
   Jonas P, 1998, SCIENCE, V281, P419, DOI 10.1126/science.281.5375.419
   Joshi I, 2002, J PHYSIOL-LONDON, V540, P861
   Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G
   Kotak VC, 1998, J NEUROSCI, V18, P4646
   KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5
   Ma CL, 2002, HEARING RES, V168, P25, DOI 10.1016/S0378-5955(02)00370-2
   MCBAIN CJ, 1994, PHYSIOL REV, V74, P723
   MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303
   MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663
   Nabekura J, 2004, NAT NEUROSCI, V7, P17, DOI 10.1038/nn1170
   NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203
   NOWAK L, 1984, NATURE, V307, P462, DOI 10.1038/307462a0
   O'Brien JA, 1999, J NEUROPHYSIOL, V82, P1638
   Oertel D, 2002, INTEGRATIVE FUNCTION, P207
   PETRALIA RS, 1992, J COMP NEUROL, V318, P329, DOI 10.1002/cne.903180309
   Piechotta K, 2001, J COMP NEUROL, V438, P336
   Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111
   SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B
   SaintMarie RL, 1997, J COMP NEUROL, V389, P264
   SANES DH, 1998, DEV AUDITORY SYSTEM, P217
   Sanes D.H., 2000, DEV NERVOUS SYSTEM
   Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1
   Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1
   Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117
   Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861
   SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208
   SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349
   SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305
   SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302
   SUNEJA SK, 1995, J NEUROCHEM, V64, P161
   SUNEJA SK, 1995, J NEUROCHEM, V64, P147
   THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309
   TSUMOTO T, 1987, NATURE, V327, P513, DOI 10.1038/327513a0
   VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305
   VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205
   Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869
   Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0
   WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210
   WU SH, 1991, J NEUROPHYSIOL, V65, P230
   Wu SH, 1999, J NEUROPHYSIOL, V81, P2862
   Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X
   Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5
   Zhao M, 2001, J COMP NEUROL, V433, P255, DOI 10.1002/cne.1139
   ZOOK JM, 1985, J COMP NEUROL, V237, P307, DOI 10.1002/cne.902370303
NR 76
TC 10
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 159
EP 171
DI 10.1016/j.heares.2004.11.021
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300018
PM 15855041
ER

PT J
AU Su, MC
   Lee, SY
   Tan, CT
   Su, CC
   Li, SY
   Lin, RH
   Hung, CC
   Lin, MJ
AF Su, MC
   Lee, SY
   Tan, CT
   Su, CC
   Li, SY
   Lin, RH
   Hung, CC
   Lin, MJ
TI Taicatoxin inhibits the calcium-dependent slow motility of mammalian
   outer hair cells
SO HEARING RESEARCH
LA English
DT Article
DE taicatoxin; outer hair cell; motility; calcium channels
ID GUINEA-PIG COCHLEA; CA2+ CHANNELS; MECHANICAL RESPONSES; ACETYLCHOLINE;
   AMPLIFIER; SUBUNIT; RELEASE; PROTEIN
AB The effects of taicatoxin on the slow motility of isolated outer hair cells of guinea pig were studied in the experiments. Pretreatment with taicatoxin (0. 19 mu M) was able to prevent both the cell shortening induced by high K+ (50mM), and the cell elongation induced by ionomycin (10 mu M). These effects of taicatoxin can be mimicked by pretreatment of cells with Ca2+-free medium on the slow motility in response to ionomycin or high K+. Pretreatment with neither calcium channel blockers such as nifedipine (L-type blocker), omega-conotoxin GVIA (N-type blocker), and omega-agatoxin IVA (P-type blocker); nor potassium channel blockers, such as tetraethylammonium chloride (TEA) and 3,4-diaminopyridine (3,4-DAP) can antagonize the cell shortening effect induced by high K+ and cell elongation induced by ionomycin. The calcium-imaging experiment indicated that taicatoxin, but not nifedipine, did prevent an increase of intracellular Ca2+ level significantly induced by high K+. These results demonstrate that the effect of taicatoxin was to block the calcium entry through calcium channels of cell membrane, without relative to its properties of potassium channel blockers. We conclude that taicatoxin-sensitive-calcium channels at least impart, play a significant role in the slow motility of outer hair cell. (c) 2004 Elsevier B.V. All rights reserved.
C1 Chung Shan Med Univ, Dept Life Sci, Taichung 402, Taiwan.
   Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan.
RP Lin, MJ (reprint author), Chung Shan Med Univ, Dept Life Sci, 110,Sec 1,Chien Kuo N Rd, Taichung 402, Taiwan.
EM mjl@csmu.edu.tw
CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   Coling DE, 1998, HEARING RES, V115, P175, DOI 10.1016/S0378-5955(97)00194-9
   Dallos P, 1997, J NEUROSCI, V17, P2212
   Doorty KB, 1997, J BIOL CHEM, V272, P19925, DOI 10.1074/jbc.272.32.19925
   DULON D, 1992, AM J OTOL, V13, P108
   DULON D, 1990, J NEUROSCI, V10, P1388
   Engel J, 2002, ADV OTO-RHINO-LARYNG, V59, P35
   FROLENKOV G, 2003, CELL CALCIUM, V345, P1
   Frolenkov GI, 2000, J NEUROSCI, V20, P5940
   Kalinec F, 2000, J BIOL CHEM, V275, P28000
   Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883
   Lin MJ, 2003, HEARING RES, V178, P52, DOI 10.1016/S0378-5955(03)00030-3
   Lopez I, 1999, NEUROSCIENCE, V92, P773, DOI 10.1016/S0306-4522(99)00005-6
   Mammano F, 1999, J NEUROSCI, V19, P6918
   NAKAGAWA T, 1991, NEUROSCI LETT, V125, P81, DOI 10.1016/0304-3940(91)90136-H
   Oshima T, 1996, AM J PHYSIOL-CELL PH, V271, pC944
   Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1
   POSSANI LD, 1992, TOXICON, V30, P1343, DOI 10.1016/0041-0101(92)90511-3
   PUSCHNER B, 1997, HEARING RES, V110, P241
   SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X
   SCHNEE ME, 2003, J PHYSL, V15, P697
   Tan CT, 2001, HEARING RES, V161, P72, DOI 10.1016/S0378-5955(01)00359-8
   VanDenAbbeele T, 1996, J PHYSIOL-LONDON, V494, P77
   WILLIAMS ME, 1992, NEURON, V8, P71, DOI 10.1016/0896-6273(92)90109-Q
   Yamoah EN, 1998, J NEUROSCI, V18, P610
   ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8
   ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1
   Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 31
TC 0
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 172
EP 179
DI 10.1016/j.heares.2004.12.003
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300019
PM 15855042
ER

PT J
AU Rask-Andersen, H
   Bostrom, M
   Gerdin, B
   Kinnefors, A
   Nyberg, G
   Engstrand, T
   Miller, JM
   Lindholm, D
AF Rask-Andersen, H
   Bostrom, M
   Gerdin, B
   Kinnefors, A
   Nyberg, G
   Engstrand, T
   Miller, JM
   Lindholm, D
TI Regeneration of human auditory nerve. In vitro/in video demonstration of
   neural progenitor cells in adult human and guinea pig spiral ganglion
SO HEARING RESEARCH
LA English
DT Article
DE spiral ganglion; in vitro culture; regeneration; stem cells; human
ID EAR SENSORY NEURONS; STEM-CELLS; INNER-EAR; HAIR-CELLS; NEUROTROPHIC
   FACTOR; GROWTH-FACTOR; COCHLEAR IMPLANTATION; DOPAMINERGIC-NEURONS;
   INNERVATION; SYSTEM
AB Time lapse video recordings of cultured adult human and guinea pig spiral ganglion (hSG and gpSG) show that mitogen responsive progenitor/stem cells develop in the form of spheres that proliferate and differentiate into mature neurons and glia cells. Neurospheres, cultured with EGF and bFGF showed expression of nestin and incorporation of 5 '-Bromo-2-deoxyuridine (BrdU). Newly formed BrdU labelled cells were positive for beta-tubulin, and also for GFAP demonstrating that neuronal cells were derived from a dividing population of progenitor cells. Dissociated spheres cultured either with glia cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), induced differentiation of the progenitor cells. Video microscopy showed that neurons develop from subcultured spheres maintained for up to four weeks. Neurons showed fasciculation and migration with a speed of 10-30 mu m/h, and some cells had up to 6 mm long neurites coexpressing TrkB and TrkC receptors. Precise dissection suggests that the neurons formed are cochlea-specific. The results suggest that the mammalian auditory nerve has the capability for self-renewal and replacement. Transplantation of progenitor cells together with established means to induce neural differentiation and fiber growth may facilitate strategies for better repair and treatment of auditory neuronal damage. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Uppsala Hosp, Dept Otosurg, S-75185 Uppsala, Sweden.
   Univ Uppsala Hosp, Dept Plast Surg, Uppsala, Sweden.
   Univ Uppsala Hosp, Dept Neurosurg, Uppsala, Sweden.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   BMC Uppsala Univ, Neurobiol Unit, Dept Neurosci, Uppsala, Sweden.
RP Rask-Andersen, H (reprint author), Univ Uppsala Hosp, Dept Otosurg, S-75185 Uppsala, Sweden.
EM helge.rask-andersen@akademiska.se
RI Lindholm, Dan/B-3777-2014
CR ALTMAN J, 1965, J COMP NEUROL, V124, P319, DOI 10.1002/cne.901240303
   Anderson DJ, 2001, NEURON, V30, P19, DOI 10.1016/S0896-6273(01)00260-4
   BECK KD, 1995, NATURE, V373, P339, DOI 10.1038/373339a0
   Bergstrom L, 1975, Can J Otolaryngol Suppl, V2, P1
   Bjorklund A, 1997, NEUROBIOL DIS, V4, P186, DOI 10.1006/nbdi.1997.0151
   Brewer GJ, 1999, EXP NEUROL, V159, P237, DOI 10.1006/exnr.1999.7123
   COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3
   Cotanche Douglas A., 1994, Current Opinion in Neurobiology, V4, P509, DOI 10.1016/0959-4388(94)90051-5
   DAMICOMARTEL A, 1985, AM J ANAT, V166, P173
   DAVIS AC, 1991, ACTA OTOLARYNGOL S, V476, P12
   Engstrom CM, 2002, J NEUROSCI METH, V117, P111, DOI 10.1016/S0165-0270(02)00074-2
   Eriksson C, 2003, EXP NEUROL, V184, P615, DOI 10.1016/S0014-4886(03)00271-1
   ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x
   Farinas I, 2001, J NEUROSCI, V21, P6170
   Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2
   GILL SS, 2003, NAT MED, V9, P89
   Gritti A, 1996, J NEUROSCI, V16, P1091
   Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4
   Huang EJ, 2001, DEVELOPMENT, V128, P2421
   IGUCHI F, 2003, NEUROREPORT, V20, P77
   Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906
   Jeltsch Helene, 2003, Behavioural Brain Research, V143, P177
   Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F
   KAWAMOTO K, 2003, J NEUROSCI, V23, P4000
   KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563
   Kim WY, 2001, DEVELOPMENT, V128, P417
   Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925
   LIN LFH, 1993, SCIENCE, V260, P1130, DOI 10.1126/science.8493557
   Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017
   Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6
   MCKAY R, 1988, PROG BRAIN RES, V78, P647, DOI 10.1016/S0079-6123(08)60344-1
   MORSHEAD CM, 1994, NEURON, V13, P1071, DOI 10.1016/0896-6273(94)90046-9
   OTTE J, 1978, LARYNGOSCOPE, V88, P1231
   PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915
   REYNOLDS BA, 1992, SCIENCE, V255, P1707, DOI 10.1126/science.1553558
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   Schuknecht HF, 1993, PATHOLOGY EAR
   Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6
   SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310
   Stover T, 2001, HEARING RES, V155, P143, DOI 10.1016/S0378-5955(01)00227-1
   Sugaya K, 2003, INT REV CYTOL, V228, P1, DOI 10.1016/S0074-7696(03)28001-3
   TESSAROLLO L, 2004, J NEUROSCI, V24, P2284
   Tylstedt S, 2001, J NEUROCYTOL, V30, P465, DOI 10.1023/A:1015628831641
   VESCOVI AL, 1993, NEURON, V11, P951, DOI 10.1016/0896-6273(93)90124-A
   WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
   Weiss S, 1996, J NEUROSCI, V16, P7599
   Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2
   Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
NR 48
TC 70
Z9 74
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 180
EP 191
DI 10.1016/j.heares.2004.12.005
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300020
PM 15855043
ER

PT J
AU Ohashi, T
   Ochi, K
   Nishino, H
   Kenmochi, M
   Yoshida, K
AF Ohashi, T
   Ochi, K
   Nishino, H
   Kenmochi, M
   Yoshida, K
TI Recovery of human compound action potential using a paired-click
   stimulation paradigm
SO HEARING RESEARCH
LA English
DT Article
DE human compound action potential (CAP); synaptic function; CAP recovery;
   adaptation; paired click stimulation
ID AUDITORY-NERVE FIBERS; UNANESTHETIZED DECEREBRATE CAT; SHORT-TERM
   ADAPTATION; NEURAL TRANSDUCTION; SIMULATED ECHOES; RESPONSES; MASKING;
   COCHLEAR; NEURONS; RECEPTOR
AB The recovery process from adaptation of the compound action potential (CAP) was studied using an equilevel paired click stimulation paradigm in humans with normal hearing. The CAP amplitude to the second click of paired clicks was normalized to the amplitude to the first click. The second-click CAP amplitude recovered as a function of interclick interval (ICI) between the first and the second click of a pair. A regression line fitted to the recovered amplitude data demonstrated the logarithmic function of the ICI. Full recovery times changed from 118 to 278 ms with increasing click intensity. The regression lines for higher click intensities exhibited two different slopes in two ICI ranges: from 3 to 100 and 120 to 300 ms. We suppose that the CAP recovery for ICI <100 ms is attributable to both the relative refractoriness of auditory nerve and the short-term adaptation mechanisms, while, for ICI >100 ms chiefly to the short-term adaptation mechanisms.
   The recovery process of the second-click CAP slowed with increasing intensity, which is a similar result to that obtained in the animal experiments by Parham et al. The input-output (I-O) curve of the second-click CAP amplitudes exhibited a different slopes above and below 60 dB normal hearing level (nHL). We assume that the mechanisms underlying this characteristic curve pattern differ from those for the I-O curve of the CAP in response to single-click stimuli.
   We expect that investigating the CAP recovery in pathological ears will provide clinically useful information on cochlear synaptic function. 2005 Elsevier B.V. All rights reserved.
C1 St Marianna Univ, Red Cross Hosp Hadano City, Dept Otorhinolaryngol, Hadano, Kanagawa, Japan.
   St Marianna Univ, Sch Med, Dept Prevent Med, Miyamae Ku, Kawasaki, Kanagawa, Japan.
RP Ohashi, T (reprint author), 949-10 Sasagi, Tsukuba, Ibaraki, Japan.
EM toliashi@vc-net.jp
CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477
   CHIMENTO TC, 1990, J ACOUST SOC AM, V88, P857, DOI 10.1121/1.399735
   CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296
   COATS AC, 1964, J NEUROPHYSIOL, V27, P988
   COATS AC, 1972, J ACOUST SOC AM, V52, P1607, DOI 10.1121/1.1913293
   Duan ML, 2001, ACTA OTO-LARYNGOL, V121, P21
   EGGERMON.JJ, 1973, AUDIOLOGY, V12, P221
   EGGERMON.JJ, 1974, AUDIOLOGY, V13, P1
   FINCK A, 1962, J AUD RES, V2, P1
   GAUMOND RP, 1982, J NEUROPHYSIOL, V48, P856
   GIBSON WPR, 1978, ESSENTIALS CLIN ELEC, P59
   GRANADE GL, 1995, HEARING RES, V87, P55
   HESS CW, 1987, J NEUROL, V234, P298, DOI 10.1007/BF00314284
   Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95
   KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186
   LUTKENHONER B, 1980, HEARING RES, V2, P565, DOI 10.1016/0378-5955(80)90094-5
   MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050
   MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460
   MURNANE OD, 1998, HEARING RES, P124
   OHASHI T, 1996, ECOG OAE INTRAOPERAT, P79
   Parham K, 1996, J NEUROPHYSIOL, V76, P17
   Parham K, 1998, HEARING RES, V125, P131, DOI 10.1016/S0378-5955(98)00140-3
   PFEIFFER RR, 1972, J ACOUST SOC AM, V52, P1669, DOI 10.1121/1.1913301
   REKLIN EM, 1991, HEARING RES, V55, P215
   RELKIN EM, 1995, HEARING RES, V83, P183, DOI 10.1016/0378-5955(95)00004-N
   RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159
   SIEGEL JH, 1987, HEARING RES, V29, P169, DOI 10.1016/0378-5955(87)90165-1
   SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970
   SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098
   SORENSEN H, 1959, Acta Otolaryngol, V50, P438, DOI 10.3109/00016485909129217
   Spoor A., 1976, ELECTROCOCHLEOGRAPHY, P183
   THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0
   Walton J, 1999, HEARING RES, V127, P86, DOI 10.1016/S0378-5955(98)00175-0
   Westerman LA, 1984, HEARING RES, V15, P260
   YOSHIE N, 1971, REV LARYNGOL S, P673
   YOSHIE N, 1968, LARYNGOSCOPE, V78, P198, DOI 10.1288/00005537-196802000-00002
NR 36
TC 13
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 192
EP 200
DI 10.1016/j.heares.2004.12.001
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300021
PM 15855044
ER

PT J
AU Zhou, XM
   Jen, PHS
AF Zhou, XM
   Jen, PHS
TI Corticofugal modulation of directional sensitivity in the midbrain of
   the big brown bat, Eptesicus fuscus
SO HEARING RESEARCH
LA English
DT Article
DE auditory cortex; bat; corticofugal modulation; directional sensitivity;
   frequency; inferior colliculus inhibition
ID INFERIOR COLLICULAR NEURONS; PRIMARY AUDITORY-CORTEX; SOUND PRESSURE
   TRANSFORMATION; PATTERNED PULSE TRAINS; SPACE REPRESENTATION; HOUSE
   MOUSE; GUINEA-PIG; FM BAT; FREQUENCY REPRESENTATION; DESCENDING
   PROJECTIONS
AB In our recent Study of corticofugal modulation of collicular amplitude sensitivity of the big brown bat, Eptesicus fuscus, we suggested that the corticofugal modulation is based upon the best frequency (BF) differences and the relative amplitude sensitivity difference between collicular (IC) and cortical (AC) neurons but not the absolute amplitude sensitivity of IC and AC neurons. To show that corticofugal modulation is systematic and multiparametric, we studied corticofugal modulation of directional sensitivity in 89 corticofugally inhibited IC neurons in the same bat species under free field stimulation conditions. A neuron's directional sensitivity was expressed with the azimuthal range (AR) at 50%, below the maximum of each directional sensitivity Curve and the best azimuth (BAZ) at which the neuron discharged maximally. Cortical electrical stimulation did not affect the directional sensitivity of 40 (45%) neurons with BFIC-Ac differences of 7.3 +/- 4.4 kHz but sharpened the directional sensitivity of other 49 (55%) neurons with BFIC-Ac differences of 2.3 +/- 1.8 kHz. Corticofugal modulation sharpened directional sensitivity curves of IC neurons by decreasing the AR and shifting collicular BAZ toward cortical BAZ. The decrease in AR and the shift in BAZ increased significantly with AR(IC-Ac) and BAZ(IC-Ac) differences but not with absolute AR and BAZ of IC and AC neurons or BFIC-Ac differences. Corticofual modulation also shifted collicular BF toward cortical BF. The shift in BF increased significantly with BFIC-Ac differences but not with the BF of IC and AC neurons or BAZ shift. Consonant with out- previous study, these data indicate that corticofugal modulation of collicular directional sensitivity is based on topographic projections between the IC and the AC and the difference in directional sensitivity but not the absolute directional sensitivity of IC or AC neurons. (c) 2005 Elsevier B.V. All rights reserved.
C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA.
   Univ Missouri, Interdisciplinary Neurosci Program, Columbia, MO 65211 USA.
RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, 208 Lefevre Hall, Columbia, MO 65211 USA.
EM jetip@missouri.edu
CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310
   Cain D, 1999, CHINESE J PHYSIOL, V42, P1
   CHEN QC, 1995, J EXP BIOL, V198, P2007
   DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988
   Druga R, 1997, PHYSIOL RES, V46, P215
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757
   GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0
   Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663
   Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081
   Gooler D.M., 1988, PHYSL CONTROL MAMMAL, P153
   GOOLER DM, 1993, J NEUROPHYSIOL, V69, P1018
   Gooler DM, 1996, J NEUROPHYSIOL, V76, P2580
   GRINNELL AD, 1963, J PHYSIOL-LONDON, V167, P97
   GRINNELL AD, 1965, J PHYSIOL-LONDON, V181, P830
   Grothe B, 1996, J COMP PHYSIOL A, V179, P89
   He JF, 1997, J NEUROPHYSIOL, V77, P896
   He JF, 2003, J NEUROPHYSIOL, V89, P367, DOI 10.1152/jn.00593.2002
   He JF, 2002, J NEUROPHYSIOL, V88, P1040, DOI 10.1152/jn00014.2002
   HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X
   HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
   JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794
   Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291
   Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9
   Jen P H, 1997, Acta Otolaryngol Suppl, V532, P61
   Jen PHS, 2003, HEARING RES, V184, P91, DOI 10.1016/S0378-5955(03)00237-5
   JEN PHS, 1982, J COMP PHYSIOL, V147, P351
   JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4
   Jen P H, 1993, Chin J Physiol, V36, P7
   JEN PHS, 2003, ADV STUDY ECHOLOCATI, P196
   Jen PHS, 2002, HEARING RES, V168, P196, DOI 10.1016/S0378-5955(02)00358-1
   Jen PHS, 2001, EXP BRAIN RES, V137, P292
   JEN PHS, 1984, BRAIN RES, V301, P157
   JEN PHS, 1999, BRAIN RES, V842, P184
   JURGENS U, 1983, EXP NEUROL, V80, P395, DOI 10.1016/0014-4886(83)90291-1
   KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5
   Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885
   Lu Y, 2003, HEARING RES, V177, P100, DOI 10.1016/S0378-5955(03)00024-8
   Ma XF, 2001, P NATL ACAD SCI USA, V98, P14060, DOI 10.1073/pnas.241517098
   Ma XF, 2001, J NEUROPHYSIOL, V85, P1078
   MAKOUS JC, 1986, HEARING RES, V24, P73, DOI 10.1016/0378-5955(86)90006-7
   Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8
   MASTERS WM, 1985, SCIENCE, V228, P1331, DOI 10.1126/science.4001947
   MULLERPREUSS P, 1980, BRAIN RES, V202, P307, DOI 10.1016/0006-8993(80)90143-2
   PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69
   POON PWF, 1990, EXP BRAIN RES, V79, P83
   Popelar J, 2003, PHYSIOL RES, V52, P615
   Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
   SCHLEGEL P, 1977, J COMP PHYSIOL, V118, P327
   SCHLEGEL PA, 1988, BRAIN RES, V456, P127, DOI 10.1016/0006-8993(88)90354-X
   SCHREINER CE, 1992, EXP BRAIN RES, V92, P105
   Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142
   SHIMOZAWA T, 1984, BRAIN RES, V311, P289
   STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106
   STIEBLER I, 1986, NEUROSCI LETT, V65, P336, DOI 10.1016/0304-3940(86)90285-5
   Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
   Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9
   Suga N., 1997, ENCY ACOUSTICS, P1409
   Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55
   Suga N, 1997, Trends Cogn Sci, V1, P13, DOI 10.1016/S1364-6613(97)01002-4
   SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2
   Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9
   SUN XD, 1987, HEARING RES, V27, P207
   SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3
   Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X
   VILLA AEP, 1991, EXP BRAIN RES, V86, P506
   WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384
   Winer JA, 1998, J COMP NEUROL, V400, P147
   Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6
   Winer JA, 2001, J COMP NEUROL, V430, P27
   Wu M, 1991, Chin J Physiol, V34, P145
   Wu MI, 1996, J COMP PHYSIOL A, V179, P385
   XU JH, 1994, J ACOUST SOC AM, V95, P2160, DOI 10.1121/1.408677
   Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100
   Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033
   Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x
   Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255
   Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308
   Zhang JP, 2000, J COMP PHYSIOL A, V186, P913, DOI 10.1007/s003590000142
   Zhang YF, 1997, NATURE, V387, P900
   Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489
   Zhang YF, 2000, J NEUROPHYSIOL, V84, P325
   Zhou XM, 2004, BRAIN RES, V1019, P281, DOI 10.1016/j.brainres.2004.06.004
   Zhou XM, 2002, J COMP PHYSIOL A, V188, P815, DOI 10.1007/s00359-002-0367-x
   Zhou XM, 2000, J COMP PHYSIOL A, V186, P389, DOI 10.1007/s003590050438
   Zhou XM, 2000, BRAIN RES, V881, P62, DOI 10.1016/S0006-8993(00)02805-5
   Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083
   ZOOK JM, 1985, J COMP NEUROL, V231, P530, DOI 10.1002/cne.902310410
NR 90
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAY
PY 2005
VL 203
IS 1-2
BP 201
EP 215
DI 10.1016/j.heares.2004.12.008
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 927BB
UT WOS:000229166300022
PM 15855045
ER

PT J
AU Kubli, LR
   Leek, MR
   Dreisbach, LE
AF Kubli, LR
   Leek, MR
   Dreisbach, LE
TI Acoustic reflexes to Schroeder-phase harmonic complexes in
   normal-hearing and hearing-impaired individuals
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 23rd Midwinter Research Meeting of the
   Association-for-Research-in-Otolaryngology
CY FEB 20-24, 2000
CL ST PETERSBURG BEACH, FL
SP Assoc Res Otolaryngol
DE acoustic reflex; cochlear excitation; harmonic complexes; Schroeder
   phase
ID STAPEDIUS REFLEX; INNER-EAR; DISPERSION; STIMULI; MASKING; LISTENERS;
   RESPONSES; SIGNALS; GROWTH; MODEL
AB Harmonic complexes generated with positive or negative Schroeder-phases may result in differences in cochlear excitation, even though their long-term spectra and amplitudes are equal. As a measure of possible differences in cochlear excitation resulting from these harmonic complexes, thresholds and growth of the acoustic reflex were assessed in normal-hearing and hearing-impaired subjects. Harmonic complexes with fundamental frequencies of 50, 100, and 200 Hz were constructed with positive and negative-Schroeder phases. In normal-hearing subjects, acoustic reflex thresholds for the 50- and 100-Hz fundamental waveforms were typically lower for negative Schroeder-phase complexes than for positive Schroeder phase stimuli. At the highest fundamental frequency of 200 Hz. there were no significant threshold differences due to phase. Hearing-impaired subjects showed a similar pattern for thresholds between the two phase selections, but with smaller differences than those observed in normal-hearing subjects. At levels above reflex threshold, the magnitude of the acoustic reflex was greater for the negative-phase than the positive-phase stimuli for the lowest fundamental frequency, but no significant differences were observed at fundamental frequencies of 100 and 200 Hz. These results are consistent with generally greater cochlear excitation in response to negative than to positive Schroeder-phase stimuli when the fundamental frequency is sufficiently low. Increased excitation may reflect a synchronization of response across a wide band of frequencies in the cochlea when the rate of frequency sweep within periods of these harmonic complexes is appropriately matched to timing characteristics of the traveling wave. (c) 2004 Elsevier B.V. All rights reserved.
C1 Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, Washington, DC 20307 USA.
RP Kubli, LR (reprint author), Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, 6900 Georgia Ave NW, Washington, DC 20307 USA.
EM lina.kubli@na.amedd.army.mil
CR American National Standards Institute (ANSI), 1996, S361996 ANSI
   American National Standards Institute (ANSI), 1987, S3391987 ANSI
   BORG E, 1990, BRAIN RES, V506, P79, DOI 10.1016/0006-8993(90)91201-Q
   BORG E, 1973, BRAIN RES, V49, P101, DOI 10.1016/0006-8993(73)90404-6
   BORG E, 1977, AUDIOLOGY, V16, P316
   CACACE AT, 1985, J ACOUST SOC AM, V78, P1568, DOI 10.1121/1.392793
   DALLOS PJ, 1964, J ACOUST SOC AM, V36, P2175, DOI 10.1121/1.1919340
   Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438
   DEBOER E, 1997, J ACOUST SOC AM, V101, P3503
   FLOTTORP G, 1971, J ACOUST SOC AM, V49, P457, DOI 10.1121/1.1912373
   Kawase T, 1997, HEARING RES, V108, P37, DOI 10.1016/S0378-5955(97)00039-7
   KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097
   LEEK MR, 1993, J ACOUST SOC AM, V94, P2074, DOI 10.1121/1.407480
   MOLLER AR, 2000, HEARING PHYSL PATHOP
   Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN
   PATTERSON RD, 1987, J ACOUST SOC AM, V82, P1560, DOI 10.1121/1.395146
   Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898
   Recio A, 2001, J ACOUST SOC AM, V110, P2024, DOI 10.1121/1.1397356
   SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411
   SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898
   SILMAN S, 1982, AUDIOLOGY, V7, P125
   SILMAN S, 1987, Seminars in Hearing, V8, P379, DOI 10.1055/s-0028-1091385
   SILMAN S, 1978, J ACOUST SOC AM, V64, P1406, DOI 10.1121/1.382107
   SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327
   Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6
   WILSON RH, 1978, J ACOUST SOC AM, V63, P147, DOI 10.1121/1.381706
NR 26
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 1
EP 12
DI 10.1016/j.heares.2004.08.012
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300001
PM 15811693
ER

PT J
AU Zou, J
   Pyykko, M
   Sutinen, P
   Toppila, E
AF Zou, J
   Pyykko, M
   Sutinen, P
   Toppila, E
TI Vibration induced hearing loss in guinea pig cochlea: expression of
   TNF-alpha and VEGF
SO HEARING RESEARCH
LA English
DT Article
DE hearing loss; cytokine; shear stress; spiral ganglion cell; epithelial
   cell; organ of corti
ID FLUID SHEAR-STRESS; ENDOTHELIAL GROWTH-FACTOR; GENERATED NOISE-LEVELS;
   EAR SURGERY; RESPONSE ELEMENT; CHAIN PROMOTER; DRILL; CELLS; APOPTOSIS;
   BONE
AB Transcranial vibration was applied for seven animals at a frequency of 250 Hz for 15 min, and five animals Were used as normal controls to investigate cellular and Molecular mechanism linked to vibration-induced hearing loss in animal model. Compound action potential (CAP) thresholds were measured by round window niche electrode. The expression of tumour necrosis factor alpha (TNF-alpha) and its receptors (TNF R1, TNF R2), vascular endothelium growth factor (VEGF) and its receptors (VEGF R1. VEGF R2) were analysed by immunohistochemistry. Transcranial vibration caused expression of TNF-alpha, TNF R1 and TNF R2 in the cochlea and the expression of TNF R2 was stronger than that of TNF R1. Vibration also induced VEGF and VEGF R2 expression in the cochlea. The average immediate hearing loss was 62 dB and after three days still 48 dB. It is concluded that transcranial vibration as during temporal bone drilling produces cochlear shear stress that is connected With Up-regulation of TNF-alpha. and its receptors. Also VEGF and VEGF R2 are Up-regulated. These responses may be linked to both the damage and repair process of the cochlea. (c) 2004 Elsevier B.V. All rights reserved.
C1 Tampere Univ Hosp, Dept Otolaryngol, FIN-33521 Tampere, Finland.
   Karolinska Hosp, Dept Otolaryngol, Ctr Hearing & Commun Res, S-10401 Stockholm, Sweden.
   No Karelian Cent Hosp, Dept Phys Med & Rehabil, Joensuu, Finland.
   Inst Occupat Hlth, Dept Phys, Helsinki, Finland.
   Shanghai Med Univ 2, Xinhua Hosp, Dept Otolaryngol Head & Neck Surg, Shanghai 200092, Peoples R China.
RP Pyykko, M (reprint author), Tampere Univ Hosp, Dept Otolaryngol, FIN-33521 Tampere, Finland.
EM jing.zou@uta.fi; ilmari.pyykko@pshp.fi
CR ABUMIYA T, 2001, ARTERIOSCL THROM VAS, V22, P907
   Ashkenazi A, 1998, SCIENCE, V281, P1305, DOI 10.1126/science.281.5381.1305
   Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1
   Biswas DK, 2003, CANCER RES, V63, P290
   Chintalgattu V, 2003, J MOL CELL CARDIOL, V35, P277, DOI 10.1016/S0022-2828(03)00006-3
   Conklin BS, 2002, J SURG RES, V102, P13, DOI 10.1006/jsre.2001.6295
   DOMENECH J, 1989, ARCH OTO-RHINO-LARYN, V246, P280, DOI 10.1007/BF00463575
   Fridberger A, 2002, J NEUROSCI, V22, P9850
   Gan LM, 2000, BIOCHEM BIOPH RES CO, V272, P490, DOI 10.1006/bbrc.2000.2663
   Gjuric M, 1997, ACTA OTO-LARYNGOL, V117, P497, DOI 10.3109/00016489709113427
   Goeddel D. V., 1999, CHEST, V116, P69
   HOLMQUIST J, 1979, ACTA OTO-LARYNGOL, V87, P458, DOI 10.3109/00016487909126451
   Khachigian LM, 1997, ARTERIOSCL THROM VAS, V17, P2280
   KHACHIGIAN LM, 1995, J CLIN INVEST, V96, P1169, DOI 10.1172/JCI118106
   KYLEN P, 1976, ACTA OTO-LARYNGOL, V82, P402, DOI 10.3109/00016487609120925
   Milkiewicz M, 2001, MICROCIRCULATION, V8, P229, DOI 10.1038/sj.mn.7800074
   Nomura S, 2000, MATRIX BIOL, V19, P91, DOI 10.1016/S0945-053X(00)00050-0
   Pavalko FM, 2003, J CELL PHYSIOL, V194, P194, DOI 10.1002/jcp.10221
   RESNICK N, 1993, P NATL ACAD SCI USA, V90, P4591, DOI 10.1073/pnas.90.10.4591
   Seki M, 2001, ANN OTO RHINOL LARYN, V110, P122
   SHYY JYJ, 1995, P NATL ACAD SCI USA, V92, P8069, DOI 10.1073/pnas.92.17.8069
   Stamatas GN, 2001, BIOTECHNOL PROGR, V17, P383, DOI 10.1021/bp0100272
   TONNDORF J, 1968, ARCH OTOLARYNGOL, V87, P595
   TOS M, 1984, ANN OTO RHINOL LARYN, V93, P403
   TURNER CH, 1994, FASEB J, V8, P875
   VONBEKESY A, 1932, ANN PHYSIK, V12, P111
   Watanabe T, 2002, DEV BIOL, V250, P332, DOI 10.1006/dbio.2002.0781
   Zou J, 2001, ACTA OTO-LARYNGOL, V121, P143
NR 28
TC 32
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 13
EP 20
DI 10.1016/j.heares.2004.10.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300002
PM 15811694
ER

PT J
AU Labbe, D
   Teranishi, M
   Hess, A
   Bloch, W
   Michel, O
AF Labbe, D
   Teranishi, M
   Hess, A
   Bloch, W
   Michel, O
TI Activation of caspase-3 Is associated with oxidative stress in the
   hydropic guinea pig cochlea
SO HEARING RESEARCH
LA English
DT Article
DE hydrops; nitric oxide; oxidative stress; hearing loss
ID NITRIC-OXIDE-SYNTHASE; INOS/NOS-II; APOPTOSIS; EXPRESSION; DEATH;
   ISOPROSTANES; MARKERS; GENE
AB The aim of this study was to investigate the involvement of oxidative stress and apoptosis in an animal model of Meniere's disease. Endolymphatic hydrops (ELH) is generally accepted as the decisive histological characteristic of Meniere's disease.
   Closure of the endolymphatic duct (Kimura's method) was used to induce endolymphatic hydrops in guinea pigs. Sham-operated animals served as controls. After 4 weeks the animals operated showed a significant elevation of the hearing thresholds as measured by audiometric brainstem responses (ABR) pre- and postoperatively. Immediately after the second ABR measurement, the animals were sacrificed for further immunohistological examinations of the inner ear with specific antibodies to active caspase-3 (cas-3) as a marker for apoptosis and antibodies to 8-isoprostane (8-iso) and nitrotyrosine (NT) as indicators of oxidative stress.
   Compared with the sham-operated controls, hydropic cochleae showed strong immumostaining for both oxidative stress markers in spiral ganglion cells, in the blood-vessels and fibrocytes of the lateral wall, as well as in supporting cells of the organ of Corti. Activation of cas-3 in spiral ganglion cells and the lateral wall was found exclusively in hydropic cochleae.
   Our findings suggest that oxidative stress is involved in the development of endolymphatic hydrops and may lead to cellular damage which induces apoptosis by activation of cas-3. Apoptotic cell death might contribute to the sensorineural hearing loss found in later stages of Meniere's disease. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Cologne, Dept Otorhinolaryngol, D-50924 Cologne, Germany.
   German Sport Univ, Dept Mol & Cellular Sport Med, Cologne, Germany.
RP Labbe, D (reprint author), Univ Cologne, Dept Otorhinolaryngol, Joseph Stelzmann Str 9, D-50924 Cologne, Germany.
EM daniel.labbe@uni-koeln.de; michel@um-koeln.de
RI Teranishi, Masaaki/I-1956-2012; Michel, Olaf/B-3673-2012
OI Michel, Olaf/0000-0003-4289-5693
CR BAO F, 2003, NEUROSCIENCE, V1, P59
   BLASITS S, 2000, PFLUGERS ARCH, V5, P710
   Brown ASC, 1999, GREEN CHEM, V1, P17, DOI 10.1039/a807963c
   Creagh EM, 2001, BIOCHEM SOC T, V29, P696, DOI 10.1042/0300-5127:0290696
   DAVID EA, 2002, J OTOLARYNGOL, V5, P304
   Hess A, 1999, NEUROSCI LETT, V264, P145, DOI 10.1016/S0304-3940(99)00195-0
   Hunot S, 2001, SCIENCE, V292, P865, DOI 10.1126/science.1060885
   ICHIYAMA I, 1994, ANN OTO RHINOL LARYN, V6, P457
   IKEDA K, 1991, HEARING RES, V51, P185, DOI 10.1016/0378-5955(91)90035-8
   Kim YM, 1999, CIRC RES, V84, P253
   KIMURA RS, 1980, ACTA OTO-LARYNGOL, V89, P295, DOI 10.3109/00016488009127141
   Kroncke KD, 2001, INT IMMUNOPHARMACOL, V1, P1407, DOI 10.1016/S1567-5769(01)00087-X
   LEE JE, 2003, LARYNGOSCOPE, V6, P994
   Lefebvre PP, 2000, BRAIN RES REV, V32, P159
   LEFEBVRE PP, 2002, AUDIOL NEURO-OTOL, V3, P165
   Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034
   MADRIGAL JL, 2001, NEUROPSYCHOPHARMACOL, V4, P420
   Mezzetti A, 2000, CARDIOVASC RES, V47, P475, DOI 10.1016/S0008-6363(00)00118-8
   MICHEL O, 1999, HEARING RES, V1, P1
   Michel O, 2000, HEARING RES, V143, P23, DOI 10.1016/S0378-5955(00)00018-6
   MISHRA OP, 2002, NEUROSCI LETT, V3, P115
   Nadol J B Jr, 1995, Acta Otolaryngol Suppl, V519, P47
   Nagata S, 1997, CELL, V88, P355, DOI 10.1016/S0092-8674(00)81874-7
   Nishizaki K, 1999, HEARING RES, V130, P131, DOI 10.1016/S0378-5955(99)00002-7
   OHINATA Y, 2003, BRAIN RES, V2, P265
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Orita Y, 1999, Acta Otolaryngol Suppl, V540, P22
   Patrono C, 1997, ARTERIOSCL THROM VAS, V17, P2309
   RACKE MM, 2002, J NEUROCHEM, V6, P1039
   RAMUZ O, 2003, INT J EXP PATHOL, V2, P75
   TODT I, 2001, J MEMBRANE BIOL, V2, P107
   Viera L, 1999, METHOD ENZYMOL, V301, P373
   WANG J, 2002, NEUROSCIENCE, V3, P635
   WANGEMANN P, 2002, HEARING RES, V1, P1
   Watanabe K, 2001, J VESTIBUL RES-EQUIL, V11, P67
   WATANABE K, 2001, ORL J OTORHINOLARYNG, V3, P155
   Watanabe K, 2000, ANTI-CANCER DRUG, V11, P731, DOI 10.1097/00001813-200010000-00010
   WATANABE K, 2002, EUR ARCH OTO-RHINO-L, V5, P257
NR 38
TC 20
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 21
EP 27
DI 10.1016/j.heares.2004.10.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300003
PM 15811695
ER

PT J
AU Hammond, GR
   Seth, Y
   Ison, JR
AF Hammond, GR
   Seth, Y
   Ison, JR
TI Concurrent measurement of the detectability of tone bursts and their
   effect on the excitability of the human blink reflex using a
   probe-signal method
SO HEARING RESEARCH
LA English
DT Article
DE auditory attention; attentional band; olivocochlear bundle; blink
   reflex; prepulse inhibition
ID ACOUSTIC STARTLE RESPONSE; OLIVOCOCHLEAR BUNDLE; DETECTING SIGNALS;
   RECEPTIVE-FIELDS; INHIBITION; NOISE; PLASTICITY; FREQUENCY; ATTENTION;
   RAT
AB The probe-signal method has shown that auditory signals that are either presented more often in a series of trials or that are immediately preceded by cues of the same frequency on a single trial are detected more readily than signals of other frequencies. The frequency range in which detection is favored defines an attentional band, which is thought to result from an effective attenuation of deviant frequencies in the cochlea, possibly by activation of the olivocochlear bundle. In a 2IFC procedure in which the first observation interval was preceded by a 1300-Hz cue, subjects detected cued probe tones (at 1300 Hz) but not uncued probe tones (at 1000 Hz or 1600 Hz) at better than chance levels. Concurrent elicitation of a blink reflex by presentation of an air puff in the first observation interval on a random half of the trials showed that cued probes, but not uncued probes, inhibited the size of the blink reflex. These data show that uncued probes do not enter into the low-level sensory processing in the brainstem which is responsible for reflex modification. This finding is consistent with the view that stimuli whose frequency falls outside an attentional band are excluded at the auditory periphery. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Western Australia, Sch Psychol, Crawley, WA 6907, Australia.
   Univ Rochester, Rochester, NY 14627 USA.
RP Hammond, GR (reprint author), Univ Western Australia, Sch Psychol, Crawley, WA 6907, Australia.
EM geoff@psy.uwa.edu.au
RI Hammond, Geoff/H-9343-2014
CR Arbogast TL, 2000, J ACOUST SOC AM, V108, P1803, DOI 10.1121/1.1289366
   DAI HP, 1995, J ACOUST SOC AM, V98, P798, DOI 10.1121/1.413572
   DAI HP, 1991, J ACOUST SOC AM, V89, P2837, DOI 10.1121/1.400721
   DAVIS M, 1977, J COMP PHYSIOL PSYCH, V91, P549, DOI 10.1037/h0077345
   Faure PA, 2003, J NEUROSCI, V23, P3052
   Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141
   Giraud AL, 1997, NEUROREPORT, V8, P1779
   GREENBER.GZ, 1968, J ACOUST SOC AM, V44, P1513, DOI 10.1121/1.1911290
   HAMMOND GR, 1974, PHYSIOL PSYCHOL, V2, P151
   HOFFMAN HS, 1992, ATTENTION AND INFORMATION PROCESSING IN INFANTS AND ADULTS, P83
   HOFFMAN HS, 1970, J ACOUST SOC AM, V47, P489, DOI 10.1121/1.1911919
   HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175
   Irvine DRF, 2001, AUDIOL NEURO-OTOL, V6, P192, DOI 10.1159/000046831
   ISON JR, 1971, J COMP PHYSIOL PSYCH, V75, P435, DOI 10.1037/h0030934
   ISON JR, 1983, PSYCHOL BULL, V94, P3, DOI 10.1037/0033-2909.94.1.3
   Ison JR, 2002, J ACOUST SOC AM, V112, P238, DOI 10.1121/1.1483321
   ISON JR, 1973, J COMP PHYSIOL PSYCH, V83, P324, DOI 10.1037/h0034423
   Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
   Koch M, 1997, BEHAV BRAIN RES, V89, P35, DOI 10.1016/S0166-4328(97)02296-1
   Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   MACMILLAN NA, 1975, J ACOUST SOC AM, V58, P1051, DOI 10.1121/1.380764
   PATTERSO.RD, 1974, J ACOUST SOC AM, V55, P802, DOI 10.1121/1.1914603
   REITER LA, 1977, J EXP PSYCHOL HUMAN, V3, P325, DOI 10.1037//0096-1523.3.2.325
   Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2
   SCHARF B, 1987, PERCEPT PSYCHOPHYS, V42, P215, DOI 10.3758/BF03203073
   SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5
   Scharf B., 1998, ATTENTION, P75
   SILVERSTEIN LD, 1980, ELECTROEN CLIN NEURO, V48, P406, DOI 10.1016/0013-4694(80)90133-9
   Walsh EJ, 1998, J NEUROSCI, V18, P3859
   Weinberger N M, 1993, Curr Opin Neurobiol, V3, P570, DOI 10.1016/0959-4388(93)90058-7
   Wright BA, 1998, J ACOUST SOC AM, V104, P2991, DOI 10.1121/1.423881
   WRIGHT BA, 1994, J ACOUST SOC AM, V95, P931, DOI 10.1121/1.410010
   Zeng FG, 2000, HEARING RES, V142, P102, DOI 10.1016/S0378-5955(00)00011-3
NR 34
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 28
EP 34
DI 10.1016/j.heares.2004.07.018
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300004
PM 15811696
ER

PT J
AU Hu, N
   Nuttall, AL
   Ren, TY
AF Hu, N
   Nuttall, AL
   Ren, TY
TI Spatial distribution of electrically induced high frequency vibration on
   basilar membrane
SO HEARING RESEARCH
LA English
DT Article
DE electromotility; vibration; high frequency; laser Doppler velocimeter;
   cochlea; basilar membrane; outer hair cells; guinea pig
ID OUTER HAIR CELL; GUINEA-PIG COCHLEA; OTOACOUSTIC EMISSIONS; MECHANICAL
   RESPONSES; PIEZOELECTRIC MODEL; MOTOR PROTEIN; MOTILITY; STIFFNESS;
   AMPLIFIER; CURRENTS
AB We reported that the electrically evoked basilar membrane (BM) vibration at frequencies above the best frequency (BF) showed a lowest BM velocity magnitude. called a "dip", in the velocity-frequency spectra, indicating a cancellation. In the present study, we measured the high frequency BM motion as functions of the longitudinal and radial locations. Measurements were taken at three longitudinal locations in the first turn and the hook region: 14.9, 15.8 and 16.8 mm from the apex, corresponding to the BFs of 17, 213 and 28.0 kHz calculated from Greenwood [J. Acoust. Soc. Am. 87, 2592], and at different radial locations across the width of the BM. It was found that the clip frequency (DF) varied with the longitudinal and radial locations. In the longitudinal direction, the average value of the DF was 49.6, 55.6 and 72.8 kHz, respectively. Thus, the longitudinal distribution of the high frequency BM vibration was correlated with the BF. In the radial direction, there was consistent variation of the response spectrum such that the dip was mainly evident in the pectinate zone of the BM. These results imply that the high frequency BM motion is related to mechanical properties of the cochlear partition, including the outer hair cells (OHCs) themselves. Data also indicate different vibration modes across the width of the organ of Corti. (c) 2004 Elsevier B.V. All rights reserved.
C1 Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97239 USA.
EM nuttall@ohsu.edu
CR Ashmore J. F., 1990, NEUROSCI RES       S, V12, pS39
   ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   COOPER NP, 1992, HEARING RES, V63, P191, DOI 10.1016/0378-5955(92)90084-Z
   Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730
   DALLOS P, 1995, SCIENCE, V268, P1420, DOI 10.1126/science.7770765
   DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325
   Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003
   FRANK GWH, 1999, P NATL ACAD SCI USA, V96, P4410
   GALE JE, 1994, P ROY SOC B-BIOL SCI, V255, P243, DOI 10.1098/rspb.1994.0035
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Grosh K, 2004, J ACOUST SOC AM, V115, P2178, DOI 10.1121/1.1695431
   HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73
   HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090
   IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094
   Iwasa KH, 2001, BIOPHYS J, V81, P2495
   KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0
   KAKEHATA S, 1995, BIOPHYS J, V68, P2190
   KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0
   MOUNTAIN DC, 1994, J ACOUST SOC AM, V95, P350, DOI 10.1121/1.408273
   Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6
   Nuttall AL, 2001, HEARING RES, V152, P77, DOI 10.1016/S0378-5955(00)00238-0
   Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2
   NUTTALL AL, 2003, ASS RES OT MIDW M DA
   NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A
   OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331
   OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535
   Preyer S, 1996, Audiol Neurootol, V1, P3
   PUJOL R, 1992, ADV BIOSCI, V83, P45
   RABBITT RD, 2004, ASS RES OT MIDW M AR
   Ren TY, 1996, HEARING RES, V102, P43, DOI 10.1016/S0378-5955(96)00145-1
   SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096
   SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X
   SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906
   TOLOMEO JA, 1995, J ACOUST SOC AM, V97, P3006, DOI 10.1121/1.411865
   Weitzel EK, 2003, J ACOUST SOC AM, V114, P1462, DOI 10.1121/1.1596172
   XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 38
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 35
EP 46
DI 10.1016/j.heares.2004.11.002
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300005
PM 15811697
ER

PT J
AU Soeta, Y
   Nakagawa, S
   Tonoike, M
AF Soeta, Y
   Nakagawa, S
   Tonoike, M
TI Auditory evoked magnetic fields in relation to bandwidth variations of
   bandpass noise
SO HEARING RESEARCH
LA English
DT Article
DE magnetoencephalography; auditory evoked response; Nlm; bandpass noise;
   autocorrelation function
ID ITERATED RIPPLED NOISE; TONOTOPIC ORGANIZATION; PHASE SENSITIVITY; PITCH
   STRENGTH; COMPUTER-MODEL; VIRTUAL PITCH; COMPLEX TONES; HUMAN BRAIN;
   CORTEX; FREQUENCY
AB Auditory evoked magnetic fields in relation to the bandwidth of bandpass noise were examined by magnetoencephalography (MEG). Pure tone and bandpass noises with center frequencies of 500, 1000 or 2000 Hz were used as the auditory signals. All source signals had the sound pressure level set at 74 dB. The stimulus duration was 0.5 s, with rise and fall ramps of 10 ms. Eight Volunteers with normal hearing took part in the study. Auditory evoked fields were recorded using a neuromagnetometer in a magnetically-shielded room. The results showed that the peak amplitude of Nlm, which was found above the left and right temporal lobes around 100 ms after the Stimulus onset, decreased with increasing bandwidth of the bandpass noise. The latency and estimated equivalent Current dipole (ECD) locations of Nlm did not show any systematic variation as a function of the bandwidth for any of the center frequencies. (c) 2004 Elsevier B.V. All rights reserved.
C1 Natl Inst Adv Ind Sch & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
RP Soeta, Y (reprint author), Natl Inst Adv Ind Sch & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
CR Alku P, 2001, NEUROSCI LETT, V298, P25, DOI 10.1016/S0304-3940(00)01708-0
   Ando Y., 1998, ARCHITECTURAL ACOUST
   Ando Y, 1999, COMPUTATIONAL ACOUST, P63
   Von Bekesy G., 1963, Journal of the Acoustical Society of America, V35
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024
   FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9
   Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459
   GRIFFITHS TD, 1998, NAT NEUROSCI, V1, P421
   Gulick W. L., 1989, HEARING PHYSL ACOUST
   HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413
   KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60
   KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163
   Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148
   LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143
   LYON R, 1995, AUDITORY COMPUTATION, P221
   MEDDIS R, 1991, J ACOUST SOC AM, V89, P2883, DOI 10.1121/1.400726
   MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Palomaki KJ, 2002, COGNITIVE BRAIN RES, V14, P294, DOI 10.1016/S0926-6410(02)00132-5
   PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4
   PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8
   PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2
   PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476
   Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212
   REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0
   REITE M, 1982, ELECTROEN CLIN NEURO, V53, P643, DOI 10.1016/0013-4694(82)90140-7
   Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007
   ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770
   SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4
   Sato S, 2002, J SOUND VIB, V250, P47, DOI 10.1006/jsvi.2001.3888
   SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235
   Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517
   WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592
   Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973
   Yost W.A., 2000, FUNDAMENTALS HEARING
   Zwicker E, 1999, PSYCHOACOUSTICS FACT
   ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963
NR 41
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 47
EP 54
DI 10.1016/j.heares.2004.09.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300006
PM 15811698
ER

PT J
AU Fu, QJ
AF Fu, QJ
TI Loudness growth in cochlear implants: effect of stimulation rate and
   electrode configuration
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implants; loudness balance; loudness growth; stimulation rate;
   electrode configuration; amplitude mapping
ID PHONEME RECOGNITION; LISTENERS; HEARING; BALANCE
AB In cochlear implant speech processor design, acoustic amplitudes are mapped to electric currents with the intention of preserving loudness relationships across electrodes. Many parameters may affect the growth of loudness with electrical stimulation. The present study measured the effects of stimulation rate and electrode configuration on loudness growth in six Nucleus-22 cochlear implant users. Loudness balance functions were measured for stimuli that differed in terms of stimulation rate, electrode coil figuration and electrode location: a 2-alternative, forced-choice adaptive procedure (double-staircase) was used. First, subjects adaptively adjusted the amplitude of a 100-pulse-per-second (pps) pulse train to match the loudness of a 1000-pps standard Pulse train. For a range of reference stimulation levels, the loudness of the 100-pps stimulus was matched to that of the 1000-pps standard stimulus: loudness balancing was performed for three electrode pairs [(20,22), (1 3) (1,22)]. The results showed that the loudness balance functions between the 100- and 1000-pps stimulation rates were highly subject-dependent. Some subjects' loudness balance functions were logarithmic, while others' were nearly linear. Loudness balance functions were also measured across electrode locations [(20,22) vs. (1,3)] for two stimulation rates (100, 1000 pps). Results showed that the loudness balance functions between the apical and basal electrode pairs highly depended on the stimulation rate. For all subjects, at the 1000-pps rate, the loudness balance functions between the two electrode locations were nearly linear; however, at the 100-pps rate, the loudness balance function was highly nonlinear in two out of six subjects. These results suggest that, for some cochlear implant patients, low-frequency stimulation may be processed differently at different electrode locations-, for these patients, acoustic-to-electric amplitude mapping may need to be sensitive to this place-dependent processing when relatively low stimulation rates Lire used. (c) 2004 Elsevier B.V. All rights reserved.
C1 House Ear Res Inst, Dept Audiory Implants & Percept, Los Angeles, CA 90057 USA.
RP Fu, QJ (reprint author), House Ear Res Inst, Dept Audiory Implants & Percept, 2100 W 3rd St, Los Angeles, CA 90057 USA.
EM qfu@hei.org
CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
   BOEX CS, 1997, 1997 C IMPL AUD PROS, P26
   BOEX CS, 1995, 1995 C IMPL AUD PROS, P57
   Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009
   Charasse B, 2004, INT J AUDIOL, V43, P236, DOI 10.1080/14992020400050032
   Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274
   DORMAN MF, 1993, EAR HEARING, V14, P290, DOI 10.1097/00003446-199308000-00008
   Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1
   Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004
   Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325
   Fu QJ, 1998, J ACOUST SOC AM, V104, P2570, DOI 10.1121/1.423912
   Gallego S, 1999, ACTA OTO-LARYNGOL, V119, P234, DOI 10.1080/00016489950181738
   JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   McDermott HJ, 2003, J ACOUST SOC AM, V114, P2190, DOI 10.1121/1.1612488
   MULLER C, 1981, J ACOUST SOC AM, V70, pS52
   SHANNON RV, 1992, AUDITORY PROCESSING, P263
   STEVENS SS, 1955, J ACOUST SOC AM, V27, P815, DOI 10.1121/1.1908048
   STEVENS SS, 1959, J EXP PSYCHOL, V57, P201, DOI 10.1037/h0048957
   Stevens SS, 1937, J ACOUST SOC AM, V8, P191, DOI 10.1121/1.1915894
   ZENG FG, 1991, Q J EXP PSYCHOL-A, V43, P565
   ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H
   ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013
NR 23
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 55
EP 62
DI 10.1016/j.heares.2004.10.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300007
PM 15811699
ER

PT J
AU Muller, M
   von Hunerbein, K
   Holdis, S
   Smolders, JWT
AF Muller, M
   von Hunerbein, K
   Holdis, S
   Smolders, JWT
TI A physiological place-frequency map of the cochlea in the CBA/J mouse
SO HEARING RESEARCH
LA English
DT Article
DE mouse; cochlea; place-frequency map; cochlear nucleus; tonotopy
ID AUDITORY-NERVE FIBERS; BASILAR-MEMBRANE; INFERIOR COLLICULUS;
   PACHYUROMYS-DUPRASI; CRITICAL RATIOS; ACOUSTIC FOVEA; HORSESHOE BAT;
   SINGLE UNITS; HOUSE-MOUSE; REPRESENTATION
AB Genetically manipulated mice have gained a prominent role in in vivo research on development and function of the auditory system. A prerequisite for the interpretation of normal and abnormal structural Mid functional features of the inner ear is the exact knowledge of the cochlear place-frequency map. Using a stereotaxic approach to the projection site of the auditory nerve fibers ill the cochlear nucleus. we succeeded in labelling physiologically characterized auditory nerve afferents and determined their peripheral innervation site in the cochlea.
   From the neuronal characteristic frequency (CF) and the innervation site in the organ of Corti a place-frequency map was established for characteristic frequencies between 7.2 and 61.8 kHz, corresponding to locations between 90% and 10% basilar membrane length (base = 0%, apex = 100%, mean length measured tinder the inner hair cells 5.13 mm). The relation between normalized distance from the base (d) and frequency (kHz) can be described by a simple logarithmic function: d(%) = 156.5 - 82.5 x log(f), With a slope of 1.25 mm/octave of frequency. The present map, recorded tinder physiological conditions, differs from earlier maps determined with different methods. The simple logarithmic place-frequency relation found in the mouse indicates that mice are acoustic generalists rather than specialists. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Frankfurt, Inst Physiol 2, D-60590 Frankfurt, Germany.
RP Smolders, JWT (reprint author), Univ Frankfurt, Inst Physiol 2, Theodor Stern Kai 7, D-60590 Frankfurt, Germany.
EM Jean.Smolders@em.uni-frankfurt.de
CR Bekesy G., 1960, EXPT HEARING
   BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9
   BIRCH LM, 1968, J AUD RES, V8, P459
   BROWN AM, 1973, J COMP PHYSIOL, V83, P377, DOI 10.1007/BF00696353
   BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4
   BURDA H, 1988, J MORPHOL, V198, P269, DOI 10.1002/jmor.1051980303
   CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0
   Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786
   Ehret G., 1997, CENTRAL AUDITORY SYS
   EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506
   EHRET G, 1985, J COMP PHYSIOL A, V156, P637, DOI 10.1007/BF00619112
   EHRET G, 1975, J COMP PHYSIOL, V103, P329
   EHRET G, 1984, HEARING RES, V14, P45, DOI 10.1016/0378-5955(84)90068-6
   Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4
   GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1
   KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362
   KRAUS HJ, 1982, VERH DTSCH ZOOL GES, P279
   LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150
   LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
   MULLER M, 1991, HEARING RES, V56, P191, DOI 10.1016/0378-5955(91)90169-A
   MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2
   Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8
   MULLER M, 1993, HEARING RES, V67, P198, DOI 10.1016/0378-5955(93)90247-X
   MULLER M, 1990, EXP BRAIN RES, V81, P140
   MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
   MULLER M, 1992, J COMP PHYSIOL A, V171, P469
   Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X
   Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
   PENFIELD T, 1950, CEREBRAL CORTEX MAN
   TABERNER A, 2003, C P ARO ASS RES OT
   TOOTELL RBH, 1982, SCIENCE, V218, P902, DOI 10.1126/science.7134981
   Tsuji J, 1997, J COMP NEUROL, V381, P188
   VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361
   VONBEKESY G, 1944, AKUST Z, V9, P3
   Wald A., 1947, SEQUENTIAL ANAL
NR 37
TC 112
Z9 113
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 63
EP 73
DI 10.1016/j.heares.2004.08.011
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300008
PM 15811700
ER

PT J
AU Ray, B
   Roy, TS
   Wadhwa, S
   Roy, KK
AF Ray, B
   Roy, TS
   Wadhwa, S
   Roy, KK
TI Development of the human fetal cochlear nerve: a morphometric study
SO HEARING RESEARCH
LA English
DT Article
DE auditory nerve; ontogeny; myelination; asymmetry; stereology
ID HUMAN FETUSES; SCHWANN-CELL; TIME-COURSE; HAIR-CELLS; GUINEA-PIG;
   MYELINATION; INNERVATION; MATURATION; HEARING; FIBERS
AB Ontogenesis of the human peripheral auditory pathway is relatively less explored. While the distal part of the auditory perception apparatus (i.e. the cochlea) received attention, studies on the neural element carrying information to the brainstem (i.e. the cochlear nerve) are scarce. In the present study, axonal differentiation, maturation and myelination of the distal end of the human cochlear nerve (CN) were assessed using light and electron microscopy. Seven human fetuses of 12, 15, 18 20, 22 28 and 38 weeks' gestation (WG) were analyzed. Light microscopy revealed nerve fascicles as early as 12 WG, initially arranged loosely but later compacted by 18 WG. Myelinated fibers were clearly detected at 28 WG. Ultrastructurally, at 12 WG developing Schwann cells were present between the thin unmyelinated axons. At 15 WG, the fascicular arrangement was distinct with blood vessels in the perineurium. The maximum number of axons was found at 20 WG, which subsequently reduced to reach the adult level at 22 WG. The myelinated axons in the CN were first observed on the left side at 20 WG, following which the number and proportion of myelinated axons increased until term, incorporating both small and large axons. The right CN lagged behind in maturation. Axon size also increased with age. Thus, the maturation of the human CN commences during the mid-gestation period and produces exuberant axons that are eventually pruned at a time when axons start to myelinate. During this developmental period the human CN maintains maturational asymmetry, the functional consequences of which remain to be elucidated. (c) 2004 Elsevier B.V. All rights reserved.
C1 All India Inst Med Sci, Dept Anat, New Delhi 110029, India.
   All India Inst Med Sci, Dept Obstet & Gynecol, New Delhi 110029, India.
RP Roy, TS (reprint author), All India Inst Med Sci, Dept Anat, New Delhi 110029, India.
EM tarasankar@hotmail.com
RI Ray, Bappaditya/F-4489-2014; Ray, Bappaditya/O-2556-2014
CR ANGULO A, 1990, J ANAT, V168, P241
   ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405
   AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819
   BARDEN TP, 1968, AM J OBSTET GYNECOL, V100, P1128
   BIRNHOLZ JC, 1983, SCIENCE, V222, P516, DOI 10.1126/science.6623091
   Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1
   CANT NB, 1998, DEV AUDITORY SYSTEM, P315
   Crespo D, 1985, Brain Res, V351, P129
   DWORNICKA B, 1964, Acta Otolaryngol, V57, P571, DOI 10.3109/00016486409137118
   EGGERMONT JJ, 1988, HEARING RES, V33, P35, DOI 10.1016/0378-5955(88)90019-6
   FELIX H, 1985, ACTA OTO-LARYNGOL, P67
   Fujii M, 1990, Nihon Jibiinkoka Gakkai Kaiho, V93, P723
   GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402
   Geuna S, 2001, ANAT EMBRYOL, V204, P1, DOI 10.1007/s004290100188
   GOODLIN RC, 1972, AM J OBSTET GYNECOL, V114, P613
   GRIMWADE JC, 1971, AM J OBSTET GYNECOL, V109, P86
   GUNDERSEN HJG, 1977, J MICROSC-OXFORD, V111, P219
   Harris SJ, 2000, J ANAT, V197, P477, DOI 10.1046/j.1469-7580.2000.19730477.x
   Ishiyama A, 2001, NEUROSCI LETT, V304, P93, DOI 10.1016/S0304-3940(01)01774-8
   JACKSON H, 1982, J NEUROSCI, V2, P1736
   JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X
   Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767
   Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1
   KUHLMAN KA, 1988, AM J OBSTET GYNECOL, V158, P47
   Larsen JO, 1998, J NEUROSCI METH, V85, P107, DOI 10.1016/S0165-0270(98)00129-0
   LAVIGNEREBILLARD M, 1990, J ELECTRON MICR TECH, V15, P115, DOI 10.1002/jemt.1060150204
   LAVIGNEREBILLARD M, 1988, ACTA OTO-LARYNGOL, V105, P398, DOI 10.3109/00016488809119492
   LAVIGNEREBILLARD M, 1986, ANAT EMBRYOL, V174, P369, DOI 10.1007/BF00698787
   Moore D. R., 1994, TXB FETAL PHYSL, P278
   MOORE JK, 1995, HEARING RES, V87, P21, DOI 10.1016/0378-5955(95)00073-D
   Moore JK, 2001, ANN OTO RHINOL LARYN, V110, P655
   Moore JK, 1997, ANAT EMBRYOL, V195, P15
   Paternostro MA, 1996, INT J DEV NEUROSCI, V14, P867, DOI 10.1016/S0736-5748(96)00064-0
   PETERS A, 1991, FINE STRUCTURE NERVO, P212
   PIRILA T, 1992, AUDIOLOGY, V31, P150
   POHL P, 1984, NEUROPEDIATRICS, V15, P139, DOI 10.1055/s-2008-1052357
   PUJOL R, 1973, ACTA OTO-LARYNGOL, V76, P1, DOI 10.3109/00016487309121476
   PUJOL R, 1991, HEARING RES, V57, P129, DOI 10.1016/0378-5955(91)90082-K
   Pujol R., 1998, DEV AUDITORY SYSTEM, P146
   PUJOL R, 1985, ACTA OTO-LARYNGOL, P43
   Rasmussen AT, 1940, LARYNGOSCOPE, V50, P67
   RITCHIE JM, 1982, PROC R SOC SER B-BIO, V217, P29, DOI 10.1098/rspb.1982.0092
   Rogers LJ, 1999, BEHAV BRAIN RES, V98, P277, DOI 10.1016/S0166-4328(98)00094-1
   ROMAND R, 1970, CR ACAD SCI D NAT, V270, P2476
   ROMAND R, 1976, J COMP NEUROL, V170, P1, DOI 10.1002/cne.901700102
   ROTH B, 1993, ANAT EMBRYOL, V187, P565, DOI 10.1007/BF00214435
   RUBEL EW, 2004, IN PRESS PLASTICITY
   RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101
   RYUGO DK, 1967, MAMMALIAN AUDITORY P, P23
   Sailaja K, 1996, NATL MED J INDIA, V9, P165
   SAKABE N, 1969, Acta Oto-Laryngologica Supplement, V252, P29
   Sanes D H, 1985, Brain Res, V354, P255
   SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805
   SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q
   SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61
   USSON Y, 1988, J NEUROCYTOL, V17, P639, DOI 10.1007/BF01260991
   WILLARD FH, 1993, NATO ADV SCI INST SE, V239, P29
   WILLARD FH, 1995, ADV NEU SCI, V2, P205
   YOKOVLEV PI, 1967, REGIONAL DEV BRAIN E, P3
NR 59
TC 14
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 74
EP 86
DI 10.1016/j.heares.2004.09.013
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300009
PM 15811701
ER

PT J
AU Carlsson, PI
   Van Laer, L
   Borg, E
   Bondeson, ML
   Thys, M
   Fransen, E
   Van Camp, G
AF Carlsson, PI
   Van Laer, L
   Borg, E
   Bondeson, ML
   Thys, M
   Fransen, E
   Van Camp, G
TI The influence of genetic variation in oxidative stress genes on human
   noise susceptibility
SO HEARING RESEARCH
LA English
DT Article
DE hearing loss; noise induced hearing loss; reactive oxygen species;
   antioxidant; genetic polymorphisms; glutathione-S-transferase; catalase;
   supeioxide dismutase; glutathione peroxidase; glutathione reductase
ID INDUCED HEARING-LOSS; GLUTATHIONE-S-TRANSFERASE; INCREASES
   SUSCEPTIBILITY; MICE; ASSOCIATION; EXPOSURE; POLYMORPHISMS;
   ANTIOXIDANTS; MUTATION; DISEASE
AB Noise induced hearing loss (NIHL) is a complex disease Caused by an interaction between genetic and environmental factors. Damage in the cochlea as a result of noise exposure appears to be mediated by reactive oxygen species (ROS). To investigate whether genetic variation in the human protective antioxidant system is associated with high or low susceptibility to NIHL genetic polymorphisms derived from genes involved in the oxidative stress response were analysed in the 10% most susceptible and 10% most resistant extremes of 1200 Swedish noise-exposed workers. The genetic polymorphisms included 2 deletion polymorphisms for the GSTM1 and GSTT1 gene, and 14 SNPs derived from the CAT, SOD, GPX, GSR and GSTP1 genes. No significant differences were found between susceptible and resistant groups, providing no support for a major role of genetic variation of antioxidant enzymes in the susceptibility to NIHL. (c) 2004 Elsevier B.V. All rights reserved.
C1 Orebro Univ Hosp, Dept Audiol, SE-70116 Orebro, Sweden.
   Orebro Univ Hosp, Ahlsen Res Inst, SE-70116 Orebro, Sweden.
   Univ Antwerp, Dept Med Genet, B-2610 Antwerp, Belgium.
   Univ Uppsala, Dept Genet & Pathol, Rudbeck Lab, SE-75185 Uppsala, Sweden.
RP Carlsson, PI (reprint author), Orebro Univ Hosp, Dept Audiol, POB 1613, SE-70116 Orebro, Sweden.
EM per-inge.carlsson@orebroll.se
RI Van Camp, Guy/F-3386-2013; Fransen, Erik/C-4102-2015
OI Van Camp, Guy/0000-0001-5105-9000; Fransen, Erik/0000-0001-7785-4790
CR BOARD PG, 1981, AM J HUM GENET, V33, P36
   Borg E, 1995, Scand Audiol Suppl, V40, P1
   Carlsson PI, 2004, AUDIOL MED, V2, P123, DOI 10.1080/16513860410035854
   CHUNG DY, 1983, J ACOUST SOC AM, V73, P1277, DOI 10.1121/1.389276
   Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8
   Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7
   ELBARBARY A, 1993, HEARING RES, V71, P80
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   FOWLER T, 1995, HEARING RES, V88, P1, DOI 10.1016/0378-5955(95)00062-9
   Ghobadloo SM, 2004, J GASTROINTEST SURG, V8, P423, DOI 10.1016/j.gassur.2004.02.005
   Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x
   Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2
   *INT ORG STAND, 1990, INT STAND ISO 1999 A
   Ivaschenko TE, 2002, J MOL MED-JMM, V80, P39, DOI 10.1007/s001090100274
   Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1
   Johansson M, 2001, NOISE HEALTH, V3, P15
   Karlsson KK, 1997, EAR HEARING, V18, P114, DOI 10.1097/00003446-199704000-00003
   Kozel PJ, 2002, HEARING RES, V164, P231, DOI 10.1016/S0378-5955(01)00420-8
   Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4
   Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8
   LI HS, 1992, KAROLINSKA I STOCKHO, V39
   Mann CLA, 2000, NEUROLOGY, V54, P552
   MANNERVIK B, 1992, BIOCHEM J, V282, P305
   Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   PEMBLE S, 1994, BIOCHEM J, V300, P271
   PIRILA T, 1991, ACTA OTO-LARYNGOL, V111, P677, DOI 10.3109/00016489109138399
   Purcell S, 2003, BIOINFORMATICS, V19, P149, DOI 10.1093/bioinformatics/19.1.149
   Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7
   Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003
   SHAM PC, 1995, ANN HUM GENET, V59, P323, DOI 10.1111/j.1469-1809.1995.tb00751.x
   SLIWINSKAKOWALSKA, 2004, J OCCUP ENVIRON MED, V46, P30
   Strange RC, 2001, MUTAT RES-FUND MOL M, V482, P21, DOI 10.1016/S0027-5107(01)00206-8
   Tan EK, 2000, NEUROLOGY, V55, P533
   TAYLOR W, 1965, J ACOUST SOC AM, V38, P113, DOI 10.1121/1.1909580
   Wille A, 2003, GENET EPIDEMIOL, V25, P350, DOI 10.1002/gepi.10263
   Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X
NR 39
TC 35
Z9 48
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 87
EP 96
DI 10.1016/j.heares.2004.09.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300010
PM 15811702
ER

PT J
AU Meyer, J
   Preyer, S
   Hofmann, SI
   Gummer, AW
AF Meyer, J
   Preyer, S
   Hofmann, SI
   Gummer, AW
TI Tonic mechanosensitivity of outer hair cells after loss of tip links
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; stereocilia; channel gating; caged calcium; mechanoelectrical
   transduction dihydrostreptomycin
ID GUINEA-PIG COCHLEA; MECHANOELECTRICAL TRANSDUCTION; CALCIUM CHELATION;
   ION CHANNELS; MECHANOTRANSDUCER CHANNEL; STEREOCILIARY BUNDLE; MOUSE
   COCHLEA; CROSS-LINKS; CURRENTS; ADAPTATION
AB Tip links-the extracellular connectors between the distal ends of adjacent stereocilia - are essential for the first mechanical gating hair-cell transducer channels. Transduction in the absence of tip links was investigated for outer hair cells of the adult guiea-pig, cochlea by patch-clamp recordings of the whole-cell current during mechanical stimulation of the hair bundle. Loss of tip links induced by application of BAPTA led to permanently opened transducer channels, as evidenced by a constant inward current, loss of response to sinusoidal mechanical deflection of the hair bundle and block by the open-channel blocker dihydrostreptomycin (100 mu M). Step deflection of the hair bundle (200-500 nm) in the inhibitory direction exponentially reduced this current to a constant value with time constant, tau(on), of the order of seconds. The Current returned exponentially to the pre-stimulus level with time-constant, tau(off), also of the order of seconds. tau(on) was dependent on the inter-stimulus interval, Delta t, such that reducing this interval below about 40 s resulted in an exponentially faster response. tau(off) was independent of At. Application of the calcium ionophore, ionomycin (10 mu M), showed that tau(on) became independent of Delta t after saturating elevation of the intracellular Ca(2+) concentration. Flash-photolytic release of intracellular caged calcium (25-mu M NP-EGTA/AM) showed that tau(on) is dependent on intracellular Ca(2+) concentration. These experiments imply an intracellular, calcium-dependent gating mechanism for hair-cell transducer channels. (c) 2004 Elsevier B.V. All results reserved.
C1 Univ Tubingen, Sect Physiol Acoust & Commun, Dept Otolaryngol, D-72076 Tubingen, Germany.
RP Gummer, AW (reprint author), Univ Tubingen, Sect Physiol Acoust & Commun, Dept Otolaryngol, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany.
EM anthony.gummer@uni-tuebingen.de
CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X
   Bashtanov ME, 2004, J PHYSIOL-LONDON, V559, P287, DOI 10.1113/jphysiol.2004.065565
   Connors K.A., 1990, CHEM KINETICS
   COREY DP, 1979, BIOPHYS J, V26, P499
   Corey DP, 2004, NATURE, V428, P901, DOI 10.1038/428901a
   COREY DP, 1983, J NEUROSCI, V3, P962
   CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369
   Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1
   Duncan RK, 1998, HEARING RES, V124, P69, DOI 10.1016/S0378-5955(98)00118-X
   FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3
   Furness DN, 1997, P ROY SOC B-BIOL SCI, V264, P45
   Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1
   FURNESS DN, 1989, HEARING RES, V38, P95, DOI 10.1016/0378-5955(89)90131-7
   Gale JE, 2001, J NEUROSCI, V21, P7013
   GarciaAnoveros J, 1997, ANNU REV NEUROSCI, V20, P567, DOI 10.1146/annurev.neuro.20.1.567
   Geleoc GSG, 1997, P ROY SOC B-BIOL SCI, V264, P611
   Ghazi A, 1998, BIOCHIMIE, V80, P357
   Glowatzki E, 1997, NEUROPHARMACOLOGY, V36, P1269, DOI 10.1016/S0028-3908(97)00108-1
   Goodyear R, 1999, J NEUROSCI, V19, P3761
   Goodyear RJ, 2003, J NEUROSCI, V23, P4878
   GUHARAY F, 1984, J PHYSIOL-LONDON, V352, P685
   HACKNEY CM, 1997, P SENDAI EAR S, V7, P83
   HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1
   HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064
   HACKNEY CM, 1995, ACTIVE HEARING, P103
   Hamill OP, 2001, PHYSIOL REV, V81, P685
   Hamill OP, 1997, ANNU REV PHYSIOL, V59, P621, DOI 10.1146/annurev.physiol.59.1.621
   Hamill OP, 1997, BIOL BULL, V192, P121, DOI 10.2307/1542583
   He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591
   HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195
   HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73
   Howard J, 2004, CURR BIOL, V14, pR224, DOI 10.1016/j.cub.2004.02.050
   HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99
   HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3
   HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506
   HUDSPETH AJ, 1982, J NEUROSCI, V2, P1
   JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9
   Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336
   Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089
   KIMITSUKI T, 1993, BRAIN RES, V624, P143, DOI 10.1016/0006-8993(93)90072-U
   KOSSL M, 1990, HEARING RES, V44, P217, DOI 10.1016/0378-5955(90)90082-Z
   KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3
   KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102
   Langer MG, 2001, BIOPHYS J, V80, P2608
   LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4
   LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297
   Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923
   MARTINAC B, 1990, NATURE, V348, P261, DOI 10.1038/348261a0
   Meyer J, 2001, HEARING RES, V161, P10, DOI 10.1016/S0378-5955(01)00338-0
   Meyer J, 1998, J NEUROSCI, V18, P6748
   Meyers JR, 2003, J NEUROSCI, V23, P4054
   MOCKETT BG, 1994, J NEUROSCI, V14, P6992
   PAE SS, 1994, P NATL ACAD SCI USA, V91, P1153, DOI 10.1073/pnas.91.3.1153
   PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8
   PICKLES JO, 1991, HEARING RES, V54, P153, DOI 10.1016/0378-5955(91)90116-Q
   Preyer S, 1996, AUDIT NEUROSCI, V2, P145
   PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5
   Preyer S, 1996, Audiol Neurootol, V1, P3
   Ricci Anthony, 2003, J Am Acad Audiol, V14, P325
   Ricci AJ, 2003, NEURON, V40, P983, DOI 10.1016/S0896-6273(03)00721-9
   RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75
   Sachs F, 1997, SOC GEN PHY, V52, P209
   SAUNDERS JC, 1989, J ACOUST SOC AM, V86, P1797, DOI 10.1121/1.398612
   Schulte CC, 2002, HEARING RES, V164, P190, DOI 10.1016/S0378-5955(01)00431-2
   SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x
   Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483
   Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484
   SUKHAREV SI, 1994, NATURE, V368, P265, DOI 10.1038/368265a0
   Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010
   van Netten SM, 2003, P NATL ACAD SCI USA, V100, P15510, DOI 10.1073/pnas.2632626100
   Watson GM, 1997, HEARING RES, V107, P53, DOI 10.1016/S0378-5955(97)00022-1
   Yamoah EN, 1998, J NEUROSCI, V18, P610
   Zhang RT, 1996, BIOPHYS J, V70, P349
   ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469
NR 74
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 97
EP 113
DI 10.1016/j.heares.2004.11.013
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300011
PM 15811703
ER

PT J
AU Harkrider, AW
   Hedrick, MS
AF Harkrider, AW
   Hedrick, MS
TI Acute effect of nicotine on auditory gating in smokers and non-smokers
SO HEARING RESEARCH
LA English
DT Article
DE cholinergic; nAChRs; transdermal nicotine; mismatch negativity; auditory
   gating
ID CORTICAL EVOKED-POTENTIALS; OUTER HAIR-CELLS; SCHIZOPHRENIC-PATIENTS;
   TOBACCO SMOKING; SUBCUTANEOUS NICOTINE; CIGARETTE-SMOKING; ACOUSTIC
   CHANGE; RAT; NORMALIZATION; PERFORMANCE
AB This paper investigates the role of cholinergic mechanisms in auditory gating by assessing the acute effects of nicotine, an acetylcholinomimetic drug, on behavioral and electrophysiological measures of consonant-vowel (CV) discrimination in quiet and in broadband noise (BBN). fit a single-blind procedure, categorical boundaries and mismatch negativity (MMN) in two conditions (quiet, BBN) were obtained from 10 non-smokers and 4 smokers with normal hearing under two drug conditions (nicotine, placebo). After the nicotine sessions, plasma tests revealed a subject's nicotine concentration and subjects reported any symptoms. Larger MMN areas and steeper slopes at the boundary were interpreted as reflecting better electrophysiological and behavioral CV discrimination, respectively. Results indicate that, in non-smokers, the effects of nicotine on electrophysiological CV discrimination in quiet increase with an increase in severity of symptoms. Specifically, asymptomatic non-smokers (N = 5) demonstrate little improvement (and sometimes decrements) in performance while symptomatic non-smokers (N = 5) exhibit nicotine-enhanced discrimination, as do smokers. In noise, all subjects demonstrate nicotine-enhanced behavioral and electrophysiological discrimination. Additionally, in noise, smokers exhibit a larger number of measurable categorical boundaries as well as larger MMN areas than non-smokers in both placebo and nicotine sessions. Results are consistent with the hypothesis that nicotinic cholinergic mechanisms play a role in the gating of auditory stimuli. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Tennessee, Dept Speech Pathol & Audiol, Knoxville, TN 37996 USA.
RP Harkrider, AW (reprint author), Univ Tennessee, Dept Speech Pathol & Audiol, 578 S Stadium Hall, Knoxville, TN 37996 USA.
EM aharkrid@utk.edu
CR ADLER LE, 1992, BIOL PSYCHIAT, V32, P607, DOI 10.1016/0006-3223(92)90073-9
   ADLER LE, 1993, AM J PSYCHIAT, V150, P1856
   Adler LE, 1998, SCHIZOPHRENIA BULL, V24, P189
   *ANSI, 1996, S3221987 ANSI
   ARMITAGE AK, 1969, BRIT J PHARMACOL, V35, P152
   BATTIG K, 1970, PSYCHOPHARMACOLOGIA, V18, P300, DOI 10.1007/BF00412675
   BENWELL MEM, 1988, J NEUROCHEM, V50, P1243, DOI 10.1111/j.1471-4159.1988.tb10600.x
   BHARGAVA VK, 1978, NEUROPHARMACOLOGY, V17, P1009, DOI 10.1016/0028-3908(78)90026-6
   BRAFF DL, 1992, ARCH GEN PSYCHIAT, V49, P206
   BREESE CR, 1997, J PHARMACOL EXP THER, V232, P7
   BROWN BA, 1967, ANN NY ACAD SCI, V562, P190
   COHEN AJ, 1981, 4 TOB ADV COUNC
   CURZON P, 1994, PHARMACOL BIOCHEM BE, V49, P877, DOI 10.1016/0091-3057(94)90237-2
   EDWARDS JA, 1983, PHARMACOL THERAPEUT, V19, P147
   Ehlers CL, 1997, PHARMACOL BIOCHEM BE, V58, P713, DOI 10.1016/S0091-3057(97)90011-3
   ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G
   ELKINDHIRSCH KE, 1994, OTOLARYNG HEAD NECK, V110, P46, DOI 10.1016/S0194-5998(94)70791-X
   EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1
   Foulds J, 1996, PSYCHOPHARMACOLOGY, V127, P31, DOI 10.1007/BF02805972
   FREEDMAN R, 1995, BIOL PSYCHIAT, V38, P22, DOI 10.1016/0006-3223(94)00252-X
   FRIEDMAN J, 1980, CLIN EXP PHARMACOL P, V7, P609, DOI 10.1111/j.1440-1681.1980.tb00119.x
   FRIEDMAN J, 1974, CLIN EXP PHARMACOL P, V1, P249, DOI 10.1111/j.1440-1681.1974.tb00547.x
   FUCHS PA, 1992, BRAIN RES, V159, P440
   GOLDING JF, 1988, PHARMACOL BIOCHEM BE, V29, P23, DOI 10.1016/0091-3057(88)90268-7
   GOLDSTEIN L, 1967, ANN NY ACAD SCI, V562, P170
   Harkrider Ashley Whicker, 2001, Hearing Research, V160, P89
   Harkrider AW, 2001, HEARING RES, V160, P73, DOI 10.1016/S0378-5955(01)00345-8
   Harkrider AW, 2001, HEARING RES, V160, P99, DOI 10.1016/S0378-5955(01)00347-1
   Hirata K, 1996, BRAIN TOPOGR, V8, P279, DOI 10.1007/BF01184785
   Hirata K, 1996, Rinsho Shinkeigaku, V36, P1318
   HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065
   Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1
   JONES GMM, 1992, PSYCHOPHARMACOLOGY, V108, P485, DOI 10.1007/BF02247426
   KING C, 1995, HEARING RES, V85, P45, DOI 10.1016/0378-5955(95)00028-3
   KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940
   KNOTT VJ, 1985, NEUROPSYCHOBIOLOGY, V13, P136, DOI 10.1159/000118176
   KNOTT VJ, 1986, ADDICT BEHAV, V11, P219, DOI 10.1016/0306-4603(86)90050-X
   KNOTT VJ, 1978, PSYCHOPHYSIOLOGY, V15, P186, DOI 10.1111/j.1469-8986.1978.tb01360.x
   KNOTT VJ, 1985, NEUROPSYCHOBIOLOGY, V13, P74, DOI 10.1159/000118166
   KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25
   KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270
   Levin E. D., 2002, NICOTINIC RECEPTORS
   LEVIN ED, 1992, PSYCHOPHARMACOLOGY, V108, P417, DOI 10.1007/BF02247415
   LONGO VG, 1967, ANN NY ACAD SCI, V562, P159
   LUNTZLEYBMAN V, 1992, BRAIN RES, V587, P130, DOI 10.1016/0006-8993(92)91437-J
   MARLER JA, 1997, INT EV RESP AUD STUD
   Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271
   NEWHOUSE PA, 1992, PSYCHOPHARMACOLOGY, V108, P480, DOI 10.1007/BF02247425
   Perkins KA, 1999, BEHAV PHARMACOL, V10, P597
   Picton TW, 1985, HUMAN COMMUNICATION, V9, P127
   SCHAEPPI U, 1967, ANN NY ACAD SCI, V562, P40
   SIEGEL C, 1984, ARCH GEN PSYCHIAT, V41, P607
   SRIVASTAVA ED, 1991, PSYCHOPHARMACOLOGY, V105, P63, DOI 10.1007/BF02316865
   Stevens KE, 1997, PHARMACOL BIOCHEM BE, V57, P869, DOI 10.1016/S0091-3057(96)00466-2
   STEVENS KE, 1995, PSYCHOPHARMACOLOGY, V119, P163, DOI 10.1007/BF02246157
   WALDO M, 1992, PSYCHIAT RES, V44, P21, DOI 10.1016/0165-1781(92)90066-C
   WESNES K, 1983, PHARMACOL THERAPEUT, V21, P189, DOI 10.1016/0163-7258(83)90072-4
NR 57
TC 35
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 114
EP 128
DI 10.1016/j.heares.2004.11.009
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300012
PM 15811704
ER

PT J
AU Turner, JG
   Hughes, LF
   Caspary, DM
AF Turner, JG
   Hughes, LF
   Caspary, DM
TI Divergent response properties of layer-V neurons in rat primary auditory
   cortex
SO HEARING RESEARCH
LA English
DT Article
DE layer V; rat; primary auditory cortex; pyramidal; extracellular;
   receptive field; juxtacellular
ID GERBIL MERIONES-UNGUICULATUS; INFERIOR COLLICULAR NEURONS; INTRINSIC
   FIRING PATTERNS; SUPERIOR OLIVARY COMPLEX; BIG BROWN BAT; CORTICOFUGAL
   MODULATION; PYRAMIDAL NEURONS; CORTICOCORTICAL CONNECTIONS;
   FUNCTIONAL-ORGANIZATION; COMMISSURAL CONNECTIONS
AB Layer-V pyramidal cells comprise a major output of primary auditory cortex (Al). At least two cell types displaying different morphology, projections and in vitro physiology have been previously identified in layer-V. The focus of the present study was to characterize extracellular receptive field properties of layer-V neurons to determine whether a similar breakdown of responses can be found in vivo. Recordings from 105 layer-V neurons revealed two predominant receptive field types. Thirty-two percent displayed strong excitatory V/U-shaped receptive field maps and spiking patterns with shorter stimulus-driven interspike intervals (ISIs), reminiscent of the bursting cells discussed in the in vitro literature. V/U-shaped maps remained relatively unchanged across the three sequential repetitions of the map run on each neuron. Neurons with V/U-shaped maps were also easily depolarized with extracellular current pulse stimulation. In contrast, 47% of the neurons displayed Complex receptive field maps characterized by weak and/or inconsistent excitatory regions and were difficult to depolarize with current pulses. These findings suggest that V/U-shaped receptive fields could correspond to previously described intrinsic bursting (M) cells with corticotectal projections, and that neurons with Complex receptive fields might represent the regular spiking (RS) cells with their greater inhibitory input and corticocortical/corticostriatal projection pattern. (c) 2004 Elsevier B.V. All rights reserved.
C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA.
   So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA.
RP Caspary, DM (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629,801 N Rutledge St, Springfield, IL 62794 USA.
EM dcaspary@siumed.edu
CR AGMON A, 1989, NEUROSCI LETT, V99, P137, DOI 10.1016/0304-3940(89)90278-4
   AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104
   Beneyto M, 1998, J COMP NEUROL, V401, P329
   Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x
   Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x
   CASPARY DM, 2003, ASS RES OT ABSTR 720
   CHAGNACAMITAL Y, 1990, J COMP NEUROL, V296, P598, DOI 10.1002/cne.902960407
   CODE RA, 1986, HEARING RES, V23, P205, DOI 10.1016/0378-5955(86)90110-3
   COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204
   COLWELL SA, 1975, BRAIN RES, V92, P443, DOI 10.1016/0006-8993(75)90328-5
   CONNORS BW, 1990, TRENDS NEUROSCI, V13, P99, DOI 10.1016/0166-2236(90)90185-D
   Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x
   DESCHENES M, 1994, BRAIN RES, V664, P215, DOI 10.1016/0006-8993(94)91974-7
   Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
   Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6
   DYKES RW, 1984, J NEUROPHYSIOL, V52, P1066
   FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304
   Foeller E, 2001, JARO, V2, P279
   GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0
   Hara K, 2002, ANESTH ANALG, V94, P313, DOI 10.1097/00000539-200202000-00015
   Hefti Brenda J., 2003, JARO Journal of the Association for Research in Otolaryngology, V4, P106, DOI 10.1007/s10162-002-3012-z
   Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626
   HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729
   Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714
   Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874
   MAGGI CA, 1986, EXPERIENTIA, V42, P109, DOI 10.1007/BF01952426
   MORIIZUMI T, 1991, BRAIN RES BULL, V27, P141, DOI 10.1016/0361-9230(91)90297-W
   Nicoll A, 1996, J PHYSIOL-LONDON, V497, P109
   OJIMA H, 1992, Cerebral Cortex, V2, P197, DOI 10.1093/cercor/2.3.197
   PALOMBI PS, 1996, J NEUROPHYSIOL, V75, P2111
   Paxinos G., 1998, RAT BRAIN STEREOTAXI
   Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd
   Pilowsky PM, 2001, J COMP NEUROL, V433, P1, DOI 10.1002/cne.1120
   Pinault D, 1996, J NEUROSCI METH, V65, P113, DOI 10.1016/0165-0270(95)00144-1
   Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4
   REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X
   RUTTGERS K, 1990, BRAIN RES, V509, P71, DOI 10.1016/0006-8993(90)90310-8
   Sakai M, 2001, P NATL ACAD SCI USA, V98, P3507, DOI 10.1073/pnas.061021698
   Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
   SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627
   Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501
   Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807
   SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2
   Sutter ML, 2000, J NEUROPHYSIOL, V84, P1012
   SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3
   Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X
   TURNER JG, 2003, ASS RES OT ABSTR 200
   VAUGHAN DW, 1983, BRAIN RES, V260, P181, DOI 10.1016/0006-8993(83)90673-X
   Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045
   Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8
   Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
   Weedman DL, 1996, J COMP NEUROL, V371, P311
   Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850
   Winer JA, 1998, J COMP NEUROL, V400, P147
   Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183
   WINGER JA, 1992, SPRINGER HDB AUDITOR, V1, P222
   WINGUTH SD, 1986, J COMP NEUROL, V248, P36, DOI 10.1002/cne.902480104
   Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033
   Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x
   Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255
   Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489
   Zhang YF, 2000, J NEUROPHYSIOL, V84, P325
   Zhou XM, 2000, BRAIN RES, V881, P62, DOI 10.1016/S0006-8993(00)02805-5
   Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083
   Zhu JJ, 1999, J NEUROPHYSIOL, V81, P1171
   Zilles Karl, 1995, P649
NR 68
TC 21
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 129
EP 140
DI 10.1016/j.heares.2004.09.011
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300013
PM 15811705
ER

PT J
AU Nourski, KV
   Abbas, PJ
   Miller, CA
   Robinson, BK
   Jeng, FC
AF Nourski, KV
   Abbas, PJ
   Miller, CA
   Robinson, BK
   Jeng, FC
TI Effects of acoustic noise on the auditory nerve compound action
   potentials evoked by electric pulse trains
SO HEARING RESEARCH
LA English
DT Article
DE acoustic noise; adaptation; cochlear implant; compound action potential;
   electric-acoustic stimulation; guinea pig
ID GUINEA-PIG; STIMULATION; RESPONSES; ADAPTATION
AB This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded front the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise.
   Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following, cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms.
   The effects of the acoustic noise were more prominent at lower electric Pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric Pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and. for a particular electric stimulus level. at high acoustic noise levels. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
   Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA.
RP Nourski, KV (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
EM kirill-nourski@uiowa.edu
CR ABKES BA, 2003, 26 ANN MIDW RES M AS, P197
   Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432
   Haenggeli A, 1998, AUDIOLOGY, V37, P353
   HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083
   Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2
   Jayel E., 1990, COCHLEAR IMPLANTS MO, P247
   Kiang NYS, 1965, RES MONOGRAPH, V35
   KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6
   Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6
   MILLER CA, 2003, EFFECTS REMAINING HA
   Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
   MILLER CA, 2003, 2003 C IMPL AUD PROS, P15
   Miller RG, 2001, AMYOTROPH LATERAL SC, V2, P3
   MILLER WR, 2000, CLIN BREAST CANC S1, V1, P9
   National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1
   NOURSKI KV, 2003, SOC NEUR 33 ANN M 8
   NOURSKI KV, 2003, 2003 C IMPL AUD PROS, P89
   TURNER C, 2001, 2001 C IMPL AUD PROS, P33
   WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7
NR 19
TC 10
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 141
EP 153
DI 10.1016/j.heares.2004.11.001
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300014
PM 15811706
ER

PT J
AU Maeda, K
   Yoshida, K
   Ichimiya, I
   Suzuki, M
AF Maeda, K
   Yoshida, K
   Ichimiya, I
   Suzuki, M
TI Dexamethasone inhibits tumor necrosis factor-alpha-induced cytokine
   secretion from spiral ligament fibrocytes
SO HEARING RESEARCH
LA English
DT Article
DE cell culture; enzyme-linked immunosorbent assay; intercellular adhesion
   molecule-1; mice; reverse transcribed-polymerase chain reaction
ID INTERCELLULAR-ADHESION MOLECULE-1; COCHLEAR LATERAL WALL; INNER-EAR;
   GLUCOCORTICOID RECEPTORS; PROINFLAMMATORY CYTOKINES; RAT COCHLEA;
   INFLAMMATION; EXPRESSION; CLONING; LOCALIZATION
AB To investigate the effect of proinflammatory cytokines on spiral ligament (SL) fibrocytes and regulation of cytokines by dexamethasone (Dex), in vitro studies were performed in murine secondary cell cultures. Cultured SL fibrocytes were stimulated with tumor necrosis factor-alpha (TNF-alpha), and the secretion of various mediators was measured by enzynne-linked immunosorbent assay (ELISA) and reverse transcribed-polymerase chain reaction (RT-PCR). After stimulation with TNF-alpha, levels of keratinocyte-derived cytokine (KC), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1) were elevated in the culture supernatant, and their corresponding messenger RNAs were detected in the cultured fibrocytes. When the cultures were incubated with both TNF-alpha and Dex, the levels of KC. MCP-1. MIP-2 and IL-6 were significantly lower than those in Cultures treated with TNF-alpha alone. The data suggest that Dex suppresses the inflammatory response in SL fibrocytes. Given that SL fibrocytes play a role in cochlear fluid and ion homeostasis, glucocrticoids may suppress the cochlear malfunction caused by SL inflammation. (c) 2004 Elsevier B.V. All rights reserved.
C1 Oita Univ, Fac Med, Dept Otolaryngol, Oita 8795593, Japan.
RP Suzuki, M (reprint author), Oita Univ, Fac Med, Dept Otolaryngol, 1-1 Idaigaoka, Oita 8795593, Japan.
EM suzukim@med.oita-u.ac.jp
CR Barnes PJ, 1997, NEW ENGL J MED, V336, P1066
   BAULIEU EE, 1989, ENDOCRINOLOGY, P16
   COCHRAN BH, 1983, CELL, V33, P939, DOI 10.1016/0092-8674(83)90037-5
   CRONSTEIN BN, 1992, P NATL ACAD SCI USA, V89, P9991, DOI 10.1073/pnas.89.21.9991
   DRISCOLL KE, 1994, EXP LUNG RES, V20, P473, DOI 10.3109/01902149409031733
   GUSTAFSSON JA, 1987, ENDOCR REV, V8, P185
   ICHIMIYA I, 1994, ANN OTO RHINOL LARYN, V103, P457
   Ichimiya I, 2003, ANN OTO RHINOL LARYN, V112, P722
   ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037
   Ichimiya I, 1998, LARYNGOSCOPE, V108, P585, DOI 10.1097/00005537-199804000-00023
   Ichimiya I, 1999, HEARING RES, V131, P128, DOI 10.1016/S0378-5955(99)00025-8
   Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7
   KAWAUCHI H, 1988, ACTA OTOLARYNGOL S S, V457, P100
   KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783
   KISHIMOTO TK, 1989, ADV IMMUNOL, V46, P149
   Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011
   LIM D J, 1970, Journal of Laryngology and Otology, V84, P413, DOI 10.1017/S0022215100072029
   Oran A, 1997, BRIT J DERMATOL, V136, P519, DOI 10.1111/j.1365-2133.1997.tb02134.x
   PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0
   Pousset F, 1999, GLIA, V26, P12, DOI 10.1002/(SICI)1098-1136(199903)26:1<12::AID-GLIA2>3.0.CO;2-S
   Proost P, 1996, INT J CLIN LAB RES, V26, P211, DOI 10.1007/BF02602952
   QING L, 2000, BIOCHEM BIOPH RES CO, V271, P364
   Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X
   RYSECK RP, 1989, EXP CELL RES, V180, P266, DOI 10.1016/0014-4827(89)90230-9
   SCHUKNECHT HF, 1991, ADV OTO-RHINO-LARYNG, V46, P50
   Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133
   Su YH, 1996, J VIROL, V70, P1277
   Suko T, 2000, HEARING RES, V140, P137, DOI 10.1016/S0378-5955(99)00191-4
   TEKAMPOLSON P, 1990, J EXP MED, V172, P911, DOI 10.1084/jem.172.3.911
   TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
   Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3
NR 31
TC 29
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 154
EP 160
DI 10.1016/j.heares.2004.08.022
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300015
PM 15811707
ER

PT J
AU Washington, JL
   Pitts, D
   Wright, CG
   Erway, LC
   Davis, RR
   Alagramam, K
AF Washington, JL
   Pitts, D
   Wright, CG
   Erway, LC
   Davis, RR
   Alagramam, K
TI Characterization of a new allele of Ames waltzer generated by ENU
   mutagenesis
SO HEARING RESEARCH
LA English
DT Article
DE deafness; hair cells; Pcdh15; mouse
ID HEARING-LOSS; ETHYLNITROSOUREA MUTAGENESIS; PROTOCADHERIN GENE;
   F1-HYBRID STRAINS; MUTANT ALLELES; MUTATIONS; PCDH15; POLARITY; MICE;
   DROSOPHILA
AB Mutation in the protocadherin 15 (Pcdh15) gene causes hair cell dysfunction and is associated with abnormal stereocilia development. We have characterized the first allele (Pcdh15(a nu-nmf79)) of Ames waltzer (a nu) obtained by N-ethyl-N-nitrosourea (ENU) mutaizenesis. Pcdh15(a nu-nmf19) was generated in the Neuroscience Mutagenesis Facility (NMF) at The Jackson Lab (Bar Habor, USA). Pcdh15(a nu-nmf19) mutants display circling and abnormal swimming behavior along with lack of aUditory-evoked brainsterri response at the highest intensities tested. Mutation analysis shows base substitution (A - G) in the consensus splice donor sequence linked to exon 14 resulting in the skipping of exon 14 and the splicing of exon 13-15. This results in the introduction of a stop codon in the coding sequence of exon 15 due to shift in the reading frame. The effect of nmf19 mutation is expected to be severe since the expressed Pcdh15 protein is predicted to truncate in the 5th cadherin domain. Abnormalities of cochlear hair cell stereocilia are apparent in Pcdh15(a nu-nmf19) mutants near the time of birth and by about P15 (15 days after birth) there is evidence of sensory cell degeneration. Disorganization of outer hair cell stereocilia is observed as early as P2. Inner hair cell stereocilia are also affected, but less severely than those of the outer hair cells. These results are consistent with characteristics of the mutation in the Pcdh15(a nu-nmf19) allele and the, support our previous finding that Protocadherin 15 plays an important role in hair-bundle morphogenesis. (c) 2004 Elsevier B.V. All rights reserved.
C1 Case Western Reserve Univ, Dept Otolaryngol Head & Neck Surg, Cleveland, OH 44106 USA.
   Case Western Reserve Univ, Dept Pediat, Cleveland, OH 44106 USA.
   Univ Texas, SW Med Ctr, Dept Otolaryngol Head & Neck Surg, Dallas, TX 75235 USA.
   Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA.
   NIOSH, Div Appl Res & Technol, Engn & Phys Hazards Branch, Hearing Loss Prevent Team, Cincinnati, OH 45226 USA.
RP Alagramam, K (reprint author), Case Western Reserve Univ, Dept Otolaryngol Head & Neck Surg, 11100 Euclid Ave, Cleveland, OH 44106 USA.
EM kna3@case.edu
RI Davis, Rickie/A-3186-2008
CR Adler PN, 1998, DEVELOPMENT, V125, P959
   Ahmed ZM, 2003, HUM MOL GENET, V12, P3215, DOI 10.1093/hmg/ddg358
   Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277
   Alagramam KN, 1999, GENETICS, V152, P1691
   Alagramam KN, 2001, NAT GENET, V27, P99
   Alagramam KN, 2001, HUM MOL GENET, V10, P1709, DOI 10.1093/hmg/10.16.1709
   Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0
   BODE VC, 1984, GENETICS, V108, P457
   Bray S, 2000, CURR BIOL, V10, pR155, DOI 10.1016/S0960-9822(00)00330-4
   Eaton S, 1997, CURR OPIN CELL BIOL, V9, P860, DOI 10.1016/S0955-0674(97)80089-0
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   JUSTICE MJ, 1988, GENETICS, V120, P533
   Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1
   SCHAIBLE RH, 1961, MOUSE NEWS LETT, V24, P38
   Takeichi T, 2000, RRD POLYM SCI, V4, P85
   Vivian JL, 2002, P NATL ACAD SCI USA, V99, P15542, DOI 10.1073/pnas.242474199
   Winter CG, 2001, CELL, V105, P81, DOI 10.1016/S0092-8674(01)00298-7
NR 18
TC 12
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 161
EP 169
DI 10.1016/j.heares.2004.09.014
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300016
PM 15811708
ER

PT J
AU Drennan, WR
   Pfingst, BE
AF Drennan, WR
   Pfingst, BE
TI Current-level discrimination using bipolar and monopolar electrode
   configurations in cochlear implants
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 26th Midwinter Meeting of the Association-for-Research-in-Otolaryngology
CY FEB 23-27, 2003
CL Daytona Beach, FL
SP Assoc Res Otolaryngol
DE cochlear; implant; bipolar; monopolar; lntensity discrimination
ID INTENSITY DISCRIMINATION; AUDITORY-NERVE; ELECTRICAL-STIMULATION;
   STIMULUS LEVEL; PSYCHOPHYSICS; EXCITATION; PATTERNS; DEGENERATION;
   PERFORMANCE; STRATEGIES
AB This study examined current-level discrimination ability in listeners with cochlear implants using bipolar and monopolar electrode configurations. Current-level discrimination ability was measured as a function of electrode configuration (monopolar and bipolar), stimulation site (8 and 16) and level (5%, 15% 25%, 50% and 80% of the dynamic range). Weber fractions usually decreased with increasing level. Differences in Weber fractions between monopolar and bipolar configurations were observed for listeners with short durations of deafness (< 5 years). For these listeners, in the bipolar condition at the more-apical site 16, Weber fractions remained constant with increasing level, and the Weber fractions at low levels were smaller than in other conditions. We suggest that nerve density was better and the nerve-to-site-of-action-potential distance was smaller in these cases such that more fibers could be recruited with a unit increase in current level, leading to better current-level sensitivity. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
RP Drennan, WR (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM warddrennan@yahoo.com
CR Bierer JA, 2002, J NEUROPHYSIOL, V87, P478
   Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274
   Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9
   DILLIER N, 1983, ANN NY ACAD SCI, V405, P360, DOI 10.1111/j.1749-6632.1983.tb31650.x
   FLORENTINE M, 1981, J ACOUST SOC AM, V70, P1646, DOI 10.1121/1.387219
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   HOCHMAIRDESOYER IJ, 1981, MED PROG TECHNOL, V8, P107
   Kileny PR, 1998, AM J OTOL, V19, P313
   LEHNHARDT E, 1992, J OTORHINOLARYNGOL R, V54, P308
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   MERZENICH MM, 1977, FUNCTIONAL ELECT STI, P321
   MOORE BCJ, 1974, J ACOUST SOC AM, V55, P1049, DOI 10.1121/1.1914646
   Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022
   NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
   Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5
   Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949
   PFINGST BE, 1983, J ACOUST SOC AM, V73, P1283, DOI 10.1121/1.389277
   PFINGST BE, 1990, HEARING RES, V50, P43, DOI 10.1016/0378-5955(90)90032-K
   Pfingst BE, 2001, JARO, V2, P87
   PFINGST BE, 1984, ARCH OTOLARYNGOL, V110, P140
   RYAN AF, 1990, HEARING RES, V50, P57, DOI 10.1016/0378-5955(90)90033-L
   Saunders E, 2002, EAR HEARING, V23, p28S, DOI 10.1097/00003446-200202001-00004
   SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   SPOENDLIN H, 1984, ACTA OTOLARYNGOL S S, V450, P1
   SUZUKA Y, 1988, ANN OTOL RHINO LARYN, V158, P1
   VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
   VIEMEIST.NF, 1972, J ACOUST SOC AM, V51, P1265, DOI 10.1121/1.1912970
   Von Wallenberg E. L., 1995, Annals of Otology Rhinology and Laryngology, V104, P372
   Zeng FG, 1999, NEUROREPORT, V10, P1931, DOI 10.1097/00001756-199906230-00025
   ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013
   ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
   Zwolan TA, 1996, AM J OTOL, V17, P717
NR 33
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 170
EP 179
DI 10.1016/j.heares.2004.11.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300017
PM 15811709
ER

PT J
AU Valk, WL
   Wit, HP
   Segenhout, JM
   Dijk, F
   van der Want, JJL
   Albers, FWJ
AF Valk, WL
   Wit, HP
   Segenhout, JM
   Dijk, F
   van der Want, JJL
   Albers, FWJ
TI Morphology of the endolymphatic sac after an acute endolymphatic in the
   guinea pig hydrops
SO HEARING RESEARCH
LA English
DT Article
DE endolymphatic sac; homogeneous substance; volume regulation;
   endolymphatic hydrops; Meniere's disease
ID INNER-EAR; COCHLEA; VOLUME; CELLS; RAT
AB The role of the endolymphatic sac (ES) in endolymph volume homeostasis is speculative. The present study investigates changes of the ES's epithelia and luminal filling after induction of an acute endolymphatic hydrops. After microiniection of 1.1 mu l artificial endolymph into scala media of the cochlea, guinea pigs were terminated immediately (n = 6) or after different time intervals; 1/2 h (n = 3), 1 h (n = 4) and 2 h (n = 4). Inner ear specimens were processed for light and/or transmission electron microscopy. The noninjected contralateral ear served as a histological control. Correct injection was confirmed by detection of microspheres in the endolymphatic compartment after the same microinjection procedure.
   In all specimens, ribosome rich cells and intraluminal macrophages appeared to be actively involved in degradation of homogeneous substance (HS) by secreting lytic enzymes and digestion, respectively. Amazingly, in our study no ES differences were found between injected and non-injected ears and no distinct changes were observed in guinea pigs terminated after different time intervals. The ES's luminal HIS was always present and often to a large extent. This is in contrast with [Hear. Res. 138, 81] dramatic changes were observed. Endolymph volume homeostasis is a complex mechanism, in which the role of HS remains obscure. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands.
RP Valk, WL (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30-001, NL-9700 RB Groningen, Netherlands.
EM w.l.valk@kno.azg.nl
CR BARTOLI E, 1989, AM J PHYSIOL, V257, P341
   Beitz E, 2003, CELL MOL NEUROBIOL, V23, P315, DOI 10.1023/A:1023636620721
   ERWALL C, 1988, HEARING RES, V35, P109, DOI 10.1016/0378-5955(88)90045-7
   FUKAZAWA K, 1991, ANAT REC, V230, P425, DOI 10.1002/ar.1092300315
   Grunnet M, 2003, J PHYSIOL-LONDON, V549, P419, DOI 10.1113/jphysiol.2003.038455
   Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947
   IKEDA M, 1984, ANN OTO RHINOL LARYN, V93, P540
   KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343
   LEE KS, 1992, ACTA OTO-LARYNGOL, V112, P658, DOI 10.3109/00016489209137456
   Mongin AA, 2001, PATHOPHYSIOLOGY, V8, P77, DOI 10.1016/S0928-4680(01)00074-8
   PARKER DA, 1992, LARYNGOSCOPE, V102, P152
   Peters TA, 2003, HEARING RES, V176, P94, DOI 10.1016/S0378-5955(02)00748-7
   Qvortrup K, 1999, ACTA OTO-LARYNGOL, V119, P194
   Qvortrup K, 1996, AM J PHYSIOL-RENAL, V270, pF1073
   Rask-Andersen H, 1999, HEARING RES, V138, P81, DOI 10.1016/S0378-5955(99)00153-7
   RASKANDERSEN H, 1979, ACTA OTO-LARYNGOL, V88, P315, DOI 10.3109/00016487909137175
   Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X
   Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91
   Stankovic KM, 1997, HEARING RES, V114, P21, DOI 10.1016/S0378-5955(97)00072-5
   Takeda T, 2003, HEARING RES, V182, P9, DOI 10.1016/S0378-5955(03)00135-7
   Thalmann I, 2001, DIS MARKERS, V17, P259
   Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021
   Voie AH, 2002, HEARING RES, V171, P119, DOI 10.1016/S0378-5955(02)00493-8
   Yan Z, 2003, LARYNGOSCOPE, V113, P1609, DOI 10.1097/00005537-200309000-00038
NR 24
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 180
EP 187
DI 10.1016/j.heares.2004.10.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300018
PM 15811710
ER

PT J
AU Phillips, DP
   Hall, SE
AF Phillips, DP
   Hall, SE
TI Psychophysical evidence for adaptation of central auditory processors
   for interaural differences in time and level
SO HEARING RESEARCH
LA English
DT Article
DE interaural time difference; interaural level difference; selective
   adaptations; psychophysics
ID SPATIAL RECEPTIVE-FIELDS; CAT INFERIOR COLLICULUS; SOUND-LOCALIZATION;
   SELECTIVE ADAPTATION; SUPERIOR COLLICULUS; PROLONGED EXPOSURE; CORTEX;
   SENSITIVITY; RESPONSES; NEURONS
AB Human listeners were studied for their ability to lateralize single target tones of each of two frequencies relative to midline clicks. They did so before and after exposure to adaptor tones of the same frequencies. The adaptor tones were strongly lateralized, and in opposite directions for each frequency, by either an interaural time difference (ITD, Experiment 1) or interaural level difference (ILD, Experiment 2). Following adaptation, psychometric functions for ITD (Exp. 1) and ILD (Exp. 2) were obtained for target tones for the two frequencies separately. These were found to be shifted in the direction of the fatigued side. fit the case of ILD, this was in the absence of a shift in monaural sensitivity sufficient to account for the effect. For both ITD and ILD studies, shifts in perceived laterality were induced in opposite directions at two frequencies concurrently. This effect was induced with only seconds of intermittent exposure to the adaptor tones. The fact that it could be induced at two frequencies in opposite directions at the same time, suggests (a), that these data constitute new psychophysical evidence for the frequency specificity of ITD and ILD coding in the human brain, and (b), that the effect was not due to the introduction of some response bias at the decision level of perceptual judgement. The data are interpreted in terms of a two- or three-channel opponent process model. (c) 2004 Elsevier B.V. All rights reserved.
C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada.
RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada.
EM dennis.phillips@dal.ca
RI Phillips, Dennis/A-6496-2011
CR Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037
   BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441
   Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843
   Chatterjee M, 1999, J ACOUST SOC AM, V105, P1853, DOI 10.1121/1.426722
   COOPER WE, 1974, J ACOUST SOC AM, V56, P617, DOI 10.1121/1.1903300
   Dennett D. C., 1991, CONSCIOUSNESS EXPLAI
   Dong CJ, 1999, NAT NEUROSCI, V2, P863, DOI 10.1038/13161
   Dong CJ, 2000, PERCEPT PSYCHOPHYS, V62, P1099, DOI 10.3758/BF03212091
   EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6
   ELFNER L, 1966, J ACOUST SOC AM, V39, P716, DOI 10.1121/1.1909946
   Frisby J. P., 1980, SEEING ILLUSION BRAI
   GRANTHAM DW, 1989, PERCEPT PSYCHOPHYS, V45, P129, DOI 10.3758/BF03208047
   GRANTHAM DW, 1979, PERCEPT PSYCHOPHYS, V26, P403, DOI 10.3758/BF03204166
   HARI R, 1995, NEUROSCI LETT, V189, P29, DOI 10.1016/0304-3940(95)11443-Z
   JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987
   JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
   KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R
   KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306
   KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870
   KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324
   McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049
   MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
   Mills A. W., 1972, F MODERN AUDITORY TH, V2, P301
   MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
   Moore BC., 2003, INTRO PSYCHOL HEARIN
   MOORE DR, 1984, HEARING RES, V13, P175, DOI 10.1016/0378-5955(84)90107-2
   PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1
   Phillips D P, 2003, J Am Acad Audiol, V14, P518, DOI 10.3766/jaaa.14.9.7
   PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9
   Phillips DP, 2002, PERCEPTION, V31, P875, DOI 10.1068/p3293
   Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3
   PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245
   PHILLIPS DP, 2001, PHYSL EAR, P613
   Phillips DP, 2001, J ACOUST SOC AM, V110, P1539, DOI 10.1121/1.1396329
   RAJAN R, 1990, J NEUROPHYSIOL, V64, P872
   ROBERTS M, 1981, PERCEPT PSYCHOPHYS, V30, P309, DOI 10.3758/BF03206144
   SAMSON FK, 1993, J NEUROPHYSIOL, V70, P492
   SAWUSCH JR, 1981, J EXP PSYCHOL HUMAN, V7, P408, DOI 10.1037//0096-1523.7.2.408
   SEMPLE MN, 1983, HEARING RES, V10, P203, DOI 10.1016/0378-5955(83)90054-0
   Shore DI, 1998, J ACOUST SOC AM, V103, P3730, DOI 10.1121/1.423093
   SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098
   Stecker GC, 2003, BIOL CYBERN, V89, P341, DOI 10.1007/s00422-003-0439-1
   THURLOW WR, 1973, J ACOUST SOC AM, V53, P1573, DOI 10.1121/1.1913505
   TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163
   TURNER CW, 1994, J ACOUST SOC AM, V96, P795, DOI 10.1121/1.410317
   VOLMAN SF, 1989, J NEUROSCI, V9, P3083
   Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544
   WISE LZ, 1985, J NEUROPHYSIOL, V54, P185
   YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020
   YOST WA, 1974, J ACOUST SOC AM, V55, P1299, DOI 10.1121/1.1914701
NR 50
TC 35
Z9 35
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 188
EP 199
DI 10.1016/j.heres.2004.11.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300019
PM 15811711
ER

PT J
AU McFadden, SL
   Woo, JM
   Michalak, N
   Ding, DL
AF McFadden, SL
   Woo, JM
   Michalak, N
   Ding, DL
TI Dietary vitamin C supplementation reduces noise-induced hearing loss in
   guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE antioxidants; ascorbate; ascorbic acid; acoustic trauma; reactive oxygen
   species; free radicals
ID ACOUSTIC TRAUMA; IMPULSE NOISE; COCHLEAR DAMAGE; LIPID-PEROXIDATION;
   OXIDATIVE DAMAGE; ASCORBIC-ACID; INNER-EAR; GLUTATHIONE; EXPOSURE;
   PROTECTION
AB Vitamin C (ascorbate) is a water-soluble, low molecular weight antioxidant that works in conjunction with glutathione and other cellular antioxidants, and is effective against a variety of reactive oxygen species. including superoxide and hydroxyl radicals that have been implicated in the etiology of noise-induced hearing loss (NIHL). Whereas most animals can manufacture their own vitamin C. humans and a few other mammals such as guinea pigs lack the terminal enzyme for vitamin C synthesis and must obtain it from dietary Sources. To determine if Susceptibility to NIHL Could be influenced by manipulating dietary levels of vitamin C, albino guinea pigs were raised for 35 days on a diet with normal, supplemented or deficient levels of ascorbate, then exposed to 4 kHz octave band noise at 114 dB SPL for 6 h to induce permanent threshold shifts (PTS) of the scalp-recorded auditory brainstem response. Animals that received the highest levels of dietary ascorbate developed significantly less PTS for click stimuli and 4, 8, 12, and 16 kHz tones than animals on normal and deficient diets. Outer hair cell loss was minimal in all groups after noise exposure, but permanent damage to stereocilia were observed in noise-exposed ears. The results support the hypothesis that dietary factors influence individual Susceptibility to hearing loss, and suggest that high levels of vitamin C may be beneficial in reducing susceptibility to NIHL. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Buffalo, Ctr Hearing & Deafness, Dept Commun Sci & Disorders, Buffalo, NY 14214 USA.
RP McFadden, SL (reprint author), Univ Buffalo, Ctr Hearing & Deafness, Dept Commun Sci & Disorders, 137E Cary Hall, Buffalo, NY 14214 USA.
EM mcfadden@buffalo.edu
CR BARJA G, 1994, FREE RADICAL BIO MED, V17, P105, DOI 10.1016/0891-5849(94)90108-2
   BIESALSKI HK, 1990, J NUTR, V120, P726
   Chatterjee I B, 1978, World Rev Nutr Diet, V30, P69
   COLEMAN JW, 1976, ACTA OTO-LARYNGOL, V82, P33, DOI 10.3109/00016487609120860
   Daruwala R, 1999, FEBS LETT, V460, P480, DOI 10.1016/S0014-5793(99)01393-9
   de Rodas BZ, 1998, J ANIM SCI, V76, P1636
   Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005
   Esposito E, 2002, NEUROBIOL AGING, V23, P719, DOI 10.1016/S0197-4580(02)00078-7
   GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7
   Ghosh MK, 1996, FREE RADICAL RES, V25, P173, DOI 10.3109/10715769609149922
   GOLDENBERG H, 1994, J BIOENERG BIOMEMBR, V26, P359, DOI 10.1007/BF00762776
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   GRENNER J, 1989, J ACOUST SOC AM, V86, P2223, DOI 10.1121/1.398483
   Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x
   HENDERSON D, 1999, COCHLEAR PARM NOISE, P85
   Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4
   HU BH, 2001, NOISE INDUCED HEARIN, P203
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   JAIN A, 1992, P NATL ACAD SCI USA, V89, P5093, DOI 10.1073/pnas.89.11.5093
   Jovanovic SV, 2000, ANN NY ACAD SCI, V899, P326
   Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1
   Lomaestro BM, 1995, ANN PHARMACOTHER, V29, P1263
   Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029
   McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6
   MEISTER A, 1982, BIOCHEM SOC T, V10, P78
   MEISTER A, 1986, J AM COLL NUTR, V5, P137
   MEISTER A, 1992, BIOCHEM PHARMACOL, V44, P1905, DOI 10.1016/0006-2952(92)90091-V
   *NAT AC SCI, 2000, DIET REF INT VIT C
   National Institute on Deafness and Other Communication Disorders, 2002, NIH PUB
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   PACKER JE, 1979, NATURE, V278, P737, DOI 10.1038/278737a0
   Pourbakht A, 2003, HEARING RES, V178, P70, DOI 10.1016/S0378-5955(03)00039-X
   Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3
   Quiles JL, 2002, TOXICOLOGY, V180, P79, DOI 10.1016/S0300-483X(02)00383-9
   ROBERTSON D, 1982, HEARING RES, V7, P55, DOI 10.1016/0378-5955(82)90081-8
   ROSE RC, 1993, FASEB J, V7, P1135
   Scheibe F, 2000, EUR ARCH OTO-RHINO-L, V257, P10, DOI 10.1007/PL00007505
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   SLEPECKY N, 1982, ACTA OTO-LARYNGOL, V93, P329, DOI 10.3109/00016488209130890
   SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
   SLEPECKY N, 1981, ARCH OTO-RHINO-LARYN, V230, P273, DOI 10.1007/BF00456329
   Som S, 1983, Acta Vitaminol Enzymol, V5, P243
   Spongr V P, 1998, Scand Audiol Suppl, V48, P15
   SUN AH, 1991, ACTA OTO-LARYNGOL, V111, P684, DOI 10.3109/00016489109138400
   Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4
   WELLS WW, 1994, J BIOENERG BIOMEMBR, V26, P369, DOI 10.1007/BF00762777
   WILLOTT JF, 1991, ANGING AUDITORY SYST
   Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   YAMASHITA D, IN PRESS BRAIN RES, V1019, P201
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
NR 53
TC 33
Z9 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 200
EP 208
DI 10.1016/j.heares.2004.10.011
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300020
PM 15811712
ER

PT J
AU Smittkamp, SE
   Durham, D
AF Smittkamp, SE
   Durham, D
TI Effect of cochlear integrity on cochlear nucleus neuron glucose
   metabolism in aged adult broiler chickens
SO HEARING RESEARCH
LA English
DT Article
DE aging; auditory; chicken; 2-deoxyglucose; nucleus magnocellularis
ID STEM AUDITORY NUCLEI; HAIR CELL LOSS; RETINAL GANGLION-CELLS;
   BRAIN-STEM; TONOTOPIC ORGANIZATION; NEUROTROPHIC FACTOR; AFFERENT
   INFLUENCES; FREQUENCY ORGANIZATION; BREED DIFFERENCES; BASILAR PAPILLA
AB Abrupt removal of excitatory input is devastating to post-synaptic neurons in normally functioning sensory systems. Ill both mammalian and avian auditory systems, abrupt temporary or permanent experimental deafferentation stimulates a cascade of changes in central auditory structures that can result in neuron death. Effects of naturally occurring progressive deafferentation oil central auditory structure and function have not been fully described. Extensive naturally occurring cochlear damage is found in some aged chickens, despite their regenerative capacity, providing the opportunity to examine the effects of this type of deafferentation on the avian cochlear nucleus (nucleus magnocellularis, NM).
   Previous evaluation of NM oxidative metabolism using cytochrome oxidase histochemistry revealed that naturally occurring cochlear damage results in down-regulated metabolism in corresponding regions of NM. It is unknown how progressive hair cell damage and loss affects NM glucose uptake. Here, NM glucose metabolism is assessed using 2-deoxyglucose uptake as a marker for metabolic activity in the presence of normal, mildly damaged, severely damaged, and totally damaged cochlear hair cells. Results indicate that while severe and total cochlear damage significantly decrease NM oxidative metabolism, only total damage results in significantly decreased NM glucose metabolism. Results are discussed in the context of functional reorganization and trophic support. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA.
   Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66160 USA.
RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd,MS 3010, Kansas City, KS 66160 USA.
EM ddurham@kumc.edu
CR Agerman K, 1999, ANN NY ACAD SCI, V884, P131
   Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x
   BESS FH, 1996, HEARING DISORDERS, P199
   BOORD RL, 1969, ANN NY ACAD SCI, V167, P186, DOI 10.1111/j.1749-6632.1969.tb20444.x
   BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A
   BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403
   CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0
   Churchill JD, 1998, EXP BRAIN RES, V118, P189, DOI 10.1007/s002210050271
   Cochran SL, 1999, J COMP NEUROL, V413, P271, DOI 10.1002/(SICI)1096-9861(19991018)413:2<271::AID-CNE8>3.0.CO;2-L
   COLGAN AL, 2002, ARO ABSTR, V25, P72
   Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852
   DeBello WM, 2001, J NEUROSCI, V21, P3161
   Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9
   DIETRICH WD, 1985, J NEUROSCI, V5, P874
   DURHAM D, 1985, J COMP NEUROL, V231, P446, DOI 10.1002/cne.902310404
   Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
   Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4
   HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402
   Hiebert GW, 2002, J NEUROSCI RES, V69, P160, DOI 10.1002/jnr.10275
   Horton JC, 1998, J NEUROSCI, V18, P5433
   HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302
   Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W
   Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4
   ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311
   Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921
   JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179
   JONES SM, 1995, HEARING RES, V82, P149, DOI 10.1016/0378-5955(94)00173-N
   Kajikawa H, 1997, J NEUROCYTOL, V26, P501, DOI 10.1023/A:1018585508713
   Klocker N, 2001, NEUROBIOL DIS, V8, P103, DOI 10.1006/nbdi.2000.0329
   KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4
   LEVAY S, 1980, J COMP NEUROL, V191, P1, DOI 10.1002/cne.901910102
   LICHTENHAN JL, IN PRESS HEAR RES
   Linkenhoker BA, 2002, NATURE, V419, P293, DOI 10.1038/nature01002
   LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211
   Lurie DI, 2000, HEARING RES, V149, P178, DOI 10.1016/S0378-5955(00)00181-7
   Mandairon N, 2003, NEUROSCIENCE, V119, P507, DOI 10.1016/S0306-4522(03)00172-6
   Manger PR, 1996, P ROY SOC B-BIOL SCI, V263, P933, DOI 10.1098/rspb.1996.0138
   MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046
   Marzella PL, 2002, CLIN EXP PHARMACOL P, V29, P363, DOI 10.1046/j.1440-1681.2002.03684.x
   Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0
   Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9
   PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303
   Pirvola U, 1997, J NEUROBIOL, V33, P1019, DOI 10.1002/(SICI)1097-4695(199712)33:7<1019::AID-NEU11>3.0.CO;2-A
   Rajan R, 1998, J COMP NEUROL, V399, P35
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   Ramer MS, 2002, MOL CELL NEUROSCI, V19, P239, DOI 10.1006/mcne.2001.1067
   Reser DH, 1997, ACTA OTO-LARYNGOL, V117, P239, DOI 10.3109/00016489709117779
   RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873
   SANDS SJ, 1999, ASS RES OT ABSTR, V22, P146
   Sanes J.R., 2000, PRINCIPLES NEURAL SC, P1063
   Saunders JC, 1998, J COMP NEUROL, V390, P412
   Sawai H, 1996, J NEUROSCI, V16, P3887
   SCHWABER MK, 1993, AM J OTOL, V14, P252
   Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
   SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407
   Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1
   Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008
   SMITTKAMP SE, UNPUB HEAR RES
   Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
   Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853
   Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   Waleszczyk WJ, 2003, EUR J NEUROSCI, V17, P2351, DOI 10.1046/j.1460-9568.2003.02674.x
   WESTRUM LE, 1986, J COMP NEUROL, V243, P195, DOI 10.1002/cne.902430205
   Wilkinson Brandy L, 2002, Brain Res Mol Brain Res, V99, P67
   WILLIAMS PP, 1993, CAN J VET RES, V57, P1
   Yasuno H, 2000, BRAIN RES, V887, P53, DOI 10.1016/S0006-8993(00)02966-8
   Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x
NR 71
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 209
EP 221
DI 10.1016/j.heares.2004.10.009
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300021
PM 15811713
ER

PT J
AU Jen, PHS
   Wu, CH
AF Jen, PHS
   Wu, CH
TI The role of GABAergic inhibition in shaping the response size and
   duration selectivity of bat inferior collicular neurons to sound pulses
   in rapid sequences
SO HEARING RESEARCH
LA English
DT Article
DE bat; bicuculline; duration selectivity; inferior colliculus; GABA;
   response size
ID BIG BROWN BAT; VENTRAL COCHLEAR NUCLEUS; DEPENDENT RECOVERY CYCLE;
   PRIMARY AUDITORY-CORTEX; EPTESICUS-FUSCUS; SPACE REPRESENTATION;
   REPETITION RATE; FM BAT; DIRECTIONAL SELECTIVITY; BICUCULLINE
   APPLICATION
AB Natural sounds, Such as vocal communication sounds of many animal species typically occur as sequential sound pulses. Therefore, the response size of auditory neurons to a sound Pulse Would be inevitably affected when the sound pulse is preceded and succeeded by another Sound pulse (i.e., forward and backward masking). The present study presents data to show that increasing strength of GABAergic inhibition relative to excitation contributes to decreasing response size and sharpening of duration selectivity of bat inferior collicular (IC) neurons to Sound pulses in rapid sequences. The response size in number of impulses and duration selectivity of IC neurons were studied with a pulse train containing 9 sound pulses. A family of duration tuning curves was plotted for IC neurons using the number of impulses discharged to each presented sound pulse against pulse duration. Our data show that the response size of IC neurons progressively decreased and duration selectivity increased when determined with sequentially presented sound pulses. This variation in the response size and duration selectivity of IC neurons with sequentially presented sound pulses was abolished or reduced during bicuculline and GABA application. Bicuculline application increased the response size and broadened the duration tuning curve of IC neurons while GABA application produced opposite results. Possible mechanisms underlying increasing strength of GABAergic inhibition with sequentially presented sound pulses are presented. Biological significance of these findings in relation to acoustic signal processing is also discussed. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA.
   Univ Missouri, Interdisciplinary Neurosci Program, Columbia, MO 65211 USA.
RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, 208 Lefevre Hall, Columbia, MO 65211 USA.
EM jenp@missouri.edu
CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305
   BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7
   Brosch M, 1997, J NEUROPHYSIOL, V77, P923
   CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876
   CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25
   Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475
   CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341
   Cooper J. R., 1982, BIOMEDICAL BASIS NEU
   Covey Ellen, 1995, Springer Handbook of Auditory Research, V5, P235
   Ebert U, 1995, HEARING RES, V91, P160, DOI 10.1016/0378-5955(96)83100-5
   Faure PA, 2003, J NEUROSCI, V23, P3052
   Fubara BM, 1996, J COMP NEUROL, V369, P83
   Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059
   Galarreta M, 1998, NAT NEUROSCI, V1, P587
   Galazyuk AV, 2000, J NEUROPHYSIOL, V83, P128
   GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110
   Griffin DR, 1958, LISTENING DARK
   HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108
   HOCHERMAN S, 1981, J NEUROPHYSIOL, V45, P987
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794
   Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9
   JEN PHS, 1982, J COMP PHYSIOL, V147, P351
   JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4
   Jen PHS, 2001, J COMP PHYSIOL A, V187, P605, DOI 10.1007/s003590100233
   Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317
   Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408
   Jen PHS, 2002, BRAIN RES, V948, P159, DOI 10.1016/S0006-8993(02)03056-1
   KLUG A, 1995, J NEUROPHYSIOL, V74, P1701
   Koch U, 1998, J NEUROPHYSIOL, V80, P71
   LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902
   LeBeau FEN, 2001, J NEUROSCI, V21, P7303
   Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119
   Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885
   Lu Y, 2003, HEARING RES, V177, P100, DOI 10.1016/S0378-5955(03)00024-8
   Lu Y, 1998, J NEUROPHYSIOL, V79, P2303
   Lu Y, 2002, HEARING RES, V169, P140, DOI 10.1016/S0378-5955(02)00457-4
   Malmierca MS, 1998, J NEUROSCI, V18, P10603
   MORIYAMA T, 1994, HEARING RES, V79, P105, DOI 10.1016/0378-5955(94)90132-5
   Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195
   OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104
   PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748
   PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69
   POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F
   POLLAK GD, 1989, NEURAL BASIS ECHOLAC
   POON PWF, 1990, EXP BRAIN RES, V79, P83
   ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345
   SAINTMARIE RL, 1989, HEARING RES, V42, P97
   Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O
   SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103
   SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674
   Suga N., 1997, ENCY ACOUSTICS, P1409
   Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55
   Winer JA, 1998, J COMP NEUROL, V400, P147
   Wu LG, 1998, BIOPHYS J, V74, P3003
   Wu M, 1991, Chin J Physiol, V34, P145
   Wu Min, 1995, Rhinolophe, V11, P75
   Wu MI, 1996, J COMP PHYSIOL A, V179, P385
   YANG LC, 1992, J NEUROPHYSIOL, V68, P1760
   Zhou XM, 2003, BRAIN RES, V973, P131, DOI 10.1016/S0006-8993(03)02575-7
   Zhou XM, 2004, BRAIN RES, V1019, P281, DOI 10.1016/j.brainres.2004.06.004
   Zhou XM, 2002, J COMP PHYSIOL A, V188, P815, DOI 10.1007/s00359-002-0367-x
   Zuckerman E.B., 1989, CHEM MATER, V1, P12, DOI 10.1021/cm00001a006
NR 63
TC 17
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 222
EP 234
DI 10.1016/j.heures.2004.11.008
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300022
PM 15811714
ER

PT J
AU Li, L
   Qi, JG
   He, Y
   Alain, C
   Schneider, BA
AF Li, L
   Qi, JG
   He, Y
   Alain, C
   Schneider, BA
TI Attribute capture in the precedence effect for long-duration noise
   sounds
SO HEARING RESEARCH
LA English
DT Article
DE precedence effect; fusion; reverberant environment; correlation; gap;
   event-related potential
ID INFERIOR COLLICULUS; ECHO SUPPRESSION; SIMULATED ECHOES;
   AUDITORY-CORTEX; DISCRIMINATION; LOCALIZATION; CAT; LATERALIZATION;
   RESPONSES; BREAKDOWN
AB Listeners perceptually fuse the direct wave from a sound Source with its reflections off nearby surfaces into a single sound image, located at or near the Sound source (the precedence effect). This study investigated how a brief gap presented in the middle of either a direct wave or simulated reflection is incorporated into the fused image. For short (< 9.5 ms) delays between the direct (leading) and reflected (lagging) waves. no sound was perceived from the direction of the lagging wave. For delays between 10 and 15 ins. both Sounds were perceived. but the gap was heard only on the leading side. When the gap was only in the correlated lagging Sound at short delays, it also was perceived as occurring on the leading side. Moreover, gap detection thresholds were the same for gaps in the leading and lagging sounds. suggesting that the perception of the gap was not suppressed, but rather incorporated into the leading sound. Finally. scalp event-related potentials were not associated with the precedence effect until the gap occurred. This suggests that cortical mechanisms are engaged to maintain fusion when attributes in direct or reflected waves change. (c) 2004 Elsevier B.V. All rights reserved.
C1 Peking Univ, Natl Key Lab Machine Precept, Speech & Hearing Res Ctr, Dept Psychol, Beijing 100871, Peoples R China.
   Univ Toronto, Dept Psychol, Ctr Res Biol Commun Syst, Mississauga, ON L5L 1C6, Canada.
   Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada.
RP Li, L (reprint author), Peking Univ, Natl Key Lab Machine Precept, Speech & Hearing Res Ctr, Dept Psychol, Beijing 100871, Peoples R China.
EM liang@psych.utoronto.ca
CR Blauert J., 1997, SPATIAL HEARING
   CLIFTON RK, 1989, PERCEPT PSYCHOPHYS, V46, P139, DOI 10.3758/BF03204973
   CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802
   Clifton RK, 2002, PERCEPT PSYCHOPHYS, V64, P180, DOI 10.3758/BF03195784
   CLIFTON RK, 1994, J ACOUST SOC AM, V95, P1525, DOI 10.1121/1.408540
   CORNELISSE LE, 1987, NEUROPSYCHOLOGIA, V25, P449, DOI 10.1016/0028-3932(87)90033-9
   Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469
   Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199
   Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211
   FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955
   Freyman RL, 1998, J ACOUST SOC AM, V103, P2031, DOI 10.1121/1.421350
   Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   LI L, 2002, HEARING RES, V168, P113
   Liebenthal E, 1999, J ACOUST SOC AM, V106, P291, DOI 10.1121/1.427057
   Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792
   Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1285
   Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302
   Litovsky RY, 2002, HEARING RES, V165, P177, DOI 10.1016/S0378-5955(02)00304-0
   Litovsky RY, 1998, J ACOUST SOC AM, V103, P3139, DOI 10.1121/1.423072
   Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
   Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223
   Litovsky RY, 2002, J NEUROPHYSIOL, V87, P976, DOI 10.1152/jn.00568.2001
   PERROTT D R, 1987, Journal of Auditory Research, V27, P59
   Picton TW, 2000, CLIN NEUROPHYSIOL, V111, P53, DOI 10.1016/S1388-2457(99)00227-8
   Rakerd B, 2000, J ACOUST SOC AM, V107, P1061, DOI 10.1121/1.428287
   SHINNCUNNINGHAM BG, 1993, J ACOUST SOC AM, V93, P2923, DOI 10.1121/1.405812
   Tollin DJ, 1999, J ACOUST SOC AM, V105, P838, DOI 10.1121/1.426273
   WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275
   YIN TCT, 1994, J NEUROSCI, V14, P5170
   Zurek P. M., 1987, DIRECTIONAL HEARING, P85, DOI 10.1007/978-1-4612-4738-8_4
   ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974
NR 32
TC 25
Z9 29
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 235
EP 247
DI 10.1016/j.heures.2004.10.007
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300023
PM 15811715
ER

PT J
AU Schmerber, S
   Sheykholeslami, K
   Kermany, MH
   Hotta, S
   Kaga, K
AF Schmerber, S
   Sheykholeslami, K
   Kermany, MH
   Hotta, S
   Kaga, K
TI Time-intensity trading in bilateral congenital aural atresia patients
SO HEARING RESEARCH
LA English
DT Article
DE bone conduction; sound lateralization; binaural processing; plasticity;
   auditory cues; human
ID SUPERIOR OLIVARY COMPLEX; ANCHORED HEARING-AID; INTERAURAL TIME;
   AUDITORY LOCALIZATION; SOUND LOCALIZATION; BRAIN-STEM; BARN OWL;
   PHYSIOLOGICAL-MECHANISMS; LATERALIZATION; BONE
AB In an effort to examine the rules by which information of bilaterally applied bone-conducted signals arising from interaural time differences (ITD) and interaural intensity differences (IID) is combined, data were measured for continuous 500 Hz narrow band noise at 65-70 dB HL in 11 patients with bilateral congenital aural atresia. Time-intensity trading functions were obtained by shifting the sound image towards one side using ITD, and shifting back to a centered sound image by varying the IID in the same ear (auditory midline task). ITD values were varied from -600 to +600 ps at 200 ps steps, where negative values indicate delays to the right ear. The results indicate that time-intensity trading is present in patients with bilateral aural atresia. The gross response properties of time-intensity trading in response to bone-conducted signals were comparable in patients with bilateral aural atresia and normal-hearing Subjects, though there was a larger inter-subject variability and higher discrimination thresholds across IlDs in the atresia group. These results suggest that the mature auditory brainstem has a potential to employ binaural cues later in life, although to a restricted degree. A binaural fitting of a bone-conducted hearing aid might optimize binaural hearing and improve sound lateralization, and we recommend now systematically bilateral fitting in aural atresia patients. (c) 2004 Elsevier B.V. All rights reserved.
C1 CHU Grenoble, Serv ORL, Univ Hosp, Dept Otolaryngol, F-38043 Grenoble, France.
   Univ Tokyo, Grad Sch Med, Dept Otolaryngol, Tokyo, Japan.
RP Schmerber, S (reprint author), CHU Grenoble, Serv ORL, Univ Hosp, Dept Otolaryngol, BP 217, F-38043 Grenoble, France.
EM sschmerber@chu-greuoble.fr
CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1
   BAUER BB, 1965, J ACOUST SOC AM, V39, P25
   Beggs W D, 1980, Br J Audiol, V14, P41, DOI 10.3109/03005368009078899
   Blauert J., 1997, SPATIAL HEARING PSYC
   Calzolari F, 1999, BRIT J AUDIOL, V33, P303
   CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842
   Gantz BJ, 2002, OTOL NEUROTOL, V23, P169, DOI 10.1097/00129492-200203000-00012
   GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613
   HAFTER ER, 1977, J ACOUST SOC AM, V62, P633, DOI 10.1121/1.381565
   HAFTER ER, 1990, J ACOUST SOC AM, V87, P1702, DOI 10.1121/1.399418
   Harkrider A W, 1998, J Am Acad Audiol, V9, P410
   HERSHKOW.RM, 1969, J ACOUST SOC AM, V46, P1583, DOI 10.1121/1.1911908
   Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E
   Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153
   IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105
   JAHN AF, 1982, AM J OTOLARYNG, V3, P133, DOI 10.1016/S0196-0709(82)80044-6
   Kaga K, 2001, ACTA OTO-LARYNGOL, V121, P274
   KAGA K, 1995, INT J PEDIATR OTORHI, V32, P13, DOI 10.1016/0165-5876(94)01108-A
   King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821
   Klemm O, 1920, ARCH GESAMTE PSYCHOL, V40, P117
   KNUDSEN EI, 1983, SCIENCE, V222, P939, DOI 10.1126/science.6635667
   KNUDSEN EI, 1984, J NEUROSCI, V4, P1012
   Knudsen EI, 1999, J COMP PHYSIOL A, V185, P305, DOI 10.1007/s003590050391
   KOEHNKE J, 1995, EAR HEARING, V16, P331, DOI 10.1097/00003446-199508000-00001
   LANGENBECK B, 1954, ANN OTOLARYNGOL, P509
   Lewald J, 1998, EXP BRAIN RES, V121, P230, DOI 10.1007/s002210050456
   Lewald J, 2000, J NEUROPHYSIOL, V84, P1107
   Mayer TE, 1997, AM J NEURORADIOL, V18, P53
   McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1
   Moore D R, 1986, Acta Otolaryngol Suppl, V429, P51
   MOORE DR, 1991, AUDIOLOGY, V30, P125
   Moore D R, 1993, J Am Acad Audiol, V4, P277
   Moore D R, 1985, Acta Otolaryngol Suppl, V421, P19
   MOUSHEGIAN G, 1959, J ACOUST SOC AM, V31, P1441, DOI 10.1121/1.1907647
   Okajima H, 1996, Acta Otolaryngol Suppl, V525, P18
   Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3
   Pratt H, 1996, J Basic Clin Physiol Pharmacol, V7, P235
   ROSENZWEIG MR, 1961, PSYCHOL BULL, V58, P376, DOI 10.1037/h0042114
   ROSENZWEIG M, 1961, SCI AM, V205, P132
   SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1
   Snik AFM, 1998, ANN OTO RHINOL LARYN, V107, P187
   STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303
   TSUCHITANI C, 1964, J NEUROPHYSIOL, V27, P814
   van der Pouw KTM, 1998, LARYNGOSCOPE, V108, P548, DOI 10.1097/00005537-199804000-00016
   VONBEKESY G, 1957, J ACOUST SOC AM, P1059
   WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849
   WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1
   Wittmann J, 1925, ARCH GESAMTE PSYCHOL, V51, P21
   YOST WA, 1971, J ACOUST SOC AM, V50, P1526, DOI 10.1121/1.1912806
   YOST WA, 1991, HEARING RES, V56, P8, DOI 10.1016/0378-5955(91)90148-3
   YOUNG LL, 1976, J SPEECH HEAR RES, V19, P55
NR 51
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 248
EP 257
DI 10.1016/j.heures.2004.11.012
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300024
PM 15811716
ER

PT J
AU Leshinsky-Silver, E
   Berman, Z
   Vinkler, C
   Yannov-Sharav, M
   Lev, D
AF Leshinsky-Silver, E
   Berman, Z
   Vinkler, C
   Yannov-Sharav, M
   Lev, D
TI A novel missense mutation in the Connexin 26 gene associated with
   autosomal recessive sensorineural deafness
SO HEARING RESEARCH
LA English
DT Article
DE Connexin 26; sensorineural deafness; mutation
ID HEARING-LOSS
AB Mutations in the Connexin 26 (Cx26) gene (GJB2) are a common cause of hereditary hearing impairment. We report the identification of a novel point mutation in the Cx26 gene, Leu205Pro(L205P), linked to familial, autosomal recessive sensorineural hearing loss. This missense mutation, causing amino acid leucine at position 205 to be substituted by proline, is located in the highly conserved sequence of the fourth transmembrane domain (TM4) of Cx26. Hearing loss with this mutation occurred in a Georgian Jewish family, was congenital, moderate to profound and nonprogressive. We have shown that the new mutation L205P in Cx26 is strongly associated with congenital NSHL. Multiple-sample screening for this mutation can be easily performed with a mismatch PCR that creates a restriction site. (c) 2004 Elsevier B.V. All rights reserved.
C1 Wolfson Med Ctr, Mol Genet Lab, IL-58100 Holon, Israel.
   Wolfson Med Ctr, Genet Inst, IL-58100 Holon, Israel.
RP Leshinsky-Silver, E (reprint author), Wolfson Med Ctr, Mol Genet Lab, POB 5, IL-58100 Holon, Israel.
EM leshinsky@wolfson.health.gov.il
CR Cohen M.M., 1995, HEREDITARY HEARING L, P9
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001
   Kumar NM, 1996, CELL, V84, P381, DOI 10.1016/S0092-8674(00)81282-9
   LIU XZ, 2000, HUM MOL GENET, V137, P368
   Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945
   Mese G, 2004, HUM GENET, V115, P191, DOI 10.1007/s00439-004-1142-6
   Morle L, 2000, J MED GENET, V37, P368, DOI 10.1136/jmg.37.5.368
   Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009
   VanCamp G, 1997, AM J HUM GENET, V60, P758
   Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605
NR 11
TC 4
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD APR
PY 2005
VL 202
IS 1-2
BP 258
EP 261
DI 10.1016/j.heares.2004.11.003
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 919JM
UT WOS:000228614300025
PM 15811717
ER

PT J
AU Yarin, YM
   Amarjargal, N
   Fuchs, J
   Haupt, H
   Mazurek, B
   Morozova, SV
   Gross, J
AF Yarin, YM
   Amarjargal, N
   Fuchs, J
   Haupt, H
   Mazurek, B
   Morozova, SV
   Gross, J
TI Argon protects hypoxia-, cisplatin- and gentamycin-exposed hair cells in
   the newborn rat's organ of Corti
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 41st Inner Ear Biology Workshop
CY SEP 05-07, 2004
CL Debrecen, HUNGARY
DE argon; cisplatin; gentamycin; hair cells; hypoxia; ototoxicity
ID SUDDEN HEARING-LOSS; GUINEA-PIG COCHLEA; NOBLE-GASES; TRANSMITTER
   RELEASE; INDUCED APOPTOSIS; MOUSE COCHLEA; CA2+ CHANNELS; IN-VITRO;
   XENON; DEATH
AB During the last few years, an important protective effect of the noble gas xenon against neuronal hypoxic damage was observed. However, argon (Ar), a gas from the same chemical group, but less expensive and without anesthetic effect at normobaric pressure, has not been studied in terms of possible biological effects on cell protection.
   Ar was tested for its ability to protect organotypic cultures of the organ of Corti from 3-5 day old rats against hypoxia, cisplatin, and gentamycin toxicity. Cultures were exposed to nitrogen hypoxia (5%, CO2, 95% N-2), Ar hypoxia (5% CO2, 95% Ar) or normoxia for 30 h. Ar protected the hair cells from hypoxia-induced damage by about 25%. Ar oxygen (O-2) mixtures (21% O-2, 5% CO2, 74% Ar) had no effect on the hair cell survival. Cisplatin (7.5-25 mu M) and gentamycin (5-40 mu M) exposed in medium under air damaged the hair cells in a dose-dependent manner. The exposure of cisplatin- and gentamycin-treated cultures to the Ar-O-2 atmosphere significantly reduced the hair cell damage by up to 25%. This protective effect of Ar might provide a new protective approach against ototoxic processes. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Med Berlin, Charite, Dept Otolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany.
   Tech Univ Dresden, Dept Otorhinolaryngol, D-8027 Dresden, Germany.
   Hlth Sci Univ, Matern & Child Hlth Res Ctr, Pediat Clin, Dept Hearing Res, Ulaanbaatar, Mongol Peo Rep.
   IM Sechenov Moscow Acad Med, Dept Otorhinolaryngol, Moscow, Russia.
RP Gross, J (reprint author), Univ Med Berlin, Charite, Dept Otolaryngol, Mol Biol Res Lab, Spandauer Damn 130,Bldg 31, D-14050 Berlin, Germany.
EM johann.gross@charite.de
CR Abraini JH, 2003, ANESTH ANALG, V96, P746, DOI 10.1213/01.ANE.0000050282.14291.38
   Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   Altschuler EL, 2001, MED HYPOTHESES, V56, P227, DOI 10.1054/mehy.2000.1159
   Arnold T, 1998, HEARING RES, V125, P147, DOI 10.1016/S0378-5955(98)00144-0
   Chen GD, 1999, HEARING RES, V138, P181, DOI 10.1016/S0378-5955(99)00157-4
   Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6
   Cinamon U, 2001, EUR ARCH OTO-RHINO-L, V258, P477, DOI 10.1007/s004050100366
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   de Sousa SLM, 2000, ANESTHESIOLOGY, V92, P1055, DOI 10.1097/00000542-200004000-00024
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   DOLIN SJ, 1986, BRIT J PHARMACOL, V88, P909
   Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
   FILLOUX FM, 1994, EUR J PHARM-MOLEC PH, V269, P325, DOI 10.1016/0922-4106(94)90040-X
   FISCH U, 1984, AM J OTOL, V5, P488
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   Franks JJ, 1998, ANESTHESIOLOGY, V89, P149, DOI 10.1097/00000542-199807000-00022
   Franks NP, 1998, NATURE, V396, P324, DOI 10.1038/24525
   Koblin DD, 1998, ANESTH ANALG, V87, P419, DOI 10.1097/00000539-199808000-00035
   Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479
   Kopke RD, 1997, AM J OTOL, V18, P559
   Lawrence J. H., 1946, JOUR PHYSIOL, V105, P197
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   Lipton P, 1999, PHYSIOL REV, V79, P1431
   Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6
   Lynch C, 2000, ANESTHESIOLOGY, V92, P865, DOI 10.1097/00000542-200003000-00031
   Ma D, 2002, BRIT J ANAESTH, V89, P739, DOI 10.1093/bja/aef258
   Ma DQ, 2003, ANESTHESIOLOGY, V98, P690, DOI 10.1097/00000542-200303000-00017
   MARTINDALE L, 2002, J CELL PHYSL, V192, P1
   Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845
   OSTREICHER E, 1998, ORL J OROTHINOLARYNG, V60, P18
   Pavlov BN, 1997, HIGH PRESSURE BIOL M, P133
   Petzelt C, 2003, LIFE SCI, V72, P1909, DOI 10.1016/S0024-3205(02)02439-6
   Prange T, 1998, PROTEINS, V30, P61, DOI 10.1002/(SICI)1097-0134(19980101)30:1<61::AID-PROT6>3.0.CO;2-N
   Puchala M, 1999, FREE RADICAL BIO MED, V26, P1284, DOI 10.1016/S0891-5849(98)00336-0
   Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864
   Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32
   Quillin ML, 2000, J MOL BIOL, V302, P955, DOI 10.1006/jmbi.2000.4063
   Robertson D, 2002, J NEUROPHYSIOL, V87, P2734, DOI 10.1152/jn.00327.2001
   Ryan AF, 2000, P NATL ACAD SCI USA, V97, P6939, DOI 10.1073/pnas.97.13.6939
   SELVADURAI DK, 2000, CLIN OTOLARYNGOL, V25, P570, DOI 10.1046/j.1365-2273.2000.00422-16.x
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   Shulagin Iu A, 2001, Fiziol Cheloveka, V27, P95
   Siddik ZH, 2003, ONCOGENE, V22, P7265, DOI 10.1038/sj.onc.1206933
   Silver IA, 1997, NEUROSCIENCE, V78, P589, DOI 10.1016/S0306-4522(96)00600-8
   Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593
   Sunami K, 1999, EUR ARCH OTO-RHINO-L, V256, P323, DOI 10.1007/s004050050156
   Tabuchi Y, 2002, BIOCHEM BIOPH RES CO, V290, P498, DOI 10.1006/bbrc.2001.6203
   THALMANN R, 1970, LARYNGOSCOPE, V80, P1619, DOI 10.1288/00005537-197011000-00001
   Trudell JR, 1998, ANESTH ANALG, V87, P411, DOI 10.1097/00000539-199808000-00034
   Wade RS, 1996, CHEM RES TOXICOL, V9, P1382, DOI 10.1021/tx9600457
   Wilhelm S, 2002, ANESTHESIOLOGY, V96, P1485, DOI 10.1097/00000542-200206000-00031
   Yamamoto S, 1997, J NEUROPHYSIOL, V78, P903
   Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307
NR 55
TC 18
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
EI 1878-5891
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2004.09.015
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200001
PM 15721555
ER

PT J
AU Roman, S
   Canevet, G
   Marquis, P
   Triglia, JM
   Liegeois-Chauvel, C
AF Roman, S
   Canevet, G
   Marquis, P
   Triglia, JM
   Liegeois-Chauvel, C
TI Relationship between auditory perception skills and mismatch negativity
   recorded in free field in cochlear-implant users
SO HEARING RESEARCH
LA English
DT Article
DE mismatch negativity; cochlear implant; frequency discrimination;
   detection thresholds; word discrimination
ID SPEECH RECOGNITION; EVOKED-RESPONSES; DISCRIMINATION; PERFORMANCE;
   POTENTIALS; COMPONENTS; STIMULI; RANGE
AB This study investigated the ability of cochlear-implanted patients to discriminate tone bursts in free field using the electrophysiological recordings of mismatch negativity (MMN). Seven cochlear-implanted patients (CIP) and eight control subjects (CS) were tested. Event-related potentials were recorded from either 32 or 64 electrodes in response to binaural stimuli using a passive oddball paradigm. Two stimulus-contrast conditions were used to produce MMN: The standard-tone frequency was fixed at 1 kHz, and the deviant-tone frequency was set at 2 or 1.5 kHz. The results show that response waveforms (N-1/P-2) are similar in latency and amplitude for CS and CIP, suggesting that pure-tone detection is performed over the same time window in both groups. These waveforms are also similar in left- and right-implanted patients, suggesting that electric stimulation of the auditory nerve activates both hemispheres in profound, bilateral hearing loss. Pure-tone audiograms and word-discrimination scores were also measured in each subject in an anechoic room and their relations with MMN data were examined. Correlations were found between the latency of MMN for a 1.5 kHz deviant and the thresholds obtained for pure-tone detection and word discrimination. MMN appears as a possible complementary clinical toot to objectively assess auditory sensitivity in cochlear-implanted populations. However, further improvements are still necessary before it can be used as a standard clinical examination. (c) 2004 Elsevier B.V. All rights reserved.
C1 CHU Timone, Lab Audiophonol Clin, F-13385 Marseille, France.
   CNRS, Lab Mecan & Acoust, F-13402 Marseille, France.
   Fac Med Marseille, INSERM, Lab Neurophysiol & Neuropsychol, F-13385 Marseille, France.
RP Roman, S (reprint author), CHU Timone, Lab Audiophonol Clin, Rue St Pierre, F-13385 Marseille, France.
EM stephane.roman@mail.ap-hm.fr
CR ADLER G, 1989, AUDIOLOGY, V28, P316
   [Anonymous], 1987, 226 ISO, P226
   Blamey P, 1996, Audiol Neurootol, V1, P293
   BRINKMANN K, 1994, ACUSTICA, V80, P453
   Chouard C H, 1998, Ann Otolaryngol Chir Cervicofac, V115, P129
   Fant G., 1973, SPEECH SOUNDS FEATUR
   Groenen P, 1996, Audiol Neurootol, V1, P112
   GROENEN PA, 1996, ACTA OTOLARYNGOL, V16, P785
   *ISR R, 1961, 226 ISR R
   KHOSLA D, 2003, JARO-J ASSOC RES OTO, V4, P1
   KITZES L M, 1984, Brain Research, V306, P171, DOI 10.1016/0006-8993(84)90366-4
   KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G
   KRAUS N, 1992, EAR HEARING, V13, P158, DOI 10.1097/00003446-199206000-00004
   LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009
   LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7
   Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106
   Maurer J, 2002, LARYNGOSCOPE, V112, P2220, DOI 10.1097/00005537-200212000-00017
   McGee T, 1997, EVOKED POTENTIAL, V104, P359, DOI 10.1016/S0168-5597(97)00024-5
   Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X
   Okusa M, 1999, OTOLARYNG HEAD NECK, V121, P610, DOI 10.1016/S0194-5998(99)70067-7
   PELIZZONE M, 1989, AUDIOLOGY, V28, P230
   Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878
   Ponton CW, 1997, EVOKED POTENTIAL, V104, P143, DOI 10.1016/S0168-5597(97)96104-9
   PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010
   Skinner MW, 1997, J ACOUST SOC AM, V101, P3766, DOI 10.1121/1.418383
   Summerfield AQ, 1995, COCHLEAR IMPLANTATIO
   van Dijk JE, 1999, AUDIOLOGY, V38, P109
   Wable J, 2000, CLIN NEUROPHYSIOL, V111, P743, DOI 10.1016/S1388-2457(99)00298-9
   Waltzman S B, 1995, Ann Otol Rhinol Laryngol Suppl, V165, P15
   WOODS DL, 1995, CLIN NEUROPHYSIOL, V44, P102
   Zeng FG, 2002, J ACOUST SOC AM, V111, P377, DOI 10.1121/1.1423926
NR 31
TC 19
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 10
EP 20
DI 10.1016/j.heares.2004.08.021
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200002
PM 15721556
ER

PT J
AU Toyama, K
   Ozeki, M
   Hamajima, Y
   Lin, JZ
AF Toyama, K
   Ozeki, M
   Hamajima, Y
   Lin, JZ
TI Expression of the integrin genes in the developing cochlea of rats
SO HEARING RESEARCH
LA English
DT Article
DE integrins; cochlear development; microarrays; NF-kappa B; Sprague-Dawley
   rats
ID FIBROBLAST-GROWTH-FACTOR; INNER-EAR; CELL-ADHESION;
   EXTRACELLULAR-MATRIX; IDENTIFICATION; PROLIFERATION; ACTIVATION;
   PATHWAY; ORGAN; CORTI
AB Integrins play an important role in the development of the cochlea. However, little is known about the expression pattern of integrins in-the developing cochlear tissue. In this Study, we investigated the dynamic expression profile of the integrin genes in the developing cochlear tissue of rats by Affymetrix microarrays and explored the role of the integrin genes in vitro by using antisense oligonucleotides. It was demonstrated that the alpha 1, alpha 7, alpha v, beta 3, and beta 4 genes were expressed in the developing cochlear tissue of rats. Inhibition of the integrin expression with antisense oligonucleotides against alpha v, alpha 7, beta 3, and beta 4, respectively, in cochlear sensorineural epithelial cells significantly decreased the [H-3]thymidine incorporation, suggesting that these integrins are involved in cell growth and proliferation. Inhibition of the alpha v and beta 4 integrins significantly decreased the transcription of nuclear factor-kappa B (NF-kappa B, a signal molecule involved in cell growth and proliferation) induced by epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), respectively. It suggests that EGF-induced cell growth is dependent upon the alpha v integrin whereas bFGF-induced cell growth is dependent upon the beta 4 integrin in the cochlear tissue during the development of the inner ear. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Minnesota, Sch Med, Dept Otolaryngol, Auditory Mol Biol Lab, Minneapolis, MN 55455 USA.
RP Lin, JZ (reprint author), Univ Minnesota, Sch Med, Dept Otolaryngol, Auditory Mol Biol Lab, Minneapolis, MN 55455 USA.
EM linxx004@umn.edu
CR Biswas DK, 2000, P NATL ACAD SCI USA, V97, P8542, DOI 10.1073/pnas.97.15.8542
   BROOKS PC, 1994, SCIENCE, V264, P569, DOI 10.1126/science.7512751
   Cohen-Salmon M, 1997, P NATL ACAD SCI USA, V94, P14450, DOI 10.1073/pnas.94.26.14450
   Davies D, 2002, J COMP NEUROL, V445, P122, DOI 10.1002/cne10161
   Eudy JD, 1998, SCIENCE, V280, P1753, DOI 10.1126/science.280.5370.1753
   Giancotti FG, 1999, SCIENCE, V285, P1028, DOI 10.1126/science.285.5430.1028
   HYNES RO, 1992, CELL, V69, P11, DOI 10.1016/0092-8674(92)90115-S
   HYNES RO, 1987, CELL, V48, P549, DOI 10.1016/0092-8674(87)90233-9
   Ladher RK, 2000, SCIENCE, V290, P1965, DOI 10.1126/science.290.5498.1965
   Lee YW, 2004, ACTA OTO-LARYNGOL, V124, P558, DOI 10.1080/00016480410016577
   Legan PK, 1997, SEMIN CELL DEV BIOL, V8, P217, DOI 10.1006/scdb.1997.0145
   Legan PK, 1997, J BIOL CHEM, V272, P8791
   Lin JH, 2003, HEARING RES, V175, P2, DOI 10.1016/S0378-5955(02)00704-9
   Lin JZ, 1999, J INFECT DIS, V179, P1145, DOI 10.1086/314714
   Littlewood Evans Amanda, 2000, Nature Genetics, V24, P424
   Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6
   McGuirt WT, 1999, NAT GENET, V23, P413
   MONTGOMERY AMP, 1994, P NATL ACAD SCI USA, V91, P8856, DOI 10.1073/pnas.91.19.8856
   Mueller KL, 2002, J NEUROSCI, V22, P9368
   Ozeki M, 2003, HEARING RES, V179, P43, DOI 10.1016/S0378-5955(03)00077-7
   Petit B, 1996, EXP CELL RES, V225, P151, DOI 10.1006/excr.1996.0166
   PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269
   Pirvola U, 2000, J NEUROSCI, V20, P6125
   RUOSLAHTI E, 1987, SCIENCE, V238, P491, DOI 10.1126/science.2821619
   Schwartz MA, 2001, J CELL SCI, V114, P2553
   Simmler MC, 2000, NAT GENET, V24, P139, DOI 10.1038/72793
   van der Flier A, 2001, CELL TISSUE RES, V305, P285, DOI 10.1007/s004410100417
   Yamada S, 1995, CELL ADHES COMMUN, V3, P311, DOI 10.3109/15419069509081016
   Zheng JL, 1997, J NEUROSCI, V17, P216
NR 29
TC 11
Z9 13
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 21
EP 26
DI 10.1016/j.heares.2004.04.019
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200003
PM 15721557
ER

PT J
AU Wysocki, LE
   Ladich, F
AF Wysocki, LE
   Ladich, F
TI Effects of noise exposure on click detection and the temporal resolution
   ability of the goldfish auditory system
SO HEARING RESEARCH
LA English
DT Article
DE auditory evoked potentials; auditory temporal resolution; noise
   exposure; temporal hearing loss
ID BRAIN-STEM RESPONSES; INDUCED HEARING-LOSS; CARASSIUS-AURATUS; ACOUSTIC
   COMMUNICATION; UNDERWATER NOISE; FISH; SOUNDS; BEHAVIOR; DISCRIMINATION;
   SENSITIVITY
AB Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental problem, we investigated how it affects the temporal resolution ability of goldfish. Auditory evoked potentials (AEPs) in response to clicks and double clicks were recorded before exposing, immediately after exposing the fish to white noise of 158 dB re 1 mu Pa for 24 h, and after 3, 7 and 14 days of recovery. Immediately after noise exposure, hearing sensitivity to clicks was reduced on average by 21 dB and recovered within 1 week. Amplitudes of the AEPs decreased by about 71% while latencies increased by 0.63 ins. Both AEP characteristics returned to baseline values within 2 weeks. Analysis of the response to double clicks showed that the minimum click period resolvable by the auditory system increased significantly from 1.25 to 2.08 ms immediately after noise exposure. After a recovery period of 3 days, this minimum period returned to pre-exposure values. The present study revealed that noise exposure affects the detection of short transient signals and the temporal resolution ability. Because acoustic information is primarily encoded via temporal patterns of sounds in fishes, environmental noise could severely impair acoustic orientation and communication. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Vienna, Inst Zool, A-1090 Vienna, Austria.
RP Wysocki, LE (reprint author), Univ Vienna, Inst Zool, Althanstr 14, A-1090 Vienna, Austria.
EM Lidia.Wysocki@univie.ac.at
CR Amoser S, 2003, J ACOUST SOC AM, V113, P2170, DOI 10.1121/1.1557212
   Andrew R. K., 2002, Acoustics Research Letters Online, V3, DOI 10.1121/1.1461915
   BAUER P, 1991, J ACOUST SOC AM, V90, P3086, DOI 10.1121/1.401418
   CHURCH MW, 1993, EAR HEARING, V14, P249, DOI 10.1097/00003446-199308000-00004
   CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309
   Corwin J.T., 1981, HEARING SOUND COMMUN, P81
   Crawford JD, 1997, MAR FRESHW BEHAV PHY, V29, P65
   Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206
   Enger PS, 1981, HEARING SOUND COMMUN, P243
   FAY RR, 1980, J NEUROPHYSIOL, V44, P312
   FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X
   FAY RR, 1982, J ACOUST SOC AM, V72, P753, DOI 10.1121/1.388255
   FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8
   FAY RR, 1982, J COMP PHYSIOL, V147, P201
   Fay R.R., 1985, P28
   Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6
   Feng A. S., 1999, COMP HEARING FISH AM, P218
   Fraenkel R, 2003, AUDIOL NEURO-OTOL, V8, P129, DOI 10.1159/000069476
   GERALD JW, 1971, EVOLUTION, V25, P75, DOI 10.2307/2406500
   GRIFFITHS SK, 1994, HEARING RES, V74, P221, DOI 10.1016/0378-5955(94)90190-2
   HAMERNIK RP, 1982, NEW PERSPECTIVES NOI
   Handegard NO, 2003, AQUAT LIVING RESOUR, V16, P265, DOI 10.1016/S0990-7440(03)00020-2
   Hastings MC, 1996, J ACOUST SOC AM, V99, P1759, DOI 10.1121/1.414699
   HAWKINS AD, 1978, J MAR BIOL ASSOC UK, V58, P891
   HAWKINS AD, 1983, BIOACOUSTICS COMP AP, P373
   Kenyon TN, 1998, J COMP PHYSIOL A, V182, P307, DOI 10.1007/s003590050181
   Kratochvil H, 2000, J COMP PHYSIOL A, V186, P279, DOI 10.1007/s003590050428
   Ladich F, 1998, ETHOLOGY, V104, P517
   Ladich F, 1997, MAR FRESHW BEHAV PHY, V29, P87
   Ladich F, 2003, HEARING RES, V182, P119, DOI 10.1016/S0378-5955(03)00188-6
   Ladich F., 1992, Bioacoustics, V4, P131
   Ladich Friedrich, 2003, P173, DOI 10.1007/978-0-387-22628-6_9
   LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I
   Mann DA, 1997, J ACOUST SOC AM, V101, P3783, DOI 10.1121/1.418425
   Marvit P, 2000, J ACOUST SOC AM, V108, P1819, DOI 10.1121/1.1287845
   McCauley RD, 2003, J ACOUST SOC AM, V113, P638, DOI 10.1121/1.1527962
   Mitson RB, 2003, AQUAT LIVING RESOUR, V16, P255, DOI 10.1016/S0990-7440(03)00021-4
   Myrberg A.A. Jr, 1978, P137
   MYRBERG AA, 1972, J EXP BIOL, V57, P727
   MYRBERG AA, 1990, ENVIRON INT, V16, P575, DOI 10.1016/0160-4120(90)90028-5
   PEARSON WH, 1992, CAN J FISH AQUAT SCI, V49, P1343, DOI 10.1139/f92-150
   Platt C., 1981, HEARING SOUND COMMUN, P3
   POPOV VV, 1990, J COMP PHYSIOL A, V166, P385
   Popper A.N., 1999, COMP HEARING FISH AM, P43
   POPPER AN, 1976, COMP BIOCHEM PHYS A, V53, P11, DOI 10.1016/S0300-9629(76)80003-5
   Santulli A, 1999, MAR POLLUT BULL, V38, P1105, DOI 10.1016/S0025-326X(99)00136-8
   SAUNDERS J, 1975, P NATL ACAD SCI USA, V71, P1961
   Scholik AR, 2001, HEARING RES, V152, P17, DOI 10.1016/S0378-5955(00)00213-6
   Scholik AR, 2002, COMP BIOCHEM PHYS A, V133, P43, DOI 10.1016/S1095-6433(02)00108-3
   SCHWARZ AL, 1984, CAN J FISH AQUAT SCI, V41, P1183, DOI 10.1139/f84-140
   Smith ME, 2004, J EXP BIOL, V207, P427, DOI 10.1242/jeb.00755
   SPANIER E, 1979, Z TIERPSYCHOL, V51, P301
   SUPIN AY, 1995, J ACOUST SOC AM, V97, P2586, DOI 10.1121/1.411913
   SVERDRUP A, 1994, J FISH BIOL, V45, P973
   Vabo R, 2002, FISH RES, V58, P59, DOI 10.1016/S0165-7836(01)00360-5
   Wysocki LE, 2003, J EXP BIOL, V206, P2229, DOI 10.1242/jeb.00417
   Wysocki LE, 2001, J COMP PHYSIOL A, V187, P177, DOI 10.1007/s003590100186
   Wysocki LE, 2002, HEARING RES, V169, P36, DOI 10.1016/S0378-5955(02)00336-2
NR 58
TC 29
Z9 32
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 27
EP 36
DI 10.1016/j.heares.2004.08.015
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200004
PM 15721558
ER

PT J
AU Avallone, B
   Fascio, U
   Senatore, A
   Balsamo, G
   Bianco, PG
   Marmo, F
AF Avallone, B
   Fascio, U
   Senatore, A
   Balsamo, G
   Bianco, PG
   Marmo, F
TI The membranous labyrinth during larval development in lamprey (Lampetra
   planeri, Bloch, 1784)
SO HEARING RESEARCH
LA English
DT Article
DE Lampetra planeri; brook lamprey; membranous labyrinth; hair cells;
   Macula communis; ciliated chamber
ID ULTRASTRUCTURE; ANATOMY; EAR
AB SEM and CLSM studies were performed on the membranous labyrinth of Lampetra planeri, a threatened species of brook lamprey, spanning from the 1st to the 4th year of ammocoetes larval stages and on the adults. In all the examined stages, the entire membranous labyrinth does not show any morphologic differences, but only a progressive increase in size. SEM and CLSM observations show that the ciliated chamber is lined with numerous unsensorial multiciliated cells. In the early stages, the ciliary bundles were approximately 15 mu m long, while in the late stages they reached 30 mu m. In the crista sensory area, we observed two populations of hair cells. "Type II" cells are peculiar for this species and show both long stereocilia decreasing in length and a long kinocilium (10-12 mu m). Two other types of ciliary bundles have been found on the sensory hair cells of the Macula communis: the first one has both kinocilium and stereocilia about 4-5 mu m long; the second shows a long kinocilium (7-10 mu m in length) and short stereocilia bundles with a gradual increase in length. In the early stages of development, the three macular areas show few and sparsely distributed hair cells. In the late developmental stages, hair cells become more numerous and densely populated. (c) 2004 Published by Elsevier B.V.
C1 Univ Naples Federico II, Dept Genet Gen & Mol Biol, Naples, Italy.
   Univ Milan, CIMA, I-20122 Milan, Italy.
   Univ Naples Federico II, Dept Zool, Naples, Italy.
RP Marmo, F (reprint author), Univ Naples Federico II, Dept Genet Gen & Mol Biol, Naples, Italy.
EM Avallone@biol.dgbm.unina.it; marmo@biol.dgbm.unina.it
CR Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6
   BHAVE SA, 1995, J NEUROSCI, V15, P4618
   CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358
   de Burlet HM, 1930, ACTA OTO-LARYNGOL, P5
   Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103
   HAGELIN LO, 1974, ACTA ZOOL STOCKHOL S, P218
   HARDISTY MW, 1979, BYOLOGY CYCLOSTOMATE
   HOSHINO T, 1975, ACTA OTO-LARYNGOL, V80, P43, DOI 10.3109/00016487509121299
   Jarvik E., 1980, BASIC STRUCTURE EVOL, V1
   Jorgensen JM, 1998, ACTA ZOOL-STOCKHOLM, V79, P251
   LOWENSTE.O, 1968, PROC R SOC SER B-BIO, V170, P113, DOI 10.1098/rspb.1968.0029
   LOWENSTE.O, 1970, PROC R SOC SER B-BIO, V176, P21, DOI 10.1098/rspb.1970.0031
   MYGIND S M, 1948, Pract Otorhinolaryngol (Basel), V10, P292
   POPPER AN, 1977, J MORPHOL, V153, P397, DOI 10.1002/jmor.1051530306
   POPPER AN, 1987, BRAIN BEHAV EVOLUT, V30, P43, DOI 10.1159/000118637
   Retzius G., 1881
   Romer A.S., 1966, VERTEBRATE PALEONTOL
   THORNHIL.RA, 1972, PROC R SOC SER B-BIO, V181, P175, DOI 10.1098/rspb.1972.0045
NR 18
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 37
EP 43
DI 10.1016/j.heares.2004.09.002
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200005
PM 15721559
ER

PT J
AU Williams, EJ
   Bacon, SP
AF Williams, EJ
   Bacon, SP
TI Compression estimates using behavioral and otoacoustic emission measures
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT Annual Convention of the American-Speech-Language-Hearing-Association
CY NOV 13-15, 2003
CL Chicago, IL
SP Amer Speech Language Hearing Assoc
DE compression; distortion product otoacoustic emissions; forward masking
ID BASILAR-MEMBRANE NONLINEARITY; INPUT-OUTPUT FUNCTIONS; GUINEA-PIG
   COCHLEA; NORMAL-HEARING; CHINCHILLA COCHLEA; PERIPHERAL COMPRESSION;
   AUDITORY COMPRESSION; MOSSBAUER TECHNIQUE; GROWTH-BEHAVIOR; IN-VIVO
AB Cochlear compression in normal-hearing listeners was estimated at octave frequencies from 250 to 4000 Hz using a forward-masking paradigm. Temporal masking curves (TMCs) for a 10-dB SL signal were obtained with two maskers - one equal in frequency to the signal and another an octave below the signal. The ratio of the slope of the off-frequency function to that of the mid-level portion of the on-frequency function was computed as an estimate of the amount of compression at each frequency. Compression was less frequency selective at low frequencies, so an average of the off-frequency slopes at high frequencies (1000, 2000, and 4000 Hz) was used in computing the ratio for each signal frequency. Results indicated strong compression (similar to 0.15-0.30) at all frequencies using the averaged off-frequency slopes, indicating little difference in compression across frequencies. Distortion product otoacoustic emission (DPOAE) input-output (I-O) functions were obtained for each subject at 1000, 2000, and 4000 Hz. The slopes of the DPOAE I-O functions and the psychophysical growth rates were similar to one another, reinforcing the assumption that the forward-masking procedure is providing an estimate of cochlear compression, at least at frequencies from 1000 to 4000 Hz. (c) 2004 Elsevier B.V. All rights reserved.
C1 Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA.
RP Bacon, SP (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, POB 870102, Tempe, AZ 85287 USA.
EM spb@asu.edu
CR American National Standards Institute (ANSI), 1996, S361996 ANSI
   Bacon Sid P., 2004, VVolume 17, P1
   Cooper NP, 1997, J NEUROPHYSIOL, V78, P261
   COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0
   Cooper Nigel P., 2004, VVolume 17, P18
   COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X
   COOPER NP, 2001, ASS RES OT MID WINT, V24, P228
   Dorn PA, 2001, J ACOUST SOC AM, V110, P3119, DOI 10.1121/1.1417524
   Dorn Patricia A., 1998, Journal of the Acoustical Society of America, V104, P964, DOI 10.1121/1.423339
   GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951
   Hicks ML, 1999, J ACOUST SOC AM, V106, P1436, DOI 10.1121/1.427146
   HICKS ML, 2000, ABSTR J ACOUST SOC A, V107, P2914
   Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526
   Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053
   Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838
   Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133
   Murugasu E., 1995, AUDIT NEUROSCI, V1, P139
   Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439
   Nelson DA, 2004, J ACOUST SOC AM, V115, P2221, DOI 10.1121/1.1689341
   Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732
   Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327
   Plack CJ, 2000, J ACOUST SOC AM, V107, P501, DOI 10.1121/1.428318
   Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294
   Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0
   Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247
   RECIO A, 1995, ASS RES OT MIDW M, V18, P200
   Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2
   Rhode WS, 1996, AUDIT NEUROSCI, V3, P101
   RHODE WS, 1997, DIVERSITY AUDITORY M, P318
   Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
   RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485
   ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
   RUGGERO MA, 1991, J NEUROSCI, V11, P1057
   RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B
   Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23
   SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996
   Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5
   ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276
NR 41
TC 22
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 44
EP 54
DI 10.1016/j.heares.2004.10.006
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200006
PM 15721560
ER

PT J
AU Lychakov, DV
   Rebane, YT
AF Lychakov, DV
   Rebane, YT
TI Fish otolith mass asymmetry: morphometry and influence on acoustic
   functionality
SO HEARING RESEARCH
LA English
DT Article
DE otolith mass asymmetry; fish; sacculus; utriculus; lagena; otolith
   growth fluctuation model; sensitivity; time resolution; directional
   detection
ID INNER-EAR; HAIR CELL; EVOLUTION; APPARATUS
AB The role of the fish otolith mass asymmetry in acoustic functionality is studied. The saccular, lagenar and utricular otoliths are weighted in two species of the Black Sea rays, 15 species of the Black Sea teleost fish and guppy fish. The dimensionless otolith mass asymmetry chi is calculated as ratio of the difference between masses of the right and left paired otoliths to average otolith mass.
   In the most fish studied the otolith mass asymmetry is within the range of -0.2 < chi < + 0.2 (< 20%). We do not find specific fish species with extremely large or extremely small otolith asymmetry. The large otoliths do not belong solely to any particular side, left or right. The heavier otoliths of different otolithic organs can be located in different labyrinths. No relationship has been found between the magnitude of the otolith mass asymmetry and the length (mass, age) of the animal. The suggested fluctuation model of the otolith growth can interpret these results. The model Supposes that the otolith growth rate varies slightly hither and thither during lifetime of the individual fish. Therefore, the sign of the relative otolith mass asymmetry can change several times in the process of the individual fish growth but within the range outlined above.
   Mathematical modeling shows that acoustic functionality (sensitivity, temporal processing, sound localization) of the fish can be disturbed by the otolith mass asymmetry. But this is valid only for the fish with largest otolith masses, characteristic of the bottom and littoral fish, and with highest otolith asymmetry. For most fish the values of otolith mass asymmetry is well below critical values. Thus, the most fish get around the troubles related to the otolith mass asymmetry. We suggest that a specific physicochemical mechanism of the paired otolith growth that maintains the otolith mass asymmetry at the lowest possible level should exist. However, the principle and details of this mechanism are still far from being understood. (c) 2004 Elsevier B.V. All rights reserved.
C1 Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg 194223, Russia.
   Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia.
RP Lychakov, DV (reprint author), Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, Thorez Pr 44, St Petersburg 194223, Russia.
EM Lychakov@ieplib.ru
CR Anken RH, 1998, HEARING RES, V121, P77, DOI 10.1016/S0378-5955(98)00067-7
   BARBER VC, 1980, CELL TISSUE RES, V205, P199
   CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358
   CHAPMAN CJ, 1974, COMP BIOCHEM PHYSIOL, V47, P371, DOI 10.1016/0300-9629(74)90082-6
   CHAPMAN CJ, 1974, J EXP BIOL, V61, P521
   DALE T, 1976, Norwegian Journal of Zoology, V24, P85
   DAVID AW, 1993, FISH B, V92, P509
   DeVRIES H., 1950, ACTA OTO LARYNGOL, V38, P262, DOI 10.3109/00016485009118384
   Edds-Walton Peggy L., 2002, Bioacoustics, V12, P202
   Egorov A.D., 1970, KOSMICHESKAYA BIOL A, V4, P85
   Fay R.R., 1980, P3
   Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103
   GAULDIE RW, 1993, J MORPHOL, V218, P1, DOI 10.1002/jmor.1052180102
   GAULDIE RW, 1990, ACTA ZOOL-STOCKHOLM, V71, P193
   HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407
   Isakovich M.A., 1973, GEN ACOUSTICS
   LIM DJ, 1974, BRAIN BEHAV EVOLUT, V10, P37, DOI 10.1159/000124301
   Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1
   Lu Z, 1998, J COMP PHYSIOL A, V182, P805, DOI 10.1007/s003590050225
   LYCHAKOV DV, 1995, J EVOL BIOCHEM PHYS+, V31, P90
   LYCHAKOV D V, 1990, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, V26, P550
   Lychakov DV, 1995, J EVOL BIOCHEM PHYS+, V31, P182
   Lychakov DV, 2000, HEARING RES, V143, P83, DOI 10.1016/S0378-5955(00)00026-5
   LYCHAKOV DV, 1992, J EVOL BIOCHEM PHYS+, V28, P531
   LYCHAKOV DV, 1996, J EVOL BIOCHEM PHYS+, V32, P385
   Lychakov DV, 1988, ZH EVOL BIOKHIM FIZ, V24, P256
   Lychakov DV., 2002, THESIS SECHENOV I ST, V2, P1
   Lychakov DV, 2000, FISH RES, V46, P27, DOI 10.1016/S0165-7836(00)00130-2
   MATHIESEN C, 1987, J MORPHOL, V194, P129, DOI 10.1002/jmor.1051940203
   MULIGAN KP, 1989, COPEIA, V4, P856
   OHMORI H, 1987, J PHYSIOL-LONDON, V387, P589
   PEDROZO HA, 1994, HEARING RES, V79, P137, DOI 10.1016/0378-5955(94)90135-X
   Platt C., 1981, HEARING SOUND COMMUN, P3
   PLATT C, 1993, HEARING RES, V65, P133, DOI 10.1016/0378-5955(93)90208-I
   POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3
   POPPER AN, 1982, AM ZOOL, V22, P311
   RADTKE RL, 1982, FISH B-NOAA, V80, P201
   Rahmann H., 2002, J GRAVITATIONAL PHYS, V9, P19
   RIMAN IS, 1947, T TSAGI, V637, P1
   ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444
   SAMARIN GI, 1992, THESIS I BIOMEDICAL
   Sand Olav, 2002, Bioacoustics, V12, P199
   Scherer H, 2001, Biol Sci Space, V15, P401, DOI 10.2187/bss.15.401
   Schuijf A., 1980, P43
   Tolimieri Nicholas, 2002, Bioacoustics, V12, P214
   VILSTRUP T, 1951, ANN OTO RHINOL LARYN, V60, P974
   Wysocki LE, 2002, HEARING RES, V169, P36, DOI 10.1016/S0378-5955(02)00336-2
NR 47
TC 20
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 55
EP 69
DI 10.1016/j.heares.2004.08.017
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200007
PM 15721561
ER

PT J
AU Shaikh, AG
   Finlayson, PG
AF Shaikh, AG
   Finlayson, PG
TI Excitability of auditory brainstem neurons, in vivo, is increased by
   cyclic-AMP
SO HEARING RESEARCH
LA English
DT Article
ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; UNIQUE DITERPENE
   ACTIVATOR; INTENSE SOUND EXPOSURE; EAR OSSICLE REMOVAL; PROTEIN-KINASE;
   UNILATERAL COCHLEAR; ACOUSTIC TRAUMA; CATION CURRENT; INFERIOR
   COLLICULUS
AB Physiological control of auditory neural responses is critical for accurate representation of acoustic information, such as Sound source localization and speech perception. Central auditory neural responses are almost certainly regulated by a range of mechanisms, including second messenger systems, such as the cAMP pathway. An increase in spontaneous neural discharge is known to accompany cochlear insults. Here we report that an increase in spontaneous as well as tone-evoked discharge can also be induced by pressure application of forskolin, a pharmacological agent that elevates intracellular cAMP level by activating adenyl cyclase. The forskolin induced increase in superior olivary complex (SOC) brainstem neurons is specific, dose-dependent, and reversible, whereas application of artificial cerebrospinal fluid (aCSF, the vehicle) does not alter activity. Forskolin-application also has a relatively greater effect on spontaneous activity compared to tone evoked responses. Blockade of the hyperpolarization-activated current, I-h, by ZD7288, consistently reversed the effects of forskolin. Based on these findings, we propose that the second messenger, cAMP, can significantly modulate neural excitability and spontaneous discharge in SOC neurons, principally by shifting the activation of I-h channels. (c) 2004 Elsevier B.V. All rights reserved.
C1 Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA.
RP Shaikh, AG (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA.
EM ashaikh@med.wayne.edu
CR Adam TJ, 2001, J NEUROPHYSIOL, V86, P922
   AKASU T, 1994, PFLUG ARCH EUR J PHY, V429, P117, DOI 10.1007/BF02584037
   Axelsson A., 1992, NOISE INDUCED HEARIN, P269
   Bal R, 2000, J NEUROPHYSIOL, V84, P806
   BANKS M, 1993, J NEUROPHYSIOL, V71, P119
   Beaumont V, 2000, NAT NEUROSCI, V3, P133, DOI 10.1038/72072
   Benson CG, 1997, SYNAPSE, V25, P243
   Bickmeyer U, 2002, EUR J NEUROSCI, V16, P209, DOI 10.1046/j.1460-9568.2002.02072.x
   Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Cathala L, 1997, J PHYSIOL-LONDON, V503, P87, DOI 10.1111/j.1469-7793.1997.087bi.x
   Chapin EM, 2001, J PHARMACOL EXP THER, V297, P403
   Chen C, 1997, HEARING RES, V110, P179, DOI 10.1016/S0378-5955(97)00078-6
   CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O
   Cribbs LL, 1998, CIRC RES, V83, P103
   Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x
   Enyeart JA, 2000, J BIOL CHEM, V275, P34640, DOI 10.1074/jbc.M004214200
   Fields RD, 1997, J NEUROSCI, V17, P7252
   Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X
   GERKEN GM, 1979, J ACOUST SOC AM, V66, P721, DOI 10.1121/1.383222
   Grewal SS, 1999, CURR OPIN NEUROBIOL, V9, P544, DOI 10.1016/S0959-4388(99)00010-0
   HAMPSON RE, 1995, LIFE SCI, V56, P2081, DOI 10.1016/0024-3205(95)00192-9
   HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114
   Hoffman DA, 1998, J NEUROSCI, V18, P3521
   Houslay MD, 2003, BIOCHEM SOC T, V31, P1186
   Impey S, 1999, NEURON, V23, P11, DOI 10.1016/S0896-6273(00)80747-3
   JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9
   KACZMAREK LK, 1984, J NEUROPHYSIOL, V52, P340
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6
   KALTENBACH JA, 1996, P 5 INT TINN SEM AM, P455
   Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5
   Klugbauer N, 1999, PFLUG ARCH EUR J PHY, V437, P710, DOI 10.1007/s004240050836
   LEE JH, 1999, J NEUROSCI, V19, P912
   Mazzucchelli C, 2000, CELL MOL LIFE SCI, V57, P604, DOI 10.1007/PL00000722
   MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291
   Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019
   Monteil A, 2000, J BIOL CHEM, V275, P6090, DOI 10.1074/jbc.275.9.6090
   Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011
   Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963
   Paxinos G., 1982, RAT BRAIN STEREOTAXI
   Pearson G, 2001, ENDOCR REV, V22, P153, DOI 10.1210/er.22.2.153
   PEDARZANI P, 1995, P NATL ACAD SCI USA, V92, P11716, DOI 10.1073/pnas.92.25.11716
   Pemberton KE, 2000, PFLUG ARCH EUR J PHY, V440, P452, DOI 10.1007/s004240000303
   Pisani A, 2003, J NEUROSCI, V23, P5272
   Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641
   POTASHNER SJ, 1999, ASS RES OTOLARYNGOL, V22, P67
   QU YS, 1995, J BIOL CHEM, V270, P25696
   Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3
   Rothberg BS, 2002, J GEN PHYSIOL, V119, P83, DOI 10.1085/jgp.119.1.83
   Saitow F, 2000, J NEUROPHYSIOL, V84, P2026
   SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
   Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2
   Santoro B, 2000, J NEUROSCI, V20, P5264
   SEAMON KB, 1981, P NATL ACAD SCI-BIOL, V78, P3363, DOI 10.1073/pnas.78.6.3363
   SEAMON KB, 1981, J CYCLIC NUCL PROT, V7, P201
   Shaikh AG, 2003, HEARING RES, V183, P126, DOI 10.1016/S0378-5955(03)00224-7
   Shin KS, 2004, NEURON, V41, P737, DOI 10.1016/S0896-6273(04)00083-2
   Shin KS, 2001, J GEN PHYSIOL, V117, P91, DOI 10.1085/jgp.117.2.91
   Starodub AM, 2000, J PHARMACOL EXP THER, V294, P555
   Sun QQ, 2003, J NEUROSCI, V23, P2751
   Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471
   Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812
   Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644
   Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946
   Sweatt JD, 2001, J NEUROCHEM, V76, P1, DOI 10.1046/j.1471-4159.2001.00054.x
   TOKIMASA T, 1990, J PHYSIOL-LONDON, V420, P409
   Wainger BJ, 2001, NATURE, V411, P805, DOI 10.1038/35081088
   WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767
   Wynne B, 1996, Audiol Neurootol, V1, P54
   Xia ZG, 1996, J NEUROSCI, V16, P5425
   Yao WD, 2001, J NEUROPHYSIOL, V85, P1384
   Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L
NR 73
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 70
EP 80
DI 10.1016/j.heares.2004.10.005
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200008
PM 15721562
ER

PT J
AU Lynch, ED
   Gu, RD
   Pierce, C
   Kil, J
AF Lynch, ED
   Gu, RD
   Pierce, C
   Kil, J
TI Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by
   oral administration of allopurinol and ebselen
SO HEARING RESEARCH
LA English
DT Article
DE chemoprotection; ototoxicity; nephrotoxicity; allopurinol; ebselen
ID BLIND CLINICAL-TRIAL; PHASE-II; SUPEROXIDE-DISMUTASE; ANTIOXIDANT
   SYSTEM; PROTECTIVE AGENTS; COCHLEAR DAMAGE; CIS-PLATINUM; HEARING-LOSS;
   GUINEA-PIG; NOISE
AB Cisplatin ototoxicity has been associated with the generation of toxic levels of reactive oxygen species (ROS) which can lead to injury or loss of outer hair cells in the organ of Corti, damage to the stria vascularis, and loss of spiral ganglion cells, resulting in permanent hearing loss. In an attempt to reduce the formation of ROS and to bolster the innate oxidative stress defenses of the cochlea, we tested individual and combined formulations of allopurinol, a xanthine oxidase inhibitor, and ebselen, a glutathione peroxidase mimic. We used an acute cisplatin toxicity rat model (16 mg/kg i.p.) to analyze allopurinol and ebselen alone and in combination for their ability to reduce cisplatin associated hearing loss and nephrotoxicity. The results from our studies indicate that a combined formulation of ebselen and allopurinol affords significant protection to the cochlea and kidney from cisplatin toxicity. In the cochlea, protection is dependent on the preservation of outer hair cell number, while in the kidney, protection is associated with the preservation of proximal tubular epithelia. Further evaluation of the chemoprotective effects of ebselen and allopurinol on cisplatin side effects in the presence of tumor appears warranted. (c) 2004 Elsevier B.V. All rights reserved.
C1 Sound Pharmaceut Inc, Res & Dev, Seattle, WA 98103 USA.
RP Lynch, ED (reprint author), Sound Pharmaceut Inc, Res & Dev, 4010 Stone Way N,Suite 120, Seattle, WA 98103 USA.
EM elynch@soundpharmaceuticals.com
CR BALDEW GS, 1990, CANCER RES, V50, P7031
   BLEIBERG H, 1990, CANCER INVEST, V8, P471, DOI 10.3109/07357909009012070
   Cassandro E, 2003, ACTA OTO-LARYNGOL, V123, P802, DOI 10.1080/00016480310005138
   De Besi P, 1988, Recent Results Cancer Res, V110, P196
   Erdinc M, 2000, EXP TOXICOL PATHOL, V52, P329
   FISCHER H, 1988, XENOBIOTICA, V18, P1347
   Hatzopoulos S, 1999, ANN NY ACAD SCI, V884, P211, DOI 10.1111/j.1749-6632.1999.tb08643.x
   Hensley ML, 1999, J CLIN ONCOL, V17, P3333
   HINOJOSA R, 1995, AM J OTOL, V16, P731
   Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5
   Husain K, 1998, MOL CELL BIOCHEM, V178, P127, DOI 10.1023/A:1006889427520
   Kopke RD, 1997, AM J OTOL, V18, P559
   LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427
   Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8
   LEE JS, 1987, AM J CLIN ONCOL-CANC, V10, P512, DOI 10.1097/00000421-198712000-00010
   Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029
   McFadden SL, 2001, NOISE HEALTH, V3, P49
   Melamed SB, 2000, AUDIOLOGY, V39, P24
   MOROSO MJ, 1983, J OTOLARYNGOL, V12, P365
   Ogawa A, 1999, CEREBROVASC DIS, V9, P112, DOI 10.1159/000015908
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   Rybak LP, 1999, ANN NY ACAD SCI, V884, P143
   Rybak LP, 2000, AM J OTOL, V21, P513
   SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2
   STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467
   TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261
   WEISS GR, 1990, GYNECOL ONCOL, V37, P354, DOI 10.1016/0090-8258(90)90366-S
   Yamaguchi T, 1998, STROKE, V29, P12
   Yoshida M, 2000, TOHOKU J EXP MED, V191, P209, DOI 10.1620/tjem.191.209
NR 33
TC 50
Z9 58
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 81
EP 89
DI 10.1016/j.heares.2004.08.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200009
PM 15721563
ER

PT J
AU Emmerich, E
   Richter, F
   Linss, V
   Linss, W
AF Emmerich, E
   Richter, F
   Linss, V
   Linss, W
TI Frequency-specific cochlear damage in guinea pig after exposure to
   different types of realistic industrial noise
SO HEARING RESEARCH
LA English
DT Article
DE DPOAE; outer hair cell; industrial noise exposure; scanning electron
   microscopy; hearing loss; guinea pig
ID PRODUCT OTOACOUSTIC EMISSIONS; HAIR CELL LOSS; INDUCED HEARING-LOSS;
   IMPULSE NOISE; THRESHOLD SHIFTS; CHINCHILLA; RESPONSES; DPOAE; EARS;
   INTERMITTENT
AB For the causal evaluation of occupational hearing damage it is important to identify definitely the noise source. Here we tested, whether recordings of distortion product otoacoustic emissions (DPOAEs) in awake guinea pigs can distinguish the effects of different industrial noises. Six groups of 12 animals each were investigated before and over four months after a single 2 h exposure to specific, played-back industrial noise as well as before and for 2 months after impulse noise exposure. We compared broadband noise (buzz saw, bottle washing machine), low frequency noise (drawing press), and mid-frequency noise (bottle filling machine). All animals had stable DPOAE levels before noise exposure. Frequency specific decreases in DPOAEs were found after exposure to the different noises. Broadband noise diminished mostly all frequencies tested.. whereas low- or mid-frequency noise had a greater effect on DPOAE evoked by middle and higher frequencies, respectively. DPOAE evoked by middle and higher frequencies were obliterated after impulse noise. Morphological analysis of the cochleae confirmed these alterations. OHC loss was found in the middle turns of the cochleae corresponding to the diminution of DPOAE. We conclude that different kinds of industrial noise tend to produce typical changes in DPOAE levels. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Jena, Inst Physiol Neurophysiol, D-07740 Jena, Germany.
   Univ Jena, Inst Anat 1, D-07740 Jena, Germany.
RP Emmerich, E (reprint author), Univ Jena, Inst Physiol Neurophysiol, Teichgraben 8, D-07740 Jena, Germany.
EM EEMM@mti.uni-jena.de; fric@mti.uni-jena.de
CR AVAN P, 2001, NOISE HLTH, V3, P1
   Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923
   Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044
   Clark JA, 1996, HEARING RES, V99, P119, DOI 10.1016/S0378-5955(96)00092-5
   Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3
   DIEROFF HG, 1968, Z LARYNGOL RHINOL OT, V47, P53
   Emmerich E, 2000, EUR ARCH OTO-RHINO-L, V257, P128, DOI 10.1007/s004050050208
   Emmerich E, 2000, HEARING RES, V148, P9, DOI 10.1016/S0378-5955(00)00101-5
   Gorga MP, 2003, J ACOUST SOC AM, V114, P263, DOI 10.1121/1.1575751
   GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348
   Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003
   Hamernik RP, 2001, J ACOUST SOC AM, V110, P3163, DOI 10.1121/1.1414707
   Hamernik RP, 2000, HEARING RES, V150, P245, DOI 10.1016/S0378-5955(00)00204-5
   Hamernik RP, 1998, HEARING RES, V118, P73, DOI 10.1016/S0378-5955(98)00021-5
   Hamernik RP, 2002, J ACOUST SOC AM, V111, P320, DOI 10.1121/1.1428545
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8
   HOTH S, 2004, EUR ARCH OTORHINOLAR
   KISS JG, 2001, SCAND AUDIO S, V52, P138
   Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1
   LINSS V, IN PRESS EUR ARCH OT
   Linss W, 2000, ANN ANAT, V182, P445, DOI 10.1016/S0940-9602(00)80051-5
   MEYER C, 1985, ANAT ANZEIGER, V158, P5
   Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2
   POPELAR J, 1993, HEARING RES, V67, P69, DOI 10.1016/0378-5955(93)90233-Q
   POPELAR J, 1982, HEARING RES, V8, P273, DOI 10.1016/0378-5955(82)90019-3
   POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8
   Rabinowitz PM, 2000, AM FAM PHYSICIAN, V61, P2749
   RICHTER F, 1987, ARCH OTO-RHINO-LARYN, V244, P269, DOI 10.1007/BF00468634
   SATALOFF J, 1983, ANN OTO RHINOL LARYN, V92, P623
   Schneider S, 2003, J ACOUST SOC AM, V113, P3285, DOI 10.1121/1.1568753
   Shaffer LA, 2003, EAR HEARING, V24, P367, DOI 10.1097/01.AUD.0000090439.16438.9F
   Skellett RA, 1996, HEARING RES, V98, P68, DOI 10.1016/0378-5955(96)00062-7
   SYKA J, 1982, HEARING RES, V8, P263, DOI 10.1016/0378-5955(82)90018-1
   White DR, 1998, J ACOUST SOC AM, V103, P1566, DOI 10.1121/1.421303
   Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9
NR 36
TC 10
Z9 10
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 90
EP 98
DI 10.1016/j.heares.2004.09.009
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200010
PM 15721564
ER

PT J
AU Halsey, K
   Skjonsberg, A
   Ulfendahl, M
   Dolan, DF
AF Halsey, K
   Skjonsberg, A
   Ulfendahl, M
   Dolan, DF
TI Efferent-mediated adaptation of the DPOAE as a predictor of
   aminoglycoside toxicity
SO HEARING RESEARCH
LA English
DT Article
DE hearing; gender; aminoglycoside; efferent; adaptation; DPOAE
ID PRODUCT OTOACOUSTIC EMISSION; OUTER HAIR-CELLS; GUINEA-PIG;
   ALKALINE-PHOSPHATASE; GENTAMICIN BLOCKS; OTOTOXICITY; RECEPTOR;
   SUSCEPTIBILITY; ACTIVATION; SLOW
AB Rapid efferent adaptation of the distortion product otoacoustic emission (DPOAE) predicts susceptibility to noise-induced damage, and is linked to the concentration of the efferent receptor (alpha 9). Maximum adaptation occurs at intense primary levels, rapidly switching from positive to negative orientation in a very narrow (2 dB) range of F-1 and F-2 levels.
   Aminoglycosides are commonly used antibiotics, with the undesirable side-effect of ototoxicity. Susceptibility to hair cell damage from the aminoglycoside gentamicin can be quite variable, even within a single strain and species of animal. Since one of gentamicin's first sites of action in the outer hair cell (OHC) is at the efferent receptor, it is possible that efferent activity could be a predictor of susceptibility to gentamicin induced damage.
   Significant sex-related differences were found in two strains of guinea pigs when treated with gentamicin. Female guinea pigs were more susceptible both to systemic effects and to specific ototoxic effects.
   Efferent-mediated DPOAE adaptation served as a predictor of sensitivity to aminoglycoside damage, predicting both number of days before onset of deafness in male animals, and predicting final threshold shifts from gentamicin doses which produced variable results. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA.
   Karolinska Inst, Ctr Hearing & Commun Res, SE-17176 Stockholm, Sweden.
   Karolinska Inst, Dept Otolaryngol, SE-17176 Stockholm, Sweden.
RP Dolan, DF (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM ddolan@umich.edu
CR Blanchet C, 2000, J PHYSIOL-LONDON, V525, P641, DOI 10.1111/j.1469-7793.2000.t01-1-00641.x
   CAPPS MJ, 1977, LARYNGOSCOPE, V87, P1100, DOI 10.1288/00005537-197707000-00009
   daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826
   DALLOS P, 1978, J NEUROPHYSIOL, V41, P365
   DEGKWITZ E, 1982, Z ERNAHRUNGSWISS, V21, P51
   GOODRICH JA, 1995, TOXICOL LETT, V75, P127, DOI 10.1016/0378-4274(94)03170-C
   Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8
   Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066
   Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047
   Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956
   Luebke AE, 2002, JARO, V3, P16, DOI 10.1007/s101620010089
   Luebke AE, 2002, J NEUROSCI, V22, P4241
   Mahmoodian F, 1996, ARCH BIOCHEM BIOPHYS, V336, P86, DOI 10.1006/abbi.1996.0535
   Maison SF, 2000, J NEUROSCI, V20, P4701
   Mills CD, 1999, HEARING RES, V128, P75, DOI 10.1016/S0378-5955(98)00190-7
   Rothlin CV, 2000, NEUROPHARMACOLOGY, V39, P2525, DOI 10.1016/S0028-3908(00)00056-3
   Sinswat P, 2000, KIDNEY INT, V58, P2525, DOI 10.1046/j.1523-1755.2000.00437.x
   SMITH DW, 1994, BRAIN RES, V652, P243, DOI 10.1016/0006-8993(94)90233-X
   SOKOLL MD, 1981, ANESTHESIOLOGY, V55, P148, DOI 10.1097/00000542-198108000-00011
   Sun XM, 1999, J ACOUST SOC AM, V105, P3399, DOI 10.1121/1.424668
   Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305
   Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168
NR 22
TC 17
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 99
EP 108
DI 10.1016/j.heares.2004.09.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200011
PM 15721565
ER

PT J
AU Lichtenhan, JT
   Chertoff, ME
   Smittkamp, SE
   Durham, D
   Girod, DA
AF Lichtenhan, JT
   Chertoff, ME
   Smittkamp, SE
   Durham, D
   Girod, DA
TI Predicting severity of cochlear hair cell damage in adult chickens using
   DPOAE input-output functions
SO HEARING RESEARCH
LA English
DT Article
DE distortion product otoacoustic emissions; binary logistic regression;
   auditory; avian
ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION PRODUCTS;
   EVOKED-POTENTIAL THRESHOLDS; INTERRUPTED NOISE EXPOSURES; AUDITORY
   BRAIN-STEM; HYALINE CELLS; NUCLEUS NEURONS; BREED DIFFERENCES;
   DEAFFERENTATION; REGENERATION
AB Distortion product otoacoustic emissions (DPOAE) were recorded from the ear canal of aged broiler chickens which have been shown to present with age-related cochlear degeneration [Hear. Res. 166 (2002) 82]. We describe the relationship between the shape of the DPOAE input-output (I/O) function and the type of hair cell damage present at and between the cochlear frequency places of the DPOAE primary tones (f(1) and f(2)). The mid stimulus level compressive growth of the mean DPOAE I/O functions is reduced in a graded fashion relative to the severity of hair cell damage. However, individual DPOAE I/O functions within most hair cell damage groups show large variability from this characteristic. Various least squares regression models were used to predict hair cell density from indices derived from the DPOAE I/O function (area, threshold and slope). The results showed that no simple linear relationship exists between hair cell density and the DPOAE I/O function indices. multivariate binary logistic regression used DPOAE I/O function indices to predict membership in hair cell damage groups. The logistic model revealed that DPOAE threshold can be used to predict the occurrence of severe/total hair cell damage with good specificity though poor sensitivity. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA.
   Univ Kansas, Med Ctr, Dept Speech & Hearing, Kansas City, KS 66160 USA.
RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd, Kansas City, KS 66160 USA.
EM ddurham@kunic.edu
CR AVAN P, 2001, NOISE INDUCED HEARIN, P411
   BESS FH, 1996, HEARING DISORDERS, P199
   BRIX J, 1994, HEARING RES, V76, P147, DOI 10.1016/0378-5955(94)90096-5
   BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3
   BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8
   BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003
   CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229
   CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0
   Chen L, 2001, HEARING RES, V161, P54, DOI 10.1016/S0378-5955(01)00353-7
   COTANCHE DA, 1992, J COMP NEUROL, V324, P353, DOI 10.1002/cne.903240306
   Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852
   Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9
   Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3
   DRENCKHAHN D, 1991, HEARING RES, V54, P29, DOI 10.1016/0378-5955(91)90133-T
   Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
   Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4
   Fleiss JL, 1981, STAT METHODS RATES P, V2nd, P212
   Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9
   Frisancho JC, 1997, J NEUROCYTOL, V26, P121, DOI 10.1023/A:1018575811922
   FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867
   GLEICH O, 2000, COMP HEARING BIRDS R, P70
   GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1
   Hamernik RP, 2000, HEARING RES, V150, P245, DOI 10.1016/S0378-5955(00)00204-5
   Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070
   Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8
   Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
   Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W
   KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7
   King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821
   LICHTENHAN JT, 2004, ARO ABSTR, V24, P109
   LINDEN R, 1994, NEUROSCIENCE, V58, P671, DOI 10.1016/0306-4522(94)90447-2
   Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858
   Manley GA, 2001, J NEUROPHYSIOL, V86, P541
   MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9
   MENDENHALL W, 2003, 2 COURSE STAT REGRES, P321
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0
   RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   SAUNDERS SS, 1993, J ACOUST SOC AM, V94, P83, DOI 10.1121/1.406945
   Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1
   Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008
   Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
   Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853
   SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004
   SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0
   Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002
   Tabachnick B., 2001, USING MULTIVARIATE S, P517
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   Trautwein P, 1996, Audiol Neurootol, V1, P86
   Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297
   Woolley SMN, 2001, HEARING RES, V153, P181, DOI 10.1016/S0378-5955(00)00217-3
NR 54
TC 4
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 109
EP 120
DI 10.1016/j.heares.2004.09.001
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200012
PM 15721566
ER

PT J
AU Bauer, CA
   Brozoski, TJ
AF Bauer, CA
   Brozoski, TJ
TI Cochlear structure and function after round window application of
   ototoxins
SO HEARING RESEARCH
LA English
DT Article
DE ototoxin; cochlea; carboplatin; cisplatin; chinchilla
ID HAIR CELL LOSS; CIS-DIAMMINEDICHLOROPLATINUM; HEARING-LOSS; GUINEA-PIG;
   CISPLATIN; INNER; CARBOPLATIN; CHINCHILLAS; TINNITUS; DEGENERATION
AB Topical round window application of ototoxic agents has been a useful method for studying ototoxicity and hearing loss in the mammalian cochlea. For example, species-specific differences in cochlear susceptibility to damage have been documented using this technique. Carboplatin has been characterized in the literature as a selective inner hair cell (IHC) toxin in chinchillas, while cisplatin has been characterized as a selective outer hair cell (OHC) toxin. The present experiment quantified dose-dependent damage to cochlear hair cells in the chinchilla after a single direct round window application of either cisplatin or carboplatin. Detailed cyto-cochleograms were obtained for the entire cochlear duct, for a range of doses, along with auditory brainstem response thresholds. In agreement with the literature, although there was variability, at the lowest concentrations tested (2 and 3 mg/ml), carboplatin produced Substantial IHC damage with no OHC damage. In contrast, the effects of cisplatin were more variable, and contrary to published reports, across the range of doses producing OHC damage, IHC damage was always observed. Limitations of direct round window ototoxin treatments are discussed, in addition to their potential application in the study of tinnitus. (c) 2004 Elsevier B.V. All rights reserved.
C1 So Illinois Univ, Sch Med, Div Otolaryngol, Springfield, IL 62794 USA.
RP Bauer, CA (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol, POB 19662, Springfield, IL 62794 USA.
EM cbauer@siumed.edu
CR BOHNE BA, 1972, LARYNGOSCOPE, V82, P1
   Brozoski TJ, 2002, J NEUROSCI, V22, P2383
   Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2
   ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638
   GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   Hofstetter P, 1997, AUDIOLOGY, V36, P301
   Janning MH, 1998, OTOLARYNG HEAD NECK, V119, P574, DOI 10.1016/S0194-5998(98)70014-2
   Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001
   KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275
   Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299
   LAURELL G, 1991, J OTOLARYNGOL, V20, P158
   Ramirez-Camacho R, 2004, LARYNGOSCOPE, V114, P533
   SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001
   Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800
   TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97
   TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4
   TONNDORF J, 1981, ACTA OTO-LARYNGOL, V91, P469, DOI 10.3109/00016488109138530
   Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X
NR 19
TC 16
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 121
EP 131
DI 10.1016/j.heares.2004.09.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200013
PM 15721567
ER

PT J
AU Kitahara, T
   Li, HS
   Balaban, CD
AF Kitahara, T
   Li, HS
   Balaban, CD
TI Changes in transient receptor potential cation channel superfamily V
   (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin
   challenge
SO HEARING RESEARCH
LA English
DT Article
DE transient receptor potential cation channel subfamily V (TRPV);
   vanilloid receptors; kanamycin; dihydroxybenzoate; innerear; real-time
   PCR
ID RAT DORSAL-ROOT; FREE-RADICAL FORMATION; NERVE GROWTH-FACTOR; HAIR CELL
   LOSS; NEUROTROPHIC FACTOR; AMINOGLYCOSIDE OTOTOXICITY;
   CAPSAICIN-RECEPTOR; SENSORY NEURONS; COCHLEAR NERVE; DRG NEURONS
AB The transient receptor potential cation channel subfamily V (TRPV) is a non-specific cation ion channel receptor family that is gated by heat, protons, low extracellular osmolarity and arachidonic acid derivatives. Since some of these endogenous agonists of TRPV receptors are reactive oxygen intermediates produced by lipoxygenases, it has been hypothesized that some members of the TRPV family may respond to challenges by reactive oxygen species. This study used real-time PCR to quantitatively track changes in TRPV1-4 mRNA expression in the spiral, vestibular, and trigeminal ganglia and the kidney from kanamycin (KM)-treated mice. TRPV1, TRPV2, TRPV3 and TRPV4 mRNAs were expressed in spiral and vestibular ganglia, and TRPV2 and TRPV1 mRNAs were most predominant in control mice. After KM (700 mg/kg s.c. b.i.d., 14 days), TRPV1 mRNA and protein expression were significantly up-regulated both in the spiral and vestibular ganglia, but expression was unaffected in the trigeminal ganglion and kidney. Real-time PCR also demonstrated a significant down-regulation in TRPV4 mRNA expression in the inner ear ganglia and kidney after KM treatment. All these mRNA and protein expression changes were eliminated by simultaneous administration of dihydroxybenzoate (300 mg/kg s.c. b.i.d., 14 days), an anti-oxidant that blocks KM ototoxicity. It is proposed that up-regulated TRPV1 expression during KM exposure may promote ganglion cell survival by contributing to neuronal depolarization, with KM-induced tinnitus and dizziness as consequences. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Inst Eye & Ear, Pittsburgh, PA 15213 USA.
   Univ Pittsburgh, Dept Neurobiol, Pittsburgh, PA 15260 USA.
   Univ Pittsburgh, Dept Commun Sci, Pittsburgh, PA 15260 USA.
RP Balaban, CD (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Inst Eye & Ear, 107,Room 153,203 Lothrop St, Pittsburgh, PA 15213 USA.
EM cbalaban@pitt.edu
CR Amaya F, 2003, BRAIN RES, V963, P190, DOI 10.1016/S0006-8993(02)03972-0
   Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7
   Benham CD, 2003, CELL CALCIUM, V33, P479, DOI 10.1016/S0143-4160(03)00063-0
   BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725
   Caterina MJ, 1997, NATURE, V389, P816
   Caterina MJ, 1999, NATURE, V398, P436
   Chung MK, 2003, J BIOL CHEM, V278, P32037, DOI 10.1074/jbc.M303251200
   Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040
   Guler AD, 2002, J NEUROSCI, V22, P6408
   Ha SO, 2000, MOL BRAIN RES, V81, P181, DOI 10.1016/S0169-328X(00)00144-3
   Hansen MR, 2001, J NEUROSCI, V21, P2256
   Harada Y, 1991, Acta Otolaryngol Suppl, V481, P135
   HAWKINS J. E., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P698
   Hegarty JL, 1997, J NEUROSCI, V17, P1959
   HINOJOSA R, 1987, J INFECT DIS, V156, P449
   Huang SM, 2002, P NATL ACAD SCI USA, V99, P8400, DOI 10.1073/pnas.122196999
   Hudson LJ, 2001, EUR J NEUROSCI, V13, P2105, DOI 10.1046/j.0953-816x.2001.01591.x
   Hwang SW, 2000, P NATL ACAD SCI USA, V97, P6155, DOI 10.1073/pnas.97.11.6155
   Ji RR, 2002, NEURON, V36, P57, DOI 10.1016/S0896-6273(02)00908-X
   KAMMERMAN JR, 1992, ARMED FORCES I PATHO, P72
   Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
   KELLERHALS B, 1967, ACTA OTOLARYNGOL S S, V26, P1
   Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4
   MATZ GJ, 1965, LARYNGOSCOPE, V75, P1690
   MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077
   Michael GJ, 1999, J NEUROSCI, V19, P1844
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   Montell C, 2002, CELL, V108, P595, DOI 10.1016/S0092-8674(02)00670-0
   Nilius B, 2004, AM J PHYSIOL-CELL PH, V286, pC195, DOI 10.1152/ajpcell.00365.2003
   Ogun-Muyiwa P, 1999, NEUROREPORT, V10, P2107, DOI 10.1097/00001756-199907130-00021
   Popper P, 1999, BRAIN RES, V846, P40, DOI 10.1016/S0006-8993(99)01941-1
   SATALOFF J, 1966, ARCH OTOLARYNGOL, V80, P413
   Schmittgen TD, 2000, ANAL BIOCHEM, V285, P194, DOI 10.1006/abio.2000.4753
   SERA K, 1987, SCANNING MICROSCOPY, V1, P1191
   Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7
   Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6
   Shin J, 2002, P NATL ACAD SCI USA, V99, P10150, DOI 10.1073/pnas.152002699
   Sone M, 1998, HEARING RES, V115, P217, DOI 10.1016/S0378-5955(97)00191-3
   SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683
   Stucky CL, 1998, NEUROSCIENCE, V84, P1257, DOI 10.1016/S0306-4522(97)00572-1
   Toth A, 2003, LIFE SCI, V73, P487, DOI 10.1016/S0024-3205(03)00310-2
   Veldhuis WB, 2003, J NEUROSCI, V23, P4127
   WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
   Winston J, 2001, PAIN, V89, P181, DOI 10.1016/S0304-3959(00)00370-5
   Winter J, 1998, NEUROSCI LETT, V241, P21, DOI 10.1016/S0304-3940(97)00978-6
   Wissenbach U, 2000, FEBS LETT, V485, P127, DOI 10.1016/S0014-5793(00)02212-2
   Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
   Zha XM, 2001, HEARING RES, V156, P53, DOI 10.1016/S0378-5955(01)00267-2
   ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1
NR 51
TC 38
Z9 41
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 132
EP 144
DI 10.1016/j.heares.2004.09.007
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200014
PM 15721568
ER

PT J
AU Zhang, YF
   Dyck, RH
   Hamilton, SE
   Nathanson, NM
   Yan, J
AF Zhang, YF
   Dyck, RH
   Hamilton, SE
   Nathanson, NM
   Yan, J
TI Disrupted tonotopy of the auditory cortex in mice lacking M-1 muscarinic
   acetylcholine receptor
SO HEARING RESEARCH
LA English
DT Article
DE auditory cortex; tonotopy; frequency tuning; muscarinic receptor;
   cholinergic; development; mouse
ID MOUSE CEREBRAL NEOCORTEX; DENDRITES IN-VIVO; VISUAL-CORTEX; NUCLEUS
   BASALIS; PHYSIOLOGICAL MEMORY; CORTICAL DEVELOPMENT; STRIATE CORTEX;
   MUTANT MICE; HOUSE MOUSE; PLASTICITY
AB Sensory cortices have multiple and distinct functional maps that systematically represent environmental information. Development of these maps is precisely controlled by a number of intrinsic and extrinsic factors. Cortical cholinergic regulation is a crucial factor for normal cortical morphogenesis. In this study, we test the role of the M-1 muscarinic acetylcholine receptor, the main muscarinic receptor subtype in the neocortex in the development of tonotopic maps in the auditory cortex. Mice lacking M-1 receptors have normal hearing sensitivity but exhibit disrupted tonotopic organization and frequency tuning in the auditory cortex. In contrast, tonotopic organization and frequency tuning remain normal in the auditory midbrain. In addition, cortical layer IV neurons of M-1 mutants exhibit significantly shorter or sparser dendrites compared to neurons of wildtype mice. In summary, our data suggest that the M-1 receptor appears to be critical for the refinement or normal maturation of cortical tonotopy that is guided by thalamocortical inputs during early development. (c) 2004 Elsevier B.V. All rights reserved.
C1 Univ Calgary, Fac Med, Dept Physiol & Biophys, Neurosci Res Grp, Calgary, AB T2N 4N1, Canada.
   Univ Calgary, Dept Psychol, Calgary, AB T2N 4N1, Canada.
   Univ Washington, Sch Med, Dept Pharmacol, Seattle, WA 98195 USA.
RP Yan, J (reprint author), Univ Calgary, Fac Med, Dept Physiol & Biophys, Neurosci Res Grp, Calgary, AB T2N 4N1, Canada.
EM juyan@ucalgary.ca
CR Anagnostaras SG, 2003, NAT NEUROSCI, V6, P51, DOI 10.1038/nn992
   Aramakis VB, 1999, SYNAPSE, V32, P262, DOI 10.1002/(SICI)1098-2396(19990615)32:4<262::AID-SYN3>3.0.CO;2-J
   Aramakis VB, 1997, EXP BRAIN RES, V113, P484, DOI 10.1007/PL00005601
   Assad JA, 2003, CURR OPIN NEUROBIOL, V13, P194, DOI 10.1016/S0959-4388(03)00045-X
   Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219
   Berger-Sweeney J, 2003, NEUROSCI BIOBEHAV R, V27, P401, DOI 10.1016/S0149-7634(03)00070-8
   Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163
   Cline HT, 2001, CURR OPIN NEUROBIOL, V11, P118, DOI 10.1016/S0959-4388(00)00182-3
   Cohen-Cory S, 2002, SCIENCE, V298, P770, DOI 10.1126/science.1075510
   EGGERMONT JJ, 1990, EVOKED POTENTIAL MAN, P41
   Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309
   Fox K, 2002, NEUROSCIENCE, V111, P799, DOI 10.1016/S0306-4522(02)00027-1
   Franklin KBJ, 1996, MOUSE BRAIN STEREOTA
   Gibb R, 1998, J NEUROSCI METH, V79, P1, DOI 10.1016/S0165-0270(97)00163-5
   GLASER EM, 1981, J NEUROSCI METH, V4, P117, DOI 10.1016/0165-0270(81)90045-5
   Gordon JA, 1996, J NEUROSCI, V16, P3274
   GU Q, 1993, EUR J NEUROSCI, V5, P475, DOI 10.1111/j.1460-9568.1993.tb00514.x
   Hall J. W., 1992, HDB AUDITORY EVOKED, P41
   Hamilton SE, 1997, P NATL ACAD SCI USA, V94, P13311, DOI 10.1073/pnas.94.24.13311
   HOHMANN CF, 1995, J COMP NEUROL, V358, P88, DOI 10.1002/cne.903580106
   Hohmann CF, 2003, NEUROSCI BIOBEHAV R, V27, P351, DOI 10.1016/S0149-7634(03)00066-6
   Hohmann CF, 1998, PERSPECT DEV NEUROBI, V5, P401
   Ji WQ, 2003, J NEUROPHYSIOL, V90, P1904, DOI 10.1152/jn.00363.2003
   Kaas JH, 2002, BIOESSAYS, V24, P334, DOI 10.1002/bies.10076
   LEUBA G, 1978, J HIRNFORSCH, V19, P301
   LEVEY AI, 1993, LIFE SCI, V52, P441, DOI 10.1016/0024-3205(93)90300-R
   LIU YL, 1994, DEV BRAIN RES, V79, P63, DOI 10.1016/0165-3806(94)90049-3
   Mechawar N, 2001, NEUROSCIENCE, V108, P555, DOI 10.1016/S0306-4522(01)00389-X
   METHERATE R, 1990, SYNAPSE, V6, P364, DOI 10.1002/syn.890060409
   Miasnikov AA, 2001, NEUROREPORT, V12, P1537, DOI 10.1097/00001756-200105250-00047
   Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7
   Molnar Z, 1998, J NEUROSCI, V18, P5723
   Monfils MH, 2004, SYNAPSE, V53, P114, DOI 10.1002/syn.20039
   Pallas SL, 2001, TRENDS NEUROSCI, V24, P417, DOI 10.1016/S0166-2236(00)01853-1
   Plummer KL, 1999, J COMP NEUROL, V404, P408
   PRUSKY G, 1990, DEV BRAIN RES, V56, P1, DOI 10.1016/0165-3806(90)90157-T
   Rajan I, 1999, J NEUROBIOL, V38, P357, DOI 10.1002/(SICI)1097-4695(19990215)38:3<357::AID-NEU5>3.0.CO;2-#
   Rajan I, 1998, J NEUROSCI, V18, P7836
   ROBERTSON RT, 1991, DEV BRAIN RES, V58, P81, DOI 10.1016/0165-3806(91)90240-J
   ROMAND R, 1990, DEV BRAIN RES, V54, P221, DOI 10.1016/0165-3806(90)90145-O
   Schmidt KE, 1999, J NEUROBIOL, V41, P10, DOI 10.1002/(SICI)1097-4695(199910)41:1<10::AID-NEU3>3.0.CO;2-L
   Semple MN, 2003, CURR OPIN NEUROBIOL, V13, P167, DOI 10.1016/S0959-4388(03)00048-5
   Sharma J, 2000, NATURE, V404, P841, DOI 10.1038/35009043
   Sholl D., 1956, ORG CEREBRAL CORTEX
   SIMONS DJ, 1987, NATURE, V326, P694, DOI 10.1038/326694a0
   Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140
   Suga N, 1997, J NEUROPHYSIOL, V77, P2098
   WEI J, 1994, J NEUROCHEM, V63, P815
   Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8
   Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850
   WIESEL TN, 1963, J NEUROPHYSIOL, V26, P1003
   Winer JA, 1992, MAMMALIAN AUDITORY P, P222
   Yan J, 2002, J NEUROSCI, V22
   Yan J, 2003, EXP BRAIN RES, V150, P184, DOI 10.1007/s00221-003-1396-6
   Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033
   Yan J, 2003, CAN J NEUROL SCI, V30, P189
   Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x
   Yuste R, 1999, J NEUROBIOL, V41, P1, DOI 10.1002/(SICI)1097-4695(199910)41:1<1::AID-NEU1>3.0.CO;2-2
   Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398
   Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745
   ZHANG QY, 1999, HEARING RES, V130, P94
NR 61
TC 20
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD MAR
PY 2005
VL 201
IS 1-2
BP 145
EP 155
DI 10.1016/j.heares.2004.10.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 905YA
UT WOS:000227606200015
PM 15721569
ER

PT J
AU Chen, GD
   Liu, Y
AF Chen, GD
   Liu, Y
TI Mechanisms of noise-induced hearing loss potentiation by hypoxia
SO HEARING RESEARCH
LA English
DT Article
DE noise-induced hearing loss; hypoxia; cochlear potentials; gene
   expression in the cochlea
ID OUTER HAIR-CELLS; SUCCINIC-DEHYDROGENASE; COCHLEAR AMPLIFIER; ACTIN;
   THRESHOLD; INNER; ELECTROMOTILITY; PRESTIN; ELEMENT; PLASMA
AB Potentiation of noise-induced permanent threshold shift (PTS) by hypoxia has been reported [Hear. Res. 172 (1-2) (2002) 186]. In this study in rats, effects of noise (110 dB SPL), hypoxia (10% O-2), and their combination have been determined on different cochlear potentials and on the expression of genes coding proteins in the outer hair cell (OHC) membrane skeleton (beta-actin) and in the mitochondrial respiratory chain (SDHa & b). The noise exposure alone caused CAP threshold shift only in the noise-band. The combined exposure to noise and hypoxia caused an about 40-dB PTS at all frequencies within and above the noise band. Loss of the cochlear amplification was not always related to the CM-suppression. SP was only affected at high frequencies by the combined exposure. Gene expression of beta-actin was up-regulated by the noise exposure, which was blocked by hypoxia. Gene expression of SDHa was also up-regulated by the noise and the combined exposure. The data suggest that loss of the cochlear active process, due to damage to the OHC membrane skeleton and to the cellular energy generation system, is related to the noise-induced hearing loss potentiation by hypoxia. Inner hair cell damage may also be involved in the hypoxia potentiation in the basal turn. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, Oklahoma City, OK 73117 USA.
RP Chen, GD (reprint author), Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, POB 26901,1110 N Stonewall Ave, Oklahoma City, OK 73117 USA.
EM guangdi-chen@ouhsc.edu
CR ATTIAS J, 1990, HEARING RES, V45, P247, DOI 10.1016/0378-5955(90)90124-8
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   BUICK F, 1991, SPACE ENV MED, V62, P1119
   BURSAUX E, 1971, Bulletin de Physio-Pathologie Respiratoire, V7, P729
   CARLILE S, 1992, AVIAT SPACE ENVIR MD, V63, P1093
   Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8
   Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9
   CUMMING JF, 1976, CLIN PHARMACOL THER, V19, P468
   Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H
   DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0
   DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325
   DENOFRIO D, 1989, J CELL BIOL, V109, P191, DOI 10.1083/jcb.109.1.191
   Durrant JD, 1998, J ACOUST SOC AM, V104, P370, DOI 10.1121/1.423293
   Fredelius L, 2001, ORL J OTO-RHINO-LARY, V63, P12, DOI 10.1159/000055700
   GARRELS JI, 1976, CELL, V9, P793, DOI 10.1016/0092-8674(76)90142-2
   He DZZ, 2003, HEARING RES, V175, P183, DOI 10.1016/S0378-5955(02)00737-2
   HILDESHEIMER M, 1987, ARYNGOSCOPE, V97, P204
   HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0
   HOOCK TC, 1991, J CELL BIOL, V112, P653, DOI 10.1083/jcb.112.4.653
   Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6
   Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   Nishioka T, 2002, CMES-COMP MODEL ENG, V3, P129
   Ricci Anthony, 2003, J Am Acad Audiol, V14, P325
   Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a
   SERIES F, 1990, ANN INTERN MED, V113, P507
   SOHMER H, 1989, HEARING RES, V40, P87, DOI 10.1016/0378-5955(89)90102-0
   Swenson ER, 1997, AVIAT SPACE ENVIR MD, V68, P499
   TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4
   TIRLAPUR VG, 1983, THORAX, V38, P785, DOI 10.1136/thx.38.10.785
   *US DEP HHS, 1996, MMWR-MORBID MORTAL W, V35, P185
   Wang J A, 1990, Hear Res, V44, P143, DOI 10.1016/0378-5955(90)90076-2
   ZAKUT R, 1982, NATURE, V298, P857, DOI 10.1038/298857a0
   Zhai SQ, 1998, ACTA OTO-LARYNGOL, V118, P813, DOI 10.1080/00016489850182495
   Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
NR 36
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2004.08.016
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700001
PM 15668034
ER

PT J
AU Aggarwal, PS
   Lowen, SB
   Colburn, HS
   Dolphin, WF
AF Aggarwal, PS
   Lowen, SB
   Colburn, HS
   Dolphin, WF
TI Intrinsic oscillations in spike trains indicate non-renewal statistics
   due to convergence of inputs in dorsal cochlear nucleus neurons
SO HEARING RESEARCH
LA English
DT Article
DE intrinsic oscillations; spectral analysis; inter-spike interval
   regularity; dorsal cochlear nucleus; refractory; integrate-and-fire;
   convergence; encoding
ID UNANESTHETIZED DECEREBRATE CATS; INTRACELLULAR-RECORDINGS; INHIBITORY
   INTERACTIONS; RESPONSE PROPERTIES; DISCHARGE PATTERNS; AUDITORY-SYSTEM;
   ELECTRIC FISH; UNITS; CELLS; GERBIL
AB The occurrence of intrinsic oscillations (IOs) in a unit's discharge is reflected by a prominent peak in the power spectrum (i.e., Fourier transform of the autocorrelation function) of spike trains obtained from single-unit discharge, at a frequency independent of stimulus spectral characteristics. IOs have been reported by researchers in the dorsal cochlear nucleus (DCN) of both the cat and the Mongolian gerbil. It has been hypothesized that IOs are related to inter-spike interval (ISI) regularity (e.g., [Hear. Res. 58 (1992) 153]). This hypothesis is tested in this paper. Responses to multiple presentations of 50-300 ms duration tone bursts, at and near the unit's best frequency (BF) at 20-60 dB rethreshold were recorded from DCN units of barbiturate-anesthetized (30 units), as well as decerebrate (53 units) Mongolian gerbils. IOs in the recordings were then compared with the IOs in simulations of spiking-neuron models. The models were selected because: (1) their ISI regularity characteristics follow those of experimental data and (2) their 10 properties are completely determined by their ISI regularity. Such comparison reveals that Ghoshal's hypothesis fails for a fraction of the units. These results suggest a re-evaluation of the purported relationship between IOs, ISI regularity, and SAM response. Alternate hypotheses are proposed here using computational models that are based on convergence of multiple neural inputs onto the unit under study. These models produce non-renewal statistics that resemble those of the experimental data, as is evident from IO-based analysis. (C) 2004 Elsevier B.V. All rights reserved.
C1 Boston Univ, Biomed Engn Dept, Boston, MA 02215 USA.
   Boston Univ, Ctr Memory & Brain, Boston, MA 02215 USA.
   Mclean Hosp, Brain Imaging Ctr, Belmont, MA 02478 USA.
RP Aggarwal, PS (reprint author), Boston Univ, Biomed Engn Dept, 2 Cummington St, Boston, MA 02215 USA.
EM prateekji@hotmail.com
CR BACKOFF PM, 1991, ABSTR ASS RES OT, V14, P459
   BULLOCK TH, 1965, P NATL ACAD SCI USA, V54, P422, DOI 10.1073/pnas.54.2.422
   Cox DR, 1962, RENEWAL THEORY
   Davis KA, 1996, J NEUROPHYSIOL, V75, P1411
   DAVIS KA, 1995, J NEUROSCI METH, V57, P107, DOI 10.1016/0165-0270(94)00146-8
   Davis KA, 1997, J NEUROSCI, V17, P6798
   DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K
   EVANS EF, 1973, EXP BRAIN RES, V17, P402
   FRISINA RD, 1982, HEARING RES, V6, P259, DOI 10.1016/0378-5955(82)90059-4
   Gardner SM, 1999, J NEUROSCI, V19, P8721
   Gdowski GT, 1998, ANN BIOMED ENG, V26, P473, DOI 10.1114/1.96
   GHOSHAL S, 1992, HEARING RES, V58, P153, DOI 10.1016/0378-5955(92)90124-6
   Golding NL, 1997, J NEUROPHYSIOL, V78, P248
   Golding NL, 1996, J NEUROSCI, V16, P2208
   HAGIWARA S, 1963, J NEUROPHYSIOL, V26, P551
   Hancock KE, 1997, BIOL CYBERN, V76, P419, DOI 10.1007/s004220050355
   HOPFIELD JJ, 1995, P NATL ACAD SCI USA, V92, P6655, DOI 10.1073/pnas.92.15.6655
   JORIS PX, 1998, J NEUROSCI, V8, P1157
   KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S
   Langner G, 1997, Acta Otolaryngol Suppl, V532, P68
   LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F
   LINEBARGER DA, 1986, HEARING RES, V23, P185, DOI 10.1016/0378-5955(86)90015-8
   MACGREGO.RJ, 1974, KYBERNETIK, V16, P53, DOI 10.1007/BF00270295
   MOLNER CE, 1966, THESIS WASHINGTON U
   Nelken I, 1997, J NEUROPHYSIOL, V78, P800
   OERTEL D, 2004, TRENDS NEUROSCI, V27
   PARHAM K, 1992, J NEUROPHYSIOL, V67, P1247
   Ratnam R, 2000, J NEUROSCI, V20, P6672
   Rhode WS, 1999, J NEUROPHYSIOL, V82, P1019
   RODIECK RW, 1962, BIOPHYS J, V2, P3515
   SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917
   SHOFNER WP, 1989, J ACOUST SOC AM, V86, P2172, DOI 10.1121/1.398478
   SOKOLICH W G, 1973, Journal of the Acoustical Society of America, V54, P283, DOI 10.1121/1.1978024
   Teich MC, 1997, J OPT SOC AM A, V14, P529, DOI 10.1364/JOSAA.14.000529
   VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76
   VOIGT HF, 1990, J NEUROPHYSIOL, V64, P1590
   YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X
   YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076
   YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282
   ZHANG S, 1993, J NEUROPHYSIOL, V69, P1398
   ZHANG S, 1993, J NEUROPHYSIOL, V69, P1409
   ZHANG S, 1994, J NEUROPHYSIOL, V71, P914
   Zhao HB, 1997, HEARING RES, V106, P83, DOI 10.1016/S0378-5955(97)00004-X
NR 43
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 10
EP 28
DI 10.1016/j.heares.2004.08.010
PG 19
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700002
PM 15668035
ER

PT J
AU Henson, MM
   Madden, VJ
   Rask-Andersen, H
   Henson, OW
AF Henson, MM
   Madden, VJ
   Rask-Andersen, H
   Henson, OW
TI Smooth muscle in the annulus fibrosus of the tympanic membrane in bats,
   rodents, insectivores, and humans
SO HEARING RESEARCH
LA English
DT Article
DE tympanic membrane; tympanic annulus; annulus fibrosus; smooth muscle
ID RAT
AB The annulus fibrosus and its attachment to the bony tympanic ring were studied in a series of mammals. In the pallid bat, Antrozous pallidus, there is an extensive plexus of large interconnected blood sinuses in the part of the annulus that borders the tympanic bone. The spaces between the sinuses are packed with smooth muscle cells. Most of the cells have a predominately radial orientation; they extend from the bony tympanic sulcus to a dense collagenous matrix (apical zone) where radially oriented fibers of the pars tensa are confluent with the annulus. The muscles and vessels constitute a myovascular zone. A structurally similar myovascular zone is also present in the European hedgehog. In rodents, the annulus lacks the large interconnected blood sinuses but many small vessels are present. Smooth muscle is concentrated in the broad area of attachment of the annulus to the tympanic bone. In the gerbil, smooth muscle seems to be concentrated in the central part of the width of the annulus where it is attached to bone and radiates toward the tympanic membrane. In humans collections of radially oriented smooth muscle cells were found in several locations. The smooth muscle in all species studied appears to form a rim of contractile elements for the pars tensa. This arrangement suggests a role in controlling blood flow and/or creating and maintaining tension on the tympanic membrane. (C) 2004 Published by Elsevier B.V.
C1 Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA.
   Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC 27599 USA.
   Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA.
   Univ Hosp, Dept Otorhinolaryngol, S-75185 Uppsala, Sweden.
RP Henson, OW (reprint author), Univ N Carolina, Dept Cell & Dev Biol, Taylor Hall,CB 7090, Chapel Hill, NC 27599 USA.
EM owh@med.unc.edu
CR ALBIIN N, 1985, ANAT REC, V212, P17, DOI 10.1002/ar.1092120103
   BADIA L, 1994, J LARYNGOL OTOL, V108, P380
   BAIRD IL, 1961, STAIN TECHNOL, V36, P173
   Bento R F, 1998, Ear Nose Throat J, V77, P814
   Bondy Gustav, 1907, Anal Hefte Wiesbaden Abt 1, V35
   Bulbring E., 1981, SMOOTH MUSCLE ASSESS
   Gabella G., 1997, CELLULAR ASPECTS SMO, P1, DOI 10.1017/CBO9780511759383.002
   Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39
   HENSON OW, 2002, ABSTR 25 ANN MIDW M, P153
   HENSON OW, 2001, ABSTR 25 ANN MIDW M, P153
   Henson OW, 2000, JARO, V1, P25, DOI 10.1007/s101620010003
   HENSON OW, 1961, U KANS SCI B, V42, P131
   HENSON OW, 2000, ABSTR 23 ANN MIDW RE, P188
   HENSON OW, 2001, ABSTR 24 ANN MIDW RE, P105
   Kao C, 1997, CELLULAR ASPECTS SMO
   Kuijpers W, 1999, HEARING RES, V128, P80, DOI 10.1016/S0378-5955(98)00203-2
   Madden VJ, 1997, HEARING RES, V111, P76, DOI 10.1016/S0378-5955(97)00107-X
   NEWSTEAD JD, 1987, CELL TISSUE RES, V250, P401
   Nowak RM, 1994, WALKERS BATS WORLD
   UEHARA Y, 1990, ULTRASTRUCTURE SMOOT, P119
   Yang XM, 2002, HEARING RES, V164, P105, DOI 10.1016/S0378-5955(01)00416-6
NR 21
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 29
EP 37
DI 10.1016/j.heares.2004.09.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700003
PM 15668036
ER

PT J
AU Gehr, DD
   Werner, YL
AF Gehr, DD
   Werner, YL
TI Age effects and size effects in the ears of gekkonomorph lizards: inner
   ear
SO HEARING RESEARCH
LA English
DT Article
DE cochlear duct; inner ear; basilar papilla; directional asymmetry; sexual
   dimorphism; otoconia; variation; geckos
ID HAIR-CELL REGENERATION; MIDDLE-EAR; AUDITORY-SENSITIVITY; TECTORIAL
   MEMBRANE; PODARCIS-SICULA; GEKKO-GECKO; BODY-SIZE; ASYMMETRY; OTOCONIA;
   COCHLEA
AB Audiograms have indicated greater auditory sensitivity in larger than in smaller geckos; part of this difference, interspecifically and intraspecifically, is explained by middle-ear proportions. To investigate the contribution of the inner ear to the variation in sensitivity, we examined it in museum specimens representing 11 species and three subfamilies. We measured papilla basilaris length, and, when intact, the saccular otoconial mass. Papilla length approximated 1% of rostrum-anus length in large geckos but 2% in small geckos; in some species some inter-aural difference was indicated. Over the lumped material, relative papilla length varied as a function of body length, with highly significant correlation. Similar relations prevailed within each subfamily. However, intraspecifically the correlation of papilla basilaris length with animal size was usually nonsignificant. Hair cell populations assessed from SEM photographs were larger in the larger species but intraspecifically did not relate to an individual's size. Hence interspecifically, the dependence of auditory sensitivity on animal size seems supported by inner-ear differences but intraspecifically this relation derives only from the middle ear. Otoconial mass, as measured by its volume, was correlated with animal length both interspecifically and intraspecifically. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Penn, Dept Otohinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA.
   Tech Univ Munich, ENT Dept, D-81664 Munich, Germany.
RP Werner, YL (reprint author), Hebrew Univ Jerusalem, Dept Evolut Systemat & Ecol, IL-91904 Jerusalem, Israel.
EM yehudah_w@yahoo.com
CR ABDERHALDEN E, 1924, HDB BIOL ARBEITSMETH, V9
   Anken RH, 1998, HEARING RES, V121, P77, DOI 10.1016/S0378-5955(98)00067-7
   Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6
   BILGER RC, 1990, J SPEECH HEAR RES, V33, P418
   CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358
   CHEVERUD JM, 1982, AM J PHYS ANTHROPOL, V59, P139, DOI 10.1002/ajpa.1330590204
   Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4
   CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100
   CORWIN JT, 1992, EXP NEUROL, V115, P7, DOI 10.1016/0014-4886(92)90212-9
   CORWIN JT, 1991, ANNU REV NEUROSCI, V14, P301, DOI 10.1146/annurev.neuro.14.1.301
   COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7
   Dickman JD, 2004, HEARING RES, V188, P89, DOI 10.1016/S0378-5955(03)00377-0
   Evans LT, 1936, ANAT REC, V64, P187, DOI 10.1002/ar.1090640206
   Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103
   FLEISSIG J, 1908, ANAT HEFTE, V37, P3
   FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284
   Frankenberg Eliezer, 1992, Acta Zoologica Lilloana, V41, P45
   HAMILTON DW, 1964, J MORPHOL, V115, P255, DOI 10.1002/jmor.1051150209
   HAMILTON DAVID WHITMAN, 1960, UNIV KANSAS SCI BULL, V41, P983
   Ismail H, 2003, HEARING RES, V179, P97, DOI 10.1016/S0378-5955(03)00099-6
   JOGER U., 1985, AFRICAN VERTEBRATES, P479
   Johnstone Brian M., 2001, Herpetological Natural History, V8, P49
   KANNAN PM, 1974, J ACOUST SOC AM, V55, P1092, DOI 10.1121/1.1914657
   KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110
   KAVAMOTO K, 2003, J NEUROSCI, V23, P4395
   KOPPL C, 1995, HEARING RES, V82, P14
   LEWIS ER, 1985, VERTEBRATE INNER BIR
   Lychakov DV, 2000, HEARING RES, V143, P83, DOI 10.1016/S0378-5955(00)00026-5
   Manley G., 2000, COMP HEARING BIRDS R, P139
   MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102
   MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463
   MILLER MR, 1973, Z ZELLFORSCH MIK ANA, V136, P307, DOI 10.1007/BF00307037
   MILLER MALCOLM R., 1966, PROC CALIF AC AD SCI, V33, P255
   MONTGOMERY LG, 1995, ABS ASS RES OTOLARYN, V18, P67
   MORALES J, 1990, INNER EAR PATHOBIOLO, V45, P111
   Newmark M., 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P133
   Piscopo M, 2004, HEARING RES, V189, P76, DOI 10.1016/S0378-5955(03)00366-6
   POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3
   Reiss M. J., 1989, ALLOMETRY GROWTH REP
   RETZIUS G, 1984, GEHORORGAN WIRBELTHE, V2
   Roberson DW, 2002, HEARING RES, V172, P62, DOI 10.1016/S0378-5955(02)00512-9
   RYALS BM, 1984, ACTA OTO-LARYNGOL, V98, P93, DOI 10.3109/00016488409107539
   SAFFORD SD, 1995, ABS ASS RES OTOLARYN, V18, P66
   SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A
   SCHWARTZKOPFF J, 1957, Z MORPHOLOGIE OKOLOG, V45, P365
   SCHWENTER SA, 1994, STUD LANG, V18, P71, DOI 10.1075/sl.18.1.05sch
   SHUTE CCD, 1953, P ZOOL SOC LOND, V123, P695
   WERNER YL, 1991, J ZOOL, V225, P647
   WERNER YL, 1971, SYST ZOOL, V20, P249, DOI 10.2307/2412063
   Werner YL, 2002, HEARING RES, V167, P33, DOI 10.1016/S0378-5955(02)00331-3
   WERNER YL, 2001, J BASIC CLIN PHYSL P, V12, P169
   Werner YL, 2002, J EXP BIOL, V205, P3215
   Werner Y. L., 1997, Journal of Morphology, V232, P339
   Werner YL, 2001, HEARING RES, V160, P22, DOI 10.1016/S0378-5955(01)00331-8
   WERNER YL, IN PRESS AGE EFFECTS
   Werner Yehudah L., 2001, Herpetological Natural History, V8, P37
   WERNER YL, IN PRESS ANAT REC
   Werner YL, 1998, J EXP BIOL, V201, P487
   WEVER EG, 1978, REPTILE EAR
   WEVER EG, 1974, J MORPHOL, V143, P121, DOI 10.1002/jmor.1051430202
   WEVER EG, 1967, J MORPHOL, V123, P355, DOI 10.1002/jmor.1051230404
   WEVER EG, 1967, J MORPHOL, V122, P307, DOI 10.1002/jmor.1051220403
NR 62
TC 8
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 38
EP 50
DI 10.1016/j.heares.2004.08.013
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700004
PM 15668037
ER

PT J
AU Coppens, AG
   Gilbert-Gregory, S
   Steinberg, SA
   Heizmann, C
   Poncelet, L
AF Coppens, AG
   Gilbert-Gregory, S
   Steinberg, SA
   Heizmann, C
   Poncelet, L
TI Inner ear histopathology in "nervous Pointer dogs" with severe hearing
   loss
SO HEARING RESEARCH
LA English
DT Article
DE dog; hearing loss; hereditary; neuroepithelial degeneration
ID POSTNATAL-DEVELOPMENT; HEREDITARY DEAFNESS; CONGENITAL DEAFNESS;
   INHERITED DEAFNESS; AUDITORY-SYSTEM; DALMATIANS; MODEL;
   IMMUNOLOCALIZATION; DEGENERATION; MATURATION
AB Ten puppy dogs (82, 131 or 148 days-old) from a Pointer cross-colony, exhibiting a juvenile severe hearing loss transmitted as an amosomal recessive trait, were used for histopathological characterization of the inner ear lesion. Immunostaining with calbindin, Na,K-ATPase, cytokeratins, S100, S100A1 and S100A6 antisera were helpful in identifying the different cell types in the degenerated cochleae. Lesions, restricted to the Corti's organ and spiral ganglion, were bilateral but sometimes slightly asymmetrical. Mild to severe lesions of the Corti's organ were unevenly distributed among the different parts of the middle and basal cochlear turns while the apical turn remained unaffected at 148 days. In 82 day-old puppies (n = 2), severe lesions of the Corti's organ, meaning that it was replaced by a layer of unidentifiable cells, involved the lower middle and upper basal turns junction area, extending in the upper basal turn. Mild lesions of the Corti's organ, with both hair and supporting cells abnormalities, involved the lower middle turn and extended from the rest of upper basal turn. into the lower basal turn. The outer hair cells (ohc) were more affected than the inner hair cell (ihc). The lesions extended towards the basal end of the cochlea in the 131 (n = 5) and 148 (n = 3) day-old puppies. Additionally, the number of spiral ganglion neurons was reduced in the 131 and 148 day-old puppies; it is earlier than observed in most other canine hereditary deafness. These lesions were interpreted as a degeneration of the neuroepithelial type. This possible animal model might provide information about progressive juvenile hereditary deafness and neuronal retrograde degeneration investigations in human. (C) 2004 Elsevier B.V. All rights reserved.
C1 Free Univ Brussels, Fac Med, Lab Vet Anat, Dept Anat & Embryol, B-1070 Brussels, Belgium.
   Univ Penn, Sch Vet Med, Sect Neurol Ophthalmol, Philadelphia, PA 19104 USA.
   Univ Zurich, Div Clin Chem, Dept Paediat, Zurich, Switzerland.
RP Coppens, AG (reprint author), Free Univ Brussels, Fac Med, Lab Vet Anat, Dept Anat & Embryol, 808 Lennik St, B-1070 Brussels, Belgium.
EM angelique.coppens@ulb.ac.be
CR BORG E, 1982, SCAND AUDIOL, V11, P277, DOI 10.3109/01050398209087479
   Coppens AG, 2003, J COMP PATHOL, V128, P67, DOI 10.1053/jcpa.2002.0596
   Coppens AG, 2000, HEARING RES, V145, P101, DOI 10.1016/S0378-5955(00)00077-0
   Coppens AG, 2000, J COMP PATHOL, V122, P223, DOI 10.1053/jcpa.1999.0360
   Coppens AG, 2001, DEV BRAIN RES, V126, P191, DOI 10.1016/S0165-3806(00)00153-X
   Coppens AG, 2003, ANAT REC PART A, V270A, P82, DOI 10.1002/ar.a.10009
   Coppens AG, 2001, HEARING RES, V161, P65, DOI 10.1016/S0378-5955(01)00354-9
   Famula TR, 2000, AM J VET RES, V61, P550, DOI 10.2460/ajvr.2000.61.550
   Famula TR, 1996, MAMM GENOME, V7, P650, DOI 10.1007/s003359900199
   Famula TR, 2001, PREV VET MED, V48, P15, DOI 10.1016/S0167-5877(00)00183-5
   Feghali JG, 1998, ENT-EAR NOSE THROAT, V77, P280
   GREIBROKK T, 1994, J AM ANIM HOSP ASSOC, V30, P170
   Hardisty RE, 1998, J LARYNGOL OTOL, V112, P432
   Harvey SJ, 2001, AM J PATHOL, V159, P1097, DOI 10.1016/S0002-9440(10)61785-3
   HIRAIDE F, 1988, Auris Nasus Larynx, V15, P97
   IGARASHI M, 1972, ANN OTO RHINOL LARYN, V81, P249
   Ilg EC, 1996, INT J CANCER, V68, P325, DOI 10.1002/(SICI)1097-0215(19961104)68:3<325::AID-IJC10>3.0.CO;2-7
   KLEIN E, 1988, PHYSIOL BEHAV, V43, P307, DOI 10.1016/0031-9384(88)90192-8
   Lalwani AK, 1997, AUDIOL NEURO-OTOL, V2, P139
   Lefebvre P P, 2002, Acta Otorhinolaryngol Belg, V56, P45
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   MAIR IWS, 1976, ARCH OTO-RHINO-LARYN, V212, P1, DOI 10.1007/BF00456358
   Malgrange B, 1999, INT J PEDIATR OTORHI, V49, pS19, DOI 10.1016/S0165-5876(99)00126-3
   Miura M, 2002, ANN OTO RHINOL LARYN, V111, P1059
   Muhle AC, 2002, VET J, V163, P311, DOI 10.1053/tvjl.2001.0661
   NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411
   Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7
   NIPARKO JK, 1993, ANN OTO RHINOL LARYN, V102, P447
   Poncelet LC, 2000, AM J VET RES, V61, P1343, DOI 10.2460/ajvr.2000.61.1343
   Rak SG, 2002, CHROMOSOME RES, V10, P407, DOI 10.1023/A:1016805803686
   Sockalingam R, 2002, ANN OTO RHINOL LARYN, V111, P745
   Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
   STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22
   STEINBERG SA, 1994, J HERED, V85, P56
   Strain GM, 1996, BRIT VET J, V152, P17, DOI 10.1016/S0007-1935(96)80083-2
   WILKES MK, 1992, J SMALL ANIM PRACT, V33, P218, DOI 10.1111/j.1748-5827.1992.tb01120.x
NR 36
TC 9
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 51
EP 62
DI 10.1016/j.heares.2004.08.019
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700005
PM 15668038
ER

PT J
AU Rybalko, N
   Syka, J
AF Rybalko, N
   Syka, J
TI Effect of noise exposure on gap detection in rats
SO HEARING RESEARCH
LA English
DT Article
DE noise exposure; temporal resolution; gap detection; hearing loss;
   tinnitus; rat
ID HEARING-IMPAIRED LISTENERS; AWAKE GUINEA-PIGS; INFERIOR COLLICULUS;
   EVOKED-RESPONSES; TEMPORAL GAP; FREQUENCY; THRESHOLDS; CHINCHILLA;
   BANDWIDTH; TINNITUS
AB The effects of intense (110-120 dB) noise exposure (broadband noise for one hour) on temporal resolution was estimated in rats by measuring the behavioural gap detection threshold (GDT). Changes in GDT after 120 dB noise exposure were compared with changes in the threshold and amplitude of middle latency responses (MLR) recorded in response to tone stimuli. GDT values increased from 1.6 to 4.3 or 7.8 ms after exposure to 110 or 115 dB SPL, respectively; GDT recovered to pre-exposure values in 3-7 days. Three main types of noise-induced changes were observed after 120 dB SPL exposure: (I) GDT changes similar to those following noise exposure to 115 dB SPL and maximal hearing threshold shifts (TSs) at high frequencies of about 45 dB; (II) more pronounced changes in GDT (up to 60 ms) with maximal hearing threshold shifts of about 65 dB and (III) a lack of reliable responses to gap during the first weeks post-exposure with maximal hearing threshold shifts of about 80 dB. An increased GDT was present two months after noise exposure in animals with types II and III post-exposure changes; enhanced MLR amplitudes were also found in most of these in the first post-exposure week. The pronounced deficit in gap detection in some rats after 120 dB SPL noise exposure may signal the presence of a noise-induced tinnitus. (C) 2004 Elsevier B.V. All rights reserved.
C1 Acad Sci Czech Republ, Inst Expt Med, Prague 14220 4, Czech Republic.
RP Rybalko, N (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, Prague 14220 4, Czech Republic.
EM rybalko@biomed.cas.cz
RI Rybalko, Natalia/H-2629-2014; Syka, Josef/H-3103-2014
CR BORG E, 1982, HEARING RES, V8, P101, DOI 10.1016/0378-5955(82)90069-7
   DAVIS H, 1965, ACTA OTO-LARYNGOL  S, V206, P128
   DEFILIPPO CL, 1986, J ACOUST SOC AM, V80, P1354, DOI 10.1121/1.394488
   Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1
   FITZGIBBONS PJ, 1983, J ACOUST SOC AM, V74, P67, DOI 10.1121/1.389619
   FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256
   FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449
   GERKEN G, 1986, BASIC APPL ASPECTS N, P195
   Gerken GM, 1996, HEARING RES, V97, P75
   GERKEN GM, 2001, HEARING RES, V57, P52
   GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818
   GIRAUDIPERRY DM, 1982, J ACOUST SOC AM, V72, P1387, DOI 10.1121/1.388444
   GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507
   Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X
   HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66
   HENDERSON D, 1983, AUDIOLOGY, V22, P172
   HENDRICK.J, 1966, J EXP ANAL BEHAV, V9, P501, DOI 10.1901/jeab.1966.9-501
   IRWIN RJ, 1981, AUDIOLOGY, V20, P234
   ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945
   Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038
   KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356
   Kelly JB, 1996, BEHAV NEUROSCI, V110, P542
   LEITNER DS, 1993, PERCEPT PSYCHOPHYS, V54, P395, DOI 10.3758/BF03205275
   OKANOYA K, 1990, HEARING RES, V50, P185, DOI 10.1016/0378-5955(90)90044-P
   PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297
   PLOMP R, 1964, J ACOUST SOC AM, V36, P227
   POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8
   PRATT H, 1978, AUDIOLOGY, V17, P285
   RYBALKO N, 2001, HEARING RES, V55, P32
   SALVI RJ, 1999, NOISE HLTH, V2, P28
   SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U
   SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181
   SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812
   SNELL KB, 1994, J ACOUST SOC AM, V96, P1458, DOI 10.1121/1.410288
   SUZUKI T, 1981, EAR HEARING, V2, P276, DOI 10.1097/00003446-198111000-00007
   Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6
   Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6
   SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3
   Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0
   TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254
   Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103
   Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5
   WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767
NR 43
TC 13
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 63
EP 72
DI 10.1016/j.heares.2004.08.014
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700006
PM 15668039
ER

PT J
AU van Wieringen, A
   Carlyon, RP
   Laneau, J
   Wouters, J
AF van Wieringen, A
   Carlyon, RP
   Laneau, J
   Wouters, J
TI Effects of waveform shape on human sensitivity to electrical stimulation
   of the inner ear
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; behavioural thresholds; symmetric and asymmetric
   waveforms
ID PSYCHOPHYSICAL DETECTION THRESHOLDS; COCHLEAR IMPLANT USERS;
   AUDITORY-NERVE; SPEECH RECOGNITION; MONOPHASIC STIMULATION;
   ACTION-POTENTIALS; RESPONSES; SINGLE; DURATION; CONFIGURATION
AB Psychophysical measures of the electrically stimulated human auditory system were obtained for different types of symmetric and asymmetric charge-balanced waveforms. Absolute detection thresholds of biphasic, pseudomonophasic, and 'alternating monophasic' current waveforms delivered by a bipolar intra-cochlear electrode pair were determined for four subjects implanted with the LAURA device. Thresholds for alternating monophasic stimuli, in which anodic and cathodic phases alternated every 5 ms, were 5-8 dB lower than for the biphasic waveforms for all four subjects. For two of the four subjects, thresholds for the pseudomonophasic waveforms were also significantly lower than for the biphasic waveforms. These pseudomonophasic thresholds were greatly affected neither by a 500-mus gap inserted between the two phases, nor by whether the shorter phase preceded or followed the longer one. Loudness balancing measures performed at the most comfortable levels also showed that, for equal loudness, alternating monophasic stimuli required a lower level than biphasic and pseudomonophasic waveforms. For three of the four subjects, the dynamic ranges of the pseudomonophasic (but not alternating monophasic) waveforms were greater than those of the biphasic waveforms. The results demonstrate that thresholds and dynamic ranges of human cochlear implant users can be controlled by manipulating the way in which the charge produced by the initial phase of an electrical pulse is recovered. (C) 2004 Elsevier B.V. All rights reserved.
C1 Catholic Univ Louvain, Lab Exp ORL, B-3000 Louvain, Belgium.
   MRC Cognit & Brain Sci Unit, Cambridge CB2 2EF, England.
RP van Wieringen, A (reprint author), Catholic Univ Louvain, Lab Exp ORL, Kapucijnenvoer 33, B-3000 Louvain, Belgium.
EM astrid.vanwieringen@uz.kuleuven.ac.be
RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015
CR [Anonymous], SPSS 10 0
   Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084
   CARLYON RP, 2004, 27 ANN MIDW RES M AB, P848
   deSauvage RC, 1997, HEARING RES, V110, P119
   Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796
   EDDINGTON DK, 2002, 7 INT COCHL IMPL C M
   Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4
   Geurts L, 2000, J ACOUST SOC AM, V108, P2949, DOI 10.1121/1.1321011
   Grill WM, 1996, IEEE T BIO-MED ENG, V43, P161, DOI 10.1109/10.481985
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140
   Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1
   Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
   Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9
   Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X
   Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6
   MILLER JM, 1990, COCHLEAR IMPLANTS MO, P55
   MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U
   OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108
   Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6
   PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6
   PFINGST BE, 1995, HEARING RES, V85, P76, DOI 10.1016/0378-5955(95)00037-5
   Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508
   SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X
   SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8
   SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421
   VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7
   VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
   van Wieringen A, 1999, EAR HEARING, V20, P89, DOI 10.1097/00003446-199904000-00001
   van Wieringen A, 2001, EAR HEARING, V22, P528, DOI 10.1097/00003446-200112000-00008
   WILER JA, 1989, HEARING RES, V39, P251, DOI 10.1016/0378-5955(89)90045-2
   WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
   *WORLD MED ASS, 1975, REC GUID MED DOCT BI
NR 35
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 73
EP 86
DI 10.1016/j.heares.2004.08.006
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700007
PM 15668040
ER

PT J
AU Spicer, SS
   Schulte, BA
AF Spicer, SS
   Schulte, BA
TI Novel structures in marginal and intermediate cells presumably relate to
   functions of apical versus basal strial strata
SO HEARING RESEARCH
LA English
DT Article
DE K+ flow; upper stria; lower stria; fine structure/function
ID MOUSE INNER-EAR; ENDOCOCHLEAR POTENTIAL GENERATION; GUINEA-PIG COCHLEA;
   OUTER HAIR-CELLS; GERBIL COCHLEA; FINE-STRUCTURE; ION-TRANSPORT;
   ENDOPLASMIC-RETICULUM; SPIRAL LIGAMENT; PLACE-FREQUENCY
AB Prior ultrastructural studies showed that K+ supplied to the stria vascularis came from recycling ions from the organ of Corti or perilymph to strial basal cells. A newly distinguished basal subtype of intermediate cell (BIC) completely covered the basal cells with a leaf-like horizontal process and appeared situated to absorb from them all of the recycled K+. The basal region of marginal cells (MCs) projected foot-like and enlarged processes to border BICs opposite an unique ca. 150 A space. These basal MC processes appeared positioned to resorb part of the K+ recycled to BICs. A second, upper subtype of IC (UIC), occupying middle to upper strial strata, contacted BIC's extensively. UICs were thus located to resorb from BICs the portion of the recycled K+ not forwarded to basal MC processes. The apical segment of MCs projected mitochondria-filled primary processes and numerous associated secondary processes. The Na,K-ATPase-rich secondary processes populated mid to upper stria where they could siphon K+ from UICs and resorb and secrete the ions thus generating the 150 mM [KCl] of endolymph. The morphologic relationship of basal marginal cell processes to BICs differed so strikingly from the relation of upper MC processes to UICs as to suggest a different function for basal stria, one possibly concerned with generating the endocochlear potential. (C) 2004 Elsevier B.V. All rights reserved.
C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA.
RP Schulte, BA (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,Suite 309,POB 250908, Charleston, SC 29425 USA.
EM schulteb@musc.edu
CR Ando M, 1999, CELL TISSUE RES, V298, P179, DOI 10.1007/s004419900066
   ANNIKO M, 1984, ULTRASTRUCTURAL ATLA, P184
   ASHMORE JF, 1986, NATURE, V322, P386
   BARON DA, 1984, LAB INVEST, V51, P233
   CABLE J, 1991, PIGM CELL RES, V4, P87, DOI 10.1111/j.1600-0749.1991.tb00320.x
   CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I
   CARLISLE L, 1990, CELL TISSUE RES, V262, P329, DOI 10.1007/BF00309888
   CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3
   CONLEE JW, 1989, ACTA OTO-LARYNGOL, V107, P48, DOI 10.3109/00016488909127478
   COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0
   Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773
   DUVALL AJ, 1970, BIOCH MECH HEARING D
   ENGSTROM H, 1955, Pract Otorhinolaryngol (Basel), V17, P69
   FORGE A, 1982, CELL TISSUE RES, V226, P375
   GITTER AH, 1986, ORL J OTO-RHINO-LARY, V48, P68
   HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939
   HINOJOSA R, 1966, AM J ANAT, V118, P631, DOI 10.1002/aja.1001180218
   KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783
   KIMURA RS, 1970, ACTA OTO-LARYNGOL, V69, P415, DOI 10.3109/00016487009123387
   KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717
   Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4
   MARCUS DC, 1985, HEARING RES, V17, P79, DOI 10.1016/0378-5955(85)90133-9
   Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403
   MARCUS DC, 1994, AM J PHYSIOL, V267, pC857
   MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7
   NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981
   RODRIGUEZECHAND.EL, 1965, Z ZELLFORSCH, V67, P600
   ROSTGAARD J, 1980, CELL TISSUE RES, V212, P17
   SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7
   Salt A., 1986, NEUROBIOLOGY HEARING
   SALT AN, 1987, LARYNGOSCOPE, V97, P984
   SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X
   SANTOS-SACCHI J, 1985, ACTA OTO-LARYNGOL, V100, P26, DOI 10.3109/00016488509108583
   Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424
   SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9
   SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0
   Sharma D, 2004, J MOL CELL CARDIOL, V37, P79, DOI 10.1016/j.yjmcc.2004.03.015
   SMITH CA, 1981, PROGR SENSORY PHYSL, V2, P135
   SMITH C., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P521
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202
   SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6
   Spicer SS, 2003, ANAT REC PART A, V271A, P342, DOI 10.1002/ar.a.10041
   SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316
   SPOENDLIN H, 1967, SUBMICROSCOPIC STRUC, P131
   Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0
   Takeuchi S, 2000, BIOPHYS J, V79, P2572
   Takeuchi S, 1999, AM J PHYSIOL-CELL PH, V277, pC91
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   WILLINGHAM MC, 1984, J HISTOCHEM CYTOCHEM, V32, P455
   WODA J, 1979, ARCH OTORHINOLARYNGO, V225, P79
   WRIGHT CG, 1989, ACTA OTO-LARYNGOL, V108, P190, DOI 10.3109/00016488909125518
   ZIDANIC M, 1990, BIOPHYS J, V57, P1253
NR 53
TC 20
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 87
EP 101
DI 10.1016/j.heares.2004.09.006
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700008
PM 15668041
ER

PT J
AU Hildebrand, MS
   de Silva, MG
   Klockars, T
   Solares, CA
   Hirose, K
   Smith, JD
   Patel, SC
   Dahl, HHM
AF Hildebrand, MS
   de Silva, MG
   Klockars, T
   Solares, CA
   Hirose, K
   Smith, JD
   Patel, SC
   Dahl, HHM
TI Expression of the carrier protein apolipoprotein D in the mouse inner
   ear
SO HEARING RESEARCH
LA English
DT Article
DE apolipoprotein D; inner ear; potassium recycling; spiral ligament;
   spiral limbus; outer hair cells; apoD knockout mouse model
ID OUTER HAIR-CELLS; SPIRAL-LIGAMENT; LIMBUS-SPIRALIS; F1-HYBRID STRAINS;
   MAMMALIAN COCHLEA; HEARING-LOSS; RAT COCHLEA; DEAFNESS; GENE;
   COTRANSPORTER
AB The cochlear portion of the inner ear converts movements produced by sound waves into electrical impulses. Transcripts enriched in the cochlea are likely to have an important role in hearing. In this paper, we report that microarray analyses of the Soares NMIE inner ear library revealed cochlear enriched expression of apolipoprotein D (apoD), a glycoprotein and member of the lipocalin family that transport small hydrophobic ligands. The cochlear enriched expression of Apod was validated by quantitative real time PCR analysis. To investigate the function of apoD in the inner ear the transcript and protein were localised in the cochlea. Apod messenger RNA (mRNA) expression was localised to the spiral ligament and spiral limbus, particularly in the suprastrial and supralimbral regions. The apoD protein was detected in the spiral ligament, spiral limbus and also in the outer hair cells of the organ of Corti. Investigation of cell lines exhibiting characteristics of hair and supporting cells revealed no Apod mRNA expression in these cells. This suggests transport of the protein within the cochlea, followed by internalisation into outer hair cells. The spiral limbus and ligament contain subpopulations of fibrocytes that are intimately involved in regulation of ion balance in the cochlear fluids and type I, II and III fibrocytes of the spiral ligament were all shown to be positive for apoD protein. On the basis of these results it was hypothesised that apoD could be involved in maintaining cochlear fluid homeostasis. To determine whether the apoD gene product was important for normal auditory function the hearing ability of an apoD knockout mouse was tested. The mouse was found to have a hearing threshold that was not significantly different to the control strain. (C) 2004 Elsevier B.V. All rights reserved.
C1 Royal Childrens Hosp, Murdoch Childrens Res Inst, Dept Gene Identificat & Express, Parkville, Vic 3052, Australia.
   Univ Melbourne, Dept Biochem & Mol Biol, Melbourne, Vic, Australia.
   Cleveland Clin Fdn, Head & Neck Inst, Cleveland, OH USA.
   Cleveland Clin Fdn, Lerner Res Inst, Dept Neurosci, Cleveland, OH USA.
   Cleveland Clin Fdn, Lerner Res Inst, Dept Cell Biol, Cleveland, OH USA.
   New England Biomed Res Ctr & VA Connecticut Healt, Newington, CT USA.
   Univ Melbourne, Royal Childrens Hosp, Dept Paediat, Melbourne, Vic, Australia.
RP Dahl, HHM (reprint author), Royal Childrens Hosp, Murdoch Childrens Res Inst, Dept Gene Identificat & Express, Flemington Rd, Parkville, Vic 3052, Australia.
EM henrik.dahl@mcri.edu.au
RI de Silva, Michelle/E-5848-2011
CR ARNOLD W, 1973, ACTA OTO-LARYNGOL, V75, P192, DOI 10.3109/00016487309139695
   AYRAULTJARRIER M, 1963, B SOC CHIM BIOL, V45, P703
   Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a
   BORGHESAN E, 1957, Laryngoscope, V67, P1266
   BORGHINI I, 1995, BBA-LIPID LIPID MET, V1255, P192, DOI 10.1016/0005-2760(94)00232-N
   Cofer S, 1996, GENE, V171, P261, DOI 10.1016/0378-1119(96)00099-6
   Cohen-Salmon M, 2000, J BIOL CHEM, V275, P40036, DOI 10.1074/jbc.M002876200
   Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773
   Crozet F, 1997, GENOMICS, V40, P332, DOI 10.1006/geno.1996.4526
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   Delprat B, 2002, J NEUROSCI, V22, P1718
   DRAYNA D, 1986, J BIOL CHEM, V261, P6535
   DRAYNA DT, 1987, DNA-J MOLEC CELL BIO, V6, P199, DOI 10.1089/dna.1987.6.199
   Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x
   ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H
   Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X
   FIRBAS W, 1981, ARCH OTO-RHINO-LARYN, V232, P131, DOI 10.1007/BF00505032
   Flower DR, 2000, BBA-PROTEIN STRUCT M, V1482, P327, DOI 10.1016/S0167-4838(00)00169-2
   Harter C, 1999, DNA CELL BIOL, V18, P1, DOI 10.1089/104454999315574
   HENSON MM, 1984, HEARING RES, V16, P231, DOI 10.1016/0378-5955(84)90112-6
   HENSON MM, 1985, HEARING RES, V20, P207, DOI 10.1016/0378-5955(85)90025-5
   Hildebrand MS, 2004, HEARING RES, V190, P149, DOI 10.1016/S0378-5955(04)00015-2
   Hoffmann A, 1996, DEV DYNAM, V207, P332, DOI 10.1002/(SICI)1097-0177(199611)207:3<332::AID-AJA10>3.0.CO;2-6
   ICHIMIYA I, 1994, ANN OTO RHINOL LARYN, V103, P457
   ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037
   Juhn S K, 1988, Acta Otolaryngol Suppl, V458, P79
   JUHN SK, 1986, AUDIOL SUPPL, V26, P7
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783
   Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4
   KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H
   Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5
   Logdberg L, 2000, BBA-PROTEIN STRUCT M, V1482, P284, DOI 10.1016/S0167-4838(00)00164-3
   Morais Cabral Joao H., 1995, FEBS Letters, V366, P53, DOI 10.1016/0014-5793(95)00484-Q
   Ong WY, 1997, NEUROSCIENCE, V79, P359, DOI 10.1016/S0306-4522(96)00608-2
   Patel RC, 1997, PROTEIN ENG, V10, P621, DOI 10.1093/protein/10.6.621
   PATEL SC, 1995, NEUROREPORT, V6, P653, DOI 10.1097/00001756-199503000-00017
   Rassart E, 2000, BBA-PROTEIN STRUCT M, V1482, P185, DOI 10.1016/S0167-4838(00)00162-X
   Resendes BL, 2001, AM J HUM GENET, V69, P923, DOI 10.1086/324122
   Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595
   Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7
   SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z
   Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758
   Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363
   Suko T, 2000, HEARING RES, V140, P137, DOI 10.1016/S0378-5955(99)00191-4
   Suresh S, 1998, J NEUROCHEM, V70, P242
   Tekin M, 2001, LANCET, V358, P1082, DOI 10.1016/S0140-6736(01)06186-4
   Terrisse L, 2001, LIFE SCI, V70, P629, DOI 10.1016/S0024-3205(01)01439-4
   THALMANN I, 1994, OTOLARYNG HEAD NECK, V111, P273, DOI 10.1016/S0194-5998(94)70602-6
   Ulfendahl M, 2000, NEUROIMAGE, V12, P307, DOI 10.1006/nimg.2000.0617
   Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529
   Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X
   Voldrich L, 1967, Acta Otolaryngol, V63, P503
   Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845
   Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009
   ZUSMAN RM, 1981, ANNU REV MED, V32, P359, DOI 10.1146/annurev.me.32.020181.002043
NR 56
TC 11
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 102
EP 114
DI 10.1016/j.heares.2004.08.018
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700009
PM 15668042
ER

PT J
AU Kluk, K
   Moore, BCJ
AF Kluk, K
   Moore, BCJ
TI Factors affecting psychophysical tuning curves for hearing-impaired
   subjects with high-frequency dead regions
SO HEARING RESEARCH
LA English
DT Article
DE psychophysical tuning curve; dead region; beats; combination tone
ID AUDITORY FILTER SHAPES; COMBINATION TONES; MASKING PATTERNS; PURE-TONE;
   AMPLITUDE-MODULATION; SINUSOIDAL CARRIERS; NORMALLY HEARING; RELATIVE
   ROLE; BAND NOISE; LISTENERS
AB A dead region (DR) is a region of the cochlea where there are no functioning inner hair cells and/or neurons. DRs can be detected using the threshold-equalizing-noise (TEN) test, but psychophysical tuning curves (PTCs) are sometimes used to give a more precise estimate of the edge frequency of a DR; a shifted tip of the PTC indicates a DR. We show here that the shapes of PTCs for hearing-impaired subjects can be influenced by the detection of beats and simple difference tones (SDTs). As a result, PTCs can have tips at f(s), even when f(s) falls in a DR. PTCs were measured for subjects with mild to moderate low-frequency and severe high-frequency hearing loss using sinusoidal and narrowband noise maskers (80-, 160-, 320-Hz wide): (1) in quiet; (2) in the presence of additional lowpass filtered noise (LF noise) designed to mask SDTs; (3) in the presence of a pair of low-frequency tones designed to interfere with the detection of beats (MDI tones). In condition (1), the PTCs were often W-shaped, with a sharp tip at f(s). This occurred less for the wider noise bandwidths. For subjects with good low-frequency hearing, the LF noise often reduced or eliminated the tip at f(s), suggesting that this tip was partly caused by detection of SDTs. For the sinusoidal and 80-Hz wide noise maskers, the addition of the MDI tones reduced the masker level required for threshold for masker frequencies adjacent to f(s), for nearly all subjects, suggesting a strong influence of beat detection. To minimize the influence of beats, we recommend using noise maskers with a bandwidth of 160 or (preferably) 320 Hz. In cases of near-normal hearing at low frequencies, we recommend using an additional LF noise to mask SDTs. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
RP Kluk, K (reprint author), Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England.
EM kk278@cam.ac.uk
RI Moore, Brian/I-5541-2012
CR Alcantara JI, 2002, HEARING RES, V165, P103, DOI 10.1016/S0378-5955(02)00291-5
   Alcantara JI, 2000, HEARING RES, V148, P63, DOI 10.1016/S0378-5955(00)00114-3
   BACON SP, 1994, J ACOUST SOC AM, V95, P2637, DOI 10.1121/1.410020
   Baker RJ, 2002, J ACOUST SOC AM, V111, P1330, DOI 10.1121/1.1448516
   Cheatham MA, 2001, J ACOUST SOC AM, V110, P2034, DOI 10.1121/1.1397357
   Chistovich L.A., 1957, BIOPHYSICS-USSR, V2, P743
   Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344
   Derleth RP, 2000, J ACOUST SOC AM, V108, P285, DOI 10.1121/1.429464
   DUBNO JR, 1989, J ACOUST SOC AM, V85, P1666, DOI 10.1121/1.397955
   EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661
   EHMER RH, 1959, J ACOUST SOC AM, V31, P1115, DOI 10.1121/1.1907836
   Ewert SD, 2000, J ACOUST SOC AM, V108, P1181, DOI 10.1121/1.1288665
   FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021
   GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396
   GREENWOO.DD, 1971, J ACOUST SOC AM, V50, P502, DOI 10.1121/1.1912668
   HELMHOLTZ H, 1963, LEHRE TONEMPFINDUNGE
   Hoekstra A., 1977, PSYCHOPHYSICS PHYSL, P263
   HUSS M, 2004, THESIS U CAMBRIDGE
   Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400
   JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490
   Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012
   Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605
   LAWSON JL, 1950, THERSHOLD SIGNALS, V24
   LEEK MR, 1993, J ACOUST SOC AM, V94, P3127, DOI 10.1121/1.407218
   LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   Moore B., 1998, COCHLEAR HEARING LOS
   Moore B, 2001, PHYSL PSYCHOPHYSICAL, P419
   Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289
   Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102
   Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321
   MOORE BCJ, 2004, IN PRESS EAR HEAR, V25
   MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752
   Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224
   Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177
   Moore BCJ, 2003, INT J AUDIOL, V42, P465, DOI 10.3109/14992020309081516
   Moore BCJ, 2000, BRIT J AUDIOL, V34, P205
   MOORE BCJ, 2002, IRAN AUDIOL, V1, P17
   Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002
   Patterson RD, 1986, FREQUENCY SELECTIVIT, P123
   PLOMP R, 1965, J ACOUST SOC AM, V37, P1110, DOI 10.1121/1.1909532
   Riesz RR, 1928, PHYS REV, V31, P0867, DOI 10.1103/PhysRev.31.867
   SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670
   SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152
   SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151
   Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9
   THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888
   TURNER C, 1983, J ACOUST SOC AM, V73, P966, DOI 10.1121/1.389022
   TYLER RS, 1984, J ACOUST SOC AM, V76, P1363, DOI 10.1121/1.391452
   Vogten LL, 1974, FACTS MODELS HEARING, P142
   Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266
   YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474
   YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556
NR 55
TC 37
Z9 40
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD FEB
PY 2005
VL 200
IS 1-2
BP 115
EP 131
DI 10.1016/j.heares.2004.09.003
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 896FJ
UT WOS:000226919700010
PM 15668043
ER

PT J
AU Wu, XH
   Wang, C
   Chen, J
   Qu, HW
   Li, WR
   Wu, YH
   Schneider, BA
   Li, L
AF Wu, XH
   Wang, C
   Chen, J
   Qu, HW
   Li, WR
   Wu, YH
   Schneider, BA
   Li, L
TI The effect of perceived spatial separation on informational masking of
   Chinese speech
SO HEARING RESEARCH
LA English
DT Article
DE Chinese speech; nonsense sentences; precedence effect; perceived spatial
   separation; informational masking; energetic masking
ID ENERGETIC MASKING; INTELLIGIBILITY; NOISE; PERCEPTION; RELEASE
AB The effect of perceived spatial separation, induced by the precedence effect, on release from noise or speech masking was investigated. Listeners were asked to orally repeat Chinese nonsense sentences, which were spoken by a female talker and presented by both the left (-45degrees) and right (+45degrees) loudspeakers, when maskers, which were either speech-spectrum noise sounds or Chinese nonsense sentences spoken by two other female talkers, were presented by the same two loudspeakers. Delays between identical sounds presented over the two loudspeakers were used to control the perceived locations of the target (right only) and masker (right, center, or left). The results show that perceived 45degrees and 90degrees separations of target speech from masking speech led to equivalently marked improvement in speech recognition, even though the degree of improvement was smaller than that reported in [J. Acoust. Soc. Am. 106 (1999) 3578 (using English nonsense speech)]. When the masker was noise, however, perceived separation only marginally improved speech recognition. These results indicate that release from informational masking, due to perceived target/masker spatial separation induced by the precedence effect, also occurs for tonal Chinese speech. Compared to the 45degrees perceived within-hemifield separation, the 90degrees perceived cross-hemifield separation does not produce further unmasking. (C) 2004 Elsevier B.V. All rights reserved.
C1 Peking Univ, Natl Key Lab Machine Percept, Speech & Hearing Res Ctr, Beijing 100871, Peoples R China.
   Peking Univ, Dept Psychol, Beijing 100871, Peoples R China.
   Univ Toronto, Dept Psychol, Ctr Res Biol Commun Syst, Mississauga, ON L5L 1C6, Canada.
RP Wu, XH (reprint author), Peking Univ, Natl Key Lab Machine Percept, Speech & Hearing Res Ctr, Beijing 100871, Peoples R China.
EM wxh@cis.pku.edu.cn
CR Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141
   Blauert J., 1997, SPATIAL HEARING
   Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037
   BRONKHORST AW, 1988, J ACOUST SOC AM, V83, P1508, DOI 10.1121/1.395906
   Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696
   Brungart DS, 2002, J ACOUST SOC AM, V112, P664, DOI 10.1121/1.1490592
   CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229
   Dubno JR, 2002, J SPEECH LANG HEAR R, V45, P1297, DOI 10.1044/1092-4388(2002/104)
   Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562
   DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859
   Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211
   Freyman RL, 2001, J ACOUST SOC AM, V109, P2112, DOI 10.1121/1.1354984
   GELFAND SA, 1988, J ACOUST SOC AM, V83, P248, DOI 10.1121/1.396426
   Helfer KS, 1997, J SPEECH LANG HEAR R, V40, P432
   Kang J, 1998, J ACOUST SOC AM, V103, P1213, DOI 10.1121/1.421253
   KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023
   Kidd G, 1998, J ACOUST SOC AM, V104, P422, DOI 10.1121/1.423246
   Koehnke J, 1996, EAR HEARING, V17, P211, DOI 10.1097/00003446-199606000-00004
   LI L, 2002, HEARING RES, V168, P113
   Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914
   WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275
   WOLFRAM S., 1991, MATHEMATICA SYSTEM D
   ZUREK PM, 1993, ACOUSTIC FACTORS AFF
   ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974
NR 24
TC 27
Z9 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 1
EP 10
DI 10.1016/j.heares.2004.03.010
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200001
PM 15574295
ER

PT J
AU Samadi, DS
   Saunders, JC
   Crenshaw, EB
AF Samadi, DS
   Saunders, JC
   Crenshaw, EB
TI Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound
   conduction in the mouse
SO HEARING RESEARCH
LA English
DT Article
DE POU-domain genes; Brn4/Pou3f4; middle ear; velocity transfer functions;
   transgenic mice; umbo response; targeted mutagenesis; laser
   interferometry
ID TYMPANIC-MEMBRANE PERFORATIONS; AUDITORY DEVELOPMENT; INNER-EAR; CATS
AB Mutagenesis of the POU-domain gene Brn4/Pou3f4 causes defects in the cochlear duct, semicircular canal, temporal bone and stapes footplate. The footplate defect suggested a middle-ear conductive component to the hearing loss associated with this mutation. This was examined by measuring velocity transfer functions at the umbo of wild type and knockout mice during sound stimulation of the tympanic membrane. When the median umbo velocity of test frequencies in the two groups were compared, the mid-range frequencies of the knockout mice showed a statistically reliable reduction in velocity (maximum of 13 dB) and high variability among animals. These results indicated that mutation of the POU-domain gene, Brn4, changed middle-ear sound conduction when measured at the umbo.
   The origin of the abnormal velocity response was sought by puncturing a hole in the pars flaccida (PF), and subsequently, measuring movements at the umbo and the head of the long arm of the incus. This hole permitted us to measure velocity at the tip of the incus long arm, just above the incudostapedial joint. The comparison of umbo behavior in both groups with PF perforated showed a loss of sensitivity in the mid-range frequencies of the knockout animals. A comparison of incus velocity in the two groups also exhibited a velocity reduction in the mid-range frequencies of the knockout animals. The reduction at the incus, however, was milder than observed at the umbo. The effect of the perforation in, and variability of, the knockout incus responses may have masked a more potent mid-range frequency effect. Nevertheless, evaluation of the stapes and oval window in knockout mice showed variable pathology from ear to ear. The presence of this pathology, the mid-frequency loss in incus sensitivity and the variability in incus velocity among animals suggested that abnormal stapes behavior in Brn4 deficient mice may determine the response of the ossicles, and thus account for the abnormal mid-frequency umbo behavior seen in knockout animals. (C) 2004 Elsevier B.V. All rights reserved.
C1 Childrens Hosp Philadelphia, Mammalian Neurogenet Grp, Ctr Childhood Commun, Div Pediat Otolaryngol,Abraham Res Ctr 712, Philadelphia, PA 19104 USA.
   Univ Penn, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA.
RP Crenshaw, EB (reprint author), Childrens Hosp Philadelphia, Mammalian Neurogenet Grp, Ctr Childhood Commun, Div Pediat Otolaryngol,Abraham Res Ctr 712, 34th & Civic Blvd, Philadelphia, PA 19104 USA.
EM crenshaw@email.chop.edu
CR Bigelow DC, 1996, LARYNGOSCOPE, V106, P71, DOI 10.1097/00005537-199601000-00014
   Cantos R, 2000, P NATL ACAD SCI USA, V97, P11707, DOI 10.1073/pnas.97.22.11707
   COHEN YE, 1993, AM J OTOLARYNG, V14, P191, DOI 10.1016/0196-0709(93)90029-7
   COHEN YE, 1992, HEARING RES, V58, P1, DOI 10.1016/0378-5955(92)90002-5
   DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8
   DIMAIO FHP, 1978, ARCH OTOLARYNGOL, V104, P570
   Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3
   DOAN DE, 1994, J COMP PHYSIOL A, V174, P103
   Fleischer G., 1978, Advances in Anatomy Embryology and Cell Biology, V55, P1
   FRITZSCH B, 1998, DEV AUDITORY SYSTEM
   GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465
   HUANGFU M, 1983, J MORPHOL, V176, P249, DOI 10.1002/jmor.1051760302
   KRUGER B, 1977, J ACOUST SOC AM, V61, P126, DOI 10.1121/1.381275
   Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408
   Phippard D, 2000, HUM MOL GENET, V9, P79, DOI 10.1093/hmg/9.1.79
   Phippard D, 1999, J NEUROSCI, V19, P5980
   ROSOWSKI JJ, 1995, AM J OTOL, V16, P468
   ROSOWSKI JJ, 2003, JARO-J ASSOC RES OTO, V4, P85
   Saunders JC, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P99, DOI 10.1201/9781420038736.sec2
   SAUNDERS JC, 1993, COMP BIOCHEM PHYS A, V106, P7, DOI 10.1016/0300-9629(93)90030-8
   SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517
   Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363
   Voss SE, 2001, J ACOUST SOC AM, V110, P1432, DOI 10.1121/1.1394195
   WEINER BJ, 1962, STAT PRINCIPLES EXPT, P239
NR 24
TC 9
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 11
EP 21
DI 10.1016/j.heares.2004.07.013
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200002
PM 15574296
ER

PT J
AU Yang, JJ
   Tsai, CC
   Hsu, HM
   Shiao, JY
   Su, CC
   Li, SY
AF Yang, JJ
   Tsai, CC
   Hsu, HM
   Shiao, JY
   Su, CC
   Li, SY
TI Hearing loss associated with enlarged vestibular aqueduct and Mondini
   dysplasia is caused by splice-site mutation in the PDS gene
SO HEARING RESEARCH
LA English
DT Article
DE PDS; EVA; Mondini dysplasia; prelingual deafness; Pendrin syndrome;
   hearing
ID PENDRED-SYNDROME; MOLECULAR ANALYSIS; AUDITORY-SYSTEM; DEAFNESS;
   IDENTIFICATION; FREQUENCIES; DISCOVERY; SPECTRUM; PROTEIN; IODIDE
AB Recessive mutations of PDS gene are the common causes of Pendred syndrome and non-syndromic hearing loss associated with temporal bone abnormalities ranging from isolated enlargement of the vestibular aqueduct (EVA) to Mondini dysplasia. In this study we evaluate the relationship between EVA and Mondini dysplasia in 10 prelingual deaf patients and PDS gene mutation. One of three mutations, IVS7 - 2A --> G, INS16 - 6G -->A or IVS15 + 5G --> A, was identified in the PDS gene in each patient. In family studies of four probands with the IVS7 - 2A --> G mutation, we found that this mutation was inherited from the same mutant alleles of parental origin. The effect of IVS7 - 2A --> G mutation on PDS gene expression was determined by reverse transcription and polymerase chain reaction (RT-PCR). Sequencing of the RT-PCR products revealed that the PDS transcripts from the allele with 1VS7 - 2A --> G mutation lose the entire exon 8, resulting in a joining of exons 7 and 9. Deletion of the exon 8 results in frameshift and premature termination of translation. Haplotype analysis showed a significant haplotype shared among the family members carrying IVS7 - 2A --> G mutation, suggesting that they may be derived from a common ancestor. Our results provide evidence that hearing loss with EVA and Mondini dysplasia may be caused by splice-site mutation in the PDS gene. (C) 2004 Elsevier B.V. All rights reserved.
C1 Chung Shan Med Univ, Genet Lab, Taichung 402, Taiwan.
   Chung Shan Med Univ, Dept Life Sci, Taichung 402, Taiwan.
   Chung Shan Med Univ, Inst Med, Taichung, Taiwan.
   Taichung Vet Gen Hosp, Dept Otorhinolaryngol, Taichung, Taiwan.
   Tian Sheng Mem Hosp, Tong Kong, Pin Tong, Taiwan.
RP Li, SY (reprint author), Chung Shan Med Univ, Genet Lab, 110,Sec 1,Chien Kuo N Rd, Taichung 402, Taiwan.
EM syl@csmu.edu.tw
CR Bidart JM, 2000, J CLIN ENDOCR METAB, V85, P4367, DOI 10.1210/jc.85.11.4367
   Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116
   Coucke PJ, 1999, J MED GENET, V36, P475
   Coyle B, 1998, HUM MOL GENET, V7, P1105, DOI 10.1093/hmg/7.7.1105
   Coyle J, 1996, INTERNET WORLD, V7, P12
   Dib C, 1996, NATURE, V380, P152, DOI 10.1038/380152a0
   Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411
   EVERETT LA, 1999, P NATL ACAD SCI USA, V696, P727
   Fugazzola L, 2002, PEDIATR RES, V51, P479, DOI 10.1203/00006450-200204000-00013
   GORLIN RJ, 1995, HEREDITARY HEARING L, P337
   JOHNSEN T, 1986, ACTA OTO-LARYNGOL, V102, P239, DOI 10.3109/00016488609108673
   KABAKKAYA Y, 1993, ANN OTO RHINOL LARYN, V102, P285
   Kitamura K, 2000, ACTA OTO-LARYNGOL, V120, P137, DOI 10.1080/000164800750000775
   KRAWCZAK M, 1992, HUM GENET, V90, P41
   Kruglyak L, 1996, AM J HUM GENET, V58, P1347
   Larriba S, 1998, HUM MOL GENET, V7, P1739, DOI 10.1093/hmg/7.11.1739
   Li XC, 1998, NAT GENET, V18, P215, DOI 10.1038/ng0398-215
   Lopez-Bigas N, 1999, HUM MUTAT, V14, P520, DOI 10.1002/(SICI)1098-1004(199912)14:6<520::AID-HUMU11>3.0.CO;2-K
   Massa G, 2003, EUR J PEDIATR, V162, P674, DOI 10.1007/s00431-003-1281-0
   Morton CC, 2002, HUM MOL GENET, V11, P1229, DOI 10.1093/hmg/11.10.1229
   MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
   Park HJ, 2003, J MED GENET, V40, P242, DOI 10.1136/jmg.40.4.242
   Pendred V, 1896, LANCET, V2, P532
   Phelps PD, 1998, CLIN RADIOL, V53, P268, DOI 10.1016/S0009-9260(98)80125-6
   Resendes BL, 2001, AM J HUM GENET, V69, P923, DOI 10.1086/324122
   Royaux IE, 2000, ENDOCRINOLOGY, V141, P839, DOI 10.1210/en.141.2.839
   Scott DA, 1999, NAT GENET, V21, P440
   Scott DA, 2000, HUM MOL GENET, V9, P1709, DOI 10.1093/hmg/9.11.1709
   Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, P356
   SUZUKI K, 2002, J CLIN ENDOCR METAB, V987, P938
   Tsukamoto K, 2003, EUR J HUM GENET, V11, P916, DOI 10.1038/sj.ejhg.5201073
   Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933
   Van Hauwe P, 1998, HUM MOL GENET, V7, P1099, DOI 10.1093/hmg/7.7.1099
   Yong AML, 2001, J CLIN ENDOCR METAB, V86, P3907, DOI 10.1210/jc.86.8.3907
NR 34
TC 32
Z9 42
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 22
EP 30
DI 10.1016/j.heares.2004.08.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200003
PM 15574297
ER

PT J
AU Kozou, H
   Kujala, T
   Shtyrov, Y
   Toppila, E
   Starck, J
   Alku, P
   Naatanen, R
AF Kozou, H
   Kujala, T
   Shtyrov, Y
   Toppila, E
   Starck, J
   Alku, P
   Naatanen, R
TI The effect of different noise types on the speech and non-speech
   elicited mismatch negativity
SO HEARING RESEARCH
LA English
DT Article
DE noise; mismatch negativity; event-related brain potentials; speech
ID HUMAN BRAIN; NORMAL-HEARING; WHITE-NOISE; MASKING; RECOGNITION;
   PERCEPTION; SOUNDS; REPRESENTATION; THRESHOLD; ACCURACY
AB The effect of different types of real-life noise on the central auditory processing of speech and non-speech sounds was evaluated by the means of mismatch negativity and behavioral responses. Subjects (19-34 years old; 6 males, 4 females) were presented, in separate conditions, with either speech or non-speech stimuli of approximately equal complexity in five background conditions: babble noise, industrial noise, traffic noise, wide band noise, and silent condition. Whereas there were no effects of stimuli or noise on the behavioral responses, the MMN results revealed that speech and non-speech sounds are processed differently both in silent and noisy conditions. Speech processing was more affected than non-speech processing in all noise conditions. Moreover, different noise types had a differential effect on the pre-attentive discrimination, as reflected in MMN, on speech and non-speech sounds. Babble and industrial noises dramatically reduced the MMN amplitudes for both stimulus types, while traffic noise affected only speech stimuli. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, FIN-00014 Helsinki, Finland.
   Alexandria Sch Med, Dept Otolaryngol Head & Neck Surg, Alexandria, Egypt.
   Univ Helsinki, Helsinki Coll Adv Studies, FIN-00014 Helsinki, Finland.
   Univ Helsinki, Inst Brain Res, Helsinki, Finland.
   MRC, Cognit & Brain Sci Unit, Cambridge, England.
   Finnish Inst Occupat Hlth, Dept Phys, Helsinki, Finland.
   Helsinki Univ Technol, Lab Acoust & Audio Signal Proc, FIN-02150 Espoo, Finland.
RP Kujala, T (reprint author), Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, POB 9, FIN-00014 Helsinki, Finland.
EM teija.m.kujala@helsinki.fi
RI Alku, Paavo/E-2400-2012; Shtyrov, Yury/I-3421-2013
CR Alku P, 1999, CLIN NEUROPHYSIOL, V110, P1329, DOI 10.1016/S1388-2457(99)00088-7
   Amenedo E, 2000, EUR J NEUROSCI, V12, P2570, DOI 10.1046/j.1460-9568.2000.00114.x
   BOOTHROYD A, 1984, J SPEECH HEAR RES, V27, P134
   DIRKS DD, 1982, J SPEECH HEAR DISORD, V47, P114
   FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247
   Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3
   GARSTECKI DC, 1974, J AUD RES, V3, P171
   GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346
   HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581
   HERRMANN C, 2000, NEUROREPORT, V112, P227
   HYGGE S, 1992, J SPEECH HEAR RES, V35, P208
   JERGER S, 1994, EAR HEARING, V152, P138
   Kujala T, 2001, CLIN NEUROPHYSIOL, V112, P1712, DOI 10.1016/S1388-2457(01)00625-3
   Levanen S, 1997, PSYCHOPHYSIOLOGY, V34, P258, DOI 10.1111/j.1469-8986.1997.tb02396.x
   Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271
   Muller-Gass A, 2001, NEUROSCI LETT, V299, P197, DOI 10.1016/S0304-3940(01)01508-7
   MUSIEK FE, 1987, EAR HEARING S, V84, pS22
   Musiek F E, 1999, Scand Audiol Suppl, V51, P33
   MUSIEK FE, 1980, LARYNGOSCOPE, V923, P251
   Naatanen R, 2001, PSYCHOPHYSIOLOGY, V38, P1, DOI 10.1017/S0048577201000208
   Näätänen R, 1995, Int J Neurosci, V80, P317, DOI 10.3109/00207459508986107
   Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341
   SALO SK, 1995, SCAND AUDIOL, V24, P165, DOI 10.3109/01050399509047531
   Salvi RJ, 2002, HEARING RES, V170, P96, DOI 10.1016/S0378-5955(02)00386-6
   Shtyrov Y, 1998, NEUROSCI LETT, V251, P141, DOI 10.1016/S0304-3940(98)00529-1
   Sperry J L, 1997, J Am Acad Audiol, V8, P71
   VANTASELL DJ, 1987, J SPEECH HEAR RES, V30, P377
   WANG MD, 1973, J ACOUST SOC AM, V54, P1248, DOI 10.1121/1.1914417
NR 28
TC 20
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 31
EP 39
DI 10.1016/j.heares.2004.07.010
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200004
PM 15574298
ER

PT J
AU Glueckert, R
   Pfaller, K
   Kinnefors, A
   Schrott-Fischer, A
   Rask-Andersen, H
AF Glueckert, R
   Pfaller, K
   Kinnefors, A
   Schrott-Fischer, A
   Rask-Andersen, H
TI High resolution scanning electron microscopy of the human organ of
   Corti. A study using freshly fixed surgical specimens
SO HEARING RESEARCH
LA English
DT Article
DE nerve fibres; tectorial membrane; sound transduction; marginal net;
   stereocilia; glycocalyx; supernumerary hair cells; supporting cells;
   stria vascularis
ID COCHLEAR HAIR-CELLS; TECTORIAL MEMBRANE; GUINEA-PIG; NERVE-FIBERS;
   EFFERENT INNERVATION; STRIA VASCULARIS; SPIRAL GANGLION; HUMAN FETUSES;
   STEREOCILIA; BUNDLES
AB Scanning electron microscopy on immediately fixed human cochleae obtained during surgery for life-threatening petro-clival meningioma showed excellently preserved morphology. We compared the morphological findings with those from transmission electron microscopic sections of well preserved human and animal tissue. The characteristics of neural innervation, the pathways of the nerves through the organ of Corti and the intimate relation of nerves to supporting cells along their route could be studied in detail. The lateral membranes of Hensen and Claudius cells were folded creating a surface enlargement. Marginal pillars extended the distal end of the tectorial membrane and correspond to the marginal net or "randfasernetz" described earlier. Stereocilia imprints at the undersurface of the tectorial membrane go as far as to the distal end of the marginal pillars. The presence of an irregularly distributed fourth row of outer hair cell, attached to the marginal pillars, raises questions about differences in the excitation of the last row of outer hair cells. The complex nature of many supporting cells, stria vascularis and Reissner's membrane, intracellular complexities as well as surface features are described. Supernumerary inner hair cells were observed and the different arrangement of outer spiral fibres in contrast to findings in animals and variations of nerve fibres within the organ of Corti between apex and base are discussed. (C) 2004 Elsevier B.V. All rights reserved.
C1 Med Univ Innsbruck, Dept Otolaryngol, A-6020 Innsbruck, Austria.
   Med Univ Innsbruck, Dept Hist & Mol Cell Biol, Inst Anat & Histol, Innsbruck, Austria.
   Univ Uppsala Hosp, Dept Otolaryngol, S-75185 Uppsala, Sweden.
RP Glueckert, R (reprint author), Med Univ Innsbruck, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria.
EM rudolf.glueckert@uibk.ac.at; annelies.schrott@uibk.ac.at
CR ANNIKO M, 1986, HEARING RES, V22, P279, DOI 10.1016/0378-5955(86)90104-8
   BAGGERSJOBACK D, 1985, ANN OTO RHINOL LARYN, V94, P284
   Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a
   BREDBERG G, 1977, ARCH OTO-RHINO-LARYN, V217, P321, DOI 10.1007/BF00465549
   BREDBERG G, 1970, SCIENCE, V170, P861, DOI 10.1126/science.170.3960.861
   BREDBERG G, 1977, ACTA OTO-LARYNGOL, V83, P71, DOI 10.3109/00016487709128815
   COMIS SD, 1985, J NEUROCYTOL, V14, P113, DOI 10.1007/BF01150266
   COMIS SD, 1990, ACTA OTO-LARYNGOL, V109, P361, DOI 10.3109/00016489009125156
   Engström B, 1987, Acta Otolaryngol Suppl, V436, P110
   Engström B, 1990, Acta Otolaryngol Suppl, V470, P31
   FELIX H, 1993, ACTA OTO-LARYNGOL, V113, P321, DOI 10.3109/00016489309135817
   FUJIMOTO S, 1981, ARCH HISTOL JAPON, V44, P223
   FURNESS DN, 1986, HEARING RES, V21, P243, DOI 10.1016/0378-5955(86)90222-4
   GLEESON MJ, 1985, ACTA OTO-LARYNGOL, V100, P419, DOI 10.3109/00016488509126566
   HACKNEY CM, 1988, HEARING RES, V34, P207, DOI 10.1016/0378-5955(88)90109-8
   HARADA Y, 1983, SCAN ELECTRON MICROS, P183
   HENSON MM, 1983, HEARING RES, V10, P153, DOI 10.1016/0378-5955(83)90051-5
   HOSHINO T, 1985, ANN OTO RHINOL LARYN, V94, P304
   HOSHINO T, 1981, ARCH OTO-RHINO-LARYN, V232, P65, DOI 10.1007/BF00661004
   HOSHINO T, 1990, J ELECTRON MICR TECH, V15, P104, DOI 10.1002/jemt.1060150203
   HOSHINO T, 1977, ARCH OTO-RHINO-LARYN, V217, P53, DOI 10.1007/BF00453890
   Hunter-Duvar I M, 1975, Can J Otolaryngol, V4, P152
   IGARASHI Y, 1980, ARCH HISTOL JAPON, V43, P195
   Jin ZH, 2003, TOHOKU J EXP MED, V200, P137, DOI 10.1620/tjem.200.137
   Jongebloed WL, 1999, J MICROSC-OXFORD, V193, P158
   Kammen-Jolly K, 2001, HEARING RES, V160, P15, DOI 10.1016/S0378-5955(01)00310-0
   KAMMENJOLLY K, 2001, HEARING RES, V167, P102
   KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553
   KIKUCHI T, 2004, ARO MIDW M DAYT BEAC
   KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X
   LAVIGNEREBILLARD M, 1990, J ELECTRON MICR TECH, V15, P115, DOI 10.1002/jemt.1060150204
   LAVIGNEREBILLARD M, 1986, ANAT EMBRYOL, V174, P369, DOI 10.1007/BF00698787
   Lavigne-Rebillard M, 1985, Ann Otolaryngol Chir Cervicofac, V102, P493
   Lavigne-Rebillard M, 1987, Acta Otolaryngol Suppl, V436, P43
   LAWRENCE M, 1980, ANN OTO RHINOL LARYN, V89, P325
   LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199
   LIM DJ, 1969, ANN OTO RHINOL LARYN, V78, P827
   MORITA H, 1992, SCANNING MICROSCOPY, V6, P1105
   Morita Hirofumi, 1996, Scanning Microscopy, V10, P165
   NOMURA Y, 1979, ARCH OHREN NASEN KEH, V222, P181, DOI 10.1007/BF00456314
   OSBORNE MP, 1989, ACTA OTO-LARYNGOL, V108, P217, DOI 10.3109/00016488909125521
   Pujol R, 1991, Acta Otolaryngol Suppl, V482, P7
   Reiss G, 1990, Acta Otolaryngol Suppl, V470, P23
   REISS M, 1990, ACTA OTO-LARYNGOL  S, V470, P109
   SANTI PA, 1994, J HISTOCHEM CYTOCHEM, V42, P705
   SANTI PA, 1987, HEARING RES, V27, P47, DOI 10.1016/0378-5955(87)90025-6
   Schrott-Fischer A, 2002, HEARING RES, V174, P75, DOI 10.1016/S0378-5955(02)00640-8
   Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130
   SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363
   Sobkowicz HM, 1998, ANAT EMBRYOL, V198, P353, DOI 10.1007/s004290050190
   Spicer SA, 2000, HEARING RES, V143, P147, DOI 10.1016/S0378-5955(00)00037-X
   Spicer SS, 2000, CELL TISSUE RES, V302, P1, DOI 10.1007/s004410000253
   SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202
   SPOENDLIN H, 1982, AM J OTOL, V3, P274
   SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493
   SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927
   SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0
   SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310
   TAKUMIDA M, 1988, ACTA OTO-LARYNGOL, V106, P130, DOI 10.3109/00016488809107380
   Takumida M, 1988, Acta Otolaryngol Suppl, V458, P84
   TANAKA K, 1979, ANN OTO RHINOL LARYN, V88, P749
   Thiers FA, 2002, HEARING RES, V164, P97, DOI 10.1016/S0378-5955(01)00414-2
   Valk WL, 2002, ORL J OTO-RHINO-LARY, V64, P242, DOI 10.1159/000064137
   Warr WB, 1997, HEARING RES, V108, P89, DOI 10.1016/S0378-5955(97)00044-0
   WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1
   WRIGHT A, 1983, J ROY SOC MED, V76, P269
   WRIGHT A, 1982, CLIN OTOLARYNGOL, V7, P193, DOI 10.1111/j.1365-2273.1982.tb01582.x
   WRIGHT A, 1981, ARCH OTO-RHINO-LARYN, V230, P11, DOI 10.1007/BF00665375
   WRIGHT A, 1981, CLIN OTOLARYNGOL, V6, P237, DOI 10.1111/j.1365-2273.1981.tb01541.x
   WRIGHT A, 1980, ARCH OTO-RHINO-LARYN, V228, P1, DOI 10.1007/BF00455888
   WRIGHT A, 1980, ARCH OTO-RHINO-LARYN, V229, P39, DOI 10.1007/BF00453750
   Zheng JL, 2000, DEVELOPMENT, V127, P4551
NR 72
TC 19
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 40
EP 56
DI 10.1016/j.heares.2004.05.006
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200005
PM 15574299
ER

PT J
AU Pal, B
   Por, A
   Pocsai, K
   Szucs, G
   Rusznak, Z
AF Pal, B
   Por, A
   Pocsai, K
   Szucs, G
   Rusznak, Z
TI Voltage-gated and background K(+) channel subunits expressed by the
   bushy cells of the rat cochlear nucleus
SO HEARING RESEARCH
LA English
DT Article
DE bushy cells; K(+) channel subunits; TASK channel; immunochemistry;
   BDS-I; phrixotoxin
ID THRESHOLD POTASSIUM CHANNEL; 2 PORE DOMAINS; SUBTHRESHOLD POTENTIALS;
   OUTWARD CURRENTS; NEURONS; TANDEM; BRAIN; MOUSE; FAMILY; LOCALIZATION
AB Bushy cells of the ventral cochlear nucleus produce a single, short latency action potential at the beginning of long depolarisations. In the present work an immunochemical survey was performed to detect the presence of K(+) channel subunits which may contribute to the specific membrane properties of the bushy cells.
   The immunocytochemical experiments conducted on enzymatically isolated bushy cells indicated positive immunolabelling for several subunits known to be responsible for the genesis of rapidly inactivating K(+) currents. Bushy cells showed strong expression of Kv3.4,4.2 and 4.3 subunits, with the lack of Kv1.4 specific immunoreaction. The Kv3.4-specific immunoreaction had a specific, patchy appearance. Bushy cells also expressed various members of the Kv1 subunit family, most notably Kv1.1, 1.2, 1.3 and 1.6. Weak positivity could be observed for Kv3.2 subunits. The positive immunolabelling for Kv3.4, Kv4.2 and Kv4.3 was confirmed in free-floating tissue slices. Voltage-clamp experiments performed on positively identified bushy cells in brain slices corroborated the presence and activity of Kv3.4 and Kv4.2/4.3 containing K(+) channels. Bushy cell showed strong immunopositivity for TASK-I channels too.
   The results presented in this work indicate that bushy cells possess several types of voltage-gated K(+) channel subunits whose activity may contribute to the membrane properties and firing characteristics of these neurones. (C) 2004 Elsevier B.V. All rights reserved.
C1 Debrecen Univ, Dept Physiol, Med & Hlth Sci Ctr, H-4012 Debrecen, Hungary.
RP Rusznak, Z (reprint author), Debrecen Univ, Dept Physiol, Med & Hlth Sci Ctr, POB 22, H-4012 Debrecen, Hungary.
EM rz@phys.dote.hu
RI Szucs, Geza/A-2121-2008
CR ANDERSON AJ, 1988, BRIT J PHARMACOL, V93, P215
   Ashmole I, 2001, PFLUG ARCH EUR J PHY, V442, P828, DOI 10.1007/s004240100620
   BALDWIN TJ, 1991, NEURON, V7, P471, DOI 10.1016/0896-6273(91)90299-F
   Brew HM, 1995, J NEUROSCI, V15, P8011
   Coetzee WA, 1999, ANN NY ACAD SCI, V868, P233, DOI 10.1111/j.1749-6632.1999.tb11293.x
   CONNOR JA, 1971, J PHYSIOL-LONDON, V213, P21
   Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x
   Diochot S, 1998, J BIOL CHEM, V273, P6744, DOI 10.1074/jbc.273.12.6744
   Diochot S, 1999, BRIT J PHARMACOL, V126, P251, DOI 10.1038/sj.bjp.0702283
   Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250
   Dodson PD, 2004, TRENDS NEUROSCI, V27, P210, DOI 10.1016/j.tins.2004.02.012
   Doughty JM, 1998, J PHYSIOL-LONDON, V512, P365, DOI 10.1111/j.1469-7793.1998.365be.x
   Duprat F, 1997, EMBO J, V16, P5464, DOI 10.1093/emboj/16.17.5464
   FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311
   Fitzakerley JL, 2000, HEARING RES, V147, P31, DOI 10.1016/S0378-5955(00)00118-0
   Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9
   Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2
   Hess D, 2001, P NATL ACAD SCI USA, V98, P5276, DOI 10.1073/pnas.091096198
   Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045
   KETCHUM KA, 1995, NATURE, V376, P690, DOI 10.1038/376690a0
   Kim D, 2001, BIOCHEM BIOPH RES CO, V284, P923, DOI 10.1006/bbrc.2001.5064
   Kim Y, 2000, J BIOL CHEM, V275, P9340, DOI 10.1074/jbc.275.13.9340
   KIM Y, 1999, AM J PHYSIOL, V277, pH1678
   Kupper J, 2002, PFLUG ARCH EUR J PHY, V443, P541, DOI 10.1007/s00424-001-0734-4
   Leonoudakis D, 1998, J NEUROSCI, V18, P868
   Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279
   MANIS PB, 1991, J NEUROSCI, V11, P2865
   Martina M, 2003, J NEUROSCI, V23, P5698
   MOORE JK, 1986, NEUROBIOLOGY HEARING, P283
   MOREST DK, 1993, NATO ADV SCI INST SE, V239, P1
   NEHER E, 1971, J GEN PHYSIOL, V58, P36, DOI 10.1085/jgp.58.1.36
   OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112
   OERTEL D, 1983, J NEUROSCI, V3, P2043
   Perney TM, 1997, J COMP NEUROL, V386, P178
   Rajan S, 2000, J BIOL CHEM, V275, P16650, DOI 10.1074/jbc.M000030200
   Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824
   RETTIG J, 1994, NATURE, V369, P289, DOI 10.1038/369289a0
   Reyes R, 1998, J BIOL CHEM, V273, P30863, DOI 10.1074/jbc.273.47.30863
   Rhode WS, 1991, NEUROBIOLOGY HEARING, P47
   Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002
   Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0
   Rusznak Z, 1997, EUR J NEUROSCI, V9, P2348, DOI 10.1111/j.1460-9568.1997.tb01652.x
   Rusznak Z, 2001, BRAIN RES PROTOC, V7, P68, DOI 10.1016/S1385-299X(01)00047-2
   Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424
   SCHROTER KH, 1991, FEBS LETT, V278, P211, DOI 10.1016/0014-5793(91)80119-N
   Serodio P, 1996, J NEUROPHYSIOL, V75, P2174
   SERODIO P, 1994, J NEUROPHYSIOL, V72, P1516
   Sewing S, 1996, NEURON, V16, P455, DOI 10.1016/S0896-6273(00)80063-X
   Shibata R, 2000, J NEUROSCI, V20, P4145
   WANG H, 1994, J NEUROSCI, V14, P4588
   Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x
   WU SH, 1984, J NEUROSCI, V4, P1577
NR 52
TC 15
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 57
EP 70
DI 10.1016/j.heares.2004.07.020
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200006
PM 15574300
ER

PT J
AU Tognola, G
   Parazzini, M
   de Jager, P
   Brienesse, P
   Ravazzani, P
   Grandori, F
AF Tognola, G
   Parazzini, M
   de Jager, P
   Brienesse, P
   Ravazzani, P
   Grandori, F
TI Cochlear maturation and otoacoustic emissions in preterm infants: a
   time-frequency approach
SO HEARING RESEARCH
LA English
DT Article
DE cochlear maturation; otoacoustic emissions; preterm newborn; cochlear
   modeling; wavelet transform
ID MEDIAL OLIVOCOCHLEAR SYSTEM; TRAVELING-WAVE DELAY; BRAIN-STEM RESPONSES;
   ACOUSTIC ADMITTANCE; HEARING IMPAIRMENT; DISTORTION-PRODUCT; EAR;
   NEWBORNS; HUMANS; REFLECTANCE
AB Click-evoked otoacoustic emissions (CEOAEs) from preterm infants were analyzed to characterize developmental changes of cochlear active mechanisms. Due to their strong time-varying properties, CEOAEs were studied with a time-frequency approach the wavelet transform (WT). By means of the WT, CEOAEs were decomposed into 12 frequency bands, spanning the 0.25-6.25 kHz range. For each band, the root-mean-square (RMS) level and latency were studied as functions of both frequency and age. Because CEOAEs were averaged using the non-linear mode of acquisition, the developmental changes in observed in this study are related to the non-linear component (which is actually the most predominant component of the active cochlear response) of CEOAEs, the linear one being mostly canceled out by non-linear averaging. In our study, there was evidence that properties of CEOAE non-linear components are related to the post-conception age (PCA) in that the levels and latency of CEOAE frequency components changed until the age of about 38 weeks post-conception, whereas after 38 weeks, CEOAE features were very similar to those of term newborns. In particular, the CEOAE levels increased and latency decreased with age. The observed changes in CEOAE properties seem to reveal a development of cochlear active mechanisms, although contributions from outer and middle car development cannot be excluded. Also, in agreement with previous physiological and behavioral findings, our results revealed that the development of CEOAE properties was not the same for all the frequencies, being greater for frequencies less than or equal to4 kHz, and resembled the development of the cochlear partition, which proceeds from base to apex. (C) 2004 Elsevier B.V. All rights reserved.
C1 Politecn Milan, CNR, Ist Ingn Biomed, I-20133 Milan, Italy.
   Univ Hosp Masstricht, Dept Otorhinolaryngol & Head & Neck Surg, Maastricht, Netherlands.
RP Tognola, G (reprint author), Politecn Milan, CNR, Ist Ingn Biomed, 32 Piazza Leonardo Da Vinci, I-20133 Milan, Italy.
EM gabriella.tognola@polimi.it
RI Parazzini, Marta/J-8175-2014; Tognola, Gabriella/B-9025-2015; Ravazzani,
   Paolo/B-9139-2015
OI Parazzini, Marta/0000-0001-9008-7530; Ravazzani,
   Paolo/0000-0003-0282-3329
CR Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844
   Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1
   Brienesse P, 1998, AUDIOLOGY, V37, P278
   Brienesse P, 1996, AUDIOLOGY, V35, P296
   BROWN AM, 1995, AUDIT NEUROSCI, V1, P169
   BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438
   CHUANG SW, 1993, INT J PEDIATR OTORHI, V26, P39, DOI 10.1016/0165-5876(93)90194-8
   DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
   Eggermont JJ, 1996, EAR HEARING, V17, P386, DOI 10.1097/00003446-199610000-00004
   EGGERMONT JJ, 1991, J ACOUST SOC AM, V90, P288, DOI 10.1121/1.401299
   Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3
   HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651
   Joint Committee on Infant Hearing, 1991, ASHA S5, V33, P3
   Keefe DH, 2003, J ACOUST SOC AM, V113, P389, DOI 10.1121/1.1523387
   Keefe DH, 2000, EAR HEARING, V21, P443, DOI 10.1097/00003446-200010000-00009
   KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
   KEMP DT, 1990, EAR HEARING, V11, P93
   KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M
   MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463
   MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4
   MORLET T, 1993, ACTA OTO-LARYNGOL, V113, P271, DOI 10.3109/00016489309135808
   MORLET T, 1999, SERIES AUDIOLOGY, V1, P13
   Morlet T, 1999, HEARING RES, V134, P153, DOI 10.1016/S0378-5955(99)00078-7
   PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897
   Pujol R, 1985, Acta Otolaryngol Suppl, V421, P5
   ROMAND R, 1987, HEARING RES, V28, P117, DOI 10.1016/0378-5955(87)90158-4
   ROTTEVEEL JJ, 1987, HEARING RES, V26, P21, DOI 10.1016/0378-5955(87)90033-5
   RUBEL EW, 1984, ANN OTO RHINOL LARYN, V93, P609
   SMURZYNSKI J, 1994, EAR HEARING, V15, P210, DOI 10.1097/00003446-199406000-00002
   Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603
   Tognola G, 1999, AUDIOLOGY, V38, P243
   Tognola G, 1999, AUDIOLOGY, V38, P127
   Tognola G, 2001, EAR HEARING, V22, P182, DOI 10.1097/00003446-200106000-00002
   Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5
   Unser M, 1996, P IEEE, V84, P626, DOI 10.1109/5.488704
   VANZANTEN BGA, 1995, INT J PEDIATR OTORHI, V32, pS187, DOI 10.1016/0165-5876(94)01158-T
   Vohr BR, 1996, J PEDIATR-US, V128, P710, DOI 10.1016/S0022-3476(96)80143-0
   YANG XW, 1992, IEEE T INFORM THEORY, V38, P824, DOI 10.1109/18.119739
NR 40
TC 14
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 71
EP 80
DI 10.1016/j.heares.2004.08.005
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200007
PM 15574301
ER

PT J
AU Kalcioglu, MT
   Bayindir, T
   Erdem, T
   Ozturan, O
AF Kalcioglu, MT
   Bayindir, T
   Erdem, T
   Ozturan, O
TI Objective evaluation of the effects of intravenous lidocaine on tinnitus
SO HEARING RESEARCH
LA English
DT Article
DE tinnitus; lidocaine; treatment; otoacoustic emissions
ID OTOACOUSTIC EMISSIONS; AUDITORY-SYSTEM; SUPPRESSION; DPOAE
AB Objective: Tinnitus is one of the most common and distressing otological symptoms. Although numerous therapeutic modalities have been tried, there is no consensus regarding effective therapeutic agents up to now. The effects of lidocaine on tinnitus have been reported in literature using either subjective or audiologic tests. Nevertheless, the otoacoustic emissions (OAEs) have not been utilized to demonstrate lidocaine's effect on the cochlea in the English literature. The aim of this study was to evaluate the effect of lidocaine on tinnitus by considering the alterations with tinnitus, it induces on OAEs and subjective symptoms.
   Methods: This study was performed in 30 patients with tinnitus. Twenty-eight of the patients had normal hearing and two of them evidenced mild sensorineural hearing loss. To determine the severity of tinnitus, the patients were required to fill out a tinnitus scoring scale before lidocaine infusion on the same day. Then, lidocaine was administered intravenously to each patient at a dose of mg/kg body weight over a period of 30 min. Spontaneous otoacoustic emissions (SOAEs) and distortion product otoacoustic 1.5 mg emissions (DPOAEs) were measured three times; namely before lidocaine injection, at 25 min after injection and on the next day. The severity of tinnitus was scored again 1 d, 1 wk and 1 mo after lidocaine administration.
   Results: Immediately after infusion, four patients (13.3%) declared total suppression of tinnitus, whereas three patients (10%) reported only partial relief in tinnitus subjectively. The patients, who had a subjective improved response (group 1) were compared with the patients, who had no response (group 2). Statistically significant changes (p < 0.05) in DPOAE response/growth or input/output (I/O) functions were observed at 1, 2, 3, 4 and 6 kHz frequencies in lidocaine responders and at 1, 2, 3, 4 and 5 kHz frequencies in no responders at different primary stimulus levels. Statistically significant changes (p < 0.05) were seen at 2 kHz for 53 dB and at 3 kHz for 62 dB SPL primaries in both groups. When the significant results of these two groups were compared with each other, differences were found insignificant.
   Conclusion: Systematic OAE measurements revealed that no changes occurred in SOAE and DPOAE levels in that alterations disappeared the next day. Subjective relief from tinnitus was stated in some of the patients and lasted for 4 wk at longest. (C) 2004 Elsevier B.V. All rights reserved.
C1 Inonu Univ, Sch Med, Dept Otorhinolaryngol, Turgut Ozal Med Ctr, TR-44069 Malatya, Turkey.
RP Kalcioglu, MT (reprint author), Inonu Univ, Sch Med, Dept Otorhinolaryngol, Turgut Ozal Med Ctr, TR-44069 Malatya, Turkey.
EM mtkalcioglu@hotmail.com
RI OZTURAN, ORHAN/E-9610-2012; Kalcioglu, Mahmut/I-5884-2013; OZTURAN,
   ORHAN/B-4984-2015
OI OZTURAN, ORHAN/0000-0002-6129-8627
CR Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195
   BONFILS P, 1989, LARYNGOSCOPE, V99, P752
   CATTERALL W, 2001, GOODMAN GILMANS PHAR, P374
   Davis A, 2000, TINNITUS HDB, P1
   DENHARTIGH J, 1993, CLIN PHARMACOL THER, V54, P415
   DUCKERT LG, 1983, OTOLARYNG HEAD NECK, V91, P550
   HAGINOMORI S, 1995, ACTA OTO-LARYNGOL, V115, P488, DOI 10.3109/00016489509139353
   Hashimoto Y, 1997, Nihon Jibiinkoka Gakkai Kaiho, V100, P747
   Jastreboff PJ, 1998, OTOLARYNGOLOGY HEAD, P3198
   KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104
   Kemp D T, 1981, Ciba Found Symp, V85, P54
   KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222
   Laurikainen E, 1997, ACTA OTO-LARYNGOL, V117, P523, DOI 10.3109/00016489709113432
   Laurikainen EA, 1996, EAR HEARING, V17, P49, DOI 10.1097/00003446-199602000-00006
   Linke R, 2000, LARYNGO RHINO OTOL, V79, P517
   Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395
   Maruyama J, 2001, ACTA OTO-LARYNGOL, V121, P803
   McFadden D, 1982, TINNITUS FACTS THEOR
   MELDING PS, 1978, J LARYNGOL OTOL, V92, P115, DOI 10.1017/S002221510008511X
   NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011
   OHSAKI K, 1988, AURIS NASUS LARYNX, V25, P149
   PENNER MJ, 1987, J SPEECH HEAR RES, V30, P396
   PERUCCA E, 1985, J LARYNGOL OTOL, V99, P657, DOI 10.1017/S0022215100097437
   PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3
   Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9
   Ueda S, 1993, Acta Otolaryngol Suppl, V504, P89
   VERMEIJ P, 1986, INT J CLIN PHARM TH, V24, P207
   Yetiser S, 2002, AURIS NASUS LARYNX, V29, P329, DOI 10.1016/S0385-8146(02)00023-8
   ZENNER HP, 1993, EUR ARCH OTO-RHINO-L, V249, P447
NR 29
TC 9
Z9 11
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 81
EP 88
DI 10.1016/j.heares.2004.08.004
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200008
PM 15574302
ER

PT J
AU Schofield, BR
   Coomes, DL
AF Schofield, BR
   Coomes, DL
TI Auditory cortical projections to the cochlear nucleus in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE descending pathways; efferent; olivocochlear; auditory system
ID DIFFERING SPONTANEOUS RATE; INFERIOR COLLICULUS; IMMUNOCYTOCHEMICAL
   CHARACTERIZATION; NERVE FIBERS; CORTEX; RAT; NEURONS; CONNECTIONS;
   SYNAPSES; BRANCHES
AB We used anterograde tracing techniques to examine projections from auditory cortex to the cochlear nucleus in guinea pigs. Following injection of dextrans into the temporal cortex, labeled axons were present bilaterally in the cochlear nucleus. The distribution of boutons within the cochlear nucleus was similar on the two sides. The majority of boutons was usually located on the ipsilateral side. Most of the boutons were located in the granule cell areas, where many small boutons and a few larger, mossy-type endings were labeled. Additional small, labeled boutons were found in all layers of the dorsal cochlear nucleus, with the majority located in the fusiform cell layer. Labeled boutons were also present in the ventral cochlear nucleus, where they were located in the small cell cap as well as magnocellular parts of both posteroventral and anteroventral cochlear nucleus. Similar results were obtained with injections restricted to primary auditory cortex or to the dorsocaudal auditory field. The results illustrate direct cortical projections to the cochlear nucleus that are likely to modulate the activity in a number of ascending auditory pathways. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Louisville, Dept Anat Sci & Neurobiol, Louisville, KY 40202 USA.
RP Schofield, BR (reprint author), Univ Louisville, Dept Anat Sci & Neurobiol, 500 S Preston St, Louisville, KY 40202 USA.
EM brscho01@gwise.louisville.edu
CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775
   Alibardi L, 1998, ANN ANAT, V180, P415
   Alibardi L, 1998, ANN ANAT, V180, P427
   BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106
   BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410
   BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409
   Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9
   CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7
   Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412
   Doucet JR, 2003, J COMP NEUROL, V461, P452, DOI 10.1002/cne.10722
   Doucet JR, 1997, J COMP NEUROL, V385, P245
   Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6
   Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287
   HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123
   Helfert RH, 1997, CENTRAL AUDITORY SYS, P193
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2
   KIM DO, 1995, ACTIVE HEARING, P31
   LIBERMAN MC, 1993, J COMP NEUROL, V327, P17, DOI 10.1002/cne.903270103
   LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205
   MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406
   Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0
   Oertel D, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P127, DOI 10.1007/978-1-4419-8712-9_12
   Read HL, 2002, CURR OPIN NEUROBIOL, V12, P433, DOI 10.1016/S0959-4388(02)00342-2
   REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402
   REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403
   Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3
   Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3
   Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5
   SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153
   SCHOFIELD BR, 2001, ASS RES OTOLARYNGOL, V24, P44
   Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5
   Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1
   Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X
   Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9
   Spangler K., 1991, NEUROBIOLOGY HEARING, P27
   Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222
   Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9
   Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362
   Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X
   Weedman DL, 1996, J COMP NEUROL, V371, P311
   WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X
   YE Y, 2000, J COMP NEUROL, V420, P137
   Young E. D., 2002, INTEGRATIVE FUNCTION, P160
NR 44
TC 37
Z9 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 89
EP 102
DI 10.1016/j.heares.2004.08.003
PG 14
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200009
PM 15574303
ER

PT J
AU Wysocki, J
AF Wysocki, J
TI Topographical anatomy of the guinea pig temporal bone
SO HEARING RESEARCH
LA English
DT Article
DE temporal bone; anatomy; guinea pig
ID COCHLEA
AB Systematic anatomical description of the various structures of the temporal bone have been performed based on dissection of 16 guinea pigs (32 temporal bones). It has been found that besides two main air spaces in the middle ear, the tympanic bulla and dorsal bulla described in literature, there are also additional air cells in the mastoid process and facial nerve region in the temporal bone of a guinea pig. Moreover recesses were found in the walls of the tympanic bulla that formed almost completely separated partitions of tympanic cavity. The malleus head, the body of the incus and the superior and lateral semicircular canals as well as the facial nerve are easily accessible from the dorsal bulla. From the ventral tympanic bulla, one can access both windows and the cochlea. The semicircular canals are relatively large, the lateral canal is largest and the posterior the smallest. The cochlea has thin bony wall, and is composed of 3.5-3.75 turns. (C) 2004 Elsevier B.V. All rights reserved.
C1 Warsaw Univ, Sch Med, Dept Normal Anat, Warsaw, Poland.
RP Wysocki, J (reprint author), Warsaw Univ, Sch Med, Dept Normal Anat, Warsaw, Poland.
EM jwysocki@ib.amwaw.edu.pl
CR [Anonymous], 1998, TERMINOLOGIA ANATOMI
   ASARCH R, 1975, ANN OTO RHINOL LARYN, V84, P250
   BUGGE J, 1978, ACTA ANAT, V101, P45
   COOPER G, 1975, ANAT GUINEA PIG
   Counter SA, 1999, NEUROREPORT, V10, P473, DOI 10.1097/00001756-199902250-00006
   DAVISON A, 2003, MAMMALIAN ANATOMY SP
   DYCE KM, 1996, VET ANATOMY
   GOKSU N, 1992, ANN OTO RHINOL LARYN, V101, P699
   HAYMANN L, 1912, ARCH OHRENHEILD, V89, P267
   Kayhan Fatma Tülin, 2003, Kulak Burun Bogaz Ihtis Derg, V10, P51
   POPESCO P, 2002, COLOR ATLAS SMALL LA, V1
   Saunders J. T., 1969, MANUAL PRACTICAL VER
   SISSON S, 1945, ANATOMY DOMESTIC ANI
   SMALLWOOD JE, 1992, GUIDED TOUR VET ANAT
   SUZAKI Y, 1997, J OTOLARYNGOL JPN, V3, P342
   WELLS JR, 1986, OTOLARYNG HEAD NECK, V95, P450
   Wysocki J, 2001, HEARING RES, V161, P1, DOI 10.1016/S0378-5955(01)00314-8
   1994, HOMINA ANATOMICA VET
NR 18
TC 15
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 103
EP 110
DI 10.1016/j.heares.2004.08.008
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200010
PM 15574304
ER

PT J
AU Tokui, N
   Suzuki, H
   Udaka, T
   Hiraki, N
   Fujimura, T
   Fujimura, K
   Makishima, K
AF Tokui, N
   Suzuki, H
   Udaka, T
   Hiraki, N
   Fujimura, T
   Fujimura, K
   Makishima, K
TI Delayed-onset temporary auditor threshold shift following head blow in
   guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE sensorineural hearing loss; head injury; head blow device;
   disintegration of myelin sheath
ID SPINAL-CORD INJURY; COCHLEAR NERVE; HEARING-LOSS; TRAUMA; SYSTEM;
   NEUROTOXICITY; DEMYELINATION; RESPONSES; CULTURES; MICE
AB This study attempts to investigate the development of sensorineural hearing loss following a head blow without skull fracture in association with physiological and histopathologic changes in an experimental animal model.
   With the head in a freely movable position, albino guinea pigs were given a single blow to the occipital region by a head blow device. At 1. 7. and 14 days after the blow, the animals' auditory brainstem response (ABR) and cochlear microphonics (CM) were examined, and both the temporal bone and brain stem were observed by light and electron microscopy.
   The ABR threshold was unchanged at day 1, was significantly increased at day 7, and was fully recovered at day 14. The I-V and I-II interpeak latencies were significantly prolonged at days I and 7, and wave I latency was significantly prolonged at day 7 only. These latencies were recovered to normal limits at day 14. On the other hand, no significant change in CM versus the control group was observed at any point in the measurements. Histopathologically, no abnormal finding was seen at the light microscopic level. However, at the electron microscopic level, there were some injuries to the eighth nerve. At day 1, the lamellar structure of the myelin sheath was irregular, and the periaxonal space was expanded; at day 7, the myelin sheath was disintegrated. At day 14, however, these changes were partially reversed. These results suggest that sensorineural hearing loss following a head blow in this model is attributed to dysfunction of the eighth nerve rather than to cochlear impairment. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Occupat & Environm Hlth, Dept Otorhinolaryngol, Sch Med, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan.
RP Tokui, N (reprint author), Univ Occupat & Environm Hlth, Dept Otorhinolaryngol, Sch Med, Yahatanishi Ku, 1-1 Iseigaoka, Kitakyushu, Fukuoka 8078555, Japan.
EM n-tokui@med.uoeh-u.ac.jp
CR BLIGHT AR, 1986, NEUROSCIENCE, V19, P321, DOI 10.1016/0306-4522(86)90025-4
   Blight A R, 1985, Cent Nerv Syst Trauma, V2, P299
   DAWSON VL, 1993, J NEUROSCI, V13, P2651
   DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368
   DENNYBROWM JP, 1941, EXPT CEREBRAL CONCUS, V64, P93
   D'Hooge R, 1999, BRAIN RES, V847, P352, DOI 10.1016/S0006-8993(99)02085-5
   FELDMANN H, 1987, ACTA OTO-LARYNGOL, V103, P379
   FENELEY MR, 1994, J LARYNGOL OTOL, V108, P54
   GOKSU N, 1992, ANN OTO RHINOL LARYN, V101, P699
   Gurdjian E S, 1970, Trans Am Neurol Assoc, V95, P248
   Holbourn AHS, 1943, LANCET, V2, P438
   LUDWIN SK, 1978, LAB INVEST, V39, P597
   MACDERMOTT AB, 1986, NATURE, V321, P519, DOI 10.1038/321519a0
   MAKISHIMA K, 1976, LARYNGOSCOPE, V86, P1303, DOI 10.1288/00005537-197609000-00002
   MAKISHIMA K, 1975, ARCH OTOLARYNGOL, V101, P426
   MAKISHIMA K, 1975, LARYNGOSCOPE, V85, P1947, DOI 10.1288/00005537-197512000-00001
   MOLLER AR, 1983, J NEUROSURG, V59, P1013, DOI 10.3171/jns.1983.59.6.1013
   Naito R, 1999, HEARING RES, V136, P44, DOI 10.1016/S0378-5955(99)00107-0
   PANTER SS, 1990, ANN NEUROL, V27, P96, DOI 10.1002/ana.410270115
   PODOSHIN L, 1975, ARCH OTOLARYNGOL, V101, P15
   PUDENZ RH, 1946, J NEUROSURG, V3, P487, DOI 10.3171/jns.1946.3.6.0487
   SCAIOLI V, 1992, J NEUROL NEUROSUR PS, V55, P1027, DOI 10.1136/jnnp.55.11.1027
   SCHUKNEC.HF, 1969, ANN OTO RHINOL LARYN, V78, P253
   SEKIYA T, 1988, ACTA NEUROCHIR, V90, P45, DOI 10.1007/BF01541266
   SEKIYA T, 1987, J NEUROSURG, V67, P244, DOI 10.3171/jns.1987.67.2.0244
   Spoendlin H, 1990, Acta Otolaryngol Suppl, V470, P61
   VANREEMPTS J, 1993, EXP NEUROL, V120, P283, DOI 10.1006/exnr.1993.1062
   WITTMAACK K, 1932, ARCH OHREN NASEN KEH, V313, P59
   YLIKOSKI J, 1982, AM J OTOL, V3, P343
   YLIKOSKI J, 1981, ACTA OTO-LARYNGOL, V91, P161, DOI 10.3109/00016488109138495
   ZHOU RZ, 1995, HEARING RES, V88, P87, DOI 10.1016/0378-5955(95)00104-C
NR 31
TC 1
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 111
EP 116
DI 10.1016/j.heares.2004.08.009
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200011
PM 15574305
ER

PT J
AU Gillespie, LN
   Marzella, PL
   Clark, GA
   Crook, JA
AF Gillespie, LN
   Marzella, PL
   Clark, GA
   Crook, JA
TI Netrin-1 as a guidance molecule in the postnatal rat cochlea
SO HEARING RESEARCH
LA English
DT Article
DE spiral ganglion neurons; axon guidance; netrin-1; DCC
ID NEURONS IN-VITRO; CANCER DCC GENE; AUDITORY NEURONS; COLORECTAL-CANCER;
   AXON GUIDANCE; INNER-EAR; ELECTRODE ARRAY; NERVOUS-SYSTEM; SPINAL-CORD;
   EXPRESSION
AB During synaptogenesis a number of growth factors and peptides control the guidance of auditory neuron (spiral ganglion neuron, SGN) axons to their target cells. Furthermore, evidence suggests that these factors exert their actions at discrete times and sites during development. This study demonstrates that the guidance molecule netrin-1 is expressed in the early postnatal rat cochlea, but shows decreasing expression with increasing age. These results suggest that netrin-1 may be involved in guiding axonal growth from SGNs for the onset of innervation, but is not required for maintenance of synaptic connections. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Melbourne, Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
   Bion Ear Inst, Melbourne, Vic 3002, Australia.
RP Gillespie, LN (reprint author), Univ Melbourne, Eye & Ear Hosp, Dept Otolaryngol, 2nd Floor, Melbourne, Vic 3002, Australia.
EM lgillespie@bionicear.org
CR Ackerman SL, 1997, NATURE, V386, P838, DOI 10.1038/386838a0
   Badi AN, 2003, LARYNGOSCOPE, V113, P833, DOI 10.1097/00005537-200305000-00012
   Chisholm A, 1999, CURR OPIN NEUROBIOL, V9, P603, DOI 10.1016/S0959-4388(99)00021-5
   COLAMARINO SA, 1995, CELL, V81, P621, DOI 10.1016/0092-8674(95)90083-7
   Cooper HM, 1999, CLIN EXP PHARMACOL P, V26, P749, DOI 10.1046/j.1440-1681.1999.03106.x
   Crook JM, 2002, MOL PSYCHIATR, V7, P157, DOI 10.1038/sj.mp.4000966
   Deiner MS, 1999, J NEUROSCI, V19, P9900
   Deiner MS, 1997, NEURON, V19, P575, DOI 10.1016/S0896-6273(00)80373-6
   Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
   Fazeli A, 1997, NATURE, V386, P796, DOI 10.1038/386796a0
   Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019
   Hillman T, 2003, OTOL NEUROTOL, V24, P764, DOI 10.1097/00129492-200309000-00013
   Hong KS, 1999, CELL, V97, P927, DOI 10.1016/S0092-8674(00)80804-1
   Johansson K, 2001, DEV BRAIN RES, V130, P133, DOI 10.1016/S0165-3806(01)00221-8
   Kennedy TE, 2000, BIOCHEM CELL BIOL, V78, P569, DOI 10.1139/bcb-78-5-569
   KENNEDY TE, 1994, CELL, V78, P425, DOI 10.1016/0092-8674(94)90421-9
   LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003
   Leonardo ED, 1997, NATURE, V386, P833, DOI 10.1038/386833a0
   Livesey FJ, 1997, MOL CELL NEUROSCI, V8, P417, DOI 10.1006/mcne.1997.0598
   Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016
   Manitt C, 2001, J NEUROSCI, V21, P3911
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2
   PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7
   Poe BH, 1998, DEV BRAIN RES, V105, P153, DOI 10.1016/S0165-3806(97)00186-7
   REALE MA, 1994, CANCER RES, V54, P4493
   Salminen M, 2000, DEVELOPMENT, V127, P13
   Saunders E, 2002, EAR HEARING, V23, p28S, DOI 10.1097/00003446-200202001-00004
   Serafini T, 1996, CELL, V87, P1001, DOI 10.1016/S0092-8674(00)81795-X
   SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3
   Shirasaki R, 1996, NEURON, V17, P1079, DOI 10.1016/S0896-6273(00)80241-X
   Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
   TessierLavigne M, 1996, SCIENCE, V274, P1123, DOI 10.1126/science.274.5290.1123
   Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007
   VIELMETTER J, 1994, J CELL BIOL, V127, P2009, DOI 10.1083/jcb.127.6.2009
   YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
NR 36
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 117
EP 123
DI 10.1016/j.heares.2004.07.004
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200012
PM 15574306
ER

PT J
AU Sabin, AT
   Macpherson, EA
   Middlebrooks, JC
AF Sabin, AT
   Macpherson, EA
   Middlebrooks, JC
TI Human sound localization at near-threshold levels
SO HEARING RESEARCH
LA English
DT Article
DE sound localization; psychoacoustics; spatial coding; auditory cortex
ID PRIMARY AUDITORY-CORTEX; FILTER SHAPES; MEDIAN PLANE; CAT; SENSITIVITY;
   NEURONS; LISTENERS; LOCATION; ANGLE
AB Physiological studies of spatial hearing show that the spatial receptive fields of cortical neurons typically are narrow at near-threshold levels, broadening at moderate levels. The apparent loss of neuronal spatial selectivity at increasing sound levels conflicts with the accurate performance of human subjects localizing at moderate sound levels. In the present study, human sound localization was evaluated across a wide range of sensation levels, extending down to the detection threshold. Listeners reported whether they heard each target sound and, if the target was audible, turned their heads to face the apparent source direction. Head orientation was tracked electromagnetically. At near-threshold levels, the lateral (left/right) components of responses were highly variable and slightly biased towards the midline, and front vertical components consistently exhibited a strong bias towards the horizontal plane. Stimulus levels were specified relative to the detection threshold for a front-positioned source, so low-level rear targets often were inaudible. As the sound level increased, first lateral and then vertical localization neared asymptotic levels. The improvement of localization over a range of increasing levels, in which neural spatial receptive fields presumably are broadening, indicates that sound localization does not depend on narrow spatial receptive fields of cortical neurons. (C) 2004 Elsevier B.V. All rights reserved.
C1 Kresge Hearing Res Inst, Cent Syst Lab, Ann Arbor, MI 48109 USA.
RP Middlebrooks, JC (reprint author), Kresge Hearing Res Inst, Cent Syst Lab, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM jmidd@umich.edu
CR ALTSHULER M W, 1975, Journal of Auditory Research, V15, P262
   BLAUERT J, 1969, ACUSTICA, V22, P205
   Brugge JF, 1996, J NEUROSCI, V16, P4420
   BUTLER RA, 1971, PERCEPT PSYCHOPHYS, V9, P99, DOI 10.3758/BF03213038
   COMALLI P E JR, 1976, Journal of Auditory Research, V16, P275
   DAVIS JR, 1974, J SOUND VIB, V35, P223
   GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T
   HARTMANN WM, 1993, J ACOUST SOC AM, V94, P2083, DOI 10.1121/1.407481
   HEBRANK J, 1975, J SOUND VIB, V38, P498, DOI 10.1016/S0022-460X(75)80137-4
   Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784
   IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448
   Inoue Jinro, 2001, Journal of UOEH, V23, P127
   Jenison RL, 2001, NEUROCOMPUTING, V38, P239, DOI 10.1016/S0925-2312(01)00355-1
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   MACPHERSON EA, 2000, J ACOUST SOC AM, V108, P1837
   Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898
   MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400
   MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031
   Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863
   MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
   MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553
   Morimoto M., 1984, Journal of the Acoustical Society of Japan (E), V5
   PERRETT S, 1995, PERCEPT PSYCHOPHYS, V57, P150, DOI 10.3758/BF03206501
   RAJAN R, 1990, J NEUROPHYSIOL, V64, P888
   REALE RA, 2002, J NEUROPHYSIOL, V89, P1024, DOI 10.1152/jn.00563.2002
   Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775
   SHAILER MJ, 1990, J ACOUST SOC AM, V88, P141, DOI 10.1121/1.399961
   Stecker GC, 2003, BIOL CYBERN, V89, P341, DOI 10.1007/s00422-003-0439-1
   Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002
   Strutt J. W, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595
   Su TIK, 2001, JARO, V2, P246, DOI 10.1007/s101620010073
   SU TK, 2000, SOC NEUR ABSTR, V26, P955
   Supin AY, 2003, HEARING RES, V185, P1, DOI 10.1016/S0378-5955(03)00215-6
   Vliegen J, 2004, J ACOUST SOC AM, V115, P1705, DOI 10.1121/1.1687423
   WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445
NR 35
TC 31
Z9 33
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 124
EP 134
DI 10.1016/j.heares.2004.08.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200013
PM 15574307
ER

PT J
AU Kimitsuki, T
   Ohashi, M
   Wada, Y
   Fukudome, S
   Komune, S
AF Kimitsuki, T
   Ohashi, M
   Wada, Y
   Fukudome, S
   Komune, S
TI Dissociation enzyme effects on the potassium currents of inner hair
   cells isolated from guinea-pig cochlea
SO HEARING RESEARCH
LA English
DT Article
DE inner hair cell; cochlea; potassium current; inactivation; trypsin;
   protease VIII; papain
ID ION-DEPENDENT CONDUCTANCES; INACTIVATING BK CHANNELS; CHROMAFFIN CELLS;
   FROG; ROD; EXPRESSION; MEMBRANE
AB Tetraethylammonium (TEA)-sensitive potassium currents in the cochlear inner hair cells (IHCs) possess the kinetics of fast inactivation. Some enzymes using for IHCs dissociation affect these inactivation kinetics. IHCs were dissociated from guinea-pig cochlea by I mg/ml trypsin or 0.25 mg/ml protease VIII, and the properties of the K+ currents were compared using conventional whole-cell voltage-clamp recordings. TEA-sensitive potassium currents showed fast inactivation kinetics in both trypsin-dissociated cells and protease VIII-dissociated cells. The time constant of the inactivation phase in trypsin-treated cells was similar to that in protease VIII-treated cells. However, the rate of inactivation (compared by the ratio between the steady-state current and initial peak current) in protease VIII-treated cells was larger than that in trypsin-treated cells. In protease VIII-dissociated cells, the time constant of recovery from inactivation elucidated by paired-pulse protocol was 3.5 ins. Papain is another enzyme that is sometimes used for dissociating IHCs, so effects of papain were observed. Extracellular papain application (8 unit/ml) demonstrated a slight increase of the outward potassium currents. (C) 2004 Elsevier B.V. All rights reserved.
C1 Miyazaki Univ, Miyazaki Med Coll, Dept Otorhinolaryngol, Miyazaki 8891692, Japan.
   Khusyu Univ, Dept Otorhinolaryngol, Fac Med, Higashi Ku, Fukuoka 8128582, Japan.
RP Kimitsuki, T (reprint author), Miyazaki Univ, Miyazaki Med Coll, Dept Otorhinolaryngol, 5200 Kihara, Miyazaki 8891692, Japan.
EM kimituki@fc.med.miyazaki-u.ac.jp
CR ARMSTRON.CM, 1973, J GEN PHYSIOL, V62, P375, DOI 10.1085/jgp.62.4.375
   Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x
   Armstrong CE, 1998, J NEUROSCI, V18, P2962
   ART JJ, 1987, J PHYSIOL-LONDON, V385, P207
   ASHMORE JF, 1983, NATURE, V304, P536, DOI 10.1038/304536a0
   Catacuzzeno L, 2003, HEARING RES, V175, P36, DOI 10.1016/S0378-5955(02)00707-4
   Ding JP, 1998, BIOPHYS J, V74, P268
   HESTRIN S, 1987, J NEUROSCI, V7, P3072
   Hicks GA, 1998, J PHYSIOL-LONDON, V508, P721, DOI 10.1111/j.1469-7793.1998.721bp.x
   HOSHI T, 1990, SCIENCE, V250, P533, DOI 10.1126/science.2122519
   HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237
   KIMITSUKI T, 2004, ACTA OTOLARYNGOL S, V553, P28
   KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263
   Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401
   LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0
   Li ZW, 1999, J NEUROPHYSIOL, V81, P611
   Lingle C J, 1996, Ion Channels, V4, P261
   Marcotti W, 2003, J PHYSIOL-LONDON, V548, P383, DOI 10.1113/jphysiol.2002.034801
   MARCOTTI W, 2004, J PHYSL, P613
   PALLOTTA BS, 1981, NATURE, V293, P471, DOI 10.1038/293471a0
   Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424
   SHEN J, 1995, JPN J PHYSIOL, V45, P151, DOI 10.2170/jjphysiol.45.151
   Skinner LJ, 2003, J NEUROPHYSIOL, V90, P320, DOI 10.1152/jn.01155.2002
   SOLARO CR, 1992, SCIENCE, V257, P1694, DOI 10.1126/science.1529355
   TOWNESANDERSON E, 1985, J CELL BIOL, V100, P175, DOI 10.1083/jcb.100.1.175
NR 25
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD JAN
PY 2005
VL 199
IS 1-2
BP 135
EP 139
DI 10.1016/j.heares.2004.08.020
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 885RI
UT WOS:000226174200014
PM 15574308
ER

PT J
AU Agaeva, M
AF Agaeva, M
TI Velocity discrimination of auditory image moving in vertical plane
SO HEARING RESEARCH
LA English
DT Article
DE psychoacoustics; moving sound image; differential thresholds to
   velocity; vertical plane
ID AUDIBLE MOVEMENT ANGLE; SPECTRAL CUES; DICHOTIC STIMULATION; HORIZONTAL
   PLANE; MEDIAN PLANE; SOUND; LOCALIZATION; FREQUENCY; ELEVATION; DURATION
AB This research investigated the ability of humans to discriminate changes in velocity of apparent movement of a sound source (as defined by the time required for the sound to traverse a 180 deg arc) in the median vertical plane. Apparent auditory movement was created by successive switching of the loudspeakers situated over the arc. The broadband noise with band width of 0.25-4 kHz (low-pass noise - LP) and of 4-12.5 kHz (high-pass noise - HP) was employed as stimuli. Discrimination thresholds were calculated for reference velocities of 58 and 115 deg/s under four stimuli types: movement of stepped movement of noise for low-pass noise and for high-pass noise and continuous motion for low-pass noise and for high-pass noise. The result showed that discrimination of the velocity depended on the signal frequency spectrum. The differential thresholds for the signals with low pass noise were significantly higher than those for signals with high pass noise (F(1;78) much greater than 3.96, p < 0.05). Magnitude of the absolute thresholds was the highest when the velocity was It 5 deg/s for each of four types. It is interesting to note that the thresholds magnitude depended on the type of signal motion, that is on whether it was continuous or stepped. (C) 2004 Elsevier B.V. All rights reserved.
C1 Russian Acad Sci, Grp Hearing Physiol, IP Pavlov Physiol Inst, St Petersburg 199034, Russia.
RP Agaeva, M (reprint author), Russian Acad Sci, Grp Hearing Physiol, IP Pavlov Physiol Inst, 6 Makarov Embankment, St Petersburg 199034, Russia.
EM agamu@infran.ru
CR Agaeva MY, 2004, ACOUST PHYS+, V50, P278, DOI 10.1134/1.1739496
   Algazi VR, 2001, J ACOUST SOC AM, V109, P1110, DOI 10.1121/1.1349185
   ALGOM D, 1984, J EXP PSYCHOL HUMAN, V10, P486, DOI 10.1037//0096-1523.10.4.486
   ALTMAN JA, 1988, INT J NEUROSCI, V38, P369
   ALTMAN JA, 1977, J ACOUST SOC AM, V61, P816, DOI 10.1121/1.381371
   ASANO F, 1990, J ACOUST SOC AM, V88, P159, DOI 10.1121/1.399963
   BUTLER RA, 1992, PERCEPT PSYCHOPHYS, V51, P182, DOI 10.3758/BF03212242
   Carlile S, 2002, J ACOUST SOC AM, V111, P1026, DOI 10.1121/1.1436067
   CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443
   GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201
   Grantham DW, 2003, J ACOUST SOC AM, V114, P1009, DOI 10.1121/1.1590970
   HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520
   HUMANSKI RA, 1988, J ACOUST SOC AM, V83, P2300, DOI 10.1121/1.396361
   JONES B, 1982, PSYCHOL BULL, V91, P128, DOI 10.1037/0033-2909.91.1.128
   Kuhn GF, 1987, DIRECTIONAL HEARING, P3
   LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375
   MILLER GA, 1948, J ACOUST SOC AM, V20, P171, DOI 10.1121/1.1906360
   Perrott D R, 1979, J Aud Res, V19, P277
   ROFFLER SK, 1968, J ACOUST SOC AM, V43, P1255, DOI 10.1121/1.1910976
   SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984
   SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059
   Strybel TZ, 1998, PERCEPT PSYCHOPHYS, V60, P1441, DOI 10.3758/BF03208004
   STRYBEL TZ, 1992, HUM FACTORS, V34, P267
NR 23
TC 1
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 1
EP 9
DI 10.1016/j.heares.2004.07.007
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000001
PM 15567597
ER

PT J
AU Stenfelt, S
   Hato, N
   Goode, RL
AF Stenfelt, S
   Hato, N
   Goode, RL
TI Round window membrane motion with air conduction and bone conduction
   stimulation
SO HEARING RESEARCH
LA English
DT Article
DE round window; vibration pattern; air conduction; bone conduction; middle
   ear reconstruction
ID TYMPANIC MEMBRANE; TEMPORAL BONES; PATTERN; EAR
AB The vibration patterns of the round window (RW) membrane in human cadaver temporal bone specimens were assessed by measurements of the velocity of reflective targets placed on the RW membrane with an approximate spacing of 0.2 mm. The velocity was measured in the frequency range 0.1-10 kHz by a laser Doppler vibrometer in four specimens with air conduction (AC) stimulation and in four specimens with bone conduction (BC) stimulation. The response pattern was investigated by analyzing the velocity response of all targets on the RW membrane, by making iso-amplitude and iso-phase contour plots of the membrane surface, and by creating animations of the surface vibration at several frequencies. Similar response pattern was found with AC and BC stimulations. At frequencies below 1.5 kHz, the RW membrane vibrates nearly as a whole in an in-and-out motion and above 1.5 kHz, the membrane moves primarily in two sections that vibrate with approximately 180degrees difference. Indication of some traveling wave motion of the RW membrane at those frequencies was also found. At higher frequencies, above 3 kHz, the membrane motion is complex with a mixture of modal and traveling wave motion. An increase of the stimulation level did not alter the vibration pattern; it only gave an increase of the RW membrane vibration amplitude corresponding to the increase in stimulation. When the mode of stimulation at the oval window was altered, by the insertion of a 0.6 mm piston, the vibration pattern of the RW membrane changed. (C) 2004 Elsevier B.V. All rights reserved.
C1 Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden.
   Stanford Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA.
RP Stenfelt, S (reprint author), Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden.
EM stenfelt@s2.chalmers.se
RI Stenfelt, Stefan/J-9363-2013
OI Stenfelt, Stefan/0000-0003-3350-8997
CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356
   Ball G R, 1997, Ear Nose Throat J, V76, P213
   Hato N, 2001, OTOLARYNG HEAD NECK, V124, P274, DOI 10.1067/mhn.2001.113664
   KHANNA SM, 1971, J ACOUST SOC AM, V50, P1475, DOI 10.1121/1.1912801
   KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081
   KONRADSSON KS, 1987, SCAND AUDIOL, V16, P159, DOI 10.3109/01050398709042171
   KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746
   Nomura Y, 1984, Adv Otorhinolaryngol, V33, P1
   Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
   Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977
   Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903
   Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7
   TONNDORF J, 1972, F MODERN AUDITORY TH, V2, P197
   VONBEKESY G, 1948, J ACOUST SOC AM, V20, P227
   VONBEKESY G, 1955, J ACOUST SOC AM, V27, P137
   VONBEKESY G, 1932, ANN PHYS, V13, P11
   Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671
   Wever EG, 1954, PHYSL ACOUSTICS
NR 18
TC 16
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 10
EP 24
DI 10.1016/j.heares.2004.07.008
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000002
PM 15567598
ER

PT J
AU Richardson, RT
   Wise, A
   O'Leary, S
   Hardman, J
   Casley, D
   Clark, G
AF Richardson, RT
   Wise, A
   O'Leary, S
   Hardman, J
   Casley, D
   Clark, G
TI Tracing neurotrophin-3 diffusion and uptake in the guinea pig cochlea
SO HEARING RESEARCH
LA English
DT Article
DE neurotrophin-3; I-125; microspheres; cochlea; autoradiography;
   sensorineural hearing loss
ID SPIRAL GANGLION NEURONS; RAT SYMPATHETIC NEURONS; AUDITORY NEURONS;
   IN-VITRO; COMPARTMENTED CULTURES; RETROGRADE TRANSPORT; PROMOTES
   SURVIVAL; NERVOUS-SYSTEM; GENE-TRANSFER; GROWTH-FACTOR
AB Neurotrophin therapy in the cochlea can potentially slow or reverse the degeneration of the auditory nerve that occurs during progressive deafness. Studies were performed to trace the diffusion and uptake of neurotrophin-3 (NT-3) following infusion into the cochlea. NT-3 labeled with I-125 or coated onto fluorescent microspheres was introduced into the basal turn of normal hearing and deafened guinea pig cochleae via a single slow-rate injection. Cochleae were examined between 2 h and 28 days post-infusion by autoradiography or fluorescent microscopy to determine the number of turns labeled by NT-3, identify individual cells and tissues receiving NT-3 and quantify the proportion of signal in each tissue. In general, long-term infusions were required for all cochlear turns to receive NT-3. I-125 NT-3 signal was strongest in cells lining the perilymphatic space of the scala tympani, basilar membrane, osseous spiral lamina and spiral ligament. Signal in the peripheral nerve tract and Rosenthal's canal was only 1.3-2.1 times background levels of radiation. NT-3 microspheres were detected within neural areas of the cochlea (nerve tract and Rosenthal's canal) in all cases, but not within neuronal cell bodies. NT-3 microspheres remained in the cochlea for at least 28 days, suggesting a low clearance rate within cochlear tissues. (C) 2004 Elsevier B.V. All rights reserved.
C1 Bion Ear Inst, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia.
   Univ Melbourne, Dept Med, Austin & Repatriat Med Ctr, Heidelberg, Vic 3084, Australia.
RP Richardson, RT (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia.
EM rrichardson@bionicear.org
RI Wise, Andrew/B-5943-2014
OI Wise, Andrew/0000-0001-9715-8784
CR CHOLE RA, 1994, HEARING RES, V75, P233, DOI 10.1016/0378-5955(94)90074-4
   Clark G. M., 2003, COCHLEAR IMPLANTS FU
   Dazert S, 2001, HEARING RES, V151, P30, DOI 10.1016/S0378-5955(00)00189-1
   DeFreitas MF, 2001, J NEUROSCI, V21, P5121
   Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3
   DUVALL AJ, 1972, ANN OTO RHINOL LARYN, V81, P705
   Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463
   Gestwa G, 1999, J COMP NEUROL, V414, P33, DOI 10.1002/(SICI)1096-9861(19991108)414:1<33::AID-CNE3>3.0.CO;2-M
   Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542
   Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019
   GREENWOOD FC, 1963, BIOCHEM J, V89, P114
   Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545
   Ilberg C V, 1969, Acta Otolaryngol, V67, P165, DOI 10.3109/00016486909125439
   Kaplan DR, 2000, CURR OPIN NEUROBIOL, V10, P381, DOI 10.1016/S0959-4388(00)00092-1
   Lee FS, 2001, CURR OPIN NEUROBIOL, V11, P281, DOI 10.1016/S0959-4388(00)00209-9
   Lim D J, 1983, Adv Otorhinolaryngol, V31, P85
   Lom B, 1999, J NEUROSCI, V19, P9928
   Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016
   Marzella PL, 1998, NEUROSCI LETT, V240, P77, DOI 10.1016/S0304-3940(97)00928-2
   Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   Mou K, 1997, J COMP NEUROL, V386, P529
   NADOL JB, 1979, ANN OTO RHINOL LARYN, V88, P2
   Reynolds AJ, 1999, BRAIN RES PROTOC, V3, P308, DOI 10.1016/S1385-299X(98)00054-3
   RIDDLE DR, 1995, NATURE, V378, P189, DOI 10.1038/378189a0
   Riddle DR, 1997, BIOTECHNIQUES, V23, P928
   Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140
   Schuknecht HF, 1960, NEURAL MECH AUDITORY
   Senger DL, 1997, J CELL BIOL, V138, P411, DOI 10.1083/jcb.138.2.411
   SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2
   Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
   STAECKER H, 1995, NEUROREPORT, V6, P1533
   Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011
   Steljes TPV, 1999, J NEUROBIOL, V41, P295, DOI 10.1002/(SICI)1097-4695(19991105)41:2<295::AID-NEU11>3.0.CO;2-W
   Ure DR, 1997, J NEUROSCI, V17, P1282
   vonBartheld CS, 1996, J NEUROSCI, V16, P2995
   Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011
   Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562
   YEO SW, 1995, LARYNGOSCOPE, V105, P623, DOI 10.1288/00005537-199506000-00012
   Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
   YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C
   ZHENG JL, 1995, J NEUROSCI, V15, P5079
NR 42
TC 18
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 25
EP 35
DI 10.1016/j.heares.2004.02.012
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000003
PM 15567599
ER

PT J
AU Caravelli, A
   Pianese, L
   Saulino, C
   Di Leva, F
   Sequino, L
   Cocozza, S
   Marciano, E
   Franze, A
AF Caravelli, A
   Pianese, L
   Saulino, C
   Di Leva, F
   Sequino, L
   Cocozza, S
   Marciano, E
   Franze, A
TI Down-regulation of otospiralin mRNA in response to acoustic stress in
   guinea pig
SO HEARING RESEARCH
LA English
DT Article
DE otospiralin; mRNA; quantitative RT-PCR; cochlea; gene expression
ID INDUCED HEARING-LOSS; CHICK BASILAR PAPILLA; INNER-EAR PROTEIN;
   GENE-EXPRESSION; COCHLEAR ENDOLYMPH; NOISE EXPOSURE; MOUSE COCHLEA;
   REAL-TIME; DEAFNESS; MUTATIONS
AB Noise over-stimulation will induce or influence molecular pathways in the cochlea; one approach to the identification of the components of these pathways in the cochlea is to examine genes and proteins that change following different types and levels of stress. Quantitative reverse transcription polymerase chain reaction provides a method to look at differential expression of genes in the acoustic stress response. By using this technique we have revealed a down-regulation of the level of otospiralin mRNA in the cochlea of guinea pigs after white noise over-stimulation for 2 h at 108 dB SPL. Otospiralin represents an inner ear specific protein found in fibrocytes of spiral limbus and spiral ligament in the cochlea, and some regions of the vestibule as the stroma underlying the utricle and crista sensory epithelia and the subepithelial layer of the walls of semicircular canals and maculae. It has been recently reported that transient down-regulation of otospiralin in guinea pigs causes vestibular syndrome and deafness. Our results suggest a possible role of this gene in response to acoustical stress, although the exact mechanism remains to be resolved. (C) 2004 Elsevier B.V. All rights reserved.
C1 IGB, Inst Genet & Biophys, I-80131 Naples, Italy.
   Univ Naples Federico 2, Dept Neurosci & Behav Sci, Inst Audiol, Naples, Italy.
   SCARL, Biotechnol & Mol Genet, BioGem, Ariano Irpino, Av, Italy.
   Univ Naples Federico 2, Dept Biol & Cellular & Mol Pathol, Naples, Italy.
RP Franze, A (reprint author), IGB, Inst Genet & Biophys, A Buzzati Traverso,Via P Castellino 111, I-80131 Naples, Italy.
EM franze@igb.cnr.it
RI Franze', Annamaria/H-2539-2012
CR Adler HJ, 1999, GENOMICS, V56, P59, DOI 10.1006/geno.1998.5672
   Adur J, 2003, BIOCHEM BIOPH RES CO, V305, P700, DOI 10.1016/S0006-291X(03)00769-1
   Delprat B, 2002, J NEUROSCI, V22, P1718
   Franze A, 2003, INT J AUDIOL, V42, P227, DOI 10.3109/14992020309101318
   Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5
   Grifa A, 1999, NAT GENET, V23, P16
   Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4
   IKEDA K, 1988, HEARING RES, V32, P103, DOI 10.1016/0378-5955(88)90081-0
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Lavigne-Rebillard M, 2003, NEUROGENETICS, V4, P137, DOI 10.1007/s10048-003-0145-0
   Li WD, 1997, CHINESE MED J-PEKING, V110, P883
   Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
   Lomax MI, 2000, HEARING RES, V147, P293, DOI 10.1016/S0378-5955(00)00139-8
   MILLS JH, 1981, J ACOUST SOC AM, V70, P390, DOI 10.1121/1.386774
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847
   Pfaffl MW, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.9.e36
   Robertson NG, 2000, GENOMICS, V66, P242, DOI 10.1006/geno.2000.6224
   Robertson NG, 1998, NAT GENET, V20, P299
   Schmittgen TD, 2000, J BIOCHEM BIOPH METH, V46, P69, DOI 10.1016/S0165-022X(00)00129-9
   SCHNEIDER J, 1976, S AFR MED J, V50, P1912
   SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z
   SUGISAWA T, 1994, ORL J OTO-RHINO-LARY, V56, P263
   Taggart R.T., 2001, NOISE HEALTH, V3, P1
   Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5
   Terunuma T, 2003, MOL BRAIN RES, V120, P65, DOI 10.1016/j.molbrainres.2003.10.002
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   Yoshida N, 1999, J NEUROSCI, V19, P10116
NR 29
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 36
EP 40
DI 10.1016/j.heares.2004.07.011
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000004
PM 15567600
ER

PT J
AU Hirai, S
   Harada, T
AF Hirai, S
   Harada, T
TI Morphological comparison of apoptotic with non-apoptotic dying cells in
   the developing inner ear of mouse embryos
SO HEARING RESEARCH
LA English
DT Article
DE apoptosis; non-apoptotic cell death; inner ear; mouse embryo; TUNEL
   method; transmission electron microscopy
ID DEATH; APAF1
AB Dying cells studied by the TdT-mediated dUTP nick end-labeling (TUNEL) method have been classified as "apoptotic" and "non-apoptotic" cells. In this study, in which 12-day-old mouse embryos were used because of a high frequency of "natural cell death" due to changing inner ear morphology [Kaufman, M.H., 1992. The Atlas of Mouse Development, first ed., Academic Press, London, p. 147], the percentages of "apoptotic" and "non-apoptotic" dying cells (ADC and NADC) among total dying cells in the inner ear were calculated. Observation of consecutive paraffin sections showed about 90%) of the dying inner ear cells to be ADC and about 10% to be NADC. ADC and NADC TUNEL positive dying cells in resin sections observed by light microscopy were examined again by transmission electron microscopy using a re-embedding procedure. ADC and NADC were then analyzed based on the classification of dying cells (types 1, 2, 3A, and 3B) as described by Clarke [Anat. Embryol. 181 (1990) 195]. It was clear that ADC were the equivalent of type 1 (apoptotic) dying cells and NADC were the equivalent of type 2 (autophagic) dying cells. We consider these findings to be important baselines for determining the process underlying abnormal development of the inner ear and its functional disorders such as hearing loss. (C) 2004 Published by Elsevier B.V.
C1 Kawasaki Med Univ, Dept Otorhinolaryngol, Kurashiki, Okayama 7010192, Japan.
RP Hirai, S (reprint author), Kawasaki Med Univ, Dept Otorhinolaryngol, 577 Matsushima, Kurashiki, Okayama 7010192, Japan.
EM shigezo@mx1.tiki.ne.jp
CR ABBADIE C, 1993, CELL, V75, P899, DOI 10.1016/0092-8674(93)90534-W
   Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   Cecconi F, 1998, CELL, V94, P727, DOI 10.1016/S0092-8674(00)81732-8
   CLARKE PGH, 1990, ANAT EMBRYOL, V181, P195
   GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493
   GLUSMANN A, 1951, BIOL REV CAMBRIDGE P, V26, P59
   HORNUNG JP, 1989, J COMP NEUROL, V283, P425, DOI 10.1002/cne.902830310
   KAUFMAN MH, 1992, ATLAS MOUSE DEV, P147
   KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33
   Kitanaka C, 1999, CELL DEATH DIFFER, V6, P508, DOI 10.1038/sj.cdd.4400526
   Nishikori T, 1999, ANAT EMBRYOL, V200, P19, DOI 10.1007/s004290050255
   Nishizaki K, 1998, ACTA OTO-LARYNGOL, V118, P96
   Nishizaki K, 1998, ORL J OTO-RHINO-LARY, V60, P267, DOI 10.1159/000027608
   Orita Y, 1999, Acta Otolaryngol Suppl, V540, P22
   SCHWEICH.JU, 1973, TERATOLOGY, V7, P253, DOI 10.1002/tera.1420070306
   SOHAL GS, 1978, EXP NEUROL, V61, P53, DOI 10.1016/0014-4886(78)90180-2
   Tampakopoulou DA, 1999, HEARING RES, V132, P51, DOI 10.1016/S0378-5955(99)00033-7
   WYLLIE AH, 1980, NATURE, V284, P555, DOI 10.1038/284555a0
   Wyllie A H, 1980, Int Rev Cytol, V68, P251
   Yoshida H, 1998, CELL, V94, P739, DOI 10.1016/S0092-8674(00)81733-X
NR 20
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 41
EP 47
DI 10.1016/j.heares.2004.07.012
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000005
PM 15567601
ER

PT J
AU Miller, CA
   Robinson, BK
   Hetke, JF
   Abbas, PJ
   Nourski, KV
AF Miller, CA
   Robinson, BK
   Hetke, JF
   Abbas, PJ
   Nourski, KV
TI Feasibility of using silicon-substrate recording electrodes within the
   auditory nerve
SO HEARING RESEARCH
LA English
DT Article
DE auditory nerve; cat; compound action potential; microelectrode;
   neurophysiology; penetrating electrode; peripheral nerve; silicon
ID MONOPOLAR; CAT
AB The use of penetrating, silicon-substrate (i.e., "thin-film") probes within a cross-section of a sensory nerve offers the possibility of assessing the pattern and extent of fiber excitation within the nerve. We used acute cat preparations to assess the feasibility of this technique for recordings within the auditory nerve trunk. Four probe configurations fabricated by the University of Michigan Center for Neural Communication Technology were evaluated using acoustic and electric stimuli. Our main concerns were the nature of the recorded potentials and the degree of spatial selectivity provided by these probes. We also made some basic assessments of electrode-tissue compatibility. The recorded potentials were characterized as field potentials with varying degrees of spatial selectivity. In some cases, responses to pure tones demonstrated good spatial selectivity, with unique responses recorded by different electrode sites. When electrode sites were positioned at different longitudinal positions along the nerve trunk, responses with latencies characteristic of each site were recorded. These results indicate that thin-film electrodes are capable of providing spatially specific response information from sensory nerves. However, in the case of feline auditory nerves, place-specific responses were inconsistently observed, making it difficult to use this technique to obtain detailed cochleotopic maps of neural excitation. More productive results may be possible from other peripheral nerves with less complex spatial arrangements of fibers. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA.
   Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA.
   Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA.
RP Miller, CA (reprint author), Univ Iowa, Dept Otolaryngol, 21201 PFP,200 Hawkins Dr, Iowa City, IA 52242 USA.
EM charles-miller@uiowa.edu
CR Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036
   ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405
   BIERER JA, 2002, ASS RES OTOLARYNGOL, P541
   DRAKE KL, 1988, IEEE T BIO-MED ENG, V35, P719, DOI 10.1109/10.7273
   HETKE JF, 2002, HDB NEUROPROSTHETIC, P163
   Kiang NY-s, 1965, DISCHARGE PATTERNS S
   KIANG NYS, 1976, ELECTROCOCHLEOGRAPHY, P96
   Miller CA, 2003, HEARING RES, V175, P200
   Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
   Moxon E. C., 1971, NEURAL MECH RESPONSE
   Nguyen BH, 1999, AM J OTOL, V20, P522
   Sando I, 1965, ACTA OTOLARYNG STOCK, V59, P417, DOI 10.3109/00016486509124577
NR 12
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 48
EP 58
DI 10.1016/j.heares.2004.07.009
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000006
PM 15567602
ER

PT J
AU Oghalai, JS
AF Oghalai, JS
TI Chlorpromazine inhibits cochlear function in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; electromotility; outer hair cell; cochlear amplifier;
   salicylate; chlorpromazine
ID OUTER HAIR CELL; PRODUCT OTOACOUSTIC EMISSIONS; GAP JUNCTIONAL
   CONDUCTANCE; BASILAR-MEMBRANE; SUPPORTING CELLS; INNER-EAR;
   OLIVOCOCHLEAR ACTIVATION; MAMMALIAN COCHLEA; PLASMA-MEMBRANE; VOLTAGE
   SENSOR
AB Outer hair cell (OHC) electromotility provides mechanical positive feedback that functions as the cochlear amplifier. In isolated OHCs, chlorpromazine shifts the electromotility voltage-displacement transfer function in a depolarizing direction without affecting its magnitude. This study sought to measure the effects of chlorpromazine on cochlear function in vivo. Salicylate, a drug that greatly reduces the magnitude of electromotility, was used for comparison. Perilymphatic perfusion of the guinea pig cochlea with chlorpromazine or salicylate increased the compound action potential (CAP) threshold across the frequency spectrum (1-20 kHz). Both drugs also increased distortion product otoacoustic emission (DPOAE) thresholds in the higher frequencies (10-20 kHz). Complete reversibility of these effects occurred after washout. Both drugs demonstrated concentration-dependent reductions in cochlear function that followed sigmoidal curves with similar fits to previously reported results in isolated OHCs. The endolymphatic potential was not affected by either of these drugs. Thus, chlorpromazine inhibits cochlear function in a manner consistent with what would be expected from data in isolated OHCs. This suggests that shifting the electromotility transfer function correspondingly reduces the gain of the cochlear amplifier. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, San Francisco, CA 94143 USA.
RP Oghalai, JS (reprint author), Baylor Coll Med, Dept Otorhinolaryngol Head & Neck Surg, NA102,1 Baylor Plaza, Houston, TX 77030 USA.
EM jso@bcm.tmc.edu
CR Belyantseva IA, 2000, J NEUROSCI, V20, P8996
   BOBBIN RP, 1974, ACTA OTO-LARYNGOL, V77, P56, DOI 10.3109/00016487409124598
   BOBBIN RP, 1971, NATURE-NEW BIOL, V231, P222
   BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153
   CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B
   COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y
   DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5
   DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0
   DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3
   EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S
   Flock A, 1999, J NEUROSCI, V19, P4498
   Fridberger A, 2002, J NEUROSCI, V22, P9850
   Frolenkov GI, 1998, HEARING RES, V126, P67, DOI 10.1016/S0378-5955(98)00150-6
   Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X
   HOLLEY MC, 1990, J CELL SCI, V96, P283
   HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268
   Kakehata S, 1996, J NEUROSCI, V16, P4881
   Kalinec F, 2000, J BIOL CHEM, V275, P28000
   KIANG NYS, 1986, HEARING RES, V22, P171
   KONISHI T, 1972, ACTA OTO-LARYNGOL, V74, P252, DOI 10.3109/00016487209128447
   KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N
   KUJAWA SG, 1992, HEARING RES, V61, P106, DOI 10.1016/0378-5955(92)90041-K
   Kujawa SG, 1999, J NEUROPHYSIOL, V82, P863
   Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047
   Lagostena L, 2001, CELL COMMUN ADHES, V8, P393, DOI 10.3109/15419060109080760
   Laurikainen E, 1997, ACTA OTO-LARYNGOL, V117, P523, DOI 10.3109/00016489709113432
   LEAKE PA, 1987, HEARING RES, V25, P153, DOI 10.1016/0378-5955(87)90088-8
   Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059
   Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956
   Lim D J, 1983, Adv Otorhinolaryngol, V31, P85
   Lue AJC, 2001, OTOLARYNG HEAD NECK, V125, P71, DOI 10.1067/mhn.2001.116446
   Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151
   Maison SF, 2000, J NEUROSCI, V20, P4701
   Maruyama J, 2001, ACTA OTO-LARYNGOL, V121, P803
   OGHALAI JS, 2002, MIDW RES M ASS RES O, V25, P6
   Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658
   Oghalai JS, 1998, J NEUROPHYSIOL, V79, P2235
   Oghalai JS, 1999, HEARING RES, V135, P19, DOI 10.1016/S0378-5955(99)00077-5
   Oghalai JS, 1998, J NEUROSCI, V18, P48
   Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939
   OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331
   Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026
   Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
   PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66
   Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x
   RUGGERO MA, 1991, J NEUROSCI, V11, P1057
   RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261
   Saha S, 2000, CELL TISSUE RES, V300, P29, DOI 10.1007/s004419900163
   SANTOS-SACCHI J, 1991, HEARING RES, V52, P89, DOI 10.1016/0378-5955(91)90190-K
   SATO Y, 1994, HEARING RES, V80, P21, DOI 10.1016/0378-5955(94)90004-3
   SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1
   SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403
   SIEGEL JH, 1986, J NEUROCYTOL, V15, P311, DOI 10.1007/BF01611434
   Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2
   UEDA H, 1992, HEARING RES, V62, P199, DOI 10.1016/0378-5955(92)90187-R
   Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0
   WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382
   Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168
   Yoshida N, 2001, J NEUROPHYSIOL, V85, P84
   Zhang M, 2003, J BIOL CHEM, V278, P35644, DOI 10.1074/jbc.M301668200
   Zhao HB, 1998, J GEN PHYSIOL, V112, P447, DOI 10.1085/jgp.112.4.447
   ZHENG J, 2004, MIDW RES M ASS RES O, V27, P343
   Zheng XY, 2000, HEARING RES, V143, P14, DOI 10.1016/S0378-5955(99)00217-8
NR 65
TC 18
Z9 20
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 59
EP 68
DI 10.1016/j.heares.2004.03.013
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000007
PM 15567603
ER

PT J
AU Zeftawi, MS
AF Zeftawi, MS
TI MMN to natural Arabic CV syllables: 1-normative data
SO HEARING RESEARCH
LA English
DT Article
DE MMN; Arabic; CV syllables; auditory pathway
ID MISMATCH NEGATIVITY MMN; SPEECH SOUNDS; AUDITORY-DISCRIMINATION; HUMAN
   BRAIN; PERCEPTION; REPRESENTATION; CHILDREN; MEMORY; GENERATORS;
   POTENTIALS
AB Mismatch negativity response parameters; latency, amplitude, and duration to natural Arabic CV syllables differing in durational change (Baa-Waa) and in spectrotemporal change (Gaa-Daa) were obtained from normal hearing young adult Egyptians. The aim was to get normative data for MMN response parameters and to find any differences between both primary and non-primary auditory pathways in encoding and processing speech signals. Statistically significant differences between durational and spectrotemporal contrasts for latency and duration were found. This was attributed to acoustic differences and to physiological differences between primary and non-primary auditory pathways. (C) 2004 Elsevier B.V. All rights reserved.
C1 Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt.
RP Zeftawi, MS (reprint author), Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt.
EM m.samir@medscape.com
CR ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004
   Bellis TJ, 2000, J NEUROSCI, V20, P791
   Ceponiene R, 2002, INT J PSYCHOPHYSIOL, V43, P199, DOI 10.1016/S0167-8760(01)00172-6
   Cheour M, 2000, CLIN NEUROPHYSIOL, V111, P4, DOI 10.1016/S1388-2457(99)00191-1
   CSEPE V, 1995, EAR HEARING, V16, P91
   DehaeneLambertz G, 1997, NEUROREPORT, V8, P919, DOI 10.1097/00001756-199703030-00021
   Fitch RH, 1997, ANNU REV NEUROSCI, V20, P331, DOI 10.1146/annurev.neuro.20.1.331
   Gage N, 1998, BRAIN RES, V814, P236, DOI 10.1016/S0006-8993(98)01058-0
   Gomes H, 2001, DEV BRAIN RES, V129, P147, DOI 10.1016/S0165-3806(01)00196-1
   Greenberg S, 1996, PRINCIPLES EXPT PHON, P362
   Halgren E, 1998, ELECTROEN CLIN NEURO, V106, P156, DOI 10.1016/S0013-4694(97)00119-3
   KRAUS N, 1993, EAR HEARING, V14, P223, DOI 10.1097/00003446-199308000-00001
   Kraus N, 1998, AUDIOL NEURO-OTOL, V3, P168, DOI 10.1159/000013788
   Kraus N, 1999, J SPEECH LANG HEAR R, V42, P1042
   KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003
   KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270
   Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004
   KRAUS N, 1994, AM J AUDIOL, V94, P39
   McGee T, 1997, EVOKED POTENTIAL, V104, P359, DOI 10.1016/S0168-5597(97)00024-5
   NAATANEN R, 1995, EAR HEARING, V16, P6
   NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9
   Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X
   Naatanen R, 2001, PSYCHOPHYSIOLOGY, V38, P1, DOI 10.1017/S0048577201000208
   Paavilainen P, 2001, NEUROSCI LETT, V301, P179, DOI 10.1016/S0304-3940(01)01635-4
   Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X
   Phillips C, 2001, COGNITIVE SCI, V25, P711, DOI 10.1016/S0364-0213(01)00049-0
   RITTER W, 1995, EAR HEARING, V16, P52, DOI 10.1097/00003446-199502000-00005
   Rivera-Gaxiola M, 2000, BEHAV BRAIN RES, V111, P13, DOI 10.1016/S0166-4328(00)00139-X
   Salmelin R, 1999, P NATL ACAD SCI USA, V96, P10460, DOI 10.1073/pnas.96.18.10460
   Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336
   Shtyrov Y, 2000, NEUROIMAGE, V12, P657, DOI 10.1006/nimg.2000.0646
   SOLIMAN S, 1976, AIN SHAMS MEN, V3, P27
   Stapells D R, 2002, HDB CLIN AUDIOLOGY, P378
   Tiitinen H, 1999, COGNITIVE BRAIN RES, V8, P355, DOI 10.1016/S0926-6410(99)00028-2
   Winkler I, 1999, COGNITIVE BRAIN RES, V7, P357, DOI 10.1016/S0926-6410(98)00039-1
NR 35
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 69
EP 74
DI 10.1016/j.heares.2004.07.003
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000008
ER

PT J
AU Miller, CA
   Abbas, PJ
   Hay-McCutcheon, MJ
   Robinson, BK
   Nourski, KV
   Jeng, FC
AF Miller, CA
   Abbas, PJ
   Hay-McCutcheon, MJ
   Robinson, BK
   Nourski, KV
   Jeng, FC
TI Intracochlear and extracochlear ECAPs suggest antidromic action
   potentials
SO HEARING RESEARCH
LA English
DT Article
DE auditory nerve; electrical stimulation; cochlear implant; compound
   action potential; cat; antidromic
ID COCHLEAR IMPLANT USERS; STIMULATED AUDITORY-NERVE;
   ELECTRICAL-STIMULATION; GUINEA-PIG; ELECTRODE CONFIGURATION; EXCITATION
   PATTERNS; NEURAL EXCITATION; SPEECH-PERCEPTION; SCALA TYMPANI; MODEL
AB With experimental animals, the electrically evoked compound action potential (ECAP) can be recorded from multiple sites (e.g., round window, intracranial and intracochlear sites). However, human ECAPs are typically recorded from intracochlear electrodes of the implanted array. To bridge this difference, we obtained ECAPs from cats using both intracochlear and nerve-trunk recording sites. We also sought to determine how recording the site influences the acquired evoked potential and how those differences may provide insight into basic excitation properties. In the main experiment, ECAPs were recorded from four acutely deafened cats after implanting a Nucleus-style banded electrode array. Potentials were recorded from an electrode positioned on the nerve trunk and an intracochlear electrode. We manipulated stimulus level, electrode configuration (monopolar vs bipolar) and stimulus polarity, variables that influence the site of excitation. Intracochlear ECAPs were found to be an order of magnitude greater than those obtained with the nerve-trunk electrode. Also, compared with the nerve-trunk potentials, the intracochlear ECAPs more closely resembled those obtained from humans in that latencies were shorter and the waveform morphology was typically biphasic (a negative peak followed by a positive peak). With anodic monophasic stimuli, the ECAP had a unique positive-to-negative morphology which we attributed to antidromic action potentials resulting from a relatively central site of excitation. We also collected intracochlear ECAPs from twenty Nucleus 24 implant users. Compared with the feline ECAPs, the human potentials had smaller amplitudes and longer latencies. It is not clear what underlies these differences, although several factors are considered. (C) 2004 Published by Elsevier B.V.
C1 Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
   Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA.
RP Miller, CA (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 21201 PFP,200 Hawkins Dr, Iowa City, IA 52242 USA.
EM charles-miller@uiowa.edu
CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005
   Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009
   BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117
   BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716
   BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826
   Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0
   Dillier N, 2002, ANN OTO RHINOL LARYN, V111, P407
   Finley C. C., 1990, COCHLEAR IMPLANTS MO
   Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004
   Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012
   FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q
   Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003
   Haenggeli A, 1998, AUDIOLOGY, V37, P353
   HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871
   Hughes ML, 2001, EAR HEARING, V22, P471, DOI 10.1097/00003446-200112000-00004
   Hughes ML, 2000, EAR HEARING, V21, P164, DOI 10.1097/00003446-200004000-00010
   IGARASHI M, 1976, ARCH OTOLARYNGOL, V102, P428
   Miller CA, 2003, HEARING RES, V175, P200
   Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
   Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7
   Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6
   NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8
   NAGEL D, 1974, ARCH OTO-RHINO-LARYN, V206, P293, DOI 10.1007/BF00460282
   PRIJS VF, 1980, ACUSTICA, V45, P1
   RATTAY F, 1986, IEEE T BIO-MED ENG, V33, P974, DOI 10.1109/TBME.1986.325670
   Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115
   REILLY JP, 1985, IEEE T BIO-MED ENG, V32, P1001, DOI 10.1109/TBME.1985.325509
   RUBINSTEIN JT, 1993, IEEE T BIO-MED ENG, V40, P654, DOI 10.1109/10.237695
   RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779
   Smoorenburg GF, 2002, AUDIOL NEURO-OTOL, V7, P335, DOI 10.1159/000066154
   STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0
   VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
   WILSON BS, 1994, SPEECH PROCESSORS AU
   Wilson BS, 1997, AM J OTOL, V18, pS30
   Zimmerling MJ, 2002, EAR HEARING, V23, P81, DOI 10.1097/00003446-200204000-00001
NR 35
TC 24
Z9 25
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 75
EP 86
DI 10.1016/j.heares.2004.07.005
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000009
PM 15567605
ER

PT J
AU Khalfa, S
   Bruneau, N
   Roge, B
   Georgieff, N
   Veuillet, E
   Adrien, JL
   Barthelemy, C
   Collet, L
AF Khalfa, S
   Bruneau, N
   Roge, B
   Georgieff, N
   Veuillet, E
   Adrien, JL
   Barthelemy, C
   Collet, L
TI Increased perception of loudness in autism
SO HEARING RESEARCH
LA English
DT Article
DE autism; auditory dynamic range; loudness; hyperacusis
ID CHILDHOOD AUTISM; FOLLOW-UP; DYSFUNCTION; CHILDREN
AB Clinical reports on autism describe abnormal responses to auditory stimuli such as intolerance to sounds. The present study assessed subjective perception of loudness in subjects with autism compared to healthy controls, using two psychoacoustic tests. First, the auditory dynamic range was evaluated at six different tone frequencies. Secondly, loudness growth as a function of the intensity level of a 1 kHz tone was estimated. Verbal responses from a group of 11 children and adolescents with autism were compared to responses of 11 age- and gender- matched healthy controls. Smaller auditory dynamic ranges were found in the autistic group than in the control group, as well as increased perception of loudness, indicating hyperacusis in subjects with autism. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Mediterranee, INSERM, EMI U 9926, Fac Med Timone,Lab Neurophysiol & Neuropsychol, F-13385 Marseille 5, France.
   CHU Bretonneau, INSERM, U619, Serv Neurophysiol Pedopsychiat,IFR 135, F-37044 Tours, France.
   Univ Toulouse Le Mirail, UFR Psychol, F-31058 Toulouse 1, France.
   ITTAC, F-69616 Villeurbanne, France.
   Hop Edouard Herriot, CNRS, UMR 5020, F-69003 Lyon, France.
   Univ Paris 05, Lab Psychol Clin Psychopathol, F-75270 Paris 06, France.
RP Khalfa, S (reprint author), Univ Mediterranee, INSERM, EMI U 9926, Fac Med Timone,Lab Neurophysiol & Neuropsychol, 27 Bd Jean Moulin, F-13385 Marseille 5, France.
EM skhalfa@skhalfa.com
CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778
   American Psychiatric Association (APA), 1994, DIAGN STAT MAN MENT, V4th
   Baron-Cohen S., 1987, HDB AUTISM PERVASIVE, P85
   Berard G, 1993, HEARING EQUALS BEHAV
   BERGLUND B, 1976, J ACOUST SOC AM, V60, P1119, DOI 10.1121/1.381212
   BODDAERT N, 2001, NEUROIMAGE, V13, P1028, DOI 10.1016/S1053-8119(01)92362-6
   Brandy WT, 1995, AM J AUDIOL, V4, P46
   Bruneau N, 1999, CLIN NEUROPHYSIOL, V110, P1927, DOI 10.1016/S1388-2457(99)00149-2
   CHESS S, 1977, J AUTISM CHILD SCHIZ, V7, P69, DOI 10.1007/BF01531116
   DAHLGREN SO, 1989, EUR ARCH PSY CLIN N, V238, P169
   Dawson G, 2000, J AUTISM DEV DISORD, V30, P415, DOI 10.1023/A:1005547422749
   Ellis M R, 1999, Am J Audiol, V8, P40, DOI 10.1044/1059-0889(1999/008)
   Goldstein B, 1991, TINNITUS DIAGNOSIS T, P293
   GOLDSTEIN B, 1996, P NES, V24, P113
   HERMELIN B, 1970, PSYCHOLOGICAL EXPERI
   Kanner L, 1943, NERV CHILD, V2, P217
   LOCKYER L, 1969, BRIT J PSYCHIAT, V115, P865, DOI 10.1192/bjp.115.525.865
   Moore BCJ, 1997, INTRO PSYCHOL HEARIN
   Ohnishi T, 2000, BRAIN, V123, P1838, DOI 10.1093/brain/123.9.1838
   ORNITZ EM, 1974, J AUTISM CHILD SCHIZ, V4, P197, DOI 10.1007/BF02115226
   Rosenhall U, 1999, J AUTISM DEV DISORD, V29, P349, DOI 10.1023/A:1023022709710
   SCHOPLER E, 1980, J AUTISM DEV DISORD, V10, P91, DOI 10.1007/BF02408436
   Wechsler D, 1981, WECHSLER ADULT INTEL
   Wechsler D., 1981, ECHELLE INTELLIGENCE
   Zilbovicius M, 2000, AM J PSYCHIAT, V157, P1988, DOI 10.1176/appi.ajp.157.12.1988
NR 25
TC 56
Z9 59
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 87
EP 92
DI 10.1016/j.heares.2004.07.006
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000010
PM 15617227
ER

PT J
AU Young, YH
   Kuo, SW
AF Young, YH
   Kuo, SW
TI Side-difference of vestibular evoked myogenic potentials in healthy
   subjects
SO HEARING RESEARCH
LA English
DT Article
DE binaural acoustic stimulation; side-difference; vestibular evoked
   myogenic potential; relative amplitude; interaural amplitude difference
   ratio
ID REFLEX; CATS; NEURONS
AB The aim of this study was to investigate the side-difference of vestibular evoked myogenic potentials (VEMPs) in relation to the provocation rates, latencies and amplitudes using binaural acoustic stimulation with bilateral recording. Fourteen healthy volunteers underwent a serial VEMP testings elicited binaurally by a sequence of alternating stimulus intensities, that is, 95-95 (right-left), 85-95, 95-85, and 85-85 dBHL tone burst, respectively. The provocation rates as well as the mean latencies of p13 and n23 for the VEMPs demonstrated no significant side-difference despite using 95-95, 85-95, 95-85 and 85-85 dBHL binaural acoustic stimulation. In contrast, nine (64%) of the 14 subjects showed side-difference of absolute p13-n23 amplitude, including right side dominant in five subjects, and left side dominant in four subjects. However, there was no significant side-difference in terms of relative amplitude despite using 95-95, 85-95, 95-85 and 85-85 dBHL binaural acoustic stimulation. Furthermore, the relative amplitude or interaural amplitude difference (IAD) ratios between those with and without side-difference of p13-n23 amplitude did not differ significantly. Hence, this study provides a potentially important method for adjusting the side difference of p13-n23 amplitudes by using a relative amplitude or IAD ratio adjustment. It also adds confidence to the successful use of binaural stimulation and recording of VEMPs under conditions of bilateral SCM muscular contractions. (C) 2004 Elsevier B.V. All rights reserved.
C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan.
   Natl Taiwan Univ, Coll Med, Taipei, Taiwan.
   Far Eastern Mem Hosp, Dept Otolaryngol, Taipei, Taiwan.
RP Young, YH (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 1 Chang Te St, Taipei, Taiwan.
EM youngyh@ha.mc.ntu.edu.tw
CR Brantberg K, 2001, SCAND AUDIOL, V30, P189, DOI 10.1080/010503901316914566
   COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190
   HALMAGYI GM, 1994, BAILLIERE CLIN NEUR, V3, P485
   Kushiro K, 1999, EXP BRAIN RES, V126, P410, DOI 10.1007/s002210050747
   LIM CL, 1995, MUSCLE NERVE, V18, P1210
   MATTHEWS PBC, 1986, J PHYSIOL-LONDON, V374, P73
   MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174
   Sato H, 1997, EXP BRAIN RES, V116, P381, DOI 10.1007/PL00005766
   Uchino Y, 1997, J NEUROPHYSIOL, V77, P3003
   Wang CT, 2004, HEARING RES, V191, P59, DOI 10.1016/j.heares.2004.01.004
   Wang SJ, 2003, HEARING RES, V185, P43, DOI 10.1016/S0378-5955(03)00256-9
   Wu CC, 2002, EAR HEARING, V23, P235, DOI 10.1097/00003446-200206000-00007
   Wu CH, 1999, ACTA OTO-LARYNGOL, V119, P741
   Young YH, 2002, LARYNGOSCOPE, V112, P509, DOI 10.1097/00005537-200203000-00019
   Young YH, 2003, ARCH OTOLARYNGOL, V129, P815, DOI 10.1001/archotol.129.8.815
NR 15
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 93
EP 98
DI 10.1016/j.heares.2004.06.011
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000011
PM 15567606
ER

PT J
AU Munirathinam, S
   Ostapoff, EM
   Gross, J
   Kempe, GS
   Dutton, JA
   Morest, DK
AF Munirathinam, S
   Ostapoff, EM
   Gross, J
   Kempe, GS
   Dutton, JA
   Morest, DK
TI Organization of inhibitory feed-forward synapses from the dorsal to the
   ventral cochlear nucleus in the cat: a quantitative analysis of endings
   by vesicle morphology
SO HEARING RESEARCH
LA English
DT Article
DE synaptic morphometry; vesicle morphology; convolution filters; imaging;
   tuberculo-ventral tract; axonal tracers; auditory center/surround; local
   circuits; temporal processing
ID BRAIN-STEM; GUINEA-PIG; SYNAPTIC ORGANIZATION; AUDITORY-SYSTEM; SINGLE
   UNITS; BUSHY CELLS; D-ASPARTATE; GLYCINE; PROJECTIONS; NEURONS
AB The main ascending, excitatory pathway from the cochlea undergoes synaptic interruption in the dorsal and ventral cochlear nuclei. The dorsal cochlear nucleus also forms a feed-forward circuit, which receives cochlear input and projects to the ventral cochlear nucleus by a tuberculo-ventral tract. This circuit may provide an inhibitory fringe (side bands) surrounding the center bands of the main ascending pathway. Biotinylated dextran injections into the dorsal cochlear nucleus anterogradely labeled the tuberculo-ventral tract and its endings in the anteroventral cochlear nucleus but also retrogradely filled cochlear nerve fibers and their terminals in the same regions. To distinguish tuberculo-ventral from cochlear nerve terminals, we used electron microscopy of the immunolabeled endings. Images were digitized and filter-enhanced, and the sizes and shapes of synaptic vesicles were used to construct quantitative profiles of the terminal types. The cochlear nerve endbulbs mapped to the same iso-frequency band of the injection site (main band). Flanking the main band were smaller labeled endings. About 45% of labeled terminals were pleomorphic and equally represented in the main band and side bands. Therefore, if there is an inhibitory fringe in the main projection pathway, it was not selective for tuberculo-ventral tract endings. Surprisingly, an excitatory category of round vesicles of intermediate size was labeled in the main band but not in the side bands. These intermediate endings may balance the feed-forward inhibition from the tuberculo-ventral tract. The quantitative method devised for classification of ending types by their vesicle profiles should be a generally useful tool for analysis. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Ctr Neurol Sci, Farmington, CT 06030 USA.
RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, Ctr Neurol Sci, Farmington, CT 06030 USA.
EM kent@neuron.uchc.edu
CR ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305
   Alibardi L, 2003, J ANAT, V203, P31, DOI 10.1046/j.1469-7580.2003.00208.x
   ALTSCHULER RA, 1986, AM J OTOLARYNG, V7, P100, DOI 10.1016/S0196-0709(86)80038-2
   BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406
   CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6
   CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124
   CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3
   EVANS EF, 1993, PROG BRAIN RES, V97, P117
   Fujino K, 2001, J NEUROSCI, V21, P7372
   Gerken GM, 1996, HEARING RES, V97, P75
   GODFREY DA, 1977, J HISTOCHEM CYTOCHEM, V25, P397
   HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114
   HUNTER C, 1992, OTOLARYNG CLIN N AM, V25, P1027
   Hurd LB, 1999, SYNAPSE, V33, P83
   Jonas P, 1998, SCIENCE, V281, P419, DOI 10.1126/science.281.5375.419
   JONES DR, 1984, HEARING RES, V15, P197, DOI 10.1016/0378-5955(84)90029-7
   Josephson EM, 1998, J NEUROCYTOL, V27, P841, DOI 10.1023/A:1006959532686
   Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G
   KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303
   Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004
   Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x
   LOATS HL, 1988, IMAGING TECHNIQUES B, P1
   Mahendrasingam S, 2004, EUR J NEUROSCI, V19, P993, DOI 10.1111/j.1460-9568.2004.03193.x
   MATUS AI, 1971, BRAIN RES, V32, P195, DOI 10.1016/0006-8993(71)90164-8
   MCDONALD DM, 1977, J COMP NEUROL, V173, P475, DOI 10.1002/cne.901730306
   MOREST DK, 1993, NATO ADV SCI INST SE, V239, P1
   Morest DK, 1973, BASIC MECH HEARING, P479
   MOREST DK, 1975, J COMP NEUROL, V162, P157, DOI 10.1002/cne.901620202
   MUNIRATHINAM S, 2004, ABSTR ASS RES OTOLAR, V27, P122
   Needham K, 2003, J NEUROSCI, V23, P6357
   O'Brien JA, 1999, J NEUROPHYSIOL, V82, P1638
   OLIVER DL, 1983, J NEUROSCI, V3, P455
   Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417
   OSTAPOFF EM, 1991, J COMP NEUROL, V314, P598, DOI 10.1002/cne.903140314
   Ostapoff EM, 1999, HEARING RES, V130, P75, DOI 10.1016/S0378-5955(98)00224-X
   OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103
   Pappas G.D., 1972, STRUCTURE FUNCTION S
   Peters A., 1976, FINE STRUCTURE NERVO
   POTASHNER SJ, 1985, AUDITORY BIOCH, P141
   Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249
   Rubio ME, 1998, J COMP NEUROL, V399, P341, DOI 10.1002/(SICI)1096-9861(19980928)399:3<341::AID-CNE4>3.0.CO;2-0
   SAINTMARIE RL, 1989, HEARING RES, V42, P97
   SAINTMARIE RL, 1991, HEARING RES, V51, P11, DOI 10.1016/0378-5955(91)90003-R
   SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107
   Shore SE, 2003, EXP BRAIN RES, V153, P427, DOI 10.1007/s00221-003-1610-6
   VALDIVIA O, 1971, J COMP NEUROL, V142, P257, DOI 10.1002/cne.901420302
   WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X
   STARR A, 1968, J NEUROPHYSIOL, V31, P549
   WICKESBERG RE, 1990, J NEUROSCI, V10, P1762
   WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4
   Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L
   Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3
   Yao WP, 1999, J HISTOCHEM CYTOCHEM, V47, P83
   Young E.D., 2004, SYNAPTIC ORG BRAIN, P125
NR 54
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 99
EP 115
DI 10.1016/j.heares.2004.06.007
PG 17
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000012
PM 15567607
ER

PT J
AU Recanzone, GH
   Beckerman, NS
AF Recanzone, GH
   Beckerman, NS
TI Effects of intensity and location on sound location discrimination in
   macaque monkeys
SO HEARING RESEARCH
LA English
DT Article
DE macaque; sound; localization; intensity
ID PRIMARY AUDITORY-CORTEX; OLD-WORLD MONKEYS; LOCALIZATION BEHAVIOR;
   RECEPTIVE-FIELDS; CORTICAL-NEURONS; CAT; FREQUENCY; PRIMATES;
   REPRESENTATION; SENSITIVITY
AB Sound localization performance is degraded at low stimulus intensities in humans, and while the sound localization ability of humans and macaque monkeys appears similar, the effects of intensity have yet to be described in the macaque. We therefore defined the ability of four macaque monkeys to localize broadband noise stimuli at four different absolute intensities and six different starting locations in azimuth. Results indicate that performance was poorest at the lowest intensity tested (25 dB SPL), intermediate at 35 dB SPL, and equivalent at 55 and 75 dB SPL. Localization performance was best at 0degrees (directly in front of the animal) and was systematically degraded at more peripheral locations (+/-30degrees and 90degrees) and worst at a location directly behind the animal. Reaction times showed the same trends, with reaction times increasing with decreasing stimulus intensity, even under conditions where the monkey discriminated the location change with the same performance. These results indicate that sound level as well as position profoundly influences sound localization ability. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA.
   Univ Calif Davis, Sect Neurobiol Physiol & Behav, Davis, CA 95616 USA.
RP Recanzone, GH (reprint author), Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA.
EM ghrecanzone@ucdavis.edu
CR ALTSHULER M W, 1975, Journal of Auditory Research, V15, P262
   BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638
   BROWN CH, 1978, SCIENCE, V201, P753, DOI 10.1126/science.97785
   BROWN CH, 1982, J ACOUST SOC AM, V72, P1804, DOI 10.1121/1.388653
   Brugge JF, 1996, J NEUROSCI, V16, P4420
   COMALLI P E JR, 1976, Journal of Auditory Research, V16, P275
   Furukawa S, 2000, J NEUROSCI, V20, P1216
   HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915
   JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819
   Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793
   KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746
   Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863
   MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107
   PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210
   Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800
   Reale RA, 2003, J NEUROPHYSIOL, V89, P1024, DOI 10.1152/jn.00563.2002
   Recanzone GH, 2000, P NATL ACAD SCI USA, V97, P11829, DOI 10.1073/pnas.97.22.11829
   Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315
   RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357
   Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F
   Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723
   SANCHEZLONGO LP, 1958, NEUROLOGY, V8, P119
   SCHREINER CE, 1992, EXP BRAIN RES, V92, P105
   Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2
   Su TIK, 2001, JARO, V2, P246, DOI 10.1007/s101620010073
NR 25
TC 22
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 116
EP 124
DI 10.1016/j.heares.2004.07.017
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000013
PM 15567608
ER

PT J
AU Jerger, J
   Martin, J
AF Jerger, J
   Martin, J
TI Hemispheric asymmetry of the right ear advantage in dichotic listening
SO HEARING RESEARCH
LA English
DT Article
DE dichotic listening; interaural asymmetry; interhemispheric asymmetry;
   right-ear advantage; structural model; attentional model
ID PERIPHERAL AUDITORY LATERALIZATION; EVENT-RELATED POTENTIALS;
   OTOACOUSTIC EMISSIONS; SELECTIVE ATTENTION; HEARING SENSITIVITY;
   DIRECTED ATTENTION; CHILDREN; STIMULI; WAVE; REA
AB ERP waveforms evoked by target-right and target-left stimuli in a directed-attention, dichotic-listening paradigm were examined using cross-correlation analysis. We analyzed data from two experiments involving linguistic processing. They involved listening for (1) a phonemic feature, and (2) a series of morpho-syntactic anomalies. The maximum correlation between target-right and target-left waveforms was achieved when the target-right waveform was delayed relative to the target-left waveform (the T shift), reflecting the shorter latency of the target-right waveform. We interpret the direction of displacement as equivalent to a "right-ear advantage" in the dichotic listening paradigm. In both tasks, tau shifts were not uniformly distributed across the parietal electrode array. They were greatest on the extreme left side of the head and systematically declined as the electrode site moved rightward, indicating a temporal gradient in the relative latencies of the two waveforms. Results are interpreted in relation to both structural and attentional aspects of dichotic listening. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Texas, Sch Behav & Brain Sci, Texas Auditory Proc Disorder Lab, Richardson, TX 75080 USA.
RP Jerger, J (reprint author), Univ Texas, Sch Behav & Brain Sci, Texas Auditory Proc Disorder Lab, 2612 Prairie Creek Dr E, Richardson, TX 75080 USA.
EM jjerger@utdallas.edu
CR AHONNISKA J, 1993, BRAIN LANG, V45, P127, DOI 10.1006/brln.1993.1039
   ANNETT M, 1970, BRIT J PSYCHOL, V61, P303
   ASBJORNSEN A, 1990, BRAIN LANG, V39, P447, DOI 10.1016/0093-934X(90)90150-F
   BANICH TM, 1998, BRAIN COGNITION, V36, P128
   Beauchamp K.G., 1979, DIGITAL METHODS SIGN
   Bradshaw J.L., 1988, HDB DICHOTIC LISTENI, P45
   Brancucci A, 2004, EUR J NEUROSCI, V19, P2329, DOI 10.1111/j.0953-816X.2004.03302.x
   BRYDEN M, 1982, LARERALITY FUNCTIONA
   Bryden M. P., 1988, HDB DICHOTIC LISTENI, P1
   BRYDEN MP, 1991, CAN J PSYCHOL, V45, P427, DOI 10.1037/h0084305
   CONNOLLY JF, 1985, PSYCHOPHYSIOLOGY, V22, P87, DOI 10.1111/j.1469-8986.1985.tb01564.x
   Davidson R. J., 1998, BRAIN ASYMMETRY
   DEAN RS, 1982, NEUROPSYCHOLOGIA, V20, P685, DOI 10.1016/0028-3932(82)90068-9
   EGAN JP, 1948, LARYNGOSCOPE, V58, P955, DOI 10.1288/00005537-194809000-00002
   Fujiki N, 2002, J NEUROSCI, V22, P1
   Gadea M, 1997, Appl Neuropsychol, V4, P171, DOI 10.1207/s15324826an0403_5
   GEVINS AS, 1987, HDB ELECTROENCEPHALO, V1, P171
   Hellige JB, 1993, HEMISPHERIC ASYMMETR
   Hugdahl K, 2003, EXPT METHODS NEUROPS, P29
   HUGDAHL K, 1998, BRAIN ASYMMETRY, P123
   JAENCKE L, 2002, LATERALITY, V7, P309
   JEGER J, 2004, J AM ACAD AUDIOL, V15, P79
   JEGER J, 2000, J AM ACAD AUDIOL, V11, P273
   Khalfa S, 2000, PERCEPT PSYCHOPHYS, V62, P647, DOI 10.3758/BF03212116
   Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767
   Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8
   Khalfa S, 1998, EUR J NEUROSCI, V10, P2731, DOI 10.1046/j.1460-9568.1998.00286.x
   Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008
   Kimura D., 1967, CORTEX, V3, P163
   Kinsbourne M., 1978, ASYMMETRICAL FUNCTIO, P3
   KINSBOURNE M, 1982, AM PSYCHOL, V37, P411, DOI 10.1037//0003-066X.37.4.411
   Liederman J, 1998, BRAIN COGNITION, V36, P193, DOI 10.1006/brcg.1997.0952
   MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z
   MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K
   MILNER B, 1968, SCIENCE, V161, P184, DOI 10.1126/science.161.3837.184
   MOLLON J, 1978, ASYMMETRICAL FUNCTIO, P318
   MONDOR TA, 1991, NEUROPSYCHOLOGIA, V29, P1179, DOI 10.1016/0028-3932(91)90032-4
   MONDOR TA, 1992, PERCEPT PSYCHOPHYS, V52, P393, DOI 10.3758/BF03206699
   MURRAY MR, 1983, ACTA PSYCHOL, V53, P243, DOI 10.1016/0001-6918(83)90006-9
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Neuhoff J., 2004, ECOLOGICAL PSYCHOACO, P1, DOI 10.1016/B978-012515851-0/50002-3
   NORDBY H, 1995, J PSYCHOPHYSIOL, V9, P56
   OBRZUT JE, 1986, J EXP CHILD PSYCHOL, V41, P198, DOI 10.1016/0022-0965(86)90058-5
   OBRZUT JE, 1993, NEUROPSYCHOLOGIA, V31, P1411, DOI 10.1016/0028-3932(93)90107-B
   Obrzut JE, 1999, DEV NEUROPSYCHOL, V16, P127, DOI 10.1207/S15326942DN160108
   OLeary DS, 1996, BRAIN LANG, V53, P20, DOI 10.1006/brln.1996.0034
   PAPANICOLAOU AC, 1988, ARCH NEUROL-CHICAGO, V45, P1025
   PICTON TW, 1992, J CLIN NEUROPHYSIOL, V9, P456, DOI 10.1097/00004691-199210000-00002
   Poeppel D, 2004, NEUROPSYCHOLOGIA, V42, P183, DOI 10.1016/j.neuropsychologia.2003.07.010
   Regan D., 1989, HUMAN BRAIN ELECTROP
   Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6
   Sidtis J., 1988, HDB DICHOTIC LISTENI, P161
   Sinai A, 2003, CLIN NEUROPHYSIOL, V114, P1181, DOI [10.1016/S1388-2457(03)00087-7, 10.1016/S388-2457(03)000087-7]
   Sparks R, 1970, Cortex, V6, P249
   Sparks R., 1968, CORTEX, V4, P3
   SPRINGER SP, 1975, NEUROPSYCHOLOGIA, V13, P341, DOI 10.1016/0028-3932(75)90011-1
   Stanley W. D., 1975, DIGITAL SIGNAL PROCE
   Stearns S. D., 1975, DIGITAL SIGNAL ANAL
   SWANSON J, 1978, ASYMMETRICAL FUNCTIO, P274
   TENKE CE, 1993, PSYCHOPHYSIOLOGY, V30, P62
   TUKEY JW, 1978, EVENT RELATED BRAIN, P139
   Voyer D, 2001, BRAIN COGNITION, V46, P397, DOI 10.1006/breg.2001.1298
   Voyer D, 2002, J CLIN EXP NEUROPSYC, V24, P605
   Weber EH, 1834, PULSU RESORPTIONE AU
   WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x
   Yund EW, 1999, BRAIN LANG, V66, P358, DOI 10.1006/brln.1998.2034
NR 66
TC 21
Z9 23
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 125
EP 136
DI 10.1016/j.heares.2004.07.019
PG 12
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000014
PM 15567609
ER

PT J
AU Minami, SB
   Sha, SH
   Schacht, J
AF Minami, SB
   Sha, SH
   Schacht, J
TI Antioxidant protection in a new animal model of cisplatin-induced
   ototoxicity
SO HEARING RESEARCH
LA English
DT Article
DE hearing loss; salicylate; reactive oxygen species
ID SQUAMOUS-CELL CARCINOMA; 4-METHYLTHIOBENZOIC ACID; SODIUM THIOSULFATE;
   DOSE CISPLATIN; GUINEA-PIGS; CHEMOTHERAPY; CANCER; SALICYLATE; RAT;
   RADIOTHERAPY
AB Mortality is a major complication in animal models of cisplatin-induced hearing loss due to the systemic toxicity of the drug. Here we report on a novel two-cycle treatment in rats, each cycle consisting of four days of cisplatin injections (1 mg/kg, i.p., twice daily) separated by 10 days of rest. This regimen, similar to clinical courses of cancer chemotherapy, produced significant hearing loss without mortality. Auditory brain stem evoked responses were unchanged after the first cycle but were elevated by 40-50 dB at 16 and 20 kHz after the second. Loss of outer hair cells occurred after the second cycle, predominantly in the base of the cochlea. Total cochlear antioxidants declined progressively during drug treatment and were reduced to 60% of control values after the second cisplatin cycle. Co-administration of salicylate (100 mg/kg, s.c., twice daily) during both cycles or during the second cycle restored antioxidant levels and reduced cisplatin-induced threshold shifts.
   This model of cisplatin ototoxicity without mortality eliminates potentially confounding factors that may determine the survival of a special cohort of animals. The results also support the notion that reactive oxygen species are involved in cisplatin ototoxicity and show the potential usefulness of antioxidant treatment. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Keio Univ, Dept Otolaryngol, Tokyo 160, Japan.
RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA.
EM schacht@umich.edu
CR Le Chevalier T, 2004, NEW ENGL J MED, V350, P351
   Bernier J, 2004, NEW ENGL J MED, V350, P1945, DOI 10.1056/NEJMoa032641
   Bosl GJ, 1997, NEW ENGL J MED, V337, P242, DOI 10.1056/NEJM199707243370406
   BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999
   Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9
   Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Cooper JS, 2004, NEW ENGL J MED, V350, P1937, DOI 10.1056/NEJMoa032646
   CORNELISON TL, 1993, GYNECOL ONCOL, V50, P147, DOI 10.1006/gyno.1993.1184
   DINIS TCP, 1994, ARCH BIOCHEM BIOPHYS, V315, P161, DOI 10.1006/abbi.1994.1485
   Guitton MJ, 2003, J NEUROSCI, V23, P3944
   HOOP RG, 1990, NEW ENGL J MED, V322, P89
   ISHIKAWA T, 1993, J BIOL CHEM, V268, P20116
   JULICHER RHM, 1984, ARCH TOXICOL, V56, P83, DOI 10.1007/BF00349076
   Kalkanis JG, 2004, LARYNGOSCOPE, V114, P538, DOI 10.1097/00005537-200403000-00028
   Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9
   KLIS SFL, 2000, NEUROREPORT, V28, P623
   LAURELL G, 1990, LARYNGOSCOPE, V100, P724
   LAUTERMANN J, 1995, HEARING RES, V88, P47, DOI 10.1016/0378-5955(95)00097-N
   Leitao DJ, 2003, J OTOLARYNGOL, V32, P146, DOI 10.2310/7070.2003.40406
   LI G, 2002, LAB INVEST, V85, P585
   MARTY M, 1990, NEW ENGL J MED, V322, P816, DOI 10.1056/NEJM199003223221205
   McGuire WP, 1996, NEW ENGL J MED, V334, P1, DOI 10.1056/NEJM199601043340101
   MERLANO M, 1992, NEW ENGL J MED, V327, P1115, DOI 10.1056/NEJM199210153271602
   MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
   POWELL SR, 1994, FREE RADICAL RES, V21, P355, DOI 10.3109/10715769409056588
   Ramesh G, 2004, KIDNEY INT, V65, P490, DOI 10.1111/j.1523-1755.2004.00413.x
   RAVI R, 1995, PHARMACOL TOXICOL, V76, P386
   Reser D, 1999, NEUROTOXICOLOGY, V20, P731
   Rose PG, 1999, NEW ENGL J MED, V340, P1144, DOI 10.1056/NEJM199904153401502
   Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173
   Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989
   SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F
   Sha SH, 1999, LAB INVEST, V79, P807
   Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4
   Watanabe KI, 2002, ANTICANCER RES, V22, P4081
   Weijl NI, 1998, ANN ONCOL, V9, P1331, DOI 10.1023/A:1008407014084
NR 37
TC 36
Z9 44
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD DEC
PY 2004
VL 198
IS 1-2
BP 137
EP 143
DI 10.1016/j.heares.2004.07.016
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 878IK
UT WOS:000225640000015
PM 15567610
ER

PT J
AU Viberg, A
   Canlon, B
AF Viberg, A
   Canlon, B
TI The guide to plotting a cochleogram
SO HEARING RESEARCH
LA English
DT Article
DE auditory; basilar membrane; frequency-place maps; hearing loss
ID AUDITORY-NERVE FIBERS; HAIR CELL-DENSITY; GUINEA-PIG; BASILAR-MEMBRANE;
   HOUSE-MOUSE; SPIRAL GANGLION; RAT COCHLEA; FREQUENCY; ORGAN; CORTI
AB The cochleogram is commonly used for illustrating hair cell loss after insult, yet standardized procedures for plotting either individual or averaged cochleograms are lacking despite more than 40 years of use. Due to the intra-species variation in basilar membrane (BM) length, it is important that length is plotted on the cochleogram in percent and not millimeter. It is also of interest to correlate the location of lesion to frequency by using a frequency-place equation. However, there is no consensus as which equation is most suitable for the species under study. This is an important issue since two different equations can result in significantly different frequency-place maps for the same cochlea. The purpose of this presentation is to suggest procedures for standardizing the cochleogram. The guidelines include: (i) basilar membrane length should be plotted as percent instead of millimeter due to the biological variation that exists in BM length within a particular species and strain, and the total length in millimeter stated on the cochleogram; (ii) the equations used for frequency-place maps should be stated on the cochleogram; (iii) different basilar membrane lengths should be normalized to percent before averaged cochleograms are made. These procedures are illustrated and discussed. (C) 2004 Published by Elsevier B.V.
C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden.
EM barbara.canlon@fyfa.ki.se
CR Bekesy G, 1960, EXPT HEARING
   BOHNE BA, 1979, J ACOUST SOC AM, V66, P411, DOI 10.1121/1.383092
   BREDBERG G, 1968, ACTA OTOLARYNGOL S, V236
   BURDA H, 1985, HEARING RES, V17, P201, DOI 10.1016/0378-5955(85)90064-4
   BURDA H, 1984, HEARING RES, V14, P315, DOI 10.1016/0378-5955(84)90058-3
   BURDA H, 1988, HEARING RES, V36, P97, DOI 10.1016/0378-5955(88)90140-2
   BURDA H, 1980, HEARING RES, V3, P91, DOI 10.1016/0378-5955(80)90010-6
   BURDA H, 1988, J MORPHOL, V198, P269, DOI 10.1002/jmor.1051980303
   Canlon B, 2003, EUR J NEUROSCI, V17, P2035, DOI 10.1046/j.1460-9568.2003.02641.x
   Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2
   Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169
   EHRET G, 1977, J COMP PHYSIOL, V122, P65
   EHRET G, 1975, J COMP PHYSIOL, V103, P329
   Engstrom H, 1966, STRUCTURAL PATTERN O
   Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4
   GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437
   Keiler S, 2001, HEARING RES, V162, P91, DOI 10.1016/S0378-5955(01)00374-4
   LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677
   Mu MY, 1997, DEV BRAIN RES, V99, P29, DOI 10.1016/S0165-3806(96)00194-0
   MULLER M, 2004, ARO 27 ANN MIDW M DA
   MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7
   Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4
   ROBERTSON D, 1980, J ACOUST SOC AM, V67, P1295, DOI 10.1121/1.384182
   ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X
   RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261
   Tsuji J, 1997, J COMP NEUROL, V381, P188
   Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
NR 28
TC 64
Z9 68
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 1
EP 10
DI 10.1016/j.heares.2004.04.016
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800001
PM 15504598
ER

PT J
AU Corbacella, E
   Lanzoni, I
   Ding, DL
   Previati, M
   Salvi, R
AF Corbacella, E
   Lanzoni, I
   Ding, DL
   Previati, M
   Salvi, R
TI Minocycline attenuates gentamicin induced hair cell loss in neonatal
   cochlear cultures
SO HEARING RESEARCH
LA English
DT Article
DE gentamicin; ototoxicity; hair cells; minocycline; cytochrome c;
   apoptosis
ID AMINOGLYCOSIDE INDUCED OTOTOXICITY; CYTOCHROME-C RELEASE; GUINEA-PIG;
   INDUCED APOPTOSIS; CASPASE ACTIVATION; PROTECTS COCHLEAR; DEATH
   RECEPTOR; ELEGANS CED-4; IN-VITRO; ANTIBIOTICS
AB Minocycline, a second-generation tetracycline antibiotic used against gram-negative and gram-positive bacteria, protects against a wide range of neurodegenerative disorders by inhibiting caspases, NOS and the release of cytochrome c. Since aminoglycoside antibiotics damage sensory hair cells in the inner ear by activating caspase-mediated cell death pathways, we hypothesized that minocycline would protect against gentamicin (GM) ototoxicity. To test this hypothesis, postnatal day 3 (P3) rat, cochlear organotypic cultures were treated with GM alone or in combination with minocycline (10-500 muM). Treatment with GM induced a dose-dependent loss of outer hair cells (OHC) and inner hair cells (IHC). Addition of minocycline to the GM-treated cultures greatly reduced the amount of GM-induced hair cell damage in P3 cochlear cultures. The greatest protection was achieved with 100 muM of minocycline. Application of minocycline alone had no adverse effects on hair cell survival. The advantage of this combination therapy is that minocycline prevents GM-induced hair cell loss while helping to suppress the bacterial infection. (C) 2004 Published by Elsevier B.V.
C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   Univ Ferrara, Human Anat Sect, I-44100 Ferrara, Italy.
   Univ Ferrara, Dept Audiol, I-44100 Ferrara, Italy.
RP Salvi, R (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
EM salvi@buffalo.edu
CR ARONSON AL, 1980, J AM VET MED ASSOC, V176, P1061
   Barton-Davis ER, 1999, J CLIN INVEST, V104, P375, DOI 10.1172/JCI7866
   Bratton SB, 2000, EXP CELL RES, V256, P27, DOI 10.1006/excr.2000.4835
   Chen M, 2000, NAT MED, V6, P797
   Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Colovic M, 2003, J CHROMATOGR B, V791, P337, DOI 10.1016/S1570-0232(03)00247-2
   Cunha BA, 1997, POSTGRAD MED, V101, P68
   Cunningham LL, 2002, J NEUROSCI, V22, P8532
   DAUTZENBERG B, 1995, CHEST, V107, P1035, DOI 10.1378/chest.107.4.1035
   Denovan-Wright EM, 2002, J PSYCHOPHARMACOL, V16, P393
   Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2
   Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8
   Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861
   FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2
   GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0
   Gorman A.M., 1998, NEUROREPORT, V9, P49
   Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309
   Hester TO, 1998, OTOLARYNG HEAD NECK, V119, P581, DOI 10.1016/S0194-5998(98)70015-4
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307
   Lin SZ, 2001, NEUROSCI LETT, V315, P61, DOI 10.1016/S0304-3940(01)02324-2
   Mather M, 2001, BBA-BIOENERGETICS, V1503, P357, DOI 10.1016/S0005-2728(00)00231-0
   McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0
   MULHERIN D, 1991, IRISH J MED SCI, V160, P173, DOI 10.1007/BF02961666
   Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E
   Seshagiri S, 1997, CURR BIOL, V7, P455, DOI 10.1016/S0960-9822(06)00216-8
   Sha SH, 1999, LAB INVEST, V79, P807
   Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4
   Sinswat P, 2000, KIDNEY INT, V58, P2525, DOI 10.1046/j.1523-1755.2000.00437.x
   TABLAN OC, 1984, J INFECT DIS, V149, P257
   Tikka T, 2001, J NEUROCHEM, V78, P1409, DOI 10.1046/j.1471-4159.2001.00543.x
   VANDERAUWERA P, 1985, J ANTIMICROB CHEMOTH, V16, P581, DOI 10.1093/jac/16.5.581
   Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3
   YLIKOSKI J, 1973, Acta Pathologica et Microbiologica Scandinavica Supplementum, V241, P30
   Yoshizawa S, 1998, EMBO J, V17, P6437, DOI 10.1093/emboj/17.22.6437
   Zhai DY, 2000, FEBS LETT, V472, P293, DOI 10.1016/S0014-5793(00)01471-X
   Zhang YP, 2002, EXP GERONTOL, V37, P777, DOI 10.1016/S0531-5565(02)00013-X
   Zhu S, 2002, NATURE, V417, P74, DOI 10.1038/417074a
   Zou H, 1997, CELL, V90, P405, DOI 10.1016/S0092-8674(00)80501-2
NR 42
TC 37
Z9 39
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 11
EP 18
DI 10.1016/j.heares.2004.03.012
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800002
PM 15504599
ER

PT J
AU Shi, GZ
   Gong, LX
   Xu, XH
   Nie, WY
   Lin, Q
   Qi, YS
AF Shi, GZ
   Gong, LX
   Xu, XH
   Nie, WY
   Lin, Q
   Qi, YS
TI GJB2 gene mutations in newborns with non-syndromic hearing impairment in
   Northern China
SO HEARING RESEARCH
LA English
DT Article
DE bilateral hearing loss; neonatal screening; hearing tests; mutation;
   GJB2 gene
ID CONNEXIN 26 GENE; SENSORINEURAL DEAFNESS; PREVALENCE; JAPANESE;
   CHILDREN; POPULATION; FAMILY
AB Mutations in GJB2 account for the majority of recessive forms of prelingual hearing loss. However, in most previous studies it was not possible to distinguish between congenital (present at birth) and non-congenital prelingual hearing loss. In the present study, the frequency of GJB2 alleles in 20 newborns with bilateral severe-to-profound non-syndromic hearing impairment (NSHI) who were found at birth through newborn hearing screening and clinical examination is reported. PCR was used to amplify the coding region of GJB2 gene followed by sequencing analyses. Fifty volunteers with normal hearing were included as controls. Results showed that three cases were 235delC/235delC homozygotes; one was 235delC/605ins46 compound heterozygotes, 605ins46 mutation was a novel mutation reported in the Chinese population; another was 235delC/299-300delAT compound heterozygotes. 25% (5/20) of the deafness in newborns studied was caused by GJB2 gene mutations. The frequency of 235delC allele carrier in patients and in control group was 22.5% and 1%, respectively. One case was identified as being a 235delC heterozygote without other mutations detected. Besides, multiple polymorphisms such as V27I, V37I, E114G, T123N were also detected. In conclusion, GJB2 analysis is an important test that identifies a major cause of newborns with bilateral severe-to-profound NSHI screened by universal newborn hearing screening in Northern China. The most common pathologic mutation of GJB2 in studied cases was 235delC. Molecular analysis and genetic counseling will be extremely important for congenital deafness present at birth. (C) 2004 Elsevier B.V. All rights reserved.
C1 Shantou Univ, Coll Med, Dept Forens Med, Shantou 515031, Guangdong, Peoples R China.
   Jinan Matern & Child Care Hosp, Shandong 250001, Peoples R China.
RP Shi, GZ (reprint author), Shantou Univ, Coll Med, Dept Forens Med, 22 Xinling Rd, Shantou 515031, Guangdong, Peoples R China.
EM laurelshi@yahoo.com.cn
CR Abe S, 2000, J MED GENET, V37, P41, DOI 10.1136/jmg.37.1.41
   Bason L, 2002, CLIN GENET, V61, P459, DOI 10.1034/j.1399-0004.2002.610611.x
   Bruzzone R, 2003, FEBS LETT, V533, P79, DOI 10.1016/S0014-5793(02)03755-9
   Dahl HHM, 2001, MED J AUSTRALIA, V175, P191
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2
   Holt JR, 1999, NEURON, V22, P217, DOI 10.1016/S0896-6273(00)81083-1
   Kammen-Jolly K, 2001, HEARING RES, V160, P15, DOI 10.1016/S0378-5955(01)00310-0
   Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Kenneson A, 2002, GENET MED, V4, P258, DOI 10.1097/01.GIM.0000020750.60733.CA
   Lench NJ, 1998, J MED GENET, V35, P151, DOI 10.1136/jmg.35.2.151
   Liu XZ, 2002, HUM GENET, V111, P394, DOI 10.1007/s00439-002-0811-6
   Loffler J, 2001, EUR J HUM GENET, V9, P226, DOI 10.1038/sj.ejhg.5200607
   Lopponen T, 2003, LARYNGOSCOPE, V113, P1758
   MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504
   Matsushiro N, 2002, LARYNGOSCOPE, V112, P255, DOI 10.1097/00005537-200202000-00011
   McGuirt W T, 1999, Am J Audiol, V8, P93, DOI 10.1044/1059-0889(1999/016)
   Milunsky JM, 2000, GENET TEST, V4, P345, DOI 10.1089/109065700750065072
   Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103
   MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
   [聂文英 Nie Wenying], 2003, [中华医学杂志, National Medical Journal of China], V83, P274
   Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023
   Steel KP, 2000, BRIT MED J, V320, P622, DOI 10.1136/bmj.320.7235.622
   VanCamp G, 1997, AM J HUM GENET, V60, P758
   Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4
   Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273
   Wu BL, 2002, GENET MED, V4, P279, DOI 10.1097/01.GIM.0000020823.93575.C2
   Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161
   Yuge I, 2002, AURIS NASUS LARYNX, V29, P379, DOI 10.1016/S0385-8146(02)00055-X
NR 30
TC 27
Z9 31
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 19
EP 23
DI 10.1016/j.heares.2004.06.012
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800003
PM 15504600
ER

PT J
AU Kondrachuk, AV
   Wiederhold, ML
AF Kondrachuk, AV
   Wiederhold, ML
TI On generation of statoconia in gravireceptors of mollusks
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 22nd Annual International Gravitational Physiology Meeting
CY APR 22-27, 2001
CL Budapest, HUNGARY
DE model; statoconia; statocyst; mollusks; statoconia growth; rate of
   growth
ID BIOMPHALARIA-GLABRATA PULMONATA; STATOCYST; BASOMMATOPHORA
AB Two models of development of statoconia in the statocyst of mollusks, based on the experimental data [Hearing Res. 49 (1990) 63; Hearing Res. 109 (1997) 125; Hearing Res. 109 (1997) 109] are proposed. The purpose of the present work is to apply mathematical modeling to the analysis of mechanisms of statoconia formation and generation by supporting cells at the stage of their accumulation in the cyst lumen. In the case of Aplysia californica, it is not clear whether there is a temporal change of statoconia, due to their growth in the cyst lumen similar to that in Biomphalaria, or whether the growth of statoconia, occurs in supporting cells before they get into the cyst lumen. This question has to do with a more general and insufficiently investigated problem of the mechanisms of statoconia evolution during their stage of accumulation. This is related to A. californica as well as to the initial phase of development of Biomphalaria glabrata. This problem is of practical importance because the majority of experiments related to the study of the effects of altered gravity on the development of gravireceptors in the two mollusks A. californica and B. glabrata deals with the initial phase of statoconia development. It is assumed that two main processes determine the evolution of statoconia in developing mollusks: generation of new statoconia, by growing supporting cells and growth of statoconia sizes in the cyst lumen. Analysis of experimental data related to the generation of statoconia in Aplysia and comparison of these data with the results of modeling of accumulation of statoconia, suggest that the basic mechanism of evolution of size distribution of statoconia in Aplysia is growth of embryonic statoconia in supporting cells, that follows the growth of animal size. Thus, the large sizes of statoconia are determined by their development within supporting cells rather than by their growth in the cyst lumen. Analysis of the data concerning Biomphalaria allows us to assume that distribution of supporting cells which generate statoconia also varies. The results of modeling of evolution of statoconia specify necessary additional experiments, which are required to refine and test the model. (C) 2004 Elsevier B.V. All rights reserved.
C1 Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, UA-252143 Kiev, Ukraine.
   Univ Texas, Hlth Sci Ctr, Dept Physiol, San Antonio, TX 78229 USA.
RP Kondrachuk, AV (reprint author), Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, Zabolotny St 154, UA-252143 Kiev, Ukraine.
EM kondr@kondr.kiev.ua
CR Gao WY, 1997, HEARING RES, V109, P109, DOI 10.1016/S0378-5955(97)00058-0
   Gao WY, 1997, HEARING RES, V109, P125, DOI 10.1016/S0378-5955(97)00059-2
   Kondrachuk AV, 2001, HEARING RES, V154, P1, DOI 10.1016/S0378-5955(00)00185-4
   KONDRACHUK AV, 2001, J GRAVITATIONAL PHYS, V8, P109
   WIEDERHOLD ML, 1990, HEARING RES, V49, P63, DOI 10.1016/0378-5955(90)90095-7
NR 5
TC 1
Z9 1
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 24
EP 34
DI 10.1016/j.heares.2004.06.001
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800004
PM 15504601
ER

PT J
AU Liu, X
   Mohamed, JA
   Ruan, RS
AF Liu, X
   Mohamed, JA
   Ruan, RS
TI Analysis of differential gene expression in the cochlea and kidney of
   mouse by cDNA microarrays
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; kidney; microarray; hearing; mouse
ID QUIET-AGED GERBILS; INNER-EAR; NA,K-ATPASE ACTIVITY; MAMMALIAN COCHLEA;
   MESSENGER-RNA; LATERAL WALL; HEARING-LOSS; HAIR-CELLS; LOCALIZATION;
   DEAFNESS
AB Microarray hybridization analysis of gene expression in the cochlea and kidney suggest a relationship between these tissues at the genomic level, indicating the common gene expression, likely serving a common function in both the organs primarily maintaining ion transport, and implied previously from morphological, pharmaco-kinetic and teratogenic studies. The cDNAs of more than 100 genes listed on the hereditary hearing loss homepage were amplified as targets by RT-PCR and were hybridized with probes prepared from total RNA of the cochlea and the kidney. Thirteen of the genes analyzed showed altered fluorescence ratios of more than two logs. Of these, the expressions of I I genes were over expressed and two were under expressed in the cochlea than in the kidney. Our data is the first report to corroborate the genomic similarities between these two important organs and may help to explain the somewhat similar response of these organs to certain therapeutic drugs. (C) 2004 Elsevier B.V. All rights reserved.
C1 Natl Univ Singapore Hosp, Dept Otolaryngol, Singapore 117548, Singapore.
   Univ Texas, Hlth Sci Ctr, Dept Internal Med, Houston, TX 77030 USA.
RP Ruan, RS (reprint author), Natl Univ Singapore Hosp, Dept Otolaryngol, Main Bldg,Level 3, Singapore 117548, Singapore.
EM entrrs@nus.edu.sg
CR ARNOLD W, 1976, ARCH OTO-RHINO-LARYN, V212, P99, DOI 10.1007/BF00454270
   Ashraf SS, 1995, SCAND J THORAC CARD, V29, P187, DOI 10.3109/14017439509107228
   BARRITT LC, 1999, BRAIN RES MOL, V7, P42
   Bier FF, 2001, FRESEN J ANAL CHEM, V371, P151, DOI 10.1007/s002160101003
   Birkenhager R, 2001, NAT GENET, V29, P310, DOI 10.1038/ng752
   Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a
   Cheatham MA, 2001, AUDIOL NEURO-OTOL, V6, P79, DOI 10.1159/000046813
   CHO A, 2001, SCIENCE, V288, P1954
   Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042
   Cosgrove D, 1996, HEARING RES, V97, P54
   Crawley JN, 1999, BRAIN RES, V835, P18, DOI 10.1016/S0006-8993(98)01258-X
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   Estevez R, 2001, NATURE, V414, P558, DOI 10.1038/35107099
   FERMIN CD, 1995, CELL MOL BIOL, V41, P213
   FRIEDMANN I, 1990, BRIT MED J, V301, P164
   GONZALEZ TO, 2001, EUR J ENDOCRINOL, V144, P585, DOI 10.1530/EJE.0.1440585
   Goodyear RJ, 2003, J NEUROSCI, V23, P9208
   Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8
   GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V
   Green GE, 1996, J NEUROCHEM, V67, P37
   Holzmuller M, 2000, HNO, V48, P839, DOI 10.1007/s001060050671
   Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14889, DOI 10.1073/pnas.94.26.14889
   Kurc M, 1998, HEARING RES, V116, P1, DOI 10.1016/S0378-5955(97)00183-4
   Lashkari DA, 1997, P NATL ACAD SCI USA, V94, P13057, DOI 10.1073/pnas.94.24.13057
   Lin JH, 2003, HEARING RES, V175, P2, DOI 10.1016/S0378-5955(02)00704-9
   Mhatre AN, 2002, HEARING RES, V170, P59, DOI 10.1016/S0378-5955(02)00452-5
   Pace AJ, 2000, J CLIN INVEST, V105, P441, DOI 10.1172/JCI8553
   PAUL JW, 1987, J CLIN LAB IMMUNOL, V22, P49
   QUICK CA, 1973, LARYNGOSCOPE, V83, P1469, DOI 10.1288/00005537-197309000-00007
   Ravecca F, 1998, Acta Otorhinolaryngol Ital, V18, P42
   Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2
   Schafer BW, 1996, TRENDS BIOCHEM SCI, V21, P134, DOI 10.1016/S0968-0004(96)80167-8
   SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P766, DOI 10.1288/00005537-197405000-00008
   Skvorak Giersch Anne B., 1999, Current Opinion in Pediatrics, V11, P551
   SPECTOR GJ, 1979, LARYNGOSCOPE, V89, P1, DOI 10.1288/00005537-197906001-00001
   Street VA, 1998, NAT GENET, V19, P390
   Tago C, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P87
   Takahashi M, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P58
   Takizawa T, 1999, J HISTOCHEM CYTOCHEM, V47, P525
   Tranebjaerg L, 2000, Ugeskr Laeger, V162, P3044
   Verpy E, 2000, NAT GENET, V26, P51
   Willems PJ, 2000, NEW ENGL J MED, V342, P1101, DOI 10.1056/NEJM200004133421506
   Yokogawa T, 2000, J BIOL CHEM, V275, P19913, DOI 10.1074/jbc.M908473199
   Zheng J, 2002, AUDIOL NEURO-OTOL, V7, P9, DOI 10.1159/000046855
NR 44
TC 7
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 35
EP 43
DI 10.1016/j.heares.2004.04.014
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800005
PM 15504602
ER

PT J
AU van Ruijven, MWM
   de Groot, JCMJ
   Smoorenburg, GF
AF van Ruijven, MWM
   de Groot, JCMJ
   Smoorenburg, GF
TI Time sequence of degeneration pattern in the guinea pig cochlea during
   cisplatin administration. A quantitative histological study
SO HEARING RESEARCH
LA English
DT Article
DE cisplatin ototoxicity; guinea pig; cochlea; stria vascularis; spiral
   ganglion; organ of Corti; degeneration pattern
ID STRIA VASCULARIS; SPIRAL GANGLION; INDUCED OTOTOXICITY; CIS-PLATINUM;
   INNER-EAR; SEMIQUANTITATIVE ANALYSIS; ADENYLATE-CYCLASE; ALBINO;
   RECOVERY; MORPHOLOGY
AB We investigated the key tissues that are implicated in cisplatin ototoxicity within the time window during which degeneration starts. Guinea pigs were treated with cisplatin at a dose of 2 mg/kg/day for either 4, 6, or 8 consecutive days. Histological changes in the organ of Corti, the stria vascularis and the spiral ganglion were quantified at the light microscopical level. Outer hair cell (OHC) loss started between 4 and 6 days of cisplatin administration, but is only significantly different from the non-treated group after 8 days of treatment. Midmodiolar OHC counts were comparable to the cytocochleogram data. The cross-sectional area of the stria vascularis did not differ from the non-treated group, nor did an endolymphatic hydrops develop during the course of treatment. Spiral ganglion cell (SGC) densities did not decrease. After 6 days, however, detachment of the myelin sheath of the type-I SGCs was seen in the lower basal turn, whereas after 8 days it was also present in the more apically located turns. Myelin sheath detachment is the result of perikaryal shrinkage and swelling of the myelin sheath. The present study confirms that cisplatin at a daily dose of 2 mg/kg has a detrimental effect on the OHCs as well as on the type-I SGCs. These intracochlear effects occur simultaneously; OHC loss and SGC shrinkage start between the fourth and sixth day of cisplatin administration and appear to develop in parallel. At this dose, no histological effect on the stria vascularis could be observed, although previous electrophysiological experiments demonstrated a clear effect on the endocochlear potential [NeuroReport 11, 623 Hear. Res. 164, 138]. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands.
RP van Ruijven, MWM (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands.
EM m.vanruijven@kmb.azu.nl
CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7
   BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231
   BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3
   Bertolaso L, 2001, AUDIOLOGY, V40, P327
   Bouman H, 1998, HEARING RES, V117, P119, DOI 10.1016/S0378-5955(97)00216-5
   Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627
   Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2
   Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5
   Cardinaal RM, 2004, ACTA OTO-LARYNGOL, V124, P144, DOI 10.1080/00016480310015164
   Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9
   CONLEE JW, 1994, HEARING RES, V72, P108, DOI 10.1016/0378-5955(94)90211-9
   DEGROOT JCM, 2000, 37 WORKSH INN EAR BI, P46
   deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4
   DEOLIVEIRA JAA, 1989, AUDIOVESTIBULAR TOXI, V2, P181
   ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638
   Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005
   FERNANDEZCERVILLA F, 1993, ORL J OTO-RHINO-LARY, V55, P337
   GAIBAIZADEH R, 1997, ACTA OTOLARYNGOL STO, V117, P232
   Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515
   HAMERS FPT, 1997, NEUROPROTECTION CNS, P513
   Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4
   HOEVE LJ, 1989, ARCH OTORHINOLARYNGO, V245, P98
   JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693
   Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037
   Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7
   KOCH T, 1991, EUR ARCH OTO-RHINO-L, V248, P459, DOI 10.1007/BF00627634
   KOHN S, 1988, LARYNGOSCOPE, V98, P865
   KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275
   KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9
   LAURELL G, 1991, J OTOLARYNGOL, V20, P158
   LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1
   LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427
   Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876
   O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5
   SAITO T, 1995, SCANNING MICROSCOPY, V9, P271
   SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315
   SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001
   Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0
   SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927
   SPOENDLIN H, 1979, ARCH OTO-RHINO-LARYN, V223, P1, DOI 10.1007/BF00455076
   Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4
   Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6
   TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261
   TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V237, P17, DOI 10.1007/BF00453712
   TANGE RA, 1984, CLIN OTOLARYNGOL, V9, P323, DOI 10.1111/j.1365-2273.1984.tb01515.x
   WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7
   Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P23
   Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x
   ZHENG JL, 1995, J NEUROSCI, V15, P5079
NR 51
TC 35
Z9 38
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 44
EP 54
DI 10.1016/j.heares.2004.07.014
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800006
PM 15504603
ER

PT J
AU Gabriel, D
   Veuillet, E
   Ragot, R
   Schwartz, D
   Ducorps, A
   Norena, A
   Durrant, JD
   Bonmartin, A
   Cotton, F
   Collet, L
AF Gabriel, D
   Veuillet, E
   Ragot, R
   Schwartz, D
   Ducorps, A
   Norena, A
   Durrant, JD
   Bonmartin, A
   Cotton, F
   Collet, L
TI Effect of stimulus frequency and stimulation site on the N1m response of
   the human auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE tonotopy; magnetoencephalography; asymmetry; high frequencies
ID EVOKED MAGNETIC-FIELDS; DIPOLE MODEL ANALYSIS; TONOTOPIC ORGANIZATION;
   RIGHT-HEMISPHERE; HUMAN-BRAIN; COMPONENT; WAVE; REPRESENTATION;
   TRANSIENT; SYSTEM
AB The aim of the present study was to investigate the functional organization of the auditory cortex for pure tones of 1, 2, 4, 6, 8 and 12 kHz. Ten subjects were tested with a whole-head magnetometer (151 channels). The location, latency and amplitude of the generators of the N1m (the main component of the response, peaking approximately at 100 ms) were explored simultaneously in the right and left hemispheres under monaural stimulation. Our results revealed that tonotopy is a rather complex functional organization of the auditory cortex. From I to 12 kHz, tonotopic maps were found for contralateral as well as for ipsilateral stimulation: N1m generators were found to be tonotopically organized mainly in an anterior-posterior direction in both hemispheres, whatever the stimulated ear, but also in an inferior-superior direction in the right hemisphere. Furthermore, latencies were longer in the left than in the right hemisphere. Two different representations of spectral distribution were found in the right auditory cortex: one for ipsilateral and one for contralateral stimulation. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Lyon 1, CNRS, GDR 2213, Lab Neurosci & Syst Sensoriels,UMR 5020, F-69366 Lyon 07, France.
   Hop La Pitie Salpetriere, CNRS, UPR 640, LENA, F-75651 Paris, France.
   Ctr Hosp Lyon Sud, Unite RMN, F-69495 Pierre Benite, France.
RP Gabriel, D (reprint author), Univ Lyon 1, CNRS, GDR 2213, Lab Neurosci & Syst Sensoriels,UMR 5020, 50 Av Tony Garnier, F-69366 Lyon 07, France.
EM damiengabriel@yahoo.fr
RI cotton, francois/F-4762-2013
OI cotton, francois/0000-0003-0046-2478
CR BEHRENS SJ, 1988, J PHONETICS, V16, P295
   Bekesy G., 1960, EXPT HEARING
   Bilecen D, 1998, HEARING RES, V126, P19, DOI 10.1016/S0378-5955(98)00139-7
   CANSINO S, 1994, BRAIN RES, V663, P38, DOI 10.1016/0006-8993(94)90460-X
   CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403
   ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201
   Fujioka T, 2002, NEUROSCIENCE, V112, P367, DOI 10.1016/S0306-4522(02)00086-6
   GESCHWIN.N, 1968, SCIENCE, V161, P186, DOI 10.1126/science.161.3837.186
   GIARD MH, 1994, ELECTROEN CLIN NEURO, V92, P238, DOI 10.1016/0168-5597(94)90067-1
   Hari R, 1990, Electroencephalogr Clin Neurophysiol Suppl, V41, P3
   Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793
   Kanno A, 1996, Electroencephalogr Clin Neurophysiol Suppl, V47, P129
   Kosaki H, 1997, J COMP NEUROL, V386, P304
   LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3
   LAVIKAINEN J, 1994, NEUROREPORT, V6, P182, DOI 10.1097/00001756-199412300-00046
   Liegeois-Chauvel C, 2001, ANN NY ACAD SCI, V930, P117
   Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65
   Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1
   Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790
   Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106
   MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2
   MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231
   Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340
   NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x
   Naka D, 1999, NEUROSCIENCE, V93, P573, DOI 10.1016/S0306-4522(99)00177-3
   NAKASATO N, 1995, ELECTROEN CLIN NEURO, V94, P183, DOI 10.1016/0013-4694(94)00280-X
   PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4
   PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8
   PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H
   Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789
   REITE M, 1994, COGNITIVE BRAIN RES, V2, P13, DOI 10.1016/0926-6410(94)90016-7
   Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007
   Rosburg T, 1998, NEUROSCI LETT, V258, P105, DOI 10.1016/S0304-3940(98)00865-9
   Schonwiesner M, 2002, NEUROIMAGE, V17, P1144, DOI 10.1006/nimg.2002.1250
   Schreiner CE, 1998, AUDIOL NEURO-OTOL, V3, P104, DOI 10.1159/000013785
   Strainer JC, 1997, AM J NEURORADIOL, V18, P601
   Szikla G, 1977, ANGIOGRAPHY HUMAN BR
   VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7
   Wessinger CM, 1997, HUM BRAIN MAPP, V5, P18, DOI 10.1002/(SICI)1097-0193(1997)5:1&lt;18::AID-HBM3&gt;3.0.CO;2-Q
   WILLIAMSON S J, 1991, Brain Topography, V4, P169, DOI 10.1007/BF01132773
   Zouridakis G, 1998, BRAIN TOPOGR, V10, P183, DOI 10.1023/A:1022246825461
NR 41
TC 17
Z9 19
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 55
EP 64
DI 10.1016/j.heares.2004.07.015
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800007
PM 15504604
ER

PT J
AU Stjernschantz, J
   Wentzel, P
   Rask-Andersen, H
AF Stjernschantz, J
   Wentzel, P
   Rask-Andersen, H
TI Localization of prostanoid receptors and cyclo-oxygenase enzymes in
   guinea pig and human cochlea
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; guinea pig; man; prostanoid receptors; cyclo-oxygenase;
   immunohistochemistry
ID PROSTAGLANDIN SYNTHESIS; SALICYLATE; EXPRESSION; QUININE; CELLS
AB Endogenous production of prostaglandins has been demonstrated in the cochlea, but no information is available on the distribution of the cyclo-oxygenase (COX) enzymes, or prostanoid receptors in the cochlea. The purpose of the present study was to investigate the localization of the FP, EP1 and EP3 prostanoid receptors as well as the COX-1 and COX-2 enzymes in the cochlea of guinea pig and man. Cochleas were processed for immunohistochemistry using routine techniques. Appropriate controls comprised incubation with specific blocking peptides, or incubation without primary antibodies. Both in guinea pig and man the FP prostanoid receptor was abundantly distributed in the cochlea, e.g., in stria vascularis, the spiral ligament, spiral ganglion, and organ of Corti. The immunohistochemical staining of the EP1 and EP3 receptors in the same structures was significantly weaker and sometimes lacking altogether (e.g., EP3 receptor in human cochlea). Weak, but mostly consistent immunostaining of the COX-1 enzyme was found in the cochlear structures. The COX-2 enzyme appeared to be lacking. The abundant distribution of the FP receptor in several important cochlear structures both in guinea pig and man suggests a physiological function for PGF(2alpha) in the cochlea. The COX-1 enzyme seems to be constitutively expressed in the cochlea in contrast to COX-2. (C) 2004 Elsevier B.V. All rights reserved.
C1 Uppsala Univ, Pharmacol Unit, Dept Neurosci, SE-75124 Uppsala, Sweden.
   Uppsala Univ, Unit Otolaryngol & Head & Neck Surg, Dept Surg Sci, SE-75124 Uppsala, Sweden.
RP Stjernschantz, J (reprint author), Uppsala Univ, Pharmacol Unit, Dept Neurosci, SE-75124 Uppsala, Sweden.
EM johan.stjernschantz@neuro.uu.se
CR Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7
   Chin MS, 2001, INVEST OPHTH VIS SCI, V42, P2338
   Coleman R. A., 1990, COMPREHENSIVE MED CH, V3, P643
   COLEMAN RA, 1994, PHARMACOL REV, V46, P205
   Damm J, 2001, EXP EYE RES, V72, P611, DOI 10.1006/exer.2001.0977
   ESCOUBET B, 1985, PROSTAGLANDINS, V29, P589
   JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791
   KAWATA R, 1988, PROSTAGLANDINS, V35, P173, DOI 10.1016/0090-6980(88)90085-8
   Kong W, 1991, Zhonghua Er Bi Yan Hou Ke Za Zhi, V26, P275
   Konishi K, 1998, Acta Otolaryngol Suppl, V538, P40
   Mukhopadhyay P, 1997, BIOCHEM PHARMACOL, V53, P1249, DOI 10.1016/S0006-2952(97)00011-7
   Narumiya S, 1999, PHYSIOL REV, V79, P1193
   Ocklind A, 1996, INVEST OPHTH VIS SCI, V37, P716
   PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66
   Rhee CK, 1999, EUR ARCH OTO-RHINO-L, V256, P479, DOI 10.1007/s004050050195
   Sauer C, 1987, Prog Clin Biol Res, V242, P131
   SCHLOTZERSCHREHARD, 2002, INVEST OPHTH VIS SCI, V43, P1475
   Stjernschantz J, 1996, Curr Opin Ophthalmol, V7, P11, DOI 10.1097/00055735-199604000-00003
   Stjernschantz JW, 2001, INVEST OPHTH VIS SCI, V42, P1134
   Vane JR, 1998, ANNU REV PHARMACOL, V38, P97, DOI 10.1146/annurev.pharmtox.38.1.97
   Wentzel P, 2003, PIGM CELL RES, V16, P43, DOI 10.1034/j.1600-0749.2003.00001.x
NR 21
TC 12
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 65
EP 73
DI 10.1016/j.heares.2004.04.018
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800008
PM 15504605
ER

PT J
AU Firzlaff, U
   Schuller, G
AF Firzlaff, U
   Schuller, G
TI Directionality of hearing in two CF/FM bats, Pteronotus parnellii and
   Rhinolophus rouxi
SO HEARING RESEARCH
LA English
DT Article
DE head-related transfer function; spatial hearing; pinna; microchiroptera
ID SOUND PRESSURE TRANSFORMATION; LEAF-NOSED BATS; BIG BROWN BAT; CONSTANT
   FREQUENCY BATS; RUFOUS HORSESHOE BAT; CF-FM BAT; CAROLLIA-PERSPICILLATA;
   EPTESICUS-FUSCUS; AUDITORY-CORTEX; SPECTRAL CUES
AB The head-related transfer function (HRTF) has been measured in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi from 575 positions in the frontal hemisphere. P. parnellii showed an increase of the elevation angle of the axis of highest pinna gain with increasing frequency followed by a specific decrease at 75 kHz. Such a drop of elevation angle of the acoustic axis was not seen in R. rouxi. The HRTF further showed a spectral notch dependent on elevation and frequency in P. parnellii, but not in R. rouxi. The functional implications of this difference between both bat species are discussed. Frequencies at maximum pinna gain values did not clearly match the frequencies of the harmonics of the echolocation calls whereas spatial resolution of interaural intensity differences was best in a frequency range that included the higher harmonics of the echolocation calls in both bat species. However, specializations of HRTF patterns matching the exact frequencies of the harmonics of the echolocation calls could not be observed in both bat species. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Munich, Dept Biol 2, D-82152 Planegg Martinsried, Germany.
RP Firzlaff, U (reprint author), Univ Munich, Dept Biol 2, Grosshadernerstr 2, D-82152 Planegg Martinsried, Germany.
EM firzlaff@zi.biologie.uni-muenchen.de
CR BRUNS V, 1976, J COMP PHYSIOL, V106, P77
   CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115
   COLES RB, 1989, J COMP PHYSIOL A, V165, P269, DOI 10.1007/BF00619201
   COLES RB, 1986, J EXP BIOL, V121, P371
   Esser KH, 1996, J COMP PHYSIOL A, V178, P779
   Esser KH, 1999, EUR J NEUROSCI, V11, P3669, DOI 10.1046/j.1460-9568.1999.00789.x
   Firzlaff Uwe, 2003, Hearing Research, V185, P110, DOI 10.1016/S0378-5955(03)00281-8
   Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5
   FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757
   FUZESSERY ZM, 1992, J COMP PHYSIOL A, V170, P57
   GRIFFIN DR, 1962, NATURE, V196, P1186
   GRINNELL AD, 1967, LAB PHYSL ACOUST JOU, P451
   GUPPY A, 1988, J COMP PHYSIOL A, V162, P653, DOI 10.1007/BF01342641
   HARTLEY DJ, 1990, J ACOUST SOC AM, V87, P2756, DOI 10.1121/1.399066
   Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8
   HENSON OW, 1985, J COMP PHYSIOL A, V157, P587, DOI 10.1007/BF01351353
   HOWELL DJ, 1974, J MAMMAL, V55, P293, DOI 10.2307/1378999
   JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6
   Kanwal JS, 2003, NETWORK-COMP NEURAL, V14, P413, DOI 10.1088/0954-898X/14/3/303
   Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X
   Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0
   Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6
   KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362
   KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I
   KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2
   KOSSL M, 1994, HEARING RES, V72, P73, DOI 10.1016/0378-5955(94)90207-0
   LONG GR, 1975, J COMP PHYSIOL, V100, P211
   MAKOUS JC, 1986, HEARING RES, V24, P73, DOI 10.1016/0378-5955(86)90006-7
   MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470
   MOORE BCJ, 1989, J ACOUST SOC AM, V85, P820, DOI 10.1121/1.397554
   NEUWEILER G, 1987, BEHAV ECOL SOCIOBIOL, V20, P53, DOI 10.1007/BF00292166
   OBRIST MK, 1993, J EXP BIOL, V180, P119
   PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4
   RADTKESCHULLER S, 1995, EUR J NEUROSCI, V7, P570, DOI 10.1111/j.1460-9568.1995.tb00662.x
   RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5
   RIFE DD, 1989, J AUDIO ENG SOC, V37, P419
   Schmidt S., 1984, Myotis, V21-22, P62
   SCHMIDT U, 1991, J COMP PHYSIOL A, V168, P45, DOI 10.1007/BF00217102
   SCHNEIDER H, 1960, Z VERGL PHYSIOL, V44, P1, DOI 10.1007/BF00297861
   SCHNITZL.HU, 1970, Z VERGL PHYSIOL, V68, P25, DOI 10.1007/BF00297809
   SCHNITZLER HU, 1977, J COMP PHYSIOL, V116, P51
   SCHROEDER MR, 1979, J ACOUST SOC AM, V66, P467
   SCHULLER G, 1979, J COMP PHYSIOL, V132, P47
   SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140
   SUGA N, 1975, J EXP BIOL, V63, P161
   WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557
   Wotton JM, 2000, J ACOUST SOC AM, V107, P1034, DOI 10.1121/1.428283
   WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410
   Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883
NR 49
TC 17
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 74
EP 86
DI 10.1016/j.heares.2004.06.009
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800009
PM 15504606
ER

PT J
AU Wei, CG
   Cao, KL
   Zeng, FG
AF Wei, CG
   Cao, KL
   Zeng, FG
TI Mandarin tone recognition in cochlear-implant subjects
SO HEARING RESEARCH
LA English
DT Article
DE cochlear implant; tone recognition; speech recognition; rate
   discrimination; electrode; channel
ID INTERLEAVED SAMPLING PROCESSORS; SPEECH RECOGNITION; TEMPORAL CUES;
   FUNDAMENTAL-FREQUENCY; ELECTRIC HEARING; ENVELOPE CUES; PERCEPTION;
   CHINESE; PITCH; INFORMATION
AB This study examined tone recognition in five cochlear-implant subjects who were native speakers of Mandarin and used a Nucleus-22 device. Psychophysical experiments were conduced to measure rate discrimination in individual electrodes from the most apical to the most basal electrodes. The rate range was from 100 to 200 Hz, which corresponded to the range of variation in fundamental frequency for the tonal tokens used in this study. Speech recognition experiments were also conducted to measure tone recognition as function of the number of electrodes from a 1-electrode map to a 20-electrode map. Large individual variability was observed for both rate discrimination and tone recognition result: Average rate discrimination ranged between 0.2 and 1.2 (Weber's fraction) whereas tone recognition ranged between 30% and 70% correct. A highly significant correlation was found between rate discrimination and tone recognition with the 20-electrode map, but a non-significant correlation was observed with the 1-electrode map due to a floor effect in tone recognition. The present result supports the hypothesis that both spectral and temporal cues contribute to tone recognition. In addition, the present result shows that current cochlear-implant subjects produced significantly lower performance than acoustic simulations in normal-hearing subjects, suggesting that neither temporal nor spectral cues have been adequately and appropriately extracted and encoded in current cochlear implants. New designs are discussed to improve tone recognition in cochlear implant subjects. (C) 2004 Elsevier B.V. All rights reserved.
C1 Beijing Union Med Coll Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100730, Peoples R China.
   Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA.
   Univ Calif Irvine, Dept Biomed Engn Head & Neck Surg, Irvine, CA 92697 USA.
   Univ Calif Irvine, Dept Cognit Sci & Otolaryngol, Irvine, CA 92697 USA.
RP Zeng, FG (reprint author), Beijing Union Med Coll Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100730, Peoples R China.
EM fzeng@uci.edu
RI Zeng, Fan-Gang/G-4875-2012
CR AU SKK, 2003, CLIN OTOLARYNGOL, V28, P533
   BLICHER DL, 1990, J PHONETICS, V18, P37
   Busby PA, 2000, J ACOUST SOC AM, V107, P547, DOI 10.1121/1.428353
   Cao K, 2000, Zhonghua Er Bi Yan Hou Ke Za Zhi, V35, P16
   曹克利, 2004, [中华耳鼻咽喉科杂志, Chinese Journal of Otorhinolaryngology], V39, P71
   Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201
   Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538
   Fu QJ, 2000, ASIA PACIFIC J SPEEC, V5, P45
   Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013
   Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251
   GARDING E, 1986, LANG SPEECH, V29, P281
   Garnham Carolyn, 2002, Ear and Hearing, V23, P540, DOI 10.1097/00003446-200212000-00005
   Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650
   Geurts L, 1999, J ACOUST SOC AM, V105, P2476, DOI 10.1121/1.426851
   Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623
   Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688
   韩德民, 2004, [中华耳鼻咽喉科杂志, Chinese Journal of Otorhinolaryngology], V39, P70
   HOWIE JM, 1974, PHONETICA, V30, P129
   Huang T S, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P294
   Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F
   KONG YY, 2003, 26 ANN MIDW RES M, V26, P213
   Lan N, 2004, IEEE T BIO-MED ENG, V51, P752, DOI 10.1109/TBME.2004.826597
   Lee KYS, 2002, INT J PEDIATR OTORHI, V63, P137, DOI 10.1016/S0165-5876(02)00005-8
   Liang Z. A., 1963, ACTA PHYS SINICA, V26, P85
   LIN MC, 1988, CHIN LINGUIST, V3, P182
   Litvak LM, 2003, J ACOUST SOC AM, V114, P2079, DOI 10.1121/1.1612493
   NIE K, 2004, IN PRESS IEEE T BIOM
   Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101
   ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070
   Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215
   Rubinstein Jay T, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P14
   SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303
   SKINNER MW, 1994, AM J OTOL, V15, P15
   STICKNEY GS, 2004, IN PRESS J ACOUST SO
   VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251
   VONGPHOE M, 2004, IN PRESS J ACOUST SO
   WEI C, 1994, CHIN J OTORHINOLARYN, V34, P84
   Wei WI, 2000, ACTA OTO-LARYNGOL, V120, P218
   WHALEN DH, 1992, PHONETICA, V49, P25
   WHITFORD LA, 1993, ADV OTO-RHINO-LARYNG, V48, P85
   Wu JL, 2003, INT J PEDIATR OTORHI, V67, P247, DOI 10.1016/S0165-5876(02)00378-6
   Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786
   Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843
   XU SA, 1987, ANN OTO RHINOL LARYN, V96, P126
   Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
   ZENG FG, 1995, AUDIOLOGY, V34, P61
NR 46
TC 51
Z9 62
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 87
EP 95
DI 10.1016/j.heares.2004.06.002
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800010
PM 15504607
ER

PT J
AU Cotton, J
   Grant, W
AF Cotton, J
   Grant, W
TI Computational models of hair cell bundle mechanics: I. Single
   stereocilium
SO HEARING RESEARCH
LA English
DT Article
DE stereocilia computational model; stereocilia deformation; actin shear
   deformation
ID ACTIN-FILAMENTS; SENSORY HAIRS; INNER-EAR; MECHANOELECTRICAL
   TRANSDUCTION; RECEPTOR CELLS; STIFFNESS; COCHLEA
AB A distributed parameter model for describing the response of a stereocilium to an applied force is presented. This model is based on elasticity theory, plus the geometry and material properties of the stereocilium. The stereocilia shaft above the taper is not assumed to be perfectly rigid. It is assumed to be deformable and that two separate mechanisms are involved in its deformation: bending and shear. The influence of each mode of deformation is explored in parametric studies. Results show that the magnitude of tip deflection depends on the shear compliance of the stereocilium material, the degree of base taper, and stereocilium height. Furthermore, the deformation profiles observed experimentally will occur only if there are constraints on the geometry and material properties of the stereocilium. (C) 2004 Elsevier B.V. All rights reserved.
C1 Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA.
   Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA.
RP Grant, W (reprint author), Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Mail Code 0219, Blacksburg, VA 24061 USA.
EM jgrant@vt.edu
RI Cotton, John/H-6302-2011
OI Cotton, John/0000-0003-4029-2565
CR Beer F. P., 2001, MECH MAT
   BORESI AP, 1993, ADV MECH MAT, P178
   COTTON JR, 1998, THESIS VIRGINIA POLY
   Cotton JR, 2000, J BIOMECH ENG-T ASME, V122, P44, DOI 10.1115/1.429626
   DUNCAN RK, 1993, THESIS VIRGINIA POLY
   Duncan RK, 1999, HEARING RES, V127, P22, DOI 10.1016/S0378-5955(98)00168-3
   Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1
   FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0
   FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817
   FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339
   GITTES F, 1993, J CELL BIOL, V120, P923, DOI 10.1083/jcb.120.4.923
   GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208
   HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99
   HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4
   Jones R. M., 1999, MECH COMPOSITE MAT
   LEWIS ER, 1985, VERTEBRATE EAR
   LIM DJ, 1977, P SHAMB 5 INT WORKSH, P16
   Lindeman H H, 1973, Adv Otorhinolaryngol, V20, P405
   PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P
   PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H
   SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P299, DOI 10.1121/1.392491
   Silver RB, 1998, J COMP NEUROL, V402, P48
   SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C
   TILNEY LG, 1983, J CELL BIOL, V96, P822, DOI 10.1083/jcb.96.3.822
NR 24
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 96
EP 104
DI 10.1016/j.heares.2004.06.004
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800011
PM 15504608
ER

PT J
AU Cotton, J
   Grant, W
AF Cotton, J
   Grant, W
TI Computational models of hair cell bundle mechanics: II. Simplified
   bundle models
SO HEARING RESEARCH
LA English
DT Article
DE hair cell bundle; mechanical model; bundle stiffness; distributed
   parameter bundle model
ID INNER-EAR; CILIARY BUNDLES; STIFFNESS; COCHLEA
AB Simplified versions of hair cell bundles are mechanically modeled. The influence of various geometric and material combinations on bundle stiffness, link tensions and deformation shape are examined; Three models are analyzed within this paper: two stereocilia connected by one link, two stereocilia connected by a biologically realistic set of links, and a column of stereocilia connected by realistic links. Stereocilia are modeled using a distributed parameter model [J.Biomech.Eng. 122, 44]. Some fundamental rules for linking bundles emerge from these tests: (1) Links must have a threshold stiffness value for the bundle to deform as a whole. Beyond this value, the stereocilia are perfectly linked and variations in link stiffness do not significantly effect the bundle stiffness or link tension. (2) Decreasing the relative heights of successive stereocilia may increase link tension while decreasing bundle stiffness. (3) When lateral links exist, the top most lateral links carry the majority of tension. Lower links in single column model appear mechanically insignificant. (4) Extending the length of the bundle in a column does not increase the stiffness once the column reaches a certain length. (C) 2004 Elsevier B.V. All rights reserved.
C1 Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA.
   Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA.
RP Grant, W (reprint author), Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Mail Code 0219, Blacksburg, VA 24061 USA.
EM jgrant@vt.edu
RI Cotton, John/H-6302-2011
OI Cotton, John/0000-0003-4029-2565
CR Beer F. P., 2001, MECH MAT
   COREY D P, 1989, Society for Neuroscience Abstracts, V15, P208
   COTTON JR, 1998, THESIS VIRGINIA POLY
   COTTON JR, 1997, ANAL FINITE ELEMENT
   Cotton JR, 2000, J BIOMECH ENG-T ASME, V122, P44, DOI 10.1115/1.429626
   Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1
   Duncan RK, 1995, AUDIT NEUROSCI, V1, P321
   FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817
   GITTES F, 1993, J CELL BIOL J, V20, P93
   GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208
   HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4
   HUDSPETH AJ, 1983, SCI AM, V248, P54
   KACHAR B, 2000, PNAS, V97
   Lewis ER, 1985, VERTEBRATE INNER EAR
   Peterson EH, 1996, ANN NY ACAD SCI, V781, P85, DOI 10.1111/j.1749-6632.1996.tb15695.x
   PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P
   Reddy J. N., 1993, FINITE ELEMENT METHO
   SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C
   Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010
NR 19
TC 14
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 105
EP 111
DI 10.1016/j.heares.2004.06.005
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800012
PM 15504609
ER

PT J
AU Silber, J
   Cotton, J
   Nam, JH
   Peterson, EH
   Grant, W
AF Silber, J
   Cotton, J
   Nam, JH
   Peterson, EH
   Grant, W
TI Computational models of hair cell bundle mechanics: III. 3-D utricular
   bundles
SO HEARING RESEARCH
LA English
DT Article
DE finite element bundle model; 3-D hair cell bundle model; tip-link
   tensions; upper lateral link tensions
ID MECHANOELECTRICAL TRANSDUCTION; FLEXURAL RIGIDITY; CILIARY BUNDLES; TIP
   LINKS; INNER-EAR; MICROTUBULES; STEREOCILIA; ADAPTATION; FROG
AB Six utricular hair bundles from a red-eared turtle are modeled using 3-D finite element analysis. The mechanical model includes shear deformable stereocilia, realignment of all forces during force load increments, and tip and lateral link inter-stereocilia connections. Results show that there are two distinct bundle types that can be separated by mechanical bundle stiffness. The more compliant group has fewer total stereocilia and short stereocilia relative to kinocilium height; these cells are located in the medial and lateral extrastriola. The stiff group are located in the striola. They have more stereocilia and long stereocilia relative to kinocilia heights. Tip link tensions show parallel behavior in peripheral columns of the bundle and serial behavior in central columns when the tip link modulus is near or above that of collagen (1x10(9) N/m(2)). This analysis shows that lumped parameter models of single stereocilia columns can show some aspects of bundle mechanics; however, a distributed, 3-D model is needed to explore overall bundle behavior. (C) 2004 Elsevier B.V. All rights reserved.
C1 Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA.
   Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA.
   Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA.
   Ohio Univ, Dept Sci Biol, Athens, OH 45701 USA.
   Ohio Univ, Program Neurosci, Athens, OH 45701 USA.
RP Grant, W (reprint author), Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Mail Code 0219, Blacksburg, VA 24061 USA.
EM jgrant@vt.edu
RI Cotton, John/H-6302-2011
OI Cotton, John/0000-0003-4029-2565
CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X
   BAGGERSJOBACK D, 1988, ACTA OTOLARYNGOL STO, V106, P394
   COREY DP, 2004, NATURE NEWS VIEWS, V248, P901
   COTTON JR, 1998, THESIS VIRGINIA POLY
   Cotton JR, 2000, J BIOMECH ENG-T ASME, V122, P44, DOI 10.1115/1.429626
   DUNCAN RK, 1993, THESIS VIRGINIA POLY
   DUNCAN RK, THESIS U PENNSYLVANI
   Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1
   Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285
   Fontilla MF, 2000, HEARING RES, V145, P8, DOI 10.1016/S0378-5955(00)00068-X
   Fung Y. C., 1981, BIOMECHANICS MECH PR
   GITTES F, 1993, J CELL BIOL, V120, P923, DOI 10.1083/jcb.120.4.923
   GOODYEAR R, 1992, J COMP NEUROL, V325, P243, DOI 10.1002/cne.903250208
   GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208
   HILLMAN DE, 1971, SCIENCE, V174, P416, DOI 10.1126/science.174.4007.416
   Howard J., 2001, MECH MOTOR PROTEINS
   HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064
   HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0
   HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4
   ISHIJIMA S, 1994, CELL STRUCT FUNCT, V19, P349
   JACOBS RA, 1990, COLD SH Q B, V55, P547
   Jones R. M., 1999, MECH COMPOSITE MAT
   Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336
   KIKUCHI T, 1989, ACTA OTO-LARYNGOL, V108, P26, DOI 10.3109/00016488909107388
   Langer MG, 2001, BIOPHYS J, V80, P2608
   MERKLE AC, 2000, THESIS VIRGINIA POLY
   MICKEY B, 1995, J CELL BIOL, V130, P909, DOI 10.1083/jcb.130.4.909
   MIKLOS S, 1997, SCIENCE, V267, P1112
   Peterson EH, 1996, ANN NY ACAD SCI, V781, P85, DOI 10.1111/j.1749-6632.1996.tb15695.x
   PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P
   SILVERMAN JM, 2002, THESIS VIRGINIA POLY
   TSKHOVROEBOVA L, 1997, NATURE, V386, P308
   Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010
NR 33
TC 26
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 112
EP 130
DI 10.1016/j.heares.2004.06.006
PG 19
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800013
PM 15504610
ER

PT J
AU Chen, ZQ
   Ulfendahl, M
   Ruan, RS
   Tan, L
   Duan, ML
AF Chen, ZQ
   Ulfendahl, M
   Ruan, RS
   Tan, L
   Duan, ML
TI Protection of auditory function against noise trauma with local
   caroverine administration in guinea pigs
SO HEARING RESEARCH
LA English
DT Article
DE caroverine; glutamate receptor antagonist; protection; noise-induced
   hearing loss; auditory brainstem response; guinea pig
ID EXCITATORY AMINO-ACIDS; INDUCED HEARING-LOSS; RECEPTOR SUBUNITS;
   MAMMALIAN COCHLEA; KAINIC ACID; INNER-EAR; EXCITOTOXICITY; ASPARTATE;
   SYNAPSES; NEURONS
AB Glutamate is the most likely neurotransmitter at the synapse between the inner hair cell and its afferent neuron in the peripheral auditory system. Intense noise exposure may result in excessive glutamate release, binding to the post-synaptic receptors and leading to neuronal degeneration and hearing impairment. The present study investigated the protective effect of caroverine, an antagonist of two glutamate receptors, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, on noise-induced hearing loss. Two different doses of caroverine were applied onto the round window membrane with gelfoam, followed by one-third-octave band noise centered at 6.3 kHz (110 dB SPL) for 1h. Auditory brainstem responses were measured at regular time intervals afterwards. Caroverine was found to offer significant protection of the cochlear function against noise-induced hearing loss. (C) 2004 Elsevier B.V. All rights reserved.
C1 Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden.
   Natl Univ Singapore, Dept Otolaryngol, Singapore, Singapore.
   Karolinska Hosp, Karolinska Inst, Ctr Hearing & Commun Res, SE-17176 Stockholm, Sweden.
   Karolinska Hosp, Dept Otolaryngol, S-10401 Stockholm, Sweden.
RP Duan, ML (reprint author), Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden.
EM maoli.duan@cfh.ki.se
CR ALTSCHULER RA, 1989, HEARING RES, V42, P167, DOI 10.1016/0378-5955(89)90142-1
   BLEDSOE SC, 1980, EXP BRAIN RES, V40, P97
   Bullock R, 1995, ANN NY ACAD SCI, V765, P272, DOI 10.1111/j.1749-6632.1995.tb16584.x
   Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3
   CHEN Z, 2003, AUDIOL NEURO-OTOL, V8, P46
   CHOI DW, 1987, J NEUROSCI, V7, P369
   Denk DM, 1997, ACTA OTO-LARYNGOL, V117, P825, DOI 10.3109/00016489709114208
   Doble A, 1999, PHARMACOL THERAPEUT, V81, P163, DOI 10.1016/S0163-7258(98)00042-4
   Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
   Duan M L, 1996, Audiol Neurootol, V1, P320
   Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7
   EHRENBERGER K, 1992, NEUROPHARMACOLOGY, V31, P1259, DOI 10.1016/0028-3908(92)90054-S
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FELIX D, 1991, EUR ARCH OTO-RHINO-L, V248, P429, DOI 10.1007/BF00627627
   Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796
   Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470
   Jager W, 1998, EXP BRAIN RES, V121, P425, DOI 10.1007/s002210050477
   KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0
   KLINKE R, 1977, EXP BRAIN RES, V30, P145
   KOCH RA, 1994, J NEUROSCI, V14, P2585
   LIPTON SA, 1994, NEW ENGL J MED, V330, P613
   Matsubara A, 1996, J NEUROSCI, V16, P4457
   MUIR KW, 1995, STROKE, V26, P503
   NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338
   Oestreicher E, 2002, ADV OTO-RHINO-LARYNG, V59, P18
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209
   Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
   PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819
   PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002
   SAUNDERS JC, 1970, BRAIN RES, V24, P336
   Shero M, 1998, NEUROSCI LETT, V257, P81, DOI 10.1016/S0304-3940(98)00821-0
   SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
   USAMI S, 1995, NEUROREPORT, V6, P1161, DOI 10.1097/00001756-199505300-00022
   ZIVIN JA, 1991, SCI AM, V265, P56
NR 38
TC 7
Z9 9
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD NOV
PY 2004
VL 197
IS 1-2
BP 131
EP 136
DI 10.1016/j.heares.2004.03.021
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 871JH
UT WOS:000225126800014
PM 15504611
ER

PT J
AU Szucs, A
   Szappanos, H
   Toth, A
   Farkas, Z
   Panyi, G
   Csernoch, L
   Sziklai, I
AF Szucs, A
   Szappanos, H
   Toth, A
   Farkas, Z
   Panyi, G
   Csernoch, L
   Sziklai, I
TI Differential expression of purinergic receptor subtypes in the outer
   hair cells of the guinea pig
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 40th Workshop on Inner Ear Biology
CY SEP 07-10, 2003
CL Granada, SPAIN
DE OHC; purinoceptors; ATP; calcium
ID 5'-TRIPHOSPHATE-GATED ION-CHANNEL; DEVELOPING RAT COCHLEA; P2X
   RECEPTORS; ATP RECEPTOR; MUSCLE CELLS; ELECTROMOTILITY; ACETYLCHOLINE;
   LOCALIZATION; SUBUNITS; NOMENCLATURE
AB ATP acts as a neuro-modulator through purinoceptors in many different tissues. Many subtypes of these receptors have been identified in the inner ear, but so far only two types have been shown to be present in the membrane of the isolated outer hair cells (OHCs). The aim of this study was to detect and visualize the existence and distribution of purinoceptor subtypes as well as to study the [Ca2+](i) response of these cells in response to stimulation with ATP. Four P2X and three P2Y receptor subtypes were identified with different expression pattern in the membrane of guinea pig outer hair cells. Whereas intense labeling was observed for P2X1, P2X2, P2X4, P2Y1, P2Y2, and P2Y4, the labeling for the subtype P2X7 was weak. There was a marked difference in the distribution of the receptors along the surface of the cells with a homogenous distribution in cases of P2X I, P2X4, and P2Y1. In contrast, P2X2 and P2Y2 receptor density was high mainly at the apical, while P2X7 and P2Y4 at the basal pole of the cells. Similarly a heterogeneity was observed in the ATP-induced transient elevation in [Ca2+](i), which had either fast kinetics without desensitization or slow rise with desensitization. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Debrecen, Sch Med, Med & Hlth Sci Ctr, Dept Otolaryngol & Head & Neck Surg, H-4012 Debrecen, Hungary.
   Univ Debrecen, Med Sch, Med & Hlth Sci Ctr, Dept Physiol, Debrecen, Hungary.
   Univ Debrecen, Med Sch, Med & Hlth Sci Ctr, Dept Biophys & Cell Biol, Debrecen, Hungary.
   Univ Debrecen, Med Sch, Med & Hlth Sci Ctr, Cell Physiol Res Grp, Debrecen, Hungary.
RP Szucs, A (reprint author), Univ Debrecen, Sch Med, Med & Hlth Sci Ctr, Dept Otolaryngol & Head & Neck Surg, H-4012 Debrecen, Hungary.
EM aszucs10@hotmail.com
RI Cserne Szappanos, Henrietta/A-3216-2009; Panyi, Gyorgy/H-4406-2013
CR ABBRACCHIO MP, 1993, DRUG DEVELOP RES, V28, P207, DOI 10.1002/ddr.430280304
   Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5
   BURNSTOCK G, 1993, DRUG DEVELOP RES, V28, P301, DOI 10.1002/ddr.430280320
   CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E
   Cseri J, 2002, PFLUG ARCH EUR J PHY, V443, P731, DOI 10.1007/s00424-001-0757-x
   Dallos P, 1997, J NEUROSCI, V17, P2212
   EDWARDS FA, 1992, NATURE, V359, P144, DOI 10.1038/359144a0
   EVANS RJ, 1992, NATURE, V357, P503, DOI 10.1038/357503a0
   FRIEL DD, 1988, J PHYSIOL-LONDON, V401, P361
   GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440
   HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113
   Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0
   Khakh BS, 2001, PHARMACOL REV, V53, P107
   Mammano F, 1999, J NEUROSCI, V19, P6918
   MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X
   Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10
   MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5
   MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3
   Nikolic P, 2003, AUDIOL NEURO-OTOL, V8, P28, DOI 10.1159/000067891
   Nikolic P, 2001, DEV BRAIN RES, V126, P173, DOI 10.1016/S0165-3806(00)00149-8
   North RA, 2002, PHYSIOL REV, V82, P1013, DOI 10.1152/physrev.00015.2002
   Parker MS, 1998, HEARING RES, V121, P62, DOI 10.1016/S0378-5955(98)00065-3
   Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2
   Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3
   Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153
   WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1
   WILKSTROM MA, 1998, J PHYSIOL-PARIS, V92, P345
   Xiang ZH, 1999, HEARING RES, V128, P190, DOI 10.1016/S0378-5955(98)00208-1
   ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X
NR 29
TC 18
Z9 18
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 2
EP 7
DI 10.1016/j.heares.2004.04.008
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700002
PM 15464295
ER

PT J
AU Previati, M
   Lanzoni, I
   Corbacella, E
   Magosso, S
   Giuffre, S
   Francioso, F
   Arcelli, D
   Volinia, S
   Barbieri, A
   Hatzopoulos, S
   Capitani, S
   Martini, A
AF Previati, M
   Lanzoni, I
   Corbacella, E
   Magosso, S
   Giuffre, S
   Francioso, F
   Arcelli, D
   Volinia, S
   Barbieri, A
   Hatzopoulos, S
   Capitani, S
   Martini, A
TI RNA expression induced by cisplatin in an organ of Corti-derived
   immortalized cell line
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 40th Workshop on Inner Ear Biology
CY SEP 07-10, 2003
CL Granada, SPAIN
ID HEP G2 CELLS; DIHYDRORHODAMINE 123; LIPID-PEROXIDATION;
   ARACHIDONIC-ACID; CIS-PLATINUM; HEARING-LOSS; APOPTOSIS; CYTOTOXICITY;
   OTOTOXICITY; GENERATION
AB Cisplatin [civ-diamminedichloroplatinum(II)] (CDDP) is an organic compound that is widely used for the treatment of a large number of tumors. Its clinical use is limited by the presence of some undesired side effects, like as oto- and nephro toxicity, whose mechanisms of action are not understood. One of the possible CDDP toxicity mechanism seems to involve the generation of reactive oxygen species (ROS), that can impair morphology and function of hair cells (HQ in the organ of Corti.
   To test this hypothesis we evaluated the effect of CDDP treatment on RNA steady-state levels of 15,000 genes by microarray analysis, using, as a experimental model, the OC-k3 cell line, obtained from the organ of Corti of transgenic mice and constitutively expressing the large SV40 T antigen. We have found overexpression of several genes related to arachidonate mobilization including phospholipase A2, group IV and V, phospholipase A2 activating protein and lysophospholipase I and 111, as well as lipoxygenation like arachidonate 12-lipoxygenase and arachidonate 5-lipoxygenase activating protein. In addition, we found significant transcription of genes regulating cell respiration, including cyt c oxidase, as well as genes involved in xenobiotic detoxification and lipid peroxidation such as cyt P450, and other oxidases including spermine oxidase and monoamine oxidase.
   As a whole, overexpression of the group of different genes seems to indicate that an oxidative burst could take place during cisplatin administration. We therefore searched for evidences of superoxide anion and hydrogen peroxide by means of electron paramagnetic resonance (EPR) spectroscopy and flow cytometry, but failed to detect them. On the other hand, we found an increase of malondialdehyde (MDA) synthesis and protein carbonylation products, indicating the occurence of lipid peroxidative degradation. When we tested the effectiveness of butylated hydroxytoluene (BHT), dithiothreitol (DTT) and N-acetylcysteine (N-Ac) as cytoprotectants, all of them reduced protein carbonylation to control levels and significantly protected OC-k3 from CDDP-induced cell death, with an higher protection when using the lipophylic antioxidant BHT. The same antioxidants prevented also the onset of protein carbonylation, which extent was decreased to basal levels.
   These data indicate that CDDP is able to stimulate gene expression up to 12 h after the beginning of the treatment. This increase in gene transcription involves a large number of genes potentially able to increase the level of cell ROS. Consistently, cells survival is improved by cotreatment with antioxidants, in particular lipophilics. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Ferrara, Human Anat Div, Dept Morphol & Embryol, I-44100 Ferrara, Italy.
   Univ Ferrara, Ctr Bioacust, Ferrara, Italy.
   Univ Ferrara, Histol Div, Dept Morphol & Embryol, Ferrara, Italy.
   CNR, ISOF, Ferrara, Italy.
RP Previati, M (reprint author), Univ Ferrara, Human Anat Div, Dept Morphol & Embryol, Via Fossato Mortara 66, I-44100 Ferrara, Italy.
EM prm@unife.it
RI Barbieri, Andrea/B-8712-2009
OI Barbieri, Andrea/0000-0002-8841-9521
CR BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3
   Bertolaso L, 2001, AUDIOLOGY, V40, P327
   BONDY SC, 1994, BIOCHEM PHARMACOL, V48, P155, DOI 10.1016/0006-2952(94)90235-6
   BYOUNG JS, 2001, CHEM-BIOL INTERACT, V130, P943
   Cao Y, 2000, P NATL ACAD SCI USA, V97, P11280, DOI 10.1073/pnas.200367597
   Cederbaum AI, 1998, BIOFACTORS, V8, P93, DOI 10.1002/biof.5520080116
   Chen Q, 1997, MOL PHARMACOL, V52, P648
   Chen Q, 1997, J BIOL CHEM, V272, P14532, DOI 10.1074/jbc.272.23.14532
   Dalle-Donne I, 2003, TRENDS MOL MED, V9, P169, DOI 10.1016/S1471-4914(03)00031-5
   DRAPER HH, 1990, METHOD ENZYMOL, V186, P421
   DULING DR, 1994, J MAGN RESON SER B, V104, P105, DOI 10.1006/jmrb.1994.1062
   EASTMAN A, 1987, CHEM-BIOL INTERACT, V61, P241, DOI 10.1016/0009-2797(87)90004-4
   ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407
   FAUSTI SA, 1984, CANCER, V53, P224, DOI 10.1002/1097-0142(19840115)53:2<224::AID-CNCR2820530207>3.0.CO;2-D
   Gabaizadeh R, 1997, MOL BRAIN RES, V50, P71, DOI 10.1016/S0169-328X(97)00173-3
   Golub TR, 1999, SCIENCE, V286, P531, DOI 10.1126/science.286.5439.531
   Gonzalez VM, 2001, MOL PHARMACOL, V59, P657
   Hawksworth GM, 1996, ARCH TOX S, V18, P184
   HENDERSON LM, 1993, EUR J BIOCHEM, V217, P973, DOI 10.1111/j.1432-1033.1993.tb18328.x
   Kalinec F, 1999, CELL BIOL INT, V23, P175, DOI 10.1006/cbir.1998.0339
   KOHN S, 1988, LARYNGOSCOPE, V98, P865
   LEVINE RL, 1990, METHOD ENZYMOL, V186, P464
   Lopez-Ganzalez MA, 2000, J PINEAL RES, V28, P73, DOI 10.1034/j.1600-079X.2001.280202.x
   PATTEN CJ, 1995, ARCH BIOCHEM BIOPHYS, V317, P504, DOI 10.1006/abbi.1995.1194
   Perez RP, 1998, EUR J CANCER, V34, P1535, DOI 10.1016/S0959-8049(98)00227-5
   RAFF MC, 1993, SCIENCE, V262, P695, DOI 10.1126/science.8235590
   Roberts J J, 1979, Prog Nucleic Acid Res Mol Biol, V22, P71, DOI 10.1016/S0079-6603(08)60799-0
   ROYALL JA, 1993, ARCH BIOCHEM BIOPHYS, V302, P348, DOI 10.1006/abbi.1993.1222
   RYBAK LP, 1981, J LARYNGOL OTOL, V95, P745, DOI 10.1017/S0022215100091374
   Schulze A, 2001, NAT CELL BIOL, V3, pE190, DOI 10.1038/35087138
   SEGAL AW, 1993, TRENDS BIOCHEM SCI, V18, P43, DOI 10.1016/0968-0004(93)90051-N
   SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7
   SORENSON CM, 1990, J NATL CANCER I, V82, P749, DOI 10.1093/jnci/82.9.749
   STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467
   STELLER H, 1995, SCIENCE, V267, P1445, DOI 10.1126/science.7878463
   WRIGHT CG, 1982, LARYNGOSCOPE, V92, P1408
   Zamai L, 2001, CYTOMETRY, V44, P57, DOI 10.1002/1097-0320(20010501)44:1<57::AID-CYTO1082>3.3.CO;2-F
NR 37
TC 14
Z9 17
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 8
EP 18
DI 10.1016/j.heares.2004.04.009
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700003
PM 15464296
ER

PT J
AU Varela-Nieto, I
   Morales-Garcia, JA
   Vigil, P
   Diaz-Casares, A
   Gorospe, I
   Sanchez-Galiano, S
   Canon, S
   Camarero, G
   Contreras, J
   Cediel, R
   Leon, Y
AF Varela-Nieto, I
   Morales-Garcia, JA
   Vigil, P
   Diaz-Casares, A
   Gorospe, I
   Sanchez-Galiano, S
   Canon, S
   Camarero, G
   Contreras, J
   Cediel, R
   Leon, Y
TI Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 40th Workshop on Inner Ear Biology
CY SEP 07-10, 2003
CL Granada, SPAIN
DE apoptosis; insulin-like growth factors; cochleovestibular ganglion;
   development; IGF-I deficit; neurodegeneration; neuroprotection; otic
   vesicle
ID CELL-PROLIFERATION; TRANSGENIC MICE; AUDITORY-SYSTEM; NERVOUS-SYSTEM;
   CHICK-EMBRYO; OTIC NEURONS; HAIR-CELLS; GENE; EXPRESSION;
   INSULIN-LIKE-GROWTH-FACTOR-1
AB lnsulin-like growth factors (IGFs) have a pivotal role during nervous system development and in its functional maintenance. IGF-I and its high affinity receptor (IGF1R) are expressed in the developing inner ear and in the postnatal cochlear and vestibular ganglia. We recently showed that trophic support by IGF-I is essential for the early neurogenesis of the chick cochleovestibular ganglion (CVG). In the chicken embryo otic vesicle, IGF-I regulates developmental death dynamics by regulating the activity and/or levels of key intracellular molecules, including lipid and protein kinases such as ceramide kinase, Akt and Jun N-terminal kinase (JNK). Mice lacking IGF-I lose many auditory neurons and present increased auditory thresholds at early postnatal ages. Neuronal loss associated to IGF-I deficiency is caused by apoptosis of the auditory neurons, which presented abnormally increased levels of activated caspase-3. It is worth noting that in man, homozygous deletion of the IGF-I gene causes sensory-neural deafness (reviewed in Rev. Endo. Met. Disord. 3 (2002) 357). IGF-I is thus necessary for normal development and maintenance of the inner ear. The trophic actio, is of IGF-I in the inner car suggest that this factor may have therapeutic potential for the treatment of hearing loss. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Autonoma Madrid, Consejo Super Invest Cientificas, Inst Invest Biomed Alberto Sols, Madrid 28029, Spain.
   Univ Complutense Madrid, Fac Vet, Madrid 28040, Spain.
   Univ Autonoma Madrid, Dept Biol Fisiol Anim, Madrid, Spain.
RP Varela-Nieto, I (reprint author), Univ Autonoma Madrid, Consejo Super Invest Cientificas, Inst Invest Biomed Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain.
EM ivarela@iib.uam.es
CR Alsina B, 2003, CURR TOP DEV BIOL, V57, P177, DOI 10.1016/S0070-2153(03)57006-5
   BECK KD, 1995, NEURON, V14, P717, DOI 10.1016/0896-6273(95)90216-3
   Burns JL, 2001, DEVELOPMENT, V128, P3819
   Camacho-Hübner Cecilia, 2002, Rev Endocr Metab Disord, V3, P357, DOI 10.1023/A:1020957809082
   Camarero G, 2002, HEARING RES, V170, P2, DOI 10.1016/S0378-5955(02)00447-1
   Camarero G, 2001, J NEUROSCI, V21, P7630
   Camarero G, 2003, DEV BIOL, V262, P242, DOI 10.1016/S0012-1606(03)00387-7
   CARSON MJ, 1993, NEURON, V10, P729, DOI 10.1016/0896-6273(93)90173-O
   Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042
   Dore S, 1997, TRENDS NEUROSCI, V20, P326
   Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597
   Efstratiadis A, 1998, INT J DEV BIOL, V42, P955
   Fekete DM, 2002, CURR OPIN NEUROBIOL, V12, P35, DOI 10.1016/S0959-4388(02)00287-8
   Frago LM, 2003, J CELL SCI, V116, P475, DOI 10.1242/jcs.00223
   Frago LM, 1998, J CELL SCI, V111, P549
   Gao WQ, 1999, J NEUROBIOL, V39, P142, DOI 10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H
   HAMBURGER V, 1992, DEV DYNAM, V195, P231, DOI 10.1002/dvdy.1001950404
   HEMOND SG, 1991, ANAT EMBRYOL, V184, P1, DOI 10.1007/BF01744256
   Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480
   Kirkwood TBL, 2003, TRENDS ENDOCRIN MET, V14, P345, DOI 10.1016/j.tem.2003.08.003
   Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898
   Kuntz AL, 1998, J COMP NEUROL, V399, P413
   Leon Yolanda, 1998, Journal of Comparative Neurology, V398, P323, DOI 10.1002/(SICI)1096-9861(19980831)398:3<323::AID-CNE2>3.0.CO;2-1
   LEON Y, 1995, ENDOCRINOLOGY, V136, P3494, DOI 10.1210/en.136.8.3494
   LIU JP, 1993, CELL, V75, P59, DOI 10.1016/0092-8674(93)90679-K
   Liu JL, 1998, MOL ENDOCRINOL, V12, P1452, DOI 10.1210/me.12.9.1452
   Malgrange B, 2002, HEARING RES, V170, P48, DOI 10.1016/S0378-5955(02)00451-3
   Nakae J, 2001, ENDOCR REV, V22, P818, DOI 10.1210/edrv.22.6.0452
   Oesterle EC, 1997, J COMP NEUROL, V380, P262, DOI 10.1002/(SICI)1096-9861(19970407)380:2<262::AID-CNE8>3.0.CO;2-1
   POWELLBRAXTON L, 1993, GENE DEV, V7, P2609, DOI 10.1101/gad.7.12b.2609
   Resendes BL, 2002, JARO, V3, P45, DOI 10.1007/s101620020005
   Romand R, 1999, BRAIN RES, V825, P46, DOI 10.1016/S0006-8993(99)01211-1
   Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849
   Sanz C, 1999, J CELL SCI, V112, P3967
   Sanz C, 1999, ONCOGENE, V18, P429, DOI 10.1038/sj.onc.1202312
   Savage M O, 2001, Growth Horm IGF Res, V11 Suppl A, pS65, DOI 10.1016/S1096-6374(01)80011-3
   Stacey DJ, 2000, BRAIN RES, V871, P319, DOI 10.1016/S0006-8993(00)02488-4
   Staecker H, 1998, CURR OPIN NEUROBIOL, V8, P480, DOI 10.1016/S0959-4388(98)80035-4
   SWANSON GJ, 1990, DEV BIOL, V137, P243, DOI 10.1016/0012-1606(90)90251-D
   Varela-Nieto I, 2003, MOL NEUROBIOL, V28, P23, DOI 10.1385/MN:28:1:23
   Woods KA, 1996, NEW ENGL J MED, V335, P1363, DOI 10.1056/NEJM199610313351805
   Woods K A, 1997, Acta Paediatr Suppl, V423, P39
   YE P, 1995, J NEUROSCI, V15, P7344
NR 43
TC 32
Z9 34
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 19
EP 25
DI 10.1016/j.heares.2003.12.022
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700004
PM 15464297
ER

PT J
AU Soto, A
   Labella, T
   Santos, S
   del Rio, M
   Lirola, A
   Cabanas, E
   Elhendi, W
AF Soto, A
   Labella, T
   Santos, S
   del Rio, M
   Lirola, A
   Cabanas, E
   Elhendi, W
TI The usefulness of computerized dynamic posturography for the study of
   equilibrium in patients with Meniere's disease: correlation with
   clinical and audiologic data
SO HEARING RESEARCH
LA English
DT Article; Proceedings Paper
CT 40th Workshop on Inner Ear Biology
CY SEP 07-10, 2003
CL Granada, SPAIN
DE Meniere's disease; posturography; staging
ID PAROXYSMAL POSITIONAL VERTIGO; POSTURAL CONTROL; PLATFORM POSTUROGRAPHY;
   DIZZINESS; HANDICAP
AB The use of computerized dynamic posturogaphy (CDP) in the evaluation of patients with balance alterations not only allows quantification of the subject's capacity to maintain a stable centre of gravity, but also analysis of the degree to which the subject is able to use different types of sensory information. The present study investigated the possible use of CDP for clinical staging of vestibular diseases, specifically Meniere's disease (MD). We applied CDP sensory organization tests to 75 patients with definitive MD (AAO-HNS 1995 criteria). A total of 98 CDP sessions were included in the analysis, which focused on four CDP parameters specifically related to vestibular function (condition-5 score, condition-6 score, overall balance score, and VEST, a measure of the relative importance of vestibular information for maintenance of balance). We found a statistically significant relationship between audiometric hearing threshold and CDP scores, especially in patients with audiometrically advanced disease. In addition, CDP scores showed statistically significant variation with time elapsed since the last typical vertigo attack, suggesting that patients can be usefully grouped into three MD activity-level categories: recent post-attack (less than I week since last vertigo attack), late post-attack (1 week - 60 days since last attack), and inactive MD (more than 60 days since last attack). On the basis of these results, we propose expected ranges for each of the four CDP parameters in each of the three MD activity-level categories, allowing staging in terms of balance and posture. This staging system complements existing staging systems (based on audiometric criteria, and on subjective assessment of the severity of vertigo attacks and their implications for quality of life). (C) 2004 Elsevier B.V. All rights reserved.
C1 Sch Med, Santiago De Compostela, Spain.
RP Soto, A (reprint author), Clin Hosp, Dept Otolaryngol, Santiago De Compostela, Spain.
EM ciandsot@usc.es
CR ANDREWS JC, 1996, DISORDERS VESTIBULAR, P300
   ARENBERG IK, 1993, ECOG, OAE AND INTRAOPERATIVE MONITORING, P131
   Cass SP, 1997, ANN OTO RHINOL LARYN, V106, P182
   Committee on Hearing and Equilibrium, 1995, HEAD NECK SURG, V113, P181
   DiFabio RP, 1996, ARCH OTOLARYNGOL, V122, P150
   Di Girolamo S, 1998, ACTA OTO-LARYNGOL, V118, P289
   Di Girolamo S, 2000, EUR ARCH OTO-RHINO-L, V257, P372, DOI 10.1007/s004050000243
   Di Girolamo S, 2001, ACTA OTO-LARYNGOL, V121, P813
   Filipo R, 1997, Acta Otolaryngol Suppl, V526, P10
   Giacomini PG, 2002, ORL J OTO-RHINO-LARY, V64, P237, DOI 10.1159/000064130
   GIBSON WPR, 2000, MENIERES DIS UPDATE, P227
   Jacobson GP, 1998, AM J OTOL, V19, P804
   Karlberg M, 1996, J VESTIBUL RES-EQUIL, V6, P37
   KUMAGAMI H, 1982, ARCH OTOLARYNGOL, V108, P224
   NORRE ME, 1993, AM J OTOLARYNG, V14, P404, DOI 10.1016/0196-0709(93)90114-M
   NORRE ME, 1987, J OTOLARYNGOL, V16, P340
   NORRE ME, 1994, ACTA OTO-LARYNGOL, V114, P465, DOI 10.3109/00016489409126088
   Perez N, 2003, OTOLARYNG HEAD NECK, V128, P372, DOI 10.1067/mhn.2003.102
   ROBERTSON DD, 1995, J OTOLARYNGOL, V24, P118
   SHEA JJ, 1993, AM J OTOL, V14, P224
   Stewart MG, 1999, LARYNGOSCOPE, V109, P600, DOI 10.1097/00005537-199904000-00015
   Williams NP, 1997, AM J OTOL, V18, P93
NR 22
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 26
EP 32
DI 10.1016/j.heares.2004.06.010
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700005
PM 15464298
ER

PT J
AU Ahn, SH
   Oh, SH
   Lee, JS
   Jeong, JM
   Lim, D
   Lee, DS
   Kim, CS
AF Ahn, SH
   Oh, SH
   Lee, JS
   Jeong, JM
   Lim, D
   Lee, DS
   Kim, CS
TI Changes of 2-deoxyglucose uptake in the rat auditory pathway after
   bilateral ablation of the cochlea
SO HEARING RESEARCH
LA English
DT Article
DE deaf; 2-deoxyglucose; auditory cortex; glucose metabolism; cross-modal
   plasticity
ID CROSS-MODAL PLASTICITY; INFERIOR COLLICULUS; IMAGE REGISTRATION;
   SPEECH-PERCEPTION; IMPLANTATION; CORTEX; PATTERNS; THALAMUS; CHILDREN;
   SYSTEM
AB It has been reported that the area of decreased glucose metabolism in the FDG-PET of prelingually deaf children correlates significantly with speech performance after cochlear implantation. In this study, we undertook to confirm changes of glucose metabolism in the cerebral cortex using an animal model with age-matching groups to completely exclude the influence of age differences between the deaf and normal-hearing groups.
   The cochlea was ablated bilaterally at a postnatal 10-14 days in the deaf groups; 3-4 deaf and normal rats were included at each time point at 1, 2, 4 and 8 weeks and 7 months after ablation. After injecting 2-deoxyglucose intraperitoneally, digitalized auto-radiographic images were obtained, and analyzed by using two different methods; 3-dimensional voxel-wise statistical analysis and conventional 2-dimensional densitometry. The hypometabolic area analyzed using 3-dimensional analysis and the differences of optical density between normal and deaf as determined by densitometry were widest and most prominent between 4 and 8 weeks after ablation. Differences were not significant before 2 weeks or after 7 months after ablation.
   This result shows that the hypometabolic area becomes prominent after a critical period and it decreases as the duration of deafness increases. We believe that cross-modal plasticity may be the mechanism of changes in glucose metabolism and that this result reinforced the usefulness of evaluating hypometabolic area using FDG-PET in deaf children. (C) 2004 Elsevier B.V. All rights reserved.
C1 Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul 110744, South Korea.
   Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul, South Korea.
RP Kim, CS (reprint author), Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, 28 Yongon Dong, Seoul 110744, South Korea.
EM chongkim@plaza.snu.ac.kr
RI Jeong, Jae Min/E-2102-2012; Lee, Dong Soo/J-2778-2012; Lee, Jae
   Sung/J-2781-2012
OI Jeong, Jae Min/0000-0003-2611-6020; 
CR ALPERT NM, 1990, J NUCL MED, V31, P1717
   ASANUMA C, 1988, DEV BRAIN RES, V41, P159, DOI 10.1016/0165-3806(88)90179-4
   Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848
   Clerici WJ, 1998, J COMP NEUROL, V399, P110, DOI 10.1002/(SICI)1096-9861(19980914)399:1<110::AID-CNE9>3.0.CO;2-4
   CLERICI WJ, 1986, DEV BRAIN RES, V27, P127, DOI 10.1016/0165-3806(86)90239-7
   Friston KJ, 1994, HUMAN BRAIN MAPPING, V2, P189, DOI DOI 10.1002/HBM.460020402
   Gabriele ML, 2000, J NEUROSCI, V20, P6939
   HEIL P, 1986, J COMP NEUROL, V252, P279, DOI 10.1002/cne.902520302
   Kirk KI, 2002, ANN OTO RHINOL LARYN, V111, P69
   KRAL A, 2002, ARO MIDW M
   KUBO M, 1997, MOGERA NEUROREPORT, V8, P3405
   Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653
   LEE JS, 2002, NUCL SCI S C R IEEE, V3, P1552
   Maes F, 1997, IEEE T MED IMAGING, V16, P187, DOI 10.1109/42.563664
   Malmierca MS, 2002, J NEUROSCI, V22, P10891
   Metherate R, 1999, DEV BRAIN RES, V115, P131, DOI 10.1016/S0165-3806(99)00058-9
   O'Donoghue GM, 2000, LANCET, V356, P466, DOI 10.1016/S0140-6736(00)02555-1
   Oh SH, 2003, ACTA OTO-LARYNGOL, V123, P148, DOI 10.1080/0036554021000028111
   Pallas SL, 2001, TRENDS NEUROSCI, V24, P417, DOI 10.1016/S0166-2236(00)01853-1
   Paxinos G., 1998, RAT BRAIN STEREOTAXI
   RAUSCHECKER JP, 1995, TRENDS NEUROSCI, V18, P36, DOI 10.1016/0166-2236(95)93948-W
   REBILLARD G, 1976, ACTA OTO-LARYNGOL, V82, P48, DOI 10.3109/00016487609120862
   REBILLARD G, 1977, BRAIN RES, V129, P162, DOI 10.1016/0006-8993(77)90980-5
   SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0
   SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x
NR 25
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 33
EP 38
DI 10.1016/j.heares.2004.05.012
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700006
PM 15464299
ER

PT J
AU Kitahara, T
   Li, HS
   Balaban, CD
AF Kitahara, T
   Li, HS
   Balaban, CD
TI Localization of the mitochondrial uncoupling protein family in the rat
   inner ear
SO HEARING RESEARCH
LA English
DT Article
DE uncoupling protein; PGC-1 alpha; PPAR gamma; vestibular ganglion; spiral
   ganglion; mitochondria; real-time PCR; immunohistochemistry
ID CALORIC NYSTAGMUS; VESTIBULAR-NERVE; 3-DIMENSIONAL ASPECTS;
   ENERGY-METABOLISM; SQUIRREL-MONKEY; CELLS; EXPRESSION; BRAIN; MICE;
   THERMOGENESIS
AB Uncoupling proteins (UCPs) are a proton transporter family located in the mitochondrial inner membrane. The molecular expression and activity of UCPs in brown adipose tissue and skeletal muscle are regulated by factors as diverse as chronic overeating and cold exposure,. suggesting roles in energy expenditure and heat production. Although UCP2, UCP4 and brain mitochondrial carrier proteir-1 (BMCP-1, i.e. UCP5) mRNAs are expressed in the central nervous system, their central function is unknown. This study presents the first evidence on localization and quantitative expression of UCPs in the rat inner ear by real-time PCR and immunohistochemistry. Real-time PCR studies revealed that UCP2 mRNA was expressed in the vestibular and spiral ganglia more abundantly than any other UCP. Neocortex, by contrast, contained UCP2 and UCP4 equally. Notably, UCP3 and UCP4 mRNAs were expressed in inner ear ganglia, but brain UCP3 mRNA expression level was undetectable by simple PCR. Immunohistochemical studies confirmed that both UCP2- and UCP3-like immunoreactivities were detected in vestibular and spiral ganglion cells and co-localized with a mitochondrial marker, MitoFluorGreen. According to previous reports, UCP2 and UCP3 are thermogenic in yeast and train UCP2 has been suggested to modulate pre- and post-synaptic events by axonal thermogenesis. It has also been reported recently that UCP2 and UCP3 responses to superoxide application may be an antioxidant protective mechanism. Therefore, it is suggested that mitochondrial UCPs (UCP2, UCP3, UCP4) may play both a protective role against oxidative damage and a thermal signaling role in the eighth nerve. (C) 2004 Published by Elsevier B.V.
C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Eye & Ear Inst 107, Pittsburgh, PA 15123 USA.
   Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15123 USA.
   Univ Pittsburgh, Sch Med, Dept Commun Sci, Pittsburgh, PA 15123 USA.
RP Balaban, CD (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Eye & Ear Inst 107, 203 Lothrop St, Pittsburgh, PA 15123 USA.
EM balabancd@pitt.edu
CR Argyropoulos G, 2002, J APPL PHYSIOL, V92, P2187, DOI 10.1152/japplphysiol.00994.2001
   Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7
   Boss O, 1997, FEBS LETT, V408, P39, DOI 10.1016/S0014-5793(97)00384-0
   CLARKE AH, 1993, ACTA OTO-LARYNGOL, V113, P687, DOI 10.3109/00016489309135886
   CLARKE AH, 1993, ACTA OTO-LARYNGOL, V113, P693, DOI 10.3109/00016489309135887
   Cline GW, 2001, J BIOL CHEM, V276, P20240, DOI 10.1074/jbc.M102540200
   Curtin NA, 2002, J PHYSIOL-LONDON, V542, P231, DOI 10.1113/jphysiol.2002.021964
   Diano S, 2000, ENDOCRINOLOGY, V141, P4226, DOI 10.1210/en.141.11.4226
   Echtay KS, 2002, NATURE, V415, P96, DOI 10.1038/415096a
   Enerback S, 1997, NATURE, V387, P90, DOI 10.1038/387090a0
   Erlanson-Albertsson C, 2003, ACTA PHYSIOL SCAND, V178, P405, DOI 10.1046/j.1365-201X.2003.01159.x
   Fleury C, 1997, NAT GENET, V15, P269, DOI 10.1038/ng0397-269
   GOLDBERG JM, 1984, J NEUROPHYSIOL, V51, P1236
   GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P791
   Hinz W, 1999, FEBS LETT, V448, P57, DOI 10.1016/S0014-5793(99)00331-2
   Hong Y, 2001, ENDOCRINOLOGY, V142, P249, DOI 10.1210/en.142.1.249
   HOOD JD, 1989, ACTA OTO-LARYNGOL, V107, P161, DOI 10.3109/00016488909127494
   Horvath TL, 1999, J NEUROSCI, V19, P10417
   Jaburek M, 1999, J BIOL CHEM, V274, P26003, DOI 10.1074/jbc.274.37.26003
   Jezek P, 2002, INT J BIOCHEM CELL B, V34, P1190, DOI 10.1016/S1357-2725(02)00061-4
   KAMMERMAN JR, 1992, LAB METHODS HISTOTEC, P72
   Mao WG, 1999, FEBS LETT, V443, P326, DOI 10.1016/S0014-5793(98)01713-X
   MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077
   MINOR LB, 1991, J NEUROSCI, V11, P1636
   Park Byung Rim, 1999, Auris Nasus Larynx, V26, P263
   Paulik MA, 1998, PHARMACEUT RES, V15, P944, DOI 10.1023/A:1011993019385
   Pecqueur C, 2001, J MOL MED-JMM, V79, P48, DOI 10.1007/s001090000150
   Porter Jr, 2001, POPTRONICS, V2, P3
   Puigserver P, 2003, ENDOCR REV, V24, P78, DOI 10.1210/er.2002-0012
   SCHERER H, 1986, EXP BRAIN RES, V64, P255
   Schmittgen TD, 2000, ANAL BIOCHEM, V285, P194, DOI 10.1006/abio.2000.4753
   St-Pierre J, 2003, J BIOL CHEM, V278, P26597, DOI 10.1074/jbc.M301850200
   Stuart JA, 2001, BBA-BIOENERGETICS, V1504, P144, DOI 10.1016/S0005-2728(00)00243-7
   Vidal-Puig AJ, 2000, J BIOL CHEM, V275, P16258, DOI 10.1074/jbc.M910179199
   Yu XX, 2000, FASEB J, V14, P1611, DOI 10.1096/fj.14.11.1611
   ZENNER HP, 1995, ACTA OTO-LARYNGOL, V115, P484, DOI 10.3109/00016489509139352
NR 36
TC 10
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 39
EP 48
DI 10.1016/j.heares.2004.02.002
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700007
PM 15464300
ER

PT J
AU Baumann, U
   Nobbe, A
AF Baumann, U
   Nobbe, A
TI Pulse rate discrimination with deeply inserted electrode arrays
SO HEARING RESEARCH
LA English
DT Article
DE temporal pitch; electric hearing; cochlear implant; frequency
   discrimination
ID COCHLEAR IMPLANT SUBJECTS; FREQUENCY DISCRIMINATION; PITCH PERCEPTION;
   ELECTRICAL-STIMULATION; TEMPORAL PITCH; HEARING-LOSS; MODULATION; TONES;
   SENSITIVITY; LISTENERS
AB Pulse rate difference limen (PRDL) and amplitude modulation difference limen (AMDL) were assessed as a function of base rate and cochlear electrode location in seven (three for AMDL) subjects implanted with the MED-EL COMBI 40+ implant. The MEDEL COMBI 40+ electrode array allows deep insertion of the electrode up to the apex of the cochlea to minimize the rate/place mismatch for pulse rates below 500 pps. A three interval, two alternative forced-choice procedure with feedback was used to measure the difference limen. The base rate was in the range between 200 and 800 pps. The carrier rate for the AMDL measurement was 5081 pps. The PRDL increased with increasing base pulse rate. At 200 pps the average PRDL measured at the apical electrode amounted to 48.7 pps, at 400 pps the average PRDL reached 206.6 pps. No significant difference between PRDL obtained from apical or basal electrodes could be observed. AMDL was higher than PRDL at all tested base rates. The ability to discriminate rate changes is limited to base rates up to about 283 pps. The results indicate that rate changes smaller than a major third do not elicit distinguishable auditory perceptions in electrical hearing. The absence of a difference between apical and basal electrode locations indicates that a reduction of the rate/place mismatch does not improve discrimination performance. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Munich, Dept Otorhinolaryngol, D-81377 Munich, Germany.
RP Baumann, U (reprint author), Univ Munich, Dept Otorhinolaryngol, Marchioninistr 15, D-81377 Munich, Germany.
EM uwe.baumann@med.uni-muenchen.de
CR Baumann U, 2004, EAR HEARING, V25, P275, DOI 10.1097/00003446-200406000-00008
   Berlin CI, 2003, PEDIATR CLIN N AM, V50, P331, DOI 10.1016/S0031-3955(03)00031-2
   Carlyon RP, 2002, J ACOUST SOC AM, V112, P1009, DOI 10.1121/1.1496766
   FASTL H, 1981, ACUSTICA, V49, P77
   Fearn R., 1999, Acoustics Australia, V27
   FORMBY C, 1985, J ACOUST SOC AM, V78, P70, DOI 10.1121/1.392456
   HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
   HOCHMAIRDESOYER IJ, 1983, ANN NY ACAD SCI, V405, P295, DOI 10.1111/j.1749-6632.1983.tb31642.x
   Kaernbach C, 2001, J ACOUST SOC AM, V110, P1039, DOI 10.1121/1.1381535
   Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6
   McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744
   McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177
   McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553
   MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640
   MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603
   Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941
   MOORE BCJ, 1995, AUDITORY FREQUENCY S, P407
   MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925
   SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970
   SHANNON RV, 1990, J ACOUST SOC AM, V88, P741, DOI 10.1121/1.399777
   SIMON HJ, 1993, EAR HEARING, V14, P190, DOI 10.1097/00003446-199306000-00006
   TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554
   TURNER CW, 1982, J SPEECH HEAR RES, V25, P34
   TYLER RS, 1983, J ACOUST SOC AM, V74, P1190, DOI 10.1121/1.390043
   VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7
   vanHoesel RJM, 1997, J ACOUST SOC AM, V102, P495, DOI 10.1121/1.419611
   Wagener K, 1999, Z AUDIOL, V38, P44
   Wagener K, 1999, Z AUDIOL, V38, P4
   Wagener K., 1999, Z AUDIOL, V38, P86
   WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251
   WILSON BS, 1997, 8 NIH
   WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0
   Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5
   Zierhofer C. M., 1995, IEEE Transactions on Rehabilitation Engineering, V3, DOI 10.1109/86.372900
   Zwicker E, 1999, PSYCHOACOUSTICS FACT
NR 35
TC 22
Z9 22
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 49
EP 57
DI 10.1016/j.heares.2004.06.008
PG 9
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700008
PM 15464301
ER

PT J
AU Takemura, K
   Komeda, M
   Yagi, M
   Himeno, C
   Izumikawa, M
   Doi, T
   Kuriyama, H
   Miller, JM
   Yamashita, T
AF Takemura, K
   Komeda, M
   Yagi, M
   Himeno, C
   Izumikawa, M
   Doi, T
   Kuriyama, H
   Miller, JM
   Yamashita, T
TI Direct inner ear infusion of dexamethasone attenuates noise-induced
   trauma in guinea pig
SO HEARING RESEARCH
LA English
DT Article
DE steroid; drug delivery system; noise-induced hearing loss; cochlea;
   guinea pig; osmotic pump; auditory brainstem response
ID INDUCED HEARING-LOSS; COCHLEAR BLOOD-FLOW; HAIR CELL LOSS; LASER DOPPLER
   MEASUREMENTS; NITRIC-OXIDE SYNTHASE; ACOUSTIC TRAUMA; GLUCOCORTICOID
   RECEPTORS; NEUROTROPHIC FACTOR; LIPID-PEROXIDATION; AMINOGLYCOSIDE
   OTOTOXICITY
AB The protective effect of dexamethasone (DEX) against noise-induced trauma, as reflected in hair cell destruction and elevation in auditory brainstem response (ABR) sensitivity, was assessed in guinea pigs. The animals were administered DEX (1, 10, 100, and 1000 ng/ml) or artificial perilymph (AP) via a mini-osmotic pump directly into scala tympani and, on the fourth day after pump implantation, exposed to 120 dB SPL octave band noise, centered at 4 kHz, for 24 h. Animals receiving DEX demonstrated a dose-dependent reduction in noise-induced outer hair cell loss (significant at 1, 10 and 100 ng/ml DEX animals compared to AP control animals) and a similar attenuation of the noise-induced ABR threshold shifts, observed 7 days following exposure (significant at 100 ng/ml DEX animals compared to AP control animals). These physiological and morphological results indicate that direct infusion of DEX into the perilymphatic space has protective effects against noise-induced trauma in the guinea pig cochlea. (C) 2004 Elsevier B.V. All rights reserved.
C1 Kansai Med Univ, Dept Otolaryngol, Moriguchi, Osaka 5708507, Japan.
   Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA.
   Karolinska Inst, Dept Otolaryngol, Stockholm, Sweden.
RP Takemura, K (reprint author), Kansai Med Univ, Dept Otolaryngol, Fumizono Cho 10-15, Moriguchi, Osaka 5708507, Japan.
EM takemura@takii.kmu.ac.jp
CR Attanasio G, 2001, ACTA OTO-LARYNGOL, V121, P465, DOI 10.1080/000164801300366598
   BALLARD PL, 1974, ENDOCRINOLOGY, V94, P998
   BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L
   Baxter J.D., 1979, GLUCOCORTICOID HORMO, P1
   BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8
   BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T
   DeRijk R, 1997, J CLIN ENDOCR METAB, V82, P2182, DOI 10.1210/jc.82.7.2182
   Erichsen S, 1996, HEARING RES, V100, P143, DOI 10.1016/0378-5955(96)00105-0
   Fechner FP, 1998, J COMP NEUROL, V400, P299, DOI 10.1002/(SICI)1096-9861(19981026)400:3<299::AID-CNE1>3.0.CO;2-3
   GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052
   GUSTAFSSON JA, 1987, ENDOCR REV, V8, P185
   HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308
   Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3
   Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3
   HU BH, 1995, HEARING RES, V89, P69, DOI 10.1016/0378-5955(95)00122-5
   Itoh A, 1991, Acta Otolaryngol Suppl, V481, P617
   Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470
   Kakigi A, 2002, HEARING RES, V166, P54, DOI 10.1016/S0378-5955(01)00412-9
   KANZAKI J, 1993, ORL J OTO-RHINO-LARY, V55, P24
   KOLLS J, 1994, P SOC EXP BIOL MED, V205, P220
   KONISHI T, 1979, HEARING RES, V1, P325, DOI 10.1016/0378-5955(79)90004-2
   Kristian T, 1998, STROKE, V29, P705
   Lalwani AK, 1996, GENE THER, V3, P588
   Lamm K, 1996, Audiol Neurootol, V1, P148
   Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304
   LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156
   LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0
   LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294
   Maass B, 1981, Adv Otorhinolaryngol, V27, P14
   Mattson MP, 1996, RESTOR NEUROL NEUROS, V9, P191, DOI 10.3233/RNN-1996-9401
   MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585
   MCEWEN BS, 1979, GLUCOCORTICOID HORMO, P467
   Miller J.H., 2001, NOISE INDUCED HEARIN, P215
   Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7
   Mills EJ, 2002, J ALTERN COMPLEM MED, V8, P207, DOI 10.1089/107555302317371514
   Nagura M, 1999, EUR J PHARMACOL, V366, P47, DOI 10.1016/S0014-2999(98)00881-4
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2
   Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5
   Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1
   Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4
   Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846
   PACK AK, 1999, ASS RES OT ABS, P150
   Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001
   PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927
   PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0
   Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8
   Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037
   PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209
   Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3
   Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x
   QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9
   QUIRK WS, 1995, AM J OTOL, V16, P322
   RADOMSKI MW, 1990, P NATL ACAD SCI USA, V87, P10043, DOI 10.1073/pnas.87.24.10043
   RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7
   RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N
   Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1
   ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X
   ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1
   Rothwell NJ, 1997, BRIT J PHARMACOL, V121, P841, DOI 10.1038/sj.bjp.0701248
   Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014
   SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P299, DOI 10.1121/1.392491
   SCHEIBE F, 1990, EUR ARCH OTO-RHINO-L, V247, P84
   SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y
   SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457
   SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052
   Shea JJ, 1996, OTOLARYNG CLIN N AM, V29, P353
   Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999
   Shirwany NA, 1998, AM J OTOL, V19, P230
   Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4
   Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1
   Silverstein H, 1998, AM J OTOL, V19, P196
   SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3
   SLEPECKY N, 1981, ARCH OTO-RHINO-LARYN, V230, P273, DOI 10.1007/BF00456329
   Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2
   SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346
   Suzuki M, 2003, NEUROREPORT, V14, P1951, DOI 10.1097/01.wnr.0000090584.35425.66
   Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825
   TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865
   Terunuma Tsumoru, 2003, Brain Res Mol Brain Res, V120, P65
   THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9
   Tolomeo JA, 1997, BIOPHYS J, V73, P2241
   Tuor UI, 1997, NEUROSCI BIOBEHAV R, V21, P175, DOI 10.1016/S0149-7634(96)00007-3
   TUOR UI, 1993, BRAIN RES, V604, P165, DOI 10.1016/0006-8993(93)90364-S
   Wilckens T, 1997, IMMUNOL TODAY, V18, P418, DOI 10.1016/S0167-5699(97)01111-0
   Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   YAMASHITA D, 2003, ASS RES OTOLARYNGOL, P174
   Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6
   Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1
   ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355
NR 91
TC 74
Z9 77
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 58
EP 68
DI 10.1016/j.heares.2004.06.003
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700009
PM 15464302
ER

PT J
AU Yang, WP
   Henderson, D
   Hu, BH
   Nicotera, TM
AF Yang, WP
   Henderson, D
   Hu, BH
   Nicotera, TM
TI Quantitative analysis of apoptotic and necrotic outer hair cells after
   exposure to different levels of continuous noise
SO HEARING RESEARCH
LA English
DT Article
DE apoptosis; necrosis; outer hair cell; noise; chinchilla
ID GUINEA-PIG; CHINCHILLA COCHLEA; INTENSE NOISE; IMPULSE NOISE; CASPASE;
   NECROSIS; INJURY
AB We have reported that by 2 days after noise exposure the size of cochlear lesion was expanding by outer hair cells (OHCs) dying either by apoptosis or necrosis [Hear. Res. 166 (2002) 62]. The current study was designed to compare the prevalence of the two cell death pathways as a function of time after exposure to noises of different levels. Chinchillas were exposed to a narrow band noise at either 104 or 108 dB SPL for I h. At three time points (1, 4 and 30 days) after the noise exposure, the numbers of missing, apoptotic and necrotic CHCs in the cochleas were identified and documented with a combination of TUNEL, caspase-3 and propidium iodide labeling. The subjects exposed to the 108-dB noise showed significantly more apoptotic OHCs than necrotic OHCs in the cochleas examined at days 1 and 4 after the noise exposure. By day 30, apoptotic and necrotic pathologies continued, although in small quantity, with no significant difference in quantity between two types of cell death. The subjects exposed to the 104-dB noise showed a significant difference in the numbers of apoptotic and necrotic OHCs at day I after the noise exposure, whereas the difference became statistically insignificant at day 4 and day 30 after the noise exposure. The results of the study indicate that the early expansion of cochlear lesion is attributed primarily to apoptosis, whereas the later stage of lesion expansion is likely the result of an equal contribution from apoptosis and necrosis. (C) 2004 Elsevier B.V. All rights reserved.
C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   Roswell Pk Canc Inst, Dept Mol & Cellular Biophys, Buffalo, NY 14263 USA.
RP Hu, BH (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA.
EM bhu@acsu.buffalo.edu
CR Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41
   Eldadah BA, 2000, J NEUROTRAUM, V17, P811, DOI 10.1089/neu.2000.17.811
   FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P81, DOI 10.3109/00016488809107374
   HAMERNIK RP, 1974, J ACOUST SOC AM, V55, P117, DOI 10.1121/1.1928141
   HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7
   Heatwole V M, 1999, Methods Mol Biol, V115, P141
   Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0
   Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774
   Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1
   Leist M, 1997, J EXP MED, V185, P1481, DOI 10.1084/jem.185.8.1481
   MAJNO G, 1995, AM J PATHOL, V146, P3
   Nicotera Pierluigi, 1998, Toxicology Letters (Shannon), V102-103, P139, DOI 10.1016/S0378-4274(98)00298-7
   Nicotera T., 2001, NOISE INDUCED HEARIN, P99
   Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2
   Pirvola U, 2000, J NEUROSCI, V20, P43
   SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915
   Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9
   Takahashi A, 1999, INT J HEMATOL, V70, P226
   Thornberry NA, 1998, SCIENCE, V281, P1312, DOI 10.1126/science.281.5381.1312
NR 19
TC 54
Z9 65
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 69
EP 76
DI 10.1016/j.heares.2004.04.015
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700010
PM 15464303
ER

PT J
AU Okamoto, H
   Ross, B
   Kakigi, R
   Kubo, T
   Pantev, C
AF Okamoto, H
   Ross, B
   Kakigi, R
   Kubo, T
   Pantev, C
TI N1m recovery from decline after exposure to noise with strong spectral
   contrasts
SO HEARING RESEARCH
LA English
DT Article
DE auditory evoked response; habituation; stimulus specific adaptation;
   lateral inhibition; auditory cortex; MEG
ID HUMAN AUDITORY-CORTEX; TEMPORAL INTEGRATION; HABITUATION; RESPONSES;
   FREQUENCY; ACTIVATION; INTENSITY; HEARING; STIMULI; FIELDS
AB Comb-filtered noise (CFN, derived from white noise by suppressing regularly spaced frequency regions) was presented for 3 s followed by two types of test stimuli. One test stimulus (SB) was comprised of spectra centered in the stop-band regions of the CFN and the other test stimulus (PB) of spectra centered in the band pass regions of the CFN. Magnetoencephalographically recorded N1m responses evoked by SB stimuli were decreased relative to the N1m response evoked by PB stimuli. This effect was maximal when the interval between the CFN and test stimuli was short (0.5 s) but was detected at intervals up to 2 s. The results suggest lateral inhibition in the auditory cortex and point to a decay of inhibition lasting on the order of seconds. (C) 2004 Elsevier B.V. All rights reserved.
C1 Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, Toronto, ON, Canada.
   Natl Inst Physiol Sci, Dept Biol Control Syst, Div Sensori Motor Integrat, Okazaki, Aichi, Japan.
   Osaka Univ, Sch Med, Dept Otorhinolaryngol & Sensory Organ Surg, Osaka, Japan.
   Univ Munster Hosp, Inst Biomagnet & Biosignalanal, D-48129 Munster, Germany.
RP Pantev, C (reprint author), Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, Toronto, ON, Canada.
EM pantev@uni-muenster.de
RI Okamoto, Hidehiko/A-7934-2008
OI Okamoto, Hidehiko/0000-0003-2799-3340
CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9
   Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3
   Bullock TH, 1997, P NATL ACAD SCI USA, V94, P1, DOI 10.1073/pnas.94.1.1
   BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233
   Christoffersen GRJ, 1997, PROG NEUROBIOL, V53, P45, DOI 10.1016/S0301-0082(97)00031-2
   DAVIS H, 1966, ELECTROEN CLIN NEURO, V21, P105, DOI 10.1016/0013-4694(66)90118-0
   Eddins AC, 1999, J SPEECH LANG HEAR R, V42, P516
   FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B
   GOLDSTEI.MH, 1968, J ACOUST SOC AM, V43, P444, DOI 10.1121/1.1910851
   HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4
   JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325
   Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5
   LU ZL, 1992, BRAIN RES, V572, P236, DOI 10.1016/0006-8993(92)90475-O
   NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2
   Norena A, 2000, HEARING RES, V149, P24, DOI 10.1016/S0378-5955(00)00158-1
   Pantev C, 1999, BRAIN RES, V842, P192, DOI 10.1016/S0006-8993(99)01835-1
   PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4
   PANTEV C, 2001, EUR J NEUROSCI, V19, P2337
   Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5
   PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2
   RITTER W, 1968, ELECTROEN CLIN NEURO, V25, P550, DOI 10.1016/0013-4694(68)90234-4
   Ross B, 2002, HEARING RES, V165, P68, DOI 10.1016/S0378-5955(02)00285-X
   SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4
   THOMPSON RF, 1966, PSYCHOL REV, V73, P16, DOI 10.1037/h0022681
   Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032
   Wiegrebe L, 1996, HEARING RES, V100, P171, DOI 10.1016/0378-5955(96)00111-6
   ZWICKER E, 1964, J ACOUST SOC AM, V36, P2413, DOI 10.1121/1.1919373
NR 27
TC 21
Z9 21
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 77
EP 86
DI 10.1016/j.heares.2004.04.017
PG 10
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700011
PM 15464304
ER

PT J
AU Piatto, VB
   Bertollo, EMG
   Sartorato, EL
   Maniglia, JV
AF Piatto, VB
   Bertollo, EMG
   Sartorato, EL
   Maniglia, JV
TI Prevalence of the GJB2 mutations and the del(GJB6-D13S1830) mutation in
   Brazilian patients with deafness
SO HEARING RESEARCH
LA English
DT Article
DE hearing loss; molecular analysis; connexin 26; 35delG mutation;
   del(GJB6-D13S1830) mutation
ID CONNEXIN 26 GENE; AUTOSOMAL-RECESSIVE DEAFNESS; NONSYNDROMIC
   HEARING-LOSS; SENSORINEURAL DEAFNESS; PRELINGUAL DEAFNESS; GREEK
   POPULATION; 35DELG MUTATION; UNITED-STATES; FREQUENCY; DFNB1
AB Mutations in the GJB2 gene are the most common cause of sensorineural non-syndromic deafness in different populations. One specific mutation, 35delG, has accounted for the majority of the mutations detected in the GJB2 gene in many countries. The aim of this study was to determine the prevalence of GJB2 mutations and the del(GJB6-D13S1830) mutation in non-syndromic deaf Brazilians. The 33 unrelated probands were examined by clinical evaluation to exclude syndromic forms of deafness. Mutation analysis in the GJB2 gene and the testing for the del(GJB6-Dl3S1830) were performed in both the patients and their family members. The 35delG mutation was found in nine of the probands or in 14 of the mutated alleles. The V371 mutation and the del(GJB6-D13S1830) mutation were also found in two patients, both are compound heterozygote with 35delG mutation. These findings strengthen the importance of genetic diagnosis, providing early treatment, and genetic counseling of deaf patients. (C) 2004 Elsevier B.V. All rights reserved.
C1 FAMERP, BR-15025390 Sao Paulo, Brazil.
   UNICAMP, CBMEG, BR-13083970 Sao Paulo, Brazil.
RP Piatto, VB (reprint author), FAMERP, Rua Frei Baltazar,415 Boa Vista, BR-15025390 Sao Paulo, Brazil.
EM vabp@bol.com.br; eny.goloni@famerp.br; sartor@unicamp.br;
   diretoriageral@famerp.br
RI Piatto, Vania/F-8745-2011; Goloni-Bertollo, Eny/B-8405-2012
CR Ahmad S, 1999, BIOCHEM J, V339, P247, DOI 10.1042/0264-6021:3390247
   Antoniadi T, 1999, CLIN GENET, V55, P381
   Cohn ES, 1999, AM J MED GENET, V89, P130, DOI 10.1002/(SICI)1096-8628(19990924)89:3<130::AID-AJMG3>3.3.CO;2-D
   Cohn ES, 1999, PEDIATRICS, V103, P546, DOI 10.1542/peds.103.3.546
   Cryns K, 2004, J MED GENET, V41, P147, DOI 10.1136/jmg.2003.013896
   del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052
   del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205
   Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1
   Engel-Yeger B, 2002, HEARING RES, V163, P93, DOI 10.1016/S0378-5955(01)00386-0
   Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2
   Frei K, 2002, EUR J HUM GENET, V10, P427, DOI 10.1038/sj.ejhg.5200826
   Gasparini P, 1997, EUR J HUM GENET, V5, P83
   Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406
   Green GE, 1999, JAMA-J AM MED ASSOC, V281, P2211, DOI 10.1001/jama.281.23.2211
   Grifa A, 1999, NAT GENET, V23, P16
   Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Kumar NM, 1999, NOVART FDN SYMP, V219, P6
   Lautermann J, 1999, DEV GENET, V25, P306, DOI 10.1002/(SICI)1520-6408(1999)25:4<306::AID-DVG4>3.0.CO;2-R
   Lerer I, 2001, Hum Mutat, V18, P460, DOI 10.1002/humu.1222
   Liu XZ, 2002, HUM GENET, V111, P394, DOI 10.1007/s00439-002-0811-6
   MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504
   Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076
   Mueller RF, 1999, INT J PEDIATR OTORHI, V50, P3, DOI 10.1016/S0165-5876(99)00242-6
   Mustapha M, 2001, J Med Genet, V38, pE36, DOI 10.1136/jmg.38.10.e36
   Najmabadi Hossein, 2002, Hum Mutat, V19, P572, DOI 10.1002/humu.9033
   Nance WE, 2003, MENT RETARD DEV D R, V9, P109, DOI 10.1002/mrdd.10067
   Oliveira CA, 2002, CLIN GENET, V61, P354, DOI 10.1034/j.1399-0004.2002.610506.x
   Oliveira CA, 2004, HUM BIOL, V76, P313, DOI 10.1353/hub.2004.0035
   Pallares-Ruiz N, 2002, EUR J HUM GENET, V10, P72, DOI 10.1038/sj/ejhg/5200762
   Pampanos A, 2002, INT J PEDIATR OTORHI, V65, P101, DOI 10.1016/S0165-5876(02)00177-5
   Pandya A, 2003, GENET MED, V5, P295, DOI 10.1097/01.GIM.0000078026.01140.68
   Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224
   SANGER F, 1975, J MOL BIOL, V94, P444
   Sartorato EL, 2000, CLIN GENET, V58, P339, DOI 10.1034/j.1399-0004.2000.580415.x
   Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8
   Shahin H, 2002, HUM GENET, V110, P284, DOI 10.1007/s00439-001-0674-2
   Simoes AM, 1992, J PEDIATR, V68, P254
   Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009
   Stevenson VA, 2003, GENET TEST, V7, P151, DOI 10.1089/109065703322146867
   Van Camp G, 2002, Acta Otorhinolaryngol Belg, V56, P337
   Walch C, 2000, INT J PEDIATR OTORHI, V53, P31, DOI 10.1016/S0165-5876(00)00307-4
   Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273
   World Health Organization, 1991, REP INF WORK GROUP P
   WU BL, 2003, AM J MED GENET, V212, P102
   Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605
NR 46
TC 14
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 87
EP 93
DI 10.1016/j.heares.2004.05.007
PG 7
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700012
ER

PT J
AU Harding, GW
   Bohne, BA
AF Harding, GW
   Bohne, BA
TI Temporary DPOAE level shifts, ABR threshold shifts and histopathological
   damage following below-critical-level noise exposures
SO HEARING RESEARCH
LA English
DT Article
DE DPOAE; ABR; noise; organ of Corti; histopathology; chinchilla
ID PRODUCT OTOACOUSTIC EMISSIONS; SENSORY CELL LOSS; CHINCHILLA-COCHLEA;
   DISTORTION PRODUCTS; ACOUSTIC TRAUMA; SOUND; DEPENDENCE; AMPLITUDE;
   HEARING; RABBIT
AB DPOAE temporary level shift (TLS) at 2f(1)-f(2) and f(2) -f(1), ABR temporary threshold shift (TTS), and detailed histopathological findings were compared in three groups of chinchillas that were exposed for 24 It to an octave band of noise (OBN) centered at 4 kHz with a sound pressure level (SPL) of 80, 86 or 92 dB (n = 3,4,6). DPOAE levels at 39 frequencies from f(1) = 0.3 to 16 kHz (f(2)/f(1) = 1.23; L-2 and L-1 = 55, 65 and 75 dB, equal and differing by 10 dB) and ABR thresholds at 13 frequencies from 0.5 to 20 kHz were collected pre- and immediately post-exposure. The functional data were converted to pre- minus post-exposure shift and overlaid upon the cytocochleogram of cochlear damage using the frequency-place map for the chinchilla. The magnitude and frequency place of components in the 2f(1) -f(2) TLS patterns were determined and group averages for each OBN SPL and L-1, L-2 combination were calculated. The f(2) -f(1) TLS was also examined in ears with focal lesions equal to or greater than 0.4 mm. The 2f(1) -f(2) TLS (plotted at f(1)) and TTS aligned with the extent and location of damaged supporting cells. The TLS patterns over frequency had two features which were unexpected: (1) a peak at about a half octave above the center of the OBN with a valley just above and below it and (2) a peak (often showing enhancement) at the apical boundary of the supporting-cell damage. The magnitudes of the TLS and TTS generally increased with increasing SPL of the exposure. The peaks of the TLS and TTS, as well as the peaks and valleys of the TLS pattern moved apically as the SPL of the OBN was increased. However, there was little consistency in the pattern relations with differing L1, L-2 combinations. In addition, neither the 2f(1) -f(2) nor f(2)-f(1) TLS for any L-1, L-2 combination reliably detected focal lesions (100% OHC loss) from 0.4 to 1.2 mm in size. Often, the TLS went in the opposite direction from what would be expected at focal lesions. Recovery from TLS and TTS was also examined in seven animals. Both TLS and TTS recovered partially or completely, the magnitude depending upon exposure SPL. (C) 2004 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, POB 8115,660 S Euclid, St Louis, MO 63110 USA.
EM hardingg@wustl.edu
RI Bohne, Barbara/A-9113-2008
OI Bohne, Barbara/0000-0003-3874-7620
CR AHMAD M, 2002, HEARING RES, V175, P82
   Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285
   BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9
   BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9
   BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285
   BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X
   BOHNE BA, 2000, AM J OTOL, V21, P502
   BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711
   CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5
   CARDER HM, 1972, J SPEECH HEAR RES, V15, P603
   Chang KW, 1996, HEARING RES, V96, P1, DOI 10.1016/0378-5955(95)00225-1
   Cianfrone G, 1998, Scand Audiol Suppl, V48, P37
   CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1
   CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906
   Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3
   ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688
   Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048
   Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7
   HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4
   Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6
   Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961
   Howard MA, 2003, J ACOUST SOC AM, V114, P279, DOI 10.1121/1.1577555
   Liberman MC, 1982, NEW PERSPECTIVES NOI, P105
   Lukashkin AN, 2001, J ACOUST SOC AM, V110, P3097, DOI 10.1121/1.1417525
   MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9
   Martinez Cachero JM, 2002, INSULA, V57, P25
   Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X
   Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508
   Rajan R, 2001, J NEUROPHYSIOL, V86, P3073
   Raveh E, 1998, J OTOLARYNGOL, V27, P354
   Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2
   Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404
   Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028
   WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440
   Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2
   Zheng XY, 2000, HEARING RES, V143, P14, DOI 10.1016/S0378-5955(99)00217-8
NR 36
TC 11
Z9 12
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 94
EP 108
DI 10.1016/j.heares.2004.03.011
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700013
PM 15464306
ER

PT J
AU Soeta, Y
   Hotehama, T
   Nakagawa, S
   Tonoike, M
   Ando, Y
AF Soeta, Y
   Hotehama, T
   Nakagawa, S
   Tonoike, M
   Ando, Y
TI Auditory evoked magnetic fields in relation to interaural
   cross-correlation of band-pass noise
SO HEARING RESEARCH
LA English
DT Article
DE magnetoencephalography (MEG); auditory evoked response; N1m; interaural
   crosscorrelation function
ID MASKING-LEVEL DIFFERENCES; BINAURAL INTERACTION; CORRELATION MODEL;
   SOUND FIELDS; SIGNALS; LATERALIZATION; POTENTIALS; FREQUENCY; TONES
AB Auditory evoked magnetic fields of the human brain were analyzed in relation to the magnitude of the inter-aural cross-correlation (IACC). IACC of the stimuli was controlled by mixing diotic bandpass and dichotic, independent bandpass noise in appropriate ratios. The auditory stimuli were binaurally delivered through plastic tubes and earpieces inserted into ear canals of the nine volunteers with normal hearing who took part in this study. All source signals had the same sound pressure level. Auditory evoked fields (AEFs) were recorded using a neuromagnetometer in a magnetically shielded room. Combinations of a reference stimulus (IACC = 1.0) and test stimuli (IACC = 0.2, 0.6, 0.85) were presented alternately at a constant interstimulus interval of 0.5 s and MEGs recorded. The results showed that the N1m latencies were not affected by IACC; however, the peak amplitude of N1m significantly decreased with increasing TACC. (C) 2004 Elsevier B.V. All rights reserved.
C1 AIST, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan.
   Kobe Univ, Grad Sch Sci & Technol, Kobe, Hyogo 6578501, Japan.
RP Soeta, Y (reprint author), AIST, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan.
EM y.soeta@aist.go.jp
CR Ando Y., 1998, ARCHITECTURAL ACOUST
   ANDO Y, 1986, J ACOUST SOC AM, V80, P833, DOI 10.1121/1.393906
   Ando Y., 1991, Acoustics Letters, V15
   Ando Y., 1987, Journal of the Acoustical Society of Japan (E), V8
   ANDO Y, 1977, J ACOUST SOC AM, V62, P1436, DOI 10.1121/1.381661
   BARRON M, 1971, J SOUND VIB, V15, P475, DOI 10.1016/0022-460X(71)90406-8
   BLAUERT J, 1986, J ACOUST SOC AM, V80, P533, DOI 10.1121/1.394048
   BLAUERT J, 1986, J ACOUST SOC AM, V79, P806, DOI 10.1121/1.393471
   Blauert J., 1983, SPATIAL HEARING PSYC
   COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294
   DAMASKE P, 1972, ACUSTICA, V27, P232
   DURLACH NI, 1964, J ACOUST SOC AM, V36, P1613, DOI 10.1121/1.1919254
   DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681
   Jeffress L. A., 1948, J COMP PHYSIOL PSYCH, V61, P468
   KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60
   KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163
   KUROZUMI K, 1983, J ACOUST SOC AM, V74, P1726, DOI 10.1121/1.390281
   LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358
   LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325
   MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003
   MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z
   OSMAN E, 1975, J ACOUST SOC AM, V57, P939, DOI 10.1121/1.380537
   OSMAN E, 1971, J ACOUST SOC AM, V50, P1494, DOI 10.1121/1.1912803
   PALMER AR, 1999, J PHYSL, V417, P722
   PANTEV C, 1986, AUDIOLOGY, V25, P54
   Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4
   YIN TCT, 1987, J NEUROPHYSIOL, V58, P562
   Yvert B, 1998, NEUROREPORT, V9, P1115, DOI 10.1097/00001756-199804200-00029
NR 28
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 109
EP 114
DI 10.1016/j.heares.2004.07.002
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700014
PM 15464307
ER

PT J
AU Frei, K
   Ramsebner, R
   Lucas, T
   Baumgartner, WD
   Schoefer, C
   Wachtler, FJ
   Kirschhofer, K
AF Frei, K
   Ramsebner, R
   Lucas, T
   Baumgartner, WD
   Schoefer, C
   Wachtler, FJ
   Kirschhofer, K
TI Screening for monogenetic del(GJB6-D13S1830) and digenic
   del(GJB6-D13S1830)/GJB2 patterns of inheritance in deaf individuals from
   Eastern Austria
SO HEARING RESEARCH
LA English
DT Article
DE sensorineural deafness; del(GJB6-D13S1830); GJB2; GJB6; Connexin 30;
   Connexin 26; Austria; mutation
ID CONNEXIN 26 GENE; SYNDROMIC HEARING-LOSS; SENSORINEURAL DEAFNESS;
   DOMINANT DEAFNESS; GAP-JUNCTION; MUTATIONS; GJB2; VARIABILITY;
   IMPAIRMENT; PREVALENCE
AB Genetically caused congenital deafness is a common trait affecting I in 2000 newborn children and is predominantly inherited in an autosomal recessive fashion. Genes such as the gap junction protein beta 2 (GJB2) encoding for Connexin (Cx26) and GJB6 (Cx30) are known to cause sensorineural deafness. Autosomal recessive deafness has been linked both to the monogenetic occurrence of mutated GJB2 or the GJB6 deletion del(GJB6-D13S1830) and digenic GJB2/del(GJB6-D13S1830) inheritance. Monogenetic GJB2 alterations are responsible for 25.5% of deafness in the eastern Austrian population. An additional 9.8% are heterozygous carriers of a single GJB2 mutation which is not responsible for deafness alone. Del(GJB6-D13S1830) and GJB2/ del(GJB6-D13S1830) mutations have been shown to be the second most frequent cause of deafness in different populations. To address the question of the relevance of mutations in GJB6 either as a monogenetic ora digenic GJB2/del(GJB6-D13S1830) cause of deafness in this population, 76 unrelated individuals (33 families and 43 sporadic cases) were screened using PCR strategies. Similar to studies in other hard of hearing populations with similar or lower carrier frequencies of single GJB2 mutations, the presence of del(GJB6-D13S1830) was not detected in any individual within the patient group. Data therefore exclude a digenetic association of del(GJB6-D13S1830) with heterozygous GJB2 mutations as a cause of deafness in a representative sample of the population from Eastern Austria. (C) 2004 Elsevicr B.V. All rights reserved.
C1 Med Univ Vienna, Dept Otorhinolaryngol, A-1090 Vienna, Austria.
   Med Univ Vienna, Dept Histol & Embryol, A-1090 Vienna, Austria.
   Med Univ Vienna, Dept Clin Pharmacol, A-1090 Vienna, Austria.
   Krankenhaus Barmherzigen Bruder, Dept Otorhinolaryngol, A-1020 Vienna, Austria.
RP Frei, K (reprint author), Med Univ Vienna, Dept Otorhinolaryngol, AKH-8J,Waehringer Gurtel 18-20, A-1090 Vienna, Austria.
EM klemens.frei@akh-wien.ac.at
CR Abe S, 2000, J MED GENET, V37, P41, DOI 10.1136/jmg.37.1.41
   Bolz H, 2004, HEARING RES, V188, P42, DOI 10.1016/S0378-5955(03)00346-0
   Cohen M.M., 1995, HEREDITARY HEARING L, P9
   del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052
   del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Denoyelle F, 1998, NATURE, V393, P319, DOI 10.1038/30639
   Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2
   Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037
   Frei K, 2002, EUR J HUM GENET, V10, P427, DOI 10.1038/sj.ejhg.5200826
   Grifa A, 1999, NAT GENET, V23, P16
   Günther Barbara, 2003, Hum Mutat, V22, P180, DOI 10.1002/humu.9167
   Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192
   Lerer I, 2001, Hum Mutat, V18, P460, DOI 10.1002/humu.1222
   Marlin S, 2001, ARCH OTOLARYNGOL, V127, P927
   MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
   Murgia A, 1999, J MED GENET, V36, P829
   Pallares-Ruiz N, 2002, EUR J HUM GENET, V10, P72, DOI 10.1038/sj/ejhg/5200762
   Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8
   TEUBNER B, 2003, HUM MOL GENET, V1, P13
   Uyguner O, 2003, CLIN GENET, V64, P65, DOI 10.1034/j.1399-0004.2003.00101.x
NR 23
TC 15
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 115
EP 118
DI 10.1016/j.heares.2004.07.001
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700015
PM 15464308
ER

PT J
AU Valentine, PA
   Eggermont, JJ
AF Valentine, PA
   Eggermont, JJ
TI Stimulus dependence of spectro-temporal receptive fields in cat primary
   auditory cortex
SO HEARING RESEARCH
LA English
DT Article
DE cat; cortex; single unit; multi unit; spectro-temporal receptive field
ID FREQUENCY-MODULATED SOUNDS; NATURAL SOUNDS; COCHLEAR NUCLEUS; CORTICAL
   FIELDS; NEURONS; INHIBITION; RESPONSES; ORGANIZATION; GRASSFROG;
   REPRESENTATION
AB The frequency-tuning curve is a static representation of the neuron's sensitivity to stimulus frequency. The temporal aspects of the frequency sensitivity can be captured in the spectro-temporal receptive field (STRF), often presented as the average spectrogram of the stimulus preceding a spike but also as the average frequency-dependent post-stimulus time histogram (PSTH). The temporal envelope of the stimulus produces considerable smoothing, and as a consequence the PSTH representation is finer-grained than the spectrogram representation. Here we compare STRFs for 1/s and 20/s single-frequency stimuli with 120/s steady-state multi-frequency stimuli for 87 recording sites in primary auditory cortex of cats. For the 672 estimated STRFs, which for multi-frequency stimuli were mostly obtained at 55 dB SPL, we found lateral inhibition in 17% of the cases, in 32% post-activation suppression, and in 51% only excitation. In 35% of the recordings the excitatory frequency-tuning curves were very similar for single and multi-frequency stimuli, in the remaining 65% the common finding was the emergence of an intensity independent bandwidth for the multi-frequency stimuli. Comparison of the 20/s and 120/s stimuli showed that the resulting increase in inhibition was strongest in the center of he STRF. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada.
   Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada.
RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada.
EM eggermon@ucalgary.ca
CR AERTSEN AMHJ, 1980, BIOL CYBERN, V38, P235, DOI 10.1007/BF00337016
   AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P133, DOI 10.1007/BF00336731
   ALLMAN J, 1985, ANNU REV NEUROSCI, V8, P407, DOI 10.1146/annurev.ne.08.030185.002203
   Barbour DL, 2003, SCIENCE, V299, P1073, DOI 10.1126/science.1080425
   Blake DT, 2002, J NEUROPHYSIOL, V88, P3409, DOI 10.1152/jn.00233.2002
   Brosch M, 1997, J NEUROPHYSIOL, V77, P923
   Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155
   Calhoun BM, 1998, EUR J NEUROSCI, V10, P926, DOI 10.1046/j.1460-9568.1998.00102.x
   DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561
   deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439
   DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y
   Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220
   EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341
   EGGERMONT JJ, 1983, BIOL CYBERN, V47, P103, DOI 10.1007/BF00337084
   Eggermont JJ, 1999, J NEUROSCI, V19, P2780
   Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743
   EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76
   EPPING WJM, 1985, HEARING RES, V18, P223, DOI 10.1016/0378-5955(85)90040-1
   Heil P, 1998, CEREB CORTEX, V8, P125, DOI 10.1093/cercor/8.2.125
   Jen PHS, 2002, HEARING RES, V168, P139, DOI 10.1016/S0378-5955(02)00369-6
   Jiang D, 1996, J NEUROPHYSIOL, V75, P380
   Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503
   Kral A, 1996, GEN PHYSIOL BIOPHYS, V15, P109
   Loftus WC, 2001, J NEUROPHYSIOL, V86, P475
   Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004
   Miller LM, 2002, J NEUROPHYSIOL, V87, P516
   NELKEN I, 1994, HEARING RES, V72, P206, DOI 10.1016/0378-5955(94)90220-8
   RHODE WS, 1994, J NEUROPHYSIOL, V71, P493
   Rhode WS, 2001, J ACOUST SOC AM, V110, P3140, DOI 10.1121/1.1416198
   Robles L, 2001, PHYSIOL REV, V81, P1305
   Rutkowski RG, 2002, AUDIOL NEURO-OTOL, V7, P214, DOI 10.1159/000063738
   SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3
   Schreiner CE, 1994, AUDIT NEUROSCI, V1, P39
   Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501
   Sen K, 2001, J NEUROPHYSIOL, V86, P1445
   Suga N, 1997, J NEUROPHYSIOL, V77, P2098
   Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358
   Theunissen FE, 2000, J NEUROSCI, V20, P2315
   TIAN B, 1994, J NEUROPHYSIOL, V71, P1959
   Tian B, 1998, J NEUROPHYSIOL, V79, P2629
   Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116
NR 41
TC 48
Z9 48
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD OCT
PY 2004
VL 196
IS 1-2
BP 119
EP 133
DI 10.1016/j.heares.2004.05.011
PG 15
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 864BU
UT WOS:000224608700016
PM 15464309
ER

PT J
AU Nagy, I
   Bodmer, M
   Brors, D
   Bodmer, D
AF Nagy, I
   Bodmer, M
   Brors, D
   Bodmer, D
TI Early gene expression in the organ of Corti exposed to gentamicin
SO HEARING RESEARCH
LA English
DT Article
DE DNA microarray; gentamicin; hair cells; organ of corti
ID HAIR-CELLS; INNER-EAR; DAMAGE; GENERATION; PROTECTION; NEURONS; CULTURE
AB Studies have demonstrated different pathogenetic key factors in gentamicin-induced hair cell death. The production of reactive oxygen species (ROS), as well as apoptosis-related genes, play a critical role. However, a coordinated large-scale investigation of gene expression in the organ of Corti (OC) exposed to gentamicin has not yet been conducted. Here we used DNA microarray technology to compare the expression profile of OC exposed to gentamicin to the expression profile of untreated OC.
   The OCs of Sprague Dawley rats were dissected and the basal turns were cultured. Two-thirds of the explants were then exposed to 100 muM gentamicin, for 4 and 8 h, while one-third of the explants remained in culture medium alone. Gene expression was analyzed using DNA microarray technology and the dChip software package. Based on the results, the 4-h time-point was chosen for further analysis. In these assays, out of 8800 genes, 12 genes were identified on the basis of differential expression in the OC exposed to gentamicin vs. control OC.
   The identity of these genes suggests that the response of the OC to the gentamicin challenge involves down-regulation of specific gene families in order to alleviate ROS and N-methyl-D-aspartate (NMDA) receptor-mediated cellular stress. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Zurich Hosp, Clin Otolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland.
   Swiss Fed Inst Technol, ETHZ, CH-8092 Zurich, Switzerland.
   Univ Wurzburg, Dept Otolaryngol Head & Neck Surg, D-97080 Wurzburg, Germany.
RP Bodmer, D (reprint author), Univ Zurich Hosp, Clin Otolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland.
EM daniel.bodmer@orl.usz.ch
CR *AFFYMETRIX, 2003, GEN EUK SMALL SAMPL
   Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338
   Battaglia A, 2003, NEUROSCIENCE, V122, P1025, DOI 10.1016/j.neuroscience.2003.08.041
   Cheng L, 2001, P NATL ACAD SCI USA, P31
   CHOI DW, 1992, J NEUROBIOL, V23, P1261, DOI 10.1002/neu.480230915
   Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5
   Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x
   Eisen MB, 1998, P NATL ACAD SCI USA, V95, P14863, DOI 10.1073/pnas.95.25.14863
   Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4
   Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5
   HUMBERT R, 1989, J BACTERIOL, V171, P1435
   Liu YB, 2002, J NEUROCHEM, V80, P780, DOI 10.1046/j.0022-3042.2002.00744.x
   Nadol JJ, 1981, AMINOGLYCOSIDE OTOTO, P409
   PIVOLA U, 2000, J NEUROSCI, V20, P43
   Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4
   PULLAN LM, 1992, J NEUROCHEM, V59, P2087
   Ryan AF, 2000, P NATL ACAD SCI USA, V97, P6939, DOI 10.1073/pnas.97.13.6939
   Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X
   Shulman A, 1999, ANN NY ACAD SCI, V884, P433, DOI 10.1111/j.1749-6632.1999.tb08660.x
   Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3
   Todt I, 1999, PFLUG ARCH EUR J PHY, V438, P865, DOI 10.1007/s004240051117
   VANDEWAT.T, 1974, ANN OTO RHINOL LARYN, V83, P1
   VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368
NR 23
TC 12
Z9 14
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 1
EP 8
DI 10.1016/j.heares.2004.04.010
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100001
PM 15350274
ER

PT J
AU Yoshino, T
   Sato, E
   Nakashima, T
   Nagashima, W
   Teranishi, MA
   Nakayama, A
   Mori, N
   Murakami, H
   Funahashi, H
   Imai, T
AF Yoshino, T
   Sato, E
   Nakashima, T
   Nagashima, W
   Teranishi, MA
   Nakayama, A
   Mori, N
   Murakami, H
   Funahashi, H
   Imai, T
TI The immunohistochemical analysis of pendrin in the mouse inner ear
SO HEARING RESEARCH
LA English
DT Article
DE Pendred's syndrome; pendrin; immunohistochemical analysis; inner ear;
   mouse
ID SENSORINEURAL HEARING-LOSS; ION-TRANSPORT; GENE PDS; MUTATIONS;
   DEAFNESS; COCHLEA; NEURONS; COTRANSPORTER; MAINTENANCE; CONNEXINS
AB Pendred's syndrome (PS) is an autosomal recessive disorder characterized by deafness and goiter, which are caused by mutations in the Pendred's syndrome gene (PDS). PDS encodes a membrane protein named pendrin that is considered to act as an anion transporter. An expression pattern of the PDS ortholog (Pds) mRNA in the auditory and vestibular systems has been reported in mice. and the localization of pendrin has been reported recently. We generated antipeptide antibodies against human pendrin, and performed immunohistochemical analysis of mouse inner cars. We detected pendrin in the endolymphatic duct and sac, and the utricle. saccule, and external sulcus. In the endolymphatic duct and sac, the expression of pendrin was apparent at the apical membrane. In addition, we detected pendrin in the spiral ligament, Claudius cells, Deiter's cells, and the spiral ganglion of the cochlea. Our results are key to defining the role of pendrin in inner ear development and elucidating the pathogenic mechanisms underlying deafness in PS. (C) 2004 Elsevier B.V. All rights reserved.
C1 Nagoya Univ, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan.
   Nagoya Univ, Dept Pathol 1, Showa Ku, Nagoya, Aichi 4668550, Japan.
   Nagoya Univ, Dept Pathol 2, Showa Ku, Nagoya, Aichi 4668550, Japan.
   Nagoya Univ, Dept Surg 2, Showa Ku, Nagoya, Aichi 4668550, Japan.
RP Yoshino, T (reprint author), Nagoya Univ, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan.
EM yoshinot@med.nagoya-u.ac.jp
RI Teranishi, Masaaki/I-1956-2012
CR Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a
   Coucke PJ, 1999, J MED GENET, V36, P475
   Coyle B, 1998, HUM MOL GENET, V7, P1105, DOI 10.1093/hmg/7.7.1105
   Cremers CWRJ, 1998, INT J PEDIATR OTORHI, V45, P113, DOI 10.1016/S0165-5876(98)00123-2
   Cremers CWRJ, 1998, ARCH OTOLARYNGOL, V124, P501
   Dallwig R, 1999, PFLUG ARCH EUR J PHY, V437, P289, DOI 10.1007/s004240050782
   Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713
   Everett LA, 1999, P NATL ACAD SCI USA, V96, P9727, DOI 10.1073/pnas.96.17.9727
   Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411
   Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153
   FERRARY E, 1998, KIDNEY INT S, V65, P98
   Fritzsch B, 1998, AM J HUM GENET, V63, P1263, DOI 10.1086/302126
   JOHNSEN T, 1986, ACTA OTO-LARYNGOL, V102, P239, DOI 10.3109/00016488609108673
   JOHNSEN T, 1987, J LARYNGOL OTOL, V101, P1187, DOI 10.1017/S0022215100103470
   Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001
   KIM YH, 2002, AM J PHYSIOL-RENAL, V283, P744
   Lefebvre PP, 2000, BRAIN RES REV, V32, P159
   Li XC, 1998, NAT GENET, V18, P215, DOI 10.1038/ng0398-215
   Luckermann M, 1997, J NEUROPHYSIOL, V77, P1844
   LUNDQUIST PG, 1984, ULTRASTRUCTURAL ATLA, P309
   Pendred V, 1896, LANCET, V2, P532
   Phelps PD, 1998, CLIN RADIOL, V53, P268, DOI 10.1016/S0009-9260(98)80125-6
   Pitovski DZ, 2002, HEARING RES, V171, P51, DOI 10.1016/S0378-5955(02)00352-0
   Porra V, 2002, J CLIN ENDOCR METAB, V87, P1700, DOI 10.1210/jc.87.4.1700
   Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I
   Reardon W, 1999, J MED GENET, V36, P595
   Royaux IE, 2003, JARO, V4, P394, DOI 10.1007/s10162-002-3052-4
   SCHUKNECHT H F, 1980, Annals of Otology Rhinology and Laryngology, V89, P1
   Scott DA, 1999, NAT GENET, V21, P440
   SELLICK PM, 1974, PFLUG ARCH EUR J PHY, V352, P339, DOI 10.1007/BF00585686
   Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011
   Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, P356
   Spicer SA, 2000, HEARING RES, V143, P147, DOI 10.1016/S0378-5955(00)00037-X
   SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6
   STEEL KP, 1999, SCIENCE, V27, P1408
   STERKERS O, 1988, PHYSIOL REV, V68, P1083
   Van Hauwe P, 1998, HUM MOL GENET, V7, P1099, DOI 10.1093/hmg/7.7.1099
   Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X
   WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S
   Wangemann P, 2002, AUDIOL NEURO-OTOL, V7, P199, DOI 10.1159/000063736
NR 40
TC 15
Z9 16
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 9
EP 16
DI 10.1016/j.heares.2004.05.005
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100002
PM 15350275
ER

PT J
AU Hayashi, H
   Sone, M
   Ito, S
   Wakamatsu, K
   Kato, M
   Nakashima, I
   Nakashima, T
AF Hayashi, H
   Sone, M
   Ito, S
   Wakamatsu, K
   Kato, M
   Nakashima, I
   Nakashima, T
TI A novel RFP-RET transgenic mouse model with abundant eumelanin in the
   cochlea
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; eumelanin; MT/RFP-RET transgenic mouse
ID PIGMENTED GUINEA-PIGS; CHLOROQUINE-TREATED RED; INDUCED HEARING-LOSS;
   STRIA VASCULARIS; INNER-EAR; ACOUSTIC TRAUMA; TRANSFORMING GENE; ALBINO;
   NOISE; MELANIN
AB We report on the cochlea of a novel metallothionein-I (MT)/RFP-RET transgenic mouse model with severe systemic melanosis. Electron microscopy revealed that these transgenic mice possess abundant quantities of melanin in the intermediate cells of the stria vascularis. High performance liquid chromatography analysis indicated that cochleae of these transgenic mice contained about twice as much eumelanin as cochleae of control C57BL/6 mice and that the amount of pheomelanin was approximately equal in these two strains. Auditory brainstem responses at 2, 4, 8, and 16 kHz were not significantly different between transgenic and control mice. This is the first report on a mouse model of overproduction of cochlear eumelanin, and our results suggest that this transgenic mouse is an excellent model for investigating the effects of overexpression of cochlear eumelanin. In addition, we provide evidence that eumelanin overproduction in the cochlea does not affect normal hearing. (C) 2004 Elsevier B.V. All rights reserved.
C1 Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan.
   Fujita Hlth Univ, Sch Hlth Sci, Toyoake, Aichi 4701192, Japan.
   Kanazawa Univ, Dept Environm & Prevent Med, Grad Sch Med Sci, Kanazawa, Ishikawa 9208640, Japan.
   Nagoya Univ, Grad Sch Med, Dept Immunol, Showa Ku, Nagoya, Aichi 4668550, Japan.
RP Hayashi, H (reprint author), Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan.
EM hideo@med.nagoya.u.ac.jp
RI Nakashima, Tsutomu/B-8259-2012
OI Nakashima, Tsutomu/0000-0003-3930-9120
CR BARRENAS ML, 1992, ACTA OTO-LARYNGOL, V112, P50, DOI 10.3109/00016489209100782
   Barrenas ML, 2000, AUDIOLOGY, V39, P238
   Barrenas ML, 1997, AUDIOLOGY, V36, P187
   Bartels S, 2001, HEARING RES, V154, P116, DOI 10.1016/S0378-5955(01)00213-1
   BUSTAMANTE J, 1993, PIGM CELL RES, V6, P348, DOI 10.1111/j.1600-0749.1993.tb00612.x
   CONLEE JW, 1986, HEARING RES, V23, P81, DOI 10.1016/0378-5955(86)90177-2
   CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N
   CONLEE JW, 1995, ACTA OTO-LARYNGOL, V115, P367, DOI 10.3109/00016489509139331
   CRIFO S, 1973, ACTA OTO-LARYNGOL, V75, P38, DOI 10.3109/00016487309139636
   DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019
   GOTTESBERGEORSU.AM, 1986, ACTA HISTOCHEM S, V32, P245
   GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x
   GRENNER J, 1990, ACTA OTO-LARYNGOL, V109, P41, DOI 10.3109/00016489009107413
   HOEFFDING V, 1991, HEARING RES, V54, P39, DOI 10.1016/0378-5955(91)90134-U
   IKEDA K, 1988, HEARING RES, V32, P103, DOI 10.1016/0378-5955(88)90081-0
   ITO S, 1998, PIGMENTARY SYSTEM, pCH31
   Ito S, 2000, PIGM CELL RES, V13, P103, DOI 10.1034/j.1600-0749.13.s8.19.x
   IWAMOTO T, 1991, EMBO J, V10, P3167
   Kato M, 2001, ONCOGENE, V20, P7536, DOI 10.1038/sj.onc.1204918
   LARSSON BS, 1993, PIGM CELL RES, V6, P127, DOI 10.1111/j.1600-0749.1993.tb00591.x
   LEFERRIERE K, 1974, ANN OTOL RHINO LARYN, V83, P685
   PERSAD S, 1983, PHOTOCHEM PHOTOBIOL, V37, P63, DOI 10.1111/j.1751-1097.1983.tb04434.x
   PETERS TA, 1995, HEARING RES, V85, P169, DOI 10.1016/0378-5955(95)00043-4
   PROTA G, 1980, J INVEST DERMATOL, V75, P122, DOI 10.1111/1523-1747.ep12521344
   PYE A, 1987, ARCH OTO-RHINO-LARYN, V243, P411, DOI 10.1007/BF00464654
   Salceda R, 2000, CELL CALCIUM, V27, P223, DOI 10.1054/ceca.2000.0111
   STEEL KP, 1989, DEVELOPMENT, V107, P453
   TAKAHASHI M, 1987, MOL CELL BIOL, V7, P1378
   TAKAHASHI M, 1985, CELL, V42, P581, DOI 10.1016/0092-8674(85)90115-1
   TANAKA Y, 1980, HEARING RES, V2, P431, DOI 10.1016/0378-5955(80)90079-9
   Wakamatsu K, 2002, PIGM CELL RES, V15, P225, DOI 10.1034/j.1600-0749.2002.02009.x
   Witkop Jr CJ, 1983, METABOLIC BASIS INHE, P301
   Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761
   YANZ JL, 1985, AUDIOLOGY, V24, P260
NR 34
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 35
EP 40
DI 10.1016/j.heares.2004.01.020
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100004
PM 15350277
ER

PT J
AU Shatz, LF
AF Shatz, LF
TI The effect of hair bundle shape on hair bundle hydrodynamics of
   non-mammalian inner ear hair cells for the full frequency range
SO HEARING RESEARCH
LA English
DT Article
DE cochlea; hair bundle; hydrodynamics; spheroid; hair cell; tectorial
   membrane
ID ALLIGATOR LIZARD COCHLEA; BOUNDARY-ELEMENT METHOD;
   MECHANOELECTRICAL-TRANSDUCTION; FREESTANDING STEREOCILIA; HEMISPHEROIDAL
   PROTUBERANCES; MECHANICAL STIMULATION; SIGNAL TRANSMISSION; SINGULARITY
   METHOD; BASILAR PAPILLA; MODEL
AB The effect of the size and the shape of the hair bundle of a hair cell in the inner ear of non-mammals on its motion for the full range of frequencies is determined thereby extending the results of a previous analysis of hair bundle motion for high and low frequencies [Hear Res. 141 (2000) 39-50]. A hemispheroid is used to represent the hair bundle because it can represent a full range of shapes, from thin, pencil-like shapes to wide, flat, disk-like shapes. Boundary element methods are used to approximate the solution for the hydrodynamics. For physiologically relevant parameters, an excellent match is obtained between the model's predictions and measurements of hair bundle motion in the free-standing region of the basilar papilla of the alligator lizard [Aranyosi, Measuring sound-induced motions of the alligator lizard cochlea. Massachusetts Institute of Technology, PhD Thesis, 2002]. Neither in the model's predictions nor in experimental measurements is sharp tuning observed. The model predicted the low frequency region of neural tuning curves for the alligator lizard and bobtail lizard, but could not predict the sharp tuning or the high frequency region. An element that represents an active mechanism is added to the hair bundle model to predict neural tuning curves, which are sharply tuned, and an excellent match is obtained for all the characteristics of neural tuning curves for the alligator lizard, and for the low and high frequency regions for the bobtail lizard. The model does not predict well the sharp tuning of the shorter hair bundles of the bobtail lizard, possibly because it does not represent tectorial sallets. (C) 2004 Elsevier B.V. All rights reserved.
C1 Suffolk Univ, Dept Elect & Comp Engn, Boston, MA 02445 USA.
   Boston Univ, Hearing Res Ctr, Boston, MA 02115 USA.
RP Shatz, LF (reprint author), Suffolk Univ, Dept Elect & Comp Engn, 41 Temple St, Boston, MA 02445 USA.
EM shatz@ee.suffolk.edu
CR ARANYOSI AJ, 2002, THESIS MIT CAMBRIDGE
   AUTHIER S, 1995, HEARING RES, V82, P1
   Batchelor G., 1967, INTRO FLUID DYNAMICS
   Benser ME, 1996, J NEUROSCI, V16, P5629
   Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183
   Choe Y, 1998, P NATL ACAD SCI USA, V95, P15321, DOI 10.1073/pnas.95.26.15321
   CHWANG AT, 1974, SCHIFFSTECHNIK, V21, P19
   CHWANG AT, 1975, J FLUID MECH, V67, P787, DOI 10.1017/S0022112075000614
   CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359
   EATOCK RA, 1993, J NEUROSCI, V13, P1767
   FREEMAN DM, 1990, HEARING RES, V48, P1, DOI 10.1016/0378-5955(90)90195-U
   FREEMAN DM, 1990, HEARING RES, V48, P31, DOI 10.1016/0378-5955(90)90197-W
   FREEMAN DM, 1990, HEARING RES, V48, P17, DOI 10.1016/0378-5955(90)90196-V
   FREEMAN DM, 1990, HEARING RES, V48, P37, DOI 10.1016/0378-5955(90)90198-X
   FREEMAN DM, 1988, HEARING RES, V35, P201, DOI 10.1016/0378-5955(88)90118-9
   FRISHKOPF LS, 1983, HEARING RES, V12, P393, DOI 10.1016/0378-5955(83)90008-4
   HOLTON T, 1983, J PHYSIOL-LONDON, V345, P205
   HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241
   HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064
   HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4
   Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765
   KOPPL C, 1988, HEARING RES, V35, P209, DOI 10.1016/0378-5955(88)90119-0
   Lamb H., 1945, HYDRODYNAMICS
   Landau L. D., 1959, FLUID MECH
   Lewis ER, 1985, VERTEBRATE INNER EAR
   MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7
   Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858
   Manley GA, 2001, J NEUROPHYSIOL, V86, P541
   Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498
   MULROY MJ, 1987, HEARING RES, V25, P11, DOI 10.1016/0378-5955(87)90075-X
   MULROY MJ, 1974, BRAIN BEHAV EVOLUT, V10, P69, DOI 10.1159/000124303
   ORMAN S, 1981, SOC NEUR ABSTR, V7, P536
   Ricci AJ, 2000, J NEUROSCI, V20, P7131
   ROSOWSKI JJ, 1985, HEARING RES, V20, P139, DOI 10.1016/0378-5955(85)90165-0
   RUSCH A, 1990, HEARING RES, V48, P247, DOI 10.1016/0378-5955(90)90065-W
   Shatz LF, 1998, INT J NUMER METH FL, V28, P961
   Shatz LF, 1998, PHYS FLUIDS, V10, P2177, DOI 10.1063/1.869739
   Shatz LF, 2004, INT J NUMER METH FL, V44, P147, DOI 10.1002/fld.633
   Shatz LF, 2004, PHYS FLUIDS, V16, P664, DOI 10.1063/1.1643402
   Shatz LF, 2000, HEARING RES, V141, P39, DOI 10.1016/S0378-5955(99)00205-1
   STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1
   VATER M, 1992, J COMP NEUROL, V318, P367, DOI 10.1002/cne.903180403
   WEISS TF, 1982, HEARING RES, V7, P353, DOI 10.1016/0378-5955(82)90045-4
   WEISS TF, 1976, BRAIN RES, V115, P71, DOI 10.1016/0006-8993(76)90823-4
   WEISS TF, 1985, HEARING RES, V20, P157, DOI 10.1016/0378-5955(85)90166-2
   Zetes DE, 1997, J ACOUST SOC AM, V101, P3593, DOI 10.1121/1.418320
NR 46
TC 4
Z9 4
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 41
EP 53
DI 10.1016/j.heares.2004.04.002
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100005
PM 15350278
ER

PT J
AU Irons-Brown, SR
   Jones, TA
AF Irons-Brown, SR
   Jones, TA
TI Effects of selected pharmacological agents on avian auditory and
   vestibular compound action potentials
SO HEARING RESEARCH
LA English
DT Article
DE hearing; balance; cochlea; maculae; gravity receptors; vestibular;
   post-synaptic receptors; chicken; glutamate; kynurenate; kainate;
   L-NAME; CNQX; NBQX; DAA; MK-801; GABA; AMPA
ID GUINEA-PIG COCHLEA; PULSED LINEAR ACCELERATION; GABA-LIKE
   IMMUNOREACTIVITY; HAIR CELL TRANSMITTER; WHITE LEGHORN CHICK; KAINIC
   ACID; RECEPTOR SUBUNITS; EVOKED-POTENTIALS; NITRIC-OXIDE; SUBSTANCE-P
AB Glutamate is currently the consensus candidate for the hair cell transmitter in the inner ear of vertebrates. However, other candidate transmitter systems have been proposed and there may be differences in this regard for auditory and vestibular neuroepithelia. In the present study, perilymphatic perfusion was used to deliver prescribed concentrations of ten drugs to the interstitial fluids of the inner ear of hatchling chickens (n = 124). Dose-response curves were obtained for four of these pharmacological agents. The work was carried out in part to distinguish further the neuroepithelial chemical receptors mediating auditory and vestibular compound action potentials (CAPs). Kainic acid (KA) eliminated both auditory and vestibular responses. D-alpha-Amino-adipic acid (DAA) and dizocilpine maleate (MK-801), both NMDA-specific antagonists, failed to alter vestibular CAPs at any concentration. MK-801 significantly and selectively reduced auditory CAPs at concentrations equal to or greater than 1 mM. Similarly, kynurenic acid (4-hydroxyquinoline-2-carboxylic acid, 1 mM), a glutamate antagonist, significantly reduced auditory but not vestibular CAPs. A non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), reduced vestibular CAPs significantly but only at the highest concentration tested (1 mM). In contrast, CNQX reduced auditory responses at concentration as low as 1 muM. The CNQX concentration effective in reducing auditory CAPs by 50% (EC(50)) was approximately 20 muM. Glutamate (1 mM) as well as alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate agonist, significantly reduced auditory CAPs (AMPA EC(50) = 100 muM). Bicuculline, a GABA(A) receptor antagonist, and L-NAME, a nitric oxide synthase inhibitor, failed to alter responses from either modality. These findings support the hypothesis that glutamate receptors mediate auditory CAPs in birds. However, the results underscore a remarkable difference in sensitivity of the vestibular neuroepithelium (here gravity receptors) to non-NMDA receptor antagonists. The basis of the vestibular insensitivity to glutamate blockers is unknown but it may reflect differences in receptors themselves, differences in the transmission modes available to vestibular synapses or differences in the access of compounds to vestibular neuroepithelial receptors from the interstitial-perilymphatic fluid spaces. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Missouri, Dept Med Pharmacol & Physiol, Columbia, MO 65212 USA.
   Univ Missouri, Dept Otolaryngol Head & Neck Surg, Columbia, MO 65212 USA.
RP Jones, TA (reprint author), E Carolina Univ, Dept Commun Sci & Disorders, Belk Annex,Greenville & Charles Blvds, Greenville, NC 27858 USA.
EM jonesti@mail.ecu.edu
CR ANNONI JM, 1984, J NEUROSCI, V4, P2106
   Bledsoe Jr S.C., 1988, PHYSL HEARING, P385
   BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X
   BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185
   BOBBIN RP, 1979, EXP BRAIN RES, V34, P389
   BOBBIN RP, 1987, HEARING RES, V25, P77, DOI 10.1016/0378-5955(87)90081-5
   BROWNBORG HM, 1987, COMP BIOCHEM PHYS A, V88, P391, DOI 10.1016/0300-9629(87)90052-1
   COCHRAN SL, 1995, BRAIN RES, V670, P321, DOI 10.1016/0006-8993(94)01357-N
   COMIS SD, 1979, EXP BRAIN RES, V36, P119
   DECHESNE C, 1984, ANN OTO RHINOL LARYN, V93, P163
   DEMEMES D, 1995, BRAIN RES, V671, P83, DOI 10.1016/0006-8993(94)01322-9
   DEMEMES D, 1990, HEARING RES, V46, P261, DOI 10.1016/0378-5955(90)90007-C
   Dememes D, 1997, HEARING RES, V114, P252, DOI 10.1016/S0378-5955(97)00174-3
   DOI K, 1990, EUR ARCH OTO-RHINO-L, V248, P25, DOI 10.1007/BF00634777
   EYBALIN M, 1993, PHYSIOL REV, V73, P309
   FELIX D, 1982, ACTA OTO-LARYNGOL, V93, P101, DOI 10.3109/00016488209130858
   FELIX D, 1985, AUDITORY BIOCH DRUG, V4, P68
   Felix H, 2002, ADV OTO-RHINO-LARYNG, V59, P26
   Fessenden JD, 1999, J COMP NEUROL, V404, P52
   FLOCK A, 1974, NATURE, V249, P142, DOI 10.1038/249142a0
   Flores A, 2001, NEUROSCIENCE, V103, P457, DOI 10.1016/S0306-4522(00)00587-X
   FOSTER AC, 1987, BRIT J PHARMACOL, V91, P403
   FUJITA S, 1994, NEUROREPORT, V5, P862, DOI 10.1097/00001756-199404000-00002
   GLEICH O, 1990, HEARING RES, V45, P295, DOI 10.1016/0378-5955(90)90128-C
   Goldberg JM, 1996, J NEUROPHYSIOL, V76, P1942
   Goldberg JM, 1996, ANN NY ACAD SCI, V781, P474, DOI 10.1111/j.1749-6632.1996.tb15721.x
   GUTH PS, 1988, HEARING RES, V33, P223, DOI 10.1016/0378-5955(88)90152-9
   Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3
   GUTH SL, 1984, EXP BRAIN RES, V56, P72
   HARPER A, 1995, HEARING RES, V86, P171, DOI 10.1016/0378-5955(95)00068-F
   HILL AV, 1910, J PHYSIOL-LONDON, V40, pR7
   HOLFORD NHG, 1982, PHARMACOL THERAPEUT, V16, P143, DOI 10.1016/0163-7258(82)90051-1
   HOUSTON S, 1998, FASEB J*, V12, P138
   IRONS SR, 1999, FASEB J*, V13, P474
   Irons-Brown SR, 2003, J NEUROSCI METH, V131, P57, DOI 10.1016/S0165-0270(03)00239-5
   JENISON GL, 1985, HEARING RES, V20, P261, DOI 10.1016/0378-5955(85)90030-9
   Jones SM, 2000, JARO, V1, P232
   Jones SM, 1997, J COMP PHYSIOL A, V180, P631, DOI 10.1007/s003590050079
   Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8
   Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008
   Jones SM, 1996, J VESTIBUL RES-EQUIL, V6, P71
   JONES TA, 1992, ELECTROEN CLIN NEURO, V82, P377, DOI 10.1016/0013-4694(92)90007-5
   Jones TA, 1998, J VESTIBUL RES-EQUIL, V8, P253
   JONES TA, 1992, HEARING RES, V62, P181, DOI 10.1016/0378-5955(92)90184-O
   JONES TA, 1989, AM J OTOLARYNG, V10, P327, DOI 10.1016/0196-0709(89)90108-7
   JONES TA, 1987, HEARING RES, V27, P67, DOI 10.1016/0378-5955(87)90026-8
   JORGENSEN JM, 1994, MEDDR DANSK NATURH F, V133, P121
   KATAOKA Y, 1994, J PHYSIOL-LONDON, V477, P403
   Kataoka Y, 1996, J NEUROPHYSIOL, V76, P1870
   KLINKE R, 1977, EXP BRAIN RES, V30, P145
   Liang XQ, 1999, CHINESE MED J-PEKING, V112, P129
   LITTMAN T, 1989, HEARING RES, V40, P45, DOI 10.1016/0378-5955(89)90098-1
   LOPEZ I, 1990, COMP BIOCHEM PHYS B, V95, P375, DOI 10.1016/0305-0491(90)90090-G
   LOPEZ I, 1988, NEUROSCIENCE, V25, P13
   LOPEZ I, 1992, BRAIN RES, V589, P341, DOI 10.1016/0006-8993(92)91297-R
   LOPEZ I, 1990, BRAIN RES, V530, P170, DOI 10.1016/0006-8993(90)90677-4
   Ma JY, 1998, BRIT J PHARMACOL, V124, P756, DOI 10.1038/sj.bjp.0701871
   Matsubara A, 1996, J NEUROSCI, V16, P4457
   MATSUBARA A, 1995, ACTA OTO-LARYNGOL, P248
   MEZA G, 1982, BRAIN RES, V241, P157, DOI 10.1016/0006-8993(82)91238-0
   Meza G, 1996, INT J DEV NEUROSCI, V14, P507, DOI 10.1016/0736-5748(95)00099-2
   MEZA G, 1987, HEARING RES, V28, P73, DOI 10.1016/0378-5955(87)90155-9
   MEZA G, 1985, AUDITORY BIOCH, P80
   Nazareth AM, 1998, J VESTIBUL RES-EQUIL, V8, P233
   NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338
   Ohmori H, 1996, NEWS PHYSIOL SCI, V11, P161
   PANZANELLI P, 1994, BRAIN RES, V662, P293, DOI 10.1016/0006-8993(94)90829-X
   Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2
   PRIGIONI I, 1994, NEUROREPORT, V5, P516, DOI 10.1097/00001756-199401120-00038
   PRIGIONI I, 1990, HEARING RES, V46, P253, DOI 10.1016/0378-5955(90)90006-B
   PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U
   PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209
   PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1
   Reng D, 1999, NEUROREPORT, V10, P2137, DOI 10.1097/00001756-199907130-00026
   Ruel J, 2000, NEUROPHARMACOLOGY, V39, P1959, DOI 10.1016/S0028-3908(00)00069-1
   RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002
   Shero M, 1998, NEUROSCI LETT, V257, P81, DOI 10.1016/S0304-3940(98)00821-0
   Solum D, 1997, J NEUROSCI, V17, P4744
   SOTO E, 1988, BRAIN RES, V462, P104, DOI 10.1016/0006-8993(88)90591-4
   SOTO E, 1994, NEUROREPORT, V5, P1963, DOI 10.1097/00001756-199410000-00031
   STARR PA, 1991, HEARING RES, V52, P23, DOI 10.1016/0378-5955(91)90185-C
   Sun H, 2001, J COMP NEUROL, V430, P172, DOI 10.1002/1096-9861(20010205)430:2<172::AID-CNE1023>3.0.CO;2-W
   Sun H, 2000, J ACOUST SOC AM, V107, P2136, DOI 10.1121/1.428495
   Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P34
   Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P466
   USAMI S, 1987, BRAIN RES, V418, P383, DOI 10.1016/0006-8993(87)90108-9
   USAMI S, 1995, NEUROREPORT, V6, P1161, DOI 10.1097/00001756-199505300-00022
   USAMI S, 1987, HEARING RES, V30, P19, DOI 10.1016/0378-5955(87)90178-X
   VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2
   VEGA R, 1987, HEARING RES, V29, P163, DOI 10.1016/0378-5955(87)90164-X
   WEISLEDER P, 1990, ELECTROEN CLIN NEURO, V76, P362, DOI 10.1016/0013-4694(90)90037-K
   WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1
   WONG EHF, 1986, P NATL ACAD SCI USA, V83, P7104, DOI 10.1073/pnas.83.18.7104
   XUE JT, 2002, ASS RES OT ABSTR, V25, P30
   YAMAGUCHI K, 1990, J PHYSIOL-LONDON, V420, P185
   YAMASHITA M, 1990, EXP BRAIN RES, V80, P475
   Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0
   ZHOU N, 1991, HEARING RES, V52, P195, DOI 10.1016/0378-5955(91)90199-J
   ZUCCA G, 1992, HEARING RES, V63, P52, DOI 10.1016/0378-5955(92)90073-V
   ZUCCA G, 1993, NEUROREPORT, V4, P403, DOI 10.1097/00001756-199304000-00015
NR 100
TC 2
Z9 2
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 54
EP 66
DI 10.1016/j.heares.2004.02.011
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100006
PM 15350279
ER

PT J
AU Martini, M
   Rispoli, G
   Farinelli, F
   Fesce, R
   Rossi, ML
AF Martini, M
   Rispoli, G
   Farinelli, F
   Fesce, R
   Rossi, ML
TI Intracellular Ca2+ buffers can dramatically affect Ca2+ conductances in
   hair cells
SO HEARING RESEARCH
LA English
DT Article
DE semicircular canals; hair cells; frog; Ca2+ current kinetics;
   intracellular buffers
ID CALCIUM CURRENTS; SEMICIRCULAR CANALS; CHANNELS; FROG; SUBUNITS
AB The effects of endogenous and exogenous Ca2+ buffers on Ca2+ current kinetics have been investigated by patch clamp in hair cells mechanically isolated from frog semicircular canals. This preparation displays at least three different Ca2+ channel types: transient currents flow through a drug-resistant channel ("R1"), while non-inactivating channels sustain a steady, plateau current comprised of a large L component and a small drug-resistant fraction ("R2"). In the perforated-patch condition a large and stable Ca2+ current was recorded, with all three components. In whole-cell, a buffer-free pipette solution did not prevent a complete Ca2+ response. The size of the transient and plateau current fractions were greatly reduced, but the ratio between the two fractions, as well as the activation, inactivation and deactivation kinetics, were substantially unmodified. Current amplitude partially recovered with 5 mM EGTA in the pipette solution. With 50 mM EGTA all the kinetic parameters were slowed down and the transient component, but not the plateau component, markedly increased in size. Response kinetics slowed down even more with 30 mM Cs-BAPTA and the Ca-2divided by. waveform was substantially modified. The transient component was very large and inactivated slowly; the remaining very small plateau fraction deactivated along a slow, single exponential time. Under this condition nifedipine (10 muM) produced a great reduction of the transient current, leaving plateau and deactivation phase unaltered. This suggests that only R2 channels were still active at the end of the test and that the minor remaining transient component flowed through slowly but completely inactivating R1 channels. These results confirm the presence of several channel types in semicircular canal receptors, at difference with cochlear hair cells. and highlight a dramatic alteration of L-type channel behavior when intracellular Ca2+ buffers are sufficiently concentrated and fast to interfere with rapid and local changes in Ca2+ levels. (C) 2004 Elsevier B.V. All rights reserved.
C1 Ctr Neurosci, Sez Fisiol & Biofis, Dipartimento Biol, I-44100 Ferrara, Italy.
   Univ Insubria, Ctr Neurosci, I-21100 Varese, Italy.
RP Rossi, ML (reprint author), Ctr Neurosci, Sez Fisiol & Biofis, Dipartimento Biol, Via Luigi Borsari 46, I-44100 Ferrara, Italy.
EM rsm@dns.unife.it
RI fesce, riccardo/A-6317-2008; Rossi, Maria Lisa/D-4251-2011
CR Bao H, 2003, J NEUROPHYSIOL, V90, P155, DOI 10.1152/jn.00242.2002
   Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862
   Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883
   Koschak A, 2001, J BIOL CHEM, V276, P22100, DOI 10.1074/jbc.M101469200
   Lelli A, 2003, J NEUROSCI, V23, P6894
   Liang HY, 2003, NEURON, V39, P951, DOI 10.1016/S0896-6273(03)00560-9
   Lumpkin EA, 1998, J NEUROSCI, V18, P6300
   Maravall M, 2000, BIOPHYS J, V78, P2655
   Martini M, 2000, BIOPHYS J, V78, P1240
   Perin P, 2001, HEARING RES, V152, P67, DOI 10.1016/S0378-5955(00)00237-9
   Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1
   Rispoli G, 2001, CELL CALCIUM, V30, P131, DOI 10.1054/ceca.2001.0220
   RISPOLI G, 2000, NEUROREPORT, V11, P12
   Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x
   ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17
   Russo G, 2003, PFLUG ARCH EUR J PHY, V446, P189, DOI 10.1007/s00424-003-1050-y
   Schnee ME, 2003, J PHYSIOL-LONDON, V549, P697, DOI 10.1113/jphysiol.2002.037481
   Song HT, 2003, J NEUROPHYSIOL, V89, P1143, DOI 10.1152/jn.00482.2002
   SU ZL, 1995, HEARING RES, V87, P62, DOI 10.1016/0378-5955(95)00079-J
   Waka N, 2003, HISTOL HISTOPATHOL, V18, P1115
   Xu WF, 2001, J NEUROSCI, V21, P5944
   You YD, 1997, BIOPHYS J, V72, P175
NR 22
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 67
EP 74
DI 10.1016/j.heares.2004.05.009
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100007
PM 15350280
ER

PT J
AU Hamada, T
   Iwaki, S
   Kawano, T
AF Hamada, T
   Iwaki, S
   Kawano, T
TI Speech offsets activate the right parietal cortex
SO HEARING RESEARCH
LA English
DT Article
DE speech offsets; human; parietal cortex; dipole; magnetoencephalography
ID AUDITORY-CORTEX; DISCRIMINATION; RESPONSES; ATTENTION; SYSTEMS; STIMULI
AB Speech offsets, i.e., sudden transitions from continuous speech sound to silence, activated both hemispheres differently. In addition to peak activities in the bilateral temporal cortices at about 120 ms after the offsets, the right parietal cortex was activated later irrespective of the stimulated ear. The result was discussed in the context of auditory attention. (C) 2004 Elsevier B.V. All rights reserved.
C1 Natl Inst Adv Ind Sci & Technol, AIST, Kansai Ctr, Ikeda, Osaka 5638577, Japan.
   Setsunan Univ, Neyagawa, Osaka 5728508, Japan.
RP Hamada, T (reprint author), Natl Inst Adv Ind Sci & Technol, AIST, Kansai Ctr, 1-8-31 Midoriga Oka, Ikeda, Osaka 5638577, Japan.
EM hamada-takashi@aist.go.jp
CR Alho K, 2003, COGNITIVE BRAIN RES, V17, P201, DOI 10.1016/S0926-3410(03)00091-0
   Belin P, 1998, J NEUROSCI, V18, P6388
   ENDERES T, 2000, MOBILE NETW APPL, V7, P153
   FORSS N, 1994, ELECTROEN CLIN NEURO, V92, P510, DOI 10.1016/0168-5597(94)90135-X
   HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413
   HARI R, 1987, AUDIOLOGY, V26, P31
   Kasai K, 1999, NEUROREPORT, V10, P2267, DOI 10.1097/00001756-199908020-00008
   Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288
   Nobre AC, 2001, NEUROSCI BIOBEHAV R, V25, P477, DOI 10.1016/S0149-7634(01)00028-8
   Pantev C, 1996, EAR HEARING, V17, P255, DOI 10.1097/00003446-199606000-00008
   Paus T, 1997, J COGNITIVE NEUROSCI, V9, P392, DOI 10.1162/jocn.1997.9.3.392
   Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491
NR 12
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 75
EP 78
DI 10.1016/j.heares.2004.04.013
PG 4
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100008
PM 15350281
ER

PT J
AU Smittkamp, SE
   Durham, D
AF Smittkamp, SE
   Durham, D
TI Contributions of age, cochlear integrity, and auditory environment to
   avian cochlear nucleus metabolism
SO HEARING RESEARCH
LA English
DT Article
DE aging; auditory; chicken; cytochrome oxidase; metabolism; nucleus
   magnocellularis
ID NERVE ELECTRICAL-ACTIVITY; CONDUCTIVE HEARING-LOSS; BRAIN-STEM; INFERIOR
   COLLICULUS; AFFERENT INFLUENCES; CYTOCHROME-OXIDASE; CELL-SIZE;
   ANTIOXIDANT ENZYMES; NEURONAL-ACTIVITY; PROTEIN-SYNTHESIS
AB Most commercially raised broiler chickens display progressive cochlear degeneration with age [Hear. Res. 166 (2002) 82]. Recent work examining the effects of age and cochlear degeneration on avian cochlear nucleus (nucleus magnocellularis, NM) metabolism showed that changes in metabolic activity occur with age and cochlear damage [Hear. Res. 175 (2003) 101]. The auditory environment also differed between facilities housing young and adult birds. The relative contributions of age, cochlear degeneration, and auditory environment to these changes in NM metabolism are unknown.
   Using cytochrome oxidase (CO) histochemistry, NM neuron metabolism is examined in several age groups of birds under varying conditions. When normal cochlear integrity and auditory environment are held constant, CO staining is significantly decreased in adult vs. young birds. When age and auditory environment are held constant, CO staining is significantly decreased in birds with damaged vs. normal cochleae. When age and normal cochlear integrity are held constant, CO staining is significantly decreased in birds living in a quiet vs. noisy environment. All factors examined cause changes in CO staining, which is indicative of NM metabolic activity. Results are discussed in the context of mitochondrial aging, afferent regulation, and auditory deprivation and enrichment. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Kansas, Smith Mental Retardat Res Ctr, Dept Otolaryngol Head & Neck Surg, Ctr Med, Kansas City, KS 66160 USA.
   Univ Kansas, Med Ctr, Dept Speech & Hearing, Kansas City, KS 66160 USA.
RP Durham, D (reprint author), Univ Kansas, Smith Mental Retardat Res Ctr, Dept Otolaryngol Head & Neck Surg, Ctr Med, 3901 Rainbow Blvd, Kansas City, KS 66160 USA.
EM ddurham@kumc.edu
CR Alladi PA, 2002, NEUROSCIENCE, V114, P577, DOI 10.1016/S0306-4522(02)00319-6
   BESS FH, 1996, HEARING DISORDERS, P199
   BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A
   BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403
   Brunk UT, 2002, EUR J BIOCHEM, V269, P1996, DOI 10.1046/j.1432-1033.2002.02869.x
   Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8
   Calabrese V, 2001, NEUROCHEM RES, V26, P739, DOI 10.1023/A:1010955807739
   CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2
   Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852
   DURHAM D, 1985, J COMP NEUROL, V231, P446, DOI 10.1002/cne.902310404
   Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5
   Fischel-Ghodsian N, 1999, HUM MUTAT, V13, P261, DOI 10.1002/(SICI)1098-1004(1999)13:4<261::AID-HUMU1>3.0.CO;2-W
   Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V
   Garcia MM, 2000, HEARING RES, V147, P113, DOI 10.1016/S0378-5955(00)00125-8
   HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302
   JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179
   KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4
   LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9
   Mei Y, 1999, HEARING RES, V135, P169, DOI 10.1016/S0378-5955(99)00103-3
   Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G
   NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204
   Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9
   PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403
   PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6
   RICHARDSON BE, 1990, HEARING RES, V46, P53
   RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112
   RYAN AF, 1992, HEARING RES, V61, P24, DOI 10.1016/0378-5955(92)90032-I
   Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4
   SHARP FR, 1981, BRAIN RES, V230, P87, DOI 10.1016/0006-8993(81)90393-0
   SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407
   Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1
   SMITTKAMP SE, 2002, ARO, V25, P71
   Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0
   Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   TRUNE DR, 1988, HEARING RES, V35, P259, DOI 10.1016/0378-5955(88)90122-0
   TRUNE DR, 1988, HEARING RES, V33, P141, DOI 10.1016/0378-5955(88)90027-5
   Tucci DL, 2002, JARO, V3, P89, DOI 10.1007/s101620010091
   Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8
   Wadhwa S, 1999, INT J DEV NEUROSCI, V17, P239, DOI 10.1016/S0736-5748(99)00005-2
   Wei YH, 2002, EXP BIOL MED, V227, P671
   Wilkinson BL, 2002, MOL BRAIN RES, V99, P67, DOI 10.1016/S0169-328X(02)00113-4
   WILLOTT JF, 1988, EXP NEUROL, V99, P615, DOI 10.1016/0014-4886(88)90178-1
   Willott J F, 1996, J Am Acad Audiol, V7, P141
   WONGRILEY MTT, 1989, TRENDS NEUROSCI, V12, P94, DOI 10.1016/0166-2236(89)90165-3
NR 45
TC 6
Z9 6
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 79
EP 89
DI 10.1016/j.heares.2004.05.008
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100009
PM 15350282
ER

PT J
AU McCullough, BJ
   Tempel, BL
AF McCullough, BJ
   Tempel, BL
TI Haplo-insufficiency revealed in deafwaddler mice when tested for hearing
   loss and ataxia
SO HEARING RESEARCH
LA English
DT Article
DE deafwaddler; Atp2b2; PMCA2; hearing loss; deafness; mouse
ID HAIR-CELL STEREOCILIA; WRIGGLE-MOUSE-SAGAMI; SYNDROME TYPE 1D; INBRED
   STRAINS; PMCA2 MUTATION; RAT-BRAIN; CADHERIN; CA2+; AGE; DEAFNESS
AB The auditory and vestibular systems rely on the plasma membrane calcium ATPase, isoform 2 (PMCA2) to extrude calcium that enters the stereocilia, during transduction. Mutations in the gene encoding this protein result in recessive sensorineural deafness and ataxia in the deafwaddler mouse. In this study, we report the identification of a new allele of deafwaddler, dfw(3J). This allele contains a 4-nucleotide deletion resulting in a frame-shift and predicted truncation of PMCA2. No protein is detected in dfw(3J) homozygotes. To examine the dependence of auditory and vestibular function on PMCA2 activity, we compared dfw(3J) with another functional null allele, dfw(2J), and the partial loss-of-function allele, dfw. All mice studied were in the good-hearing CBA/CaJ background. Heterozygotes of either functional null allele displayed highly significant hearing loss by auditory-evoked brainstem responses relative to controls (P < 0.0001), particularly at high frequencies (>24 kHz). Ataxia was also apparent in these mice on an accelerating rotarod (P < 0.05). In contrast, +/dfw mice were not measurably different from controls in either behavioral test. dfw/dfw were deaf, but showed less ataxia than dfw(2J)/dfw(2J) or dfw(3J/)dfw(3J) mice. These results demonstrate that hearing loss and ataxia are dependent on gene dosage and PMCA2 dysfunction. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA.
   Univ Washington, Sch Med, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA.
RP Tempel, BL (reprint author), Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Box 357923, Seattle, WA 98195 USA.
EM bltempel@u.washington.edu
CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323
   ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X
   Bolz H, 2001, NAT GENET, V27, P108
   Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538
   CARAFOLI E, 1994, J NEUROBIOL, V25, P312, DOI 10.1002/neu.480250311
   DALLOS P, 1992, J NEUROSCI, V12, P4575
   Di Palma F, 2001, NAT GENET, V27, P103
   Dodson HC, 2001, J NEUROCYTOL, V30, P281, DOI 10.1023/A:1014489527996
   Dumont RA, 2001, J NEUROSCI, V21, P5066
   Filoteo AG, 1997, J BIOL CHEM, V272, P23741, DOI 10.1074/jbc.272.38.23741
   Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4
   Gates GA, 2002, HEARING RES, V163, P53, DOI 10.1016/S0378-5955(01)00377-X
   Holt JR, 2000, P NATL ACAD SCI USA, V97, P11730, DOI 10.1073/pnas.97.22.11730
   Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X
   Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377
   Konrad-Martin D, 2001, HEARING RES, V151, P205, DOI 10.1016/S0378-5955(00)00228-8
   Kozel PJ, 1998, J BIOL CHEM, V273, P18693, DOI 10.1074/jbc.273.30.18693
   Lane PW, 1987, MOUSE NEWS LETT, V77, P129
   Lumpkin EA, 1998, J NEUROSCI, V18, P6300
   Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763
   Nagar B, 1996, NATURE, V380, P360, DOI 10.1038/380360a0
   NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869
   Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226
   NORTON SJ, 1996, MIDW M ASS RES OT, P82
   Penheiter AR, 2001, HEARING RES, V162, P19, DOI 10.1016/S0378-5955(01)00356-2
   Pertz O, 1999, EMBO J, V18, P1738, DOI 10.1093/emboj/18.7.1738
   PUJOL R, 1997, MIDW M ASS RES OT, P111
   Rozen S, 2000, BIOINFORMATICS METHO, P365, DOI DOI 10.1385/1-59259-192-2:365
   Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265
   Sambrook J, 2001, MOL CLONING LAB MANU
   Schmiedt RA, 2002, J NEUROSCI, V22, P9643
   SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777
   STAHL WL, 1992, MOL BRAIN RES, V16, P223, DOI 10.1016/0169-328X(92)90229-5
   Street VA, 1998, NAT GENET, V19, P390
   Takahashi K, 1999, BIOCHEM BIOPH RES CO, V261, P773, DOI 10.1006/bbrc.1999.1102
   Takahashi K, 1999, ACTA OTO-LARYNGOL, V119, P767, DOI 10.1080/00016489950180405
   WOOD JD, 2004, IN PRESS J ASS RES O
   Yamoah EN, 1998, J NEUROSCI, V18, P610
   Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9
   Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5
NR 40
TC 26
Z9 27
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 90
EP 102
DI 10.1016/j.heares.2004.05.003
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100010
PM 15350283
ER

PT J
AU Ravicz, ME
   Rosowski, JJ
   Merchant, SN
AF Ravicz, ME
   Rosowski, JJ
   Merchant, SN
TI Mechanisms of hearing loss resulting from middle-ear fluid
SO HEARING RESEARCH
LA English
DT Article
DE middle car; umbo velocity; otitis media; effusion; viscosity; conductive
   hearing loss
ID HUMAN TEMPORAL BONES; ACOUSTIC INPUT IMPEDANCE; DOPPLER VIBROMETER LDV;
   HUMAN-CADAVER EARS; SOUND-PRESSURE; OTITIS-MEDIA; EFFUSIONS; CHILDREN;
   STAPES; TYMPANOMETRY
AB Fluid in the middle ear, a defining feature of otitis media with effusion (OME), is commonly associated with a 20- to 30-dB conductive hearing loss. The effects and relative importance of various mechanisms leading to conductive hearing loss were investigated in a human temporal bone preparation. Umbo velocity in response to ear-canal sound was measured with a laser vibrometer while saline and silicone fluids of viscosity 5-12,000 cSt were introduced into the middle ear to contact part or all of the tympanic membrane (TM) and fill part or all of the middle ear. At low frequencies, reductions in umbo velocity (DeltaV(U)) of up to 25 dB depended on the percentage of the original middle-ear air space that remained air-filled, which suggests that the primary mechanism in hearing loss at low frequencies is a reduction of the admittance of the middle-ear air space due to displacement of air with fluid. At higher frequencies, DeltaV(U) (of up to 35 dB) depended on the percentage of the TM contacted by fluid, which suggests that the primary mechanism at high frequencies is an increase in tympanic membrane mass by entrained fluid. The viscosity of the fluid had no significant effect on umbo velocity. DeltaV(U) for the fluid-filled middle ear matched hearing losses reported in patients whose middle ear was believed to be completely filled with fluid. The difference between DeltaV(U) for a partly-filled middle ear and hearing losses reported in patients whose middle ear was believed to be incompletely fluid-filled is consistent with the reported effect of middle-ear underpressure (commonly seen in OME) on umbo velocity. Small amounts of air in the middle ear are sufficient to facilitate umbo motion at low frequencies. (C) 2004 Elsevier B.V. All rights reserved.
C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA.
   MIT, Elect Res Lab, Cambridge, MA 02139 USA.
   Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA.
   Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA.
RP Ravicz, ME (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA.
EM mer@epl.meei.harvard.edu
CR BENDAVID J, 1981, EAR NOSE THROAT J, V60, P120
   Beranek L.L., 1986, ACOUSTICS
   BERGER EH, 1983, AM IND HYG ASSOC J, V44, P321, DOI 10.1202/0002-8894(1983)044<0321:LAOEAE>2.3.CO;2
   Bluestone CD, 2001, OTITIS MEDIA INFANTS
   BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015
   BROWN DT, 1983, INT J PEDIATR OTORHI, V5, P39, DOI 10.1016/S0165-5876(83)80006-8
   CUNNINGHAM MJ, 1993, SURGERY EAR TEMPORAL, P205
   FRIA TJ, 1985, ARCH OTOLARYNGOL, V111, P10
   Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478
   GATES GA, 1987, ADV OTOLARYNGOL HEAD, V1, P127
   Goode RL, 1996, AM J OTOL, V17, P813
   GOODHILL V, 1958, Acta Otolaryngol, V49, P38, DOI 10.3109/00016485809134725
   Hartley DEH, 2003, HEARING RES, V177, P53, DOI 10.1016/S0378-5955(02)00797-9
   Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475
   Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022
   JERGER J, 1975, HDB CLIN IMPEDANCE A, P149
   JOHANSEN H, 1948, ACTA OTOLARYNGOL S, V74, P64
   KHANNA SM, 1985, J ACOUST SOC AM, V77, P577, DOI 10.1121/1.391876
   LUSCHER E, 1939, ACTA OTOLARYNGOL, V32, P99
   LYNCH TJ, 1994, J ACOUST SOC AM, V96, P2184, DOI 10.1121/1.410160
   MAJIMA Y, 1988, ANN OTO RHINOL LARYN, V97, P272
   MARSH RR, 1985, INT J PEDIATR OTORHI, V9, P115, DOI 10.1016/S0165-5876(85)80011-2
   Merchant SN, 1996, HEARING RES, V97, P30
   MERCHANT SN, 2003, SURG EAR, P59
   MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996
   Murakami S, 1997, ACTA OTO-LARYNGOL, V117, P390, DOI 10.3109/00016489709113411
   NISHIHARA S, 1993, OTOLARYNG HEAD NECK, V109, P899
   ONCHI Y, 1961, J ACOUST SOC AM, V33, P794, DOI 10.1121/1.1908801
   Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930
   Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563
   Ravicz ME, 2000, HEARING RES, V150, P215, DOI 10.1016/S0378-5955(00)00200-8
   RAVICZ ME, 2000, RECENT DEV AUDITORY, P29, DOI 10.1142/9789812793980_0005
   RAVICZ ME, 1996, 19 MIDW M ARO, P57
   Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185
   ROSOWSKI JJ, 1995, AM J OTOL, V16, P486
   STINSON MR, 1986, PERIPHERAL AUDITORY, P13
   STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797
   TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236
   van DISHOECK H. A. E., 1944, ACTA OTO LARYNGOL [STOCKHOLM], V32, P99, DOI 10.3109/00016484409119901
   VER IL, 1975, J ACOUST SOC AM, V58, P392
   VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x
   VONUNGE M, 1994, AM J OTOL, V15, P663
   Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5
   Wever EG, 1954, PHYSL ACOUSTICS
   Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0
   WIEDERHOLD ML, 1980, ANN OTO RHINOL LARYN, V89, P185
   YEE AL, 1987, ACTA OTO-LARYNGOL, V104, P261, DOI 10.3109/00016488709107327
   ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382
NR 48
TC 35
Z9 36
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD SEP
PY 2004
VL 195
IS 1-2
BP 103
EP 130
DI 10.1016/j.heares.2004.05.010
PG 28
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 856JI
UT WOS:000224041100011
PM 15350284
ER

PT J
AU Runge-Samuelson, CL
   Abbas, PJ
   Rubinstein, JT
   Miller, CA
   Robinson, BK
AF Runge-Samuelson, CL
   Abbas, PJ
   Rubinstein, JT
   Miller, CA
   Robinson, BK
TI Response of the auditory nerve to sinusoidal electrical stimulation:
   effects of high-rate pulse trains
SO HEARING RESEARCH
LA English
DT Article
DE auditory prosthesis; cochlear implant; electric stimulation; sinusoidal;
   pulse trains; evoked potential; auditory nerve; guinea pig; cat
ID COCHLEAR IMPLANTS; NEURONAL RESPONSE; ACTION-POTENTIALS;
   ETHACRYNIC-ACID; NOISE; FIBER; CAT; ENHANCEMENT; RECORDINGS; KANAMYCIN
AB Electrical stimulation of the auditory nerve produces highly synchronized responses. As a consequence, electrical stimulation may result in a narrow dynamic range of hearing and poor temporal representation of an input signal. The electrically evoked compound action potential (ECAP) is an electrophysiologic response used for neural assessment in individuals with auditory prostheses. Because the ECAP arises from the activity of a population of auditory nerve fibers, within- and across-fiber synchrony should be evident in the responses. Due to its clinical relevance and reflection of neural response properties, the ECAP is used in the present study to examine changes in neural synchrony. Empirical and modeled single-fiber data indicate that stimulation with electrical pulses of a sufficiently high rate may induce stochastic neural response behaviors. This study investigated the effects of adding high-rate conditioning pulses (5000 pps) on the ECAP in response to 100 Hz electrical sinusoids. The results showed that high-rate conditioning pulses increased response amplitudes at low sinusoidal levels and decreased the amplitudes at high sinusoidal levels, indicating a decrease in the slope of the ECAP growth functions to sinusoidal stimuli. The results are consistent with a hypothesis that high-rate conditioning pulses increase single-fiber relative spread (RS) in response to sinusoidal stimuli, and the effect is highly dependent on the level of the high-rate conditioning pulses. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA.
   Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA.
   Univ Iowa, Dept Physiol & Biophys, Iowa City, IA 52242 USA.
RP Runge-Samuelson, CL (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA.
EM crunge@mcw.edu
CR ABBAS PJ, 2000, N01DC92106
   BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117
   Chatterjee M, 2001, JARO, V2, P159, DOI 10.1007/s101620010079
   Chi S. L., 2001, THESIS U IOWA IOWA C
   Dynes SBC, 1996, THESIS MIT CAMBRIDGE
   Hartmann R., 1995, Annals of Otology Rhinology and Laryngology, V104, P113
   HARTMANN R, 1994, ACTA OTO-LARYNGOL, V114, P495, DOI 10.3109/00016489409126093
   HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7
   Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010
   Kiang NYS, 1965, RES MONOGRAPHS, V35
   LITVAK L, 2001, 2001 C IMPL AUD PROS
   Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140
   Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6
   Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706
   Matsuoka AJ, 2000, HEARING RES, V149, P129, DOI 10.1016/S0378-5955(00)00173-8
   Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X
   Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7
   Miller CA, 2001, JARO, V2, P216
   Morse RP, 1996, NAT MED, V2, P928, DOI 10.1038/nm0896-928
   Parnas BR, 1996, IEEE T BIO-MED ENG, V43, P313, DOI 10.1109/10.486289
   RUBINSTEIN JT, 2000, N01DC2106
   RUBINSTEIN JT, 2000, ANN OTOL RHINOL S191
   Rubinstein JT, 2003, ANN OTO RHINOL LARYN, V112, P14
   Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3
   Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4
   VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2
   VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5
   Verveen A. A., 1961, FLUCTUATION EXCITABI
   WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32
   WILSON BS, 1997, N01DC52103
   XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X
NR 31
TC 8
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 1
EP 13
DI 10.1016/j.heares.2004.03.020
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400001
PM 15276671
ER

PT J
AU Hafidi, A
   Decourt, B
   MacLennan, AJ
AF Hafidi, A
   Decourt, B
   MacLennan, AJ
TI CNTFR alpha and CNTF expressions in the auditory brainstem: light and
   electron microscopy study
SO HEARING RESEARCH
LA English
DT Article
DE CNTFR alpha; CNTF; development; cochlear nucleus; superior olivary
   complex; inferior colliculus; spiral ganglion
ID CILIARY NEUROTROPHIC FACTOR; FACTOR MESSENGER-RNA; ADULT-RAT BRAIN;
   LATERAL SUPERIOR OLIVE; CENTRAL-NERVOUS-SYSTEM; RECEPTOR-ALPHA; REGIONAL
   DISTRIBUTION; COCHLEAR NUCLEUS; CELL-LINES; IN-VITRO
AB CNTF receptor alpha (CNTFRalpha) is involved in the development, the maintenance and the regeneration of a variety of brain structures. However, its in vivo distribution has not been determined in the auditory system. CNTFRalpha expression was studied in developing and adult rat brainstem auditory nuclei using immunohistochemistry. At birth, the CNTFRalpha immunolabeling was clearly present in somata of the external nucleus of the inferior colliculus but was diffuse throughout brainstem auditory nuclei. The labeling was present in most brainstem auditory nuclei by post-natal day (PND) 6. The intensity of the staining subsequently increased to its highest level at PND21 and decreased to an adult-like appearance by the fourth post-natal week. In adult, CNTFRalpha labeling occurred in most neurons of the cochlear nucleus (CN), the lateral superior olive (LSO), the medial superior olive (MSO), and the medial nucleus of the trapezoid body (MNTB). CNTFRalpha labeling first appeared in the central nucleus of the inferior colliculus (IC) by the end of the fourth week. There was a general increase in the expression of CNTFRalpha that begins prior to the onset of hearing and reaches its highest level after this important developmental stage. Ultrastructural analysis in the adult ventral CN revealed the presence of CNTFR in post-synaptic sites.
   The presence of CNTF has been investigated in the adult using both Western blot and immunohistochemistry. Western blot showed the presence of CNTF in both peripheral and central auditory structures. The CNTF label was generally localized to the somatic compartment, in axons and as puncta surrounding neuronal cell bodies and dendrites. Differential CNTF labeling was observed between the different auditory nuclei. CNTF staining is present in neurons of the CN, the MNTB and the LSO, while it is restricted to axons and puncta surrounding neuronal somata in the IC.
   The clear presence of CNTFRalpha at post-synaptic terminals and that of its ligand the CNTF in axons and puncta surrounding neuronal cell bodies suggest an anterograde mode of action for CNTF in the central auditory system. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Bordeaux 2, Lab Biol Mol & Cellulaire Audit, Hop Pellegrin, F-33076 Bordeaux, France.
   Univ Florida, Coll Med, Dept Neurosci, Inst Brain, Gainesville, FL 32610 USA.
RP Hafidi, A (reprint author), Univ Bordeaux 2, Lab Biol Mol & Cellulaire Audit, Hop Pellegrin, EA3665, F-33076 Bordeaux, France.
EM aziz.hafidi@univ-bpclermont.fr
CR ADLER R, 1979, SCIENCE, V204, P1434, DOI 10.1126/science.451576
   BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247
   BLATCHLEY BJ, 1987, DEV BRAIN RES, V32, P75, DOI 10.1016/0165-3806(87)90140-4
   Davis S, 1993, CURR OPIN CELL BIOL, V5, P281, DOI 10.1016/0955-0674(93)90117-9
   DECHIARA TM, 1995, CELL, V83, P313, DOI 10.1016/0092-8674(95)90172-8
   DOBREA GM, 1992, DEV BRAIN RES, V66, P209, DOI 10.1016/0165-3806(92)90082-8
   Elson GCA, 2000, NAT NEUROSCI, V3, P867
   FRIAUF E, 1990, NEUROSCI LETT, V120, P58, DOI 10.1016/0304-3940(90)90167-8
   Guo X, 1999, J NEUROSCI, V19, P2113
   Guthrie KM, 1997, J COMP NEUROL, V386, P137
   Hafidi A, 1996, J COMP NEUROL, V367, P454
   Hafidi Aziz, 2003, Brain Res Dev Brain Res, V143, P167
   Hafidi A, 1997, NEUROSCIENCE, V81, P427, DOI 10.1016/S0306-4522(97)00140-1
   Hafidi A, 1999, INT J DEV NEUROSCI, V17, P285, DOI 10.1016/S0736-5748(99)00043-X
   HAFIDI A, 1994, NEUROSCIENCE, V60, P503, DOI 10.1016/0306-4522(94)90261-5
   HELLER S, 1995, DEVELOPMENT, V121, P2681
   HENDERSON JT, 1994, MOL BRAIN RES, V22, P151, DOI 10.1016/0169-328X(94)90043-4
   HENKEL CK, 1991, J COMP NEUROL, V313, P259, DOI 10.1002/cne.903130206
   Hokfelt T, 2001, J INTERN MED, V249, P27, DOI 10.1046/j.0954-6820.2000.00773.x
   HUBER J, 1993, EUR J BIOCHEM, V218, P1031, DOI 10.1111/j.1432-1033.1993.tb18462.x
   Inoue M, 1996, MOL NEUROBIOL, V12, P195, DOI 10.1007/BF02755588
   IP FCF, 1995, J NEUROCHEM, V65, P2393
   IP NY, 1993, NEURON, V10, P89, DOI 10.1016/0896-6273(93)90245-M
   Ip NY, 1996, ANNU REV NEUROSCI, V19, P491
   IP NY, 1993, EUR J NEUROSCI, V5, P25, DOI 10.1111/j.1460-9568.1993.tb00201.x
   Kamiguchi H, 1995, NEUROCHEM RES, V20, P1187, DOI 10.1007/BF00995382
   Kirsch M, 1997, J NEUROCHEM, V68, P979
   KISHIMOTO T, 1994, CELL, V76, P253, DOI 10.1016/0092-8674(94)90333-6
   Kordower JH, 1997, J COMP NEUROL, V377, P365, DOI 10.1002/(SICI)1096-9861(19970120)377:3<365::AID-CNE5>3.0.CO;2-0
   Lee MY, 1997, NEUROSCIENCE, V77, P233, DOI 10.1016/S0306-4522(96)00476-9
   Lee MY, 1997, J NEUROSCI, V17, P1137
   Lelievre E, 2001, J BIOL CHEM, V276, P22476, DOI 10.1074/jbc.M101681200
   LINDSAY RM, 1995, NATURE, V373, P289, DOI 10.1038/373289a0
   LO DC, 1993, P NATL ACAD SCI USA, V90, P2557, DOI 10.1073/pnas.90.7.2557
   MacLennan AJ, 1996, J NEUROSCI, V16, P621
   MACLENNAN AJ, 1994, MOL BRAIN RES, V25, P251, DOI 10.1016/0169-328X(94)90160-0
   MASU Y, 1993, NATURE, V365, P27, DOI 10.1038/365027a0
   MITSUMOTO H, 1994, SCIENCE, V265, P1107, DOI 10.1126/science.8066451
   Oliver DL, 1992, MAMMALIAN AUDITORY P, P168
   Oyesiku NM, 1997, J NEUROBIOL, V32, P251, DOI 10.1002/(SICI)1097-4695(199703)32:3<251::AID-NEU1>3.0.CO;2-6
   PATTERSON PH, 1993, CELL, V72, P123, DOI 10.1016/S0092-8674(05)80032-7
   Plun-Favreau H, 2001, EMBO J, V20, P1692, DOI 10.1093/emboj/20.7.1692
   RICHARDSON PM, 1994, PHARMACOL THERAPEUT, V63, P187, DOI 10.1016/0163-7258(94)90045-0
   RIEDEL E, 1995, J COMP NEUROL, V354, P353
   RUDGE JS, 1992, EUR J NEUROSCI, V4, P459, DOI 10.1111/j.1460-9568.1992.tb00896.x
   SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805
   SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q
   SCHWEITZER L, 1985, NEUROSCIENCE, V16, P969, DOI 10.1016/0306-4522(85)90109-5
   SENDTNER M, 1994, J NEUROBIOL, V25, P1436, DOI 10.1002/neu.480251110
   SENIUKTATTON NA, 1995, J NEUROSCI RES, V41, P663, DOI 10.1002/jnr.490410513
   SQUINTO SP, 1990, NEURON, V5, P757, DOI 10.1016/0896-6273(90)90334-C
   STAECKER H, 1995, NEUROREPORT, V6, P1533
   STAHL N, 1994, J NEUROBIOL, V25, P1454, DOI 10.1002/neu.480251111
   STOCKLI KA, 1991, J CELL BIOL, V115, P447, DOI 10.1083/jcb.115.2.447
   STOOP R, 1995, SCIENCE, V267, P695, DOI 10.1126/science.7839148
   Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R
   UNSICKER K, 1992, DEV BRAIN RES, V65, P285, DOI 10.1016/0165-3806(92)90191-X
   von Bartheld CS, 2001, MOL NEUROBIOL, V24, P1, DOI 10.1385/MN:24:1-3:001
   Watanabe D, 1996, EUR J NEUROSCI, V8, P1630, DOI 10.1111/j.1460-9568.1996.tb01307.x
   WEN R, 1995, J NEUROSCI, V15, P7377
   Zurn AD, 1996, J NEUROSCI RES, V44, P133, DOI 10.1002/(SICI)1097-4547(19960415)44:2<133::AID-JNR5>3.0.CO;2-E
NR 61
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 14
EP 24
DI 10.1016/j.heares.2004.04.004
PG 11
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400002
PM 15276672
ER

PT J
AU Pedemonte, M
   Drexler, DG
   Velluti, RA
AF Pedemonte, M
   Drexler, DG
   Velluti, RA
TI Cochlear microphonic changes after noise exposure and gentamicin
   administration during sleep and waking
SO HEARING RESEARCH
LA English
DT Article
DE cochlear microphonic; sleep wakefulness; gentamicin white noise
   exposure; efferent system; olivo-cochlear bundle
ID AUDITORY EVOKED-POTENTIALS; VISUAL-ATTENTION; NEURAL CONTROL;
   GUINEA-PIGS; HAIR-CELLS; NERVE; SUPPRESSION; STIMULATION; MODULATION;
   PHYSIOLOGY
AB These experiments were designed to investigate the effect of noise, sleep, and gentamicin on the cochlear microphonic (CM) of the guinea pigs. Are the changes observed due to intrinsic cochlear phenomena or to efferent system actions? To answer this question, noise exposure together with efferent system blockade by gentamicin administration was performed. In the normal (non-treated) animal, noise exposure decreased both variability and amplitude of the tone evoked CM in about the first 10 min while the physiological modulation of slow wave sleep increasing the CM is not present. Following administration of gentamicin, noise no longer affect the CM in about the first 10 min, although it produces amplitude and variability increments. The influence of slow wave sleep on the CM is not altered. Thus, gentamicin does not block the CM sleep/wakefulness related shifts. The data were discussed in terms of the influence of gentamicin on the olivo-cochlear bundle. It was hypothesized that the effects of noise on the CM is a result of both peripheral and central influences. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Repbul, Fac Med, Dept Fisiol, Montevideo 11800, Uruguay.
RP Velluti, RA (reprint author), Univ Repbul, Fac Med, Dept Fisiol, Av Gral Flores 2125, Montevideo 11800, Uruguay.
EM rvelluti@fmed.edu.uy
CR ARAN JM, 1995, BRIT J AUDIOL, V28, P167
   Avan P, 1996, EXP BRAIN RES, V109, P9
   BUNO W, 1966, PHYSIOL BEHAV, V1, P23, DOI 10.1016/0031-9384(66)90038-2
   CAMPBELL SS, 1984, NEUROSCI BIOBEHAV R, V8, P269, DOI 10.1016/0149-7634(84)90054-X
   DAIGNEAU.EA, 1970, TOXICOL APPL PHARM, V17, P223, DOI 10.1016/0041-008X(70)90146-8
   Desmedt J.E., 1975, HDB SENSORY PHYSL, P219
   FROEHLICH P, 1993, HEARING RES, V66, P1, DOI 10.1016/0378-5955(93)90254-X
   GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424
   GLASS L, 1988, CLOCKS CHAOS RHYTHMS, P48
   GUINAN JJ, 1996, COCHLEA, P455
   HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195
   HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9
   Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0
   Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109
   OATMAN LC, 1971, EXP NEUROL, V32, P341, DOI 10.1016/0014-4886(71)90003-3
   OATMAN LC, 1976, EXP NEUROL, V51, P41, DOI 10.1016/0014-4886(76)90052-2
   OATMAN LC, 1977, EXP NEUROL, V57, P200, DOI 10.1016/0014-4886(77)90057-7
   PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7
   Pedemonte M., 1996, NEUROSCI LETT, V223, P1
   Robles L, 2001, PHYSIOL REV, V81, P1305
   SCHMIEDT RA, 1984, J ACOUST SOC AM, V76, P1293, DOI 10.1121/1.391446
   SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1
   SMITH DW, 1994, BRAIN RES, V652, P213
   Spangler K., 1991, NEUROBIOLOGY HEARING, P27
   VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X
   Velluti R, 1980, Acta Neurol Latinoam, V26, P129
   VELLUTI R, 1989, HEARING RES, V39, P203, DOI 10.1016/0378-5955(89)90091-9
   Velluti RA, 1997, J SLEEP RES, V6, P61
   Velluti RA, 2002, CELL MOL NEUROBIOL, V22, P501, DOI 10.1023/A:1021956401616
   Warr W. B., 1992, MAMMALIAN AUDITORY P, P410
   Whithnell RH, 2001, EAR HEARING, V22, P75
   Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786
   Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168
NR 33
TC 3
Z9 3
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 25
EP 30
DI 10.1016/j.heares.2004.03.008
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400003
PM 15276673
ER

PT J
AU Schwartz, DA
   Purves, D
AF Schwartz, DA
   Purves, D
TI Pitch is determined by naturally occurring periodic sounds
SO HEARING RESEARCH
LA English
DT Article
DE pitch; auditory; perception; probability; speech; psychoacoustics
ID HUMAN AUDITORY-CORTEX; COMPLEX TONES; VIRTUAL-PITCH; PERCEPTION;
   IDENTIFICATION; HARMONICS; REPRESENTATION; DISCRIMINATION; AMBIGUITY;
   DOMINANCE
AB The phenomenology of pitch has been difficult to rationalize and remains the subject of much debate. Here we test the hypothesis that audition generates pitch percepts by relating inherently ambiguous sound stimuli to their probable sources in the human auditory environment. A database of speech sounds, the principal source of periodic sound energy for human listeners, was compiled and the dominant periodicity of each speech sound determined. A set of synthetic test stimuli were used to assess whether the major pitch phenomena described in the literature could be explained by the probabilistic relationship between the stimuli and their probable sources (i.e., speech sounds). The phenomena tested included the perception of the missing fundamental, the pitchshift of the residue, spectral dominance and the perception of pitch strength. In each case, the conditional probability distribution of speech sound periodicities accurately predicted the pitches normally heard in response to the test stimuli. We conclude from these findings that pitch entails an auditory process that relates inevitably ambiguous sound stimuli to their probable natural sources. (C) 2004 Elsevier B.V. All rights reserved.
C1 Duke Univ, Ctr Cognit Neurosci, Durham, NC 27708 USA.
   Duke Univ, Dept Neurobiol, Durham, NC 27708 USA.
RP Schwartz, DA (reprint author), Duke Univ, Ctr Cognit Neurosci, Box 90999, Durham, NC 27708 USA.
EM schwartz@neuro.duke.edu
CR ARSCH R, 1999, PSYCHOL MUSIC
   Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146
   Boersma P., 1993, P I PHONETIC SCI, V17, P97
   BOERSMA P, 2003, PRAAT 4 1 DOING PHON
   Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717
   Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698
   COOK P, 1999, MUSIC COGNITION COMP, P195
   Dai HP, 2000, J ACOUST SOC AM, V107, P953, DOI 10.1121/1.428276
   de Boer E, 1956, THESIS U AMSTERDAM
   FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9
   Fisher W.M., 1986, P DARPA SPEECH REC W
   FLANAGAN JL, 1960, J ACOUST SOC AM, V32, P1308, DOI 10.1121/1.1907900
   Fletcher H, 1924, PHYS REV, V23, P427, DOI 10.1103/PhysRev.23.427
   Fromkin V., 1998, INTRO LANGUAGE
   Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x
   Garofolo J., 1990, DARPA TIMIT ACOUSTIC
   GERSON A, 1978, J ACOUST SOC AM, V63, P498, DOI 10.1121/1.381750
   GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448
   GOLDSTEIN JL, 2000, ENCY PSYCHOL
   GORDON C, 1992, B AM MATH SOC, V27, P134, DOI 10.1090/S0273-0979-1992-00289-6
   HALL JW, 1981, J ACOUST SOC AM, V69, P509, DOI 10.1121/1.385480
   HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297
   Huron D, 2001, MUSIC PERCEPT, V19, P1, DOI 10.1525/mp.2001.19.1.1
   Jarvelainen H, 2002, J NEW MUSIC RES, V31, P311, DOI 10.1076/jnmr.31.4.311.14167
   Lamel L., 1986, P DARPA SPEECH REC W
   Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148
   LICKLIDER JCR, 1954, J ACOUST SOC AM, V26, P945, DOI 10.1121/1.1928005
   Lieberman P., 1988, SPEECH PHYSL SPEECH
   MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725
   MOORE B J, 1982, INTRO PSYCHOL HEARIN
   MOORE BCJ, 1973, Q J EXP PSYCHOL, V25, P451, DOI 10.1080/14640747308400369
   Moore BCJ, 1993, HUMAN PSYCHOPHYSICS
   MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936
   PIERCE J, 2001, MUSIC COGNITION COMP
   PIERCE JR, 1991, J ACOUST SOC AM, V90, P1889, DOI 10.1121/1.401667
   Plomp R, 1976, ASPECTS TONE SENSATI
   Plomp R., 2002, INTELLIGENT EAR NATU
   PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515
   Purves D., 2003, WHY WE SEE WHAT WE D
   Purves D, 2004, PSYCHOL REV, V111, P142, DOI 10.1037/0033-295X.111.1.142
   Rao R., 2002, PROBABILISTIC MODELS
   RISTAMA RJ, 1970, FREQUENCY ANAL PERIO, P250
   RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550
   Rossing T. D., 2002, SCI SOUND
   SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360
   SCHOUTEN JF, 1938, P K NED AKAD WETENSC, V34, P1086
   Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356
   Schwartz DA, 2003, J NEUROSCI, V23, P7160
   Seebeck A., 1841, ANN PHYS CHEM, V53, P417
   SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232
   Stevens K.N., 1999, ACOUSTIC PHONETICS
   Tarantola A., 1987, INVERSE PROBLEM THEO
   TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648
   TERHARDT E, 1986, ACUSTICA, V61, P57
   TERHARDT E, 1982, J ACOUST SOC AM, V71, P671, DOI 10.1121/1.387543
   TERHARDT E, 1982, J ACOUST SOC AM, V71, P679, DOI 10.1121/1.387544
   Yost W.A., 2000, FUNDAMENTALS HEARING
   Zucker S, 2003, MON NOT R ASTRON SOC, V342, P1291, DOI 10.1046/j.1365-8711.2003.06633.x
NR 59
TC 13
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 31
EP 46
DI 10.1016/j.heares.2004.01.019
PG 16
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400004
PM 15276674
ER

PT J
AU Gleich, O
   Weiss, M
   Strutz, E
AF Gleich, O
   Weiss, M
   Strutz, E
TI Age-dependent changes in the lateral superior olive of the gerbil
   (Meriones unguiculatus)
SO HEARING RESEARCH
LA English
DT Article
DE binaural hearing; aging; GABA; glycine; olivary complex; sound
   localization
ID AUDITORY BRAIN-STEM; COCHLEAR-NUCLEUS; GLYCINE IMMUNOREACTIVITY;
   INFERIOR COLLICULUS; TRAPEZOID BODY; MEDIAL NUCLEUS; GABA
   IMMUNOREACTIVITY; MONGOLIAN GERBIL; FISCHER-344 RAT; RHESUS-MONKEY
AB Data from humans and animal models provide evidence for an age-dependent impairment in the ability to localize sound. The lateral superior olive (LSO) in the ascending auditory pathway is one important center involved in processing of binaural auditory stimuli. To identify potential age-dependent changes we characterized the LSO in young (< 15 months) and old ( greater than or equal to 3 years) gerbils with a special emphasis on the expression of GABA- and glycine-like immuno-reactivity. The dimensions of the LSO, as well as the number and density of glycine- and GABA-immuno-reactive neurons, were not significantly different between young and old gerbils. The size of glycine- and GABA-immuno-reactive neurons was significantly reduced in the high-frequency (medial) limb of the LSO. Over all, age-dependent changes in the LSO of the gerbil were small. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany.
RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Strauss Allee 11, D-93042 Regensburg, Germany.
EM otto.gleich@klinik.uni-regensburg.de
CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607
   Babkoff H, 2002, HEARING RES, V165, P117, DOI 10.1016/S0378-5955(02)00292-7
   BROWN CH, 1984, EXP AGING RES, V10, P35
   CASEY M A, 1987, Society for Neuroscience Abstracts, V13, P328
   CASEY MA, 1982, NEUROBIOL AGING, V3, P187, DOI 10.1016/0197-4580(82)90039-2
   CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J
   CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5
   CHEAL M, 1986, EXP AGING RES, V12, P3
   CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D
   DAVIS AC, 1997, SCOTTBROWNS OTOLARYN
   FINLAYSON PG, 1995, HEARING RES, V87, P84, DOI 10.1016/0378-5955(95)00081-E
   FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S
   Finlayson PG, 2002, JARO, V3, P321, DOI 10.1007/s101620020038
   Gleich O, 2002, HEARING RES, V164, P166, DOI 10.1016/S0378-5955(01)00430-0
   Gleich O, 2000, J COMP NEUROL, V428, P609, DOI 10.1002/1096-9861(20001225)428:4<609::AID-CNE2>3.0.CO;2-F
   Gleich O, 1998, CELL TISSUE RES, V293, P207, DOI 10.1007/s004410051113
   GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210
   Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9
   HARRISON JM, 1983, EXP AGING RES, V9, P35
   HARRISON JM, 1981, EXP AGING RES, V9, P35
   HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6
   HENKEL CK, 1995, J COMP NEUROL, V354, P470, DOI 10.1002/cne.903540313
   HERMAN GE, 1977, J GERONTOL, V32, P187
   Irvine Dexter R. F., 1992, V2, P153
   Korada S, 1999, J COMP NEUROL, V409, P664, DOI 10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S
   Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005
   MARTIN DR, 1991, AM J OTOL, V12, P365
   MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T
   MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7
   MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202
   Mulders WHAM, 2004, HEARING RES, V187, P122, DOI 10.1016/S0378-5955(03)00308-3
   ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0
   OSTAPOFF EM, 1989, HEARING RES, V37, P141, DOI 10.1016/0378-5955(89)90036-1
   Peters A, 1996, J NEUROPATH EXP NEUR, V55, P861
   Peters A, 2002, J COMP NEUROL, V442, P277, DOI 10.1002/cne.10099
   PEYRET D, 1986, HEARING RES, V23, P115, DOI 10.1016/0378-5955(86)90008-0
   PEYRET D, 1987, ACTA OTO-LARYNGOL, V104, P71, DOI 10.3109/00016488709109049
   Riemann R, 1998, ORL J OTO-RHINO-LARY, V60, P278, DOI 10.1159/000027610
   ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207
   SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382
   Sloane JA, 2003, J NEUROCHEM, V84, P157, DOI 10.1046/j.1471-4159.2003.01541.x
   Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748
   THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6
   VATER M, 1995, J COMP NEUROL, V358, P155, DOI 10.1002/cne.903580202
   WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X
   Willott JF, 1997, J COMP NEUROL, V385, P405
   Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X
NR 47
TC 6
Z9 8
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 47
EP 59
DI 10.1016/j.heares.2004.03.016
PG 13
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400005
PM 15276675
ER

PT J
AU Karlidag, T
   Kaygusuz, I
   Keles, E
   Yalcin, S
   Serhatlioglu, SS
   Acik, Y
   Ozturk, L
AF Karlidag, T
   Kaygusuz, I
   Keles, E
   Yalcin, S
   Serhatlioglu, SS
   Acik, Y
   Ozturk, L
TI Hearing in workers exposed to low-dose radiation for a long period
SO HEARING RESEARCH
LA English
DT Article
DE high-frequency audiometry; hearing loss; radiation
ID X-RAY-IRRADIATION; EARLY DEGENERATIVE CHANGES; NASOPHARYNGEAL CARCINOMA;
   GUINEA PIG; INNER EAR; RADIOTHERAPY; POSTIRRADIATION; THERAPY
AB The aim of the present study was to evaluate changes in hearing thresholds with standard and high frequency audiometry in workers exposed to low-dose ionizing radiation for a long period. A total of 57 (49 male and 8 female) technical staff working in radiology-related jobs who were exposed to occupational radiation were included in the study. The control group consisted of 32 (27 male and 5 female) volunteer subjects with normal hearing. The symptoms like tinnitus, vertigo, weakness and lack of appetite were evaluated. A standard ascending/descending method was applied to the subjects of the study and the control groups in order to determine their hearing thresholds at eleven different frequencies between 250 and 16 000 Hz. In the study group, the working duration of subjects ranged from 4 to 23 years, and the percentage of tinnitus, weakness, vertigo and lack of appetite were 47%, 28%, 24% and 17%, respectively. It was observed that pure tone hearing thresholds were markedly increased for 4000, 6000, 8000, 14 000 and 16 000 Hz frequencies in the study group compared to the control group (p < 0.01). Levels of static compliance and middle ear pressures of the study group were similar to the control group. Tinnitus, vertigo and hearing loss in high frequencies were observed in the subjects exposed to the radiation for a long period. Subjects under high risk should be evaluated periodically. We suggest that the use of standard and high frequency audiometry together could be beneficial in the evaluation of these subjects. (C) 2004 Elsevier B.V. All rights reserved.
C1 Firat Univ, Fac Med, Dept Otorhinolaryngol, TR-23119 Elazig, Turkey.
   Firat Univ, Fac Med, Dept Radiodiagnost, TR-23119 Elazig, Turkey.
   Firat Univ, Fac Med, Dept Publ Hlth, TR-23119 Elazig, Turkey.
RP Karlidag, T (reprint author), Firat Univ, Fac Med, Dept Otorhinolaryngol, TR-23119 Elazig, Turkey.
EM turgut_karlidag@yahoo.com
CR ANTEUNIS LJC, 1994, AM J SURG, V168, P408, DOI 10.1016/S0002-9610(05)80086-8
   BOHNE BA, 1985, LARYNGOSCOPE, V95, P818
   GABRIELE P, 1992, RADIOTHER ONCOL, V25, P25, DOI 10.1016/0167-8140(92)90191-V
   GRAU C, 1991, INT J RADIAT ONCOL, V21, P723
   Grau C, 1996, INT J RADIAT ONCOL, V36, P515, DOI 10.1016/S0360-3016(96)00346-X
   HALL HI, 1994, HDB CLIN AUDIOLOGY, P283
   Hoistad DL, 1998, OTOLARYNG HEAD NECK, V118, P825, DOI 10.1016/S0194-5998(98)70276-1
   Honore HB, 2002, RADIOTHER ONCOL, V65, P9, DOI 10.1016/S0167-8140(02)00173-1
   Johannesen TB, 2002, INT J RADIAT ONCOL, V53, P86, DOI 10.1016/S0360-3016(01)02810-3
   Kashiwamura M, 2001, AURIS NASUS LARYNX, V28, pS111, DOI 10.1016/S0385-8146(01)00076-1
   Kwong DLW, 1996, INT J RADIAT ONCOL, V36, P281, DOI 10.1016/S0360-3016(96)00302-1
   LAU SK, 1992, J LARYNGOL OTOL, V106, P887, DOI 10.1017/S002221510012119X
   MOORE MJ, 1984, OTOLARYNG CLIN N AM, V17, P389
   MORETTI JA, 1976, LARYNGOSCOPE, V86, P598, DOI 10.1288/00005537-197604000-00018
   ONEILL JV, 1979, OTOLARYNG HEAD NECK, V87, P359
   SATALOFF RT, 1994, AM J OTOL, V15, P772
   SCHOT LJ, 1992, EUR ARCH OTO-RHINO-L, V249, P305
   Singh I P, 1991, Clin Oncol (R Coll Radiol), V3, P217, DOI 10.1016/S0936-6555(05)81205-1
   TOKIMOTO T, 1985, ACTA OTO-LARYNGOL, V100, P266, DOI 10.3109/00016488509104789
   WINTHER FO, 1969, ACTA OTO-LARYNGOL, V67, P262, DOI 10.3109/00016486909125450
   WINTHER FO, 1969, ACTA OTO-LARYNGOL, V68, P514, DOI 10.3109/00016486909121592
   YAMAMOTO M, 1979, NIHON JIBIRINSYOU, V72, P979
   YOUNG YH, 1995, ARCH OTOLARYNGOL, V121, P765
   Young YH, 2001, ANN OTO RHINOL LARYN, V110, P904
   Young YH, 1999, J LARYNGOL OTOL, V113, P815
NR 25
TC 0
Z9 0
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 60
EP 64
DI 10.1016/j.heares.2004.04.011
PG 5
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400006
PM 15276676
ER

PT J
AU Ignatova, EG
   Thalmann, I
   Xu, BG
   Ornitz, DM
   Thalmann, R
AF Ignatova, EG
   Thalmann, I
   Xu, BG
   Ornitz, DM
   Thalmann, R
TI Molecular mechanisms underlying ectopic otoconia-like particles in the
   endolymphatic sac of embryonic mice
SO HEARING RESEARCH
LA English
DT Article
DE endolympbatic sac; otoconia; otoconin-90
ID GUINEA-PIG; INNER-EAR; MUTATIONS; AGENESIS; PROTEIN; DUCT; FLOW; RAT
AB Otoconin-90, the principal otoconial matrix protein, provided a too] to investigate the molecular mechanism of otoconial morphogenesis. The endolymphatic sac of the embryonic chick and guinea pig contain otoconia. Here, we show that the embryonic mouse transiently expresses ectopic otoconia in the endolymphatic sac. Massive precipitate of otoconin-90-positive material is detectable in the lumen of the endolymphatic sac between embryonic day 14.5 and 17.5 with frequent accretion into more heavily staining otoconia-like particles. Otoconin-90 was also localized at the surface and the interior of epithelial cells lining the endolymphatic sac as well as incorporated into free floating cells. In contrast, in situ hybridization failed to detect mRNA in the endolymphatic duct and sac, even though the adjacent nonsensory vestibular structures are heavily stained. Because of ample expression of otoconin-90 protein in the absence of the corresponding mRNA, we conclude that the luminal otoconin-90 is imported via longitudinal flow from the vestibular compartments, where both mRNA and protein are strongly expressed. Because of absence of mRNA, the expression of the corresponding protein by the epithelia lining the endolymphatic sac can only be explained by a resorptive process, as previously proposed on the basis of the movement of luminal macromolecules. The data do not support the previous hypothesis that the transient expression of otoconia-like particles of the endolymphatic sac represents a vestigial phenomenon from the amphibian stage, since amphibia express ample mRNA encoding otoconin-22 in the endolymphatic sac system. (C) 2004 Elsevier B.V. All rights reserved.
C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA.
   Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA.
RP Thalmann, R (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave,POB 8115, St Louis, MO 63110 USA.
EM thalmannr@msnotes.wustl.edu
CR Anniko M, 1980, Am J Otolaryngol, V1, P400, DOI 10.1016/S0196-0709(80)80021-4
   BALSAMO G, 1969, EXPERIENTIA, V25, P292, DOI 10.1007/BF02034402
   Dempster W. T., 1930, J MORPHOL, V50, P7
   Epley JM, 2001, ANN NY ACAD SCI, V942, P179
   ERWALL C, 1988, HEARING RES, V36, P277, DOI 10.1016/0378-5955(88)90068-8
   ERWAY L, 1986, SCANNING ELECTRON MI, V4, P1681
   FRIBERG U, 1986, ACTA OTO-LARYNGOL, V101, P172, DOI 10.3109/00016488609132825
   GUARDABASSI A, 1960, Z ZELLFORSCH MIK ANA, V51, P278
   Guild SR, 1927, AM J ANAT, V39, P57, DOI 10.1002/aja.1000390103
   Harada Y, 1998, ACTA OTO-LARYNGOL, V118, P74
   HULTCRANTZ M, 1990, ACTA OTO-LARYNGOL, V110, P56, DOI 10.3109/00016489009122515
   Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087
   IGNATOV EG, 2002, 25 MIDW RES M ASS RE, P93
   IMOTO T, 1983, ACTA OTO-LARYNGOL, V96, P227, DOI 10.3109/00016488309132895
   Lim D J, 1980, Birth Defects Orig Artic Ser, V16, P111
   Lins U, 2000, J STRUCT BIOL, V131, P67, DOI 10.1006/jsbi.2000.4260
   LINS U, UNPUB OTOCONIA VERTI
   LUNDQUIST PG, 1964, ACTA OTOLARYNGOL S, V188, P195
   MANNI JJ, 1987, HEARING RES, V26, P229, DOI 10.1016/0378-5955(87)90059-1
   Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X
   Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504
   PARNES LS, 1992, LARYNGOSCOPE, V102, P988
   POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C
   RASKANDERSEN H, 1999, HEARING RES, V149, P46
   RASKANDERSEN H, 1981, ANN NY ACAD SCI, V374, P11, DOI 10.1111/j.1749-6632.1981.tb30855.x
   RUDERT H, 1969, ARCH KLIN EXP OHR, V193, P138, DOI 10.1007/BF00401702
   SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229
   SALT AN, 2001, PHYSL EAR, P333
   Salt AN, 1989, MENIERES DIS, P69
   Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X
   Salt AN, 2000, HEARING RES, V149, P46, DOI 10.1016/S0378-5955(00)00160-X
   SUZUKI H, 1995, HEARING RES, V90, P212, DOI 10.1016/0378-5955(95)00168-7
   TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4
   Takumida M, 1991, Acta Otolaryngol Suppl, V481, P129
   Thalmann R, 2001, ANN NY ACAD SCI, V942, P162
   VASQUEZ C. S., 1955, ANN OTOL RHINOL AND LARYNGOL, V64, P1019
   VEENHOF BB, 1969, DEV OTOCONIA MICE
   Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529
   WANG DL, 1990, NEURAL COMPUT, V2, P95
   Yamane H, 1984, Acta Otolaryngol Suppl, V406, P263
NR 40
TC 5
Z9 5
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 65
EP 72
DI 10.1016/j.heares.2004.03.019
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400007
PM 15276677
ER

PT J
AU Reyes, SA
   Salvi, RJ
   Burkard, RF
   Coad, ML
   Wack, DS
   Galantowicz, PJ
   Lockwood, AH
AF Reyes, SA
   Salvi, RJ
   Burkard, RF
   Coad, ML
   Wack, DS
   Galantowicz, PJ
   Lockwood, AH
TI PET imaging of the 40 Hz auditory steady state response
SO HEARING RESEARCH
LA English
DT Article
DE steady-state auditory evoked potentials; positron emission tomography;
   auditory cortex; frontal cortex; thalamus; auditory pathways
ID POSITRON-EMISSION-TOMOGRAPHY; AMPLITUDE-MODULATED TONES; TONOTOPIC
   ORGANIZATION; VOLUME MEASUREMENT; CORTEX; BRAIN; ACTIVATION;
   OSCILLATIONS; CONNECTIONS; ANATOMY
AB The auditory steady state response (aSSR) is an oscillatory electrical potential recorded from the scalp induced by amplitudemodulated (AM) or click/tone burst stimuli. Its clinical utility has been limited by uncertainty regarding the specific areas of the brain involved in its generation. To identify the generators of the aSSR, O-15-water PET imaging was used to locate the regions of the brain activated by a steady 1 kHz pure tone, the same tone amplitude modulated (AM) at 40 Hz and the specific regions of the brain responsive to the AM component of the stimulus relative to the continuous tone. The continuous tone produced four clusters of activation. The boundaries of these activated clusters extended to include regions in left primary auditory cortex, right non-primary auditory cortex, left thalamus, and left cingulate. The AM tone produced three clusters of activation. The boundaries of these activated clusters extended to include primary auditory cortex bilaterally, left medial geniculate and right middle frontal gyrus. Two regions were specifically responsive to the AM component of the stimulus. These activated clusters extended to include the right anterior cingulate near frontal cortex and right auditory cortex. We conclude that cortical sites, including areas outside primary auditory cortex, are involved in generating the aSSR: There was an unexpected difference between morning and afternoon session scans that may reflect a pre- versus post-prandial state. These results support the hypothesis that a distributed resonating circuit mediates the generation of the aSSR. (C) 2004 Published by Elsevier B.V.
C1 Univ Buffalo, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA.
   Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA.
   Univ Buffalo, Sch Med & Biomed Sci, Buffalo, NY 14214 USA.
   Vet Adm, Western New York Healthcare Syst, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA.
   Univ Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA.
   Univ Buffalo, Dept Neurol, Buffalo, NY 14214 USA.
   Univ Buffalo, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA.
   Univ Buffalo, Dept Nucl Med, Buffalo, NY 14214 USA.
RP Lockwood, AH (reprint author), Univ Buffalo, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA.
EM ahl@buffalo.edu
CR Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7
   Benedict RHB, 1998, NEUROREPORT, V9, P121, DOI 10.1097/00001756-199801050-00024
   Del Parigi A, 2002, ANN NY ACAD SCI, V967, P389
   Frackowiak RSJ, 1997, HUMAN BRAIN FUNCTION
   Genovese CR, 2002, NEUROIMAGE, V15, P870, DOI 10.1006/nimg.2001.1037
   Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588
   GRAY CM, 1989, P NATL ACAD SCI USA, V86, P1698, DOI 10.1073/pnas.86.5.1698
   Griffiths TD, 2000, NEUROREPORT, V11, P919, DOI 10.1097/00001756-200004070-00004
   Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X
   Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2
   HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093
   Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002
   John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9
   Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793
   Kiren T, 1994, Acta Otolaryngol Suppl, V511, P28
   Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188
   LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3
   LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W
   Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222
   Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65
   MAKELA JP, 1990, HEARING RES, V45, P41, DOI 10.1016/0378-5955(90)90181-N
   Muller BW, 2002, NEUROIMAGE, V17, P231, DOI 10.1006/nimg.2002.1176
   Nolf EX, 2003, EUR J NUCL MED S2, V30, pS246
   PANDYA DN, 1995, REV NEUROL, V151, P486
   Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5
   Pastor MA, 2002, J NEUROSCI, V22, P10501
   Pedroarena C, 1997, P NATL ACAD SCI USA, V94, P724, DOI 10.1073/pnas.94.2.724
   Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661
   Price CJ, 1997, NEUROIMAGE, V5, P261, DOI 10.1006/nimg.1997.0269
   Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714
   Reyes SA, 2002, HEARING RES, V171, P43, DOI 10.1016/S0378-5955(02)00346-5
   RIBARY U, 1991, P NATL ACAD SCI USA, V88, P11037, DOI 10.1073/pnas.88.24.11037
   Rickards F.W., 1984, EVOKED POTENTIAL, VII, P163
   Romanski LM, 1997, J COMP NEUROL, V379, P313
   Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600
   Salvi RJ, 2002, HEARING RES, V170, P96, DOI 10.1016/S0378-5955(02)00386-6
   Santarelli R, 1999, Scand Audiol Suppl, V51, P23
   Small DM, 2001, BRAIN, V124, P1720, DOI 10.1093/brain/124.9.1720
   SPYDELL JD, 1985, ELECTROEN CLIN NEURO, V62, P193, DOI 10.1016/0168-5597(85)90014-0
   Talairach J., 1988, COPLANAR STEREOTAXIC
   Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3
NR 41
TC 13
Z9 15
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 73
EP 80
DI 10.1016/j.heares.2004.04.001
PG 8
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400008
PM 15276678
ER

PT J
AU Frei, K
   Ramsebner, R
   Hamader, G
   Lucas, T
   Schoefer, C
   Baumgartner, WD
   Wachtler, FJ
   Kirschhofer, K
AF Frei, K
   Ramsebner, R
   Hamader, G
   Lucas, T
   Schoefer, C
   Baumgartner, WD
   Wachtler, FJ
   Kirschhofer, K
TI Lack of association between Connexin 31 (GJB3) alterations and
   sensorineural deafness in Austria
SO HEARING RESEARCH
LA English
DT Article
DE sensorineural deafness; Connexin 31; Connexin 26; Austria; mutation
ID AUTOSOMAL-DOMINANT DEAFNESS; HEARING IMPAIRMENT; KCNQ4 GENE; MUTATIONS;
   DFNA2; FAMILIES; REGION; FREQUENCY; LOCUS; R32W
AB Mutations in the gap junction protein beta 3 (GJB3) gene encoding Connexin 31 (Cx31) are known to cause autosomal inherited sensorineural deafness, erythrokeratodermia and neuropathy. The role of Cx31 mutations has not been described in familial cases of non-syndromic hearing impairment (NSHI) in central European populations. To identify mutations in the Austrian population, highly selected familial (n = 24) and sporadic (n = 21) cases of isolated NSHI were screened by analysis of the complete coding sequence of Cx31, after exclusion of a common Cx26 causing deafness. Three different variations occurring in a total of 37% of all cases were identified. A C94T (R32W) missense mutation was seen in 4.4% of cases and two silent alterations C357T and C798T were detected in 8.9% and 24.4% of cases exclusively in a heterozygous pattern. No correlation between Cx31 alterations and deafness was found. To investigate the role of heterozygous Cx31 variations for a possibly combination allelic disease inheritance with Cx26 mutations as shown for Connexin 30 and Connexin 26, patients with Cx26 variations were tested. Our data suggest that Cx31 alterations are common but have no or a low genetic relevance in the Austrian hearing impaired population with or without Cx26 alterations. (C) 2004 Elsevier B.V. All rights reserved.
C1 Univ Vienna, Dept Otorhinolaryngol, Univ Hosp Vienna, A-1090 Vienna, Austria.
   Univ Vienna, Dept Histol & Embryol, A-1090 Vienna, Austria.
   Univ Vienna, Dept Clin Pharmacol, A-1090 Vienna, Austria.
   Krankenhaus Barmherzigen Bruder, Dept Otorhinolaryngol, A-1090 Vienna, Austria.
RP Frei, K (reprint author), Univ Vienna, Dept Otorhinolaryngol, Univ Hosp Vienna, AKH-8J Waehringer,Gurtel 18-20, A-1090 Vienna, Austria.
EM klemens.frei@akh-wien.ac.at
CR Casano RAMS, 1998, AM J MED GENET, V79, P388, DOI 10.1002/(SICI)1096-8628(19981012)79:5<388::AID-AJMG11>3.0.CO;2-N
   Cohen M.M., 1995, HEREDITARY HEARING L, P9
   COUCKE P, 1994, NEW ENGL J MED, V331, P425, DOI 10.1056/NEJM199408183310702
   Coucke PJ, 1999, HUM MOL GENET, V8, P1321, DOI 10.1093/hmg/8.7.1321
   del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052
   Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173
   Ensink RJH, 2000, EUR ARCH OTO-RHINO-L, V257, P62, DOI 10.1007/PL00007511
   Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2
   Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037
   FREI K, 2003, UNPUB
   Frei K, 2002, EUR J HUM GENET, V10, P427, DOI 10.1038/sj.ejhg.5200826
   Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406
   Grifa A, 1999, NAT GENET, V23, P16
   Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0
   Kelsell DP, 2000, EUR J HUM GENET, V8, P141, DOI 10.1038/sj.ejhg.5200407
   Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5
   Liu XZ, 2000, HUM MOL GENET, V9, P63, DOI 10.1093/hmg/9.1.63
   Liu YH, 2001, J COMPUT NEUROSCI, V10, P25, DOI 10.1023/A:1008916026143
   Lopez-Bigas N, 2001, EUR J HUM GENET, V9, P70
   López-Bigas N, 2000, Hum Mutat, V15, P481, DOI 10.1002/(SICI)1098-1004(200005)15:5<481::AID-HUMU15>3.0.CO;2-7
   Lopez-Bigas N, 2001, HUM MOL GENET, V10, P947, DOI 10.1093/hmg/10.9.947
   Mhatre AN, 2003, CLIN GENET, V63, P154, DOI 10.1034/j.1399-0004.2003.00031.x
   MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x
   Rouan F, 2003, EXP DERMATOL, V12, P191, DOI 10.1034/j.1600-0625.2003.120210.x
   Stern RE, 2002, ACTA OTO-LARYNGOL, V122, P730, DOI 10.1080/003655402/000028059
   Talebizadeh Z, 1999, HUM MUTAT, V14, P493, DOI 10.1002/(SICI)1098-1004(199912)14:6<493::AID-HUMU8>3.0.CO;2-P
   Van Hauwe P, 2000, AM J MED GENET, V93, P184, DOI 10.1002/1096-8628(20000731)93:3<184::AID-AJMG4>3.0.CO;2-5
   Van Hauwe P, 1999, NAT GENET, V21, P263
   Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845
NR 29
TC 7
Z9 7
PU ELSEVIER SCIENCE BV
PI AMSTERDAM
PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS
SN 0378-5955
J9 HEARING RES
JI Hear. Res.
PD AUG
PY 2004
VL 194
IS 1-2
BP 81
EP 86
DI 10.1016/j.heares.2004.03.007
PG 6
WC Audiology & Speech-Language Pathology; Neurosciences;
   Otorhinolaryngology
SC Audiology & Speech-Language Pathology; Neurosciences & Neurology;
   Otorhinolaryngology
GA 846HL
UT WOS:000223306400009
PM 15276679
ER

EF