FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Chen, Y Qiu, JH Chen, FQ Liu, SL AF Chen, Yang Qiu, Jianhua Chen, Fuquan Liu, Shunli TI Migration of neural precursor cells derived from olfactory bulb in cochlear nucleus exposed to an augmented acoustic environment SO HEARING RESEARCH LA English DT Article DE stem cells; olfactory bulb; cochlear nucleus; neuron; transplantation; augmented acoustic environment ID ADULT MAMMALIAN BRAIN; EMBRYONIC STEM-CELLS; PROGENITOR CELLS; SUBVENTRICULAR ZONE; NEURONAL DIFFERENTIATION; PROLONGED EXPOSURE; AUDITORY FUNCTION; C57BL/6J MICE; HEARING-LOSS; DBA/2J MICE AB The regeneration of the auditory neural system remains a challenge in hearing restoration. Acoustic signals may induce a site-specific cell replacement in the auditory system. This hypothesis was tested with grafted implantation of neural precursor cells (NPCs) along the cochlear nucleus in the adult host followed by an augmented acoustic stimulation. NPCs were obtained from the olfactory bulbs at embryonic day 14-16 and were transplanted into the inside border of cochlear nucleus. The labeled cells survived at least 2 weeks, verified by Hoechst 33342 fluorescence, and by immunostaining for a neuronal marker. In some cases NPCs had migrated directionally to the root of the auditory nerve. This observation demonstrates the survival and migration of NPCs from the olfactory bulb (013) along the adult auditory nerve in an augmented acoustic environment following implantation. (c) 2006 Published by Elsevier B.V. C1 Fourth Mil Med Univ, Dept Otolaryngol, Xijing Hosp, Xian 710032, Peoples R China. RP Qiu, JH (reprint author), Fourth Mil Med Univ, Dept Otolaryngol, Xijing Hosp, Xian 710032, Peoples R China. EM qiujh@fmmu.edu.cn CR Bjorklund A, 2003, LANCET NEUROL, V2, P437, DOI 10.1016/S1474-4422(03)00442-3 Blesch A, 2002, BRAIN RES BULL, V57, P833, DOI 10.1016/S0361-9230(01)00774-2 Doetsch F, 1996, P NATL ACAD SCI USA, V93, P14895, DOI 10.1073/pnas.93.25.14895 Dziewczapolski G, 2003, EXP NEUROL, V183, P653, DOI 10.1016/S0014-4886(03)00212-7 Fricker RA, 1999, J NEUROSCI, V19, P5990 GAGE FH, 1995, P NATL ACAD SCI USA, V92, P11879, DOI 10.1073/pnas.92.25.11879 Garcia-Verdugo J, 1998, J NEUROBIOL, V36, P234, DOI 10.1002/(SICI)1097-4695(199808)36:2<234::AID-NEU10>3.0.CO;2-E Gritti A, 2002, J NEUROSCI, V22, P437 Harkany T, 2004, J NEUROCHEM, V88, P1229, DOI 10.1046/j.1471-4159.2003.02243.x Herrera DG, 1999, ANN NEUROL, V46, P867, DOI 10.1002/1531-8249(199912)46:6<867::AID-ANA9>3.0.CO;2-Z Hu ZQ, 2004, BRAIN RES, V1026, P68, DOI 10.1016/j.brainres.2004.08.013 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Lim DA, 1997, P NATL ACAD SCI USA, V94, P14832, DOI 10.1073/pnas.94.26.14832 LOIS C, 1994, SCIENCE, V264, P1145, DOI 10.1126/science.8178174 MURAOKA K, 2006, EXP NEUROL Reynolds BA, 1996, DEV BIOL, V175, P1, DOI 10.1006/dbio.1996.0090 Richardson RM, 2005, MOL CELL NEUROSCI, V28, P674, DOI 10.1016/j.mcn.2004.11.013 Richardson RM, 2005, BRAIN RES, V1032, P11, DOI 10.1016/j.brainres.2004.10.043 Rochefort C, 2002, J NEUROSCI, V22, P2679 ROUSSELOT P, 1995, J COMP NEUROL, V351, P51, DOI 10.1002/cne.903510106 RYALS BM, 1989, HEARING RES, V43, P81, DOI 10.1016/0378-5955(89)90061-0 Storch Alexander, 2002, Curr Opin Investig Drugs, V3, P774 Sugaya K, 2001, MED HYPOTHESES, V57, P697, DOI 10.1054/mehy.2001.1424 Suhonen JO, 1996, NATURE, V383, P624, DOI 10.1038/383624a0 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 Vicario-Abejon C, 2003, J NEUROSCI, V23, P895 Wagner J, 1999, NAT BIOTECHNOL, V17, P653 Weyer A, 2003, J NEUROSCI RES, V73, P400, DOI 10.1002/jnr.10655 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 Willson R, 2001, TRANSPORTATION, V28, P1, DOI 10.1023/A:1005247430522 Zhang RL, 2003, NEUROSCIENCE, V116, P373, DOI 10.1016/S0306-4522(02)00696-6 NR 34 TC 10 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 3 EP 10 DI 10.1016/j.heares.2006.11.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900002 PM 17467207 ER PT J AU Polimeni, M Prigioni, I Russo, G Calzi, D Gioglio, L AF Polimeni, Mariarosa Prigioni, Ivo Russo, Giancarlo Calzi, Daniela Gioglio, Luciana TI Plasma membrane Ca2+-ATPase isoforms in frog crista ampullaris: Identification of PMCA1 and PMCA2 specific splice variants SO HEARING RESEARCH LA English DT Article DE frog; semicircular canal; crista ampullaris; hair cells; calcium pump; isozymes ID VESTIBULAR HAIR-CELLS; MECHANOELECTRICAL-TRANSDUCTION; CALCIUM-PUMP; CA-ATPASE; NA+-CA2+ EXCHANGE; ION CHANNELS; GUINEA-PIG; ADAPTATION; CURRENTS; STEREOCILIA AB Ca2+ ions play a pivotal role in inner ear hair cells as they are involved from the mechano-electrical transduction to the transmitter release. Most of the Ca2+ that enters into hair cells via mechano-transduction and voltage-gated channels is extruded by the plasma membrane Ca2+-ATPases (PMCAs) that operate in both apical and basal cellular compartments. Here, we determined the identity and distribution of PMCA isoforms in frog crista ampullaris: we showed that PMCA1, PMCA2 and PMCA3 are expressed, while PMCA4 appears to be negligible. We also identify PMCA1bx, PMCA2av and PMCA2bv as the major splice variants produced from PMCA1 and PMCA2 genes. PMCA2av appears to be the major Ca2+-pump operating at the apical pole of the cell, even if PMCA1b is also expressed in the stereocilia. PMCA1bx is, instead, the principal PMCA of hair cell basolateral compartment, where it is expressed together with PMCA2 (probably PMCA2bv) and PMCA3. Frog crista ampullaris hair cells lack a Na/Ca exchanger, therefore PMCAs are the only mechanism of Ca2+ extrusion. The coexpression of specific isozymes in the different cellular compartments responds to the need of a fine regulation of both basal and dynamic Ca2+ levels at the apical and basal pole of the cell. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Pavia, Dipartimento Med Sperimentale, Sez Anat Umana Normale, I-27100 Pavia, Italy. Univ Pavia, Dipartimento Sci Fisiol Farmacol Cellulari & Mol, I-27100 Pavia, Italy. RP Polimeni, M (reprint author), Univ Pavia, Dipartimento Med Sperimentale, Sez Anat Umana Normale, Via Forlanini 8, I-27100 Pavia, Italy. EM polimeni@unipv.it; prigioi@unipv.it; gianca@unipv.it; dcalzi@libero.it; lucy@unipv.it RI Polimeni, Mariarosa/B-6036-2012 CR BENAIM G, 1995, BIOCHEM J, V306, P299 Boyer C, 1999, EUR J NEUROSCI, V11, P1955, DOI 10.1046/j.1460-9568.1999.00618.x Boyer C, 2001, J NEUROSCI, V21, P2640 CARAFOLI E, 1994, FASEB J, V8, P993 Caride AJ, 1996, BIOCHEM J, V316, P353 Chicka MC, 2003, J BIOL CHEM, V278, P18464, DOI 10.1074/jbc.M301482200 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 Crouch JJ, 1996, HEARING RES, V101, P55, DOI 10.1016/S0378-5955(96)00132-3 DEMARCO SJ, 2001, J BIOL CHEM, V276, P21590 DETALAMONI NT, 1993, P NATL ACAD SCI USA, V90, P11949, DOI 10.1073/pnas.90.24.11949 Dumont RA, 2001, J NEUROSCI, V21, P5066 EATOCK RA, 1987, J NEUROSCI, V7, P2821 Elwess NL, 1997, J BIOL CHEM, V272, P17981, DOI 10.1074/jbc.272.29.17981 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P553 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 GARCIA ML, 1999, FRONT BIOSCI, V4, P869 Gioglio L, 1998, NEUROREPORT, V9, P1309, DOI 10.1097/00001756-199805110-00010 GIOGLIO L, 1995, ARCH HISTOL CYTOL, V58, P1, DOI 10.1679/aohc.58.1 Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005 Hendricson AW, 2002, HEARING RES, V172, P99, DOI 10.1016/S0378-5955(02)00519-1 Hillman D.E., 1976, P452 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 IKEDA K, 1992, PFLUG ARCH EUR J PHY, V420, P493, DOI 10.1007/BF00374624 KEETON TP, 1993, J BIOL CHEM, V268, P2740 Lelli A, 2003, J NEUROSCI, V23, P6894 Lumpkin EA, 1998, J NEUROSCI, V18, P6300 Lumpkin EA, 1997, P NATL ACAD SCI USA, V94, P10997, DOI 10.1073/pnas.94.20.10997 Martini M, 2002, EUR J NEUROSCI, V16, P1647, DOI 10.1046/j.1460-9568.2002.02234x MASETTO S, 1994, J NEUROPHYSIOL, V72, P443 Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208 PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 Polimeni M, 1996, MECH DEVELOP, V54, P107, DOI 10.1016/0925-4773(95)00465-3 Prigioni I, 1992, J Vestib Res, V2, P31 PRIGIONI I, 1990, HEARING RES, V46, P253, DOI 10.1016/0378-5955(90)90006-B Ricci AJ, 2000, J NEUROSCI, V20, P7131 Ricci AJ, 1998, J NEUROSCI, V18, P8261 Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Rossi ML, 2006, EUR J NEUROSCI, V23, P1775, DOI 10.1111/j.1460-9568.2006.04708.x Spassova M, 2001, J PHYSIOL-LONDON, V535, P689, DOI 10.1111/j.1469-7793.2001.00689.x STAUFFER TP, 1995, J BIOL CHEM, V270, P12184 Strehler EE, 2001, PHYSIOL REV, V81, P21 Sugihara I, 1996, J PHYSIOL-LONDON, V495, P665 Tucker T, 1995, NEURON, V15, P1323, DOI 10.1016/0896-6273(95)90011-X Verpy E, 2000, NAT GENET, V26, P51 Wood JD, 2004, JARO-J ASSOC RES OTO, V5, P99, DOI 10.1007/s10162-003-4022-1 Yamoah EN, 1998, J NEUROSCI, V18, P610 NR 49 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 11 EP 21 DI 10.1016/j.heares.2006.12.016 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900003 PM 17336006 ER PT J AU Sneary, MG Lewis, ER AF Sneary, Michael G. Lewis, Edwin R. TI Tuning properties of turtle auditory nerve fibers: Evidence for suppression and adaptation SO HEARING RESEARCH LA English DT Article DE turtle ear; auditory nerve fibers; Wiener-kernel analysis; suppression; high-order tuning ID WIENER-KERNEL ANALYSIS; COCHLEAR HAIR-CELLS; TEMPORAL RECEPTIVE-FIELD; INNER-EAR FUNCTION; GAUSSIAN-NOISE; SINGLE UNITS; RESPONSES; BULLFROG; INHIBITION; EXCITATION AB Second-order reverse correlation (second-order Wiener-kernel analysis) was carried out between spike responses in single afferent units from the basilar papilla of the red-eared turtle and band limited white noise auditory stimuli. For units with best excitatory frequencies (BEFs) below approximately 500 Hz, the analysis revealed suppression similar to that observed previously in anuran amphibians. For units with higher BEFs, the analysis revealed de response with narrow-band tuning centered about the BEF, combined with broad-band ac response at lower frequencies. For all units, the analysis revealed the relative timing and tuning of excitation and various forms of inhibitory or suppressive effects. (c) 2007 Elsevier B.V. All rights reserved. C1 San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA. Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA. RP Sneary, MG (reprint author), San Jose State Univ, Dept Biol Sci, San Jose, CA 95192 USA. EM msneary@email.sjsu.edu CR Adrian ED, 1938, PROC R SOC SER B-BIO, V125, P435, DOI 10.1098/rspb.1938.0036 ART JJ, 1984, J PHYSIOL-LONDON, V356, P525 ART JJ, 1984, J PHYSIOL-LONDON, V356, P507 CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V315, P317 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P167 EGGERMONT JJ, 1983, HEARING RES, V10, P191, DOI 10.1016/0378-5955(83)90053-9 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EGGERMONT JJ, 1983, HEARING RES, V10, P167, DOI 10.1016/0378-5955(83)90052-7 EVANS EF, 1989, COCHLEAR MECH STRUCT, P241 FAY RR, 1990, HEARING RES, V48, P93, DOI 10.1016/0378-5955(90)90201-Y FAY RR, 1986, AUDITORY FREQUENCY S, P137 FENG AS, 1975, J COMP PHYSIOL, V100, P221 FETTIPLACE R, 1978, PROC R SOC SER B-BIO, V203, P209, DOI 10.1098/rspb.1978.0101 FRISHKOP.LS, 1968, PR INST ELECTR ELECT, V56, P969, DOI 10.1109/PROC.1968.6448 FRISHKOPF LS, 1963, J ACOUST SOC AM, V35, P1219, DOI 10.1121/1.1918676 FRISHKOPF LS, 1964, J ACOUST SOC AM, V36, P1016, DOI 10.1121/1.2143197 HERMES DJ, 1981, HEARING RES, V5, P147, DOI 10.1016/0378-5955(81)90043-5 HILL KG, 1989, HEARING RES, V39, P37, DOI 10.1016/0378-5955(89)90080-4 HOLTON T, 1980, HEARING RES, V2, P21, DOI 10.1016/0378-5955(80)90014-3 LEWIS ER, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P163 Lewis ER, 2002, HEARING RES, V174, P206, DOI 10.1016/S0378-5955(02)00695-0 Lewis ER, 2002, HEARING RES, V171, P13, DOI 10.1016/S0378-5955(02)00290-3 LEWIS ER, 1988, BIOPHYS J, V53, P441 LEWIS ER, 1986, AUDITORY FREQUENCY S, P129 Lewis Edwin R, 2004, Hear Res, V189, P120, DOI 10.1016/S0378-5955(03)00406-4 LEWIS ER, 1990, LECT NOTES BIOMATH, V87, P139 LEWIS ER, 2002, J ACOUST SOC AM, V112, P2229 MANLEY GA, 1985, J COMP PHYSIOL A, V157, P161, DOI 10.1007/BF01350025 MANLEY GA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P561 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W Patterson W. C., 1966, J AUD RES, V6, P453 Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004 RUPERT A, 1963, J NEUROPHYSIOL, V26, P449 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SNEARY MG, 1988, J COMP NEUROL, V276, P588, DOI 10.1002/cne.902760411 SNEARY MG, 1989, COCHLEAR MECH, P235 TEMCHIN AN, 1988, J COMP PHYSIOL A, V163, P99, DOI 10.1007/BF00612001 vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 vanDijk P, 1997, HEARING RES, V114, P243, DOI 10.1016/S0378-5955(97)00169-X VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WOLODKIN G, 1997, DIVERSITY AUDITORY M, P104 WOLODKIN GJ, 1996, THESIS U CALIFORNIA Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2 YAMADA WY, 1997, THESIS U CALIFORNIA YU XY, 1991, THESIS U CALIFORNIA NR 49 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 22 EP 30 DI 10.1016/j.heares.2006.12.014 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900004 PM 17331685 ER PT J AU Friedland, DR Eernisse, R Popper, P AF Friedland, David R. Eernisse, Rebecca Popper, Paul TI Potassium channel gene expression in the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; gene expression; SAGE; potassium channels; Kv3.2; Kir7.1 ID RETINAL-PIGMENT EPITHELIUM; K+ CHANNEL; DIFFERENTIAL EXPRESSION; SERIAL ANALYSIS; DOMINANT DEAFNESS; ALPHA-SUBUNITS; NERVOUS-SYSTEM; OCTOPUS CELLS; FAST-SPIKING; NEURONS AB Potassium channels play a critical role in defining the electrophysiological properties accounting for the unique response patterns of auditory neurons. Serial analysis of gene expression (SAGE), microarrays, RT-PCR, and real-time RT-PCR were used to generate a broad profile of potassium channel expression in the rat cochlear nucleus. This study identified mRNAs for 51 different potassium channel subunits or channel interacting proteins. The relative expression levels of 27 of these transcripts among the AVCN, PVCN, and DCN were determined by real-time RT-PCR. Four potassium channel transcripts showed substantial levels of differential expression. Kcnc2 was expressed more than 15-fold higher in the DCN as compared to AVCN and PVCN. In contrast, Kcnj13 had an approximate 10-fold higher expression in AVCN and PVCN than in DCN. Two subunits that modify the activity of other channels were inversely expressed between ventral and dorsal divisions. Kcns1 was over 15-fold higher in DCN than AVCN or PVCN, while Kcns3 was about 25-fold higher in AVCN than in DCN. The expression patterns of potassium channels in the subdivisions of the cochlear nucleus provide a basis for understanding the electrophysiological mechanisms which sub-serve central auditory processing and provide targets for further investigations into neural plastic changes that occur with hearing loss. (c) 2007 Elsevier B.V. All rights reserved. C1 Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA. RP Friedland, DR (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. EM dfriedla@mcw.edu CR Atzori M, 2000, NAT NEUROSCI, V3, P791 Audic S, 1997, GENOME RES, V7, P986 Bal R, 2001, J NEUROPHYSIOL, V86, P2299 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004 Coetzee WA, 1999, ANN NY ACAD SCI, V868, P233, DOI 10.1111/j.1749-6632.1999.tb11293.x Halum SL, 2004, OTOL NEUROTOL, V25, P587, DOI 10.1097/00129492-200407000-00028 Hasselblatt M, 2006, AM J SURG PATHOL, V30, P66, DOI 10.1097/01.pas.0000176430.88702.e0 Hernandez-Pineda R, 1999, J NEUROPHYSIOL, V82, P1512 HOLT AG, 2006, HEAR RES Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045 Kerschensteiner D, 2003, J BIOL CHEM, V278, P18154, DOI 10.1074/jbc.M213117200 Kerschensteiner D, 1999, BIOPHYS J, V77, P248, DOI 10.1016/S0006-3495(99)76886-4 Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333 Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199 Krapivinsky G, 1998, NEURON, V20, P995, DOI 10.1016/S0896-6273(00)80480-8 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 Lau D, 2000, J NEUROSCI, V20, P9071 Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279 Lien CC, 2002, J PHYSIOL-LONDON, V538, P405, DOI 10.1013/jphysiol.2001.013066 Macica CM, 2003, J NEUROSCI, V23, P1133 Margulies EH, 2000, BIOINFORMATICS, V16, P650, DOI 10.1093/bioinformatics/16.7.650 Margulies EH, 2001, NUCLEIC ACIDS RES, V29, DOI 10.1093/nar/29.12.e60 McDonald AJ, 2006, NEUROSCIENCE, V138, P537, DOI 10.1016/j.neuroscience.2005.11.047 Miller C., 2000, GENOME BIOL, V1 Muller PY, 2002, BIOTECHNIQUES, V32, P1372 Nakamura N, 1999, BIOCHEM J, V342, P329, DOI 10.1042/0264-6021:3420329 Perney TM, 1997, J COMP NEUROL, V386, P178 Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200 Richardson FC, 2000, HEARING RES, V147, P21, DOI 10.1016/S0378-5955(00)00117-9 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3083, DOI 10.1152/jn.00126.2002 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002 Salinas M, 1997, J BIOL CHEM, V272, P24371, DOI 10.1074/jbc.272.39.24371 Shepard AR, 1999, AM J PHYSIOL-CELL PH, V277, pC412 Shimura M, 2001, J PHYSIOL-LONDON, V531, P329, DOI 10.1111/j.1469-7793.2001.0329i.x Stocker M, 1998, BIOCHEM BIOPH RES CO, V248, P927, DOI 10.1006/bbrc.1998.9072 SUZUKI N, 2003, REC RES DEV MACROMOL, V7, P63 Talley EM, 2001, J NEUROSCI, V21, P7491 VELCULESCU VE, 1995, SCIENCE, V270, P484, DOI 10.1126/science.270.5235.484 WEISER M, 1994, J NEUROSCI, V14, P949 Wu J, 2004, J MEMBRANE BIOL, V197, P179, DOI 10.1007/s00232-004-0652-4 Yang DL, 2003, INVEST OPHTH VIS SCI, V44, P3178, DOI 10.1167/iovs.02-1189 ZOU A, 2003, CELL PHYSL, V285, pC1356 NR 44 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 31 EP 43 DI 10.1016/j.heares.2007.01.024 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900005 PM 17346910 ER PT J AU Harris, KC Mills, JH Dubno, JR AF Harris, Kelly C. Mills, John H. Dubno, Judy R. TI Electrophysiologic correlates of intensity discrimination in cortical evoked potentials of younger and older adults SO HEARING RESEARCH LA English DT Article DE aging and cortical potentials; auditory evoked potentials; aging and intensity discrimination ID EVENT-RELATED POTENTIALS; AGE-RELATED-CHANGES; AMPLITUDE-MODULATED STIMULI; RAT INFERIOR COLLICULUS; PRIMARY AUDITORY-CORTEX; HEARING-LOSS; NEURAL REPRESENTATION; MISMATCH NEGATIVITY; FREQUENCY; RESPONSES AB When measured behaviorally, older adults with normal hearing have poorer intensity discrimination thresholds than younger adults, but only at lower frequencies. Poor intensity discrimination at lower but not higher frequencies for older adults can be associated with an age-related decline in temporal processing. The current study was designed to assess age-related effects on intensity discrimination at 500 and 3000 Hz using the cortical auditory evoked potential, N1-P2. Subjects were 10 younger and 10 older adults with normal hearing. The N1-P2 was elicited by an intensity. increase in an otherwise continuous pure tone presented at 70 dB SPL. Intensity increments ranged from 0 dB to 5 dB at 500 Hz and from 0 dB to 8 dB at 3000 Hz in l-dB steps. Intensity discrimination threshold was defined as the smallest intensity change needed to evoke an N1-P2 response. Consistent with behavioral measures, N1-P2 response thresholds were significantly higher for older subjects than younger subjects at 500 Hz but did not differ significantly at 3000 Hz. In addition, NI and P2 latencies for older subjects were significantly prolonged at 500 Hz, but not at 3000 Hz. As intensity increments increased above threshold, amplitudes tended to be larger in older than in younger subjects, however, these differences were not statistically significant. In older subjects, response latencies and amplitudes were significantly larger at 500 Hz than at 3000 Hz. In younger subjects, response latencies and amplitudes were similar across frequency. Similar intensity discrimination thresholds and age-related differences for behavioral measures and evoked potentials support the notion that the N1-P2 measures reflect the physiological detection of intensity change which in turn relates to intensity discrimination. A possible explanation for the decreased intensity discrimination at low frequencies, and enhanced amplitudes with prolonged latencies in older subjects is an age-related decline in inhibitory control within the central auditory nervous system. (c) 2007 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,POB 250550, Charleston, SC 29425 USA. EM harriskc@musc.edu CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 *AM NAT STAND I, 1996, S361996 ANSI AM NAT Anderer P, 1996, ELECTROEN CLIN NEURO, V99, P458, DOI 10.1016/S0013-4694(96)96518-9 ANTINORO F, 1969, J ACOUST SOC AM, V46, P1433, DOI 10.1121/1.1911881 ARLINGER SD, 1979, SCAND AUDIOL, P229 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W BARRETT G, 1987, ELECTROEN CLIN NEURO, V66, P409, DOI 10.1016/0013-4694(87)90210-0 BOETTCHER FA, 1993, HEARING RES, V71, P137, DOI 10.1016/0378-5955(93)90029-Z Boettcher FA, 2001, HEARING RES, V153, P32, DOI 10.1016/S0378-5955(00)00255-0 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 Boutros NN, 2000, INT PSYCHOGERIATR, V12, P513, DOI 10.1017/S1041610200006621 BROWN WS, 1983, ELECTROEN CLIN NEURO, V55, P277, DOI 10.1016/0013-4694(83)90205-5 Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CHRISTOPHERSON LA, 1992, J SPEECH HEAR RES, V35, P929 Dubno JR, 1997, J SPEECH LANG HEAR R, V40, P444 FLORENTINE M, 1983, J ACOUST SOC AM, V74, P1375, DOI 10.1121/1.390162 FLORENTINE M, 1993, J ACOUST SOC AM, V94, P2575, DOI 10.1121/1.407369 GIARD MH, 1995, J COGNITIVE NEUROSCI, V7, P133, DOI 10.1162/jocn.1995.7.2.133 Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74 Harkrider AW, 2005, CLIN NEUROPHYSIOL, V116, P2153, DOI 10.1016/j.clinph.2005.05.016 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2 HUMES LE, 1991, J SPEECH HEAR RES, V34, P686 Humes L E, 1996, J Am Acad Audiol, V7, P161 JACOBSON GP, 1992, EAR HEARING, V13, P300, DOI 10.1097/00003446-199210000-00007 JERGER J, 1970, ARCHIV OTOLARYNGOL, V91, P433 Kadner A, 2002, NEUROREPORT, V13, P443, DOI 10.1097/00001756-200203250-00016 KNIGHT RT, 1990, ELECTROEN CLIN NEURO, V77, P225, DOI 10.1016/0168-5597(90)90041-B LAFFONT F, 1989, Neurophysiologie Clinique, V19, P15, DOI 10.1016/S0987-7053(89)80081-4 Ling LL, 2005, NEUROSCIENCE, V132, P1103, DOI 10.1016/j.neuroscience.2004.12.043 Martin BA, 1999, EAR HEARING, V20, P33, DOI 10.1097/00003446-199902000-00004 Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556 MCCANDLE.GA, 1970, J SPEECH HEAR RES, V13, P624 MILBRANDT JC, 1994, NEUROBIOL AGING, V15, P699, DOI 10.1016/0197-4580(94)90051-5 Milbrandt JC, 1997, J COMP NEUROL, V379, P455, DOI 10.1002/(SICI)1096-9861(19970317)379:3<455::AID-CNE10>3.0.CO;2-F MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Ostroff JM, 1998, EAR HEARING, V19, P290, DOI 10.1097/00003446-199808000-00004 PAAVILAINEN P, 1991, ELECTROEN CLIN NEURO, V78, P466, DOI 10.1016/0013-4694(91)90064-B PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2 Pekkonen E, 1996, EXP AGING RES, V22, P171, DOI 10.1080/03610739608254005 PFEFFERBAUM A, 1980, ELECTROEN CLIN NEURO, V49, P266, DOI 10.1016/0013-4694(80)90221-7 PFEIFFER E, 1975, J AM GERIATR SOC, V23, P433 PICTON TW, 1984, PSYCHOPHYSIOLOGY, V21, P312, DOI 10.1111/j.1469-8986.1984.tb02941.x Rao SM, 2001, NAT NEUROSCI, V4, P317, DOI 10.1038/85191 Schroeder MM, 1995, ANN NY ACAD SCI, V769, P399, DOI 10.1111/j.1749-6632.1995.tb38155.x Palombi PS, 2001, HEARING RES, V153, P174, DOI 10.1016/S0378-5955(00)00264-1 Tremblay Kelly L, 2004, J Am Acad Audiol, V15, P226, DOI 10.3766/jaaa.15.3.5 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 Walton JP, 2002, J NEUROPHYSIOL, V88, P565, DOI 10.1152/jn.00945.2001 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5 Woods D L, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P102 WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P297, DOI 10.1016/0168-5597(86)90008-0 WOODS DL, 1992, ELECTROEN CLIN NEURO, V84, P456, DOI 10.1016/0168-5597(92)90033-8 Wunderlich JL, 2001, J ACOUST SOC AM, V109, P1526, DOI 10.1121/1.1349184 NR 60 TC 20 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 58 EP 68 DI 10.1016/j.heares.2007.01.021 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900007 PM 17344001 ER PT J AU Razak, KA Fuzessery, ZM AF Razak, Khaleel A. Fuzessery, Zoltan M. TI Development of functional organization of the pallid bat auditory cortex SO HEARING RESEARCH LA English DT Article DE development; auditory cortex; feature maps; binaural selectivity; pallid bat; tonotopy ID INTERAURAL INTENSITY DIFFERENCES; PASSIVE SOUND LOCALIZATION; INFERIOR COLLICULUS; BINAURAL ORGANIZATION; ANTROZOUS-PALLIDUS; RECEPTIVE-FIELDS; RESPONSE SELECTIVITY; CORTICAL-NEURONS; CAT; SENSITIVITY AB The primary auditory cortex is characterized by a tonotopic map and a clustered organization of binaural properties. The factors involved in the development of overlain representation of these two properties are unclear. We addressed this issue in the auditory cortex of the pallid bat. The adult pallid bat cortex contains a systematic relationship between best frequency (BF) and binaural properties. Most neurons with BF < 30 kHz are binaurally inhibited (EO/I), while most neurons with BF > 30 kHz are monaural (EO). As in other species, binaural properties are clustered. The EO/I cluster contains a systematic map of interaural intensity difference (IID) sensitivity. We asked if these properties are present at the time the bat acquires its full audible range (postnatal day [P] 15). Tonotopy, relationship between BF and binaural properties, and the map of IID sensitivity are adult-like at P15. However, binaural facilitation is only observed in pups older than P25. Frequency selectivity shows a BF-dependent sharpening during development. Thus, overlain representation of binaural properties and tonotopy in the pallid bat cortex is remarkably adult-like at an age when the full audible range is first present, suggesting an experience-independent development of overlapping feature maps. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. RP Fuzessery, ZM (reprint author), Univ Wyoming, Dept Zool & Physiol, Laramie, WY 82071 USA. EM zmf@uwyo.edu CR BELL GP, 1982, BEHAV ECOL SOCIOBIOL, V10, P217, DOI 10.1007/BF00299688 BLATCHLEY BJ, 1990, J NEUROPHYSIOL, V64, P582 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 BROWN P, 1976, Z TIERPSYCHOL, V41, P34 BROWN PE, 1978, J COMP PHYSIOL, V126, P169 BRUGGE JF, 1985, J ACOUST SOC AM, V78, P353, DOI 10.1121/1.392498 BRUGGE JF, 1988, HEARING RES, V34, P127, DOI 10.1016/0378-5955(88)90100-1 Carrasco MM, 2005, J NEUROPHYSIOL, V94, P1962, DOI 10.1152/jn.00166.2005 Chang EF, 2005, P NATL ACAD SCI USA, V102, P16460, DOI 10.1073/pnas.0508239102 Chapman B, 1999, J NEUROBIOL, V41, P18, DOI 10.1002/(SICI)1097-4695(199910)41:1<18::AID-NEU4>3.0.CO;2-V CLEMENTS M, 1978, DEV PSYCHOBIOL, V11, P505, DOI 10.1002/dev.420110514 Crowley JC, 2002, CURR OPIN NEUROBIOL, V12, P104, DOI 10.1016/S0959-4388(02)00297-0 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Ehret G, 1997, J COMP PHYSIOL A, V181, P547, DOI 10.1007/s003590050139 FOX K, 1996, PROG BRAIN RES, V108, P218 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 FUZESSERY ZM, 1993, J COMP PHYSIOL A, V171, P767, DOI 10.1007/BF00213073 FUZESSERY ZM, 1991, J NEUROSCI METH, V36, P45, DOI 10.1016/0165-0270(91)90136-N HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0 IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570 Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 KELLY JB, 1994, J NEUROPHYSIOL, V71, P904 Liu W, 1997, J COMP PHYSIOL A, V181, P599, DOI 10.1007/s003590050143 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 MOORE DR, 1980, EXP BRAIN RES, V38, P103 MOORE DR, 1979, ACTA OTO-LARYNGOL, V87, P434, DOI 10.3109/00016487909126447 Mrsic-Flogel TD, 2003, NAT NEUROSCI, V6, P981, DOI 10.1038/nn1108 NAEGELE JR, 1988, J COMP NEUROL, V277, P593, DOI 10.1002/cne.902770411 Nakamoto KT, 2004, J NEUROPHYSIOL, V91, P118, DOI 10.1152/jn.00171.2003 Pienkowski M, 2005, J NEUROPHYSIOL, V93, P454, DOI 10.1152/jn.00569.2004 Razak KA, 2002, J NEUROPHYSIOL, V87, P72 Razak KA, 2000, NEUROREPORT, V11, P2919, DOI 10.1097/00001756-200009110-00018 Razak KA, 2006, J NEUROPHYSIOL, V96, P1303, DOI 10.1152/jn.00020.2006 Razak KA, 1999, J NEUROPHYSIOL, V81, P1438 RAZAK KA, 2006, J COMP NEUROL, V500, P322 Read HL, 2002, CURR OPIN NEUROBIOL, V12, P433, DOI 10.1016/S0959-4388(02)00342-2 REALE RA, 1986, J NEUROPHYSIOL, V56, P663 Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142 Velenovsky DS, 2003, J NEUROSCI, V23, P308 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 NR 45 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 69 EP 81 DI 10.1016/j.heares.2007.01.020 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900008 PM 17321705 ER PT J AU Hall, IC Hurley, LM AF Hall, Ian C. Hurley, Laura M. TI The serotonin releaser fenfluramine alters the auditory responses of inferior colliculus neurons SO HEARING RESEARCH LA English DT Article DE fenfluramine; serotonin; serotonin receptor; inferior colliculus; neuromodulation ID DORSAL RAPHE NUCLEUS; RAT PREFRONTAL CORTEX; GUINEA-PIG BRAIN; COCHLEAR NUCLEUS; 5-HYDROXYTRYPTAMINE SEROTONIN; EXTRACELLULAR SEROTONIN; FUNCTIONAL-ORGANIZATION; MODULATES RESPONSES; RECEPTORS; SYSTEM AB Local direct application of the neuromodulator serotonin strongly influences auditory response properties of neurons in the inferior colliculus (IC), but endogenous stores of serotonin may be released in a distinct spatial or temporal pattern. To explore this issue, the serotonin releaser fenfluramine was iontophoretically applied to extracellularly recorded neurons in the IC of the Mexican free-tailed bat (Tadarida brasiliensis). Fenfluramine mimicked the effects of serotonin on spike count and first spike latency in most neurons, and its effects could be blocked by co-application of serotonin receptor antagonists, consistent with fenfluramine-evoked serotonin release. Responses to fenfluramine did not vary during single applications or across multiple applications, suggesting that fenfluramine did not deplete serotonin stores. A predicted gradient in the effects of fenfluramine with scrotonin fiber density was not observed, but neurons with fenfluramine-evoked increases in latency occurred at relatively greater recording depths compared to other neurons with similar characteristic frequencies. These findings support the conclusion that there may be spatial differences in the effects of exogenous and endogenous sources of serotonin, but that other factors such as the identities and locations of serotonin receptors are also likely to play a role in determining the dynamics of serotonergic effects. (c) 2007 Elsevier B.V. All rights reserved. C1 Indiana Univ, Dept Biol, Bloomington, IN 47405 USA. RP Hall, IC (reprint author), Indiana Univ, Dept Biol, 1001 E 3rd St,342 Jordan Hall, Bloomington, IN 47405 USA. EM ichall@indiana.edu; lhurley@indiana.edu CR Amargos-Bosch M, 2004, CEREB CORTEX, V14, P281, DOI 10.1093/cercor/bhg128 AUERBACH SB, 1989, BRAIN RES, V499, P281, DOI 10.1016/0006-8993(89)90776-2 Baumann MH, 2000, ANN NY ACAD SCI, V914, P172 Baumann MH, 2001, NEUROPSYCHOPHARMACOL, V24, P492, DOI 10.1016/S0893-133X(00)00221-9 Beique JC, 2004, J PHYSIOL-LONDON, V556, P739, DOI 10.1113/j.physiol.2003.051284 Blakely RD, 2000, CURR OPIN NEUROBIOL, V10, P328, DOI 10.1016/S0959-4388(00)00088-X BRUCKNER S, 1995, HEARING RES, V86, P1, DOI 10.1016/0378-5955(95)00048-9 Bunin MA, 1998, J NEUROSCI, V18, P4854 CARBONI E, 1989, NEUROSCIENCE, V32, P637, DOI 10.1016/0306-4522(89)90285-6 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Cobb WS, 2003, J NEUROCHEM, V84, P576, DOI 10.1046/j.1471-4159.2003.01546.x Consolo S, 1996, J PHARMACOL EXP THER, V277, P823 Cornea-Hebert V, 1999, J COMP NEUROL, V409, P187, DOI 10.1002/(SICI)1096-9861(19990628)409:2<187::AID-CNE2>3.0.CO;2-P Cransac H, 1998, HEARING RES, V118, P151, DOI 10.1016/S0378-5955(98)00031-8 EBERT U, 1992, NEUROSCI LETT, V145, P51, DOI 10.1016/0304-3940(92)90201-H Ehret G, 2003, NEUROREPORT, V14, P1365, DOI 10.1097/01.wnr.0000078545.07662.85 Fletcher A, 1996, BEHAV BRAIN RES, V73, P337 Foehring RC, 2002, J NEUROSCI, V22, P8238 Hage SR, 2003, EUR J NEUROSCI, V18, P2301, DOI 10.1046/j.1460-9568.2003.02945.x HARLAN R, 2000, ARO ABSTR, V23, P113 HAVEY DC, 1980, ELECTROEN CLIN NEURO, V48, P249, DOI 10.1016/0013-4694(80)90313-2 Heidmann DEA, 1998, NEUROPHARMACOLOGY, V37, P1621, DOI 10.1016/S0028-3908(98)00070-7 HOYER D, 1994, PHARMACOL REV, V46, P157 HURLEY L, 2001, J COMP NEUROL, V435, P77 Hurley LM, 2005, J NEUROSCI, V25, P7876, DOI 10.1523/JNEUROSCI.1178-05.2005 Hurley LM, 1999, J NEUROSCI, V19, P8071 Hurley LM, 2001, J NEUROPHYSIOL, V85, P828 Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007 HURLEY LM, 2006, J NEUROPHYSIOL Hurley LM, 2005, J COMP PHYSIOL A, V191, P535, DOI 10.1007/s00359-005-0623-y IRVINE DRF, 1992, MAMMALIAN AUDITORY P, V2, P153 Itzhak Y, 2006, PHARMACOL THERAPEUT, V109, P246, DOI 10.1016/j.pharmthera.2005.08.004 JACOBS BL, 1978, BRAIN RES, V147, P149, DOI 10.1016/0006-8993(78)90779-5 Jen P, 2006, BRAIN RES, V1091, P207, DOI 10.1016/j.brainres.2006.01.055 Kaiser A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P71, DOI 10.1007/978-1-4419-8712-9_7 Kirifides ML, 2001, J COMP NEUROL, V435, P325, DOI 10.1002/cne.1033 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H LAFERRERE B, 1989, BRAIN RES, V504, P258, DOI 10.1016/0006-8993(89)91365-6 Liu JX, 2003, HEARING RES, V175, P45, DOI 10.1016/S0378-5955(02)00708-6 Malmierca MS, 2003, INT REV NEUROBIOL, V56, P147, DOI 10.1016/S0074-7742(03)56005-6 Marsh RA, 2002, J NEUROSCI, V22, P10449 Mooney RD, 1996, PROG BRAIN RES, V112, P57 Morales Marisela, 1998, Journal of Comparative Neurology, V402, P385 Nielsen K, 2006, SYNAPSE, V59, P270, DOI 10.1002/syn.20240 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Peruzzi D, 2004, BRAIN RES, V998, P247, DOI 10.1016/j.brainres.2003.10.059 Pobbe RLH, 2005, PSYCHOPHARMACOLOGY, V183, P314, DOI 10.1007/s00213-005-0196-z Pollak GD, 2003, TRENDS NEUROSCI, V26, P33, DOI 10.1016/S0166-2236(02)00009-7 Rothman RB, 2003, J PHARMACOL EXP THER, V305, P1191, DOI 10.1124/jpet.103.049684 Rothman RB, 1999, CIRCULATION, V100, P869 ROWLAND NE, 1986, PROG NEUROBIOL, V27, P13, DOI 10.1016/0301-0082(86)90011-0 Sakai K, 2001, EUR J NEUROSCI, V13, P103, DOI 10.1046/j.1460-9568.2001.01364.x Santana N, 2004, CEREB CORTEX, V14, P1100, DOI 10.1093/cercor/bhh070 Schreiner CE, 1997, NATURE, V388, P383, DOI 10.1038/41106 SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 SCHWARTZ D, 1989, BRAIN RES, V482, P261, DOI 10.1016/0006-8993(89)91189-X Sheibani V, 2006, BRAIN RES BULL, V68, P430, DOI 10.1016/j.brainresbull.2005.09.017 Tao R, 2002, EUR J PHARMACOL, V445, P69, DOI 10.1016/S0014-2999(02)01751-X THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 TO ZP, 1995, BRIT J PHARMACOL, V115, P107 van der Stelt HM, 2005, BIOL PSYCHIAT, V57, P1061, DOI 10.1016/j.biopsych.2004.12.040 VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305 Vilaro MT, 2005, J COMP NEUROL, V484, P418, DOI 10.1002/cne.20447 WATERHOUSE BD, 1990, BRAIN RES, V514, P276, DOI 10.1016/0006-8993(90)91422-D WATERHOUSE BD, 1986, BRAIN RES BULL, V17, P507, DOI 10.1016/0361-9230(86)90218-2 WENSTRUP JJ, 1985, HEARING RES, V17, P191, DOI 10.1016/0378-5955(85)90021-8 WENSTRUP JJ, 1986, J NEUROSCI, V6, P962 YUAN XB, 2003, NAT CELL BIOL, V5, P1 ZOOK JM, 1985, J COMP NEUROL, V237, P307, DOI 10.1002/cne.902370303 Zwiers MP, 2004, J NEUROSCI, V24, P4145, DOI 10.1523/JNEUROSCI.0199-04.2004 NR 71 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 82 EP 94 DI 10.1016/j.heares.2007.01.023 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900009 PM 17339086 ER PT J AU Zhi, M Ratnanather, JT Ceyhan, E Popel, AS Brownell, WE AF Zhi, Man Ratnanather, J. Tilak Ceyhan, Elvan Popel, Aleksander S. Brownell, William E. TI Hypotonic swelling of salicylate-treated cochlear outer hair cells SO HEARING RESEARCH LA English DT Article DE hydraulic conductivity; extracisternal space; subsurface cisterna ID GUINEA-PIG COCHLEA; LATERAL WALL; PLASMA-MEMBRANE; HYDRAULIC CONDUCTIVITY; WATER PERMEABILITY; BENDING STIFFNESS; ELASTIC-MODULI; MOTOR PROTEIN; ELECTROMOTILITY; MODEL AB The outer hair cell (OHC) is a hydrostat with a low hydraulic conductivity of P-f = 3 x 10(-4) cm/s across the plasma membrane (PM) and subsurface cisterna that make up the OHC's lateral wall. The SSC is structurally and functionally a transport barrier in normal cells that is known to be disrupted by salicylate. The effect of sodium salicylate on P-f is determined from osmotic experiments in which isolated, control and salicylate-treated OHCs were exposed to hypotonic solutions in a constant flow chamber. The value of P-f = 3.5 +/- 0.5 x 10(-4) cm/s (mean +/- s.c.m., n = 34) for salicylate-treated OHCs was not significantly different from P-f = 2.4 +/- 0.3 x 10(-4) cm/s (mean +/- s.e.m., n = 31) for untreated OHCs (p =.3302). Thus Pf is determined by the PM and is unaffected by salicylate treatment. The ratio of longitudinal strain to radial strain epsilon(z)/epsilon(c) = -0.76 for salicylate-treated OHCs was significantly smaller (P = .0 143) from -0.72 for untreated OHCs, and is also independent of the magnitude of the applied osmotic challenge. Salicylate-treated OHCs took longer to attain a steady-state volume which is larger than that for untreated OHCs and increased in volume by 8-15% prior to hypotonic perfusion unlike sodium alpha-ketoglutarate-treated OHCs. It is suggested that depolymerization of cytoskeletal proteins and/or glycogen may be responsible for the large volume increase in salicylate-treated OHCs as well as the different responses to different modes of application of the hypotonic solution. (c) 2007 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Ctr Imaging Sci, Whitaker Biomed Engn Inst, Baltimore, MD 21218 USA. Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, Houston, TX 77030 USA. Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA. Koc Univ, Dept Math, TR-34450 Istanbul, Turkey. RP Ratnanather, JT (reprint author), Johns Hopkins Univ, Ctr Imaging Sci, Whitaker Biomed Engn Inst, Clark 301,3400 N Charles St, Baltimore, MD 21218 USA. EM tilak@cis.jhu.edu RI Ratnanather, J. Tilak/A-3362-2010 OI Ratnanather, J. Tilak/0000-0002-8631-489X CR Belyantseva IA, 2000, J NEUROSCI, V20, P8996 Box G. E. P., 1994, TIME SERIES ANAL Brownell WE, 2001, ANNU REV BIOMED ENG, V3, P169, DOI 10.1146/annurev.bioeng.3.1.169 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BROWNELL WE, 2002, INNER EAR BIOL BASIC, P25 BROWNELL WE, 1994, ACTIVE HEARING, P167 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BROWNELL WE, 1999, VOLTA REV, V99, P9 BROWNELL WE, 2006, VERTEBRATE HAIR CELL, P313 BROWNELL WE, 1982, HEARING RES, V6, P335, DOI 10.1016/0378-5955(82)90064-8 Chambard JM, 2003, J PHYSIOL-LONDON, V550, P667, DOI 10.1113/jphysiol.2003.039321 Chertoff M. E., 1994, AM J PHYSIOL, V266, P467 CRIST JR, 1993, HEARING RES, V69, P194, DOI 10.1016/0378-5955(93)90107-C DALLOS P, 1992, J NEUROSCI, V12, P4575 DIELER R, 1991, J NEUROCYTOL, V20, P637, DOI 10.1007/BF01187066 DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4 Ermilov SA, 2005, J NEUROPHYSIOL, V94, P2105, DOI 10.1152/jn.00414.2005 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 Hallworth R, 1997, HEARING RES, V114, P204, DOI 10.1016/S0378-5955(97)00167-6 Holley M. C., 1996, COCHLEA, P386 HOLM S, 1979, SCAND J STAT, V6, P65 IWASA KH, 1991, NEUROSCI LETT, V133, P171, DOI 10.1016/0304-3940(91)90562-8 Kakehata S, 2000, Auris Nasus Larynx, V27, P349, DOI 10.1016/S0385-8146(00)00081-X Kakehata S, 1996, J NEUROSCI, V16, P4881 Krylov AV, 2001, J GEN PHYSIOL, V118, P333, DOI 10.1085/jgp.118.4.333 Le Grimellec C, 2002, J COMP NEUROL, V451, P62, DOI 10.1002/cne.10338 Lue AJC, 1999, HEARING RES, V135, P163, DOI 10.1016/S0378-5955(99)00102-1 Manlys BFJ, 1994, MULTIVARIATE STAT ME Marrink SJ, 2001, J AM CHEM SOC, V123, P8638, DOI 10.1021/ja0159618 MONGAN E, 1973, JAMA-J AM MED ASSOC, V226, P142, DOI 10.1001/jama.226.2.142 Morimoto N, 2002, AM J PHYSIOL-CELL PH, V282, pC1076, DOI 10.1152/ajpcell.00210.2001 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Oghalai JS, 1998, J NEUROSCI, V18, P48 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Patuzzi R., 1996, COCHLEA, P186 POLLICE PA, 1993, HEARING RES, V70, P187, DOI 10.1016/0378-5955(93)90157-V Raphael RM, 1999, BIOPHYS J, V76, pA273 Raphael RM, 2000, BIOPHYS J, V78, P2844 Ratnanather JT, 1996, J ACOUST SOC AM, V99, P1025, DOI 10.1121/1.414631 Ratnanather JT, 1996, HEARING RES, V96, P33 Ratnanather JT, 2000, J MATH BIOL, V40, P372, DOI 10.1007/s002850050185 RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 Rybalchenko V, 2003, J PHYSIOL-LONDON, V547, P873, DOI 10.1113/jphysiol.2002.036434 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 SLEPECKY NB, 1992, J NEUROCYTOL, V21, P374, DOI 10.1007/BF01191705 Snyder KV, 2003, SENSORS AND SENSING IN BIOLOGY AND ENGINEERING, P71 Spector AA, 1998, J ACOUST SOC AM, V103, P1007, DOI 10.1121/1.421217 Spector AA, 2005, ANN BIOMED ENG, V33, P991, DOI 10.1007/s10439-005-5749-0 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E Thode H. C., 2002, TESTING NORMALITY TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 Zar JH, 1984, BIOSTATISTICAL ANAL Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zhou Y, 2005, BIOPHYS J, V89, P1789, DOI 10.1529/biophysj.104.054510 NR 54 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 95 EP 104 DI 10.1016/j.heares.2007.02.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900010 PM 17400411 ER PT J AU Zheng, Y Baek, JH Smith, PF Darlington, CL AF Zheng, Yiwen Baek, Jean-Ha Smith, Paul F. Darlington, Cynthia L. TI Cannabinoid receptor down-regulation in the ventral cochlear nucleus in a salicylate model of tinnitus SO HEARING RESEARCH LA English DT Article DE tinnitus; cochlear nucleus; salicylate; cannabinoid receptors; rat ID UNILATERAL VESTIBULAR DEAFFERENTATION; LOCALIZATION; ACTIVATION; SYSTEM; BRAIN; RATS AB Cannabinoid CB1 receptors have not been systematically investigated in the brainstem cochlear nucleus, nor have they been investigated in relation to tinnitus. Using immunohistochemistry and cell counting, we showed that a large number of neurons in the rat cochlear nucleus possess cannabinoid CB1 receptors. Following salicylate injections that induced the behavioural manifestations of tinnitus, the number of principal neurons in the ventral cochlear nucleus expressing CB1 receptors significantly decreased, while the number of CB1-positive principal neurons in the dorsal cochlear nucleus did not change significantly. These results suggest that CB I receptors in the cochlear nucleus may be important for auditory function and that a down-regulation of CB I receptors in the ventral cochlear nucleus may be related to the development of tinnitus. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Otago, Dept Pharmacol & Toxicol, Sch Med Sci, Dunedin, New Zealand. RP Smith, PF (reprint author), Univ Otago, Dept Pharmacol & Toxicol, Sch Med Sci, POB 913, Dunedin, New Zealand. EM paul.smith@stonebow.otago.ac.nz CR Ashton JC, 2004, BRAIN RES, V1021, P264, DOI 10.1016/j.brainres.2004.06.065 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Glass M, 1997, NEUROSCIENCE, V77, P299, DOI 10.1016/S0306-4522(96)00428-9 GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229 HERKENHAM M, 1991, J NEUROSCI, V11, P563 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Leterrier C, 2004, J BIOL CHEM, V279, P36013, DOI 10.1074/jbc.M403990200 Leterrier C, 2006, J NEUROSCI, V26, P3141, DOI 10.1523/JNEUROSCI.5437-05.2006 Lutz B, 2004, BIOCHEM PHARMACOL, V68, P1691, DOI 10.1016/j.bcp.2004.07.007 Meredith S, 1999, J REPROD FERTIL, V117, P339, DOI 10.1530/jrf.0.1170339 Moller A R, 2000, J Am Acad Audiol, V11, P115 OORSCHOT DE, 1994, PROG NEUROBIOL, V44, P233, DOI 10.1016/0301-0082(94)90040-X Parnes SM, 1997, EUR ARCH OTO-RHINO-L, V254, P406, DOI 10.1007/BF02439968 Paxinos G., 1998, RAT BRAIN STEREOTAXI Sato K, 1998, MICROSC RES TECHNIQ, V41, P217 Simpson JJ, 1999, TRENDS PHARMACOL SCI, V20, P12, DOI 10.1016/S0165-6147(98)01281-4 Wallace MJ, 2003, J PHARMACOL EXP THER, V307, P129, DOI 10.1124/jpet.103.051920 Winer BJ, 1991, STAT PRINCIPLES EXPT Zhang R, 2005, BRAIN RES, V1037, P107, DOI 10.1016/j.brainres.2005.01.018 NR 23 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 105 EP 111 DI 10.1016/j.heares.2007.01.028 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900011 PM 17376618 ER PT J AU He, WX Nuttall, AL Ren, TY AF He, Wenxuan Nuttall, Alfred L. Ren, Tianying TI Two-tone distortion at different longitudinal locations on the basilar membrane SO HEARING RESEARCH LA English DT Article DE basilar membrane; traveling wave; otoacoustic emission; distortion products; laser interferometer ID PRODUCT OTOACOUSTIC EMISSIONS; GUINEA-PIG; MAMMALIAN COCHLEA; INNER-EAR; RESPONSES; PRESSURE; 2F1-F2; PROPAGATION; F2-F1; WAVE AB When listening to two tones at frequency f(1) and f(2) (f(2) > f(1)), one can hear pitches not only at f(1) and f(2) but also at distortion frequencies f(2)-f(1),(n + 1)f(1) - nf(2), and (n + 1)f(2) - nf(1) (n = 1,2,3...). Such two-tone distortion products (DPs) also can be measured in the car canal using a sensitive microphone. These ear-generated sounds are called otoacoustic emissions (OAEs). In spite of the common applications of OAEs, the mechanisms by which these emissions travel out of the cochlea remain unclear. In a recent study, the basilar membrane (BM) vibration at 2f(1) - f(2) was measured as a function of the longitudinal location, using a scanning laser interferometer. The data indicated a forward traveling wave and no measurable backward wave. However, this study had a relatively high noise floor and high stimulus intensity. In the current study, the noise floor of the BM measurement was significantly decreased by using reflective beads on the BM, and the vibration was measured at relatively low intensities at more than one longitudinal location. The results show that the DP phase at a basal location leads the phase at an apical location. The data indicate that the emission travels along the BM from base to apex as a forward traveling wave, and no backward traveling wave was detected under the current experimental conditions. (c) 2007 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol & Head & Neck Surg, Portland, OR 97239 USA. Xi An Jiao Tong Univ, Dept Otolaryngol, Hosp 1, Sch Med, Xian 710061, Shaanxi, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Xi An Jiao Tong Univ, Sch Med, Dept Physiol, Xian 710061, Peoples R China. Shanghai Jiao Tong Univ, Dept Otolaryngol, Renji Hosp, Shanghai 200030, Peoples R China. RP Ren, TY (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol & Head & Neck Surg, Portland, OR 97239 USA. EM rent@ohsu.edu CR Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x Cooper C, 1999, CHEM ENG-NEW YORK, V106, P64 Cooper NP, 1997, J NEUROPHYSIOL, V78, P261 COOPER NP, 2004, ASS RES OT 27 MIDW R, P342 Dong W, 2005, J ACOUST SOC AM, V117, P2999, DOI 10.1121/1.1880812 GIBIAN GL, 1982, HEARING RES, V6, P35, DOI 10.1016/0378-5955(82)90006-5 GOLDSTEI.JL, 1968, PR INST ELECTR ELECT, V56, P981, DOI 10.1109/PROC.1968.6449 GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL JL, 1972, J ACOUST SOC AM, V51, P1863, DOI 10.1121/1.1913045 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KHANNA SM, 1989, ACTA OTO-LARYNGOL, P69 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 KIMBERLEY BP, 1993, J ACOUST SOC AM, V94, P1343, DOI 10.1121/1.408162 Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197 LONSBURYMARTIN BL, 1991, J SPEECH HEAR RES, V34, P964 Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4 MARCHAND P, 1983, REV SCI INSTRUM, V54, P1034, DOI 10.1063/1.1137498 NARAYAN SS, 1998, ASS RES OT 21 MIDW R, P181 NUTTALL AL, 1990, LECT NOTES BIOMATH, V87, P288 NUTTALL AL, 1990, J ACOUST SOC AM, V87, P782, DOI 10.1121/1.398890 Olson ES, 1999, NATURE, V402, P526, DOI 10.1038/990092 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 Ren TY, 2004, NAT NEUROSCI, V7, P333, DOI 10.1038/nn1216 Ren TY, 2006, J NEUROPHYSIOL, V96, P2785, DOI 10.1152/jn.00374.2006 Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 ROBLES L, 1991, NATURE, V349, P413, DOI 10.1038/349413a0 ROBLES L, 1992, MECH BIOPHYSICS HEAR, P304 Robles L, 2001, PHYSIOL REV, V81, P1305 Robles L, 1997, J NEUROPHYSIOL, V77, P2385 Ruggeri ZM, 2004, J THROMB HAEMOST, V2, P2, DOI 10.1111/j.1538-7836.2003.00523.x Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303 Siegel JH, 2005, J ACOUST SOC AM, V118, P2434, DOI 10.1121/1.2005867 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152 Tubis A, 2000, J ACOUST SOC AM, V107, P2112, DOI 10.1121/1.428493 Vetesnik A, 2006, ORL J OTO-RHINO-LARY, V68, P347, DOI 10.1159/000095277 WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8 NR 40 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 112 EP 122 DI 10.1016/j.heares.2007.01.026 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900012 PM 17353104 ER PT J AU Chapla, ME Nowacek, DP Rommel, SA Sadler, VM AF Chapla, Marie E. Nowacek, Douglas P. Rommel, Sentiel A. Sadler, Valerie M. TI CT scans and 3D reconstructions of Florida manatee (Trichechus manatus latirostris) heads and ear bones SO HEARING RESEARCH LA English DT Article DE manatee; computerized tomography; tissue density; ear anatomy; hearing ID TYMPANIC MEMBRANE VIBRATIONS; MIDDLE-EAR; SOUND-VELOCITY; SPERM-WHALE; TISSUES; SIRENIA; HEARING; MECHANICS; LIPIDS AB The auditory anatomy of the Florida manatee (Trichechus manatus latirostris) was investigated using computerized tomography (CT), three-dimensional reconstructions, and traditional dissection of heads removed during necropsy. The densities (kg/m(3)) of the soft tissues of the head were measured directly using the displacement method and those of the soft tissues and bone were calculated from CT measurements (Hounsfield units). The manatee's fatty tissue was significantly less dense than the other soft tissues within the head (P < 0.05). The squamosal bone was significantly less dense than the other bones of the head (p < 0.05). Measurements of the ear bones (tympanic, periotic, malleus, incus, and stapes) collected during dissection revealed that the ossicular chain was overly massive for the mass of the tympanoperiotic complex. (c) 2007 Elsevier B.V. All rights reserved. C1 Pacific Isl Fisheries Sci Ctr, Honolulu, HI 96822 USA. Univ N Carolina, Wilmington, NC 28403 USA. Florida State Univ, Dept Oceanog, Tallahassee, FL 32306 USA. Florida Vet Specialists & Canc Treatment Ctr, Tampa, FL 33614 USA. Florida Fish & Wildlife Conservat Commiss, Fish & Wildlife Res Inst, Marine Mammal Pathobiol Lab, St Petersburg, FL 33711 USA. RP Chapla, ME (reprint author), Pacific Isl Fisheries Sci Ctr, 2570 Dole St, Honolulu, HI 96822 USA. EM marie.chapla@noaa.gov; nowacek@ocean.fsu.edu; rommels@uncw.edu CR Ames AL, 2002, COMP BIOCHEM PHYS B, V132, P625, DOI 10.1016/S1096-4959(02)00082-9 Aroyan J. L., 1996, THESIS U CALIFORNIA Brekhovskikh L. M., 1990, ACOUSTICS LAYERED ME BULLOCK TH, 1982, J COMP PHYSIOL, V148, P547 Caldwell DK, 1985, HDB MARINE MAMMALS, V3, P33 CHAPLA ME, 2003, 15 BIENN MAR MAMM C CHEN CT, 1977, J ACOUST SOC AM, V62, P1129, DOI 10.1121/1.381646 DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2 DOMNING D, 1978, ACTA AMAZON S1, V8 DOMNING DP, 1991, MAR MAMMAL SCI, V7, P331, DOI 10.1111/j.1748-7692.1991.tb00111.x Domning Daryl P., 2001, P151 Fawcett DW, 1942, AM J ANAT, V71, P271, DOI 10.1002/aja.1000710206 FAY JP, 1999, P INT S REC DEV AUD, P3 Fischer A, 2005, Z GESCHICHTSWISS, V53, P365 Fleischer G, 1978, EVOLUTIONARY PRINCIP FLEWELLEN CG, 1978, DEEP-SEA RES, V25, P269, DOI 10.1016/0146-6291(78)90592-1 FRASER F. C., 1960, BULL BRIT MUS [NAT HIST] ZOOL, V7, P1 Gerstein ER, 1999, J ACOUST SOC AM, V105, P3575, DOI 10.1121/1.424681 Goodpaster BH, 2000, ANN NY ACAD SCI, V904, P18 Goold JC, 2000, J MAR BIOL ASSOC UK, V80, P535, DOI 10.1017/S002531540000223X HARTLINE PH, 1971, J EXP BIOL, V54, P349 Hemila S, 1999, HEARING RES, V133, P82, DOI 10.1016/S0378-5955(99)00055-6 Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39 HENSON PW, 1987, PHYS SCI MED, V10, P162 Henwood SM, 1999, CLIN CT TECHNIQUES P HETHERINGTON TE, 1982, J EXP BIOL, V98, P49 International Commission on Radiation Units and Measurements [ICRU], 1998, 61 ICRU Kak A. C., 1988, PRINCIPLES COMPUTERI Kastak D, 1998, J ACOUST SOC AM, V103, P2216, DOI 10.1121/1.421367 KETTEN DR, 1992, MARINE MAMMAL SENSORY SYSTEMS, P77 KHANNA SM, 1972, J ACOUST SOC AM, V51, P1904, DOI 10.1121/1.1913050 Kinsler L., 2000, FUNDAMENTALS ACOUSTI, Vfourth Kirikae I., 1960, STRUCTURE FUNCTION M KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 LENHARDT M L, 1983, Journal of Auditory Research, V23, P119 LENHARDT M L, 1982, Journal of Auditory Research, V22, P153 Lim D J, 1968, Acta Otolaryngol, V66, P515, DOI 10.3109/00016486809126316 Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286 Mast T. D., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1336896 Merchant SN, 1997, AM J OTOL, V18, P139 NUMMELA S, 1995, HEARING RES, V85, P18, DOI 10.1016/0378-5955(95)00030-8 Nummela S, 1999, HEARING RES, V133, P71, DOI 10.1016/S0378-5955(99)00054-4 Pilson M. E. Q, 1998, INTRO CHEM SEA Popper AN, 2000, FISH RES, V46, P15, DOI 10.1016/S0165-7836(00)00129-6 Rommel S, 2000, ANAT REC, V259, P41 Shrapnell HJ, 1832, LONDON MED GAZ, V10, P120 Soldevilla MS, 2005, J EXP BIOL, V208, P2319, DOI 10.1242/jeb.01624 VARANASI U, 1971, BIOCHIM BIOPHYS ACTA, V231, P415, DOI 10.1016/0005-2760(71)90158-5 Wever EG, 1954, PHYSL ACOUSTICS Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 WOODARD HQ, 1986, BRIT J RADIOL, V59, P1209 NR 52 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 123 EP 135 DI 10.1016/j.heares.2007.01.029 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900013 PM 17420106 ER PT J AU Ries, DT AF Ries, Dennis T. TI The influence of noise type and level upon stochastic resonance in human audition SO HEARING RESEARCH LA English DT Article DE stochastic resonance; threshold; hearing; noise; auditory ID MECHANOELECTRICAL TRANSDUCTION; INFORMATION; THRESHOLD; CRAYFISH; SYSTEMS; SIGNAL AB The present study examined the extent to which noise type and fine differentiations in noise level produced improvements in auditory threshold via the mechanism of stochastic resonance. Participants' thresholds for a sinusoidal signal (2.0 kHz) were estimated using a three interval forced choice task. These measures were obtained in quiet, in the presence of Gaussian noise, and in the presence of uniform (flat spectrum, zero-mean amplitude distribution) noise. The noises were presented at several levels from audible to inaudible (0.0 to -35.0 dB/Hz). The present results show that thresholds improved by a small, but significant, amount for noise levels just below subjects' thresholds and that these improvements are not due solely to a simple summation of power between the signal and the noise. In addition, a subset of subjects showed larger and significant threshold increases at very low noise levels (-30.0 to -35.0 dB/Hz). The outcomes suggest that either Gaussian or uniform noise produces equivalent threshold improvements, SR may already be nearly optimized in persons with normal hearing, and that the maximum benefit possible from SR occurs over a narrow range of noise levels. (c) 2007 Elsevier B.V. All rights reserved. C1 Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W221, Athens, OH 45701 USA. RP Ries, DT (reprint author), Ohio Univ, Sch Hearing Speech & Language Sci, Grover Ctr W221, Athens, OH 45701 USA. EM ries@ohio.edu CR Behnam SE, 2003, HEARING RES, V186, P91, DOI 10.1016/S0378-5955(03)00307-1 Bibikov NG, 2002, HEARING RES, V173, P21, DOI 10.1016/S0378-5955(02)00456-2 ChapeauBlondeau F, 1997, PHYS LETT A, V232, P41, DOI 10.1016/S0375-9601(97)00350-2 DOUGLASS JK, 1993, NATURE, V365, P337, DOI 10.1038/365337a0 Ehrenberger K, 1999, ACTA OTO-LARYNGOL, V119, P166 Guz SA, 2000, PHYS LETT A, V274, P104, DOI 10.1016/S0375-9601(00)00547-8 Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597 Jaramillo F, 2000, CHAOS SOLITON FRACT, V11, P1869, DOI 10.1016/S0960-0779(99)00123-X LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Longtin A, 2000, CHAOS SOLITON FRACT, V11, P1835, DOI 10.1016/S0960-0779(99)00120-4 Morse RP, 1999, HEARING RES, V133, P107, DOI 10.1016/S0378-5955(99)00062-3 Morse RP, 1999, HEARING RES, V133, P120, DOI 10.1016/S0378-5955(99)00063-5 Moss F, 2004, CLIN NEUROPHYSIOL, V115, P267, DOI 10.1016/j.clinph.2003.09.014 STOCKS NG, 2001, PHYS REV, DOI ARTN 041114 Stocks NG, 2000, PHYS REV LETT, V84, P2310, DOI 10.1103/PhysRevLett.84.2310 STOCKS NG, 1995, NUOVO CIMENTO D, V17, P925, DOI 10.1007/BF02451850 WIESENFELD K, 1995, NATURE, V373, P33, DOI 10.1038/373033a0 Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6 NR 18 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 136 EP 143 DI 10.1016/j.heares.2007.01.027 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900014 PM 17350775 ER PT J AU Meyer, K Rouiller, EM Loquet, G AF Meyer, K. Rouiller, E. M. Loquet, G. TI Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks SO HEARING RESEARCH LA English DT Article DE auditory evoked potentials; brainstem; click; rat; unanaesthetized ID SHORT-TERM ADAPTATION; BRAIN-STEM IMPLANT; BUSHY CELL AXONS; NEURAL ADAPTATION; FIBER RESPONSES; HORSERADISH-PEROXIDASE; ACOUSTIC STIMULI; GUINEA-PIG; LONG-TERM; CAT AB The present study was designed to complete two previous reports [Loquet, G., Rouiller, E.M., 2002. Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat. Hear. Res. 171, 72-81; Loquet, G., Meyer, K., Rouiller, E.M., 2003. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat. Exp. Brain Res. 153, 436-442] on neural adaptation properties in the auditory system of the rat. Again, auditory near-field evoked potentials (ANEPs) were recorded in response to 250-ms trains of clicks from an electrode chronically implanted in the ventral cochlear nucleus (VCN). Up to now, our interest had focused on the adaptive behavior of the first one (N-1) of the two negative ANEP components. A re-examination of our data for the second negative component (N-2) was now undertaken. Results show that the adaptation time course observed for N-2 displayed the same three-stage pattern previously reported for NJ. Similarly, adaptation became more pronounced and occurred faster as stimulus intensity and/or repetition rate were increased. Based on latency data which suggest NJ and N2 to be mainly due to the activity of auditory-nerve (AN) fibers and cochlear nucleus neurons, respectively, it was concluded that neural adaptation assessed by gross-potentials was similar in the AN and VCN. This finding is meaningful in the context of our search to restore normal adaptation phenomena via electro-auditory hearing with an auditory brainstem implant on the same lines as our work in cochlear implants. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Fribourg, Dept Med, Unit Physiol, CH-1700 Fribourg, Switzerland. RP Loquet, G (reprint author), Univ Fribourg, Dept Med, Unit Physiol, Chemin Musee 5, CH-1700 Fribourg, Switzerland. EM gerard.loquet@unifr.ch CR ABBAS PJ, 1984, J ACOUST SOC AM, V75, P1541, DOI 10.1121/1.390825 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 Bourk TR, 1976, THESIS MIT CAMBRIDGE BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826 CANT NB, 1979, NEUROSCIENCE, V4, P1909, DOI 10.1016/0306-4522(79)90065-4 CHIMENTO TC, 1990, J ACOUST SOC AM, V88, P857, DOI 10.1121/1.399735 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 CHIMENTO TC, 1992, HEARING RES, V62, P131, DOI 10.1016/0378-5955(92)90178-P EGGERMON.JJ, 1973, AUDIOLOGY, V12, P193 EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 EVANS EF, 1975, HDB SENSORY PHYSL, V2, P1 FELDMAN ML, 1969, J COMP NEUROL, V137, P267, DOI 10.1002/cne.901370303 FitzGerald JV, 2001, HEARING RES, V159, P85, DOI 10.1016/S0378-5955(01)00325-2 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 GORGA MP, 1981, J ACOUST SOC AM, V70, P1310, DOI 10.1121/1.387145 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 HUANG CM, 1981, ELECTROEN CLIN NEURO, V52, P394, DOI 10.1016/0013-4694(81)90021-3 HUANG CM, 1980, CLIN NEUROPHYSIOL, V49, P15 Javel E, 1996, J ACOUST SOC AM, V99, P1040, DOI 10.1121/1.414633 Kiang NYS, 1965, RES MONOGRAPH, V35 KIANG NYS, 1965, ANN OTO RHINOL LARYN, V74, P463 Loquet G, 2004, AUDIOL NEURO-OTOL, V9, P144, DOI 10.1159/000077266 Loquet G, 2003, EXP BRAIN RES, V153, P436, DOI 10.1007/s00221-003-1689-9 Loquet G, 2002, HEARING RES, V171, P72, DOI 10.1016/S0378-5955(02)00394-5 McMahon CM, 2004, HEARING RES, V190, P75, DOI 10.1016/S0378-5955(03)00403-9 MOLLER AR, 1983, EXP NEUROL, V80, P633, DOI 10.1016/0014-4886(83)90313-8 MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812 MOLLER AR, 1981, EXP BRAIN RES, V43, P93 MOLLER AR, 1981, BRAIN RES, V207, P184 MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Otto SR, 2002, J NEUROSURG, V96, P1063, DOI 10.3171/jns.2002.96.6.1063 Paolini AG, 2001, HEARING RES, V159, P101, DOI 10.1016/S0378-5955(01)00327-6 PEAKE WT, 1962, J ACOUST SOC AM, V34, P571, DOI 10.1121/1.1918170 PEAKE WT, 1962, J ACOUST SOC AM, V34, P562, DOI 10.1121/1.1918169 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 Romand R, 1997, CENTRAL AUDITORY SYS, P97 ROUILLER EM, 1984, J COMP NEUROL, V225, P167, DOI 10.1002/cne.902250203 Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3 ROUILLER EM, 1986, J COMP NEUROL, V249, P261, DOI 10.1002/cne.902490210 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 Schwartz MS, 2003, STEREOT FUNCT NEUROS, V81, P110, DOI 10.1159/000075113 SHAW NA, 1990, EXP BRAIN RES, V79, P217 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SMITH RL, 1975, BIOL CYBERN, V17, P169, DOI 10.1007/BF00364166 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 Wilson B. S., 1997, AM J OTOL, V18, P30 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 NR 59 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 144 EP 155 DI 10.1016/j.heares.2007.02.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900015 PM 17391881 ER PT J AU Anderson, LA Wallace, MN Palmer, AR AF Anderson, L. A. Wallace, M. N. Palmer, A. R. TI Identification of subdivisions in the medial geniculate body of the guinea pig SO HEARING RESEARCH LA English DT Article DE auditory thalamus; cytochrome oxidase; acetylcholinesterase; frequency response area; characteristic frequency ID CYTOCHROME-OXIDASE ACTIVITY; DORSAL COCHLEAR NUCLEUS; AUDITORY THALAMUS; RESPONSE PROPERTIES; FUNCTIONAL-ORGANIZATION; TONOTOPIC ORGANIZATION; SINGLE UNITS; PARVALBUMIN-IMMUNOREACTIVITY; INFERIOR COLLICULUS; VENTRAL DIVISION AB The accurate and reliable identification of subdivisions within the auditory thalamus is important for future studies of this nucleus. However, in the guinea pig, there has been no agreement on the number or nomenclature of subdivisions within the main nucleus of the auditory thalamus, the medial geniculate body (MGB). Thus, we assessed three staining methods in the guinea pig MGB and concluded that cytochrome oxidase (CYO) histochemistry provides a clear and reliable method for defining MGB subdivisions. By combining CYO with acetylcbolinesterase staining and extensive physiological mapping we defined five separate divisions, all of which respond to auditory stimuli. Coronal sections stained for CYO revealed a moderate to darkly-stained oval core. This area (the ventral MGB) contained a high proportion (61%) of V-shaped tuning curves and a tonotopic organisation of characteristic frequencies. It was surrounded by four smaller areas that contained darkly stained somata but had a paler neuropil. These areas, the dorsolateral and suprageniculate (which together form the dorsal MGB), the medial MGB and the shell MGB, did not have any discernable tonotopic frequency gradient and contained a smaller proportion of V-shaped tuning curves. This suggests that CYO permits the identification of core and belt areas within the guinea pig MGB. (c) 2007 Elsevier B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Anderson, LA (reprint author), Ctr Auditory Res, 332 Grays Inn Rd, London WC1X 8EE, England. EM lucy.anderson@ucl.ac.uk CR AITKIN LM, 1973, J NEUROPHYSIOL, V36, P275 AITKIN LM, 1972, J NEUROPHYSIOL, V35, P365 ANDERSON LA, 2005, EUR J NEUROSCI, V24, P491 BORDI F, 1994, EXP BRAIN RES, V98, P261, DOI 10.1007/BF00228414 BUCHWALD J, 1987, AUDITORY PATHWAY STR, P319 BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511 CAJAL SR, 1995, HISTOLOGY NERVOUS SY, V2, P234 CALFORD MB, 1983, J NEUROSCI, V3, P2350 CALFORD MB, 1981, J NEUROPHYSIOL, V45, P1013 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 COVENAS R, 1991, ARCH ITAL BIOL, V129, P199 Cruikshank SJ, 2001, NEUROSCIENCE, V105, P553, DOI 10.1016/S0306-4522(01)00226-3 CRUIKSHANK SJ, 1992, BEHAV NEUROSCI, V106, P471, DOI 10.1037/0735-7044.106.3.471 Davis KA, 1999, SHOCK, V11, P1, DOI 10.1097/00024382-199906001-00004 DEBIASI S, 1994, J COMP NEUROL, V348, P556, DOI 10.1002/cne.903480406 DERIBAUPIERRE F, 1997, CENTRAL AUDITORY SYS De Venecia RK, 1998, J COMP NEUROL, V400, P349 DEVENECIA RK, 1995, J COMP NEUROL, V359, P595, DOI 10.1002/cne.903590407 Edeline JM, 1999, HEARING RES, V131, P135, DOI 10.1016/S0378-5955(99)00026-X EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 EVANS EF, 1973, EXP BRAIN RES, V17, P402 GONZALEZLIMA F, 1994, NEUROSCIENCE, V63, P559, DOI 10.1016/0306-4522(94)90550-9 GONZALEZLIMA F, 1994, BRAIN RES, V660, P34, DOI 10.1016/0006-8993(94)90836-2 Hackett TA, 1998, J COMP NEUROL, V400, P271, DOI 10.1002/(SICI)1096-9861(19981019)400:2<271::AID-CNE8>3.0.CO;2-6 Halverson HE, 2006, BEHAV NEUROSCI, V120, P880, DOI 10.1037/0735-7044.120.4.880 He JF, 2002, J NEUROPHYSIOL, V88, P2377, DOI 10.1152/jn.00083.2002 He JF, 2001, J NEUROSCI, V21, P8672 Jones EG, 1985, THALAMUS MOLINARI M, 1995, J COMP NEUROL, V362, P171, DOI 10.1002/cne.903620203 MOREL A, 1987, EXP BRAIN RES, V69, P24 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 MOREL A, 1987, J COMP NEUROL, V265, P119, DOI 10.1002/cne.902650109 MOREST DK, 1965, J ANAT, V99, P143 MOREST DK, 1964, J ANAT, V98, P611 OLIVER DL, 1978, J COMP NEUROL, V182, P423, DOI 10.1002/cne.901820305 OLIVER DL, 1978, J COMP NEUROL, V182, P459, DOI 10.1002/cne.901820306 Olucha-Bordonau FE, 2004, J CHEM NEUROANAT, V28, P147, DOI 10.1016/j.jchemneu.2004.05.010 OTTERSEN OP, 1979, J COMPUT NEUROL, V187, P147 PHILLIPS DP, 1991, NEUROBIOLOGY HEARING, P335 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Rapisarda C, 1977, Arch Sci Biol (Bologna), V61, P1 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 REDIES H, 1991, EXP BRAIN RES, V86, P384 RODRIGUESDAGAEFF C, 1989, HEARING RES, V39, P103, DOI 10.1016/0378-5955(89)90085-3 ROUILLER EM, 1989, HEARING RES, V39, P127, DOI 10.1016/0378-5955(89)90086-5 Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3 RUTKOWSKI RG, 2000, THESIS U NOTTINGHAM SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 TARLOV EC, 1966, J COMP NEUROL, V126, P403, DOI 10.1002/cne.901260304 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z WINER JA, 1984, HEARING RES, V15, P225, DOI 10.1016/0378-5955(84)90031-5 WINER JA, 1988, J COMP NEUROL, V274, P422, DOI 10.1002/cne.902740310 WINER JA, 1994, J COMP NEUROL, V346, P161, DOI 10.1002/cne.903460202 WONGRILEY M, 1979, BRAIN RES, V171, P1 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 56 TC 28 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 156 EP 167 DI 10.1016/j.heares.2007.02.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900016 PM 17399924 ER PT J AU Brozoski, TJ Ciobanu, L Bauer, CA AF Brozoski, Thomas J. Ciobanu, Luisa Bauer, Carol A. TI Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI) SO HEARING RESEARCH LA English DT Article DE tinnitus; CNS activity; MEMRI; animal model; plasticity ID DORSAL COCHLEAR NUCLEUS; INFERIOR COLLICULUS; AUDITORY-CORTEX; INDUCE TINNITUS; INTENSE SOUND; SINGLE UNITS; ANIMAL-MODEL; GUINEA-PIG; CAT; MANIPULATIONS AB The pathophysiology of tinnitus, the perception of sound in the absence of acoustic stimulation, is largely unknown, although several lines of research implicate long-term neuroplastic loss of inhibition. The evidence to date suggests that the neuroplastic alterations are likely to be found in multiple brain structures. The present study used manganese-enhanced magnetic resonance imaging (MEMRI) to assess the pattern of neural activity in the central auditory pathway of rats with psychophysical evidence of chronic acoustic-exposure-induced tinnitus. Manganese, an activity-dependent paramagnetic contrast agent, accumulates in active neurons through voltage-gated calcium channels, primarily at synapses, and serves as both a structural and functional indicator. Comparison images were obtained from normal subjects exposed to external tinnitus-like sound, and from tinnitus subjects treated with vigabatrin, a GABA agonist shown to eliminate the psychophysical evidence of tinnitus in rats. MEMRI indicated: (1) In rats with evidence of tinnitus, activity was generally elevated in the auditory brainstem, with significant elevation in the cerebellar parallocculus, the posterior ventral cochlear nucleus, and the inferior colliculus; in general forebrain structures showed decreased activity, although MEMRI may be a less sensitive indicator of forebrain activity than brainstem activity; (2) in normal rats exposed to a tinnitus-like sound, a similar pattern of elevated brainstem activity and decreased forebrain activity was evident, with the notable exception of the paraflocculus, where artificial tinnitus had no effect and (3) vigabatrin, decreased brainstem activity to control levels, in rats with prior evidence of tinnitus, and decreased forebrain activity to below control levels. It was concluded that chronic tinnitus in rats is associated with focal activity elevation in the auditory brainstem and increased activity in the paraflocculus that may be unique to tinnitus. (c) 2007 Published by Elsevier B.V. C1 So Illinois Univ, SOM, Div Otolaryngol, Springfield, IL 62794 USA. Univ Illinois, Beckman Inst Adv Sci & Technol, Biomed Imaging Ctr, Urbana, IL 61801 USA. RP Brozoski, TJ (reprint author), So Illinois Univ, SOM, Div Otolaryngol, 801 N Rutledge St,Rm 3205,POB 19629, Springfield, IL 62794 USA. EM tbrozoski@siumed.edu RI Ciobanu, Luisa/E-7331-2014 OI Ciobanu, Luisa/0000-0001-6932-6859 CR AITKIN LM, 1975, J NEUROPHYSIOL, V38, P418 Argence M, 2006, NEUROSCIENCE, V141, P1193, DOI 10.1016/j.neuroscience.2006.04.058 ARGENCE M, 2006, NEUROSCIENCE AZIZI SA, 1985, EXP BRAIN RES, V59, P36 BAUER CA, J NEUROSCIENCE RES Bauer CA, 2001, JARO, V2, P54 BERLINER KI, 1992, AM J OTOL, V13, P13 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Brozoski TJ, 2007, JARO-J ASSOC RES OTO, V8, P105, DOI 10.1007/s10162-006-0067-2 Chuang KH, 2006, MAGN RESON MED, V55, P604, DOI 10.1002/mrm.20797 DAVIS A, 2000, TINNITUS HDB, P13 Dobie RA, 1999, LARYNGOSCOPE, V109, P1202, DOI 10.1097/00005537-199908000-00004 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 EVERED D, 1981, TINNITUS CIBA PHARM GACEK RR, 1973, EXP NEUROL, V41, P101, DOI 10.1016/0014-4886(73)90183-0 HUANG CM, 1982, BRAIN RES, V244, P1, DOI 10.1016/0006-8993(82)90897-6 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2006, HEARING RES, V216, P224, DOI 10.1016/j.heares.2006.01.002 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 LAUTERBUR PC, 1973, NATURE, V242, P190, DOI 10.1038/242190a0 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 LOCKWOOD AH, 1998, NEUROLOGY, V50 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Nondahl David M, 2002, J Am Acad Audiol, V13, P323 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Pautler Robia G, 2006, Methods Mol Med, V124, P365 Paxinos G., 1998, RAT BRAIN STEREOTAXI PLEWNIA C, 2006, DOSE DEPENDENT ATTEN Roels H, 1997, ARCH TOXICOL, V71, P223, DOI 10.1007/s002040050380 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 Shulman A, 1999, Int Tinnitus J, V5, P92 Silva AC, 2004, NMR BIOMED, V17, P532, DOI 10.1002/nbm.945 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2 Yu X, 2005, NAT NEUROSCI, V8, P961, DOI 10.1038/nn1477 Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4 NR 42 TC 59 Z9 64 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 168 EP 179 DI 10.1016/j.heares.2007.02.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900017 PM 17382501 ER PT J AU Rejali, D Lee, VA Abrashkin, KA Humayun, N Swiderski, DL Raphael, Y AF Rejali, Darius Lee, Valerie A. Abrashkin, Karen A. Humayun, Nousheen Swiderski, Donald L. Raphael, Yehoash TI Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons SO HEARING RESEARCH LA English DT Article DE guinea pig; adenovirus vector; nerve protection; ex vivo gene therapy; BDNF ID HAIR CELL LOSS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; INNER-EAR; IN-VIVO; DEGENERATION; SURVIVAL; STIMULATION; CULTURE AB Spiral ganglion neurons often degenerate in the deaf ear, compromising the function of cochlear implants. Cochlear implant function can be improved by good preservation of the spiral ganglion neurons, which are the target of electrical stimulation by the implant. Brain derived neurotrophic factor (BDNF) has previously been shown to enhance spiral ganglion survival in experimentally deafened ears. Providing enhanced levels of BDNF in human ears may be accomplished by one of several different methods. The goal of these experiments was to test a modified design of the cochlear implant electrode that includes a coating of fibroblast cells transduced by a viral vector with a BDNF gene insert. To accomplish this type of ex vivo gene transfer, we transduced guinea pig fibroblasts with an adenovirus with a BDNF gene cassette insert, and determined that these cells secreted BDNF. We then attached BDNF-secreting cells to the cochlear implant electrode via an agarose gel, and implanted the electrode in the scala tympani. We determined that the BDNF expressing electrodes were able to preserve significantly more spiral ganglion neurons in the basal turns of the cochlea after 48 days of implantation when compared to control electrodes. This protective effect decreased in the higher cochlear turns. The data demonstrate the feasibility of combining cochlear implant therapy with ex vivo gene transfer for enhancing spiral ganglion neuron survival. (c) 2007 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Sch Med, Ann Arbor, MI 48109 USA. Univ Hosp Warwickshire & Coventry NHS Trust, Coventry CV2 2DX, W Midlands, England. Univ Texas, Hlth Sci Ctr, San Antonio, TX USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Sch Med, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM Yoash@umich.edu CR BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 CLOPTON BM, 1980, ANN OTO RHINOL LARYN, V89, P5 Cohen NL, 1997, OTOLARYNG HEAD NECK, V117, P214, DOI 10.1016/S0194-5998(97)70176-1 COHEN NL, 1993, NEW ENGL J MED, V328, P233, DOI 10.1056/NEJM199301283280403 El-Hakim Hamdy, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P102 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 FAYAD J, 1991, ANN OTO RHINOL LARYN, V100, P807 Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Geers Ann, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P127 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Ishimoto S, 2003, AUDIOL NEURO-OTOL, V8, P70, DOI 10.1159/000069000 IWATA H, 1989, DIABETES, V38, P224 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Khan AM, 2005, ANN OTO RHINOL LARYN, V114, P381 Lalwani AK, 2002, LARYNGOSCOPE, V112, P1325, DOI 10.1097/00005537-200208000-00001 LEAKEJONES PA, 1983, ANN NY ACAD SCI, V405, P203, DOI 10.1111/j.1749-6632.1983.tb31634.x Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 Osberger Mary Joe, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P62 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Richardson RT, 2007, BIOMATERIALS, V28, P513, DOI 10.1016/j.biomaterials.2006.09.008 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 SUTTON D, 1983, ANN OTO RHINOL LARYN, V92, P53 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 NR 31 TC 57 Z9 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 180 EP 187 DI 10.1016/j.heares.2007.02.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900018 PM 17416474 ER PT J AU Lutkenhoner, B Klein, JS AF Lutkenhoener, Bernd Klein, Jan-Stefan TI Auditory evoked field at threshold SO HEARING RESEARCH LA English DT Article DE intensity coding; temporal integration; auditory cortex; auditory evoked field; magnetoencephalography; multiple-look model ID NERVE 1ST-SPIKE LATENCY; TEMPORAL INTEGRATION; MAGNETIC-FIELDS; ABSOLUTE THRESHOLD; COMPUTER-MODEL; HUMAN-BRAIN; GUINEA-PIG; INTENSITY; CORTEX; FIBERS AB Auditory evoked responses are widely used for estimating electrophysiological thresholds, but the relationships to psychophysical thresholds are not necessarily straightforward. Among the aspects that are not well understood is the near-threshold intensity dependence of the evoked response. Here, we investigated wave N100m of the auditory evoked field. The stimulus was a 1-kHz tone with an effective duration of about 110 ms. Up to 10 dB above the psychophysical threshold, the level was varied in steps of 2 dB; further measurements were done at 15, 20, 30, and 40 dB SL. Lower levels were presented with higher probability, to partially compensate for the expected signal-to-noise ratio reduction with decreasing level. The latency of the N100m could be characterized as a transmission delay and an integration time. The level dependence of the latter was consistent with the assumption of an almost perfectly operating sound-pressure integrator. The N 100m amplitude increased roughly linearly with the level in dB (thus, as a logarithmic function of intensity), showing signs of saturation at higher levels. (c) 2007 Elsevier B.V. All rights reserved. C1 Munster Univ Hosp, ENT Clin, Sect Expt Audiol, Munster, Germany. RP Lutkenhoner, B (reprint author), Munster Univ Hosp, ENT Clin, Sect Expt Audiol, Munster, Germany. EM Lutkenh@uni-muenster.de CR ALGOM D, 1984, CONTRIBUTIONS SENSOR, V8, P131 BAK CK, 1985, ELECTROEN CLIN NEURO, V61, P141, DOI 10.1016/0013-4694(85)91053-3 Biermann S, 2000, J NEUROPHYSIOL, V84, P2426 Eddins AC, 1998, HEARING RES, V119, P135, DOI 10.1016/S0378-5955(98)00035-5 Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X Eggermont J J, 1974, Acta Otolaryngol Suppl, V316, P39 ELBERLING C, 1987, J ACOUST SOC AM, V81, P115, DOI 10.1121/1.395019 ELBERLING C, 1981, SCAND AUDIOL, V10, P203, DOI 10.3109/01050398109076182 ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201 Elberling C., 2007, AUDITORY EVOKED POTE, P102 Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002 FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B Gage NM, 2000, NEUROREPORT, V11, P2723, DOI 10.1097/00001756-200008210-00023 GARNER WR, 1947, J ACOUST SOC AM, V19, P808, DOI 10.1121/1.1916625 GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 Hari R, 1990, ADV AUDIOL, V6, P222 Heil P, 2001, J NEUROSCI, V21, P7404 Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 Hoppe U, 2001, SCAND AUDIOL, V30, P119, DOI 10.1080/010503901300112239 HUGHES JW, 1946, PROC R SOC SER B-BIO, V133, P486, DOI 10.1098/rspb.1946.0026 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325 Klug A, 2000, HEARING RES, V148, P107, DOI 10.1016/S0378-5955(00)00146-5 Krishna BS, 2006, J ACOUST SOC AM, V120, P591, DOI 10.1121/1.2213569 Krishna B.S., 2006, J ACOUST SOC AM, V120, P591 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1 Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132 Lutkenhoner B, 2007, AUDITORY EVOKED POTE, P546 Lutkenhoner B, 2003, NEUROIMAGE, V18, P58, DOI 10.1006/nimg.2002.1325 Lutkenhoner B, 2006, NEUROIMAGE, V30, P927, DOI 10.1016/jneuroimiage.2005.10.034 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 MAKELA JP, 2007, AUDITORY EVOKED POTE, P525 MARSHALL L, 1986, J SPEECH HEAR RES, V29, P82 Marshall L., 1991, J GERONTOL, V46, P67 Martin BA, 2007, AUDITORY EVOKED POTE, P482 McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x Meddis R, 2006, J ACOUST SOC AM, V119, P406, DOI 10.1121/1.2139628 Meddis R, 2006, J ACOUST SOC AM, V120, P1192, DOI 10.1121/1.2221413 Moore BCJ, 2003, J PHONETICS, V31, P563, DOI 10.1016/S0095-4470(03)00011-1 Moran John E., 1993, Brain Topography, V5, P229, DOI 10.1007/BF01128990 Morita T, 2003, CLIN NEUROPHYSIOL, V114, P851, DOI 10.1016/S1388-2457(03)00033-6 OHLEMILLER KK, 1991, J ACOUST SOC AM, V90, P274, DOI 10.1121/1.401298 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 Ross B, 1999, AUDIOL NEURO-OTOL, V4, P12, DOI 10.1159/000013816 Stapells D R, 2002, HDB CLIN AUDIOLOGY, P378 Stufflebeam SM, 1998, NEUROREPORT, V9, P91, DOI 10.1097/00001756-199801050-00018 VERSNEL H, 1992, HEARING RES, V59, P138, DOI 10.1016/0378-5955(92)90111-Y VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 WILLIAMSON S J, 1991, Brain Topography, V4, P169, DOI 10.1007/BF01132773 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Zwislocki J., 1965, HDB MATH PSYCHOL, VIII, P1 NR 53 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 188 EP 200 DI 10.1016/j.heares.2007.02.011 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900019 PM 17434696 ER PT J AU Lee, JH Heo, JH Kim, CH Chang, SO Kim, CS Oh, SH AF Lee, Jun Ho Heo, Jeong-Hwa Kim, Chang-Hee Chang, Sun O. Kim, Chong-Sun Oh, Seung-Ha TI Changes in P2Y(4) receptor expression in rat cochlear outer sulcus cells during development SO HEARING RESEARCH LA English DT Article DE voltage-sensitive vibrating probe; purinergic receptor; outer sulcus cell; inner ear; endolymph ID 5'-TRIPHOSPHATE-GATED ION-CHANNEL; STRIAL MARGINAL CELLS; INNER-EAR; EPITHELIAL-CELLS; P2X RECEPTORS; K+ SECRETION; GUINEA-PIG; TRIPHOSPHATE DIPHOSPHOHYDROLASE-1; ADENOSINE 5'-TRIPHOSPHATE; PHARMACOLOGICAL PROFILES AB Extracellular adenosine triphosphate (ATP) released from cellular sources plays an important role in variety of the cochlear physiologic processes. The primary purinergic receptor subtype in the cochlea is the P2X(2) receptor, which is a subtype of P2X receptor. This receptor appears to mediate a protective decrease in the electrical driving force in response to acoustic overstimulation. Outer sulcus cells (OSCs) in the cochlear lateral wall appear to maintain an adequate K+ concentration in the cochlear endolymph in response to varying intensities of auditory stimulation. However, little is known about developing OSCs. The purpose of this study was to investigate subtypes of purinergic receptors in developing rat OSCs using a voltage-sensitive vibrating probe. Results showed that only two P2 receptors (P2Y(4) and P2X(2)) contributed to the regulation of short circuit currents in neonatal OSCs'. ATP increased cation absorption via apical nonselective cation channels after activating P2Y4 receptors in early neonatal OSCs. P2Y4 expression rapidly declined postnatally and reached near adult levels on postnatal day 14. P2X(2) was co-expressed with P2Y4 in early neonatal OSCs. Temporal changes in P2Y4 during OSC development might be involved in the establishment of the endolymphatic ion composition needed for normal auditory transduction and/or specific cellular differentiation. (c) 2007 Elsevier B.V. All rights reserved. C1 Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, Seoul 110744, South Korea. RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, 28 Yeongon Dong, Seoul 110744, South Korea. EM junlee@snu.ac.kr; amaranthh@paran.com; tatsuya@freechal.com; suno@snu.ac.kr; chongkim@plaza.snu.ac.kr; shaoh@snu.ac.kr RI Oh, Seung Ha/J-5540-2012 CR Anniko M, 1985, Acta Otolaryngol Suppl, V421, P10 Boeynaems JM, 2005, SEMIN THROMB HEMOST, V31, P139, DOI 10.1055/s-2005-869519 Bogdanov YD, 1998, BRIT J PHARMACOL, V124, P428, DOI 10.1038/sj.bjp.0701880 Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 Cavaliere F, 2005, NEUROBIOL DIS, V18, P100, DOI 10.1016/j.nbd.2004.09.001 Chiba T, 2001, J MEMBRANE BIOL, V184, P101, DOI 10.1007/s00232-001-0079-0 Chiba T, 2000, J MEMBRANE BIOL, V174, P167, DOI 10.1007/s002320001041 Communi D, 1999, BRIT J PHARMACOL, V128, P1199, DOI 10.1038/sj.bjp.0702909 COUTINHOSILVA R, 2005, LIVER PHYSL, V288, pG1024 Freeman Sharon, 1999, Journal of Basic and Clinical Physiology and Pharmacology, V10, P173 FRELIN C, 1987, KIDNEY INT, V32, P785, DOI 10.1038/ki.1987.277 GRIERSON JP, 1995, BRIT J PHARMACOL, V115, P11 Harada H, 2000, KIDNEY INT, V57, P949, DOI 10.1046/j.1523-1755.2000.00911.x Harper S, 1998, BRIT J PHARMACOL, V124, P703, DOI 10.1038/sj.bjp.0701895 Housley GD, 1998, J COMP NEUROL, V393, P403 Housley GD, 2000, CLIN EXP PHARMACOL P, V27, P575, DOI 10.1046/j.1440-1681.2000.03314.x HUANG LC, 2005, CELL BIOL, P1 IKEDA K, 1995, CELL CALCIUM, V18, P89, DOI 10.1016/0143-4160(95)90000-4 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 Khakh BS, 2001, PHARMACOL REV, V53, P107 Lee JH, 2001, J NEUROSCI, V21, P9168 Lee JH, 2003, NEUROSCIENCE, V119, P3, DOI 10.1016/S0306-4522(03)00104-0 Lee JH, 2006, HEARING RES, V219, P66, DOI 10.1016/j.heares.2006.05.011 LIZUKA K, 1999, BRIT J PHARMACOL, V128, P925 Marcus Daniel C., 1996, Keio Journal of Medicine, V45, P301 Marcus Daniel C, 2005, Cell Commun Signal, V3, P13, DOI 10.1186/1478-811X-3-13 MARCUS DC, 1994, BIOPHYS J, V66, P1939 Marcus DC, 1999, HEARING RES, V134, P48, DOI 10.1016/S0378-5955(99)00074-X Marunaka Y, 1996, PFLUG ARCH EUR J PHY, V431, P748, DOI 10.1007/BF02253839 MORI N, 1987, ACTA OTO-LARYNGOL, V104, P66, DOI 10.3109/00016488709109048 Munoz DJB, 1999, HEARING RES, V138, P56, DOI 10.1016/S0378-5955(99)00151-3 Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 Murthy KS, 1998, J BIOL CHEM, V273, P4695, DOI 10.1074/jbc.273.8.4695 Nicholas RA, 1996, MOL PHARMACOL, V50, P224 Nikolic P, 2003, AUDIOL NEURO-OTOL, V8, P28, DOI 10.1159/000067891 Nikolic P, 2001, Brain Res Dev Brain Res, V126, P173 North RA, 2000, ANNU REV PHARMACOL, V40, P563, DOI 10.1146/annurev.pharmtox.40.1.563 Pintor Jesus, 2000, Trends in Pharmacological Sciences, V21, P453, DOI 10.1016/S0165-6147(00)01566-2 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D Ralevic V, 1998, PHARMACOL REV, V50, P413 Sage CL, 2002, J MEMBRANE BIOL, V185, P103, DOI 10.1007/s00232-001-0116-z SMITH RJ, 1990, J PHARMACOL EXP THER, V253, P688 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Thorne PR, 2004, JARO-J ASSOC RES OTO, V5, P58, DOI 10.1007/s10162-003-4003-4 Vlajkovic SM, 2004, NEUROSCIENCE, V126, P763, DOI 10.1016/j.neuroscience.2004.04.023 Vlajkovic S M, 1999, Brain Res Mol Brain Res, V73, P85 Vlajkovic SM, 2002, HEARING RES, V170, P127, DOI 10.1016/S0378-5955(02)00460-4 von Kugelgen I, 2006, PHARMACOL THERAPEUT, V110, P415, DOI 10.1016/j.pharmthera.2005.08.014 Wang JCC, 2003, NEUROREPORT, V14, P817, DOI 10.1097/01.wnr.0000067784.69995.47 Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2000, J MEMBRANE BIOL, V175, P191, DOI 10.1007/s002320001067 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 Wildman SS, 2003, BRIT J PHARMACOL, V140, P1177, DOI 10.1038/sj.bjp.0705544 Xiang ZH, 2005, DEV BRAIN RES, V156, P147, DOI 10.1016/j.devbraines.2005.02.015 Yamakuni H, 2002, J NEUROIMMUNOL, V129, P43, DOI 10.1016/S0165-5728(02)00179-0 Yamasaki M, 2000, ORL J OTO-RHINO-LARY, V62, P241, DOI 10.1159/000027753 Yeh TH, 1997, HEARING RES, V109, P1, DOI 10.1016/S0378-5955(97)00030-0 YEH TH, 1998, AM J PHYSIOL, V274, pC556 Zhao HB, 2005, P NATL ACAD SCI USA, V102, P18724, DOI 10.1073/pnas.0506481102 NR 61 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 201 EP 211 DI 10.1016/j.heares.2007.02.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900020 PM 17433586 ER PT J AU Felix, RA Portfors, CV AF Felix, Richard A., II Portfors, Christine V. TI Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice SO HEARING RESEARCH LA English DT Article DE inferior colliculus; spectral integration; presbycusis; mouse; hearing ID COMBINATION-SENSITIVE NEURONS; BAT PTERONOTUS-PARNELLII; PRIMARY AUDITORY-CORTEX; MOUSTACHED BAT; SPECTRAL INTEGRATION; TONOTOPIC ORGANIZATION; COCHLEAR NUCLEUS; COMMUNICATION CALLS; SPEECH RECOGNITION; CORTICAL-NEURONS AB Individuals with age-related hearing loss often have difficulty understanding complex sounds such as basic speech. The C57BL/6 mouse suffers from progressive sensorineural hearing loss and thus is an effective tool for dissecting the neural mechanisms underlying changes in complex sound processing observed in humans. Neural mechanisms important for processing complex sounds include multiple tuning and combination sensitivity, and these responses are common in the inferior colliculus (IC) of normal hearing mice. We examined neural responses in the IC of C57B1/6 mice to single and combinations of tones to examine the extent of spectral integration in the IC after age-related high frequency hearing loss. Ten percent of the neurons were tuned to multiple frequency bands and an additional 10% displayed non-linear facilitation to the combination of two different tones (combination sensitivity). No combination-sensitive inhibition was observed. By comparing these findings to spectral integration properties in the IC of normal hearing CBA/CaJ mice, we suggest that high frequency hearing loss affects some of the neural mechanisms in the IC that underlie the processing of complex sounds. The loss of spectral integration properties in the IC during aging likely impairs the central auditory system's ability to process complex sounds such as speech. (c) 2007 Elsevier B.V. All rights reserved. C1 Washington State Univ, Sch Biol Sci, Vancouver, WA 98686 USA. RP Portfors, CV (reprint author), Washington State Univ, Sch Biol Sci, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA. EM Portfors@vancouver.wsu.edu CR BRANT LJ, 1990, J ACOUST SOC AM, V88, P813, DOI 10.1121/1.399731 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X CULLING JF, 1993, J ACOUST SOC AM, V93, P3454, DOI 10.1121/1.405675 DEBOER E, 1987, ANNU REV PSYCHOL, V38, P181, DOI 10.1146/annurev.psych.38.1.181 Di Palma F, 2001, GENE, V281, P31, DOI 10.1016/S0378-1119(01)00761-2 Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786 Ehret G., 1997, CENTRAL AUDITORY SYS Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019 Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P333 Geissler DB, 2002, P NATL ACAD SCI USA, V99, P9021, DOI 10.1073/pnas.122606499 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 HARRISON RV, 1982, HEARING RES, V6, P303, DOI 10.1016/0378-5955(82)90062-4 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 HENRY KR, 1978, ACTA OTO-LARYNGOL, V86, P366, DOI 10.3109/00016487809107515 Hequembourg S, 2001, JARO, V2, P118 Hirsh IJ, 1996, ANNU REV PSYCHOL, V47, P461, DOI 10.1146/annurev.psych.47.1.461 Humes L E, 1991, J Am Acad Audiol, V2, P59 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 KAAS JH, 1983, ANNU REV NEUROSCI, V6, P325, DOI 10.1146/annurev.ne.06.030183.001545 KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637 Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001 Kanwal JS, 1999, J NEUROPHYSIOL, V82, P2327 Leroy SA, 2000, J NEUROSCI, V20, P8533 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 Linden JF, 2003, J NEUROPHYSIOL, V90, P2660, DOI 10.1152/jn.00751.2002 LIPPE W, 1983, SCIENCE, V219, P514, DOI 10.1126/science.6823550 MARGOLIASH D, 1992, J NEUROSCI, V12, P4309 Marsh RA, 2006, J NEUROPHYSIOL, V95, P88, DOI 10.1152/jn.00634.2005 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X Moore B. C. J., 1993, HUMAN PSYCHOPHYSICS, P56 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 NYBY J, 1983, AUDITORY PSYCHOBIOLO, P98 Nyby JG, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P3 Ohl FW, 1997, P NATL ACAD SCI USA, V94, P9440, DOI 10.1073/pnas.94.17.9440 Ohlemiller KK, 1996, NEUROREPORT, V7, P1749, DOI 10.1097/00001756-199607290-00011 Paxinos G, 2001, MOUSE BRAIN STEREOTA Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11 Portfors CV, 2005, INFERIOR COLLICULUS, P411, DOI 10.1007/0-387-27083-3_14 Portfors CV, 2001, JARO, V2, P104, DOI 10.1007/s101620010057 Portfors CV, 2005, NEUROSCIENCE, V136, P1159, DOI 10.1016/j.neuroscience.2005.08.031 PORTFORS CV, 2004, ADV STUDY ECHOLOCATI, P141 Portfors CV, 2001, HEARING RES, V151, P95, DOI 10.1016/S0378-5955(00)00214-8 Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3 Portfors CV, 2004, AN ACAD BRAS CIENC, V76, P253, DOI 10.1590/S0001-37652004000200010 Portfors CV, 1999, J NEUROPHYSIOL, V82, P1326 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8 SCHOONHOVEN R, 1994, J ACOUST SOC AM, V95, P2104, DOI 10.1121/1.408672 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 SHNERSON A, 1979, EXP BRAIN RES, V37, P373 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 STRICKLAND EA, 1994, J ACOUST SOC AM, V95, P497, DOI 10.1121/1.408343 SUGA N, 1979, SCIENCE, V206, P351, DOI 10.1126/science.482944 SUGA N, 1978, SCIENCE, V200, P778, DOI 10.1126/science.644320 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593 Wenstrup J. J., 2001, J NEUROSCI, V21, P1 WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329 Willot JF, 1991, ACTA OTOLARYNGOL S, V476, P153 WILLOTT JF, 1988, HEARING RES, V37, P15, DOI 10.1016/0378-5955(88)90074-3 Willott J. F., 1991, AGING AUDITORY SYSTE Willott JF, 1997, J COMP NEUROL, V385, P405 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 WILLOTT JF, 1985, J COMP NEUROL, V22, P545 WILLOTT JF, 1984, BRAIN RES, V309, P159, DOI 10.1016/0006-8993(84)91022-9 Young E. D., 2002, INTEGRATIVE FUNCTION, P160 NR 74 TC 21 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2007 VL 228 IS 1-2 BP 212 EP 229 DI 10.1016/j.heares.2007.02.009 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 174QP UT WOS:000246957900021 PM 17412539 ER PT J AU Kros, CJ AF Kros, Corne J. TI How to build an inner hair cell: Challenges for regeneration SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE inner hair cell; development; regeneration; ion channel; exocytosis ID COCHLEAR NUCLEUS NEURONS; NICOTINIC CHOLINERGIC-RECEPTOR; GUINEA-PIG COCHLEA; POTASSIUM CURRENTS; MOUSE COCHLEA; DEVELOPMENTAL EXPRESSION; POSTNATAL-DEVELOPMENT; CA(V)1.3 CHANNELS; SUPPORTING CELLS; IONIC CURRENTS AB During their development inner hair cells (IHCs), the primary sensory receptors in the mammalian cochlea, undergo a meticulously orchestrated series of changes in the expression of ion channels and in their presynaptic function. This review considers what we currently know about these changes in IHCs of mice and rats, which start hearing 10-12 days after birth. Just after terminal mitosis the IHCs are electrically quiescent and functionally isolated, expressing only small and slow outward K+ currents in their basolateral membranes. By the first postnatal week the cells have acquired inward Ca2+ and Na+ currents that enable them to fire spontaneous action potentials at a time when the cochlea can not yet be stimulated by sound. These action potentials may be essential for normal development and survival of the IHCs themselves and of the afferent nerve fibres that synapse with them. At the onset of hearing the transition to a functionally mature sensory receptor comes about by the expression of a large and fast BK current, I-K,(f), a KCNQ4 current, I-K,I-n,I- and by changes in the exocytotic machinery. Some implications of this complex developmental programme for the ideal of hair-cell regeneration in the mature mammalian cochlea are discussed. (C) 2007 Elsevier B.V. All rights reserved. C1 Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. RP Kros, CJ (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. EM c.j.kros@sussex.ac.uk CR ANNIKO M, 1983, AM J OTOLARYNG, V4, P375, DOI 10.1016/S0196-0709(83)80043-X Beutner D, 2001, J NEUROSCI, V21, P4593 Brandt A, 2003, J NEUROSCI, V23, P10832 Brandt A, 2005, J NEUROSCI, V25, P11577, DOI 10.1523/JNEUROSCI.3411-05.2005 BRYANT JE, 2003, ASS RES OTOLARYNGOL Chen P, 1999, DEVELOPMENT, V126, P1581 COHEN I, 1985, INT REV NEUROBIOL, V27, P299, DOI 10.1016/S0074-7742(08)60560-7 Correia MJ, 2001, ANN NY ACAD SCI, V942, P228 Dulon D, 1996, EUR J NEUROSCI, V8, P1945, DOI 10.1111/j.1460-9568.1996.tb01338.x Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Geleoc GSG, 2004, J NEUROSCI, V24, P11148, DOI 10.1523/JNEUROSCI.2662-04.2004 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 Glueckert R, 2003, HEARING RES, V178, P95, DOI 10.1016/S0378-5955(03)00054-6 Goodyear RJ, 2006, VERTEBRATE HAIR CELL, P20 Goutman JD, 2005, J PHYSIOL-LONDON, V566, P49, DOI 10.1113/jphysiol.2005.087460 Hafidi A, 2005, NEUROSCIENCE, V130, P475, DOI 10.1016/j.neuroscience.2004.09.038 Helyer RJ, 2005, AUDIOL NEURO-OTOL, V10, P22, DOI 10.1159/000081545 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 JOHNSON SL, 2005, J PHYSL, V557, P613 Kirkwood NK, 1997, BRIT J AUDIOL, V31, P86 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 Kros CJ, 1996, COCHLEA, P318 Kurima K, 2002, NAT GENET, V30, P277, DOI 10.1038/ng842 Li HW, 2003, P NATL ACAD SCI USA, V100, P13495, DOI 10.1073/pnas.2334503100 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 LOWENHEIM H, 1999, P NATL ACAD SCI USA, V96, P4086 Marcotti W, 2006, J PHYSIOL-LONDON, V574, P677, DOI 10.1113/jphysiol.2005.095661 Marcotti W, 2003, J PHYSIOL-LONDON, V548, P383, DOI 10.1113/jphysiol.2002.034801 Marcotti W, 1999, PFLUG ARCH EUR J PHY, V439, P113, DOI 10.1007/s004240051134 Marcotti W, 2003, J PHYSIOL-LONDON, V552, P743, DOI 10.1113/jphysiol.2003.043612 Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x Marcotti W, 2004, J PHYSIOL-LONDON, V557, P613, DOI 10.1113/jphysiol.2003.060137 Marcotti W, 2004, J PHYSIOL-LONDON, V560, P691, DOI 10.1113/jphysiol.2004.072868 Masetto S, 1997, INT J DEV NEUROSCI, V15, P387, DOI 10.1016/S0736-5748(96)00099-8 Masetto S, 1997, J NEUROPHYSIOL, V78, P1913 Michna M, 2003, J PHYSIOL-LONDON, V553, P747, DOI 10.1013//jphysiol.2003.053256 Moody WJ, 2005, PHYSIOL REV, V85, P883, DOI 10.1152/physrev.00017.2004 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 Oliver D, 2003, J NEUROSCI, V23, P2141 Oliver D, 2006, J NEUROSCI, V26, P6181, DOI 10.1523/JNEUROSCI.1047-06.2006 Oliver D, 1997, PFLUG ARCH EUR J PHY, V434, P772, DOI 10.1007/s004240050464 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 Plazas PV, 2005, J NEUROSCI, V25, P10905, DOI 10.1523/JNEUROSCI.3805-05.2005 Pujol R., 1998, DEV AUDITORY SYSTEM, P146 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942 SOKOLOWSKI BHA, 1993, DEV BIOL, V155, P134, DOI 10.1006/dbio.1993.1013 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Thurm H, 2005, J PHYSIOL-LONDON, V569, P137, DOI 10.1113/jphysiol.2005.094680 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Vreugde S, 2002, NAT GENET, V30, P257, DOI 10.1038/ng848 WALSH EJ, 1988, HEARING RES, V36, P233, DOI 10.1016/0378-5955(88)90065-2 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 NR 58 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 3 EP 10 DI 10.1016/j.heares.2006.12.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900002 PM 17258412 ER PT J AU Warchol, ME AF Warchol, Mark E. TI Characterization of supporting cell phenotype in the avian inner ear: Implications for sensory regeneration SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE utricle; vestibular; development; tectorin; cadherin; cProx1; PAX2; GATA3 ID MOUSE VESTIBULAR EPITHELIA; SERUM-FREE CULTURE; HAIR-CELLS; E-CADHERIN; BETA-CATENIN; ADHESION MOLECULES; TECTORIAL MEMBRANE; PROGENITOR CELLS; DEVELOPING ORGAN; GAP-JUNCTIONS AB The avian inner ear possesses a remarkable capacity for the regeneration of sensory receptors after acoustic trauma or ototoxicity. Most replacement hair cells are created by renewed cell division within the sensory epithelium, although some new hair cells may also arise through nonmitotic mechanisms. Current data indicate that epithelial supporting cells play an essential role in regeneration, by serving as progenitor cells. In order to become progenitors, however, supporting cells may need to undergo partial dedifferentiation. In this review, I describe molecules that are expressed by supporting cells in the avian ear. Although a number of these molecules are likely to be critical to the maintenance of the supporting cell phenotype, we presently know very little about phenotypic changes in supporting cells during the early phase of regeneration. (C) 2006 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Washington Univ, Sch Med, Dept Anat & Neurobiol, St Louis, MO 63110 USA. RP Warchol, ME (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave,Box 8115, St Louis, MO 63110 USA. EM warcholm@ent.wustl.edu CR Adam J, 1998, DEVELOPMENT, V125, P4645 Ahmed ZM, 2003, HUM MOL GENET, V12, P3215, DOI 10.1093/hmg/ddg358 Amoureux MC, 2000, J NEUROSCI, V20, P3631 Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Bermingham-McDonogh O, 2001, DEV BIOL, V238, P247, DOI 10.1006/dbio.2001.0412 Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Chen P, 1999, DEVELOPMENT, V126, P1581 Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1 Croix B.S., 1998, J CELL BIOL, V142, P557 Crossin KL, 2000, DEV DYNAM, V218, P260, DOI 10.1002/(SICI)1097-0177(200006)218:2<260::AID-DVDY3>3.0.CO;2-9 DRESSLER GR, 1992, P NATL ACAD SCI USA, V89, P1179, DOI 10.1073/pnas.89.4.1179 Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916 GALLIN WJ, 1983, P NATL ACAD SCI-BIOL, V80, P1038, DOI 10.1073/pnas.80.4.1038 Goodyear RJ, 2002, J NEUROBIOL, V53, P212, DOI 10.1002/neu.10097 Groves AK, 2000, DEVELOPMENT, V127, P3489 Hackett L, 2002, EXP CELL RES, V278, P19, DOI 10.1006/excr.2002.5574 HATTA K, 1986, NATURE, V320, P447, DOI 10.1038/320447a0 Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150 Heller S, 1998, P NATL ACAD SCI USA, V95, P11400, DOI 10.1073/pnas.95.19.11400 Hutson MR, 1999, J NEUROCYTOL, V28, P795, DOI 10.1023/A:1007057719025 Jagger DJ, 2006, J NEUROSCI, V26, P1260, DOI 10.1523/JNEUROSCI.4278-05.2006 Jones JM, 2006, J NEUROSCI, V26, P550, DOI 10.1523/JNEUROSCI.3859-05.2006 JORGENSEN JM, 1988, NATURWISSENSCHAFTEN, V75, P319, DOI 10.1007/BF00367330 Karcavich RE, 2005, DEV DYNAM, V232, P609, DOI 10.1002/dvdy.20273 Kellie S, 2004, J CELL SCI, V117, P609, DOI 10.1242/jcs.00879 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KILLICK R, 1992, HEARING RES, V64, P21, DOI 10.1016/0378-5955(92)90165-J Kim TS, 2002, NEUROSCI LETT, V329, P173, DOI 10.1016/S0304-3940(02)00657-2 Kim TS, 2005, HEARING RES, V205, P201, DOI 10.1016/j.heares.2005.03.017 Kruger RP, 1999, J NEUROSCI, V19, P4815 KRUSHEL LA, 1995, P NATL ACAD SCI USA, V92, P4323, DOI 10.1073/pnas.92.10.4323 Lampugnani MG, 2003, J CELL BIOL, V161, P793, DOI 10.1083/jcb.200209019 Lanford PJ, 1999, NAT GENET, V21, P289 Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088 Legan PK, 2005, NAT NEUROSCI, V8, P1035, DOI 10.1038/nn1496 LEGAN PK, 2000, NEURON, V28, P272 Li HW, 2004, J COMP NEUROL, V477, P1, DOI 10.1002/cne.20190 Li HW, 2004, J NEUROBIOL, V60, P61, DOI 10.1002/neu.20013 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Matsui JI, 2005, DRUG DISCOV TODAY, V10, P1307, DOI 10.1016/S1359-6446(05)03577-4 Matsui JI, 2000, JARO, V1, P46, DOI 10.1007/s101620010005 Nickel R, 2006, J NEUROSCI, V26, P6190, DOI 10.1523/KNEUROSCI.1116-06.2006 Oesterle EC, 1997, J COMP NEUROL, V380, P262, DOI 10.1002/(SICI)1096-9861(19970407)380:2<262::AID-CNE8>3.0.CO;2-1 Oesterle EC, 1999, J NEUROCYTOL, V28, P877, DOI 10.1023/A:1007074222659 Oesterle EC, 2000, J COMP NEUROL, V424, P307, DOI 10.1002/1096-9861(20000821)424:2<307::AID-CNE9>3.0.CO;2-M Orsulic S, 1999, J CELL SCI, V112, P1237 RAPHAEL Y, 1988, DEV BIOL, V128, P222, DOI 10.1016/0012-1606(88)90284-9 RICHARDSON GP, 1987, DEV BIOL, V119, P217, DOI 10.1016/0012-1606(87)90223-5 ROBERSON DF, 1992, HEARING RES, V57, P166, DOI 10.1016/0378-5955(92)90149-H Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 SIMMONNEAU L, 2003, J COMP NEUROL, V459, P113 Stockinger A, 2001, J CELL BIOL, V154, P1185, DOI 10.1083/jcb.200104036 Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Stone JS, 2003, J COMP NEUROL, V460, P487, DOI 10.1002/cne.10662 Stone JS, 2004, DEV DYNAM, V230, P597, DOI 10.1002/dvdy.20087 Stone JS, 1999, DEVELOPMENT, V126, P961 TAKEICHI M, 1995, CURR OPIN CELL BIOL, V7, P619, DOI 10.1016/0955-0674(95)80102-2 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WARCHOL ME, 1993, HEARING RES, V71, P28, DOI 10.1016/0378-5955(93)90018-V WARCHOL ME, J COMP NEUROL WARCHOL ME, 2006, ASS RES OTOLARYNGOL WARCHOL ME, 1995, NEUROREPORT, V6, P981, DOI 10.1097/00001756-199505090-00008 Warchol ME, 2002, J NEUROSCI, V22, P2607 Warchol ME, 1999, J NEUROCYTOL, V28, P889, DOI 10.1023/A:1007026306730 WHITLON DS, 1990, J NEUROCYTOL, V19, P970, DOI 10.1007/BF01186824 Whitlon DS, 1999, J NEUROCYTOL, V28, P955, DOI 10.1023/A:1007038609456 WHITLON DS, 1993, J NEUROCYTOL, V22, P1030, DOI 10.1007/BF01235747 NR 69 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 11 EP 18 DI 10.1016/j.heares.2006.08.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900003 PM 17081713 ER PT J AU Ruel, J Wang, J Rebillard, G Eybalin, M Lloyd, R Pujol, R Puel, JL AF Ruel, Jerome Wang, Jing Rebillard, Guy Eybalin, Michel Lloyd, Ruth Pujol, Remy Puel, Jean-Luc TI Physiology, pharmacology and plasticity at the inner hair cell synaptic complex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE ribbon synapses; glutamate; AMPA; NMDA; lateral efferent; dopamine; cochlea ID GUINEA-PIG COCHLEA; GLUTAMATE-ASPARTATE TRANSPORTER; SPIRAL GANGLION NEURONS; AUDITORY-NERVE ACTIVITY; AMINO-ACID TRANSPORTER; HIGH-AFFINITY; RAT COCHLEA; KAINIC ACID; EXCITOTOXIC INJURY; AFFERENT SYNAPSES AB This report summarizes recent neuropharmacological data at the IHC afferent/efferent synaptic complex: the type of Glu receptors and transporter involved and the modulation of this fast synaptic transmission by the lateral efferents. Neuropharmacological data were obtained by coupling the recording of cochlear potentials and single unit of the auditory nerve with intra-cochlear applications of drugs (multi-barrel pipette). We also describe the IHC afferent/efferent functioning in pathological conditions. After acoustic trauma or ischemia, acute disruption of IHC-auditory dendrite synapses are seen. However, a re-growth of the nerve fibres and a re-afferentation of the IHC were completely done 5 days after injury. During this synaptic repair, multiple presynaptic bodies were commonly found, either linked to the membrane or "floating" in ectopic positions. In the meantime, the lateral efferents directly contact the IHCs. The demonstration that NMDA receptors blockade delayed the re-growth of neurites suggests a neurotrophic role of NMDA receptors in pathological conditions. (C) 2006 Elsevier B.V. All rights reserved. C1 Hop St Eloi, INSERM U583, INM, F-34091 Montpellier 5, France. Univ Montpellier 1, F-34006 Montpellier, France. RP Puel, JL (reprint author), Hop St Eloi, INSERM U583, INM, 80 Ave Augustin Fliche,BP 74103, F-34091 Montpellier 5, France. EM puel@montp.inserm.fr CR Arriza JL, 1997, P NATL ACAD SCI USA, V94, P4155, DOI 10.1073/pnas.94.8.4155 BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 Bleakman R, 1996, Mol Pharmacol, V49, P581 CHAUDIEU I, 1991, NEUROSCI LETT, V131, P263, DOI 10.1016/0304-3940(91)90629-8 CHOI DW, 1994, PROG BRAIN RES, V100, P47 dAldin CG, 1997, INT J DEV NEUROSCI, V15, P619, DOI 10.1016/S0736-5748(96)00116-5 Danbolt NC, 2001, PROG NEUROBIOL, V65, P1, DOI 10.1016/S0301-0082(00)00067-8 EYBALIN M, 1987, BRAIN RES, V418, P189, DOI 10.1016/0006-8993(87)90979-6 EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W EYBALIN M, 1993, PHYSIOL REV, V73, P309 FAIRMAN WA, 1995, NATURE, V375, P599, DOI 10.1038/375599a0 FELIX D, 1992, HEARING RES, V64, P1, DOI 10.1016/0378-5955(92)90163-H FELIX D, 1990, EUR ARCH OTO-RHINO-L, V248, P1, DOI 10.1007/BF00634769 Furness DN, 1997, EUR J NEUROSCI, V9, P1961, DOI 10.1111/j.1460-9568.1997.tb00763.x Gaborjan A, 1999, NEUROSCIENCE, V90, P131, DOI 10.1016/S0306-4522(98)00461-8 GILLOYZAGA P, 1990, EUR ARCH OTO-RHINO-L, V248, P40, DOI 10.1007/BF00634780 Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796 Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003 Halmos G, 2005, NEUROSCIENCE, V132, P801, DOI 10.1016/j.neuroscience.2005.01.023 HUNTERDUVAR IM, 1977, SCAN ELECTRON MICROS, V11, P421 JANSSEN R, 1991, BRAIN RES, V552, P255, DOI 10.1016/0006-8993(91)90090-I JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7 KANAI Y, 1992, NATURE, V360, P467, DOI 10.1038/360467a0 Khimich D, 2005, NATURE, V434, P889, DOI 10.1038/nature03418 Ladrech S, 2003, HEARING RES, V186, P85, DOI 10.1016/S0378-5955(03)00302-2 Le Prell CG, 2001, PHYSL EAR, P575 Le Prell CG, 2005, JARO-J ASSOC RES OTO, V6, P48, DOI 10.1007/s10162-004-5009-2 Le Prell CG, 2003, JARO, V4, P276, DOI 10.1007/s10162-002-3018-6 LI HS, 1994, HEARING RES, V78, P235, DOI 10.1016/0378-5955(94)90029-9 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X McMahon CM, 2004, HEARING RES, V190, P75, DOI 10.1016/S0378-5955(03)00403-9 MerchanPerez A, 1996, J COMP NEUROL, V371, P208, DOI 10.1002/(SICI)1096-9861(19960722)371:2<208::AID-CNE2>3.0.CO;2-6 MULDERS WH, 2006, EXP BRAIN RES Mulders WHAM, 2005, J CHEM NEUROANAT, V30, P230, DOI 10.1016/j.jchemneu.2005.09.005 NAKAGAWA T, 1991, J NEUROPHYSIOL, V65, P715 Namura S, 2002, NEUROSCI LETT, V324, P117, DOI 10.1016/S0304-3940(02)00193-3 Oestreicher E, 1997, HEARING RES, V107, P46, DOI 10.1016/S0378-5955(97)00023-3 Peng BG, 2003, NEUROSCI LETT, V343, P21, DOI 10.1016/S0304-3940(03)00296-9 PERKINS RE, 1975, J COMP NEUROL, V163, P129, DOI 10.1002/cne.901630202 PINES G, 1992, NATURE, V360, P464, DOI 10.1038/360464a0 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1993, NOISE MAN 93, P136 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 PUJOL R, 1979, NEUROSCI LETT, V15, P995 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 PUJOL R, 1997, SPRINGER HDB AUDITOR, V12, P146 PUJOL R, 1992, 29 WIRKSH INN EAR BI PUJOL R, 1978, J COMP NEUROL, V177, P529, DOI 10.1002/cne.901770311 Pujol R, 1991, NOISE INDUCED HEARIN, P196 PUJOL R, 1992, NEUROREPORT, V3, P299, DOI 10.1097/00001756-199204000-00002 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 PUJOL R, 1992, TINNITUS 91, P103 Rebillard G, 2003, EUR J NEUROSCI, V17, P83, DOI 10.1046/j.1460-9568.2003.02429.x ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Ruel J, 2000, NEUROPHARMACOLOGY, V39, P1959, DOI 10.1016/S0028-3908(00)00069-1 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x Ruel J, 2006, J NEUROCHEM, V97, P190, DOI 10.1111/j.1471-4159.2006.03722.x Ruel J, 2002, CNS DRUG REV, V8, P235 SAHLEY TL, 1994, EAR HEARING, V15, P422, DOI 10.1097/00003446-199412000-00003 Seal RP, 1999, ANNU REV PHARMACOL, V39, P431, DOI 10.1146/annurev.pharmtox.39.1.431 Sims KD, 1999, CRIT REV NEUROBIOL, V13, P169 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 STOPP P, 1982, NEW PERSPECTIVES NOI, P331 STOPP P, 1983, HEARING RES, V59, P241 STORCK T, 1992, P NATL ACAD SCI USA, V89, P10955, DOI 10.1073/pnas.89.22.10955 Sun W, 2001, NEUROREPORT, V12, P803, DOI 10.1097/00001756-200103260-00037 TANAKA K, 1993, NEUROSCI LETT, V159, P183, DOI 10.1016/0304-3940(93)90829-A Tanaka T, 2000, J NUCL SCI TECHNOL, V37, P1 Wang GJ, 1998, EUR J NEUROSCI, V10, P2523, DOI 10.1046/j.1460-9568.1998.00256.x Zheng XY, 1999, J COMP NEUROL, V406, P72 NR 73 TC 49 Z9 51 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 19 EP 27 DI 10.1016/j.heares.2006.08.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900004 PM 17079104 ER PT J AU Tsonis, PA AF Tsonis, Panagiotis A. TI Regeneration via transdifferentiation: The lens and hair cells SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE regeneration; transdifferentiation; lens; hair cells ID SENSORY EPITHELIA; HEARING; EXPRESSION; INDUCTION; BALANCE AB Tissue repair and regeneration is mediated by mainly two strategies, the one employing the services of reserve cells and the other via transdifferentiation of already differentiated somatic cells. In this mini-review some issues of transdifferentiation will be presented, especially as they pertain to regeneration and induction of lens and hair cells in several animal models. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Dayton, Dept Biol, Dayton, OH 45469 USA. Univ Dayton, Ctr Tissue Regenerat & Engn, Dayton, OH 45469 USA. RP Tsonis, PA (reprint author), Univ Dayton, Dept Biol, 300 Coll Pk, Dayton, OH 45469 USA. EM panagiotis.tsonis@notes.udayton.edu CR Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 Beck CW, 2003, DEV CELL, V5, P429, DOI 10.1016/S1534-5807(03)00233-8 DELRIOTSONIS K, 1995, P NATL ACAD SCI USA, V92, P5092 Del Rio-Tsonis K, 1999, INVEST OPHTH VIS SCI, V40, P2039 Del Rio-Tsonis K, 1998, DEV DYNAM, V213, P140, DOI 10.1002/(SICI)1097-0177(199809)213:1<140::AID-AJA14>3.0.CO;2-6 DelRioTsonis K, 1997, P NATL ACAD SCI USA, V94, P13701, DOI 10.1073/pnas.94.25.13701 Del Rio-Tsonis K, 2003, DEV DYNAM, V226, P211, DOI 10.1002/dvdy.10224 Grogg MW, 2005, NATURE, V438, P858, DOI 10.1038/nature04175 Han MJ, 2003, DEVELOPMENT, V130, P5123, DOI 10.1242/dev.00710 Hawkins RD, 2003, HUM MOL GENET, V12, P1261, DOI 10.1093/hmg/ddg150 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Matsui JI, 2005, J REHABIL RES DEV, V42, P187, DOI 10.1682/JRRD.2005.01.0008 Oliver G, 1996, MECH DEVELOP, V60, P233, DOI 10.1016/S0925-4773(96)00632-6 Stocum D. L., 1995, WOUND REPAIR REGENER Stone JS, 2000, P NATL ACAD SCI USA, V97, P11714, DOI 10.1073/pnas.97.22.11714 Taylor RR, 2005, J COMP NEUROL, V484, P105, DOI 10.1002/cne.20450 Tsonis PA, 2004, INT J DEV BIOL, V48, P975, DOI 10.1387/ijdb.041867pt Tsonis PA, 2000, DEV DYNAM, V219, P588, DOI 10.1002/1097-0177(2000)9999:9999<::AID-DVDY1082>3.0.CO;2-H Tsonis P.A., 1996, LIMB REGENERATION Tsonis PA, 2000, DEV BIOL, V221, P273, DOI 10.1006/dbio.2000.9667 NR 21 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 28 EP 31 DI 10.1016/j.heares.2006.06.011 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900005 PM 16942849 ER PT J AU Holley, MC Kneebone, A Milo, M AF Holley, M. C. Kneebone, A. Milo, M. TI Information for gene networks in inner ear development: A study centered on the transcription factor gata2 SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE cell lines; oligonucleotide arrays; gMOS; cochlea; gene networks; gata2 ID CELL-LINES; OLIGONUCLEOTIDE ARRAYS; EXPRESSION; DIFFERENTIATION; MODEL; PRECURSORS; GENOMICS; INHIBIT; MUSCLE; MOUSE AB The search for molecular mechanisms to stimulate sensory regeneration in the mammalian inner ear is commonly based upon developmental studies. This has revealed many genes that regulate the differentiation of sensory cells. A major challenge is to place these genes into the context of functional networks that describe developmental processes more fully and increase the chances of identifying useful therapeutic targets. We used a novel approach to identify genes that are functionally related to the transcription factor gata2. Temporal profiles of gene expression were derived from three conditionally immortal cell lines and clustered to those of gata2 by applying the gamma model for oligonucleotide signals, a statistical method that allows quantitative analysis of oligonucleotide array data. We derived an objective list of 28 genes that clustered with gata2 in all three cell lines. A number of these genes have known functional links with gata2. Genes encoding CCAAT/enhancer binding proteins (C/EBP) and signal transducer and activation of transcription 3 (Stat3) are especially interesting as they are known to bind gata proteins directly. The results provide strong evidence that our experimental approach can reveal functional relationships between genes that regulate fundamental processes in the differentiation of sensory cells in the inner ear. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Sheffield, Dept Biomed Sci, Sheffield S10 2TN, S Yorkshire, England. RP Holley, MC (reprint author), Univ Sheffield, Dept Biomed Sci, Addison Bldg,Western Bank, Sheffield S10 2TN, S Yorkshire, England. EM m.c.holley@shefac.uk; a.kneebone@sheffield.ac.uk; m.milo@sheffield.ac.uk CR Benchoua A, 2006, MOL BIOL CELL, V17, P1652, DOI 10.1091/mbc.E05-07-0607 Blackshaw S, 2002, CURR OPIN NEUROBIOL, V12, P110, DOI 10.1016/S0959-4388(02)00298-2 Ezoe S, 2005, J BIOL CHEM, V280, P13163, DOI 10.1074/jbc.M413461200 Forge A, 1998, J COMP NEUROL, V397, P69 Granot Z, 2002, ENDOCR RES, V28, P375, DOI 10.1081/ERC-120016812 Irizarry RA, 2003, NUCLEIC ACIDS RES, V31, pe15 Ishiko E, 2005, J BIOL CHEM, V280, P4929, DOI 10.1074/jbc.M406788200 JAT PS, 1991, P NATL ACAD SCI USA, V88, P5096, DOI 10.1073/pnas.88.12.5096 Lawoko-Kerali G, 2004, DEV DYNAM, V231, P801, DOI 10.1002/dvdy.20187 Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006 Lawoko-Kerali G, 2002, J COMP NEUROL, V442, P378, DOI 10.1002/cne.10088 Levine M, 2005, P NATL ACAD SCI USA, V102, P4936, DOI 10.1073/pnas.0408031102 Li C, 2001, P NATL ACAD SCI USA, V98, P31, DOI 10.1073/pnas.011404098 Lilley CJ, 2004, PLANT BIOTECHNOL J, V2, P3, DOI 10.1046/j.1467-7652.2003.00037.x LIU JJ, 2006, OTOL NEUROTOL, V27, P416 Lockhart DJ, 2000, NATURE, V405, P827, DOI 10.1038/35015701 Milo M, 2003, BIOCHEM SOC T, V31, P1510 Moore ML, 2001, J BIOL CHEM, V276, P1026, DOI 10.1074/jbc.M009352200 Naef F., 2002, GENOME BIOL, V3 Nardelli J, 1999, DEV BIOL, V210, P305, DOI 10.1006/dbio.1999.9278 Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186 Nicholl AJ, 2005, EUR J NEUROSCI, V22, P343, DOI 10.1111/j.1460-9568.2005.04213.x Pena P, 1995, BIOCHEM J, V312, P887 Rivolta MN, 2002, GENOME RES, V12, P1091, DOI 10.1101/gr.225602 Rivolta MN, 2002, J NEUROBIOL, V53, P306, DOI 10.1002/neu.10111 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 RIZZUTO R, 1989, J BIOL CHEM, V264, P10595 Robert-Moreno A, 2005, DEVELOPMENT, V132, P1117, DOI 10.1242/dev.01660 Ruan YJ, 2004, TRENDS BIOTECHNOL, V22, P23, DOI 10.1016/j.tibtech.2003.11.002 Schlitt T, 2005, FEBS LETT, V579, P1859, DOI 10.1016/j.febslet.2005.01.073 Sheng GJ, 1999, MECH DEVELOP, V87, P213, DOI 10.1016/S0925-4773(99)00150-1 Shirihai OS, 2000, EMBO J, V19, P2492, DOI 10.1093/emboj/19.11.2492 Tong Q, 2005, MOL CELL BIOL, V25, P706, DOI 10.1128/MCB.25.2.706-715.2005 Zhang L, 2003, NAT BIOTECHNOL, V21, P818, DOI 10.1038/nbt836 Zhou YY, 2002, BMC BIOINFORMATICS, V3, DOI 10.1186/1471-2105-3-3 NR 35 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 32 EP 40 DI 10.1016/j.heares.2006.04.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900006 PM 16797894 ER PT J AU Batts, SA Raphael, Y AF Batts, Shelley A. Raphael, Yehoash TI Transdifferentiation and its applicability for inner ear therapy SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE transdifferentiation; regeneration; conversion; cochlea; stem cell; hair cell; supporting cell; deafness; gene therapy ID HAIR CELL REGENERATION; AVIAN AUDITORY EPITHELIUM; PLURIPOTENT STEM-CELLS; ACOUSTIC TRAUMA; SUPPORTING CELLS; PROGENITOR CELLS; GENE-EXPRESSION; CHICK COCHLEA; GUINEA-PIGS; IN-VIVO AB During normal development, cells divide, then differentiate to adopt their individual form and function in an organism. Under most circumstances, mature cells cannot transdifferentiate, changing their fate to adopt a different form and function. Because differentiated cells cannot usually divide, the repair of injuries as well as regeneration largely depends on the activation of stem cell reserves. The mature cochlea is an exception among epithelial cell layers in that it lacks stem cells. Consequently, the sensory hair cells that receive sound information cannot be replaced, and their loss results in permanent hearing impairment. The lack of a spontaneous cell replacement mechanism in the organ of Corti, the mammalian auditory sensory epithelium, has led researchers to investigate circumstances in which transdifferentiation does occur. The hope is that this information can be used to design therapies to replace lost hair cells and restore impaired hearing in humans. (C) 2006 Elsevier B.V. All rights reserved. C1 Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Raphael, Y (reprint author), Kresge Hearing Res Inst, Dept Otolaryngol, MSRB-3,Room 9301, Ann Arbor, MI 48109 USA. EM Yoash@umich.edu CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Amemiya K, 2004, BIOCHEM BIOPH RES CO, V316, P1, DOI 10.1016/j.bbrc.2004.01.172 Armstrong L, 2006, STEM CELLS, V24, P805, DOI 10.1634/stemcells.2005-0350 Baird RA, 2000, P NATL ACAD SCI USA, V97, P11722, DOI 10.1073/pnas.97.22.11722 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Brero A, 2006, CURR TOP MICROBIOL, V301, P21 Chen P, 1999, DEVELOPMENT, V126, P1581 Chen SB, 2004, J AM CHEM SOC, V126, P410, DOI 10.1021/ja037390k Cornell RA, 2005, SEMIN CELL DEV BIOL, V16, P663, DOI 10.1016/j.semcdb.2005.06.009 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Gruh I, 2006, CIRCULATION, V113, P1326, DOI 10.1161/CIRCULATIONAHA.105.559005 Gurdon JB, 2004, BIOSCIENCE REP, V24, P545, DOI 10.1007/s10540-005-2744-5 HASHINO E, 1993, J CELL SCI, V105, P23 Horb ME, 2003, CURR BIOL, V13, P105, DOI 10.1016/S0960-9822(02)01434-3 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kablar B, 2000, DEVELOPMENT, V127, P1627 Kageyama R, 2005, EXP CELL RES, V306, P343, DOI 10.1016/j.yexcr.2005.03.015 Kawamoto K, 2003, J NEUROSCI, V23, P4395 Kee BL, 2005, CURR TOP MICROBIOL, V290, P15 KEIHOFF G, 2006, EUR J CELL BIOL, V85, P11 Kondo T, 2005, P NATL ACAD SCI USA, V102, P4789, DOI 10.1073/pnas.0408239102 Krabbe C, 2005, APMIS, V113, P831, DOI 10.1111/j.1600-0463.2005.apm_3061.x Lardon J, 2005, DIFFERENTIATION, V73, P278, DOI 10.1111/j.1432-0436.2005.00030.x Levenson JM, 2006, CELL MOL LIFE SCI Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Lian GW, 2006, EXP HEMATOL, V34, P348, DOI 10.1016/j.exphem.2005.12.004 Liu Y, 2003, J CELL BIOCHEM, V88, P29, DOI 10.1002/jcb.10281 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Mitashov VI, 1997, INT J DEV BIOL, V41, P893 Park KS, 2006, AM J RESP CELL MOL, V34, P151, DOI 10.1165/rcmb.2005-0332OC RAJENDRA S, 2006, J CLIN PATHOL RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 RAPHAEL Y, 1994, HEARING RES, V80, P53, DOI 10.1016/0378-5955(94)90008-6 Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 Roberson DW, 2004, J NEUROSCI RES, V78, P461, DOI 10.1002/jnr.20271 ROYBON L, 2006, STEM CELLS RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 Samson SL, 2006, TRENDS ENDOCRIN MET, V17, P92, DOI 10.1016/j.tem.2006.02.002 Santos KF, 2005, BRAZ J MED BIOL RES, V38, P1531, DOI 10.1590/S0100-879X2005001000010 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Slack Jonathan M W, 2004, J Biol, V3, P10, DOI 10.1186/jbiol8 Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 STONE JS, 1994, J COMP NEUROL, V341, P50, DOI 10.1002/cne.903410106 STROEVA OG, 1983, INT REV CYTOL, V83, P221, DOI 10.1016/S0074-7696(08)61689-7 Thorgeirsson SS, 2006, HEPATOLOGY, V43, P2, DOI 10.1002/hep.21015 Tsonis PA, 2004, MOL INTERV, V4, P81, DOI 10.1124/mi.4.2.4 Udani VM, 2006, STEM CELLS DEV, V15, P1, DOI 10.1089/scd.2006.15.1 VANDENBERGH DJ, 1989, NEURON, V3, P507, DOI 10.1016/0896-6273(89)90209-2 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Welikson RE, 2006, J MOL CELL CARDIOL, V40, P520, DOI 10.1016/j.yjmcc.2006.01.009 White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Wilmut I, 1997, NATURE, V385, P810, DOI 10.1038/385810a0 WONG NA, 2006, J CLIN PATHOL, V59, P560 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 ZAPPIA JJ, 1989, HEARING RES, V40, P29, DOI 10.1016/0378-5955(89)90096-8 Zheng JL, 2000, NAT NEUROSCI, V3, P580 NR 59 TC 8 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 41 EP 47 DI 10.1016/j.heares.2006.08.015 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900007 PM 17070000 ER PT J AU Martinez-Monedero, R Oshima, K Heller, S Edge, ASB AF Martinez-Monedero, Rodrigo Oshima, Kazuo Heller, Stefan Edge, Albert S. B. TI The potential role of endogenous stem cells in regeneration of the inner ear SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE stem cells; hair cells; spiral ganglion; regeneration ID NEURAL PROGENITOR CELLS; PANCREATIC BETA-CELLS; HAIR-CELLS; COCHLEAR NERVE; AUDITORY NEUROPATHY; SUPPORTING CELLS; SPIRAL GANGLION; ACOUSTIC TRAUMA; HEARING-LOSS; DEGENERATION AB Stem cells in various mammalian organs retain the capacity to renew themselves and may be able to restore damaged tissue. Their existence has been proven by genetic tracer studies that demonstrate their differentiation into multiple tissue types and by their ability to self-renew through proliferation. Stem cells from the adult nervous system proliferate to form clonal floating colonies called spheres in vitro, and recent studies have demonstrated sphere formation by cells in the cochlea in addition to the vestibular system and the auditory ganglia, indicating that these tissues contain cells with stem cell properties. The presence of stem cells in the inner ear raises the hope of regeneration of mammalian inner ear cells but is difficult to correlate with the lack of spontaneous regeneration seen in the inner ear after tissue damage. Loss of stem cells postnatally in the cochlea may correlate with the loss of regenerative capacity and may limit our ability to stimulate regeneration. Retention of sphere forming ability in adult vestibular tissues suggests that the limited capacity for repair may be attributed to the continued presence of progenitor cells. Future strategies for regeneration must consider the distribution of endogenous stem cells in the inner ear and whether the tissue retains cells with the capacity for regeneration. (C) 2007 Elsevier B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Tillotson Unit Cell Biol, Eaton Peabody Lab, Boston, MA 02114 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. Harvard Univ, Div Hlth Sci & Technol, Program Speech & Hearing Biosci, Cambridge, MA 02139 USA. MIT, Cambridge, MA 02139 USA. Stanford Univ, Sch Med, Dept Otolaryngol HNS & Mol Cellular Physiol, Stanford, CA 94305 USA. RP Edge, ASB (reprint author), Massachusetts Eye & Ear Infirm, Tillotson Unit Cell Biol, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM albert_edge@meei.harvard.edu CR Alonso L, 2003, GENE DEV, V17, P1189, DOI 10.1101/gad.1086903 Bixby S, 2002, NEURON, V35, P643, DOI 10.1016/S0896-6273(02)00825-5 Bonner-Weir S, 2005, NAT BIOTECHNOL, V23, P857, DOI 10.1038/nbt1115 Corrales CE, 2006, J NEUROBIOL, V66, P1489, DOI 10.1002/neu.20310 Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 Dor Y, 2004, NATURE, V429, P41, DOI 10.1038/nature02520 Fausto N, 2004, HEPATOLOGY, V39, P1477, DOI 10.1002/hep.20214 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Gage FH, 2002, J NEUROSCI, V22, P612 Gale JE, 2002, J NEUROBIOL, V50, P81, DOI 10.1002/neu.10002 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Horner PJ, 2002, J NEUROCYTOL, V31, P469, DOI 10.1023/A:1025739630398 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 KELLEY MW, 1995, J NEUROSCI, V15, P3013 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 LAMBERT PR, 1994, LARYNGOSCOPE, V104, P701 Li HW, 2004, TRENDS MOL MED, V10, P309, DOI 10.1016/j.molmed.2004.05.008 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Lopez IA, 2004, INT J DEV NEUROSCI, V22, P205, DOI 10.1016/j.ijdevneu.2004.04.006 Martinez-Monedero R, 2006, J NEUROBIOL, V66, P319, DOI 10.1002/neu.20232 MCMAHAN UJ, 1990, COLD SH Q B, V55, P407 Montcouquiol M, 2001, J NEUROSCI, V21, P974 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Oshima K, 2007, JARO-J ASSOC RES OTO, V8, P18, DOI 10.1007/s10162-006-0058-3 Pasterkamp RJ, 1998, J NEUROSCI, V18, P9962 Puel JL, 1997, ACTA OTO-LARYNGOL, V117, P214, DOI 10.3109/00016489709117773 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 REYNOLDS BA, 1992, SCIENCE, V255, P1707, DOI 10.1126/science.1553558 Rubart M, 2006, ANNU REV PHYSIOL, V68, P29, DOI 10.1146/annurev.physiol.68.040104.124530 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 Sekiya T, 2003, NEUROSURGERY, V52, P900, DOI 10.1227/01.NEU.0000053509.98561.16 Starr A, 1996, BRAIN, V119, P741, DOI 10.1093/brain/119.3.741 Sugawara M, 2005, JARO-J ASSOC RES OTO, V6, P136, DOI 10.1007/s10162-004-5050-1 Urbanek K, 2005, P NATL ACAD SCI USA, V102, P8692, DOI 10.1073/pnas.0500169102 Varga R, 2003, J MED GENET, V40, P45, DOI 10.1136/jmg.40.1.45 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Weissman IL, 2000, CELL, V100, P157, DOI 10.1016/S0092-8674(00)81692-X White PM, 2006, NATURE, V441, P984, DOI 10.1038/nature04849 Zheng JL, 2000, NAT NEUROSCI, V3, P580 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 42 TC 20 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 48 EP 52 DI 10.1016/j.heares.2006.12.015 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900008 PM 17321086 ER PT J AU Praetorius, M Baker, K Brough, DE Plinkert, P Staecker, H AF Praetorius, Mark Baker, Kim Brough, Douglas E. Plinkert, Peter Staecker, Hinrich TI Pharmacodynamics of adenovector distribution within the inner ear tissues of the mouse SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE gene therapy; cochlea; vestibular; adenovirus; perilymph; drug delivery; inner ear ID MEDIATED GENE-TRANSFER; CELLS IN-VIVO; GUINEA-PIG; ADENOASSOCIATED VIRUS; TRANSGENE EXPRESSION; HAIR-CELLS; VECTOR; ADENOVIRUS; COCHLEA; THERAPY AB Recent studies have demonstrated that delivery of genes to the inner ear can achieve a variety of effects ranging from support of auditory neuron survival to protection and restoration of hair cells, demonstrating the utility of vector based gene delivery. Translation of these findings to useful experimental systems or even clinical applications requires a detailed understanding of the pharmacokinetics of gene delivery in the inner ear. Ideal gene delivery systems will employ a well tolerated vector which efficiently transduces the appropriate target cells within a tissue, but spare non-target structures. Adenovectors based on serotype 5 (Ad 5) are commonly used vectors, are easy to construct and have a long track record of efficacious gene transfer in the inner ear. In this study we demonstrate that distribution of Ads vector occurs in a basal to apical gradient with rapid distribution of vector to the vestibule after delivery via a round window cochleostomy. Transduction of the vector and expression of the delivered transgene occurs by 10 min post vector delivery. At 24 h post delivery only 16% of vector that was initially detectable within the inner ear by quantitative PCR remained. Perilymph sampling was used to determine that vector concentrations in perilymph peaked at 30 min post delivery and then declined rapidly. Understanding these basic distribution patterns and parameters for delivery are important for the design of gene delivery vectors and vital for modeling dose responses to achieve safe efficacious delivery of a therapeutic agent. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA. Univ Heidelberg, Med Ctr, Dept Otolaryngol, D-6900 Heidelberg, Germany. Univ Maryland, Med Ctr, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21201 USA. GenVec Inc, Gaithersburg, MD USA. RP Staecker, H (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd,MS 3010, Kansas City, KS 66160 USA. EM hstaecker@kumc.edu CR Alemany R, 2000, J GEN VIROL, V81, P2605 Dinh AT, 2005, BIOPHYS J, V89, P1574, DOI 10.1529/biophysj.105.059477 Einfeld DA, 2002, CURR OPIN MOL THER, V4, P444 Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545 Kawamoto K., 2001, NOISE HEALTH, V3, P37 Lalwani AK, 1996, GENE THER, V3, P588 Luebke AE, 2001, GENE THER, V8, P789, DOI 10.1038/sj.gt.3301445 Plontke SKR, 2003, HEARING RES, V182, P34, DOI 10.1016/S0378-5955(03)00138-2 Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 Praetorius M, 2003, ORL J OTO-RHINO-LARY, V65, P211, DOI 10.1159/000073117 Praetorius M, 2002, AUDIOL NEURO-OTOL, V7, P324, DOI 10.1159/000066157 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Salt A N, 1987, Adv Otorhinolaryngol, V37, P11 Salt AN, 1998, HEARING RES, V123, P137, DOI 10.1016/S0378-5955(98)00106-3 Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P157 Stone IM, 2005, MOL THER, V11, P843, DOI 10.1016/j.ymthe.2005.02.005 Suomalainen M, 1999, J CELL BIOL, V144, P657, DOI 10.1083/jcb.144.4.657 Tomanin R, 2004, CURR GENE THER, V4, P357 Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526 NR 20 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 53 EP 58 DI 10.1016/j.heares.2006.07.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900009 PM 17081711 ER PT J AU Takeda-Nakazawa, H Harada, N Shen, J Kubo, N Zenner, HP Yamashita, T AF Takeda-Nakazawa, Hiroko Harada, Narinobu Shen, Jing Kubo, Nobuo Zenner, Hans-Peter Yamashita, Toshio TI Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Inner Ear Biology Workshop Symposium on Terminal Differentiation - A Challenge in regeneration CY SEP 17, 2005 CL Tubingen, GERMANY DE cochlea; DAF-2 DA; hypotonic stimulation; nitric oxide; outer hair cell; transient receptor potential vanilloid 4 ID INDUCED CA2+ MOBILIZATION; RABBIT PROXIMAL TUBULE; MICE LACKING TRPV4; ENDOTHELIAL-CELLS; INNER-EAR; INTRACELLULAR CALCIUM; K+ CHANNELS; ACTIVATION; SYNTHASE; ATP AB Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-N-G-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca 2+](i)) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4 alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+](i) increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism. (C) 2006 Elsevier B.V. All rights reserved. C1 Kansai Med Univ, Hearing Res Lab, Dept Otolaryngol, Moriguchi, Osaka 5708507, Japan. Harada Ear Inst, Higashiosaka, Osaka 5770816, Japan. Univ Tubingen, Dept Otolaryngol, D-72076 Tubingen, Germany. RP Harada, N (reprint author), Kansai Med Univ, Hearing Res Lab, Dept Otolaryngol, Fumizonocho 10-15, Moriguchi, Osaka 5708507, Japan. EM hrd@wood.odn.ne.jp CR Ahern GP, 1999, J PHYSIOL-LONDON, V520, P165, DOI 10.1111/j.1469-7793.1999.00165.x ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Baylor SM, 2000, NEWS PHYSIOL SCI, V15, P19 BREER H, 1993, TRENDS NEUROSCI, V1, P5 Brette F, 2000, AM J PHYSIOL-HEART C, V279, pH1963 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Cho H, 1997, ACTA OTO-LARYNGOL, V117, P545, DOI 10.3109/00016489709113435 Clementi E, 1997, TRENDS PHARMACOL SCI, V18, P266 Cudeiro J, 1999, TRENDS NEUROSCI, V22, P109, DOI 10.1016/S0166-2236(98)01299-5 Dedkova EN, 2002, J PHYSIOL-LONDON, V539, P77, DOI 10.1013/jphysiol.2001.013258 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1987, ARCH OTO-RHINO-LARYN, V244, P104, DOI 10.1007/BF00458558 DULON D, 1992, AM J OTOL, V13, P108 DULON D, 1990, J NEUROSCI, V10, P1388 ERNST A, 1994, BRAIN RES, V636, P153, DOI 10.1016/0006-8993(94)90191-0 Franz P, 1996, ACTA OTO-LARYNGOL, V116, P726, DOI 10.3109/00016489609137914 GARTHWAITE J, 1995, ANNU REV PHYSIOL, V57, P683, DOI 10.1146/annurev.ph.57.030195.003343 Gosepath K, 1997, BRAIN RES, V747, P26, DOI 10.1016/S0006-8993(96)01149-3 GRIFFITH OW, 1995, ANNU REV PHYSIOL, V57, P707, DOI 10.1146/annurev.ph.57.030195.003423 Guler AD, 2002, J NEUROSCI, V22, P6408 HARADA N, 1994, ACTA OTO-LARYNGOL, V114, P510, DOI 10.3109/00016489409126095 HARADA N, 1993, BRAIN RES, V613, P205 Heinrich UR, 2000, BRAIN RES, V885, P6, DOI 10.1016/S0006-8993(00)02833-X JERRY RA, 1995, J ACOUST SOC AM, V98, P2000, DOI 10.1121/1.413318 Kalinec F, 2000, J BIOL CHEM, V275, P28000 KAWAHARA K, 1991, AM J PHYSIOL, V260, pF27 Kimura C, 2000, BIOCHEM BIOPH RES CO, V274, P736, DOI 10.1006/bbrc.2000.3205 Kimura C, 2004, J PHYSIOL-LONDON, V554, P721, DOI 10.1113/jphysiol.2003.057059 KLIS SFL, 1994, HEARING RES, V75, P114, DOI 10.1016/0378-5955(94)90062-0 Kojima H, 1998, ANAL CHEM, V70, P2446, DOI 10.1021/ac9801723 KONISHI M, 1988, BIOPHYS J, V54, P1089 Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4 Light DB, 2003, J CELL SCI, V116, P101, DOI 10.1242/jcs.00202 Lin S, 2000, J BIOL CHEM, V275, P17979, DOI 10.1074/jbc.275.24.17979 Liu RS, 2002, J AM SOC NEPHROL, V13, P2688, DOI 10.1097/01.ASN.0000033275.17169.67 MCARTY NA, 1991, J MEMBRANE BIOL, V123, P149 Michel O, 1999, HEARING RES, V133, P1, DOI 10.1016/S0378-5955(99)00049-0 Mizuno A, 2003, AM J PHYSIOL-CELL PH, V285, pC96, DOI 10.1152/ajpcell.00559.2002 Mizuno O, 2000, BRIT J PHARMACOL, V130, P1140, DOI 10.1038/sj.bjp.0703420 Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658 Okada Y, 1990, Neurosci Res Suppl, V12, pS5, DOI 10.1016/0921-8696(90)90004-M O'Neil RG, 2005, PFLUG ARCH EUR J PHY, V451, P193, DOI 10.1007/s00424-005-1424-4 Prast H, 2001, PROG NEUROBIOL, V64, P51, DOI 10.1016/S0301-0082(00)00044-7 ROSS PE, 1995, J GEN PHYSIOL, V106, P415, DOI 10.1085/jgp.106.3.415 Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z Shen J, 2005, EUR J NEUROSCI, V21, P2912, DOI 10.1111/j.1460-9568.2005.04135.x Shen J, 2003, NEUROSCI LETT, V337, P135, DOI 10.1016/S0304-3940(02)01320-4 Shen J, 2006, BRAIN RES, V1081, P101, DOI 10.1016/j.brainres.2005.12.129 Shen J, 2006, NEUROREPORT, V17, P135, DOI 10.1097/01.wnr.0000199459.16789.75 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 Shin JH, 1997, FEBS LETT, V415, P299, DOI 10.1016/S0014-5793(97)01144-7 Strotmann R, 2000, NAT CELL BIOL, V2, P695 SUZUKI M, 1990, AM J PHYSIOL, V258, pF690 Suzuki M, 2003, J BIOL CHEM, V278, P22664, DOI 10.1074/jbc.M302561200 Sziklai I, 1997, ACTA OTO-LARYNGOL, V117, P222, DOI 10.3109/00016489709117775 Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P28, DOI 10.1080/000164800760370792 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P460, DOI 10.1080/000164801300366589 Takumida M, 2002, CURR OPIN NEUROL, V15, P11, DOI 10.1097/00019052-200202000-00003 TANIGUCHI J, 1989, AM J PHYSIOL, V257, pF347 UBL J, 1988, PFLUG ARCH EUR J PHY, V412, P551, DOI 10.1007/BF00582547 Watanabe H, 2002, J BIOL CHEM, V277, P13569, DOI 10.1074/jbc.M200062200 WELLING PA, 1990, AM J PHYSIOL, V258, pF951 Xia Y, 1998, J BIOL CHEM, V273, P25804, DOI 10.1074/jbc.273.40.25804 YANG XC, 1989, SCIENCE, V243, P1068, DOI 10.1126/science.2466333 Yukawa H, 2005, NEUROSCIENCE, V130, P485, DOI 10.1016/j.neuroscience.2004.09.037 ZENNER HP, 1994, EUR ARCH OTO-RHINO-L, V251, P143 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zsombok A, 2000, NEUROSCI LETT, V295, P85, DOI 10.1016/S0304-3940(00)01606-2 NR 69 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2007 VL 227 IS 1-2 SI SI BP 59 EP 70 DI 10.1016/j.heares.2006.09.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 169ZP UT WOS:000246630900010 PM 17092670 ER PT J AU Price, GR AF Price, G. Richard TI Predicting mechanical damage to the organ of Corti SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE auditory hazard; impulse noise; AHAAH; hazard model; auditory damage; pharmacological intervention ID IMPULSE NOISE; HEARING-LOSS; CORDLESS TELEPHONES; HAZARD; EAR; MODEL; DISPLACEMENT; FREQUENCY; INTENSITY; EXPOSURE AB The potential for pharmacological intervention to ameliorate the effects of exposure to intense auditory stimulation is a truly exciting possibility. In theory, the effects of intense stimulation could be primarily a function of mechanical stress and its sequelae or possibly metabolic exhaustion. Conceivably, specific pharmacological therapies might be more effective following different types of insult, depending on the loss mechanism(s) involved. The Auditory Hazard Assessment Algorithm for the Human (AHAAH), a first-principles mathematical model for the ear, has been developed specifically to predict hazard at high intensities based on basilar membrane displacement. Validation studies have proven it to be accurate in rating risk for the human ear. AHAAH is available for download on the Internet. In the present context it was used to propose analytic stimuli that would help to elucidate the loss mechanisms and also to identify exposures for the clinician that should be considered as sufficiently hazardous to warrant potential pharmacological intervention either before or after the exposure. (C) 2006 Elsevier B.V. All rights reserved. C1 AH Anal, Charlestown, MD 21914 USA. RP Price, GR (reprint author), AH Anal, POB 368,125 Conestoga St, Charlestown, MD 21914 USA. EM AHAnalysis@comcast.net CR *ANSI ASA, 1996, S3441996 ANSI ASA Bohnke F, 1998, IEEE T BIO-MED ENG, V45, P1227, DOI 10.1109/10.720200 BOLZ EA, 1972, ACTA OTO-LARYNGOL, V73, P10, DOI 10.3109/00016487209138188 BRASHER PF, 1969, INT AUDIOL, V8, P579, DOI 10.3109/05384916909070228 Brinkmann H., 2000, TM00I008 TNO, P6 Cai H., 2002, SIAM Journal on Applied Mathematics, V63, DOI 10.1137/S0036139901388957 DALLOS PJ, 1964, J ACOUST SOC AM, V36, P2175, DOI 10.1121/1.1919340 Djupesland G., 1965, INT AUDIOL, V4, P34, DOI 10.3109/05384916509070162 Djupesland G, 1964, ACTA OTO-LARYNGOL, V188, P287 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 HAMERNIK RP, 1988, J ACOUST SOC AM, V84, P941, DOI 10.1121/1.396663 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 *ISO, 1999, 1851 ISO JOHNSON DL, 1990, DIRECT DETERMINATION, V3 Kolston PJ, 1999, P NATL ACAD SCI USA, V96, P3676, DOI 10.1073/pnas.96.7.3676 MARSHALL L, 1975, J SPEECH HEAR DISORD, V40, P320 MATTOX DE, 1997, 12 MIDW M ASS RES OT, P200 ORCHIK DJ, 1987, OTOLARYNG HEAD NECK, V96, P30 ORCHIK DJ, 1985, CLIN PEDIATR, V24, P688 Pang X-D, 1986, PERIPHERAL AUDITORY, P36 PATTERSON JJ, 1994, 9446 USAARL US ARM A Pfander F., 1975, KNALLTRAUMA PLONTKE S, 2004, GMS CURR TOP OTORHIN, V3 Plontke SKR, 2002, EUR ARCH OTO-RHINO-L, V259, P247, DOI 10.1007/s00405-002-0451-4 Price G. R., 2006, SAE 2005 T J PASSENG, VV114-6 PRICE GR, 1976, J ACOUST SOC AM, V60, P886, DOI 10.1121/1.381169 Price GR, 1999, J ACOUST SOC AM, V106, P2629, DOI 10.1121/1.428092 PRICE GR, 1989, J ACOUST SOC AM, V86, P2185, DOI 10.1121/1.398479 PRICE GR, 1974, J ACOUST SOC AM, V56, P195, DOI 10.1121/1.1903253 PRICE GR, 2003, WEAPON NOISE EXPOSUR PRICE GR, 1998, P ICA ASA, V103, P1145 PRICE GR, 2003, IMPULSE NOISE CAT CO PRICE GR, 1996, J ACOUST SOC AM, V100, P2674, DOI 10.1121/1.416935 PRICE GR, 1998, INT C BIOL EFF NOIS, V2, P725 PRICE GR, 2003, NIOSH NHCA IMP NOIS PRICE GR, 1986, J ACOUST SOC AM, V80, P1076, DOI 10.1121/1.393849 PRICE GR, 1991, J ACOUST SOC AM, V90, P219, DOI 10.1121/1.401291 PRICE GR, 1972, J ACOUST SOC AM, V51, P552, DOI 10.1121/1.1912877 RHODE WS, 1967, J ACOUST SOC AM, V42, P185, DOI 10.1121/1.1910547 ROYSTER JD, 24 ANN NHCA HEAR CON SCHUMAIER SG, 1986, TRIAL, V22, P32 SINGLETON GT, 1984, ANN OTO RHINOL LARYN, V93, P565 Steele CR, 2005, INT J SOLIDS STRUCT, V42, P5887, DOI 10.1016/j.ijsolstr.2005.03.056 *USACHPPM, 2005, COMMUNICATION WEVER EG, 1942, J EXP PSYCHOL, V31, P40 Wiener F M, 1966, Acta Otolaryngol, V61, P255, DOI 10.3109/00016486609127062 YONOVITZ A, 1976, ACTA OTO-LARYNGOL, V82, P11, DOI 10.3109/00016487609120857 NR 49 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 5 EP 13 DI 10.1016/j.heares.2006.08.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000002 PM 16978813 ER PT J AU Chen, GD Zhao, HB AF Chen, Guang-Di Zhao, Hong-Bo TI Effects of intense noise exposure on the outer hair cell plasma membrane fluidity SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE outer hair cell; plasma membrane lateral diffusion; noise-induced hearing loss; FRAP; cochlear amplifier ID AUDITORY SENSORY CELLS; INDUCED HEARING-LOSS; LIPID-PEROXIDATION; NITRIC-OXIDE; GUINEA-PIG; FLUORESCENCE RECOVERY; MICROSOMAL MEMBRANE; COCHLEAR AMPLIFIER; RADICAL GENERATION; OXIDATIVE DAMAGE AB Outer hair cells (OHCs) play an important role in cochlear amplification via their length changes (electromotility). A noise-induced cochlear amplification loss leading to a permanent threshold shift (PTS) was observed without a significant hair cell loss in rats [Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9.]. Since motor proteins are inserted in the OHC lateral membrane, any change in the OHC plasma membrane may result in a loss of OHC electromotility, leading to a loss of cochlear amplification. In this study, the lateral diffusion in the OHC plasma membrane was determined in vitro in guinea pigs by fluorescent recovery after photobleaching (FRAP) after an in vivo noise exposure. The lateral diffusion in the OHC plasma membrane demonstrated a length-dependence, which increased as OHC length increased. A reduction in the lateral diffusion was observed in those OHCs with lengths of 50-70 mu m after exposure to an 8-kHz octave band noise at 110 dB SPL for 3h. This membrane fluidity change was associated with the selective PTS at frequencies around 8 kHz. The reduction of the lateral diffusion in the OHC lateral wall indicated that noise could impair the micromechanics of the OHC lateral wall and might consequently impair OHC electromotility to induce threshold shift. (C) 2006 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Univ Kentucky, Med Ctr, Div Otolaryngol, Lexington, KY USA. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM gchen7@buffalo.edu CR AXELROD D, 1976, BIOPHYS J, V16, P1055 Balasubramanian SV, 1997, J PHARM SCI, V86, P199, DOI 10.1021/js9602756 Belyantseva IA, 2000, J NEUROSCI, V20, part. no. BJORKMAN DJ, 1994, ALCOHOL CLIN EXP RES, V18, P560, DOI 10.1111/j.1530-0277.1994.tb00910.x BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BRUCH RC, 1983, BIOCHIM BIOPHYS ACTA, V733, P216, DOI 10.1016/0005-2736(83)90525-4 Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6 Chen CH, 1998, ARCH BIOCHEM BIOPHYS, V351, P135, DOI 10.1006/abbi.1997.0543 Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016 CHOI JH, 1995, FREE RADICAL BIO MED, V18, P133, DOI 10.1016/0891-5849(94)00106-T COOPER RA, 1978, J SUPRAMOL STR CELL, V8, P413, DOI 10.1002/jss.400080404 COURJAULTGAUTIER F, 1995, KIDNEY INT, V47, P1048, DOI 10.1038/ki.1995.151 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 Dallos P, 2000, JARO-J ASSOC RES OTO, V1, P283, DOI 10.1007/s101620010048 DANNHOF BJ, 1991, NATURWISSENSCHAFTEN, V78, P570, DOI 10.1007/BF01134454 ENGELKE M, 1992, PHARMACOL TOXICOL, V71, P343 ENGELKE M, 1993, XENOBIOTICA, V23, P71 Feder TJ, 1996, BIOPHYS J, V70, P2767 Gale JE, 1997, NATURE, V389, P63, DOI 10.1038/37968 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 Guo Y, 2001, Lin Chuang Er Bi Yan Hou Ke Za Zhi, V15, P26 HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549 He DZZ, 2003, J NEUROSCI, V23, P9089 He DZZ, 1999, P NATL ACAD SCI USA, V96, P8223, DOI 10.1073/pnas.96.14.8223 HEIPIEPER HJ, 1994, APPL ENVIRON MICROB, V60, P4440 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 Imai K, 2000, BIOL PHARM BULL, V23, P415 IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094 Iwasa KH, 1997, BIOPHYS J, V73, P546 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Karbownik M, 2000, INT J BIOCHEM CELL B, V32, P1045, DOI 10.1016/S1357-2725(00)00056-X Ladha S, 1996, BIOPHYS J, V71, P1364 Lee HJ, 1999, J PHARM SCI, V88, P976, DOI 10.1021/js990114c Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 Mecocci P, 1997, MOL CHEM NEUROPATHOL, V31, P53, DOI 10.1007/BF02815160 Muriel P, 2000, NITRIC OXIDE-BIOL CH, V4, P333, DOI 10.1006/niox.2000.0285 Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658 Oghalai JS, 1999, HEARING RES, V135, P19, DOI 10.1016/S0378-5955(99)00077-5 Oghalai JS, 1998, J NEUROSCI, V18, P48 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 OHYASHIKI T, 1986, BIOCHIM BIOPHYS ACTA, V861, P311, DOI 10.1016/0005-2736(86)90433-5 Rao DB, 2001, HEARING RES, V161, P113, DOI 10.1016/S0378-5955(01)00366-5 Remy-Kristensen A, 2000, MOL MEMBR BIOL, V17, P95 Santos-Sacchi J, 1998, NEUROSCI LETT, V256, P155, DOI 10.1016/S0304-3940(98)00788-5 Shi XR, 2002, HEARING RES, V164, P49 STICKNEY JA, 1989, TOXICOLOGY, V58, P155, DOI 10.1016/0300-483X(89)90005-X SU Z, 1993, CHUNG KAO YAO LI HSU, V14, P393 Tolomeo JA, 1996, BIOPHYS J, V71, P421 Tsuda K, 2000, BIOCHEM BIOPH RES CO, V275, P946, DOI 10.1006/bbrc.2000.3408 WU XM, 1993, ENDOCRINOLOGY, V133, P491, DOI 10.1210/en.133.2.491 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YGUERABIDE J, 1982, BIOPHYS J, V40, P69 Zhao HB, 1999, NATURE, V399, P359 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J, 2003, MAMM GENOME, V14, P87, DOI 10.1007/s00335-002-2227-y Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032 NR 63 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 14 EP 21 DI 10.1016/j.heares.2006.06.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000003 PM 16870367 ER PT J AU Le Prell, CG Yamashita, D Minami, SB Yamasoba, T Miller, JM AF Le Prell, Colleen G. Yamashita, Daisuke Minami, Shujiro B. Yamasoba, Tatsuya Miller, Josef M. TI Mechanisms of noise-induced hearing loss indicate multiple methods of prevention SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE noise; hearing loss; antioxidant; cochlea; cell death ID GUINEA-PIG COCHLEA; TEMPORARY THRESHOLD SHIFT; HAIR CELL-DEATH; FAS LIGAND TRANSCRIPTION; FIBROBLAST-GROWTH-FACTOR; SPIRAL GANGLION NEURONS; VITAMIN-A-DEFICIENCY; INTENSE AUDITORY-STIMULATION; GENTAMICIN-INDUCED COCHLEAR; CISPLATIN-INDUCED APOPTOSIS AB Recent research has shown the essential role of reduced blood flow and free radical formation in the cochlea in noise-induced hearing loss (NIHL). The amount, distribution, and time course of free radical formation have been defined, including a clinically significant late formation 7-10 days following noise exposure, and one mechanism underlying noise-induced reduction in cochlear blood flow has finally been identified. These new insights have led to the formulation of new hypotheses regarding the molecular mechanisms of NIHL; and, from these, we have identified interventions that prevent NIHL, even with treatment onset delayed up to 3 days post-noise. It is essential to now assess the additive effects of agents intervening at different points in the cell death pathway to optimize treatment efficacy. Finding safe and effective interventions that attenuate NIHL will provide a compelling scientific rationale to justify human trials to eliminate this single major cause of acquired hearing loss. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Karolinska Inst, Ctr Hearing & Commun, Stockholm, Sweden. Keio Univ Hosp, Dept Otolaryngol, Shinjuku Ku, Tokyo 1608582, Japan. Univ Tokyo, Dept Otolaryngol, Bunkyo Ku, Tokyo 1138655, Japan. RP Le Prell, CG (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM colleeng@umich.edu CR Agostinho P, 2003, EUR J NEUROSCI, V17, P1189, DOI 10.1046/j.1460-9568.2003.02546.x Ahn JH, 2005, BIOCHEM BIOPH RES CO, V335, P485, DOI 10.1016/j.bbrc.2005.07.114 Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Alam SA, 2001, LARYNGOSCOPE, V111, P528, DOI 10.1097/00005537-200103000-00026 Almeida S, 2004, NEUROBIOL DIS, V17, P435, DOI 10.1016/j.nbd.204.07.002 ALTURA BM, 1992, J APPL PHYSIOL, V72, P194 Aminpour S, 2005, OTOL NEUROTOL, V26, P602, DOI 10.1097/01.mao.0000178121.28365.0d Attias J, 2004, CLIN OTOLARYNGOL, V29, P635, DOI 10.1111/j.1365-2273.2004.00866.x ATTIAS J, 1994, AM J OTOLARYNG, V15, P26, DOI 10.1016/0196-0709(94)90036-1 Attias Joseph, 2003, Journal of Basic and Clinical Physiology and Pharmacology, V14, P119 AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0 AXELSSON A, 1981, NEW PERSPECTIVES NOI, P49 BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L Berthier A, 2004, CELL DEATH DIFFER, V11, P897, DOI 10.1038/sj.cdd.4401434 Bertolaso L, 2001, AUDIOLOGY, V40, P327 BIESALSKI HK, 1990, J NUTR, V120, P726 Biswas G, 2005, GENE, V354, P132, DOI 10.1016/j.gene.2005.03.028 Biswas RS, 2001, MOL CELL BIOCHEM, V225, P7, DOI 10.1023/A:1012203110027 BOHNE BA, 1992, LARYNGOSCOPE, V102, P693, DOI 10.1288/00005537-199206000-00017 Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9 BRANIS M, 1988, HEARING RES, V33, P137, DOI 10.1016/0378-5955(88)90026-3 Campbell Kathleen, 2003, J Am Acad Audiol, V14, P121, DOI 10.3766/jaaa.14.3.2 Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 CARDOSO SM, 2005, BRAIN RES, V19 Caro AA, 2003, J BIOL CHEM, V278, P33866, DOI 10.1074/jbc.M300408200 Cassandro E, 2003, ACTA OTO-LARYNGOL, V123, P802, DOI 10.1080/00016480310005138 Cevette Michael J, 2003, J Am Acad Audiol, V14, P202 Chen YS, 2005, HEARING RES, V203, P94, DOI 10.1016/j.heares.2004.12.006 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63 CHOLE RA, 1976, LARYNGOSCOPE, V86, P445, DOI 10.1288/00005537-197603000-00014 Chong ZZ, 2004, ANTIOXID REDOX SIGN, V6, P277, DOI 10.1089/152308604322899341 Christians U, 2004, BRIT J PHARMACOL, V143, P388, DOI 10.1038/sj.bjp.0705939 Claes J, 2000, Acta Otolaryngol Suppl, V544, P34 Corbacella E, 2004, HEARING RES, V197, P11, DOI 10.1016/j.heares.2004.03.012 COYLE JT, 1993, SCIENCE, V262, P689, DOI 10.1126/science.7901908 Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Curtis LM, 1995, HEARING RES, V92, P120, DOI 10.1016/0378-5955(95)00207-3 David EA, 2002, J OTOLARYNGOL, V31, P304, DOI 10.2310/7070.2002.34330 DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E Dehne N, 2000, HEARING RES, V143, P162, DOI 10.1016/S0378-5955(00)00036-8 de la Monte SM, 2000, CELL MOL LIFE SCI, V57, P1471, DOI 10.1007/PL00000630 Derekoy FS, 2004, LARYNGOSCOPE, V114, P1775, DOI 10.1097/00005537-200410000-00019 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Ding DL, 2002, JARO, V3, P68, DOI 10.1007/s101620020004 Dolder M, 2001, BIOL SIGNAL RECEPT, V10, P93 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 DUVALL AJ, 1987, ARCH OTOLARYNGOL, V113, P1066 DYKENS JA, 1987, J NEUROCHEM, V49, P1222, DOI 10.1111/j.1471-4159.1987.tb10014.x Eldadah BA, 2000, J NEUROTRAUM, V17, P811, DOI 10.1089/neu.2000.17.811 El Idrissi A, 1999, J NEUROSCI, V19, P9459 Erin N, 2003, NEUROSCIENCE, V117, P541, DOI 10.1016/S0306-4522(02)00933-8 Erin N, 2003, NEUROSCIENCE, V117, P557, DOI 10.1016/S0306-4522(02)00934-X Eshraghi AA, 2006, ANAT REC PART A, V288A, P473, DOI 10.1002/ar.a.20305 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Feske S, 2003, BIOCHEM BIOPH RES CO, V311, P1117, DOI 10.1016/j.bbrc.2003.09.174 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Fischer U, 2003, CELL DEATH DIFFER, V10, P76, DOI 10.1038/sj.cdd.4401160 Fridberger A, 1996, ACTA OTO-LARYNGOL, V116, P17, DOI 10.3109/00016489609137707 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Gilgun-Sherki Y, 2003, J MOL NEUROSCI, V21, P1, DOI 10.1385/JMN:21:1:1 Gillespie LN, 2004, NEUROREPORT, V15, P1121, DOI 10.1097/01.wnr.0000125777.04774.c2 Glazner GW, 2000, EXP NEUROL, V161, P442, DOI 10.1006/exnr.1999.7242 Gooch JL, 2004, J BIOL CHEM, V279, P15561, DOI 10.1074/jbc.M308759200 Grosskreutz CL, 2005, EXP EYE RES, V80, P681, DOI 10.1016/j.exer.2004.11.017 Guitton MJ, 2004, ACTA OTO-LARYNGOL, V124, P411, DOI 10.1080/00016480310000665 GUNTHER T, 1989, AM J OTOL, V10, P36 Ha JS, 2006, NEUROSCI LETT, V393, P165, DOI 10.1016/j.neulet.2005.09.056 Halliwell B, 1998, FREE RADICALS BIOL M, V3rd HAMERNIK RP, 1974, ARCH OTOLARYNGOL, V99, P118 HAMERNIK RP, 1974, J ACOUST SOC AM, V55, P117, DOI 10.1121/1.1928141 Hanson JB, 2003, INT J PEDIATR OTORHI, V67, P585, DOI 10.1016/S0165-5876(03)00035-1 HARADA N, 1994, ACTA OTO-LARYNGOL, V114, P609, DOI 10.3109/00016489409126113 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 Hart S. L., 1996, BUSINESS STRATEGY EN, V5, P30, DOI DOI 10.1002/(SICI)1099-0836(199603 Haupt H, 2002, MAGNESIUM RES, V15, P17 HAUPT H, 2003, J OTORHINOLARYNGOL R, V65, P134 HAWKINS JE, 1976, ACTA OTO-LARYNGOL, V81, P337, DOI 10.3109/00016487609119971 HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 He LM, 2003, NEUROSCIENCE, V116, P325, DOI 10.1016/S0306-4522(02)00568-7 HEINRICH UR, 2005, BRAIN RES, V1, P85 Heinrich UR, 1999, ORL J OTO-RHINO-LARY, V61, P321, DOI 10.1159/000027693 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 Holscher C, 2005, REV NEUROSCIENCE, V16, P181 Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L Hou FX, 2003, HEARING RES, V179, P1, DOI 10.1016/S0378-5955(03)00065-0 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Huang CS, 2001, CANCER RES, V61, P8051 Huang TJ, 2002, DIABETOLOGIA, V45, P560, DOI 10.1007/s00125-002-0785-x Huang W, 2005, P NATL ACAD SCI USA, V102, P12242, DOI 10.1073/pnas.0505138102 HUNTERDU.IM, 1973, J ACOUST SOC AM, V54, P1179, DOI 10.1121/1.1914364 HUNTERDU.IM, 1972, J ACOUST SOC AM, V52, P1181, DOI 10.1121/1.1913230 HUNTERDU.IM, 1974, J ACOUST SOC AM, V55, P795, DOI 10.1121/1.1914602 Ibarretxe G, 2006, GLIA, V53, P201, DOI 10.1002/glia.20267 ISING H, 1982, ARCH OTO-RHINO-LARYN, V236, P139, DOI 10.1007/BF00454034 James AL, 2001, COCHRANE DB SYST REV, DOI DOI 10.1002/14651858.CD001873 JANSSEN R, 1991, BRAIN RES, V552, P255, DOI 10.1016/0006-8993(91)90090-I Jayanthi S, 2005, P NATL ACAD SCI USA, V102, P868, DOI 10.1073/pnas.0404990102 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 JOACHIMS Z, 1983, J ACOUST SOC AM, V74, P104, DOI 10.1121/1.389726 Joachims Z, 1993, Schriftenr Ver Wasser Boden Lufthyg, V88, P503 Kalivendi SV, 2005, BIOCHEM J, V389, P527 Kalkanis JG, 2004, LARYNGOSCOPE, V114, P538, DOI 10.1097/00005537-200403000-00028 Kawamoto K, 2003, MOL THER, V7, P484, DOI 10.1016/S1525-0016(03)00058-3 Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 Kim MJ, 2002, P NATL ACAD SCI USA, V99, P9870, DOI 10.1073/pnas.152336999 Kirkland RA, 2003, ANTIOXID REDOX SIGN, V5, P589, DOI 10.1089/152308603770310257 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5 KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0 Labbe D, 2005, HEARING RES, V202, P21, DOI 10.1016/j.heares.2004.10.002 Ladrech S, 2004, J COMP NEUROL, V477, P149, DOI 10.1002/cne.20252 LAFONCAZAL M, 1993, NATURE, V364, P535, DOI 10.1038/364535a0 LAFONCAZAL M, 1993, NEUROPHARMACOLOGY, V32, P1259, DOI 10.1016/0028-3908(93)90020-4 Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lamm K, 1999, ANN NY ACAD SCI, V884, P233, DOI 10.1111/j.1749-6632.1999.tb08645.x Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6 Lassus P, 2002, SCIENCE, V297, P1352, DOI 10.1126/science.1074721 Lautermann J, 1996, ARCH OTOLARYNGOL, V122, P837 Lawner BE, 1997, INT J DEV NEUROSCI, V15, P601, DOI 10.1016/S0736-5748(96)00115-3 Le HN, 2002, EXPERT OPIN BIOL TH, V2, P151, DOI 10.1517/14712598.2.2.151 Le Prell CG, 2001, PHYSL EAR, P575 LEFEBVRE PP, 1992, ACTA OTO-LARYNGOL, V112, P288 LEFEBVRE PP, 1991, BRAIN RES, V567, P306, DOI 10.1016/0006-8993(91)90809-A Le Prell CG, 2004, J ACOUST SOC AM, V116, P1044, DOI 10.1121/1.1772395 LEPRELL CG, 2006, IN PRESS J ACOUST SO, V120 Levine M, 1996, P NATL ACAD SCI USA, V93, P3704, DOI 10.1073/pnas.93.8.3704 Lewen A, 2000, J NEUROTRAUM, V17, P871, DOI 10.1089/neu.2000.17.871 LI J, 2002, MOL CELL BIOCHEM, V235, P161 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 LIPSCOMB DM, 1973, LARYNGOSCOPE, V83, P259, DOI 10.1288/00005537-197302000-00008 LIPTON SA, 1993, NATURE, V364, P626, DOI 10.1038/364626a0 LOHLE E, 1985, PATHOL RES PRACT, V179, P560 LOHLE E, 1980, ARCH OTO-RHINO-LARYN, V229, P45, DOI 10.1007/BF00453751 LONGMIRE AW, 1994, BIOCHEM PHARMACOL, V47, P1173, DOI 10.1016/0006-2952(94)90389-1 Lopez-Ganzalez MA, 2000, J PINEAL RES, V28, P73, DOI 10.1034/j.1600-079X.2001.280202.x Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Mano A, 2004, CIRCULATION, V110, P317, DOI 10.1161/01.CIR.0000135599.33787.CA Marzella PL, 1997, NEUROREPORT, V8, P1641, DOI 10.1097/00001756-199705060-00017 Matsui JI, 2003, J NEUROSCI, V23, P6111 Matsui JI, 2002, J NEUROSCI, V22, P1218 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 Matsunobu T, 2004, NEUROSCIENCE, V123, P1037, DOI 10.1016/j.neuroscience.2003.10.022 Matteucci A, 2005, EXP BRAIN RES, V167, P641, DOI 10.1007/s00221-005-0068-0 Mattson MP, 2000, NAT REV MOL CELL BIO, V1, P120, DOI 10.1038/35040009 McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011 McFadden SL, 2004, BRAIN RES, V997, P40, DOI 10.1016/j.brainres.2003.10.031 McFadden SL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P489 Miller JM, 2006, OTOL JPN, V16, P139 Miller Josef M., 1996, P95 MILLER JM, UNPUB DELAYED NEUROT MILLER JM, 2003, ABS ASS RES OTOLARYN, V26, P248 Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061 MINAMI S, 2005, ABS ASS RES OTOLARYN, V28, P131 MINAMI S, ABS ASS RES OTOLARYN Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267 MINAMI SB, UNPUB CREATINE TEMPO Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008 Morioka M, 1999, PROG NEUROBIOL, V58, P1, DOI 10.1016/S0301-0082(98)00073-2 Morrow JD, 1996, BIOCHEM PHARMACOL, V51, P1, DOI 10.1016/0006-2952(95)02072-1 Morrow JD, 1997, PROG LIPID RES, V36, P1, DOI 10.1016/S0163-7827(97)00001-5 MORROW JD, 1990, P NATL ACAD SCI USA, V87, P9383, DOI 10.1073/pnas.87.23.9383 Mou K, 1997, J COMP NEUROL, V386, P529 Mulroy MJ, 1998, HEARING RES, V115, P93, DOI 10.1016/S0378-5955(97)00181-0 Muzio M, 1998, J BIOL CHEM, V273, P2926, DOI 10.1074/jbc.273.5.2926 Nagashima R, 2005, J PHARMACOL SCI, V99, P301, DOI 10.1254/jphs.CPJ05004X Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2 Nakano H, 2000, ELECTR ENG JPN, V131, P1, DOI 10.1002/(SICI)1520-6416(200006)131:4<1::AID-EEJ1>3.0.CO;2-0 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Nicotera TM, 1999, ABS ASS RES OTOLARYN, V22, P159 Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32 NOGUCHI N, 1992, BIOCHEM PHARMACOL, V44, P39, DOI 10.1016/0006-2952(92)90035-H Nottingham S, 2002, EXP NEUROL, V177, P242, DOI 10.1006/exnr.2002.7975 Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Okuda T, 2005, AURIS NASUS LARYNX, V32, P33, DOI 10.1016/j.anl.2004.11.006 Orrenius S, 2003, NAT REV MOL CELL BIO, V4, P552, DOI 10.1038/nrm1150 Pasqualetti Massimo, 2001, TheScientificWorldJOURNAL, V1, P916 Perez N, 1997, EUR ARCH OTO-RHINO-L, V254, P329, DOI 10.1007/BF02630725 PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927 Pirvola U, 2000, J NEUROSCI, V20, P43 Pirvola U, 1997, J NEUROBIOL, V33, P1019, DOI 10.1002/(SICI)1097-4695(199712)33:7<1019::AID-NEU11>3.0.CO;2-A PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 PUTTFARCKEN PS, 1993, BRAIN RES, V624, P223, DOI 10.1016/0006-8993(93)90081-W QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3 QUIRK WS, 1995, AM J OTOL, V16, P322 Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L Rivera A, 2005, J BIOL CHEM, V280, P29346, DOI 10.1074/jbc.M504852200 Roberts LJ, 1997, BBA-LIPID LIPID MET, V1345, P121, DOI 10.1016/S0005-2760(96)00162-2 ROBERTS LJ, 1994, ANN NY ACAD SCI, V744, P237, DOI 10.1111/j.1749-6632.1994.tb52741.x ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Robertson JD, 2002, J BIOL CHEM, V277, P29803, DOI 10.1074/jbc.M204185200 Romeo G, 1985, Acta Vitaminol Enzymol, V7 Suppl, P85 Rybak LP, 2000, AM J OTOL, V21, P513 SANTI PA, OTOLARYNGOLOGY, V86 Satoh H, 2002, LARYNGOSCOPE, V112, P1627, DOI 10.1097/00005537-200209000-00019 Scarpidis U, 2003, OTOL NEUROTOL, V24, P409, DOI 10.1097/00129492-200305000-00011 Scheibe F, 2000, EUR ARCH OTO-RHINO-L, V257, P10, DOI 10.1007/PL00007505 SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281 Scheibe F, 2002, MAGNESIUM RES, V15, P27 Schinder AF, 1996, J NEUROSCI, V16, P6125 Seidman M, 2003, OTOLARYNG HEAD NECK, V129, P463, DOI 10.1016/S0194-5998(03)01586-9 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428 Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818 SHAH SB, 1995, AM J OTOL, V16, P310 Shi XR, 2003, HEARING RES, V177, P43, DOI 10.1016/S0378-5955(02)00796-7 Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 Shi YG, 2004, CELL, V117, P855, DOI 10.1016/j.cell.2004.06.007 SHIBASAKI F, 1995, J CELL BIOL, V131, P735, DOI 10.1083/jcb.131.3.735 Shibasaki F, 1997, NATURE, V386, P728, DOI 10.1038/386728a0 Shirwany NA, 1998, AM J OTOL, V19, P230 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 Shou Y, 2004, BIOCHEM J, V379, P805, DOI 10.1042/BJ20031107 Simizu S, 2000, JPN J CANCER RES, V91, P706 So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 Sommer D, 2002, ARCH BIOCHEM BIOPHYS, V404, P271, DOI 10.1016/S0003-9861(02)00242-4 SPICER SS, 1992, J HISTOCHEM CYTOCHEM, V40, P185 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Springer JE, 2000, J NEUROSCI, V20, P7246 Srivastava RK, 1999, J EXP MED, V190, P253, DOI 10.1084/jem.190.2.253 Stracher A, 1999, ANN NY ACAD SCI, V884, P52, DOI 10.1111/j.1749-6632.1999.tb08635.x Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4 Sugahara K, 2004, ORL J OTO-RHINO-LARY, V66, P80, DOI 10.1159/000077800 Sugahara K, 2001, NEUROREPORT, V12, P3299, DOI 10.1097/00001756-200110290-00030 Summers WK, 2004, J ALZHEIMERS DIS, V6, P651 Sun GY, 2005, MOL NEUROBIOL, V31, P27, DOI 10.1385/MN:31:1-3:027 Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9 Takahashi T, 2002, J NEUROCHEM, V83, P1441, DOI 10.1046/j.1471-4159.2002.01251.x Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 Tang W, 2001, Int Tinnitus J, V7, P4 Tastekin A, 2005, BRAIN DEV-JPN, V27, P570, DOI 10.1016/j.braindev.2005.02.006 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Tenenbaum L., 2002, Current Gene Therapy, V2, P451, DOI 10.2174/1566523023347661 Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2 Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5 Thomas M, 2004, CURR PHARM DESIGN, V10, P679, DOI 10.2174/1381612043453162 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 Uchino H, 2002, NEUROBIOL DIS, V10, P219, DOI 10.1006/nbdi.2002.0514 Uemaetomari I, 2005, HEARING RES, V209, P86, DOI 10.1016/j.heares.2005.06.010 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 VANDEWATER TR, 2005, ABS ASS RES OTOLARYN, V28, P16 Wang H, 2006, J NEUROCHEM, V96, P694, DOI 10.1111/j.1471-4159.2005.03572.x Wang HG, 1999, SCIENCE, V284, P339, DOI 10.1126/science.284.5412.339 Wang J, 1999, NEUROREPORT, V10, P811, DOI 10.1097/00001756-199903170-00027 Wang J, 2003, J NEUROSCI, V23, P8596 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Watabe M, 2004, J PHARMACOL EXP THER, V311, P948, DOI 10.1124/jpet.104.071381 Watanabe K, 2003, AURIS NASUS LARYNX, V30, P219, DOI 10.1016/S0385-8146(03)00049-X Wei X, 2005, NEUROSCIENCE, V131, P513, DOI 10.1016/j.neuroscience.2004.11.014 Weijl NI, 2004, EUR J CANCER, V40, P1713, DOI 10.1016/j.ejca.2004.02.029 Weiss RG, 2005, P NATL ACAD SCI USA, V102, P808, DOI 10.1073/pnas.0408962102 White RJ, 1996, J NEUROSCI, V16, P5688 Yamagata T, 2004, J NEUROSCI RES, V78, P75, DOI 10.1002/jnr.20239 YAMANE H, 2004, ACTA OTOLARYNGOL S, V554, P6 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YAMASHITA D, 2005, ABS ASS RES OTOLARYN, V28, P201 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047 Yamasoba T., 2001, NOISE INDUCED HEARIN, P73 YAMATO M, 1998, T SOC BIOMATER, V21, P82 Yang L, 2004, NEUROSCI LETT, V357, P73, DOI 10.1016/j.neulet.2003.12.032 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C Yukawa H, 2005, NEUROSCIENCE, V130, P485, DOI 10.1016/j.neuroscience.2004.09.037 Zhai SQ, 2004, ACTA OTO-LARYNGOL, V124, P124, DOI 10.1080/00016480310015939 Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0 Zhou JZ, 2000, ACTA PHARMACOL SIN, V21, P156 Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166 Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008 ZUO J, 1995, HEARING RES, V87, P220, DOI 10.1016/0378-5955(95)00092-I NR 311 TC 106 Z9 112 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 22 EP 43 DI 10.1016/j.heares.2006.10.006 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000004 PM 17141991 ER PT J AU Kil, J Pierce, C Tran, H Gu, R Lynch, ED AF Kil, Jonathan Pierce, Carol Tran, Huy Gu, Rende Lynch, Eric D. TI Ebselen treatment reduces noise induced hearing loss via the mimicry and induction of glutathione peroxidase SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE hearing; noise; glutathione peroxidase; ebselen; otoprotection; presbycusis ID NITRIC-OXIDE SYNTHASE; LIPID-PEROXIDATION; ACOUSTIC TRAUMA; FREE-RADICALS; COCHLEA; ANTIOXIDANT; EXPRESSION; EXPOSURE; OXYGEN; RAT AB Previous studies indicate that noise induced hearing loss (NIHL) involves a decrease in glutathione peroxidase (GPx) activity and a subsequent loss of outer hair cells (OHC). However, the cellular localization of this GPx decrease and the link to OHC loss are still poorly understood. In this report, we examined the cellular localization of GPx (GPx1, GPx 3 and GPx 4) in F-344 rat before and after noise exposure and after oral treatment with ebselen, a small molecule mimic of GPx activity. Results indicate that GPx1 is the major isoform within the cochlea and is highly expressed in cells of the organ of Corti, spiral ganglia, stria vascularis, and spiral ligament. Within 5h of noise exposure (4h at 113 dB, 4-16 kHz), significant OHC loss was already apparent in regions coincident with the 816 kHz region of the cochlea. In addition, the stria vascularis exhibited significant edema or swelling and a decrease in GPx1 immunoreactivity or fluorescent intensity. Treatment with ebselen (4 mg/kg p.o.) before and immediately after noise exposure reduced both OHC loss and the swelling of the stria vascularis typically observed within 5h post-noise exposure. Interestingly, GPx1 levels increased in the stria vascularis after noise and ebselen treatment vs noise and vehicle-only treatment, and exceeded baseline no noise control levels. These data indicate that ebselen acts to prevent the acute loss of OHCs and reduces the acute swelling of the stria vascularis by two potential mechanisms: one, as a ROS/RNS scavenger through its intrinsic GPx activity, and two, as a stimulator of GPx1 expression or activity. This latter mechanism may be due to the preservation of endogenous GPx I from ROS/RNS induced degradation and/or the stimulation of GPx1 expression or activity. (C) 2006 Elsevier B.V. All rights reserved. C1 Sound Pharmaceut Inc, Res & Dev, Seattle, WA 98103 USA. RP Kil, J (reprint author), Sound Pharmaceut Inc, Res & Dev, 4010 Stone Way N Suite 120, Seattle, WA 98103 USA. EM jkil@soundpharmaceuticals.com CR Bosch-Morell F, 2002, FREE RADICAL BIO MED, V33, P669, DOI 10.1016/S0891-5849(02)00954-1 Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764 Gladilin S, 2000, ARCH BIOCHEM BIOPHYS, V380, P237, DOI 10.1006/abbi.2000.1943 Hattori R, 1996, JPN J PHARMACOL, V72, P191, DOI 10.1254/jjp.72.191 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Hoshida S, 1997, J PHARMACOL EXP THER, V281, P1471 Jung CH, 2002, BIOCHEM BIOPH RES CO, V291, P550, DOI 10.1006/bbrc.2002.6477 Kowaltowski AJ, 1998, J BIOL CHEM, V273, P12766, DOI 10.1074/jbc.273.21.12766 Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 Masumoto Hiroshi, 1996, FEBS Letters, V398, P179 MULLER A, 1988, BIOCHEM PHARMACOL, V37, P1103, DOI 10.1016/0006-2952(88)90517-5 Namura S, 2001, STROKE, V32, P1906 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 NOGUCHI N, 1994, BBA-LIPID LIPID MET, V1213, P176, DOI 10.1016/0005-2760(94)90024-8 NOGUCHI N, 1992, BIOCHEM PHARMACOL, V44, P39, DOI 10.1016/0006-2952(92)90035-H Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3 Ramakrishnan N, 1996, BIOCHEM PHARMACOL, V51, P1443, DOI 10.1016/0006-2952(96)00084-6 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Shi XR, 2002, HEARING RES, V164, P49 Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 WENDEL A, 1984, BIOCHEM PHARMACOL, V33, P3241, DOI 10.1016/0006-2952(84)90084-4 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YAMASOBA T, 2005, NEUROSCI LETT, V395, P18 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X ZEMBOWICZ A, 1993, J PHARMACOL EXP THER, V267, P1112 Zhao R, 2002, P NATL ACAD SCI USA, V99, P8579, DOI 10.1073/pnas.122061399 NR 30 TC 22 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 44 EP 51 DI 10.1016/j.heares.2006.08.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000005 PM 17030476 ER PT J AU Shen, HY Zhang, BP Shin, JH Lei, DB Du, Y Gao, X Wang, QJ Ohlemiller, KK Piccirillo, J Bao, JX AF Shen, Haiyan Zhang, Baoping Shin, June-Ho Lei, Debin Du, Yafei Gao, Xiang Wang, Qiuju Ohlemiller, Kevin K. Piccirillo, Jay Bao, Jianxin TI Prophylactic and therapeutic functions of T-type calcium blockers against noise-induced hearing loss SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE noise-induced hearing loss; mouse; T-type calcium channel; trimethadione; ethosuximide ID PERMANENT THRESHOLD SHIFT; SPIRAL GANGLION NEURONS; GUINEA-PIG COCHLEA; CHANNEL BLOCKER; AUDITORY-SYSTEM; MOUSE COCHLEA; HAIR-CELLS; INJURY; EAR; MECHANISMS AB Cochlear noise injury is the second most frequent cause of sensorineural hearing loss, after aging. Because calcium dysregulation is a widely recognized contributor to noise injury, we examined the potential of calcium channel blockers to reduce noise-induced hearing loss (NIHL) in mice. We focused on two T-type calcium blockers, trimethadione and ethosuximide, which are anti-epileptics approved by the Food and Drug Administration. Young C57BL/6 mice of either gender were divided into three groups: a 'prevention' group receiving the blocker via drinking water before noise exposure; a 'treatment' group receiving the blocker via drinking water after noise exposure; and controls receiving noise alone. Trimethadione significantly reduced NIHL when applied before noise exposure, as determined by auditory brainstem recording. Both ethosuximide and trimethadione were effective in reducing NIHL when applied after noise exposure. Results were influenced by gender, with males generally receiving greater benefit than females. Quantitation of hair cell and neuronal density suggested that preservation of outer hair cells could account for the observed protection. Immunocytochemistry and RT-PCR suggested that this protection involves direct action of T-type blockers on al subunits comprising one or more Ca,3 calcium channel types in the cochlea. Our findings provide a basis for clinical studies testing T-type calcium blockers both to prevent and treat NIHL. (C) 2007 Elsevier B.V. All rights reserved. C1 Washington Univ, Ctr Aging, Dept Otolaryngol, St Louis, MO 63110 USA. Nanjing Univ, Model Anim Res Ctr, Nanjing 210061, Peoples R China. Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol, Beijing 100853, Peoples R China. RP Bao, JX (reprint author), Washington Univ, Ctr Aging, Dept Otolaryngol, 4560 Clayton Ave, St Louis, MO 63110 USA. EM jbao@wustl.edu CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Boettcher FA, 1996, LARYNGOSCOPE, V106, P772, DOI 10.1097/00005537-199606000-00020 Boettcher FA, 1998, HEARING RES, V121, P139, DOI 10.1016/S0378-5955(98)00075-6 Page JC, 2002, MIL MED, V167, P48 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 Davis R R, 2003, Noise Health, V5, P19 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Errington AC, 2005, CURR TOP MED CHEM, V5, P15, DOI 10.2174/1568026053386872 Farooqui AA, 2004, NEUROCHEM RES, V29, P1961, DOI 10.1007/s11064-004-6871-3 Fligor BJ, 2004, EAR HEARING, V25, P513, DOI 10.1097/00003446-200412000-00001 Fuchs PA, 1996, CURR OPIN NEUROBIOL, V6, P514, DOI 10.1016/S0959-4388(96)80058-4 GAGNON PM, 2006, HEAR RES Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005 Hansen MR, 2003, J NEUROSCI RES, V72, P169, DOI 10.1002/jnr.10551 Heinrich UR, 1997, EUR ARCH OTO-RHINO-L, V254, P223, DOI 10.1007/BF00874093 Henderson D., 2003, NOISE HLTH, V3, P33 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Henderson D, 1998, Scand Audiol Suppl, V48, P63 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 HUNTERDU.IM, 1972, J ACOUST SOC AM, V52, P1181, DOI 10.1121/1.1913230 Ison JR, 1997, HEARING RES, V106, P179, DOI 10.1016/S0378-5955(96)00216-X Kochegarov AA, 2003, CELL CALCIUM, V33, P145, DOI 10.1016/S0143-4160(02)00239-7 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Lacinova L, 2000, GEN PHYSIOL BIOPHYS, V19, P121 Layton MG, 2005, J MOL NEUROSCI, V27, P225, DOI 10.1385/JMN:27:02:225 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 LEPRELL CG, 2006, HEAR RES Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Lopez I, 2003, CELL TISSUE RES, V313, P177, DOI 10.1007/s00441-003-0759-4 Luer MS, 1996, PHARMACOTHERAPY, V16, P830 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 Mills JH, 1999, ANN NY ACAD SCI, V884, P381, DOI 10.1111/j.1749-6632.1999.tb08656.x Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267 Morley B J, 1998, Brain Res Mol Brain Res, V53, P78 Niedzielski AS, 1997, AUDIOL NEURO-OTOL, V2, P79 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ohlemiller KK, 2006, BRAIN RES, V1091, P89, DOI 10.1016/j.brainres.2006.03.017 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 Perez-Reyes E, 1998, J BIOENERG BIOMEMBR, V30, P313, DOI 10.1023/A:1021981420839 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x Quaranta A, 1998, Scand Audiol Suppl, V48, P75 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143 Serra MR, 2005, INT J AUDIOL, V44, P65, DOI 10.1080/14992020400030010 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 Snutch T P, 1992, Curr Opin Neurobiol, V2, P247, DOI 10.1016/0959-4388(92)90111-W So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 Sullivan PG, 2004, J BIOENERG BIOMEMBR, V36, P353, DOI 10.1023/B:JOBB.0000041767.30992.19 Toescu EC, 2004, TRENDS NEUROSCI, V27, P614, DOI 10.1016/j.tins.2004.07.010 Triggle DJ, 2006, CURR PHARM DESIGN, V12, P443, DOI 10.2174/138161206775474503 Yunker AMR, 2003, J BIOENERG BIOMEMBR, V35, P533, DOI 10.1023/B:JOBB.0000008024.77488.48 Zipfel GJ, 2000, J NEUROTRAUM, V17, P857, DOI 10.1089/neu.2000.17.857 NR 56 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 52 EP 60 DI 10.1016/j.heares.2006.12.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000006 PM 17291698 ER PT J AU Canlon, B Meltser, I Johansson, P Tahera, Y AF Canlon, Barbara Meltser, Inna Johansson, Peter Tahera, Yeasmin TI Glucocorticoid receptors modulate auditory sensitivity to acoustic trauma SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE auditory brainstern response; cochlea; corticosterone; glucocorticoid receptor; NF-kappa B; I kappa B; sprial ganglion neurons; hearing loss; stress ID NF-KAPPA-B; SENSORINEURAL HEARING-LOSS; PITUITARY-ADRENOCORTICAL AXIS; INNER-EAR; MESSENGER-RNA; GUINEA-PIGS; HAIR-CELLS; IN-VITRO; NEUROTROPHIC FACTOR; RESTRAINT STRESS AB Glucocorticoids are widely used to treat different hearing disorders yet the exact mechanisms of glucocorticoid action on the inner ear are not known. The inner ear of both humans and experimental animals demonstrate an abundance of glucocorticoid receptors (GRs) in both neuronal and non-neuronal tissues. In this review, we discuss how activation of the hypothalamic-pituitary-adrenal axis can directly modulate hearing sensitivity. Recent findings indicate that several factors define the responsiveness of the peripheral auditory system to glucocorticoids including the concentration of agonist, availability of the GR, and the activation of GR and NF-KB. These findings will further our understanding of individual glucocorticoid responsiveness to steroid treatment, and will help improve the development of pharmaceuticals to selectively target GR in the inner ear for individuals with increased sensitivity to acoustic trauma. (C) 2006 Elsevier B.V. All rights reserved. C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Von Eulers Vag 8, S-17177 Stockholm, Sweden. EM barbara.canlon@ki.se CR Albensi BC, 2000, SYNAPSE, V35, P151 Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253 Almawi WY, 2002, HEMATOL ONCOL, V20, P17, DOI 10.1002/hon.684 ARON DC, 2004, BASIC CLIN ENDOCRINO, P363 Au PYB, 2005, ONCOGENE, V24, P3196, DOI 10.1038/sj.onc.1208516 BEATO M, 1995, CELL, V83, P851, DOI 10.1016/0092-8674(95)90201-5 BOHN MC, 1994, ANN NY ACAD SCI, V746, P243 BROWN HM, 1972, BRIT MED J, V1, P585 Burow A, 2005, BRAIN RES, V1062, P63, DOI 10.1016/j.brainres.2005.09.031 Campeau S, 2000, J COMP NEUROL, V423, P474 Canlon B, 2003, EUR J NEUROSCI, V17, P2035, DOI 10.1046/j.1460-9568.2003.02641.x Clark AR, 2003, CURR OPIN PHARMACOL, V3, P404, DOI 10.1016/S1471-4892(03)00073-0 Curtis LM, 1995, HEARING RES, V92, P120, DOI 10.1016/0378-5955(95)00207-3 d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x De Bosscher K, 2003, ENDOCR REV, V24, P488, DOI 10.1210/er.2002-0006 De Bosscher K, 2000, P NATL ACAD SCI USA, V97, P3919, DOI 10.1073/pnas.97.8.3919 De Kloet ER, 2004, ANN NY ACAD SCI, V1018, P1, DOI 10.1196/annals.1296.001 DEKLOET ER, 1987, PSYCHONEUROENDOCRINO, V12, P83, DOI 10.1016/0306-4530(87)90040-0 de Kloet ER, 1999, TRENDS NEUROSCI, V22, P422, DOI 10.1016/S0166-2236(99)01438-1 Dodson Kelley M, 2004, Ear Nose Throat J, V83, P394 Dodson KM, 2004, OTOLARYNG CLIN N AM, V37, P991, DOI 10.1016/j.otc.2004.03.003 Doyle KJ, 2004, OTOL NEUROTOL, V25, P1034, DOI 10.1097/00129492-200411000-00031 Hansson AC, 2000, EUR J NEUROSCI, V12, P2918, DOI 10.1046/j.1460-9568.2000.00185.x Harris JP, 2003, JAMA-J AM MED ASSOC, V290, P1875, DOI 10.1001/jama.290.14.1875 Heim C, 2000, JAMA-J AM MED ASSOC, V284, P592, DOI 10.1001/jama.284.5.592 Hess A, 2002, BRAIN RES, V956, P236, DOI 10.1016/S0006-8993(02)03545-X Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 Kassel O, 2001, EMBO J, V20, P7108, DOI 10.1093/emboj/20.24.7108 Konig HG, 2005, J CELL BIOL, V168, P1077, DOI 10.1083/jcb.200407027 Kratsovnik E, 2005, J MOL NEUROSCI, V26, P27, DOI 10.1385/JMN:26:03:27 Krstic MD, 1997, MOL CELL BIOL, V17, P3947 Kyriakis JM, 2001, PHYSIOL REV, V81, P807 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lawrence T, 2001, NAT MED, V7, P1291, DOI 10.1038/nm1201-1291 Li DP, 2000, J BIOL CHEM, V275, P26058, DOI 10.1074/jbc.M004502200 Li QT, 2002, NAT REV IMMUNOL, V2, P725, DOI 10.1038/nri910 Lipsky RH, 2001, J NEUROCHEM, V78, P254, DOI 10.1046/j.1471-4159.2001.00386.x MANGELSDORF DJ, 1995, CELL, V83, P835, DOI 10.1016/0092-8674(95)90199-X Marchetti L, 2004, J BIOL CHEM, V279, P32869, DOI 10.1074/jbc.M311766200 Marini AM, 2004, RESTOR NEUROL NEUROS, V22, P121 Masuda H, 2006, UROLOGY, V67, P435, DOI 10.1016/j.urology.2005.08.052 MASUDA M, 2005, BRAIN RES, V88, P585 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 McEwen BS, 1998, NEW ENGL J MED, V338, P171 Meller E, 2003, BRAIN RES, V979, P57, DOI 10.1016/S0006-8993(03)02866-X MIESFELD R, 1984, NATURE, V312, P779, DOI 10.1038/312779a0 Morgan ET, 2002, TOXICOLOGY, V181, P207, DOI 10.1016/S0300-483X(02)00283-4 Mori A, 1997, BLOOD, V89, P2891 Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008 MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664 MUCHNIK C, 1992, HEARING RES, V58, P101, DOI 10.1016/0378-5955(92)90013-D MUNCK A, 1984, ENDOCR REV, V5, P25 Nagy I, 2005, JARO-J ASSOC RES OTO, V6, P260, DOI 10.1007/s10162-005-0006-7 Nakamori Y, 2005, J TRAUMA, V59, P308, DOI 10.1097/01.ta.0000185265.63887.5f Nankova B B, 1998, Stress, V2, P289 Paz Z, 2004, AUDIOL NEURO-OTOL, V9, P363, DOI 10.1159/000081409 Pirvola U, 2000, J NEUROSCI, V20, P43 Pruett SB, 2003, INT IMMUNOPHARMACOL, V3, P1, DOI 10.1016/S1567-5769(02)00081-4 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N RAREY KE, 1995, HEARING RES, V82, P135, DOI 10.1016/0378-5955(94)00171-L RAY A, 1994, P NATL ACAD SCI USA, V91, P752, DOI 10.1073/pnas.91.2.752 Ridder S, 2005, J NEUROSCI, V25, P6243, DOI 10.1523/JNEUROSCI.0736-05.2005 Sapolsky RM, 2000, NEUROBIOL DIS, V7, P540, DOI 10.1006/nbdi.2000.0350 Schaaf MJM, 1997, J NEUROSCI RES, V48, P334, DOI 10.1002/(SICI)1097-4547(19970515)48:4<334::AID-JNR5>3.0.CO;2-C SCHRECK R, 1992, J EXP MED, V175, P1181, DOI 10.1084/jem.175.5.1181 Sheppard KA, 1998, J BIOL CHEM, V273, P29291, DOI 10.1074/jbc.273.45.29291 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 Smoak KA, 2004, MECH AGEING DEV, V125, P697, DOI 10.1016/j.mad.2004.06.010 Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5 Tsigos C, 2002, J PSYCHOSOM RES, V53, P865, DOI 10.1016/S0022-3999(02)00429-4 vanRaaij MTM, 1997, NEUROENDOCRINOLOGY, V65, P200, DOI 10.1159/000127273 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 WEINER DK, 1991, J RHEUMATOL, V18, P748 Widen C, 2003, BIOCHEM J, V373, P211, DOI 10.1042/BJ20030175 Xiao QL, 2005, BIOCHEM J, V388, P913, DOI 10.1042/BJ20041739 Yamamoto Y, 2004, TRENDS BIOCHEM SCI, V29, P72, DOI 10.1016/j.tibs.2003.12.003 Yang JT, 2005, EXP NEUROL, V192, P437, DOI 10.1016/j.expneurol.2004.12.023 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zhou A, 2003, ONCOGENE, V22, P2054, DOI 10.1038/sj.onc.1206262 NR 86 TC 37 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 61 EP 69 DI 10.1016/j.heares.2006.05.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000007 PM 16843624 ER PT J AU Coleman, JKM Littlesunday, C Jackson, R Meyer, T AF Coleman, John K. M. Littlesunday, Cherllynn Jackson, Ronald Meyer, Thomas TI AM-111 protects against permanent hearing loss from impulse noise trauma SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE impulse noise; acute acoustic trauma; noise-induced hearing loss; apoptosis; JNK ID HAIR CELL-DEATH; ACOUSTIC TRAUMA; SODIUM HYALURONATE; EXPOSURE; CHINCHILLA; PREVENTION; INHIBITORS; APOPTOSIS; COCHLEA; SYSTEM AB The otoprotective peptide AM-111, a cell-permeable inhibitor of JNK mediated apoptosis, was tested for its efficacy as a rescue agent following impulse noise trauma. Single dose administrations of AM-111 at 1 h or 4 h post-impulse noise exposure (155 dB peak SPL) via systemic or local routes were evaluated with a total of 48 chinchillas. The animals received the compound either by IP injection or locally onto the round window membrane (hyaluronic acid gel formulation or Osmotic mini-pump). Efficacy was determined by auditory brainstem responses (ABR) as well as cytocochleograms. Three weeks after impulse noise exposure, permanent threshold shifts (PTS) were significantly lower for AM-111 treated ears compared to controls, regardless of the drug administration route and the time point of drug delivery. Even the treatments which started 4h post-noise exposure, reduced hearing loss in the 2-8 kHz range compared to controls by up to 16-25 dB to a PTS as low as 6-17 dB, demonstrating significant protection against permanent hearing loss from impulse noise trauma. These findings suggest a key role for JNK mediated cochlear sensory cell death from oxidative stress. (C) 2006 Elsevier B.V. All rights reserved. C1 Lab Auris SAS, F-34830 Clapiers, France. USN, Med Ctr San Diego, Naval Med Ctr Spatial Orientat Ctr, San Diego, CA 92134 USA. RP Meyer, T (reprint author), Lab Auris SAS, Ave Europe, F-34830 Clapiers, France. EM thomas.meyer@aurismedical.com CR Bogoyevitch MA, 2004, BBA-PROTEINS PROTEOM, V1697, P89, DOI 10.1016/j.bbapap.2003.11.016 Bonny C, 2001, DIABETES, V50, P77, DOI 10.2337/diabetes.50.1.77 Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6 d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x FAY RR, 1988, HEARING RES, V34, P295, DOI 10.1016/0378-5955(88)90009-3 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 HU BH, 2003, HAIR CELL DEV REGENE, V24, P111 Kelly RM, 1999, DRUG DEV IND PHARM, V25, P15, DOI 10.1081/DDC-100102137 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Pirvola U, 2000, J NEUROSCI, V20, P43 Plontke S., 2004, CURR TOP OTORHINOLAR, V3, pDoc06 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Quaranta A, 1998, Scand Audiol Suppl, V48, P75 Selivanova O, 2003, LARYNGO RHINO OTOL, V82, P235, DOI 10.1055/s-2003-38937 Wang J, 2003, J NEUROSCI, V23, P8596 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 NR 29 TC 30 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 70 EP 78 DI 10.1016/j.heares.2006.05.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000008 PM 16839720 ER PT J AU Gagnon, PM Simmons, DD Bao, JX Lei, DB Ortmann, AJ Ohlemiller, KK AF Gagnon, Patricia M. Simmons, Dwayne D. Bao, Jianxin Lei, Debin Ortmann, Amanda J. Ohlemiller, Kevin K. TI Temporal and genetic influences on protection against noise-induced hearing loss by hypoxic preconditioning in mice SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE cochlea; organ of corti; stria vascularis; HIF-1 alpha; hypoxia; protection; C57BL/6; CBA ID ISCHEMIC TOLERANCE; ACOUSTIC INJURY; INNER-EAR; TRANSCRIPTION FACTOR; MOUSE; COCHLEA; ERYTHROPOIETIN; STRESS; BRAIN; NEUROPROTECTION AB The protective benefits of hypoxic preconditioning (HPC) against permanent noise-induced hearing loss (NIHL) were investigated in mice. Hypoxia induced by exposure to 8% O-2 for 4 h conferred significant protection against damaging broadband noise delivered 2448 h later in male and female CBA/J (CBA) and CBA/CaJ mice. No protection was found in C57BL/6 (136) mice, their B6.CAST-Cdh23(CAST) (B6.CAST) congenics, or in CBAxB6 F1 hybrid mice over the same interval, suggesting that the potential for HPC depends on one or a few autosomal recessive alleles carried by CBA-related strains, and is not influenced by the Cdh23 locus. Protection against NIHL in CBA mice was associated with significant up-regulation of hypoxia-inducible factor-1 alpha (HIF-1 alpha) within the organ of Corti, not found in B6.CAST. In both CBA and B6.CAST mice, some hypoxia-noise intervals shorter than 24 h were associated with exacerbation of NIHL. Cellular cascades underlying the early exacerbation of NIHL by hypoxia are therefore common to both strains, and not mechanistically linked to later protection. Elucidation of the events that underlie HPC, and how these are impacted by genetics, may lead to pharmacologic approaches to mimic HPC, and may help identify individuals with elevated risk of NIHL. (C) 2006 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Washington Univ, Sch Med, Program Audiol & Commun Sci, St Louis, MO USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu CR Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301 Atochin DN, 2003, STROKE, V34, P1299, DOI 10.1161/01.STR.0000066870.70976.57 Bernaudin M, 2002, J BIOL CHEM, V277, P39728, DOI 10.1074/jbc.M204619200 Bruick RK, 2003, GENE DEV, V17, P2614, DOI 10.1101/gad.1145503 Caye-Thomasen P, 2005, HEARING RES, V203, P21, DOI 10.1016/j.heares.2004.11.017 Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8 Chung JW, 2004, NEUROREPORT, V15, P2353, DOI 10.1097/00001756-200410250-00010 Cowen RL, 2004, CANCER RES, V64, P1396, DOI 10.1158/0008-5472.CAN-03-2698 Das DK, 2003, ARCH BIOCHEM BIOPHYS, V420, P305, DOI 10.1016/j.abb.2003.09.023 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Dirnagl U, 2003, TRENDS NEUROSCI, V26, P248, DOI 10.1016/S0166-2236(03)00071-7 Eisen A, 2004, ATHEROSCLEROSIS, V172, P201, DOI 10.1016/S0021-9150(03)00238-7 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x FANDREY J, 2004, AM J PHYSIOL-REG I, V286, P977 Fechter LD, 2004, J TOXICOL ENV HEAL A, V67, P727, DOI 10.1080/15287390490428206 Finkel T, 1999, J LEUKOCYTE BIOL, V65, P337 Gidday JM, 2006, NAT REV NEUROSCI, V7, P437, DOI 10.1038/nrn1927 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410 Huang JZ, 2004, MOL CANCER THER, V3, P335 ITO M, 1993, HEARING RES, V71, P230, DOI 10.1016/0378-5955(93)90039-4 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X LEPRELL CG, 2006, HEARING RES, V226, P22 Li H S, 1992, Scand Audiol Suppl, V36, P1 Michel O, 2001, HEARING RES, V155, P175, DOI 10.1016/S0378-5955(01)00262-3 Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061 Monge A, 2006, LARYNGOSCOPE, V116, P312, DOI 10.1097/01.mlg.0000199400.08550.3f NIOSH, 2001, DHHS NIOSH PUBL, V2001-113 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32 OHLEMILLER KK, 2002, ABST ASSN RES OTOLAR, V25, P67 Ohlemiller Kevin K., 2003, Seminars in Hearing, V24, P123 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 ORTMANN AJ, 2004, ABSTR ASS RES OTOLAR, V27, P168 Pasupathy S, 2005, EUR J VASC ENDOVASC, V29, P106, DOI 10.1016/j.ejvs.2004.11.005 Prass K, 2003, STROKE, V34, P1981, DOI 10.1161/01.STR.0000080381.76409.B2 QUIRK WS, 1995, AM J OTOL, V16, P322 Ran RQ, 2005, DEV NEUROSCI-BASEL, V27, P87, DOI 10.1159/000085979 Rauca C, 2000, BRAIN RES, V868, P147, DOI 10.1016/S0006-8993(00)02388-X Ravati A, 2001, J NEUROCHEM, V78, P909, DOI 10.1046/j.1471-4159.2001.00463.x Rhee SG, 1999, EXP MOL MED, V31, P53 Samoszuk MK, 2004, J HISTOCHEM CYTOCHEM, V52, P837, DOI 10.1369/jha.4B6248.2004. SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1980, NEW PERSPECTIVES NOI, P229 SHEN H, 2006, HEARING RES, V226, P52 Siren AL, 2001, EUR ARCH PSY CLIN N, V251, P179, DOI 10.1007/s004060170038 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 Sommerschild HT, 2002, ACTA ANAESTH SCAND, V46, P123, DOI 10.1034/j.1399-6576.2002.460202.x Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9 Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Yoshida N, 2000, HEARING RES, V148, P213, DOI 10.1016/S0378-5955(00)00161-1 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Yoshida N, 1999, J NEUROSCI, V19, P10116 Zhu YL, 2006, EXP EYE RES, V82, P153, DOI 10.1016/j.exer.2005.06.005 Zhu YL, 2002, INVEST OPHTH VIS SCI, V43, P1903 ZWEMER ZF, IN PRESS J APPL PHYS NR 59 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 79 EP 91 DI 10.1016/j.heares.2006.09.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000009 PM 17107766 ER PT J AU Campbell, KCM Meech, RP Klemens, JJ Gerberi, MT Dyrstad, SSW Larsen, DL Mitchell, DL El-Aziz, M Verhulst, SJ Hughes, LF AF Campbell, Kathleen C. M. Meech, Robert P. Klemens, James J. Gerberi, Michael T. Dyrstad, Sara S. W. Larsen, Deb L. Mitchell, Diana L. El-Aziz, Mohammed Verhulst, Steven J. Hughes, Larry F. TI Prevention of noise- and drug-induced hearing loss with D-methionine SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE D-methionine; otoprotection; protection; ototoxicity; hearing loss; cisplatin; noise-induced hearing loss; aminoglycosides ID VESTIBULAR SENSORY CELLS; CISPLATIN-INDUCED DAMAGE; ROUND WINDOW APPLICATION; AUDITORY HAIR-CELLS; OTOTOXICITY IN-VIVO; AMINO-ACIDS; NITRIC-OXIDE; GUINEA-PIG; INDUCED NEPHROTOXICITY; THIOETHER SUPPRESSION AB A number of otoprotective agents are currently being investigated. Various types of agents have been found in animal studies to protect against hearing loss induced by cisplatin, carboplatin, aminoglycosides, or noise exposure. For over a decade we have been investigating D-methionine (D-met) as an otoprotective agent. Studies in our laboratory and others around the world have documented D-met's otoprotective action, in a variety of species, against a variety of ototoxic insults including cisplatin-, carboplatin-, aminoglycoside- and noise-induced auditory threshold elevations and cochlear hair cell loss. For cisplatin-induced ototoxicity, protection of the stria vascularis has also been documented. Further D-met has an excellent safety profile. D-Met may act as both a direct and indirect antioxidant. In this report, we provide the results of three experiments, expanding findings in D-met protection in three of our translational research areas: protection from platinum based chemotherapy-, aminoglycoside- and noise-induced hearing loss. These experiments demonstrate oral D-Met protection against cisplatin-induced ototoxicity, D-Met protection against amikacin-induced ototoxicity, and D-met rescue from permanent noise-induced hearing loss when D-Met is initiated 1 h after noise exposure. These studies demonstrate some of the animal experiments needed as steps to translate a protective agent from bench to bedside. (C) 2006 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Springfield, IL 62794 USA. Univ Chicago, Chicago, IL 60637 USA. RP Campbell, KCM (reprint author), So Illinois Univ, Sch Med, Springfield, IL 62794 USA. EM kcampbell@siumed.edu CR AKIYOSHI M, 1978, J ANTIMICROB CHEMOTH, V4, P69 Amsallem P, 1985, Ann Otolaryngol Chir Cervicofac, V102, P365 Baker D. H., 1994, Amino acids in farm animal nutrition., P37 BENEVENG.NJ, 1974, J AGR FOOD CHEM, V22, P2, DOI 10.1021/jf60191a036 BLOM HJ, 1989, CLIN SCI, V76, P43 BOBBIN RP, 1995, HEARING RES, V87, P49, DOI 10.1016/0378-5955(95)00077-H Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BRUMETT RE, 1978, LOTOTOXICITE COMPARE, P3849 BRUMMETT RE, 1977, P W PHARMACOL SOC, V20, P449 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 CAMPBELL KCM, 2003, 1296 ASS RES Campbell MLH, 2003, IPPOLOGIA, V14, P3 CAPARROS MG, 1992, J BACTERIOL, V147, P5549 CHENG PW, 2006, TOXICOL APPL PHARM, V18 Cheng PW, 2005, HEARING RES, V205, P102, DOI 10.1016/j.heares.2005.03.008 COHEN HP, 1958, J NUTR, V64, P555 COLEMAN JKM, 2002, 861 ASS RES OT DANIEL RG, 1969, J NUTR, V99, P299 DEEGAN PM, 1994, TOXICOLOGY, V89, P1, DOI 10.1016/0300-483X(94)90128-7 DEEGAN PM, 1994, TOXICOLOGY, V25, P1 Di Rocco A, 1998, NEUROLOGY, V51, P266 Fernandez-Checa JC, 1998, SEMIN LIVER DIS, V18, P389, DOI 10.1055/s-2007-1007172 Friedman M, 1999, J AGR FOOD CHEM, V47, P3457, DOI 10.1021/jf990080u Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 Ghibelli L, 1998, FASEB J, V12, P479 GILLISSEN G, 1991, ZBL BAKT-INT J MED M, V275, P223 Herr L, 2001, INF DIS SOC AM C SAN, P457 HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503 JONES MM, 1989, ANTICANCER RES, V9, P1937 JONES MM, 1991, TOXICOLOGY, V68, P227, DOI 10.1016/0300-483X(91)90072-9 JONES MM, 1991, ANTICANCER RES, V11, P449 KAJI H, 1987, RES COMMUN CHEM PATH, V56, P101 KIES C, 1975, J NUTR, V105, P809 KLAVINS JV, 1963, ARCH PATHOL, V75, P661 KLAVINS JV, 1965, ARCH PATHOL, V79, P600 Klemens James J, 2003, J Am Acad Audiol, V14, P134 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 1997, AM J OTOL, V18, P559 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 Kroning R, 2000, CANCER CHEMOTH PHARM, V45, P43, DOI 10.1007/PL00006741 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 Lockwood DS, 2000, AUDIOL NEURO-OTOL, V5, P263, DOI 10.1159/000013890 Lu SC, 1998, SEMIN LIVER DIS, V18, P331, DOI 10.1055/s-2007-1007168 MELVIK JE, 1987, INORG CHIM A-BIOINOR, V137, P115, DOI 10.1016/S0020-1693(00)87128-5 MEYER GJ, 1985, EUR J NUCL MED, V10, P373 MILLER SE, 1990, INORG CHIM ACTA, V173, P53, DOI 10.1016/S0020-1693(00)91054-5 MONTEAGUDO FS, 1986, S AFR MED J, V60, P279 MURAMATS.K, 1971, J NUTR, V101, P1117 Nishida I, 1996, ORL J OTO-RHINO-LARY, V58, P68 NRC, 1980, REC DIET ALL Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohtani I, 1984, Gan To Kagaku Ryoho, V11, P2400 Ohtani I, 1984, Nihon Jibiinkoka Gakkai Kaiho, V87, P833 PRINTEN KJ, 1979, AM J CLIN NUTR, V32, P1200 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 ROSE WC, 1955, J BIOL CHEM, V215, P101 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SATO K, 1983, CLIN THER, V4, P488 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 STEGINK LD, 1986, J NUTR, V116, P1185 STEKOL JA, 1962, J NUTR, V77, P81 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P346 Takumida M, 2002, ORL J OTO-RHINO-LARY, V64, P143, DOI 10.1159/000057794 Takumida M, 2003, ACTA OTO-LARYNGOL, V123, P8, DOI 10.1080/0036554021000028078 VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G WALSER M, 1973, J CLIN INVEST, V52, P678, DOI 10.1172/JCI107229 Wecke J, 1992, APMIS Suppl, V30, P32 Wimmer C, 2004, OTOL NEUROTOL, V25, P33, DOI 10.1097/00129492-200401000-00007 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X 1991, DRUG FACTS COMPARISO, P2115 1997, WHO EXPERT COMMITTEE NR 78 TC 85 Z9 90 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 92 EP 103 DI 10.1016/j.heares.2006.11.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000010 PM 17224251 ER PT J AU Coleman, JKM Kopke, RD Liu, J Ge, X Harper, EA Jones, GE Cater, TL Jackson, RL AF Coleman, J. K. M. Kopke, R. D. Liu, J. Ge, X. Harper, E. A. Jones, G. E. Cater, T. L. Jackson, R. L. TI Pharmacological rescue of noise induced hearing loss using N-acetylcysteine and acetyl-L-carnitine SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE acoustic trauma; N-acetylcysteine; acetyl-L-eysteine; antioxidant; hair cells; chinchilla; noise; rescue of hearing ID CELL-DEATH; OXIDATIVE STRESS; HAIR-CELLS; EXPOSURE; APOPTOSIS; GLUTATHIONE; CHINCHILLA; ELEVATION; DEFENSES; COCHLEA AB Despite the use of hearing protection devices (HPDs) and engineering changes designed to improve workspaces, noise-induced hearing loss continues to be one of the most common and expensive disabilities in the US military. Many service members suffer acoustic trauma due to improper use of HPDs, sound levels exceeding the protective capacity of the HPDs, or by unexpected, injurious exposures. In these cases, there is no definitive treatment for the hearing loss. This study investigated the use of the pharmacological agents N-acetylcysteine and acetyl-L-carnitine after acoustic trauma to treat cochlear injury. N-Acetylcysteine is an antioxidant and acetyl-L-carnitine a compound that maintains mitochondrial bio-energy and integrity. N-Acetylcysteine and acetyl-L-carnitine, respectively, significantly reduced permanent threshold shifts and hair cell loss compared to saline-treated animals when given I and 4 h post-noise exposure. It may be possible to obtain a greater therapeutic effect using these agents in combination or at higher doses or for a longer period of time to address the secondary oxidative events occurring 7-10 days after acute noise exposure. Published by Elsevier B.V. C1 USN, Med Ctr, Dept Otolaryngol, Dept Def Spatial Orientat Ctr, San Diego, CA 92134 USA. Hough Ear Inst, Oklahoma City, OK USA. RP Jackson, RL (reprint author), USN, Med Ctr, Dept Otolaryngol, Dept Def Spatial Orientat Ctr, San Diego, CA 92134 USA. EM rjackson@nmcsd.med.navy.mil CR ATTIAS J, 1994, AM J OTOLARYNG, V15, P26, DOI 10.1016/0196-0709(94)90036-1 Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 COLEMAN JKM, IN PRESS HEAR RES Coling DE, 2003, FREE RADICAL BIO MED, V34, P873, DOI 10.1016/S0891-5849(02)01439-9 d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x De Rosa SC, 2000, EUR J CLIN INVEST, V30, P915, DOI 10.1046/j.1365-2362.2000.00736.x Eilers A, 1999, BIOCHEM SOC T, V27, P790 Fischel-Ghodsian N, 2004, MITOCHONDRION, V4, P675, DOI 10.1016/j.mito.2004.07.040 Flottorp G, 1991, Scand Audiol Suppl, V34, P123 GARYZA G, 1990, DRUGS EXP CLIN RES, V101, P106 Hart AM, 2004, AIDS, V18, P1549, DOI 10.1097/01.aids.0000131354.14408.fb Hu Bo Hua, 2003, Seminars in Hearing, V24, P111 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503 Kaufman LR, 2005, J OCCUP ENVIRON MED, V47, P212, DOI 10.1097/01.jom.0000155710.28289.0e Kim J, 2005, IND HEALTH, V43, P567, DOI 10.2486/indhealth.43.567 KOMJATHY DA, 1998, MIDW M ASS RES OT ST Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 1997, AM J OTOL, V18, P559 KOPKE RD, 2006, OTOLARYNGOLOGY BASIC, P395 Kroemer G, 2000, NAT MED, V6, P513, DOI 10.1038/74994 Kroemer G, 1999, BIOCH SOC S, V66, P1 Kruman I, 1997, J NEUROSCI, V17, P5089 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lataye R, 2005, Noise Health, V7, P49 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lenaz G, 1998, BIOFACTORS, V8, P195 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 PETTEGREW JW, 1995, NEUROBIOL AGING, V16, P1, DOI 10.1016/0197-4580(95)80001-8 Poderoso Juan Jose, 2000, Biofactors, V11, P43 Rovig GW, 2004, MIL MED, V169, P429 SALVIOLI G, 1994, DRUG EXP CLIN RES, V20, P169 SCHULZ TY, 2004, HEAR HLTH, V20, P3 Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 Thal LJ, 2000, NEUROLOGY, V55, P805 Weibel E. R., 1979, STEREOLOGICAL METHOD, V1, P101 WOLGEMUTH KS, 1995, MIL MED, V160, P219 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 2005, MARINE CORPS LESSONS NR 48 TC 35 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 104 EP 113 DI 10.1016/j.heares.2006.08.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000011 PM 17023129 ER PT J AU Kopke, RD Jackson, RL Coleman, JKM Liu, JZ Bielefeld, EC Balough, BJ AF Kopke, Richard D. Jackson, Ronald L. Coleman, John K. M. Liu, Jianzhong Bielefeld, Eric C. Balough, Ben J. TI NAC for noise: From the bench top to the clinic SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE NAC; NIHL; acute acoustic trauma; hearing loss; treatment ID INDUCED HEARING-LOSS; TEMPORARY THRESHOLD SHIFT; GUINEA-PIG COCHLEA; ACETYL-L-CYSTEINE; FREE-RADICAL SCAVENGER; MAP KINASE ACTIVATION; ORAL MAGNESIUM INTAKE; N-ACETYLCYSTEINE NAC; OUTER HAIR-CELLS; ACOUSTIC TRAUMA AB Noise-induced hearing loss (NIHL) is an important etiology of deafness worldwide. Hearing conservation programs are in place and have reduced the prevalence of NIHL, but this disorder is still far too common. Occupational and recreational pursuits expose people to loud noise and ten million persons in the US have some degree of noise-induced hearing impairment. It is estimated that 50 million in the US and 600 million people worldwide are exposed to noise hazards occupationally. Noise deafness is still an important and frequent cause of battlefield injury in the US military. A mainstay of hearing conservation programs is personal mechanical hearing protection devices which are helpful but have inherent limitations. Research has shown that oxidative stress plays an important role in noise-induced cochlear injury resulting in the discovery that a number of antioxidant and cell death inhibiting compounds can ameliorate deafness associated with acoustic trauma. This article reviews one such compound, N-acetylcysteine (NAC), in terms of its efficacy in reducing hearing loss in a variety of animal models of acute acoustic trauma and hypothesizes what its therapeutic mechanisms of action might be based on the known actions of NAC. Early clinical trials with NAC are mentioned. (C) 2006 Elsevier B.V. All rights reserved. C1 Hough Ear Inst, Oklahoma City, OK 73112 USA. Univ Oklahoma, Hlth Sci Ctr, Dept Physiol, Oklahoma City, OK 73190 USA. Univ Oklahoma, Hlth Sci Ctr, Dept Otolaryngol, Oklahoma City, OK 73190 USA. Oklahoma Med Res Fdn, Oklahoma City, OK 73104 USA. Naval Med Ctr, Dept Defense Spatial Orientat Ctr, San Diego, CA 92134 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Kopke, RD (reprint author), Hough Ear Inst, 3400 NW 56th St, Oklahoma City, OK 73112 USA. EM rkopke@houghearinstitute.com; rjackson@nmcsd.med.navy.mil; jkcoleman@nmcsd.med.navy.mil; jliu@houghearinstitute.com; ecb2@buffalo.edu; bjbalough@nmcsd.med.navy.mil CR ARUOMA OI, 1989, FREE RADICAL BIO MED, V6, P593, DOI 10.1016/0891-5849(89)90066-X Attias J, 2004, CLIN OTOLARYNGOL, V29, P635, DOI 10.1111/j.1365-2273.2004.00866.x ATTIAS J, 1994, AM J OTOLARYNG, V15, P26, DOI 10.1016/0196-0709(94)90036-1 Baker DH, 2006, J NUTR, V136, p1670S Beckett WS, 2000, J OCCUP ENVIRON MED, V42, P806, DOI 10.1097/00043764-200008000-00008 BIELEFELD EC, IN PRESS ACTA OTOLAR Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohnker BK, 2002, MIL MED, V167, P132 CAMPBELL KCM, 2003, ASS RES OTOLARYNGOL, V26, P166 Canlon B, 1988, Scand Audiol Suppl, V27, P1 Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3 Cocco T, 2005, FREE RADICAL BIO MED, V38, P796, DOI 10.1016/j.freeradbiomed.2004.11.034 COLEMAN JKM, 2006, HEARING RES Cotgreave I A, 1997, Adv Pharmacol, V38, P205 COTGREAVE IA, 1987, BIOPHARM DRUG DISPOS, V8, P377, DOI 10.1002/bdd.2510080408 Cuadrado A, 2003, J BIOL CHEM, V278, P241, DOI 10.1074/jbc.M201010200 De Flora S, 2001, CARCINOGENESIS, V22, P999, DOI 10.1093/carcin/22.7.999 De Rosa SC, 2000, EUR J CLIN INVEST, V30, P915, DOI 10.1046/j.1365-2362.2000.00736.x Diao Ming-Fang, 2003, Shengli Xuebao, V55, P672 Dickey DT, 2005, J PHARMACOL EXP THER, V314, P1052, DOI 10.1124/jpet.105.087601 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 Erbas H, 2004, PHARMACOL RES, V50, P523, DOI 10.1016/j.phrs.2004.04.005 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Franklin J, 2003, BMC MUSCULOSKELET DI, V4, DOI 10.1186/1471-2474-4-6 GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7 Grattagliano I, 2004, EXP GERONTOL, V39, P1323, DOI 10.1016/j.exger.2004.06.001 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 Hashimoto S, 2001, BRIT J PHARMACOL, V132, P270, DOI 10.1038/sj.bjp.0703787 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 HENDERSON D, 1995, OCCUP MED, V10, P513 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Henderson D., 2001, NOISE HEALTH, V3, P33 HENDERSON D, 1994, HEARING RES, V76, P101, DOI 10.1016/0378-5955(94)90092-2 Henderson D., 1999, NOISE HEALTH, V2, P53 HENDLER SS, 2001, ACETYLCYSTEINE PDR N, P11 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Himi T, 2003, J NEUROSCI RES, V71, P679, DOI 10.1002/jnr.10510 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Hong Sae-Yong, 2005, Korean Journal of Internal Medicine, V20, P217 Hou FX, 2003, HEARING RES, V179, P1, DOI 10.1016/S0378-5955(03)00065-0 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Khan M, 2004, J NEUROSCI RES, V76, P519, DOI 10.1002/jnr.20087 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x KOPKE R, 2004, ASS RES OTOLARYNGOL, V27, P231 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 KOPKE RD, 2005, HEARING HLTH, V21, P26 Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5 Kyaw M, 2004, J PHARMACOL SCI, V95, P483, DOI 10.1254/jphs.SC0040061 Lamm K, 2000, HEARING RES, V141, P199, DOI 10.1016/S0378-5955(00)00005-8 Landen D, 2004, J OCCUP ENVIRON HYG, V1, P532, DOI 10.1080/15459620490476503 Landon P, 2005, AM J IND MED, V47, P364, DOI 10.1002/ajim.20152 Lee JY, 2004, FREE RADICAL BIO MED, V37, P539, DOI 10.1016/j.freeradbiomed.2004.05.011 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIM DJ, 1979, OTOLARYNG CLIN N AM, V12, P493 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 Lynch ED, 2005, DRUG DISCOV TODAY, V10, P1291, DOI 10.1016/S1359-6446(05)03561-0 Matuszczak Y, 2005, MUSCLE NERVE, V32, P633, DOI 10.1002/mus.20385 MCEVOY GK, 2005, ACETYLYCYSTEINE AM H Menor C, 2004, J PHARMACOL EXP THER, V311, P668, DOI 10.1124/jpet.104.069286 MILLER LF, 1983, SEMIN ONCOL, V10, P76 Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267 Neely MD, 2000, FREE RADICAL BIO MED, V29, P1028, DOI 10.1016/S0891-5849(00)00411-1 Neitzel R, 2005, J OCCUP ENVIRON HYG, V2, P227, DOI [10.1080/15459620590932154, 10.1080/15456920590932154] Nelson DI, 2005, AM J IND MED, V48, P446, DOI 10.1002/aijm.20223 Nicotera TM, 2004, AUDIOL NEURO-OTOL, V9, P353, DOI 10.1159/000081284 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ogita K, 2000, NEUROREPORT, V11, P859, DOI 10.1097/00001756-200003200-00040 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Park SW, 2004, NEUROSCI LETT, V363, P243, DOI 10.1016/j.neulet.2004.03.072 Penugonda S, 2005, BRAIN RES, V1056, P132, DOI 10.1016/j.brianres.2005.07.032 Pirvola U, 2000, J NEUROSCI, V20, P43 Poderoso Juan Jose, 2000, Biofactors, V11, P43 PRICE GR, 2005, INT S PHARM STRAT PR Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 Quadrilatero J, 2004, BIOCHEM BIOPH RES CO, V319, P894, DOI 10.1016/j.bbrc.2004.05.068 Ritter C, 2004, CRIT CARE MED, V32, P2079, DOI 10.1097/01.CMM.0000142699.54266.D9 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X Ruel J, 2005, NEUROREPORT, V16, P1087, DOI 10.1097/00001756-200507130-00011 Seidman M, 2003, OTOLARYNG HEAD NECK, V129, P463, DOI 10.1016/S0194-5998(03)01586-9 Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Seixas NS, 2005, OCCUP ENVIRON MED, V62, P309, DOI 10.1136/oem.2004.018143 Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 Sugahara K, 2001, NEUROREPORT, V12, P3299, DOI 10.1097/00001756-200110290-00030 Sunami K, 1999, ACTA OTO-LARYNGOL, V119, P671 Takemoto T, 2004, EUR J PHARMACOL, V487, P113, DOI 10.1016/j.ejphar.2004.01.019 Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 Wang Q, 2003, SPECTROSC SPECT ANAL, V23, P859 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wiklund O, 1996, ATHEROSCLEROSIS, V119, P99, DOI 10.1016/0021-9150(95)05635-1 WOLGEMUTH KS, 1995, MIL MED, V160, P219 Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 Yamasoba T, 2005, NEUROSCI LETT, V380, P234, DOI 10.1016/j.neulet.2005.01.047 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 Zafarullah M, 2003, CELL MOL LIFE SCI, V60, P6, DOI 10.1007/s000180300001 Zhuravskii SG, 2004, B EXP BIOL MED+, V137, P98, DOI 10.1023/B:BEBM.0000024398.96907.85 NR 119 TC 67 Z9 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 114 EP 125 DI 10.1016/j.heares.2006.10.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000012 PM 17184943 ER PT J AU Ding, DL Jiang, HY Wang, P Salvi, R AF Ding, Dalian Jiang, Haiyan Wang, Ping Salvi, Richard TI Cell death after co-administration of cisplatin and ethacrynic acid SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE cisplatin; ethacrynic acid; caspase; TRADD; hair cells; chinchilla ID VESTIBULAR HAIR-CELLS; INDUCED APOPTOSIS; CASPASE ACTIVATION; PROTECTS COCHLEAR; STRIA VASCULARIS; ANIMAL-MODEL; OTOTOXICITY; RECEPTOR; NOISE; CHINCHILLAS AB Ethacrynic acid (EA) significantly enhances the ototoxic effects of cisplatin. To gain insights into the mechanisms underlying Cis/EA ototoxicity, cochleas were labeled with several apoptotic markers. Cis/EA treatment caused extensive outer hair cell (OHC) and inner hair cell (IHC) damage; OHC lesions decreased from the base towards apex of the cochlea whereas the IHC lesion was relatively constant (25-60%) along the length of the cochlea. Propidium iodide labeled OHC nuclei appeared relatively normal at 6 h post-treatment, were condensed and fragmented at 12 h post-treatment and were frequently missing 48 h post-treatment. Initiator caspase 8, associated with membrane death receptors, and TRADD, a protein that recruits caspase 8, were present in OHC at 6 h post-treatment. Caspase 8 labeling increased from 6 to 24 It, but was largely absent at 48 h post-treatment. Executioner caspase 3 and caspase 6, which lie downstream of caspase 8, were expressed in OHC 12-24 h post-treatment. Initiator caspase 9, associated with mitochondrial damage, was only expressed at low levels at 48 h post-treatment. These results suggest that the rapid onset of Cis/EA induced programmed cell death is initiated by membrane death receptors associated with TRADD and caspase 8. (C) 2006 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Salvi, R (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA. EM salvi@buffalo.edu CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Amstad PA, 2001, BIOTECHNIQUES, V31, P608 ANNIKO M, 1978, ACTA OTO-LARYNGOL, V85, P349, DOI 10.3109/00016487809121463 Aubert A, 1990, Ann Otolaryngol Chir Cervicofac, V107 Suppl 1, P28 Bratton SB, 2000, EXP CELL RES, V256, P27, DOI 10.1006/excr.2000.4835 CHINNAIYAN AM, 1995, CELL, V81, P505, DOI 10.1016/0092-8674(95)90071-3 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Ding D, 2001, AUDITORY PSYCHOBIOLO, P189 Ding D, 2002, HEARING RES, V173, P1, DOI 10.1016/S0378-5955(02)00585-3 Ding DL, 2003, HEARING RES, V185, P90, DOI 10.1016/S0378-5955(03)00258-2 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 FORGE A, 1981, ACTA OTO-LARYNGOL, V92, P439, DOI 10.3109/00016488109133283 GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hofstetter P, 1997, AUDIOLOGY, V36, P301 HSU HL, 1995, CELL, V81, P495, DOI 10.1016/0092-8674(95)90070-5 Kalkanis JG, 2004, LARYNGOSCOPE, V114, P538, DOI 10.1097/00005537-200403000-00028 KOMUNE S, 1981, ARCH OTOLARYNGOL, V107, P594 Krajewski S, 1999, P NATL ACAD SCI USA, V96, P5752, DOI 10.1073/pnas.96.10.5752 Lucas JH, 1998, J NEUROPATH EXP NEUR, V57, P937, DOI 10.1097/00005072-199810000-00006 McFadden SL, 2005, HEARING RES, V202, P200, DOI 10.1016/j.heares.2004.10.011 McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6 Minami SB, 2004, HEARING RES, V198, P137, DOI 10.1016/j.heares.2004.07.016 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 RYBAK LP, 1993, OTOLARYNG CLIN N AM, V26, P829 Samali A, 1999, CELL DEATH DIFFER, V6, P495, DOI 10.1038/sj.cdd.4400520 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581 Zhang M, 2002, HEARING RES, V169, P56, DOI 10.1016/S0378-5955(02)00339-8 Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0 NR 34 TC 27 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 129 EP 139 DI 10.1016/j.heares.2006.07.015 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000013 PM 16978814 ER PT J AU Coling, DE Ding, DL Young, R Lis, M Stofko, E Blumenthal, KM Salvi, RJ AF Coling, Donald E. Ding, Dalian Young, Rebeccah Lis, Maciej Stofko, Elizabeth Blumenthal, Kenneth M. Salvi, Richard J. TI Proteomic analysis of cisplatin-induced cochlear damage: Methods and early changes in protein expression SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE proteomics; cochlea; inner ear; cisplatin; stress response; DIGE; MALDI; mass spectrometry; peptide mass fingerprint; nucleobindin; Hspa5; Grp78; BiP; Grp58; Pdia3; Rnh1; Rasl12; Hnrpc; Ptpdc1; calreticulin; Edf1; Tuba6; Rassf5 ID CALCIUM-BINDING PROTEIN; HEAT-SHOCK-PROTEIN; SENSORINEURAL HEARING-LOSS; VESTIBULAR HAIR-CELLS; ENDOPLASMIC-RETICULUM; RAT COCHLEA; GUINEA-PIG; DISULFIDE-ISOMERASE; INDUCED APOPTOSIS; IN-VIVO AB To identify early changes in protein expression associated with cisplatin ototoxicity, we used two dimensional-difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption-time-of-flight (MALDI-TOF) mass spectrometry to analyze proteins from P3 rat cochleae that were cultured for 3 h with or without 1 mM cisplatin. Replicate analysis of fluorescent images from six gels revealed significant (p < 0.01) cisplatin-induced changes (greater than 1.5-fold) in expression of 22 cochlear proteins. These include increases in the expression of five proteins, four of which were identified as nucleobindin 1, a nuclear calcium signaling and, homeostasis protein (2.1-fold), heterogeneous nuclear ribonucleoprotein C, an RNA processing protein (1.8-fold), a 55 kDa protein that is either endothelial differentiation-related factor 1 or alpha-6 tubulin (1.7-fold), and calreticulin, a calcium binding chaperone of the endoplasmic reticulum (ER, 1.6-fold). The expression of 17 proteins was significantly (p < 0.01) decreased by greater than 1.5-fold. These include ribonuclease/ angiogenin inhibitor 1 (1.6-fold), RAS-like, family 12 (predicted), ras association (RaIGDS/AF-6) domain family 5 (4.5-fold), homologous the RAS family of GTPase signaling proteins (2.4-fold), and Protein tyrosine phosphatase domain containing 1 (predicted, 6.1-fold). We identified seven cochlear proteins with either smaller (1.2-1.5-fold) or less significant (p < 0.05) cisplatin-induced changes in expression. Notably, heat shock 70 kDa protein 5 (Hspa5, Grp78, and BiP), an ER chaperone protein involved in stress response, decreased 1.7-fold. We observed changes consistent with phosphorylation in the level of isoforms of another ER stress-induced protein, glucose-regulated protein Grp58. Changes in cisplatin-induced protein expression are discussed with respect to known or hypothesized functions of the identified proteins. (C) 2007 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Med, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Biochem, Buffalo, NY 14214 USA. RP Coling, DE (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall, Buffalo, NY 14214 USA. EM dcoling@buffalo.edu CR Abu-Surrah AS, 2006, CURR MED CHEM, V13, P1337, DOI 10.2174/092986706776872970 ANNIKO M, 1986, AM J OTOLARYNG, V7, P276, DOI 10.1016/S0196-0709(86)80050-3 Ballif BA, 1996, P NATL ACAD SCI USA, V93, P5544, DOI 10.1073/pnas.93.11.5544 BILLINGS PB, 1995, ANN OTO RHINOL LARYN, V104, P181 Boulassel MR, 2000, CLIN OTOLARYNGOL, V25, P535, DOI 10.1046/j.1365-2273.2000.00416.x Cao MY, 1996, FASEB J, V10, P1635 Clauser KR, 1999, ANAL CHEM, V71, P2871, DOI 10.1021/ac9810516 COLING DE, 1991, HEARING RES, V57, P113, DOI 10.1016/0378-5955(91)90080-S COMIS SD, 1986, J LARYNGOL OTOL, V100, P1375, DOI 10.1017/S0022215100101161 Corbacella E, 2004, HEARING RES, V197, P11, DOI 10.1016/j.heares.2004.03.012 DECHESNE CJ, 1992, HEARING RES, V59, P195, DOI 10.1016/0378-5955(92)90116-5 DILLER KR, 2006, ANN REV BIOMED ENG Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 DonellaDeana A, 1996, EUR J BIOCHEM, V235, P18, DOI 10.1111/j.1432-1033.1996.00018.x Fialka I, 1999, ELECTROPHORESIS, V20, P331, DOI 10.1002/(SICI)1522-2683(19990201)20:2<331::AID-ELPS331>3.0.CO;2-A GASTEIGER E, 2005, PROTEIN IDENTIFICAT Gibbs RA, 2004, NATURE, V428, P493, DOI 10.1038/nature02426 Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5 Hamstra DA, 2006, CANCER RES, V66, P7482, DOI 10.1158/0008-5472.CAN-06-1405 HARRIS JP, 1990, LARYNGOSCOPE, V100, P516 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 Henzl MT, 2001, HEARING RES, V157, P100, DOI 10.1016/S0378-5955(01)00285-4 Hetz C, 2005, J NEUROSCI, V25, P2793, DOI 10.1523/JNEUROSCI.4090-04.2005 HINOJOSA R, 1995, AM J OTOL, V16, P731 Hong SH, 2004, CANCER RES, V64, P5504, DOI 10.1158/0008-5472.CAN-04-0077 Ikezono T, 2001, BBA-MOL BASIS DIS, V1535, P258, DOI 10.1016/S0925-4439(00)00101-0 Jia Z, 2004, AM J PHYSIOL-RENAL, V287, pF1113, DOI 10.1152/ajprenal.00138.2004 Kattapuram T, 2005, J BIOL CHEM, V280, P15340, DOI 10.1074/jbc.M500214200 Kaufman RJ, 1999, GENE DEV, V13, P1211, DOI 10.1101/gad.13.10.1211 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 LEE AS, 1981, J CELL PHYSIOL, V106, P119, DOI 10.1002/jcp.1041060113 LIM HH, 1993, HEARING RES, V69, P146 Lin P, 1998, J CELL BIOL, V141, P1515, DOI 10.1083/jcb.141.7.1515 Lin P, 1999, J CELL BIOL, V145, P279, DOI 10.1083/jcb.145.2.279 Lindquist JA, 2001, FASEB J, V15, P1448, DOI 10.1096/fj.00-0720fje Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034 Lokich J, 2001, CANCER INVEST, V19, P756, DOI 10.1081/CNV-100106152 Mandic A, 2003, J BIOL CHEM, V278, P9100, DOI 10.1074/jbc.M210284200 Mariotti M, 2000, J BIOL CHEM, V275, P24047, DOI 10.1074/jbc.M001928200 Mayer MP, 2005, CELL MOL LIFE SCI, V62, P670, DOI 10.1007/s00018-004-4464-6 MAZZARELLA RA, 1994, ARCH BIOCHEM BIOPHYS, V308, P454, DOI 10.1006/abbi.1994.1064 McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0 MIURA K, 1992, BIOCHEM BIOPH RES CO, V187, P375, DOI 10.1016/S0006-291X(05)81503-7 MIURA K, 1994, BIOCHEM BIOPH RES CO, V199, P1388, DOI 10.1006/bbrc.1994.1384 MOCHIZUKI N, 1995, FEBS LETT, V373, P155, DOI 10.1016/0014-5793(95)01031-9 MUNRO S, 1986, CELL, V46, P291, DOI 10.1016/0092-8674(86)90746-4 MYERS MW, 1992, LARYNGOSCOPE, V102, P981 Nothwang HG, 2003, MOL BRAIN RES, V116, P59, DOI 10.1016/S0169-328X(03)00234-1 Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146 PAPPIN DJC, 1993, CURR BIOL, V3, P327, DOI 10.1016/0960-9822(93)90195-T Park HR, 2004, J NATL CANCER I, V96, P1300, DOI 10.1093/jnci/djh243 Park HR, 2002, TETRAHEDRON LETT, V43, P6941, DOI 10.1016/S0040-4039(02)01624-6 Petersson U, 2004, BONE, V34, P949, DOI 10.1016/j.bone.2004.01.019 RIBARI O, 1983, ACTA OTO-LARYNGOL, V95, P580, DOI 10.3109/00016488309139446 Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Siddik ZH, 2003, ONCOGENE, V22, P7265, DOI 10.1038/sj.onc.1206933 Somogyi E, 2004, CALCIFIED TISSUE INT, V74, P366, DOI 10.1007/s00223-003-0146-x STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467 Sun Q, 1998, BBA-PROTEIN STRUCT M, V1384, P405, DOI 10.1016/S0167-4838(97)00198-2 Taggart R.T., 2001, NOISE HEALTH, V3, P1 Taguchi T, 2005, CONTRIB NEPHROL, V148, P107 Taniguchi N, 2000, J BIOL CHEM, V275, P31674, DOI 10.1074/jbc.M005103200 THALMANN I, 1992, HEARING RES, V63, P37, DOI 10.1016/0378-5955(92)90071-T THALMANN I, 1980, ARCH OTO-RHINO-LARYN, V226, P123, DOI 10.1007/BF00455126 Tulub AA, 2001, INT J BIOL MACROMOL, V28, P191, DOI 10.1016/S0141-8130(00)00159-8 Wang S, 2006, BIOCHEMISTRY-MOSCOW+, V71, P520, DOI 10.1134/S0006297906050087 WINSKY L, 1989, P NATL ACAD SCI USA, V86, P10139, DOI 10.1073/pnas.86.24.10139 WINSKY L, 1989, BRAIN RES, V493, P136, DOI 10.1016/0006-8993(89)91008-1 YAO XF, 1995, HEARING RES, V86, P183, DOI 10.1016/0378-5955(95)00069-G Yoho ER, 1997, HEARING RES, V104, P47, DOI 10.1016/S0378-5955(96)00183-9 Zhai L, 2005, EXP CELL RES, V305, P244, DOI 10.1016/j.yexcr.2005.01.002 Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0 Zhu Wei, 2003, Lin Chuang Er Bi Yan Hou Ke Za Zhi, V17, P220 Zimmermann R, 1998, BIOL CHEM, V379, P275 NR 75 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 140 EP 156 DI 10.1016/j.heares.2006.12.017 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000014 PM 17321087 ER PT J AU Rybak, LP Whitworth, CA Mukherjea, D Rarakumar, V AF Rybak, Leonard P. Whitworth, Craig A. Mukherjea, Debashree Rarakumar, Vickram TI Mechanisms of cisplatin-induced ototoxicity and prevention SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE cisplatin; reactive oxygen species; apoptosis; NADPH; oxidase ID INDUCED HEARING-LOSS; HIGH-DOSE CISPLATIN; ROUND WINDOW APPLICATION; SPIRAL GANGLION NEURONS; APOPTOTIC CELL-DEATH; AUDITORY HAIR-CELLS; SODIUM THIOSULFATE; D-METHIONINE; STRIA VASCULARIS; N-ACETYLCYSTEINE AB Cisplatin is a widely used chemotherapeutic agent to treat malignant disease. Unfortunately, ototoxicity occurs in a large percentage of patients treated with higher dose regimens. In animal studies and in human temporal bone investigations, several areas of the cochlea are damaged, including outer hair cells in the basal turn, spiral ganglion cells and the stria vascularis, resulting in hearing impairment. The mechanisms appear to involve the production of reactive oxygen species (ROS), which can trigger cell death. Approaches to chemoprevention include the administration of antioxidants to protect against ROS at an early stage in the ototoxic pathways and the application of agents that act further downstream in the cell death cascade to prevent apoptosis and hearing loss. This review summarizes recent data that shed new light on the mechanisms of cisplatin ototoxicity and its prevention. (C) 2006 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Div Otolaryngol, Dept Surg, Springfield, IL 62794 USA. So Illinois Univ, Dept Pharmacol, Carbondale, IL 62901 USA. RP Rybak, LP (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol, Dept Surg, POB 19653, Springfield, IL 62794 USA. EM lrybak@siumed.edu; cwhitworth@siu-med.edu; dmukherjea@siumed.edu; vramkumar@siumed.edu CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 BANFI B, 2004, J BIOL CHEM, V277, P39739 Blakley BW, 2002, LARYNGOSCOPE, V112, P1997, DOI 10.1097/00005537-200211000-00016 Bortner CD, 1998, BIOCHEM PHARMACOL, V56, P1549, DOI 10.1016/S0006-2952(98)00225-1 Boven E, 2002, EUR J CANCER, V38, P1148, DOI 10.1016/S0959-8049(02)00036-9 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144 Chen WC, 2006, CANCER, V106, P820, DOI 10.1002/cncr.21683 Chen XW, 2001, MOL THER, V3, P958, DOI 10.1006/mthe.2001.0334 Choe WT, 2004, OTOL NEUROTOL, V25, P910, DOI 10.1097/00129492-200411000-00009 Church MW, 2004, JARO-J ASSOC RES OTO, V5, P227, DOI 10.1007/s10162-004-4011-z Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 Cloven NG, 2000, ANTICANCER RES, V20, P4205 Cooper LB, 2006, OTOL NEUROTOL, V27, P484, DOI 10.1097/00129492-200606000-00009 DEEGAN PM, 1994, TOXICOLOGY, V89, P1, DOI 10.1016/0300-483X(94)90128-7 Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171 Deveraux QL, 1997, NATURE, V388, P300 DEWOSKIN RS, 1992, TOXICOL APPL PHARM, V112, P182, DOI 10.1016/0041-008X(92)90186-V Dickey DT, 2005, J PHARMACOL EXP THER, V314, P1052, DOI 10.1124/jpet.105.087601 Drottar M, 2006, LARYNGOSCOPE, V116, P292, DOI 10.1097/01.mlg.0000197630.85208.36 Ekborn A, 2004, LARYNGOSCOPE, V114, P1660, DOI 10.1097/00005537-200409000-00030 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 He Q, 2000, BIOCHEMISTRY-US, V39, P14426, DOI 10.1021/bi001700j Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Hughes FM, 1997, J BIOL CHEM, V272, P30567, DOI 10.1074/jbc.272.48.30567 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 JONES MM, 1989, ANTICANCER RES, V9, P1937 Kelly TC, 2003, HEARING RES, V186, P10, DOI 10.1016/S0378-5955(03)00303-4 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Knight KRG, 2005, J CLIN ONCOL, V23, P8588, DOI 10.1200/JCO.2004.00.5355 Kopke RD, 1997, AM J OTOL, V18, P559 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 Lang H, 2005, JARO-J ASSOC RES OTO, V6, P63, DOI 10.1007/s10162-004-5021-6 Lang HN, 2006, J NEUROSCI, V26, P3541, DOI 10.1523/JNEUROSCI.2488-05.2006 Laurell G, 2002, HEARING RES, V173, P198, DOI 10.1016/S0378-5955(02)00613-5 Lee JE, 2004, ORL J OTO-RHINO-LARY, V66, P111, DOI 10.1159/000079329 Lee JE, 2004, ACTA OTO-LARYNGOL, V124, P1131, DOI 10.1080/00016480410017521 Li GM, 2002, LAB INVEST, V82, P585, DOI 10.1038/labinvest.3780453 Li GM, 2006, NEUROTOXICOLOGY, V27, P22, DOI 10.1016/j.neuro.2005.05.010 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 Li Y, 2004, EUR J CANCER, V40, P2445, DOI 10.1016/j.ejca.2003.08.009 Liang F, 2005, NEUROSCIENCE, V135, P263, DOI 10.1016/j.neuroscience.2005.05.055 Lynch ED, 2005, ANTI-CANCER DRUG, V16, P569, DOI 10.1097/00001813-200506000-00013 Lynch ED, 2005, HEARING RES, V201, P81, DOI 10.1016/j.heares.2004.08.002 Maeno E, 2000, P NATL ACAD SCI USA, V97, P9487, DOI 10.1073/pnas.140216197 Marina N, 2005, CANCER, V104, P841, DOI 10.1002/cncr.21218 MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 MELVIK JE, 1987, INORG CHIM A-BIOINOR, V137, P115, DOI 10.1016/S0020-1693(00)87128-5 Mukherjea D, 2006, NEUROSCIENCE, V139, P733, DOI 10.1016/j.neuroscience.2005.12.044 Muldoon LL, 2000, CLIN CANCER RES, V6, P309 Nagy I, 2005, JARO-J ASSOC RES OTO, V6, P260, DOI 10.1007/s10162-005-0006-7 Ohndorf UM, 1999, NATURE, V399, P708 PIGEOLET E, 1990, MECH AGEING DEV, V51, P283, DOI 10.1016/0047-6374(90)90078-T RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X Rybak LP, 2000, AM J OTOL, V21, P513 Sastry J, 2005, PEDIATR HEMAT ONCOL, V22, P441, DOI 10.1080/08880010590964381 SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 Sies H, 2000, FREE RADICAL BIO MED, V28, P1451, DOI 10.1016/S0891-5849(00)00253-7 Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0 So HS, 2005, HEARING RES, V204, P127, DOI 10.1016/j.heares.2005.01.011 So HS, 2006, CELL DEATH DIFFER, V13, P1763, DOI 10.1038/sj.cdd.4401863 Somani S.M., 2001, ANN NEUROSCI, V8, P101 Tao LH, 2000, TOXICOL SCI, V54, P399, DOI 10.1093/toxsci/54.2.399 Dickey DT, 2004, HEARING RES, V193, P25, DOI 10.1016/j.heares.2004.02.007 Thomas JP, 2006, MOL PHARMACOL, V70, P23, DOI 10.1124/mol.106.022244 Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9 van Ruijven MWM, 2005, HEARING RES, V203, P112, DOI 10.1016/j.heares.2004.12.007 van Ruijven MWM, 2005, HEARING RES, V205, P241, DOI 10.1016/j.heares.2005.03.023 Viallet NR, 2006, J OTOLARYNGOL, V35, P19, DOI 10.2310/7070.2005.3067 Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581 Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1 Watanabe K, 2003, AURIS NASUS LARYNX, V30, P219, DOI 10.1016/S0385-8146(03)00049-X Watanabe KI, 2002, ANTICANCER RES, V22, P4081 Whitworth CA, 2004, BIOCHEM PHARMACOL, V67, P1801, DOI 10.1016/j.bcp.2004.01.010 Wimmer C, 2004, OTOL NEUROTOL, V25, P33, DOI 10.1097/00129492-200401000-00007 Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119 Zhang M, 2003, NEUROSCIENCE, V120, P191, DOI 10.1016/S0306-4522(03)00286-0 NR 82 TC 171 Z9 183 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 157 EP 167 DI 10.1016/j.heares.2006.09.015 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000015 PM 17113254 ER PT J AU Eshraghi, AA Wang, J Adil, E He, J Zine, A Bublik, M Bonny, C Puel, JL Balkany, TJ Van de Water, TR AF Eshraghi, Adrien A. Wang, Jing Adil, Eelam He, Jiao Zine, Azel Bublik, Michael Bonny, Christophe Puel, Jean-Luc Balkany, Thomas J. Van de Water, Thomas R. TI Blocking c-Jun-N-terminal kinase signaling can prevent hearing loss induced by both electrode insertion trauma and neomycin ototoxicity SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE hearing loss; electrode insertion trauma; aminoglycoside ototoxicity; otoprotection; JNK signaling; hair cells; apoptosis; D-JNKI-1 peptide (AM-111) ID COCHLEAR IMPLANTATION TRAUMA; HAIR CELL-DEATH; FORMATION IN-VITRO; GENTAMICIN OTOTOXICITY; CHINCHILLA COCHLEA; CASPASE ACTIVATION; INDUCED APOPTOSIS; FREE-RADICALS; AMINOGLYCOSIDE; PROTECTS AB Neomycin ototoxicity and electrode insertion trauma both involve activation of the mitogen activated protein kinase (MAPK)/c-Jun-N-terminal kinase (JNK) cell death signal cascade. This article discusses mechanisms of cell death on a cell biology level (e.g. necrosis and apoptosis) and proposes the blocking of JNK signaling as a therapeutic approach for preventing the development of a permanent hearing loss that can be initiated by either neomycin ototoxicity or electrode insertion trauma. Blocking of JNK molecules incorporates the use of a peptide inhibitor (i.e. D-JNKI-1), which is specific for all three isoforms of JNK and has been demonstrated to prevent loss of hearing following either electrode insertion trauma or loss of both hearing and hair cells following exposure to an ototoxic level of neomycin. We present previously unpublished results that control for the effect of perfusate washout of aminoglycoside antibiotic by perfusion of the scala tympani with an inactive form of D-JNKI-1 peptide, i.e. JNKI-1(mut) peptide, which was not presented in the original J. Neurosci. article that tested locally delivered D-JNKI-1 peptide against both noise- and neomycin-induced hearing loss (i.e. Wang, J., Van De Water, T.R., Bonny, C., de Ribaupierre, F., Puel, J.L., Zinc, A. 2003a. A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss. J. Neurosci. 23, 8596-8607). D-JNKI-1 is a cell permeable peptide that blocks JNK signaling at the level of the three JNK molecular isoforms, which when blocked prevents the increases in hearing thresholds and the loss of auditory hair cells. This unique therapeutic approach may have clinical application for preventing: (1) hearing loss caused by neomycin ototoxicity; and (2) the progressive component of electrode insertion trauma-induced hearing loss. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Miami, Miller Sch Med, Dept Otolaryngol, Ear Inst,Cochlear Implant Res Program, Miami, FL 33136 USA. Univ Montpellier 1, INSERM, U583, Montpellier, EU, France. Univ Lausanne, CH-1015 Lausanne, Switzerland. RP Van de Water, TR (reprint author), Univ Miami, Miller Sch Med, Dept Otolaryngol, Ear Inst,Cochlear Implant Res Program, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA. EM tvandewater@med.miami.edu CR Balkany TJ, 2005, LARYNGOSCOPE, V115, P1543, DOI 10.1097/01.mlg.0000173169.45262.ae Bonny C, 2001, DIABETES, V50, P77, DOI 10.2337/diabetes.50.1.77 Bosch-Morell F, 1999, FREE RADICAL BIO MED, V26, P1383, DOI 10.1016/S0891-5849(98)00335-9 Boyce M, 2006, CELL DEATH DIFFER, V13, P363, DOI 10.1038/sj.cdd.4401817 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 Camandola S, 2000, J NEUROCHEM, V74, P159, DOI 10.1046/j.1471-4159.2000.0740159.x Cunningham LL, 2002, J NEUROSCI, V22, P8532 Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 Dickens M, 1997, SCIENCE, V277, P693, DOI 10.1126/science.277.5326.693 Dietrich WD, 1996, ADV NEUROL, V71, P177 Do K, 2004, INT CONGR SER, V1273, P167, DOI 10.1016/j.ics.2004.08.025 Eshraghi AA, 2006, ANAT REC PART A, V288A, P473, DOI 10.1002/ar.a.20305 Eshraghi AA, 2006, OTOL NEUROTOL, V27, P504, DOI 10.1097/00129492-200606000-00012 Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005 Eshraghi A A, 2004, Cochlear Implants Int, V5, P71, DOI 10.1002/cii.127 Eshraghi AA, 2005, OTOL NEUROTOL, V26, P442, DOI 10.1097/01.mao.0000169791.53201.e1 Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Guzman J, 2006, ACTA OTO-LARYNGOL, V126, P685, DOI 10.1080/00016480500492018 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 Leist M, 2001, NAT REV MOL CELL BIO, V2, P1 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Pirvola U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Ray SK, 2002, J NEUROSCI RES, V69, P197, DOI 10.1002/jnr.10265 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 RUIZ J, OTOLARYNGOLOGY HNS Schacht J, 1999, ANN NY ACAD SCI, V884, P125 Seidman Michael D, 2003, Ear Nose Throat J, V82, P276 Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428 Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Sperandio S, 2004, CELL DEATH DIFFER, V11, P1066, DOI 10.1038/sj.cdd.4401465 Van De Water TR, 2004, OTOL NEUROTOL, V25, P627, DOI 10.1097/00129492-200407000-00035 Wang AM, 2003, ANTIMICROB AGENTS CH, V47, P1836, DOI 10.1128/AAC.47.6.1836-1841.2003 Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581 Wang J, 2003, J NEUROSCI, V23, P8596 YAMASHITA D, 2004, BRAIN RES, V1019, P2001 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 Zine A., 2004, Current Drug Targets - CNS and Neurological Disorders, V3, P325, DOI 10.2174/1568007043337166 NR 48 TC 51 Z9 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 168 EP 177 DI 10.1016/j.heares.2006.09.008 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000016 PM 17098385 ER PT J AU Chen, Y Huang, WG Zha, DJ Qiu, JH Wang, JL Sha, SH Schacht, J AF Chen, Yang Huang, Wei-Guo Zha, Ding-Jun Qiu, Jian-Hua Wang, Jin-Ling Sha, Su-Hua Schacht, Jochen TI Aspirin attenuates gentamicin ototoxicity: From the laboratory to the clinic SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE aminoglycosides; ototoxicity; antioxidant therapy; salicylate ID HAIR CELL-DEATH; PIG IN-VIVO; AMINOGLYCOSIDE-INDUCED OTOTOXICITY; INDUCED HEARING-LOSS; CYSTIC-FIBROSIS; IRON CHELATORS; INDUCED COCHLEAR; TOXICITY; PROTECTS; THERAPY AB This article reviews recent advances in the protection from the adverse auditory or vestibular side effects associated with antibacterial treatment with aminoglycoside antibiotics. Compelling evidence from animal models suggests that reactive oxygen species are part of the initial mechanisms that trigger apoptotic and necrotic cell death in the inner car. Consequently, antioxidants protect against aminoglycoside-induced hearing loss in animals and, importantly, they do so without compromising drug serum levels or antibacterial efficacy. While clinical studies have long confirmed the ototoxicity of aminoglycosides in human, a trial on protection was only recently reported (Sha, S.-H., Qiu, J.-H., Schacht, J., 2006. Aspirin attenuates gentamicin-induced hearing loss. New Engl. J. Med. 354, 1856-1857). Based on the finding that salicylate afforded protection in animals, the efficacy of aspirin (acetyl salicylate) was tested in a randomized double-blind placebo-controlled study in patients receiving gentamicin for acute infections. Fourteen of 106 patients (13%) met the criterion of hearing loss in the placebo group while only 3/89 (3%) were affected in the aspirin group (p = 0.013). Aspirin did not influence gentamicin serum levels or the course of therapy. These results indicate that therapeutic protection from aminoglycoside ototoxicity may be extrapolated from animal models to the clinic. Furthermore, medications as common as aspirin can significantly attenuate the risk of gentamicin-induced hearing loss. (C) 2006 Elsevier B.V. All rights reserved. C1 Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol, Xian, Peoples R China. Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Schacht, J (reprint author), Fourth Mil Med Univ, Xijing Hosp, Dept Otolaryngol, Xian, Peoples R China. EM schacht@umich.edu CR BROUET G, 1959, Rev Tuberc Pneumol (Paris), V23, P949 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023 Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6 DOMENICO P, 1993, J INFECT DIS, V168, P766 Fausti SA, 1999, EAR HEARING, V20, P497, DOI 10.1097/00003446-199912000-00005 FEE WE, 1980, LARYNGOSCOPE, V40, P1 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 HINSHAW HC, 1945, P STAFF M MAYO CLIN, V20, P313 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Jiang HY, 2005, J NEUROSCI RES, V79, P644, DOI 10.1002/jnr.20392 KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9 Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A LERNER SA, 1986, AM J MED, V80, P98, DOI 10.1016/0002-9343(86)90486-9 Lesniak W, 2005, CHEM RES TOXICOL, V18, P357, DOI 10.1021/tx0496946 MOORE RD, 1984, J INFECT DIS, V149, P23 Mulheran M, 2001, ANTIMICROB AGENTS CH, V45, P2502, DOI 10.1128/AAC.45.9.2502-2509.2001 MULHERIN D, 1991, IRISH J MED SCI, V160, P173, DOI 10.1007/BF02961666 Muller E, 1998, J INFECT DIS, V177, P501 Pirvola U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Ramsey BW, 1999, NEW ENGL J MED, V340, P23, DOI 10.1056/NEJM199901073400104 Rybak LP, 2005, DRUG DISCOV TODAY, V10, P1313, DOI 10.1016/S1359-6446(05)03552-X Schatz A, 1944, P SOC EXP BIOL MED, V55, P66 SEWESTER CS, 1994, DRUG FACTS COMPARISO, P1191 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 2006, NEW ENGL J MED, V354, P1856, DOI 10.1056/NEJMc053428 Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Wang J, 2003, J NEUROSCI, V23, P8596 *WHO, 2005, GLOB TUB CONTR SURV, V5 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X NR 38 TC 56 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 178 EP 182 DI 10.1016/j.heares.2006.05.008 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000017 PM 16844331 ER PT J AU Yamasoba, T Someya, S Yamada, C Weindruch, R Prolla, TA Tanokura, M AF Yamasoba, Tatsuya Someya, Shinichi Yamada, Chikako Weindruch, Richard Prolla, Tomas A. Tanokura, Masaru TI Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE presbycusis; mitochondrial DNA; aging; germanium; cochlea ID GENE-EXPRESSION PROFILE; DIETARY RESTRICTION; CALORIC RESTRICTION; TEMPORAL BONE; OLD RATS; MOLECULAR-MECHANISMS; COCHLEAR PATHOLOGY; OXIDATIVE DAMAGE; POINT MUTATION; MICE AB Mitochondrial DNA (mtDNA) mutations/deletions are considered to be associated with the development of age-related hearing loss (AHL). We assessed the role of accumulation of mtDNA mutations in the development of AHL using Polg(D257A) knock-in mouse, which exhibited increased spontaneous mtDNA mutation rates during aging and showed accelerated aging primarily due to increased apoptosis. They exhibited moderate hearing loss and degeneration of the hair cells, spiral ganglion cells and stria vascularis by 9 month of age, while wild-type animals did not. We next examined if mitochondrial damage induced by systemic application of germanium dioxide caused progressive hearing loss and cochlear damage. Guinea pigs and mice given germanium dioxide exhibited degeneration of the muscles and kidney and developed hearing loss due to degeneration of cochlear tissues, including the stria vascularis. Calorie restriction, which causes a metabolic shift toward increased energy metabolism in some organs, has been shown to attenuate AHL and age-related cochlear degeneration and to lower quantity of mtDNA deletions in the cochlea of mammals. Together these findings indicate that decreased energy metabolism due to accumulation of mtDNA mutations/deletions and decline of respiratory chain function play an important role in the manifestation of AHL. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Tokyo, Dept Otolaryngol, Tokyo 1138665, Japan. Univ Tokyo, Dept Head & Neck Surg, Tokyo 1138665, Japan. Univ Tokyo, Dept Appl Biol Chem, Tokyo, Japan. Univ Wisconsin, Dept Genet & Med Genet, Madison, WI 53706 USA. Univ Wisconsin, Madison, WI 53706 USA. Vet Adm Geriatr Res Educ & Clin Ctr, Madison, WI USA. RP Yamasoba, T (reprint author), Univ Tokyo, Dept Otolaryngol, Hongo 7-3-1, Tokyo 1138665, Japan. EM tyamasoba-tky@umin.ac.jp CR Araki T, 2004, SCIENCE, V305, P1010, DOI 10.1126/science.1098014 Bai U, 1997, AM J OTOL, V18, P449 Cohen HY, 2004, SCIENCE, V305, P390, DOI 10.1126/science.1099196 CORRALDEBRINSKI M, 1992, NAT GENET, V2, P324, DOI 10.1038/ng1292-324 CORTOPASSI GA, 1990, NUCLEIC ACIDS RES, V18, P6927, DOI 10.1093/nar/18.23.6927 FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 Fischel-Ghodsian N, 2003, EAR HEARING, V24, P303, DOI 10.1097/01.AUD.0000079802.82344.B5 Fischel-Ghodsian N, 2004, MITOCHONDRION, V4, P675, DOI 10.1016/j.mito.2004.07.040 Guarente L, 2005, CELL, V120, P473, DOI 10.1016/j.cell.2005.01.029 GUY BC, 1999, MITOCHRONDRIA CELL D Hadley EC, 2005, CELL, V120, P557, DOI 10.1016/j.cell.2005.01.030 Hagen TM, 1998, P NATL ACAD SCI USA, V95, P9562, DOI 10.1073/pnas.95.16.9562 Hagen TM, 1999, FASEB J, V13, P411 HATTORI K, 1991, AM HEART J, V121, P1735, DOI 10.1016/0002-8703(91)90020-I HENRY KR, 1986, AUDIOLOGY, V25, P329 HIGUCHI I, 1989, ACTA NEUROPATHOL, V79, P300 Howitz KT, 2003, NATURE, V425, P191, DOI 10.1038/nature01960 Johnson KR, 2001, NAT GENET, V27, P191, DOI 10.1038/84831 Keithley EM, 2001, HEARING RES, V157, P93, DOI 10.1016/S0378-5955(01)00281-7 Khaidakov M, 2003, MUTAT RES-FUND MOL M, V526, P1, DOI 10.1016/S0027-5107(03)00010-1 Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 Lee CK, 2000, NAT GENET, V25, P294 Lee CK, 1999, SCIENCE, V285, P1390, DOI 10.1126/science.285.5432.1390 Li Xiaodong, 2001, Chinese Medical Sciences Journal, V16, P157 LINDSAY JR, 1976, ARCH OTOLARYNGOL, V102, P747 Liu JK, 2002, P NATL ACAD SCI USA, V99, P2356, DOI 10.1073/pnas.261709299 Mattson MP, 2003, J NEUROCHEM, V84, P417, DOI 10.1046/j.1471-4159.2003.01586.x Melov S, 1997, NUCLEIC ACIDS RES, V25, P974, DOI 10.1093/nar/25.5.974 Nakada K, 2004, BIOCHEM BIOPH RES CO, V323, P175, DOI 10.1016/j.bbrc.2004.08.073 PARK JC, 1990, HEARING RES, V48, P275, DOI 10.1016/0378-5955(90)90067-Y Pickles JO, 2004, AUDIOL NEURO-OTOL, V9, P23, DOI 10.1159/000074184 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 Seidman MD, 2002, AGEING RES REV, V1, P331, DOI 10.1016/S1568-1637(02)00004-1 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 SOHAL RS, 1994, MECH AGEING DEV, V74, P121, DOI 10.1016/0047-6374(94)90104-X SOMEYA S, 2006, IN PRESS NEUROBIOL A SWEET RJ, 1988, AUDIOLOGY, V27, P305 Takahashi K, 2003, LARYNGOSCOPE, V113, P1362, DOI 10.1097/00005537-200308000-00018 Trifunovic A, 2004, NATURE, V429, P417, DOI 10.1038/nature02517 Trifunovic A, 2005, P NATL ACAD SCI USA, V102, P17993, DOI 10.1073/pnas.0508886102 Vaziri H, 2001, CELL, V107, P149, DOI 10.1016/S0092-8674(01)00527-X Wallace DC, 2001, AM J MED GENET, V106, P71, DOI 10.1002/ajmg.1393 Weindruch R, 2001, J GERONTOL A-BIOL, V56, P20 WEINDRUCH R, 1988, RETARDATION AGING DI WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F WU CM, 1992, MUSCLE NERVE, V15, P1258, DOI 10.1002/mus.880151107 Yamasoba T, 1996, LARYNGOSCOPE, V106, P49, DOI 10.1097/00005537-199601000-00010 Yamasoba T, 2002, NEUROMUSCULAR DISORD, V12, P506, DOI 10.1016/S0960-8966(01)00329-7 Yamasoba T, 2006, NEUROSCI LETT, V395, P18, DOI 10.1016/j.neulet.2005.10.045 Yamasoba T, 1999, NEUROLOGY, V52, P1705 Yueh B, 2003, JAMA-J AM MED ASSOC, V289, P1976, DOI 10.1001/jama.289.15.1976 NR 52 TC 44 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 185 EP 193 DI 10.1016/j.heares.2006.06.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000018 PM 16870370 ER PT J AU Le, T Keithley, EM AF Le, Tima Keithley, Elizabeth M. TI Effects of antioxidants on the aging inner ear SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE cochlea; beagle dogs; auditory neurons; stria vascularis ID ALPHA-LIPOIC ACID; ACETYL-L-CARNITINE; NEURONAL SIGNAL-TRANSDUCTION; QUIET-AGED GERBILS; HAIR CELL LOSS; OXIDATIVE DAMAGE; HEARING-LOSS; OLD RATS; SUPEROXIDE-DISMUTASE; VITAMIN-E AB Age-related cochlear structural changes include the degeneration of sensory, neural cells and the stria vascularis. The hypothesis that cellular degeneration results from exposure to oxidative products of respiration was tested by supplementing aged dogs with a diet high in antioxidants and mitochondrial metabolites and by genetically modifying the expression level of the antioxidant, manganese superoxide dismutase (SOD) in mice. Aged dogs received either a high antioxidant diet or a normal, control diet for the last 3 years of their life. Cellular measures were compared among the two aged groups (10-15 years) and young dogs. Both aged groups had cellular degeneration relative to young dogs, but the animals fed the antioxidant diet showed less degeneration at the base and apex than the control-diet group. Transgenic mice, heterozygous null for SOD2 produce only half as much enzyme as a normal mouse. These mice showed no increase in the amount of hearing loss relative to the background strain. A diet containing antioxidants reduced the magnitude of cochlear degeneration. Genetic reduction of one antioxidant, however, did not increase the magnitude of hearing loss in aging mice. A reduction in one enzyme seems to be compensated while the addition of a complex of factors is effective. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, La Jolla, CA 92093 USA. RP Keithley, EM (reprint author), Univ Calif San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA. CR Arivazhagan P, 2002, J NUTR BIOCHEM, V13, P619, DOI 10.1016/S0955-2863(02)00217-6 Arivazhagan P, 2001, CHEM-BIOL INTERACT, V138, P189, DOI 10.1016/S0009-2797(01)00268-X Barja G, 2004, TRENDS NEUROSCI, V27, P595, DOI 10.1016/j.tins.2004.07.005 Byrka-Owczarek K, 2004, J PEDIATR SURG, V39, P1226, DOI 10.1016/j.jpedsurg.2004.04.009 Conte V, 2004, J NEUROCHEM, V90, P758, DOI 10.1111/j.1471-4159.2004.02560.x Cotman CW, 2002, NEUROBIOL AGING, V23, P809, DOI 10.1016/S0197-4580(02)00073-8 Cottrell D A, 2000, Curr Opin Clin Nutr Metab Care, V3, P473, DOI 10.1097/00075197-200011000-00009 Devi SA, 2004, NEUROBIOL AGING, V25, P501, DOI 10.1016/S0197-4580(03)00112-X Engström H, 1967, J Laryngol Otol, V81, P687, DOI 10.1017/S0022215100067657 Farr SA, 2003, J NEUROCHEM, V84, P1173, DOI 10.1046/j.0022-3042.2003.01580.x FischelGhodsian N, 1997, HEARING RES, V110, P147, DOI 10.1016/S0378-5955(97)00077-4 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 Guild SR, 1921, ANAT REC, V22, P141 Hagen TM, 2002, P NATL ACAD SCI USA, V99, P1870, DOI 10.1073/pnas.261708898 Hagen TM, 1999, FASEB J, V13, P411 HARMAN D, 1956, J GERONTOL, V11, P298 Head E, 2002, J NEUROCHEM, V82, P375, DOI 10.1046/j.1471-4159.2002.00969.x Heaton PR, 2002, J NUTR, V132, p1720S Hellstrom LI, 1996, J ACOUST SOC AM, V100, P3275, DOI 10.1121/1.417211 Ingham NJ, 1999, ACTA OTO-LARYNGOL, V119, P42 Joseph JA, 1999, J NEUROSCI, V19, P8114 Joseph JA, 1998, J NEUROSCI, V18, P8047 Rani PJA, 2002, J GERONTOL A-BIOL, V57, pB134 Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 KNOWLES K, 1989, J VET MED A, V36, P188 Kujoth GC, 2005, SCIENCE, V309, P481, DOI 10.1126/science.1112125 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Liu JK, 2002, P NATL ACAD SCI USA, V99, P1876, DOI 10.1073/pnas.261709098 Liu JK, 2002, P NATL ACAD SCI USA, V99, P2356, DOI 10.1073/pnas.261709299 McFadden SL, 2001, AUDIOLOGY, V40, P313 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 MECOCCI P, 1993, ANN NEUROL, V34, P609, DOI 10.1002/ana.410340416 Milgram NW, 2004, EXP GERONTOL, V39, P753, DOI 10.1016/j.exger.2004.01.007 Milgram NW, 2002, NEUROBIOL AGING, V23, P737, DOI 10.1016/S0197-4580(02)00020-9 MIQUEL J, 1980, EXP GERONTOL, V15, P575, DOI 10.1016/0531-5565(80)90010-8 Nakamura M, 1997, TRANSPLANT INT, V10, P89, DOI 10.1111/j.1432-2277.1997.tb00547.x NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 Sastre J, 2003, FREE RADICAL BIO MED, V35, P1, DOI 10.1016/S0891-5849(03)00184-9 Schriner SE, 2005, SCIENCE, V308, P1909, DOI 10.1126/science.1106653 SCHUKNECHT HF, 1993, PATHOLOGY EAR, P416 SEMSEI I, 1991, MECH AGEING DEV, V58, P13, DOI 10.1016/0047-6374(91)90116-H SEMSEI I, 1989, BIOCHEM BIOPH RES CO, V164, P620, DOI 10.1016/0006-291X(89)91505-2 Sener G, 2004, J CARDIOVASC PHARM, V43, P698 SHIGENAGA MK, 1994, P NATL ACAD SCI USA, V91, P10771, DOI 10.1073/pnas.91.23.10771 SHIMADA A, 1988, J VET MED SCI, V61, P41 Shimizu MHM, 2004, EXP GERONTOL, V39, P825, DOI 10.1016/j.exger.2004.02.009 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527 Willott J. F., 1991, AGING AUDITORY SYSTE Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 55 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 194 EP 202 DI 10.1016/j.heares.2006.04.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000019 PM 16843623 ER PT J AU Davis, RR Kuo, MW Stanton, SG Canlon, B Krieg, E Alagramam, KN AF Davis, Rickie R. Kuo, Ming-Wen Stanton, Susan G. Canlon, Barbara Krieg, Edward Alagramam, Kumar N. TI N-Acetyl L-cysteine does not protect against premature age-related hearing loss in C57BL/6J mice: A pilot study SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE presbycusis; age-related; hearing loss; mouse; reactive oxygen species; cochleogram; auditory brainstem response ID MOUSE; STRAINS; CELLS AB A compound capable of preventing age-related hearing loss would be very useful in an aging population. N-acetyl-L-cysteine (L-NAC) has been shown to be protective against noise exposure, a condition that leads to increased oxidative stress. Not withstanding environmental factors, there is evidence that age-related hearing loss (AHL) in the mouse is linked to more than one genetic loci and, by extension, in humans. Our hypothesis is that AHL defect results in increased sensitivity to oxidative stress and L-NAC would be able to protect the hearing of a mouse model of pre-mature AHL, the C57BL/6J (136) mouse strain. L-NAC was added to the regular water bottle of B6 mice (experimental group) and available ad lib. The other group received normal tap water. Hearing was tested monthly by the ability to generate the auditory brainstem response (ABR). After the final ABR test, mice were sacrificed by an overdose of Avertin, ears were harvested and hair cell loss was quantified. There was no difference in ABR thresholds or in histopathology between the control group and the group receiving L-NAC in their drinking water. In contrast to the protective effects Of L-NAC against noise-induced hearing loss, the lack of protective effect in this study may be due to (i) the dosage level; (ii) the duration of treatment; (iii) the biochemical mechanisms underlying age-induced hearing loss; or (iv) how the mouse metabolizes L-NAC. (C) 2006 Elsevier B.V. All rights reserved. C1 NIOSH, Hearing Loss Prevent Team, Engn & Phys Hazard Branch, Div Appl Res & Technol, Cincinnati, OH 45226 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. Univ Cincinnati, Ctr Med, Coll Allied Hlth Sci, Dept Commun Sci & Disorders, Cincinnati, OH 45221 USA. Karolinska Inst, Dept Physiol & Pharmacol, S-10401 Stockholm, Sweden. Case Western Reserve Univ, HNS, Dept Otolaryngol, Cleveland, OH 44106 USA. RP Davis, RR (reprint author), NIOSH, Hearing Loss Prevent Team, Engn & Phys Hazard Branch, Div Appl Res & Technol, C-27,Columbia Pjwy, Cincinnati, OH 45226 USA. EM rrd1@cdc.gov RI Davis, Rickie/A-3186-2008 CR Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H FERRARI G, 1995, J NEUROSCI, V15, P2857 Kopke R.D., 2005, INT S PHARM STRAT PR Kopke RD, 2001, NOISE INDUCED HEARIN, P231 Kramer S, 2006, J AM ACAD AUDIOL, V17, P265, DOI 10.3766/jaaa.17.4.5 Marzullo L, 2005, CURR OPIN PEDIATR, V17, P239, DOI 10.1097/01.mop.0000152622.05168.9e Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 NOLTE ML, 2005, THESIS U CINCINNATI Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6 Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9 SMILKSTEIN MJ, 1989, ENGL J MED, V320, P1417 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 YAN CYI, 1995, J BIOL CHEM, V270, P26827 NR 15 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 203 EP 208 DI 10.1016/j.heares.2006.07.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000020 PM 16930891 ER PT J AU Trune, DR Kempton, JB Harrison, AR Wobig, JL AF Trune, Dennis R. Kempton, J. Beth Harrison, Andrew R. Wobig, John L. TI Glucocorticoid impact on cochlear function and systemic side effects in autoimmune CIMRL-Fas(1pr) and normal C3H/HeJ mice SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE autoimmune hearing loss; C3MRL-Fas(lpr) autoimmune mice; C3H/HeJ mice; prednisolone; systemic lupus erythematosus; steroid side effects ID SENSORINEURAL HEARING-LOSS; NF-KAPPA-B; LUPUS-ERYTHEMATOSUS PATIENTS; INNER-EAR; STEROID TREATMENT; MENIERES-DISEASE; GUINEA-PIG; AUDITORY FUNCTION; MOUSE; DEXAMETHASONE AB Glucocorticoids are effective in reversing hearing loss, but their severe side effects limit long term management of many ear disorders. A clearer understanding of these side effects is critical for prolonged therapeutic control of hearing and vestibular dysfunction. Therefore, this study characterized the impact of the glucocorticoid prednisolone on cochlear dysfunction and systemic organ systems in C3.MRL-Fas(lpr). autoimmune mice and their normal C3H/HeJ parent strain. Following 3 months of treatment, autoimmune mice had better auditory thresholds and improved hematocrits, anti-nuclear antibodies, and immune complexes. Steroid treatment also lowered body and spleen weights, both of which rise with systemic autoimmune disease. Steroid treatment of the normal C3H/HeJ mice significantly elevated their blood hematocrits and lowered their body and spleen weights to abnormal levels. Thus, systemic autoimmune disease and its related hearing loss in C3.MRL-Fas(lpr) mice are steroid-responsive, but normal hemopoiesis and organ functions can be significantly compromised. This mouse model may be useful for studies of the detrimental side effects of steroid treatments for hearing loss. (C) 2006 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Oregon Hlth & Sci Univ, Dept Ophthalmol, Portland, OR 97201 USA. RP Trune, DR (reprint author), Oregon Hlth & Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM truned@ohsu.edu CR Adams JC, 2002, OTOL NEUROTOL, V23, P316, DOI 10.1097/00129492-200205000-00015 Alexiou C, 1998, ARCH OTOLARYNGOL, V124, P1260 Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253 Almawi WY, 2002, J MOL ENDOCRINOL, V28, P69, DOI 10.1677/jme.0.0280069 ANDONOPOULOS AP, 1995, CLIN EXP RHEUMATOL, V13, P137 Arnold W, 2005, AUDIOL NEURO-OTOL, V10, P53, DOI 10.1159/000082575 Baeuerle PA, 1996, CELL, V87, P13, DOI 10.1016/S0092-8674(00)81318-5 Baldwin AS, 1996, ANNU REV IMMUNOL, V14, P649, DOI 10.1146/annurev.immunol.14.1.649 Barrs DM, 2004, OTOLARYNG CLIN N AM, V37, P955, DOI 10.1016/j.otc.2004.03.004 Chen CY, 2003, OTOL NEUROTOL, V24, P728, DOI 10.1097/00129492-200309000-00006 DICKINS JRE, 1990, AM J OTOL, V11, P51 Dodson KM, 2004, OTOLARYNG CLIN N AM, V37, P991, DOI 10.1016/j.otc.2004.03.003 Doyle KJ, 2004, OTOL NEUROTOL, V25, P1034, DOI 10.1097/00129492-200411000-00031 GILKESON GS, 1989, CLIN IMMUNOL IMMUNOP, V53, P460, DOI 10.1016/0090-1229(89)90008-1 GRANDIS JR, 1993, AM J OTOL, V14, P183 Hargunani CA, 2006, OTOL NEUROTOL, V27, P564, DOI 10.1097/00129492-200606000-00021 HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308 Herr BD, 2005, OTOLARYNG HEAD NECK, V132, P527, DOI 10.1016/j.otohns.2004.09.138 HILGER JA, 1950, ANN OTO RHINOL LARYN, V59, P1102 Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3 Hoffer ME, 2004, OTOLARYNG CLIN N AM, V37, P1053, DOI 10.1016/j.otc.2004.04.005 HUGHES GB, 1993, HEAD NECK SURG OTOLA, P1833 HUGHES GB, 1983, LARYNGOSCOPE, V93, P410 Jimenez-Alonson J, 2002, J LARYNGOL OTOL, V116, P746 Kastanioudakis I, 2002, J LARYNGOL OTOL, V116, P103 KELLEY VE, 1985, CLIN IMMUNOL IMMUNOP, V37, P220, DOI 10.1016/0090-1229(85)90153-9 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657 Ma W, 2004, J IMMUNOL, V172, P318 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 Mitchell CR, 1999, AUDIOL NEURO-OTOL, V4, P80, DOI 10.1159/000013824 Murphy E. D., 1978, Genetic control of autoimmune disease. Proceedings of the workshop on the genetic control of autoimmune disease held in Bloomfield Hills, Michigan, USA, on July 10-12, 1978., P207 Nadel D M, 1996, Ear Nose Throat J, V75, P502 O-Uchi Toshiaki, 1993, Auris Nasus Larynx, V20, P79 PARNES LS, 1999, LARYNGOSCOPE S, V91, P1 Rauch SD, 2004, OTOLARYNG CLIN N AM, V37, P1061, DOI 10.1016/j.otc.2004.04.004 Sekiya T, 2001, HEARING RES, V151, P125, DOI 10.1016/S0378-5955(00)00219-7 SHA WC, 1995, CELL, V80, P321, DOI 10.1016/0092-8674(95)90415-8 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 SHIMMER BP, 1996, GOODMAN GILMANS PHAR, P1459 Silverstein H, 2004, OTOLARYNG CLIN N AM, V37, P1019, DOI 10.1016/j.otc.2004.04.002 Sismanis A, 1997, OTOLARYNG HEAD NECK, V116, P146, DOI 10.1016/S0194-5998(97)70316-4 Sperling NM, 1998, OTOLARYNG HEAD NECK, V118, P762, DOI 10.1016/S0194-5998(98)70265-7 Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 Trune DR, 1996, HEARING RES, V96, P41, DOI 10.1016/0378-5955(96)00017-2 TRUNE DR, 2006, MED OTOLOGY NEUROTOL, P21 Trune DR, 1999, HEARING RES, V137, P160, DOI 10.1016/S0378-5955(99)00147-1 Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4 Trune DR, 2006, HEARING RES, V212, P22, DOI 10.1016/j.heares.2005.10.006 Trune DR, 1999, HEARING RES, V137, P167, DOI 10.1016/S0378-5955(99)00148-3 Trune DR, 1996, HEARING RES, V95, P57, DOI 10.1016/0378-5955(96)00018-4 Trune DR, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P505 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0 WILSON WR, 1980, ARCH OTOLARYNGOL, V106, P772 Yamamoto Y, 2001, J CLIN INVEST, V107, P135, DOI 10.1172/JCI11914 NR 58 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 209 EP 217 DI 10.1016/j.heares.2006.09.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000021 PM 17098384 ER PT J AU Robinson, SK Viirre, ES Stein, MB AF Robinson, Shannon K. Viirre, Erik S. Stein, Murray B. TI Antidepressant therapy in tinnitus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE tinnitus; antidepressants ID PSYCHIATRIC DIAGNOSES; SUBJECTIVE TINNITUS; AMITRIPTYLINE; IMIPRAMINE; TRIAL; DISORDERS; NORTRIPTYLINE; ASSOCIATION; COMORBIDITY; VENLAFAXINE AB Objective: Review the literature on the co-morbidity of depression and anxiety with tinnitus. Briefly consider proposed mechanisms by which antidepressants might be helpful for tinnitus, including treatment of co-morbid depression and anxiety and a more direct serotonergic mechanism of tinnitus. Survey the literature on antidepressants and tinnitus including tinnitus reported as a side effect of antidepressants (phenelzine, amitriptyline, protriptyline, doxepin, imipramine, fluoxetine, trazadone, bupropion, venlafaxine), tinnitus associated with withdrawal of antidepressants (venlafaxine and sertraline) and antidepressants as a treatment for tinnitus (case reports-fluoxetine and paroxetine, retrospective reviews - imipramine and selective serotonin reuptake inhibitors, single blind trials of amitriptyline and double blind placebo controlled trials of trimipramine, nortriptyline, paroxetine and sertraline). Provide suggestions on future directions, specifically replication of prior studies and a dose finding study of paroxetine for the treatment of tinnitus. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, Sch Med, Vet Adm San Diego Healthcare Syst, Dept Psychiat, La Jolla, CA 92161 USA. Univ Calif San Diego, Dept Surg, Div Otolaryngol Head & Neck Surg, San Diego, CA 92039 USA. Univ Calif San Diego, Vet Adm San Diego Healthcare Syst, Sch Med, Dept Psychiat, San Diego, CA 92039 USA. Univ Calif San Diego, Vet Adm San Diego Healthcare Syst, Sch Med, Dept Family & Prevent Med, San Diego, CA 92039 USA. RP Robinson, SK (reprint author), Univ Calif San Diego, Sch Med, Vet Adm San Diego Healthcare Syst, Dept Psychiat, La Jolla, CA 92161 USA. EM skrobinson@ucsd.edu; eviirre@ucsd.edu; mstein@ucsd.edu CR AHMAD S, 1995, AM FAM PHYSICIAN, V51, P1830 Andersson Gerhard, 2000, Scandinavian Journal of Behaviour Therapy, V29, P57 ATTIAS J, 1993, AUDIOLOGY, V32, P205 Bayar N, 2001, J OTOLARYNGOL, V30, P300, DOI 10.2310/7070.2001.19597 Begg C, 1996, JAMA-J AM MED ASSOC, V276, P637, DOI 10.1001/jama.276.8.637 Christensen RC, 2001, OTOLARYNG HEAD NECK, V125, P436, DOI 10.1067/mhn.2001.118688 DOBIE RA, 1993, AM J OTOL, V14, P18 EVANS DL, 1981, J CLIN PSYCHOPHARM, V1, P404 Farah A, 1996, AM J PSYCHIAT, V153, P576 FEDER R, 1990, J CLIN PSYCHIAT, V51, P85 FEIGHNER JP, 1985, J CLIN PSYCHIAT, V46, P369 First M. B., 1998, STRUCTURED CLIN INTE Folmer R. L., 2002, BMC EAR NOSE THROAT, V2, P3, DOI DOI 10.1186/1472-6815-2-3 FOLMER RL, 2002, USE SELECTIVE SEROTO Gallinat J, 2003, NEUROPSYCHOPHARMACOL, V28, P530, DOI 10.1038/sj.npp.1300042 GLASS RM, 1981, J CLIN PSYCHOPHARM, V1, P152 *GLAX SMITH KLIN, 2002, PROD INF PAX GOLDEN RN, 1987, J CLIN PSYCHIAT, V48, P496 GOLDEN RN, 1983, SOUTHERN MED J, V76, P1204 HARRIS A, 2006, TINNITUS TODAY, V31, P9 HARROPGRIFFITHS J, 1987, J PSYCHOSOM RES, V31, P613, DOI 10.1016/0022-3999(87)90040-7 Hoffmann H. J., 2004, TINNITUS THEORY MANA, P16 HOLGERS KM, 1999, PSYCHIAT PROFILE TIN Holgers KM, 2000, AUDIOLOGY, V39, P284 Humma LM, 1999, ANN PHARMACOTHER, V33, P305, DOI 10.1345/aph.18206 KESSLER RC, 1994, ARCH GEN PSYCHIAT, V51, P8 KOSHES RJ, 1992, PSYCHOSOMATICS, V33, P341 LAIRD LK, 1989, J CLIN PSYCHIAT, V50, P146 LEITER FL, 1995, BIOL PSYCHIAT, V38, P694, DOI 10.1016/0006-3223(95)00311-8 Lewinsohn PM, 1999, J ABNORM PSYCHOL, V108, P483, DOI 10.1037/0021-843X.108.3.483 LOCKWOOD AH, 2004, TINNITUS THEORY MANA, P255 Marciano E, 2003, INT J AUDIOL, V42, P4, DOI 10.3109/14992020309056079 MIHAIL RC, 1988, ANN OTO RHINOL LARYN, V97, P120 MILES SW, 1980, NEW ZEAL MED J, V92, P66 *PFIZ INC, 2006, PROD INF ZOL SERT Podoshin L, 1995, INT TINNITUS J, V1, P54 RACY J, 1980, AM J PSYCHIAT, V137, P854 Robinson SK, 2005, PSYCHOSOM MED, V67, P981, DOI 10.1097/01.psy.0000188479.04891.74 Robinson SK, 2004, TINNITUS THEORY MANA, P278 SETTLE EC, 1991, J CLIN PSYCHIAT, V52, P352 SHEA JJ, 1981, ANN OTO RHINOL LARYN, V90, P601 Shemen L, 1998, OTOLARYNG HEAD NECK, V118, P421, DOI 10.1016/S0194-5998(98)70332-8 Simpson JJ, 2000, HEARING RES, V145, P1, DOI 10.1016/S0378-5955(00)00093-9 SIMPSON RB, 1988, J OTOLARYNGOL, V17, P325 SPITZER RL, 1995, JAMA-J AM MED ASSOC, V274, P1511, DOI 10.1001/jama.274.19.1511 SULLIVAN M, 1993, ARCH INTERN MED, V153, P2251, DOI 10.1001/archinte.153.19.2251 SULLIVAN MD, 1989, ANN OTO RHINOL LARYN, V98, P867 SULLIVAN MD, 1988, GEN HOSP PSYCHIAT, V10, P285, DOI 10.1016/0163-8343(88)90037-0 TANDON R, 1987, J CLIN PSYCHIAT, V48, P109 WEISSMAN MM, 1991, PSYCHIAT DISORDERS A *WYETH, 2004, PROD INF SURM TRIM Zoger S, 2001, AUDIOLOGY, V40, P133 Zoger S, 2006, J CLIN PSYCHOPHARM, V26, P32, DOI 10.1097/01.jcp.0000195111.86650.19 ZOGER S, 2002, PSYCHIAT PROFILE TIN 2006, TINNITUS TODAY, V31, P22 NR 55 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 221 EP 231 DI 10.1016/j.heares.2006.08.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000022 PM 16973315 ER PT J AU Kaltenbach, JA Zhang, JS AF Kaltenbach, James A. Zhang, Jinsheng TI Intense sound-induced plasticity in the dorsal cochlear nucleus of rats: Evidence for cholinergic receptor upregulation SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE dorsal cochlear nucleus; noise exposure; carbachol; atropine; plasticity; tinnitus ID SPONTANEOUS NEURAL ACTIVITY; PRIMARY AUDITORY-CORTEX; INDUCED HEARING-LOSS; HAIR CELL LOSS; INFERIOR COLLICULUS; ACOUSTIC TRAUMA; BRAIN-STEM; GUINEA-PIG; INDUCED HYPERACTIVITY; SYNAPTIC ENDINGS AB Previous studies in a number of species have demonstrated that spontaneous activity in the dorsal cochlear nucleus (DCN) becomes elevated following exposure to intense sound. This condition of hyperactivity has aroused considerable interest because it may represent an important neural correlate of tinnitus. There is some evidence that neurons in the superficial DCN, such as cartwheel, stellate and fusiform cells, may contribute to the level of hyperactivity induced by intense sound, although the relative importance of these different cell types is unknown. In the present study, we sought to determine the effect of intense sound exposure on multiunit spontaneous activity both at the DCN surface and in the fusiform. cell layer and to examine the influence of cholinergic input to DCN circuits on the level of activity in the fusiform cell layer. Rats were studied in two groups, one of which had been exposed to a continuous intense sound (10 kHz 127 dB SPL) for 4 h while the other group served as unexposed controls. Between 30 and 52 days post-exposure, recordings of multiunit activity were performed at the DCN surface as well as in the middle of the fusiform cell layer. Changes in fusiform cell layer activity were also studied in response to superficial applications of the cholinergic agonist, carbachol, either alone or following pre-application of the cholinergic antagonist, atropine. The results demonstrated that multiunit spontaneous activity in the rat DCN was generally much higher in both control and exposed animals relative to that which has been observed in other species. This activity was significantly higher at the DCN surface of sound-exposed animals than that of controls. In contrast, hyperactivity could not be demonstrated in the fusiform cell layer of sound-exposed animals. Carbachol administration most commonly caused suppression of fusiform cell layer activity. However, this suppression was considerably stronger in the DCN of sound-exposed animals than in controls. These findings suggest that, hyperactivity at the DCN surface of exposed rats may arise as a consequence of more highly activated neurons in the molecular layer, such as cartwheel and/or stellate cells, and that the lack of hyperactivity in the fusiform cell layer may be the result of inhibition of fusiform cells by these inhibitory interneurons. Although this finding does not rule out fusiform cells as possible sources of hyperactivity in other species, or even in the rat after short post-exposure recovery periods, the enhanced sensitivity of the fusiform cell layer to cholinergic stimulation suggests that in the rat, at least after prolonged post-exposure recovery periods, increased inhibition of activity in this layer by more superficially located neurons may result from an upregulation of receptors for cholinergic input. This upregulation may be greater in rats than in other species due to the relatively heavy cholinergic input that exists in the cochlear nucleus of this species. (C) 2006 Elsevier B.V. All rights reserved. C1 Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Detroit, MI 48201 USA. RP Kaltenbach, JA (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Detroit, MI 48201 USA. EM jkalten@med.wayne.edu CR ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 Barrs DM, 1984, J LARYNGOL OTOL S, V9, P287 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O CHEN KJ, 1995, HEARING RES, V89, P137, DOI 10.1016/0378-5955(95)00131-6 CHEN KJ, 1994, HEARING RES, V77, P168 Dandy W, 1941, SURG GYNECOL OBSTET, V72, P421 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Gardner G., 1984, J LARYNGOL OTOL S9, V9, P311 GEORGE RN, 1989, J SPEECH HEAR RES, V32, P366 Golding NL, 1996, J NEUROSCI, V16, P2208 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X House J W, 1981, Ciba Found Symp, V85, P204 Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 JIN YM, 2006, HEAR RES Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach J.A., 2002, ABS ASS RES OTOLARYN, V25 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 KALTENBACH JA, 2006, HEAR RES Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 LOEB M, 1967, J ACOUST SOC AM, V43, P453 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Manabe Y, 1997, HEARING RES, V103, P192, DOI 10.1016/S0378-5955(96)00181-5 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Melamed SB, 2000, AUDIOLOGY, V39, P24 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Ochi K, 1997, HEARING RES, V105, P105, DOI 10.1016/S0378-5955(96)00201-8 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 SILVERSTEIN H, 1976, LARYNGOSCOPE, V86, P1777 WALLER HJ, 1994, J NEUROPHYSIOL, V71, P467 Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1 WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X Wu JL, 2003, HEARING RES, V176, P80, DOI 10.1016/S0378-5955(02)00747-5 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang JS, 2000, HEARING RES, V140, P7, DOI 10.1016/S0378-5955(99)00181-1 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 NR 57 TC 33 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 232 EP 243 DI 10.1016/j.heares.2006.07.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000023 PM 16914276 ER PT J AU Yang, G Lobarinas, E Zhang, LY Turner, J Stolzberg, D Salvi, R Sun, W AF Yang, Guang Lobarinas, Edward Zhang, Liyan Turner, Jeremy Stolzberg, Daniel Salvi, Richard Sun, Wei TI Salicylate induced tinnitus: Behavioral measures and neural activity in auditory cortex of awake rats SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Pharmcological Strategies for Prevention and Treatment of Hearing Loss and Tinnitus CY OCT 12, 2005 CL Niagara Falls, CANADA SP Amer Bio Hlth, Auris Med, CepTor, State Univ New York Buffalo, Col Arts & Sci, John R Oishei Fdn, Kinex Pharmaceut, Natl Inst Occupat Safety & Hlth, Off Naval Res, Sound Pharmaceut, Spectra Serv, Tucker Davis Technol, US Army Med Res & Mat Command DE salicylate; tinnitus; auditory cortex; spontaneous activity; behavior; startle reflex; field potential ID DORSAL COCHLEAR NUCLEUS; INFERIOR COLLICULUS; ANIMAL-MODEL; OTOTOXICITY; NEURONS; CISPLATIN; RESPONSES; SOUND; ISOFLURANE; FREQUENCY AB Neurophysiological studies of salicylate-induced tinnitus have generally been carried out under anesthesia, a condition that abolishes the perception of tinnitus and depresses neural activity. To overcome these limitations, measurement of salicylate induced tinnitus were obtained from rats using schedule induced polydipsia avoidance conditioning (SIPAC) and gap pre-pulse inhibition of acoustic startle (GPIAS). Both behavioral measures indicated that tinnitus was present after treatment with 150 and 250 mg/kg of salicylate; measurements with GPIAS indicated that the pitch of the tinnitus was near 16 kHz. Chronically implanted microwire electrode arrays were used to monitor the local field potentials and spontaneous discharge rate from multiunit clusters in the auditory cortex of awake rats before and after treatment with 150 mg/kg of salicylate. The amplitude of the local field potential elicited with 60 dB SPL tone bursts increased significantly 2 h after salicylate treatment particularly at 16-20 kHz; frequencies associated with the tinnitus pitch. Field potential amplitudes had largely recovered 1-2 days post-salicylate when behavioral results showed that tinnitus was absent. The mean spontaneous spike recorded from the same multiunit cluster pre- and post-salicylate decreased from 22 spikes/s before treatment to 14 spikes/s 2 h post-salicylate and recovered I day post-treatment. These preliminary physiology data suggest that salicylate induced tinnitus is associated with sound evoked hyperactivity in auditory cortex and spontaneous hypoactivity. (C) 2006 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. YueYang Hosp, Dept Otolaryngol, Shanghai, Peoples R China. So Illinois Univ, Sch Med, Dept Surg Otolaryngol & Pharmacol, Carbondale, IL 62901 USA. RP Sun, W (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. EM weisun@buffalo.edu CR Astl J, 1996, AUDIOLOGY, V35, P335 ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 AXELSSON A, 1987, ACTA OTO-LARYNGOL, V104, P225, DOI 10.3109/00016488709107322 Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003 Bauer CA, 2001, JARO, V2, P54 BRIEN JA, 1993, DRUG SAFETY, V9, P143, DOI 10.2165/00002018-199309020-00006 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Cooper J C Jr, 1994, J Am Acad Audiol, V5, P37 DAY RO, 1989, BRIT J CLIN PHARMACO, V28, P695 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 EVANS EF, 1973, EXP BRAIN RES, V17, P402 EVANS EF, 1964, J PHYSIOL-LONDON, V179, P238 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 GERHARZ EW, 1995, BRIT J UROL, V76, P479, DOI 10.1111/j.1464-410X.1995.tb07750.x Guitton MJ, 2003, J NEUROSCI, V23, P3944 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X HORIKAWA J, 1988, P JPN ACAD B-PHYS, V64, P260, DOI 10.2183/pjab.64.260 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 KOPELMAN J, 1988, LARYNGOSCOPE, V98, P858 LOBARINAS E, ACTA OTOLARYNGOL S Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X LOEB M, 1967, J ACOUST SOC AM, V42, P453, DOI 10.1121/1.1910600 Ma WLD, 2006, HEARING RES, V212, P9, DOI 10.1016/j.heares.2005.10.003 Manabe Y, 1998, Nihon Jibiinkoka Gakkai Kaiho, V101, P807 MCFADDEN D, 1984, HEARING RES, V16, P251, DOI 10.1016/0378-5955(84)90114-X Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Tennigkeit F, 1997, J NEUROPHYSIOL, V78, P591 Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 TYLER RS, 1985, P 13 WORLD C OT NEW, V1 Verbny YI, 2005, ANESTHESIOLOGY, V102, P962, DOI 10.1097/00000542-200505000-00015 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 44 TC 94 Z9 104 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2007 VL 226 IS 1-2 BP 244 EP 253 DI 10.1016/j.heares.2006.06.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 162UW UT WOS:000246116000024 PM 16904853 ER PT J AU Cooper, HR Roberts, B AF Cooper, Huw R. Roberts, Brian TI Auditory stream segregation of tone sequences in cochlear implant listeners SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Implantable Auditory Prostheses CY AUG, 2005 CL Asilomar, CA DE auditory grouping; stream segregation; pitch discrimination; cochlear implants ID SPEECH RECOGNITION; GAP DETECTION; HEARING; PERCEPTION; FREQUENCY; STIMULATION; PATTERNS; MUSIC AB Previous claims that auditory stream segregation occurs in cochlear implant listeners are based on limited evidence. In experiment 1, eight listeners heard tones presented in a 30-s repeating ABA-sequence, with frequencies matching the centre frequencies of the implant's 22 electrodes. Tone A always stimulated electrode I I (centre of the array); tone B stimulated one of the others. Tone repetition times (TRTs) from 50 to 200 ms were used. Listeners reported when they heard one or two streams. The proportion of time that each sequence was reported as segregated was consistently greater with increased electrode separation. However, TRT had no significant effect, and the perceptual reversals typical of normal-hearing listeners rarely occurred. The results may reflect channel discrimination rather than stream segregation. In experiment 2, six listeners performed a pitch-ranking task using tone pairs (reference = electrode 11). Listeners reported which tone was higher in pitch (or brighter in timbre) and their confidence in the pitch judgement. Similarities were observed in the individual pattern of results for reported segregation and pitch discrimination. Many implant listeners may show little or no sign of automatic stream segregation owing to the reduced perceptual space within which sounds can differ from one another. (c) 2006 Elsevier B.V. All rights reserved. C1 Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England. Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England. RP Cooper, HR (reprint author), Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England. EM cooperhr@aston.ac.uk CR ANSTIS S, 1985, J EXP PSYCHOL HUMAN, V11, P257, DOI 10.1037/0096-1523.11.3.257 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 BREGMAN AS, 1971, J EXP PSYCHOL, V89, P244, DOI 10.1037/h0031163 Bregman AS., 1990, AUDITORY SCENE ANAL CHATTERJEE M, 2002, J ACOUST SOC AM, V111, P2429 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320 Cusack R, 2004, HEARING RES, V193, P95, DOI 10.1016/j.heares.2004.03.009 Cusack R, 2000, PERCEPT PSYCHOPHYS, V62, P1112, DOI 10.3758/BF03212092 Cusack R, 1999, PERCEPTION, V28, P1281, DOI 10.1068/p2804 Fu Q., 2004, JARO-J ASSOC RES OTO, V6, P19 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Grose JH, 2001, J ACOUST SOC AM, V109, P1587, DOI 10.1121/1.1354983 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 Hong RS, 2006, J ACOUST SOC AM, V120, P360, DOI 10.1121/1.2204450 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MILLER GA, 1950, J ACOUST SOC AM, V22, P637, DOI 10.1121/1.1906663 Moore BC, 2005, SPRINGER HDB AUDITOR Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003 Throckmorton CS, 2002, J ACOUST SOC AM, V112, P285, DOI 10.1121/1.1482073 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T WARREN RM, 1969, SCIENCE, V164, P586, DOI 10.1126/science.164.3879.586 NR 28 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 11 EP 24 DI 10.1016/j.heares.2006.11.010 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000002 PM 17257790 ER PT J AU Thomassen, HA Gea, S Maas, S Bout, RG Dirckx, JJJ Decraemer, WF Povel, GDE AF Thomassen, Henri A. Gea, Stefan Maas, Steve Bout, Ron G. Dirckx, Joris J. J. Decraemer, Willem F. Povel, G. David E. TI Do Swiftlets have an ear for echolocation? The functional morphology of Swiftlets' middle ears SO HEARING RESEARCH LA English DT Article DE echolocation; Swiftlet; middle ear; modelling; mu CT; 3D reconstruction ID CAVE SWIFTLETS; GREY SWIFTLET; CLICKS; SENSITIVITY; OILBIRD; HEARING AB The Oilbird and many Swiftlet species are unique among birds for their ability to echolocate. Echolocaters may benefit from improved hearing sensitivity. Therefore, morphological adaptations to echolocation might be present in echolocating birds' middle ears. We studied the functional morphology of the tympano-ossicular chain of seven specimens of four echolocating Swiftlet species and one specimen each of five non-echolocating species. Three dimensional (31)) reconstructions were made from micro-Computer-Tomographic (mu CT) scans. The reconstructions were used in functional morphological analyses and model calculations. A two dimensional (21)) rigid rod model with fixed rotational axes was developed to study footplate output-amplitudes and to describe how changes in the arrangement of the tympano-ossicular chain affect its function. A 3D finite element model was used to predict ossicular-chain movement and to investigate the justification of the 2D approach. No morphological adaptations towards echolocation were found in the middle-ear lever system or in the mass impedance of the middle ear. A wide range of middle-ear configurations result in maximum output-amplitudes and all investigated species are congruent with these predicted best configurations. Echolocation is unlikely to depend on adaptations in the middle ear tympano-ossicular chain. (c) 2006 Elsevier B.V. All rights reserved. C1 Leiden Univ, Inst Biol Leiden, Sect Evolutionary Morphol, NL-2300 RA Leiden, Netherlands. Univ Antwerp, Dept Phys, Lab Biomed Phys, B-2020 Antwerp, Belgium. RP Thomassen, HA (reprint author), Leiden Univ, Inst Biol Leiden, Sect Evolutionary Morphol, POB 9516, NL-2300 RA Leiden, Netherlands. EM h.thomassen@biology.leidenuniv.nl CR Bradbury JW, 1998, PRINCIPLES ANIMAL CO Decraemer WF, 2003, JARO, V4, P250, DOI 10.1007/s10162-002-3030-x Dryden I. L., 1998, STAT SHAPE ANAL, P83 FENTON M B, 1975, Biotropica, V7, P1, DOI 10.2307/2989792 FULLARD JH, 1993, BIOTROPICA, V25, P334, DOI 10.2307/2388791 Gaudin E P, 1968, Acta Otolaryngol, V65, P316, DOI 10.3109/00016486809120971 GRIFFIN DR, 1953, P NATL ACAD SCI USA, V39, P884, DOI 10.1073/pnas.39.8.884 GRIFFIN DR, 1982, BEHAV ECOL SOCIOBIOL, V10, P119, DOI 10.1007/BF00300171 GRIFFIN DR, 1970, BIOL BULL, V139, P495, DOI 10.2307/1540368 Koike T, 2002, J ACOUST SOC AM, V111, P1306, DOI 10.1121/1.1451073 KONISHI M, 1979, SCIENCE, V204, P425, DOI 10.1126/science.441731 KUHNE R, 1985, FORM FUNCTION BIRDS, V3, P227 MEDWAY L, 1967, ANIM BEHAV, V15, P416, DOI 10.1016/0003-3472(67)90038-3 NORBERG RA, 1978, PHILOS T ROY SOC B, V282, P325, DOI 10.1098/rstb.1978.0014 Pohlman AG, 1921, J MORPHOL, V35, P229 Price JJ, 2004, J AVIAN BIOL, V35, P135 PYE JD, 1980, ANIMAL SONAR SYSTEMS RELKIN EM, 1988, PHYSL EAR Ruggero MA, 2002, P NATL ACAD SCI USA, V99, P13206, DOI 10.1073/pnas.202492699 SAUNDERS JC, 2000, COMP HEARING BIRDS R SAUNDERS JC, 1985, HEARING RES, V18, P253, DOI 10.1016/0378-5955(85)90042-5 SCHWARTZKOPFF J, 1952, Z VERGL PHYSIOL, V34, P46, DOI 10.1007/BF00298942 SCHWARTZKOPFF J, 1957, Z MORPHOLOGIE OKOLOG, V45, P365 Smyth D. M., 1979, THESIS J COOK U N QU SMYTH DM, 1983, IBIS, V125, P339, DOI 10.1111/j.1474-919X.1983.tb03119.x Starck J.M., 1992, Zoologische Jahrbuecher Abteilung fuer Anatomie und Ontogenie der Tiere, V122, P287 SUTHERS RA, 1985, J COMP PHYSIOL A, V156, P243, DOI 10.1007/BF00610867 SUTHERS RA, 1982, J COMP PHYSIOL, V148, P457 Thomassen HA, 2006, BIOL J LINN SOC, V88, P631, DOI 10.1111/j.1095-8312.2006.00648.x Thomassen HA, 2005, MOL PHYLOGENET EVOL, V37, P264, DOI 10.1016/j.ympev.2005.05.010 Thomassen HA, 2004, IBIS, V146, P173, DOI 10.1111/j.1474-919X.2004.00237.x NR 31 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 25 EP 37 DI 10.1016/j.heares.2006.11.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000003 PM 17229537 ER PT J AU Stainsby, TH Moore, BCJ AF Stainsby, Thomas H. Moore, Brian C. J. TI The effects of hearing loss on growth-of-masking functions for sinusoidal and complex-tone maskers with differing phase spectra SO HEARING RESEARCH LA English DT Article DE growth-of-masking (GOM) functions; forward masking; compression; suppression; sensorineural hearing loss; linear temporal integrator ID BASILAR-MEMBRANE NONLINEARITY; TEMPORAL INTEGRATION; IMPAIRED SUBJECTS; NORMALLY HEARING; COMPONENT PHASE; AUDITORY-SYSTEM; TUNING CURVES; DEAD REGIONS; SIGNAL DELAY; COMPRESSION AB Growth-of-masking (GOM) functions in forward masking (0-ms masker-signal delay) were measured for normally hearing (NH) and hearing-impaired (HI) listeners using as maskers complex tones (harmonies 1-40, 100-Hz fundamental frequency) with components starting in cosine or random phase, and on-frequency sinusoids. The signal was a 20-ms sinusoid, usually with a frequency of I or 2 kHz. It is argued that differences in the slopes of the GOM functions for the random- and cosine-phase maskers provide a measure of the strength of compression in the cochlea. For the NH listeners and some of the HI listeners, the slopes were significantly greater for the random-than for the cosine-phase maskers, and for these listeners the slopes for the complex-tone maskers were less than for the sinusoidal maskers. For the remaining HI listeners, the slopes of the GOM functions were similar for all masker types. It is argued that these listeners had almost complete loss of cochlear compression. The GOM functions for the sinusoidal maskers had slopes between 0.45 and 0.78 and were typically in the range 0.6-0.7. The finding of slopes below one for listeners in whom cochlear compression was probably absent is not consistent with linear-integrator models of forward masking. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Stainsby, TH (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM ths22@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2003, J ACOUST SOC AM, V114, P2158, DOI 10.1121/1.1608959 BACON SP, 1985, J ACOUST SOC AM, V78, P1220, DOI 10.1121/1.392890 BILSEN FA, 1973, ACUSTICA, V28, P60 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Carlyon RP, 1997, J ACOUST SOC AM, V101, P3636, DOI 10.1121/1.418324 Cheatham MA, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P1, DOI 10.1007/0-387-27045-0_1 FESTEN JM, 1977, PSYCHOPHYSICS PHYSL GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2003, J ACOUST SOC AM, V114, P978, DOI 10.1121/1.1593065 JESTEADT W, 1982, J ACOUST SOC AM, V71, P950, DOI 10.1121/1.387576 KIDD G, 1984, J ACOUST SOC AM, V75, P937, DOI 10.1121/1.390558 Kluk K, 2006, INT J AUDIOL, V45, P463, DOI 10.1080/14992020600753189 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Meddis R, 2005, J ACOUST SOC AM, V117, P3787, DOI 10.1121/1.1893426 Moore B., 1998, COCHLEAR HEARING LOS Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1986, J ACOUST SOC AM, V80, P93, DOI 10.1121/1.394087 MOORE BCJ, 1983, J ACOUST SOC AM, V73, P1249, DOI 10.1121/1.389273 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89 Moore BCJ, 2003, J ACOUST SOC AM, V114, P408, DOI 10.1121/1.1577552 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 MOORE BCJ, 1988, J ACOUST SOC AM, V83, P1102, DOI 10.1121/1.396055 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2004, HEARING RES, V192, P90, DOI 10.1016/j.heares.2004.02.001 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 MUNSON WA, 1947, J ACOUST SOC AM, V19, P584, DOI 10.1121/1.1916525 MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586 Oxenham AJ, 2001, J ACOUST SOC AM, V109, P732, DOI 10.1121/1.1336501 Oxenham AJ, 1997, MODELING SENSORINEURAL HEARING LOSS, P273 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3676, DOI 10.1121/1.418328 OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 PENNER MJ, 1980, J ACOUST SOC AM, V67, P617, DOI 10.1121/1.383885 PENNER MJ, 1980, J ACOUST SOC AM, V67, P608, DOI 10.1121/1.383938 PENNER MJ, 1972, J ACOUST SOC AM, V52, P1661, DOI 10.1121/1.1913300 PENNER MJ, 1978, J ACOUST SOC AM, V63, P195, DOI 10.1121/1.381712 Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 Plack CJ, 2002, ACTA ACUST UNITED AC, V88, P348 Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 RUGGERO MA, 1994, AUDIOLOGY, V33, P131 SMITH RL, 1979, J ACOUST SOC AM, V65, P166, DOI 10.1121/1.382260 WIDIN GP, 1979, J ACOUST SOC AM, V66, P388, DOI 10.1121/1.383673 ZWISLOCKI J, 1959, J ACOUST SOC AM, V31, P9, DOI 10.1121/1.1907619 ZWISLOCK.JJ, 1969, J ACOUST SOC AM, V46, P431, DOI 10.1121/1.1911708 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 48 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 38 EP 49 DI 10.1016/j.heares.2006.12.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000004 PM 17293068 ER PT J AU Harding, GW Bohne, BA AF Harding, Gary W. Bohne, Barbara A. TI Distribution of focal lesions in the chinchilla organ of Corti following exposure to a 4-kHz or a 0.5-kHz octave band of noise SO HEARING RESEARCH LA English DT Article DE noise; organ of Corti; focal lesions; chinchilla ID THRESHOLD SHIFTS; RETICULAR LAMINA; FREE-RADICALS; COCHLEA; DAMAGE; DEGENERATION; VIBRATION; TEMPORARY; HEARING; LEVEL AB An octave band of noise (OBN) delivers fairly uniform acoustic energy over a specific range of frequencies. Above and below this range, energy is at least 30 dB SPL less than that within the OBN. When the ear is exposed to an OBN, hair-cell loss often occurs outside the octave band. The frequency location of hair-cell loss is evident when the percent distance from the apex of focal lesions is analyzed. Focal lesions involve substantial loss of outer hair cells (OHCs) only, inner hair cells (IHCs) only, or both OHCs and IHCs (i.e., combined lesions) in a specific region of the organ of Corti (OC). Data sets were assembled from our permanent collection of noise-exposed chinchillas as follows: (1) the sum of exposure duration and recovery time was less than or equal to I I d; (2) the exposure level was less than or equal to 108 dB SPL; and (3) focal lesions were less than 1.5 turn in length. The data sets included a variety of exposures ranging from high-level, short duration to moderate-level, moderate duration. The center of each focal lesion was expressed as percent distance from the OC apex. Means, standard deviations and medians were calculated for focal-lesion size resulting from exposure to a 4-kHz or a 0.5-kHz OBN. Histograms were then constructed from the percent-location data using 2.0% bins. For the 4-kHz OBN, 5% of the lesions were in the apical half of the OC and 95% were in the basal half. The mean lesion size was 1.68% of total OC length for OHC and combined focal lesions and 0.42% for IHC focal lesions. Most OHC and combined lesions occurred in the 5-7-kHz region, at and just above the upper edge of the OBN. Clusters of lesions were also found around 8 and 12 kHz. A cluster was present at and just below the lower edge of the OBN, as well as another in the 1.5-kHz region. For the 0.5-kHz OBN, 34% of the lesions were in the apical half of the OC and 66% were in the basal half. The mean lesion size was 0.93% for OHC and combined focal lesions and 0.32% for IHC focal lesions. OHC and combined focal-lesion distribution showed clusters at 0.25, 0.75 and 1.5 kHz in the apical half of the OC. In the basal half, the distribution of focal lesions was similar to that seen with the 4-kHz OBN (r = 0.54). With both OBNs, most IHC focal lesions occurred in the basal half of the OC. High resolution power spectrum analysis of each OBN and non-invasive tests for harmonics and distortion products in a chinchilla were performed to look for exposure energy above and below the OBN. No energy was found that could explain the OC damage. (c) 2007 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115,660 S Euclid Ave, St Louis, MO 63110 USA. EM hardingg@ent.wustl.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR *AC SOC AM, 2006, ETH PRINC AC SOC AM Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1 CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Fried M P, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P285 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961 Howard MA, 2003, J ACOUST SOC AM, V114, P279, DOI 10.1121/1.1577555 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 MAJNO G, 1996, CELLS TISSUES DIS PR, P182 MCGILL TJI, 1976, LARYNGOSCOPE, V86, P1293, DOI 10.1288/00005537-197609000-00001 MILLER JD, 1974, J ACOUST SOC AM, V56, P729, DOI 10.1121/1.1903322 MILLS JH, 1973, J SPEECH HEAR RES, V16, P426 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 RHODE WS, 1980, J ACOUST SOC AM, V67, P1696, DOI 10.1121/1.384296 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 TAYLOR W, 1965, J ACOUST SOC AM, V38, P113, DOI 10.1121/1.1909580 VONBISMARCK G, 1967, THESIS MIT CAMBRIDGE Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamashita D, 2004, BRAIN RES, V1019, P201, DOI 10.1016/j.brainres.2004.05.104 NR 34 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 50 EP 59 DI 10.1016/j.heares.2006.12.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000005 PM 17291699 ER PT J AU Coco, A Epp, SB Fallon, JB Xu, J Millard, RE Shepherd, RK AF Coco, Anne Epp, Stephanie B. Fallon, James B. Xu, Jin Millard, Rodney E. Shepherd, Robert K. TI Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons? SO HEARING RESEARCH LA English DT Article DE neural degeneration; auditory nerve; deafness; electrical stimulation; cochlear implant; electric acoustic stimulation ID SENSORINEURAL HEARING-LOSS; DEAFENED GUINEA-PIG; AUDITORY-NERVE; ACOUSTIC STIMULATION; INNER-EAR; SURVIVAL; CATS; DEPOLARIZATION; DEGENERATION; PATHOLOGY AB Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n = 4) or severe (n = 4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (P < 0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf cochleae, this trophic effect does not result in increased SGN survival. (c) 2006 Elsevier B.V. All rights reserved. C1 Bion Ear Inst, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Royal Victorian Eye & Ear Hosp, Melbourne, Vic 3002, Australia. RP Shepherd, RK (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM rshepherd@bionicear.org RI Fallon, James/B-5211-2012; Shepherd, Robert/I-6276-2012; Fallon, James/B-6383-2014 CR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 Black R C, 1983, Acta Otolaryngol Suppl, V399, P5 BOGGESS WJ, 1989, LARYNGOSCOPE, V99, P1002 BROWN M, 1992, HEARING RES, V59, P224, DOI 10.1016/0378-5955(92)90119-8 Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P40 ELVERLAND HH, 1980, ACTA OTO-LARYNGOL, V90, P360, DOI 10.3109/00016488009131737 Fritzsch B, 1999, CELL TISSUE RES, V295, P369, DOI 10.1007/s004410051244 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HARTMANN R, 1984, ADV AUDIOL, V1, P18 HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Huang CQ, 1999, IEEE T BIO-MED ENG, V46, P461, DOI 10.1109/10.752943 HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 1992, HEARING RES, V64, P99, DOI 10.1016/0378-5955(92)90172-J LEAKE PA, 1995, HEARING RES, V82, P65 Li L, 1999, HEARING RES, V133, P27, DOI 10.1016/S0378-5955(99)00043-X Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593 Miller AL, 2001, HEARING RES, V151, P1, DOI 10.1016/S0378-5955(00)00226-4 Mitchell A, 1997, HEARING RES, V105, P30, DOI 10.1016/S0378-5955(96)00202-X Moxon E. C., 1971, NEURAL MECH RESPONSE NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 NI DF, 1992, HEARING RES, V62, P63, DOI 10.1016/0378-5955(92)90203-Y RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RIZER FM, 1988, OTOLARYNG HEAD NECK, V98, P203 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V58, P377 SHEPHERD RK, 1994, HEARING RES, V81, P150, DOI 10.1016/0378-5955(94)90162-7 Shepherd R. K., 2006, COCHLEAR IMPLANTS, P25 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2005, J COMP NEUROL, V486, P145, DOI 10.1002/cne.20564 Shepherd R K, 1983, Acta Otolaryngol Suppl, V399, P19 Shepherd RK, 1995, HEARING RES, V92, P131, DOI 10.1016/0378-5955(95)00211-1 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004 Tan J, 2006, AM J PATHOL, V169, P528, DOI 10.2353/ajpath.2006.060122 TERAYAMA Y, 1977, ACTA OTO-LARYNGOL, V83, P291, DOI 10.3109/00016487709128848 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 WALSH EJ, 1986, J ACOUST SOC AM, V79, P725, DOI 10.1121/1.393462 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 52 TC 53 Z9 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 60 EP 70 DI 10.1016/j.heares.2006.12.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000006 PM 17258411 ER PT J AU Blauwkamp, MN Beyer, LA Kabara, L Takemura, K Buck, T King, WM Dolan, DF Barald, KF Raphael, Y Koenig, RJ AF Blauwkamp, Marsha N. Beyer, Lisa A. Kabara, Lisa Takemura, Keiji Buck, Timothy King, W. M. Dolan, David F. Barald, Kate F. Raphael, Yehoash Koenig, Ronald J. TI The role of bone morphogenetic protein 4 in inner ear development and function SO HEARING RESEARCH LA English DT Article DE hair cells; neuronal processes; stereocilia; semicircular canals; mouse; vestibulo-collic reflex (VCR); auditory brainstem response (ABR) ID BONE-MORPHOGENETIC PROTEIN-4; HAIR-CELL STEREOCILIA; SENSORY EPITHELIA; NERVOUS-SYSTEM; DEAFNESS DFNB3; MUTANT MICE; MYOSIN XV; NULL MICE; MOUSE; GENERATION AB Bone Morphogenetic Protein 4 (BMP4) is a member of the TGF-beta superfamily and is known to be important for the normal development of many tissues and organs, including the inner ear. Bmp4 homozygous null mice die as embryos, but Bmp4 heterozygous null (Bmp4(+'-)) mice are viable and some adults exhibit a circling phenotype, suggestive of an inner ear defect. To understand the role of BMP4 in inner ear development and function, we have begun to study C57BL/6 Bmp4(+/-) mice. Quantitative testing of the vestibulocollic reflex, which helps maintain head stability, demonstrated that Bmp4(+/-) mice that exhibit circling behavior have a poor response in the yaw axis, consistent with semicircular canal dysfunction. Although the hair cells of the ampullae were grossly normal, the stereocilia were greatly reduced in number. Auditory brainstem responses showed that Bmp4(+/-) mice have elevated hearing thresholds and immunohistochemical staining demonstrated decreased numbers of neuronal processes in the organ of Corti. Thus Bmp4(+/-) mice have structural and functional deficits in the inner ear. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Mol & Cellular Biol Program, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Internal Med, Div Endocrinol Diabet & Metab, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA. Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48106 USA. RP Blauwkamp, MN (reprint author), Univ Michigan, Mol & Cellular Biol Program, 2966 Taubman Med Lib, Ann Arbor, MI 48109 USA. EM mousman@med.umich.edu; lbeyer@umich.edu; lkabara@umich.edu; takemura@umich.edu; bucktimo@umich.edu; wmking@umich.edu; ddolan@umich.edu; kfbarald@umich.edu; yoash@umich.edu; rkoenig@umich.edu CR Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729 Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 Bianchi LM, 1998, EXP NEUROL, V150, P98, DOI 10.1006/exnr.1997.6774 Chang W, 2002, DEV BIOL, V251, P380, DOI 10.1006/dbio.2002.0822 Chang WS, 1999, DEV BIOL, V216, P369, DOI 10.1006/dbio.1999.9457 De Robertis EM, 2004, ANNU REV CELL DEV BI, V20, P285, DOI 10.1146/annurev.cellbio.20.011403.154124 DUDLEY AT, 1995, GENE DEV, V9, P2795, DOI 10.1101/gad.9.22.2795 Dunn NR, 1997, DEV BIOL, V188, P235, DOI 10.1006/dbio.1997.8664 Gerlach LM, 2000, DEVELOPMENT, V127, P45 Gerlach-Bank LM, 2004, DEV DYNAM, V229, P219, DOI 10.1002/dvdy.10414 Goldstein AM, 2005, MECH DEVELOP, V122, P821, DOI 10.1016/j.mod.2005.03.003 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Hogan B L, 1996, Harvey Lect, V92, P83 Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9 JONES CM, 1991, DEVELOPMENT, V111, P531 Jones JM, 2006, J NEUROSCI, V26, P550, DOI 10.1523/JNEUROSCI.3859-05.2006 Karolyi IJ, 2003, HUM MOL GENET, V12, P2797, DOI 10.1093/hmg/ddg308 Kim WY, 2001, DEVELOPMENT, V128, P417 Li HW, 2005, BMC DEV BIOL, V5, DOI 10.1186/1471-213X-5-16 Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976 Liu AM, 2005, NAT REV NEUROSCI, V6, P945, DOI 10.1038/nrn1805 LUO G, 1995, GENE DEV, V9, P2808, DOI 10.1101/gad.9.22.2808 Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017 Morsli H, 1998, J NEUROSCI, V18, P3327 Nakayama T, 2000, CELL MOL LIFE SCI, V57, P943, DOI 10.1007/PL00000736 Oh SH, 1996, J NEUROSCI, V16, P6463 Oxburgh L, 2005, DEV BIOL, V286, P637, DOI 10.1016/j.ydbio.2005.08.024 Pujades C, 2006, DEV BIOL, V292, P55, DOI 10.1016/j.ydbio.2006.01.001 Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067 Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1 Salam AA, 2000, AM J HUM GENET, V66, P1984, DOI 10.1086/302931 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 Takemura K, 2005, EXP BRAIN RES, V167, P103, DOI 10.1007/s00221-005-0030-1 Thompson DL, 2003, MOL CELL BIOL, V23, P2277, DOI 10.1128/MCB.23.7.2277-2286.2003 Tiveron MC, 2003, DEV BIOL, V260, P46, DOI 10.1016/S0012-1606(03)00213-6 Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447 Wijgerde M, 2005, DEV BIOL, V286, P149, DOI 10.1016/j.ydbio.2005.07.016 WINNIER G, 1995, GENE DEV, V9, P2105, DOI 10.1101/gad.9.17.2105 Wyatt S, 1998, Brain Res Mol Brain Res, V55, P254 Zhang HB, 1996, DEVELOPMENT, V122, P2977 Zheng LL, 2000, CELL, V102, P377, DOI 10.1016/S0092-8674(00)00042-8 NR 43 TC 15 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 71 EP 79 DI 10.1016/j.heares.2006.12.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000007 PM 17275231 ER PT J AU Kulesza, RJ AF Kulesza, Randy J., Jr. TI Cyto architecture of the human superior olivary complex: Medial and lateral superior olive SO HEARING RESEARCH LA English DT Article DE auditory; hearing; stereology; brainstem ID INTERAURAL TIME SENSITIVITY; CALCIUM-BINDING PROTEINS; AUDITORY BRAIN-STEM; INFERIOR COLLICULUS; SOUND LOCALIZATION; COCHLEAR NUCLEUS; TRAPEZOID BODY; FINE-STRUCTURE; TONAL STIMULI; GUINEA-PIG AB The superior olivary complex is a group of brainstem nuclei involved in hearing and includes the medial superior olive (MSO) and the lateral superior olive (LSO), surrounded by periolivary cell groups. The structure and functional roles of the MSO and LSO have been the subject of many investigations in laboratory animals and it has largely been assumed that these findings are directly transferable to humans. However, little is known conclusively regarding the detailed organization of the human superior olivary complex. The goal of this study is to provide a detailed analysis of the cytoarchitecture of the human MSO and LSO. Results from the examination of eight human brainstems confirm the existence of a conserved MSO and provide evidence of a prominent and highly ordered LSO. Unbiased stereological estimates of neuronal number indicate approximately 15,500 neurons in the MSO and 5600 neurons in the LSO. Additionally, a three-dimensional model of the MSO and LSO was constructed and provides evidence that the human LSO is composed of medial and lateral segments. Finally, an analysis of neuronal morphology, in Nisst stained and Golgi impregnated tissue, provides evidence of multiple neuronal classes within each nucleus and further that these neurons demonstrate a precise geometric arrangement (depending on the nucleus) that is suggestive of isofrequency laminae. (c) 2006 Elsevier B.V. All rights reserved. C1 Lake Erie Coll Osteopath Med, Auditory Res Ctr, Erie, PA 16509 USA. RP Kulesza, RJ (reprint author), Lake Erie Coll Osteopath Med, Auditory Res Ctr, 1858 W Grandview Blvd, Erie, PA 16509 USA. EM rkulesza@lecom.edu CR ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 ASCHOFF A, 1988, EXP BRAIN RES, V71, P252 Bazwinsky I, 2005, J ANAT, V207, P745, DOI 10.1111/j.1469-7580.2005.00491.x Bazwinsky R, 2003, J COMP NEUROL, V456, P292, DOI 10.1002/cne.10526 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 CANT NB, 1984, J COMP NEUROL, V227, P63, DOI 10.1002/cne.902270108 FRIEDLAND DR, 2005, J NEUROSCI METH, V150, P90 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 Glendenning KK, 1998, BRAIN BEHAV EVOLUT, V51, P59, DOI 10.1159/000006530 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Gundersen H. J., 1987, J MICROSC-OXFORD, V147, P3 GUNDERSEN HJG, 1988, APMIS, V96, P857 HARRISON JM, 1974, FED PROC, V33, P1901 Heffner R. S., 1990, COMP PERCEPTION, VI, P285 INIGUEZ C, 1985, J NEUROSCI METH, V13, P77, DOI 10.1016/0165-0270(85)90045-7 IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105 KAVANAGH GL, 1992, J NEUROPHYSIOL, V67, P1643 Konigsmark BW, 1970, CONT RES METHODS NEU, P315 Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X KUWABARA N, 1991, J COMP NEUROL, V314, P684, DOI 10.1002/cne.903140405 LINDSEY BG, 1975, J COMP NEUROL, V160, P81, DOI 10.1002/cne.901600106 MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4 Moore JK, 2000, MICROSC RES TECHNIQ, V51, P403, DOI 10.1002/1097-0029(20001115)51:4<403::AID-JEMT8>3.0.CO;2-Q MOORE TL, 1971, AM J DIG DIS, V16, P1, DOI 10.1007/BF02233781 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3 RICHTER EA, 1983, AM J ANAT, V168, P157, DOI 10.1002/aja.1001680205 SANES DH, 1990, J NEUROSCI, V10, P3494 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 SCHWARTZ IR, 1977, NEUROSCIENCE, V2, P81, DOI 10.1016/0306-4522(77)90070-7 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303 STROMINGER NL, 1976, J COMP NEUROL, V170, P485, DOI 10.1002/cne.901700407 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Thompson CK, 2005, J COMP NEUROL, V481, P276, DOI 10.1002/cne.20381 TSUCHITA.C, 1966, J NEUROPHYSIOL, V29, P684 van Adel BA, 1998, BEHAV NEUROSCI, V112, P432, DOI 10.1037/0735-7044.112.2.432 Warr W. B., 1982, CONTRIB SENS PHYSIOL, V7, P1 YIN TCT, 1990, J COMP NEUROL, V295, P438, DOI 10.1002/cne.902950308 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 ZOOK JM, 1982, J COMP NEUROL, V207, P14, DOI 10.1002/cne.902070103 NR 50 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 80 EP 90 DI 10.1016/j.heares.2006.12.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000008 PM 17250984 ER PT J AU Junius, D Riedel, H Kollmeier, B AF Junius, Dirk Riedel, Helmut Kollmeier, Birger TI The influence of externalization and spatial cues on the generation of auditory brainstem responses and middle latency responses SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; middle latency response; binaural difference potential; interaural level difference; interaural time difference; virtual acoustics; externalization ID INTERAURAL TIME DIFFERENCES; BINAURAL INTERACTION COMPONENT; EVOKED-POTENTIALS; SOUND LOCALIZATION; CORTICAL MECHANISMS; ELEVATION CUES; LATERALIZATION; CORTEX; INTENSITY; FREQUENCY AB The effect of externalization and spatial cues on the generation of auditory brainstem responses (ABRs) and middle latency responses (MLRs) was investigated in this study. Most previous evoked potential studies used click stimuli with variations of interaural time (ITDs) and interaural level differences (ILDs) which merely led to a lateralization of sound inside the subject's head. In contrast, in the present study potentials were elicited by a virtual acoustics stimulus paradigm with 'natural' spatial cues and compared to responses to a diotic, non-externalized reference stimulus. Spatial sound directions were situated on the horizontal plane (corresponding to variations in ITD, ILD, and spectral cues) or the midsagittal plane (variation of spectral cues only). An optimized chirp was used which had proven to be advantageous over the click since it compensates for basilar membrane dispersion. ABRs and MLRs were recorded from 32 scalp electrodes and both binaural potentials (B) and binaural difference potentials (BD, i.e., the difference between binaural and summed monaural responses) were investigated. The amplitudes of B and BD to spatial stimuli were not higher than those to the diotic reference. ABR amplitudes decreased and latencies increased with increasing laterality of the sound source. A rotating dipole source exhibited characteristic patterns in dependence on the stimulus laterality. For the MLR data, stimulus laterality was reflected in the latency of component N.. In addition, dipole source analysis revealed a systematic magnitude increase for the dipole contralateral to the azimuthal position of the sound source. For the variation of elevation, the right dipole source showed a stronger activation for stimuli away from the horizontal plane. The results indicate that at the level of the brainstem and primary auditory cortex binaural interaction is mostly affected by interaural cues (ITD, ILD). Potentials evoked by stimuli with natural combinations of ITD, ILD, and spectral cues were not larger than those elicited by diotic chirps. (c) 2007 Elsevier B.V. All rights reserved. C1 Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. RP Junius, D (reprint author), Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. EM djunius@uni-oldenburg.de CR BLAUERT J, 1997, RAUMLICHES HOREN, V2 Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825 CUFFIN BN, 1979, ELECTROEN CLIN NEURO, V47, P132 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 DEIBER MP, 1989, NEUROLOGY, V39, P806 ERWIN R, 1986, ELECTROEN CLIN NEURO, V65, P383, DOI 10.1016/0168-5597(86)90017-1 Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GARDNER WG, 1995, J ACOUST SOC AM, V97, P3907, DOI 10.1121/1.412407 GENUIT K, 1984, THESIS RWTH AACHEN GERULL G, 1984, AUDIOLOGY, V23, P265 Granzow M., 2001, Zeitschrift fur Audiologie, V40 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 HOTH S, 1986, AUDIOLOGY, V25, P248 ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 JEWETT DL, 1987, ELECTROEN CLIN NEURO, V68, P323, DOI 10.1016/0168-5597(87)90012-8 JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K Leonard CM, 1998, CEREB CORTEX, V8, P397, DOI 10.1093/cercor/8.5.397 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1 MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 Mills A. W., 1972, F MODERN AUDITORY TH, V2, P301 OTTEN J, 2001, THESIS C VONOSSIETZK Palomaki KJ, 2005, COGNITIVE BRAIN RES, V24, P364, DOI 10.1016/j.cogbrainres.2005.02.013 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Polyakov A, 2003, INT J AUDIOL, V42, P140, DOI 10.3109/14992020309090423 Polyakov A, 2003, EAR HEARING, V24, P143, DOI 10.1097/01.AUD.0000058109.44006.47 Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3 Pratt H, 1997, HEARING RES, V108, P1, DOI 10.1016/S0378-5955(97)00033-6 PRATT H, 1983, ELECTROEN CLIN NEURO, V56, P682, DOI 10.1016/0013-4694(83)90036-6 REALE RA, 1990, J NEUROPHYSIOL, V64, P1247 Riedel H, 2002, HEARING RES, V169, P85, DOI 10.1016/S0378-5955(02)00342-8 Riedel H., 2001, Zeitschrift fur Audiologie, V40 Riedel Helmut, 2003, Z Med Phys, V13, P75 Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8 Rupp A, 2002, HEARING RES, V174, P19, DOI 10.1016/S0378-5955(02)00614-7 SAMS M, 1993, HEARING RES, V67, P89, DOI 10.1016/0378-5955(93)90236-T SCHERG M, 1991, AKUSTISCHE EVOZIERTE Scherg M., 1990, ADV AUDIOL, V6, P40 Sharbrough F., 1991, J CLIN NEUROPHYSIOL, V8, P200 Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805 Wightman F, 2005, ACTA ACUST UNITED AC, V91, P429 Woodworth R. S., 1938, EXPT PSYCHOL WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 NR 51 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 91 EP 104 DI 10.1016/j.heares.2006.12.008 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000009 PM 17270375 ER PT J AU Stenfelt, S AF Stenfelt, Stefan TI Simultaneous cancellation of air and bone conduction tones at two frequencies: Extension of the famous experiment by von Bekesy SO HEARING RESEARCH LA English DT Article DE bone conduction; cancellation experiment; basilar membrane stimulation ID SOUND AB Cancellation experiments between air conduction (AC) and bone conduction (BC) tones were conducted at two frequencies (0.7 and 1.1 kHz) and three levels (40, 50, and 60 dB HL) in three subjects. The tests were divided into three categories: (1) single tone cancellation, (2) simultaneous cancellation of two tones, and (3) cancellation of one tone while a disturbing tone was present. In total, each subject performed twelve cancellation tasks. The hypothesis is that the AC and BC sound transmission behaves as linear systems and they both excite the basilar membrane in the cochlea similarly. The cancellation results are presented as the deviations from this hypothesis; except for a few larger deviations, the intrasubject deviations were generally less than 0.5 dB and 5 degrees. The results from all three test categories indicate that the hypothesis of linear transmission systems and similarity of cochlear stimulation by AC and BC holds. However, due to the subjects' limited ability to conduct optimal cancellation and to imperfect methodology and equipment, the small deviations from perfectly linear cancellation that were observed do neither conclusively prove nor refute the possibility of small differences in the cochlear processing of AC and BC sound. Nonetheless, it is clear that if such differences in the processing of the two stimuli exist, they are small in magnitude. (c) 2006 Elsevier B.V. All rights reserved. C1 Linkoping Univ Hosp, Div Tech Audiol, Dept Neurosci & Locomot, SE-58185 Linkoping, Sweden. RP Stenfelt, S (reprint author), Linkoping Univ Hosp, Div Tech Audiol, Dept Neurosci & Locomot, SE-58185 Linkoping, Sweden. EM stefan.stenfelt@inr.liu.se RI Stenfelt, Stefan/J-9363-2013 OI Stenfelt, Stefan/0000-0003-3350-8997 CR [Anonymous], 1994, 3893 ISO [Anonymous], 1998, 3891 ISO Beattie RC, 1998, SCAND AUDIOL, V27, P120, DOI 10.1080/010503998420360 Hakansson B, 1996, J ACOUST SOC AM, V99, P2239 Hakansson BEV, 2003, J ACOUST SOC AM, V113, P818, DOI 10.1121/1.1536633 JAHN AF, 1982, AM J OTOLARYNG, V3, P133, DOI 10.1016/S0196-0709(82)80044-6 KAPTEYN TS, 1983, J ACOUST SOC AM, V74, P1297, DOI 10.1121/1.390048 KAPTEYN TS, 1980, ARCH OTO-RHINO-LARYN, V228, P199, DOI 10.1007/BF00454228 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 Lowy K, 1942, J ACOUST SOC AM, V14, P156, DOI 10.1121/1.1916212 Purcell D, 1998, EAR HEARING, V19, P362, DOI 10.1097/00003446-199810000-00003 Rossi G, 1988, Scand Audiol Suppl, V29, P1 Stenfelt S, 2002, HEARING RES, V167, P1, DOI 10.1016/S0378-5955(01)00407-5 Stenfelt S, 2003, J ACOUST SOC AM, V113, P902, DOI 10.1121/1.1534606 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 TASAKI I, 1952, J ACOUST SOC AM, V24, P502, DOI 10.1121/1.1906928 von Bekesy G, 1932, ANN PHYS-BERLIN, V13, P111 WEVER EG, 1952, ANN OTO RHINOL LARYN, V61, P824 Wever EG, 1954, PHYSL ACOUSTICS NR 19 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 105 EP 116 DI 10.1016/j.heares.2006.12.009 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000010 PM 17270374 ER PT J AU Sussman, E Wong, R Horvath, J Winkler, I Wang, W AF Sussman, E. Wong, R. Horvath, J. Winkler, I. Wang, W. TI The development of the perceptual organization of sound by frequency separation in 5-11-year-old children SO HEARING RESEARCH LA English DT Article DE auditory stream segregation; frequency discrimination; children; development; perception ID AUDITORY STREAM SEGREGATION; TONE SEQUENCES; SCENE ANALYSIS; INFANTS; CORTEX; ADULTS; DISCRIMINATION; SENSITIVITY; INTEGRATION; THRESHOLDS AB The analysis of the auditory scene begins from the moment we hear sounds, making it possible for the infant to distinguish the mother's voice from other sounds in the environment. The purpose of the study was to determine, in two experiments, whether the frequency separation threshold, at which the perception of a mixture of sounds turns from being perceived as one stream to two streams, differs between two groups of school-aged children (ages 5-8 and 9-11 years) and adults. The results show a developmental course for the perception of auditory streams that is not simply dependent upon frequency discrimination. This suggests that maturation of the stream segregation process follows a longer developmental course than maturation of simple feature discrimination. The data indicate that the ability to hear distinct sound streams in the environment takes time to develop and becomes sharpened with experience and maturity. (c) 2007 Elsevier B.V. All rights reserved. C1 Albert Einstein Coll Med, Dept Neurosci, Kennedy Ctr, Bronx, NY 10461 USA. Albert Einstein Coll Med, Dept Otorhinolaryngol Head & Neck Surg, Kennedy Ctr, Bronx, NY 10461 USA. Hungarian Acad Sci, Inst Psychol, Budapest, Hungary. Univ Helsinki, Cognit Brain Res Unit, Helsinki, Finland. CUNY, Grad Ctr, Dept Speech & Hearing Sci, New York, NY 10021 USA. RP Sussman, E (reprint author), Albert Einstein Coll Med, Dept Neurosci, Kennedy Ctr, Room 925,1410 Pelham Pkwy S, Bronx, NY 10461 USA. EM esussman@aecom.yu.edu RI Winkler, Istvan/A-7659-2008; Horvath, Janos/B-6477-2012 OI Winkler, Istvan/0000-0002-3344-6151; Horvath, Janos/0000-0003-0147-4518 CR Allen P, 1996, J ACOUST SOC AM, V100, P1043, DOI 10.1121/1.416290 Berg KM, 2000, PERCEPT PSYCHOPHYS, V62, P868, DOI 10.3758/BF03206928 BREGMAN AS, 1978, J EXP PSYCHOL HUMAN, V4, P380, DOI 10.1037//0096-1523.4.3.380 Bregman AS., 1990, AUDITORY SCENE ANAL Carlyon RP, 2001, J EXP PSYCHOL HUMAN, V27, P115, DOI 10.1037//0096-1523.27.1.115 CLIFTON RK, 1981, CHILD DEV, V52, P833, DOI 10.1111/j.1467-8624.1981.tb03121.x DEMANY L, 1982, INFANT BEHAV DEV, V5, P261, DOI 10.1016/S0163-6383(82)80036-2 Fassbender C., 1993, AUDITORY GROUPING SE Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015 Fishman YI, 2001, HEARING RES, V151, P167, DOI 10.1016/S0378-5955(00)00224-0 Hulse SH, 1997, J COMP PSYCHOL, V111, P3, DOI 10.1037/0735-7036.111.1.3 McAdams S, 1997, J ACOUST SOC AM, V102, P2945, DOI 10.1121/1.420349 Micheyl C, 2005, NEURON, V48, P139, DOI 10.1016/j.neuron.2005.08.039 MORRONGIELLO BA, 1987, J EXP CHILD PSYCHOL, V44, P413, DOI 10.1016/0022-0965(87)90043-9 MUIR D, 1979, CHILD DEV, V50, P31 Nelken I, 2003, BIOL CYBERN, V89, P397, DOI 10.1007/s00422-003-0445-3 Newman RS, 1996, PERCEPT PSYCHOPHYS, V58, P1145, DOI 10.3758/BF03207548 NOZZA RJ, 1984, J SPEECH HEAR RES, V27, P613 Rose MM, 2005, HEARING RES, V204, P16, DOI 10.1016/j.heares.2004.12.004 RUBEN RJ, 1992, ACTA OTO-LARYNGOL, V112, P192 SCHNEIDER W, 1988, BEHAV RES METH INSTR, V20, P206, DOI 10.3758/BF03203833 SINNOTT JM, 1983, INFANT BEHAV DEV, V6, P3, DOI 10.1016/S0163-6383(83)80003-4 Sussman E, 2001, HEARING RES, V153, P108, DOI 10.1016/S0378-5955(00)00261-6 Sussman ES, 2005, J ACOUST SOC AM, V117, P1285, DOI [10.1121/1.1854312, 10.1121/1.854312] THOMPSON NC, 1999, J SPEECH HEAR RES, V42, P10681 Tramo MJ, 2002, J NEUROPHYSIOL, V87, P122 TREHUB SE, 1980, J EXP CHILD PSYCHOL, V29, P282, DOI 10.1016/0022-0965(80)90020-X van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T VANNOORDEN LPAS, 1977, J ACOUST SOC AM, V61, P1041, DOI 10.1121/1.381388 WERNER LA, 1992, CHILD DEV, V63, P260, DOI 10.1111/j.1467-8624.1992.tb01625.x Whitfield IC, 1967, AUDITORY PATHWAY WIGHTMAN F, 1989, CHILD DEV, V60, P611, DOI 10.1111/j.1467-8624.1989.tb02742.x Winkler I., 2003, P NATL ACAD SCI USA, V100, P1182 NR 33 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 117 EP 127 DI 10.1016/j.heares.2006.12.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000011 PM 17300890 ER PT J AU Harding, GW Bohne, BA Lee, SC Salt, AN AF Harding, Gary W. Bohne, Barbara A. Lee, Steve C. Salt, Alec N. TI Effect of infrasound on cochlear damage from exposure to a 4 kHz octave band of noise SO HEARING RESEARCH LA English DT Article DE infrasound; noise; histopathology; ABR; DPOAE; chinchilla ID ABR THRESHOLD SHIFTS; DPOAE LEVEL SHIFTS; HISTOPATHOLOGICAL DAMAGE; CHINCHILLA-COCHLEA; TYMPANIC-MEMBRANE; MIDDLE-EAR; CELL LOSS; TEMPORARY; MICROSCOPY AB Infrasound (i.e., < 20Hz for humans; < 100 Hz for chinchillas) is not audible, but exposure to high-levels of infrasound will produce large movements of cochlear fluids. We speculated that high-level infrasound might bias the basilar membrane and perhaps be able to minimize noise-induced hearing loss. Chinchillas were simultaneously exposed to a 30 Hz tone at 100dB SPL and a 4kHz OBN at either 108 dB SPL for 1.75 h or 86 dB SPL for 24 h. For each animal, the tympanic membrane (TM) in one car was perforated (similar to 1 mm(2)) prior to exposure to attenuate infrasound transmission to that cochlea by about 50 dB SPL. Controls included animals that were exposed to the infrasound only or the 4kHz OBN only. ABR threshold shifts (TSs) and DPOAE level shifts (LSs) were determined pre- and post-TM-perforation and immediately post-exposure, just before cochlear fixation. The cochleae were dehydrated, embedded in plastic, and dissected into flat preparations of the organ of Corti (OC). Each dissected segment was evaluated for losses of inner hair cells (IHCs) and outer hair cells (OHCs). For each chinchilla, the magnitude and pattern of functional and hair cell losses were compared between their right and left cochleae. The TM perforation produced no ABR TS across frequency but did produce a 10-21 dB DPOAE LS from 0.6 to 2 kHz. The infrasound exposure alone resulted in a 10-20 dB ABR TS at and below 2 kHz, no DPOAE LS and no IHC or OHC losses. Exposure to the 4 kHz OBN alone at 108 dB produced a 10-50 dB ABR TS for 0.5-12 kHz, a 10-60 dB DPOAE LS for 0.6-16 kHz and severe OHC loss in the middle of the first turn. When infrasound was present during exposure to the 4 kHz OBN at 108 dB, the functional losses and OHC losses extended much further toward the apical and basal tips of the OC than in cochleae exposed to the 4 kHz OBN alone. Exposure to only the 4 kHz OBN at 86 dB produces a 10-40 dB ABR TS for 3-12 kHz and 10-30 dB DPOAE LS for 3-8 kHz but little or no OHC loss in the middle of the first turn. No differences were found in the functional and hair-cell losses from exposure to the 4 kHz OBN at 86 dB in the presence or absence of infrasound. We hypothesize that exposure to infrasound and an intense 4 kHz OBN increases cochlear damage because the large fluid movements from infrasound cause more intermixing of cochlear fluids through the damaged reticular lamina. Simultaneous infrasound and a moderate 4 kHz OBN did not increase cochlear damage because the reticular lamina rarely breaks down during this moderate level exposure. (c) 2007 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. EM hardingg@ent.wustl.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR AHMAD M, 2002, HEARING RES, V175, P82 Alves-Pereira M, 2007, PROG BIOPHYS MOL BIO, V93, P256, DOI 10.1016/j.pbiomolbio.2006.07.011 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 Bohne BA, 2007, HEARING RES, V223, P61, DOI 10.1016/j.heares.2006.10.004 BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 CLARK WW, 1987, J ACOUST SOC AM, V81, P1093, DOI 10.1121/1.394629 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Harding GW, 2004, HEARING RES, V196, P94, DOI 10.1016/j.heares.2004.03.011 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961 Hatzopoulos S, 2002, HEARING RES, V170, P12, DOI 10.1016/S0378-5955(02)00448-3 HUMES LE, 2006, NOISE MILITARY SERVI, P163 KOPKE RD, 2005, HEAR HLTH FAL, P26 LeBourgeois H W 3rd, 2000, Ear Nose Throat J, V79, P610 Leventhall G, 2007, PROG BIOPHYS MOL BIO, V93, P130, DOI 10.1016/j.pbiomolbio.2006.07.006 LIM DJ, 1982, ACTA OTO-LARYNGOL, V94, P213, DOI 10.3109/00016488209128907 MILLS JH, 1973, J SPEECH HEAR RES, V16, P426 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Salt AN, 1999, J ACOUST SOC AM, V106, P847, DOI 10.1121/1.427101 Ueda H, 1998, HEARING RES, V122, P41, DOI 10.1016/S0378-5955(98)00084-7 VONGIERKE HE, 1976, HDB SENSORY PHYSL AU, P585 Voss SE, 2001, ACTA OTO-LARYNGOL, V121, P169 NR 28 TC 4 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2007 VL 225 IS 1-2 BP 128 EP 138 DI 10.1016/j.heares.2007.01.016 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 149HE UT WOS:000245137000012 PM 17300889 ER PT J AU Shi, XR Nuttall, AL AF Shi, Xiaorui Nuttall, Alfred L. TI Expression of adhesion molecular proteins in the cochlear lateral wall of normal and PARP-1 mutant mice SO HEARING RESEARCH LA English DT Article DE ICAM-1; PECAM-1; P-sclectin; leukocyte emigration; spiral ligament; stria vascularis ID POLY(ADP-RIBOSE) POLYMERASE; BLOOD-FLOW; REPERFUSION INJURY; STRIA VASCULARIS; ACOUSTIC TRAUMA; CELL INJURY; LOUD SOUND; E-SELECTIN; INNER-EAR; KAPPA-B AB Sound can damage peripheral cochlear function through a number of mechanisms, and emerging evidence suggests that inflammation may be one of them. Using immunohistochemistry and poly (ADP-ribose) polymerase-1 (PARP-1) mutant mice, we tested whether PARP-1 contributes to loud-sound induced cochlear lateral wall damage by triggering inflammatory effects, including upregulating intercellular adhesion molecule-1 (ICAM-1), P-selectin and platelet-endothelial cell-adhesion molecule-1 (PECAM-1). In control conditions, we found that there was no detectable poly-ADP-ribose (PAR) in the marginal cells and microvessels. ICAM-1 was expressed only at low levels in the vessels of the stria vascularis and the spiral ligament. P-selectin and PECAM-1 were barely detected and only in the vessels of the spiral ligament. Following loud-sound exposure, PAR was detected in numbers of marginal cells and some vessels of the spiral ligament. Also, an elevated expression of ICAM-1 was demonstrated in some vessels of the stria vascularis and spiral ligament. Increased expression of P-selectin and PECAM-1 were mainly located in the vessels of the spiral ligament, while increased populations of non-migrated and migrated leukocytes were observed in the area of the spiral ligament. However, neither increased expression of adhesion proteins nor increased population of leukocytes, were observed in the PARP-1 knockout mouse. We thus conclude that loud-sound stress activates the expression of adhesion molecular proteins in the lateral wall and that PARP-1 modulates inflammation-linked protein expression and leukocyte migration. (c) 2006 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol & Head & Neck Surg, Oregon Hearing Res Ctr NRC04, Portland, OR 97239 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Shanghai Jiao Tong Univ, Renji Hosp, Dept Otolaryngol, Shanghai 200030, Peoples R China. RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol & Head & Neck Surg, Oregon Hearing Res Ctr NRC04, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97239 USA. EM nuttall@ohsu.edu CR Bohórquez Jorge, 2005, J Neural Eng, V2, P1, DOI 10.1088/1741-2560/2/2/001 Chiarugi A, 2002, TRENDS PHARMACOL SCI, V23, P122, DOI 10.1016/S0165-6147(00)01902-7 Cuzzocrea S, 2002, EUR CYTOKINE NETW, V13, P285 deMurcia JM, 1997, P NATL ACAD SCI USA, V94, P7303, DOI 10.1073/pnas.94.14.7303 Devalaraja-Narashimha K, 2005, PHARMACOL RES, V52, P44, DOI 10.1016/j.phrs.2005.02.022 DISCOLO C, 2004, NOIS INJ MECH P 27 A Erdelyi K, 2005, CELL MOL LIFE SCI, V62, P751, DOI 10.1007/s00018-004-4506-0 Fiorillo C, 2002, FREE RADICAL RES, V36, P79, DOI 10.1080/10715760290001326 Goldwyn BG, 1997, LARYNGOSCOPE, V107, P1112, DOI 10.1097/00005537-199708000-00019 Guo YK, 2005, HEARING RES, V208, P54, DOI 10.1016/j.heares.2005.05.010 Hakuba N, 2005, NEUROREPORT, V16, P1545 HASHIMOTO S, 2004, NOISE INJURY MECHANI Hassa PO, 2002, CELL MOL LIFE SCI, V59, P1534, DOI 10.1007/s00018-002-8527-2 Herceg Z, 2001, MUTAT RES-FUND MOL M, V477, P97, DOI 10.1016/S0027-5107(01)00111-7 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 HULTCRANTZ E, 1987, AM J OTOLARYNG, V8, P16, DOI 10.1016/S0196-0709(87)80014-5 Jiang ZD, 2005, EUR J PEDIATR, V164, P84, DOI 10.1007/s00431-0047-1569-8 Kaplan J, 2005, SHOCK, V23, P233, DOI 10.1097/01.shk.0000151026.30624.ef Khandoga A, 2002, HEPATOLOGY, V36, p209A Kuokkanen J, 1997, Acta Otolaryngol Suppl, V529, P80 LAMM K, 1999, COCHLEAR PHARM NOISE, P150 Le'Negrate G, 2000, J CELL BIOL, V150, P1479, DOI 10.1083/jcb.150.6.1479 Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061 Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9 NUTTALL AL, 1987, HEARING RES, V27, P121, DOI 10.1016/0378-5955(87)90013-X NUTTALL AL, 2002, ASS RES OT MIDW M ST NUTTALL AL, 1999, NOISE HLTH, V5, P17 Olanders K, 2002, SHOCK, V18, P86, DOI 10.1097/00024382-200207000-00016 OMELCHENKO IA, 2005, ASS RES OT MIDW M NE PAGE CL, 1998, BIOCHEM BIOPH RES CO, V243, P451, DOI 10.1006/bbrc.1998.8113 Pahl HL, 1999, ONCOGENE, V18, P6853, DOI 10.1038/sj.onc.1203239 Piconi L, 2004, J THROMB HAEMOST, V2, P1453, DOI 10.1111/j.1538-7836.2004.00835.x QUIRK WS, 1992, HEARING RES, V63, P102, DOI 10.1016/0378-5955(92)90079-3 Scalia R, 1998, J LEUKOCYTE BIOL, V64, P163 SEIDMAN MD, 1999, MECH ALTERATIONS MIC, P226 Sharp C, 2001, INFLAMMATION, V25, P157, DOI 10.1023/A:1011032313445 SHI XR, 2002, SOC NEUR M SAN DIEG Shi XR, 2003, BRAIN RES, V967, P1, DOI 10.1016/S00066-8993(02)04090-8 Siemiatkowski A, 2002, INTENS CARE MED, V28, pS174 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006 Tempera I, 2005, J CELL PHYSIOL, V205, P387, DOI 10.1002/jcp.20414 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 ULEHLOVA L, 1983, ARCH OTO-RHINO-LARYN, V237, P133, DOI 10.1007/BF00463612 VIRAG L, 2004, MED SCI MONITOR, V10, DOI UNSP BR77-BR83 Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51 WANTANABE K, 2002, ANTICANCER RES, V22, P4081 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Zingarelli B, 1998, CIRC RES, V83, P85 Zingarelli B, 1999, SHOCK, V11, P13, DOI 10.1097/00024382-199906001-00045 NR 51 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 1 EP 14 DI 10.1016/j.heares.2006.10.011 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300001 PM 17184942 ER PT J AU Coffin, AB Dabdoub, A Kelley, MW Popper, AN AF Coffin, Allison B. Dabdoub, Alain Kelley, Matthew W. Popper, Arthur N. TI Myosin VI and VIIa distribution among inner ear epithelia in diverse fishes SO HEARING RESEARCH LA English DT Article DE teleost; hearing; hair cell; saccule; utricle; lagena; myosin ID SENSORY HAIR-CELLS; NONSYNDROMIC HEARING-LOSS; SNELLS-WALTZER MICE; UNCONVENTIONAL MYOSIN; HEREDITARY DEAFNESS; STRUCTURAL INTEGRITY; CROSS-LINKS; MUTATIONS; STEREOCILIA; ZEBRAFISH AB Unconventional myosins are critical motor proteins in the vertebrate inner ear. Mutations in any one of at least six different myosins can lead to human hereditary deafness, but the precise functions of these proteins in the ear are unknown. This study uses a comparative approach to better understand the role of myosins VI and VIIa in vertebrate ears by examining protein distribution for these two myosins in the ears of evolutionarily diverse fishes and the aquatic clawed toad Xenopus laevis. Both myosins are expressed in the inner ears of all species examined in this study. Myo7a localizes to hair cells, particularly the actin-rich hair bundle, in all species studied. Myo6 also localizes to hair cells, but its distribution differs between species and end organs. Myo6 is found in hair bundles of most fish and frog epithelia examined here but not in anterior and posterior utricular hair bundles of American shad. These results show that myo7a distribution is highly conserved in diverse vertebrates and suggest functional conservation as well. The finding of myo6 in fish and Xenopus hair bundles, however, suggests a novel role for this protein in anamniotic hair cells. The lack of myo6 in specific American shad utricular hair bundles indicates a unique quality of these cells among fishes, perhaps relating to ultrasound detection capability that is found in this species. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Maryland, Dept Biol, College Pk, MD 20742 USA. Natl Inst Deafness & Other Commun Disorders, Sect Dev Neurosci, NIH, Bethesda, MD 20892 USA. Univ Maryland, Neurosci & Cognit Sci Program, College Pk, MD 20742 USA. Univ Maryland, Ctr Comparat & Evolutionary Biol Hearing, College Pk, MD 20742 USA. RP Coffin, AB (reprint author), Queens Univ, Dept Biol, Kingston, ON K7L 3N6, Canada. EM coffina@biology.queensu.ca; dabdouba@nidcd.nih.gov; kelleymt@nidcd.nih.gov; apopper@umd.edu CR Ahmed ZM, 2003, AM J HUM GENET, V72, P1315, DOI 10.1086/375122 Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729 AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 Belyantseva IA, 2003, P NATL ACAD SCI USA, V100, P13958, DOI 10.1073/pnas.2334417100 Belyantseva IA, 2003, TRENDS MOL MED, V9, P458, DOI 10.1016/j.molmed.2003.09.008 Berg JS, 2001, MOL BIOL CELL, V12, P780 Blaxter J. H. S., 1981, HEARING SOUND COMMUN, P39 Burighel P, 2003, J COMP NEUROL, V461, P236, DOI 10.1002/cne.10666 Coffin A., 2004, EVOLUTION VERTEBRATE, P55 COFFIN AB, 2005, THESIS U MARYLAND CO Cryns K, 2004, AUDIOL NEURO-OTOL, V9, P2, DOI 10.1159/000074183 DENTON EJ, 1979, J MAR BIOL ASSOC UK, V59, P27 Donaudy F, 2003, AM J HUM GENET, V72, P1571, DOI 10.1086/375654 DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641 Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189 Evans AL, 2000, NAT GENET, V24, P424 Fay R. R., 1988, HEARING VERTEBRATES Fay R.R., 1985, P291 Friedman TB, 1999, AM J MED GENET, V89, P147, DOI 10.1002/(SICI)1096-8628(19990924)89:3<147::AID-AJMG5>3.0.CO;2-6 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 GILLESPIE PG, 1993, NEURON, V11, P581, DOI 10.1016/0896-6273(93)90071-X HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815 Hasson T, 2003, J CELL SCI, V116, P3453, DOI 10.1242/jcs.00669 HASSON T, 1994, J CELL BIOL, V127, P425, DOI 10.1083/jcb.127.2.425 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 Hedges SB, 2002, SCIENCE, V297, P1283 Higgs DM, 2003, J ACOUST SOC AM, V113, P1145, DOI 10.1121/1.1536185 HOSHINO T, 1975, ACTA OTO-LARYNGOL, V80, P43, DOI 10.3109/00016487509121299 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 JACOBS RA, 1990, COLD SH Q B, V55, P547 Kappler JA, 2004, P NATL ACAD SCI USA, V101, P13056, DOI 10.1073/pnas.0405224101 Karolyi IJ, 2003, HUM MOL GENET, V12, P2797, DOI 10.1093/hmg/ddg308 Kros CJ, 2002, NAT NEUROSCI, V5, P41, DOI 10.1038/nn784 Ladich F., 2004, EVOLUTION VERTEBRATE, P95 Lalwani AK, 2000, AM J HUM GENET, V67, P1121 Lanford PJ, 2000, HEARING RES, V143, P1, DOI 10.1016/S0378-5955(00)00015-0 Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976 Liu XZ, 1997, NAT GENET, V17, P268, DOI 10.1038/ng1197-268 Loomis PA, 2003, J CELL BIOL, V163, P1045, DOI 10.1083/jcb.200309093 Lovell JM, 2005, COMP BIOCHEM PHYS A, V142, P286, DOI 10.1016/j.cbpa.2005.07.018 LOWENSTEIN O, 1964, NATURE, V204, P197, DOI 10.1038/204197b0 Lu Z, 2004, J COMP PHYSIOL A, V190, P923, DOI 10.1007/s00359-004-0550-3 Mann DA, 2005, BIOL LETT-UK, V1, P158, DOI 10.1098/rsbl.2004.0241 Mann DA, 2001, J ACOUST SOC AM, V109, P3048, DOI 10.1121/1.1368406 Mann DA, 1998, J ACOUST SOC AM, V104, P562, DOI 10.1121/1.423255 Mann DA, 1997, NATURE, V389, P341, DOI 10.1038/38636 Melchionda S, 2001, AM J HUM GENET, V69, P635, DOI 10.1086/323156 Meyer M, 2004, ABST ASS RES OTOLARY, V27, P325 MEYER M, 2005, EXPLORING ORIGIN VER Nelson JS, 1994, FISHES WORLD, V3 NEUGEBAUER DC, 1984, J NEUROCYTOL, V13, P797, DOI 10.1007/BF01148494 Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9 Popper Arthur N., 2003, P3, DOI 10.1007/978-0-387-22628-6_1 Popper A.N., 1999, COMP HEARING FISH AM, P43 POPPER AN, 1993, BRAIN BEHAV EVOLUT, V41, P14, DOI 10.1159/000113821 POPPER AN, 1981, J COMP PHYSIOL, V144, P27 POPPER AN, 1982, AM ZOOL, V22, P311 POPPER AN, 1987, BRAIN BEHAV EVOLUT, V30, P43, DOI 10.1159/000118637 Probst FJ, 1998, SCIENCE, V280, P1444, DOI 10.1126/science.280.5368.1444 Seiler C, 2004, DEV BIOL, V272, P328, DOI 10.1016/j.ydbio.2004.05.004 Self T, 1999, DEV BIOL, V214, P331, DOI 10.1006/dbio.1999.9424 Self T, 1998, DEVELOPMENT, V125, P557 Sellers JR, 2000, BBA-MOL CELL RES, V1496, P3, DOI 10.1016/S0167-4889(00)00005-7 Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484 TILNEY LG, 1983, J CELL BIOL, V96, P822, DOI 10.1083/jcb.96.3.822 Walsh T, 2002, P NATL ACAD SCI USA, V99, P7518, DOI 10.1073/pnas.102091699 Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447 Warner CL, 2003, EMBO J, V22, P569, DOI 10.1093/emboj/cdg055 Weber E. H., 1820, AURE AUDITU HOMINIS Weil D, 1995, Nature, V374, P60 Wells AL, 1999, NATURE, V401, P505 Whitfield TT, 2002, J NEUROBIOL, V53, P157, DOI 10.1002/neu.10123 YAN HY, 1992, J COMP PHYSIOL A, V171, P105 NR 74 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 15 EP 26 DI 10.1016/j.heares.2006.11.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300002 PM 17204383 ER PT J AU Skjonsberg, A Halsey, K Ulfendahl, M Dolan, DF AF Skjonsberg, Asa Halsey, Karin Ulfendahl, Mats Dolan, David F. TI Exploring efferent-mediated DPOAE adaptation in three different guinea pig strains SO HEARING RESEARCH LA English DT Article DE hearing; heterozygotes; noise resistance; age; presbyacousis ID PRODUCT OTOACOUSTIC EMISSIONS; INDUCED HEARING-LOSS; OLIVOCOCHLEAR REFLEX; ACOUSTIC TRAUMA; MICE; AGE; SUSCEPTIBILITY; PROTECTION; RESISTANCE; INJURY AB The aims of this study were to explore the correlation between DPOAE adaptation magnitude in three different guinea pig strains to examine if the genetic component affects the DPOAE adaptation magnitude. It was also to investigate the correlation between strains with certain characteristics i.e. reduced susceptibility to noise, and early onset of age-dependent hearing loss and the DPOAE adaptation magnitude. The animals were anaesthetized and the 2f1 - f2 DPOAE (f1 = 8 kHz, and f2/f1 = 1.2) adaptation was established with a minimum of 144 combinations of f1;f2 where f1 was held fixed and f2 was varied in 1 dB or 0.4 dB steps. The DPOAE adaptation magnitude was defined as the difference between maximum positive level and the maximum negative level. ABRs were conducted at different age-groups (at 4, 6.3, and 12.5 kHz) to evaluate the progress of hearing thresholds by age. There was a significant difference between strains regarding the hearing loss at one year of age. There was no significant difference in DPOAE adaptation magnitude between strains included in this study and from this we conclude that the DPOAE adaptation magnitude is not a predictor for the susceptibility to noise trauma, or early onset of age-dependent hearing loss, using the methods described in this paper. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Stockholm, Karolinska Hosp, Karolinska Inst, Ctr Hearing & Commun Res,Dept Clin Neurosci, SE-17176 Stockholm, Sweden. Univ Stockholm, Karolinska Hosp, Dept Otolaryngol, SE-17176 Stockholm, Sweden. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Skjonsberg, A (reprint author), Univ Stockholm, Karolinska Hosp, Karolinska Inst, Ctr Hearing & Commun Res,Dept Clin Neurosci, Bldg M1.00, SE-17176 Stockholm, Sweden. EM asa.skjonsberg@ki.se; khalsey@umich.edu; mats.ulfendahl@ki.se; ddolan@umich.edu CR Brown MC, 2003, EXP BRAIN RES, V153, P491, DOI 10.1007/s00221-003-1679-y Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007 Christensen K, 2001, J AM GERIATR SOC, V49, P1512, DOI 10.1046/j.1532-5415.2001.4911245.x Kirk EC, 2003, JARO-J ASSOC RES OTO, V4, P445 Davis RR, 1999, HEARING RES, V134, P9, DOI 10.1016/S0378-5955(99)00060-X Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 Guinan Jr J.J., 1996, COCHLEA, P435 Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010 Heinonen-Guzejev M, 2005, TWIN RES HUM GENET, V8, P245, DOI 10.1375/1832427054253112 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 JIN Z, 2006, HEAR RES Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 KEITHLEY EM, 2005, HEAR RES Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 LI HS, 1994, J OTORHINOLARYNGOL R, V56, P61 Maison SF, 2002, J NEUROSCI, V22, P10838 Maison SF, 2000, J NEUROSCI, V20, P4701 Morrell CH, 1996, J ACOUST SOC AM, V100, P1949, DOI 10.1121/1.417906 PEARSON JD, 1995, J ACOUST SOC AM, V97, P1196, DOI 10.1121/1.412231 Piatto Vânia B., 2005, Rev. Bras. Otorrinolaringol., V71, P216, DOI 10.1590/S0034-72992005000200016 PYE A, 1987, ARCH OTO-RHINO-LARYN, V243, P411, DOI 10.1007/BF00464654 Rehm HL, 2003, EAR HEARING, V24, P270, DOI 10.1097/01.AUD.0000079806.73761.C8 ROSENHALL U, 1987, SCAND AUDIOL, V16, P211, DOI 10.3109/01050398709074943 Skjonsberg A, 2005, AUDIOL NEURO-OTOL, V10, P323, DOI 10.1159/000087349 SKJONSBERG A, UNPUB AUGMENTED OTOT Zennaro O, 1998, ACTA OTO-LARYNGOL, V118, P681 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 NR 29 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 27 EP 33 DI 10.1016/j.heares.2006.11.008 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300003 PM 17224252 ER PT J AU Ohlemiller, KK Gagnon, PM AF Ohlemiller, Kevin K. Gagnon, Patricia M. TI Genetic dependence of cochlear cells and structures injured by noise SO HEARING RESEARCH LA English DT Article DE stria vascularis; spiral ligament; spiral limbus; endocochlear potential; fibrocytes; C57BL/6; CBA/J; melanin ID INDUCED HEARING-LOSS; PRODUCT OTOACOUSTIC EMISSIONS; PERMANENT THRESHOLD SHIFT; SPONTANEOUSLY HYPERTENSIVE RATS; CHLOROQUINE-TREATED RED; GUINEA-PIG COCHLEA; ACOUSTIC TRAUMA; STRIA-VASCULARIS; INNER-EAR; MOUSE COCHLEA AB The acute and permanent effects of a single damaging noise exposure were compared in CBA/J, C57BL/6 (B6), and closely related strains of mice. Two hours of broadband noise (4-45 kHz) at 110 dB SPL led to temporary reduction in the endocochlear potential (EP) of CBA/J and CBA/CaJ (CBA) mice and acute cellular changes in cochlear stria vascularis and spiral ligament. For the same exposure, 136 mice showed no EP reduction and little of the pathology seen in CBA. Eight weeks after exposure, all mice showed a normal EP, but only CBA mice showed injury and cell loss in cochlear lateral wall, despite the fact that B6 sustained larger permanent threshold shifts. Examination of noise injury in B6 congenics carrying alternate alleles of genes encoding otocadherin (Cdh23), agouti protein, and tyrosinase (albinism) indicated that none of these loci can account for the strain differences observed. Examination of CBAxB6 F1 mice and N2 backcross mice to B6 further indicated that susceptibility to noise-related EP reduction and associated cell pathology are inherited in an autosomal dominant manner, and are established by one or a few large effect quantitative trait loci. Findings support a common genetic basis for an entire constellation of noise-related cochlear pathologies in cochlear lateral wall and spiral limbus. Even within species, cellular targets of acute and permanent cochlear noise injury may vary with genetic makeup. (c) 2006 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu CR AXELSSON A, 1983, ACTA OTO-LARYNGOL, V96, P215, DOI 10.3109/00016488309132894 BARRENAS M-L, 1991, British Journal of Audiology, V25, P303, DOI 10.3109/03005369109076602 Barrenas ML, 2000, AUDIOLOGY, V39, P238 Barrenas ML, 1997, AUDIOLOGY, V36, P187 BEAGLEY HA, 1965, ACTA OTOLARYNGOL, V60, P437, DOI 10.3109/00016486509127027 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 Borg E, 1995, Scand Audiol Suppl, V40, P1 BORG E, 1982, HEARING RES, V8, P117, DOI 10.1016/0378-5955(82)90070-3 Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007 CONLEE JW, 1988, ACTA OTO-LARYNGOL, V106, P64, DOI 10.3109/00016488809107372 COVELL WP, 1953, J COMP NEUROL, V99, P43, DOI 10.1002/cne.900990104 Davis R R, 2003, Noise Health, V5, P19 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 DUVALL AJ, 1974, ANN OTO RHINOL LARYN, V83, P498 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FREDELIUS L, 1987, HEARING RES, V30, P157, DOI 10.1016/0378-5955(87)90133-X Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HAMERS FPT, 2002, AUDIOL NEURO-OTOL, V8, P305 HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HEGMANN JP, 1981, BEHAV GENET, V11, P103, DOI 10.1007/BF01065621 HENRY KR, 1982, BEHAV GENET, V12, P563, DOI 10.1007/BF01070410 Hequembourg S, 2001, JARO, V2, P118 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Hoya N, 2004, NEUROREPORT, V15, P1597, DOI 10.1097/01.wnr.0000133226.94662.80 IDE M, 1990, Auris Nasus Larynx, V17, P1 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002 JOHNSSON LG, 1976, ANN OTO RHINOL LARYN, V85, P725 KANNO H, 1993, ACTA OTO-LARYNGOL, V113, P26, DOI 10.3109/00016489309135762 KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H Kozel PJ, 2002, HEARING RES, V164, P231, DOI 10.1016/S0378-5955(01)00420-8 Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4 Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Liberman MC, 1982, NEW PERSPECTIVES NOI, P105 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061 Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152 Morizane I, 2005, NEUROREPORT, V16, P799, DOI 10.1097/00001756-200505310-00004 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 OHLEMILLER KK, 2003, ABSTR ASS RES OTOLAR, V26, P268 Ohlemiller KK, 2006, HEARING RES, V220, P10, DOI 10.1016/j.heares.2006.06.012 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Okamoto Y, 2005, AUDIOL NEURO-OTOL, V10, P220, DOI 10.1159/000084843 ORTMANN AJ, 2004, ABSTR ASS RES OTOLAR, V27, P168 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X SALT AN, 1987, LARYNGOSCOPE, V97, P984 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SANDULACHE R, 1994, GENETICS, V137, P1079 SANTI PA, 1978, OTOLARYNG HEAD NECK, V86, P354 SAUNDERS JC, 1991, J ACOUST SOC AM, V90, P136, DOI 10.1121/1.401307 SAUNDERS JC, 1980, NEW PERSPECTIVES NOI, P229 Schmiedt RA, 2002, J NEUROSCI, V22, P9643 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 Spicer SS, 1998, HEARING RES, V118, P1, DOI 10.1016/S0378-5955(98)00006-9 Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006 SPOENDLI.H, 1973, ACTA OTO-LARYNGOL, V75, P220, DOI 10.3109/00016487309139699 SYKA J, 1981, HEARING RES, V4, P287, DOI 10.1016/0378-5955(81)90013-7 TACHEUCHI S, 2000, BIOPHYS J, V79, P2572 Todt I, 1999, PFLUG ARCH EUR J PHY, V438, P865, DOI 10.1007/s004240051117 ULEHLOVA L, 1983, ARCH OTO-RHINO-LARYN, V237, P133, DOI 10.1007/BF00463612 Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017 Voisey J, 2002, PIGM CELL RES, V15, P10, DOI 10.1034/j.1600-0749.2002.00039.x Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wangemann P., 1996, COCHLEA, P130 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 WARD WD, 1982, NEW PERSPECTIVES NOI, P423 WARD WD, 1971, ANN OTO RHINOL LARYN, V80, P881 Wolters FLC, 2003, HEARING RES, V179, P53, DOI 10.1016/S0378-5955(03)00080-7 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 2006, NEUROSCI LETT, V395, P18, DOI 10.1016/j.neulet.2005.10.045 Yamasoba T, 2003, NEUROSCI LETT, V347, P171, DOI 10.1016/S0304-3940(03)00675-X Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 ZUMGOTTESBERGE AMM, 1988, PIGM CELL RES, V1, P238 NR 86 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 34 EP 50 DI 10.1016/j.heares.2006.11.005 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300004 PM 17175124 ER PT J AU McCullough, BJ Adams, JC Shilling, DJ Feeney, MP Sie, KCY Tempel, BL AF McCullough, Brendan J. Adams, Joe C. Shilling, Dustin J. Feeney, M. Patrick Sie, Kathleen C. Y. Tempel, Bruce L. TI 3p-syndrome defines a hearing loss locus in 3p25.3 SO HEARING RESEARCH LA English DT Article DE 3p-syndrome.; hearing loss; ATP2B2; PMCA2; deafwaddler ID ENDOLYMPHATIC SAC TUMORS; HAIR-CELL STEREOCILIA; HIPPEL-LINDAU-DISEASE; CONNEXIN 26 GENE; DEAFWADDLER MICE; KNOCKOUT MICE; SHORT ARM; DELETION; MUTATIONS; DEAFNESS AB Deletions affecting the terminal end of chromosome 3p result in a characteristic set of clinical features termed 3p- syndrome. Bilateral, sensorineural hearing loss (SNHL) has been found in some but not all cases, suggesting the possibility that it is due to loss of a critical gene in band 3p25. To date, no genetic locus in this region has been shown to cause human hearing loss. However, the ATP2B2 gene is located in 3p25.3, and haploinsufficiency of the mouse homolog results in SNHL with similar severity. We compared auditory test results with fine deletion mapping in seven previously unreported 3p- syndrome patients and identified a 1.38 Mb region in 3p25.3 in which deletions were associated with moderate to severe, bilateral SNHL. This novel hearing loss locus contains 18 genes, including ATP2B2. ATP2B2 encodes the plasma membrane calcium pump PMCA2. We used immunohistochemistry in human cochlear sections to show that PMCA2 is located in the stereocilia of hair cells, suggesting its function in the auditory system is conserved between humans and mice. Although other genes in this region remain candidates, we conclude that haploinsufficiency of ATP2B2 is the most likely cause of SNHL in 3p- syndrome. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Washington, Sch Med, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Univ Washington, Sch Med, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. Childrens Hosp & Reg Med Ctr, Seattle, WA 98105 USA. RP Tempel, BL (reprint author), Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM brenmcc@u.washington.edu; Joe_Adams@meei.harvard.edu; dustinj@u.washington.edu; pfeeney@u.washington.edu; Kathleen.Sie@seattlechildrens.org; bltempel@u.washington.edu CR Angeloni D, 1999, AM J MED GENET, V86, P482, DOI 10.1002/(SICI)1096-8628(19991029)86:5<482::AID-AJMG15>3.0.CO;2-L Benini D, 1999, EUR J PEDIATR, V158, P955, DOI 10.1007/s004310051256 Choung YH, 2002, LARYNGOSCOPE, V112, P1667, DOI 10.1097/00005537-200209000-00026 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Drumheller T, 1996, J MED GENET, V33, P842, DOI 10.1136/jmg.33.10.842 Dumont RA, 2001, J NEUROSCI, V21, P5066 Duno M, 2004, HUM GENET, V115, P459, DOI 10.1007/s00439-004-1174-y Fernandez T, 2004, AM J HUM GENET, V74, P1286, DOI 10.1086/421474 Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 HIGGINBOTTOM MC, 1982, J MED GENET, V19, P71, DOI 10.1136/jmg.19.1.71 Hinney A, 2002, J CLIN ENDOCR METAB, V87, P2716, DOI 10.1210/jc.87.6.2716 Holt JR, 2000, P NATL ACAD SCI USA, V97, P11730, DOI 10.1073/pnas.97.22.11730 Houghtaling S, 2003, GENE DEV, V17, P2021, DOI 10.1101/gad.1103403 Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7 Kenneson A, 2002, GENET MED, V4, P258, DOI 10.1097/01.GIM.0000020750.60733.CA Kleinjan DA, 2005, AM J HUM GENET, V76, P8, DOI 10.1086/426833 Kleymenova E, 2004, CARCINOGENESIS, V25, P309, DOI 10.1093/carcin/bgh017 Kudo T, 2000, AM J MED GENET, V90, P141, DOI 10.1002/(SICI)1096-8628(20000117)90:2<141::AID-AJMG10>3.0.CO;2-G Lonser RR, 2004, NEW ENGL J MED, V350, P2481, DOI 10.1056/NEJMoa040666 Lumpkin EA, 1998, J NEUROSCI, V18, P6300 Ma RLZ, 2002, SCIENCE, V297, P620, DOI 10.1126/science.1072810 Manski TJ, 1997, JAMA-J AM MED ASSOC, V277, P1461, DOI 10.1001/jama.277.18.1461 McCullough BJ, 2004, HEARING RES, V195, P90, DOI 10.1016/j.heares.2004.05.003 Megerian CA, 2002, OTOL NEUROTOL, V23, P378, DOI 10.1097/00129492-200205000-00026 Merla G, 2006, AM J HUM GENET, V79, P332, DOI 10.1086/506371 NARAHARA K, 1990, AM J MED GENET, V35, P269, DOI 10.1002/ajmg.1320350225 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023 PHIPPS ME, 1994, HUM MOL GENET, V3, P903, DOI 10.1093/hmg/3.6.903 RAMER JC, 1989, AM J MED GENET, V33, P108, DOI 10.1002/ajmg.1320330115 Robinson SW, 2003, AM J HUM GENET, V72, P1047, DOI 10.1086/374319 Santangelo Susan L, 2005, Ophthalmic Genet, V26, P61, DOI 10.1080/13816810490967944 Schultz JM, 2005, NEW ENGL J MED, V352, P1557, DOI 10.1056/NEJMoa043899 Street VA, 1998, NAT GENET, V19, P390 Wood JD, 2004, JARO-J ASSOC RES OTO, V5, P99, DOI 10.1007/s10162-003-4022-1 Wortley KE, 2004, P NATL ACAD SCI USA, V101, P8227, DOI 10.1073/pnas.0402763101 Yamoah EN, 1998, J NEUROSCI, V18, P610 NR 39 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 51 EP 60 DI 10.1016/j.heares.2006.11.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300005 PM 17208398 ER PT J AU Pouyatos, B Gearhart, C Nelson-Miller, A Fulton, S Fechter, L AF Pouyatos, Benoit Gearhart, Caroline Nelson-Miller, Alisa Fulton, Sherry Fechter, Laurence TI Oxidative stress pathways in the potentiation of noise-induced hearing loss by acrylonitrile SO HEARING RESEARCH LA English DT Article DE acrylonitrile; L-N acetylcysteine; sodium thiosulfate; 4-methylpyrazole; noise; hearing loss; hair cell loss; ototoxicity; reactive oxygen species; oxidative stress; glutathione; cyanide; superoxide dismutase ID SUPEROXIDE-DISMUTASE; IMPULSE NOISE; COCHLEAR FUNCTION; CARBON-MONOXIDE; FREE-RADICALS; GLUTATHIONE; PROTECTION; OXYGEN; SUSCEPTIBILITY; EXPOSURE AB We hypothesize that the disruption of antioxidant defenses is a key mechanism whereby chemical contaminants can potentiate noise-induced hearing loss (NIHL). This hypothesis was tested using acrylonitrile (ACN), a widely used industrial chemical whose metabolism is associated with glutathione (GSH) depletion and cyanide (CN) generation. CN, in turn, can inhibit Cu/Zn superoxide dismutase (SOD). We have shown previously that ACN potentiates NIHL, even with noise exposure approaching permissible occupational levels. However, the relative involvement of GSH depletion and/or CN production in this potentiation is still unknown. In this study, we altered these metabolic pathways pharmacologically in order to further delineate the role of specific antioxidants in the protection of the cochlea. We investigated the effects of sodium thiosulfate (STS), a CN inhibitor, 4-methylpyrazole (4MP), a drug that blocks CN generation by competing with CYP2E1, and L-N-acetylcysteine (L-NAC), a pro-GSH drug, in order to distinguish between GSH depletion and CN production as the mechanism responsible for potentiation of NIHL by ACN. Long-Evans rats were exposed to an octave-band noise (97 dB SPL, 4 h/day, 5 days) and ACN (50 mg/kg). Separate pre-treatments with STS (150 mg/kg), 4MP (100 mg/kg) and L-NAC (4 x 400 mg/kg) all dramatically reduced blood CN levels, but Only L-NAC significantly protected GSH levels in both the liver and the cochlea. Concurrently, only L-NAC treatment decreased the auditory loss and hair cell loss resulting from ACN + noise, suggesting that GSH is involved in the protection of the cochlea against reactive oxygen species generated by moderate noise levels. On the other hand, CN does not seem to be involved in this potentiation. Published by Elsevier B.V. C1 Jerry L Pettis Mem Vet Adm Med Ctr, Dept Vet Affairs Med Ctr, Loma Linda, CA 92357 USA. RP Pouyatos, B (reprint author), Jerry L Pettis Mem Vet Adm Med Ctr, Dept Vet Affairs Med Ctr, 11201 Benton St, Loma Linda, CA 92357 USA. EM benoit.pouyatos@med.va.gov CR BASELT RC, 1988, CYANIDEANALYTICAL PR, P100 BREEN PH, 1995, TOXICOL APPL PHARM, V134, P229, DOI 10.1006/taap.1995.1188 Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 Fechter LD, 2004, JARO-J ASSOC RES OTO, V5, P90, DOI 10.1007/s10162-003-4028-8 Fechter LD, 2003, TOXICOL SCI, V75, P117, DOI 10.1093/toxsci/kfg169 FEIERMAN DE, 1986, BIOCHEM J, V239, P671 FELDSTEIN M, 1954, J LAB CLIN MED, V44, P166 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x IARC, 2000, IARC MON EV CARC RIS, P1 KIRSCHNER EM, 1996, CHEM ENG NEWS 0410, P10 Kopke R, 2005, ACTA OTO-LARYNGOL, V125, P235, DOI 10.1080/00016480410023038 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Leng G, 2002, TOXICOL LETT, V134, P209, DOI 10.1016/S0378-4274(02)00191-1 Lopez-Gonzalez MA, 1999, HEARING RES, V136, P165, DOI 10.1016/S0378-5955(99)00122-7 MARTIN GK, 2006, CURR PROTOCOLS NEU S, V34, DOI UNSP 8.21C.1 Mazzon E, 2001, EUR J PHARMACOL, V424, P75, DOI 10.1016/S0014-2999(01)01130-X MCFADDEN D, 1986, NATO ASI A, V111, P114 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 Pouyatos B, 2005, TOXICOL APPL PHARM, V204, P46, DOI 10.1016/j.taap.2004.08.015 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Sorbi S, 2000, CLIN NEUROPHARMACOL, V23, P114, DOI 10.1097/00002826-200003000-00010 *SRI, 1984, ACR CHEM EC HDB ORG Tawackoli W, 2001, NEUROTOXICOL TERATOL, V23, P157, DOI 10.1016/S0892-0362(01)00135-0 Thier R, 2000, ARCH TOXICOL, V74, P184, DOI 10.1007/s002040000109 TIETZE F, 1969, ANAL BIOCHEM, V27, P502, DOI 10.1016/0003-2697(69)90064-5 VESEY CJ, 1985, ANESTHESIOLOGY, V62, P415, DOI 10.1097/00000542-198504000-00008 WEISIGER RA, 1973, J BIOL CHEM, V248, P3582 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 39 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 61 EP 74 DI 10.1016/j.heares.2006.11.009 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300006 PM 17222524 ER PT J AU Luo, H Boemio, A Gordon, M Poeppel, D AF Luo, Huan Boemio, Anthony Gordon, Michael Poeppel, David TI The perception of FM sweeps by Chinese and English listeners SO HEARING RESEARCH LA English DT Article DE tone language; temporal threshold; FM identification; FM discrimination; signal detection; bias; FM direction selectivity ID PRIMARY AUDITORY-CORTEX; STEADY-STATE RESPONSES; TEMPORAL-ORDER JUDGMENTS; FREQUENCY-MODULATION; LANGUAGE EXPERIENCE; AMPLITUDE-MODULATION; SIGNAL-DETECTION; VISUAL-STIMULI; TONES; DISCRIMINATION AB Frequency-modulated (FM) signals are an integral acoustic component of ecologically natural sounds and are analyzed effectively in the auditory systems of humans and animals. Linearly frequency-modulated tone sweeps were used here to evaluate two questions. First, how rapid a sweep can listeners accurately perceive? Second, is there an effect of native language insofar as the language (phonology) is differentially associated with processing of FM signals? Speakers of English and Mandarin Chinese were tested to evaluate whether being a speaker of a tone language altered the perceptual identification of non-speech tone sweeps. In two psychophysical studies, we demonstrate that Chinese subjects perform better than English subjects in FM direction identification, but not in an FM discrimination task, in which English and Chinese speakers show similar detection thresholds of approximately 20 ms duration. We suggest that the better FM direction identification in Chinese subjects is related to their experience with FM direction analysis in the tone-language environment, even though supra-segmental tonal variation occurs over a longer time scale. Furthermore, the observed common discrimination temporal threshold across two language groups supports the conjecture that processing auditory signals at durations of similar to 20 ms constitutes a fundamental auditory perceptual threshold. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Maryland, Neurosci & Cognit Sci Program, College Pk, MD 20742 USA. Univ Maryland, Dept Biol, College Pk, MD 20742 USA. Univ Maryland, Dept Linguist, College Pk, MD 20742 USA. RP Luo, H (reprint author), Univ Maryland, Neurosci & Cognit Sci Program, 1401 Marine Mount Hall, College Pk, MD 20742 USA. EM luohuan@gmail.com CR Boemio A, 2005, NAT NEUROSCI, V8, P389, DOI 10.1038/nn1409 COLLINS MJ, 1978, J ACOUST SOC AM, V63, P469, DOI 10.1121/1.381738 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 Dimitrijevic A, 2001, EAR HEARING, V22, P100, DOI 10.1097/00003446-200104000-00003 DOOLEY GJ, 1988, J ACOUST SOC AM, V84, P1332, DOI 10.1121/1.397222 DORFMAN DD, 1968, PSYCHOMETRIKA, V33, P117, DOI 10.1007/BF02289677 Doupe AJ, 1999, ANNU REV NEUROSCI, V22, P567, DOI 10.1146/annurev.neuro.22.1.567 Edwards BW, 1997, J ACOUST SOC AM, V101, P1010, DOI 10.1121/1.418024 EDWARDS BW, 1994, J ACOUST SOC AM, V96, P733, DOI 10.1121/1.411440 EDWARDS BW, 1994, J ACOUST SOC AM, V95, P1510, DOI 10.1121/1.408538 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Gandour J, 2002, BRAIN LANG, V83, P268, DOI 10.1016/S0093-934X(02)00033-0 Gandour J, 1998, NEUROREPORT, V9, P2115 GANDOUR J, 2000, J COGNITIVE NEUROSCI, V12, P1 Gordon M., 2002, Acoustics Research Letters Online, V3, DOI 10.1121/1.1429653 HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 HIRSH IJ, 1959, J ACOUST SOC AM, V31, P759, DOI 10.1121/1.1907782 Howie John M., 1976, ACOUSTICAL STUDIES M Hsieh L, 2001, BRAIN LANG, V76, P227, DOI 10.1006/brln.2000.2382 John MS, 2002, EAR HEARING, V23, P106, DOI 10.1097/00003446-200204000-00004 John MS, 2001, AUDIOL NEURO-OTOL, V6, P12, DOI 10.1159/000046805 Kanabus M, 2002, ACTA NEUROBIOL EXP, V62, P263 Klein D, 2001, NEUROIMAGE, V13, P646, DOI 10.1006/nimg.2000.0738 Krishna C, 2005, CRIT REV BIOTECHNOL, V25, P1, DOI 10.1080/07388550590925383 Krishnan A, 2004, HEARING RES, V189, P1, DOI 10.1016/S0378-5955(03)00402-7 LEE L, 1993, PERCEPT PSYCHOPHYS, V53, P157, DOI 10.3758/BF03211726 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 LIBERMAN AM, 1956, J EXP PSYCHOL, V52, P127, DOI 10.1037/h0041240 LUO H, 2006, J NEUROPHYSIOL Madden JP, 1997, J ACOUST SOC AM, V102, P2920, DOI 10.1121/1.420346 MAISTE A, 1989, EAR HEARING, V10, P153, DOI 10.1097/00003446-198906000-00003 MAKELA JP, 1987, HEARING RES, V27, P257, DOI 10.1016/0378-5955(87)90007-4 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 Michalewski HJ, 2005, CLIN NEUROPHYSIOL, V116, P669, DOI 10.1016/j.clinph.2004.09.027 Miller J, 2004, PERCEPT PSYCHOPHYS, V66, P563, DOI 10.3758/BF03194901 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P3119, DOI 10.1121/1.404208 Moore BCJ, 1997, INTRO PSYCHOL HEARIN PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316 Poeppel D, 2003, SPEECH COMMUN, V41, P245, DOI 10.1016/S0167-6393(02)00107-3 ROSENBLITH WA, 1953, J ACOUST SOC AM, V25, P980, DOI 10.1121/1.1907230 Rupp A, 2002, HEARING RES, V174, P19, DOI 10.1016/S0378-5955(02)00614-7 SCHOUTEN MEH, 1986, PERCEPT PSYCHOPHYS, V40, P359, DOI 10.3758/BF03203028 SCHOUTEN MEH, 1985, PERCEPT PSYCHOPHYS, V37, P369, DOI 10.3758/BF03211361 SCHOUTEN MEH, 1989, PERCEPT PSYCHOPHYS, V46, P235, DOI 10.3758/BF03208084 Scott S, 2004, INT J PSYCHOL, V39, P387 STAGRAY JR, 1992, J SPEECH HEAR RES, V35, P1406 SUGA N, 1968, J PHYSIOL-LONDON, V198, P51 SWETS J, 1982, PSYCHOPHYSIOLOGY, V19, P300 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 Wong PCM, 2004, J NEUROSCI, V24, P9153, DOI 10.1523/JNEUROSCI.2225-04.2004 Xu YS, 2006, HUM BRAIN MAPP, V27, P173, DOI 10.1002/hbm.20176 Zampini M, 2005, ACTA PSYCHOL, V118, P277, DOI 10.1016/j.actpsy.2004.10.017 NR 55 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 75 EP 83 DI 10.1016/j.heares.2006.11.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300007 PM 17207949 ER PT J AU Sellick, PM Kirk, DL Patuzzi, R Robertson, D AF Sellick, P. M. Kirk, D. L. Patuzzi, R. Robertson, D. TI Does BAPTA leave outer hair cell transduction channels closed? SO HEARING RESEARCH LA English DT Article DE cochlea; endolymphatic potential; cochlear microphonic; outer hair cells; BAPTA; tip links; stereocilia; mechanotransduction ID TIP LINKS; MECHANOELECTRICAL TRANSDUCTION; MECHANICAL TRANSDUCTION; COCHLEAR POTENTIALS; 4-AMINOPYRIDINE; STEREOCILIA; EMISSIONS AB The calcium chelator BAPTA was iontophoresed into the scala media of the second turn of the guinea pig cochlea. This produced a reduction in low frequency cochlear microphonic (CM) measured in scala media and an elevation of the cochlear action potential (CAP) threshold that lasted for the duration of the experiment. Using two pipettes, one filled with KCl and the other KCl and BAPTA (50, 20 and 5 mM) it was possible to observe the effect of passing current through one electrode while measuring the endolymphatic, potential (EP) with the other. The results demonstrated that current passed via the BAPTA pipette caused a sustained increase in EP of 8.2, 12.9 and 7.8 mV in the three animals used. This increase coincided with the decrease in low frequency CM that indicated a causal connection between the two. In a second series of experiments, pipettes with larger tips were inserted into scala media in the first cochlear turn and BAPTA was allowed to diffuse from the pipette. The results confirmed the relationship between EP increase and the fall of scala media CM. One interpretation of these results is that lowering the Ca2+ concentration of endolymph with BAPTA inhibits mechano-electrical transduction in outer hair cells (OHCs) and leaves the hair cell transduction channels in a closed state, thus increasing the resistance across OHCs and increasing the EP. These findings are consistent with a model of hair cell transduction in which tension on stereo cilia opens the transduction channels. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed Biomol & Chem Sci, Auditory Lab, Discipline Physiol, Nedlands, WA 6009, Australia. RP Sellick, PM (reprint author), Univ Western Australia, Sch Biomed Biomol & Chem Sci, Auditory Lab, Discipline Physiol, Nedlands, WA 6009, Australia. EM psellick@cyllene.uwa.edu.au CR ASSAD JA, 1992, J NEUROSCI, V12, P3291 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1 Gale JE, 2001, J NEUROSCI, V21, P7013 Gillespie PG, 2001, NATURE, V413, P194, DOI 10.1038/35093011 Goodyear RJ, 2005, J COMP NEUROL, V485, P75, DOI 10.1002/cne.20513 Goodyear RJ, 2003, J NEUROSCI, V23, P4878 Kirk DL, 2001, HEARING RES, V161, P99, DOI 10.1016/S0378-5955(01)00363-X Kirk DL, 1998, AUDIOL NEURO-OTOL, V3, P21, DOI 10.1159/000013776 KONISHI T, 1971, J ACOUST SOC AM, V49, P1762, DOI 10.1121/1.1912579 KRONESTERFREI A, 1979, HEARING RES, V1, P81, DOI 10.1016/0378-5955(79)90019-4 MEYER J, 2005, HEAR RES, V20 Meyer J, 1998, J NEUROSCI, V18, P6748 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 Patuzzi RB, 1999, HEARING RES, V133, P155, DOI 10.1016/S0378-5955(99)00067-2 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H Robles L, 2001, PHYSIOL REV, V81, P1305 SELLICK PM, 2005, HEARING RES, V20, pR20 Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 23 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 84 EP 92 DI 10.1016/j.heares.2006.11.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300008 PM 17222995 ER PT J AU Vigneault-MacLean, BK Hall, SE Phillips, DP AF Vigneault-MacLean, Bronwyn K. Hall, Susan E. Phillips, Dennis P. TI The effects of lateralized adaptors on lateral position judgements of tones within and across frequency channels SO HEARING RESEARCH LA English DT Article DE sound lateralization; hemifield model; psychophysics; interaural time difference; selective adaptation ID PRIMARY AUDITORY-CORTEX; SOUND-LOCALIZATION; CAT; NEURONS; SENSITIVITY; LOCATION; LEVEL; NOISE; SPACE; TIME AB Two experiments examined the effect of highly lateralized adaptor tone pulses on the perceived intracranial location of subsequent test tones. In Experiment 1, adaptor tones of each of two frequencies, highly lateralized to opposite sides by a quarter-period interaural time difference (ITD), were found to shift the perceived intracranial location of test tones of each adaptor frequency away from the side of the adaptor. The shift in perceived location was seen for all test tone ITDs with the same sign as the adaptor tone, and sometimes extended to include test tones with small ITDs favoring the opposite ear. The generality of the effect across test tone ITDs of the same sign as the adaptor suggests that the human auditory lateralization system is built of two (left, right) hemifield-tuned azimuthal channels, and that perceived lateral location depends on the relative outputs of those two channels. In Experiment 2, the perceived location of test tones lateralized by ITD was studied in the same listeners at each of the same two frequencies, but after selective adaptation with tone pulses of only one frequency and laterality. The perceived lateral position of test tones with the same frequency as that of the adaptor underwent the same changes as seen in Experiment 1. The perceived lateral position of test tones of the nonadapted frequency usually shifted weakly in the opposite direction, i.e., in the direction expected if the second adaptor from Experiment 1 had actually been present. These data have implications both for the processes mediating selective adaptation using contingent stimuli, and for the azimuthal tuning of auditory spatial channels in man. (c) 2006 Elsevier B.V. All rights reserved. C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, 1355 Oxford St, Halifax, NS B3H 4J1, Canada. EM dennis.phillips@dal.ca RI Phillips, Dennis/A-6496-2011 CR Barlow H. B., 1990, VISION CODING EFFICI, P363 Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 Brugge JF, 1996, J NEUROSCI, V16, P4420 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 CLAREY JC, 1995, J NEUROPHYSIOL, V74, P961 Frisby J. P., 1980, SEEING ILLUSION BRAI JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MOLLON J, 1974, New Scientist, V61, P479 Phillips D P, 2003, J Am Acad Audiol, V14, P518, DOI 10.3766/jaaa.14.9.7 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 Phillips DP, 2006, HEARING RES, V211, P96, DOI 10.1016/j.heares.2005.10.005 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 SCHIANO JL, 1986, J ACOUST SOC AM, V79, P1563, DOI 10.1121/1.393683 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P462 SIEGEL S, 1992, J EXP PSYCHOL GEN, V121, P79, DOI 10.1037//0096-3445.121.1.79 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 YOST WA, 1981, J ACOUST SOC AM, V70, P397, DOI 10.1121/1.386775 ZHANG J, 2005, J NEUROPHYSIOL, V94, P2262 NR 25 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 93 EP 100 DI 10.1016/j.heares.2006.12.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300009 PM 17223297 ER PT J AU Gleich, O Kittel, MC Kiump, GM Strutz, J AF Gleich, Otto Kittel, Malte C. Kiump, Georg M. Strutz, Juergen TI Temporal integration in the gerbil: The effects of age, hearing loss and temporally unmodulated and modulated speech-like masker noises SO HEARING RESEARCH LA English DT Article DE presbyacusis; psychoacoustic testing; psychometric function; simultaneous masking; response latency; comodulation masking release ID AUDITORY-NERVE FIBERS; COMODULATION MASKING RELEASE; SIGNAL DURATION; GUINEA-PIG; MERIONES-UNGUICULATUS; MONGOLIAN GERBIL; COCHLEAR NUCLEUS; PURE-TONES; CAT; THRESHOLDS AB We characterized temporal integration for 2 kHz pure tones with durations between 10 and 1000 ms in young, normal hearing old and old gerbils with a small hearing loss. Thresholds determined in silence increased for durations below 300 ms and were on average more than 10 dB higher for the 10 ms signal than asymptotic thresholds for the long signals. The amount of temporal integration tended to be less in gerbils with hearing loss. Threshold determination was repeated in the same individuals in the presence of speech-like unmodulated and modulated masking noises. Threshold shift due to the maskers was inversely related to the threshold in silence resulting in a reduced inter-individual variability of thresholds in both masking conditions. Thresholds differed systematically between both masker types in a duration dependent fashion. For long signal durations (300 and 1000 ms) thresholds were on average 2 dB lower and for the 10 ms signal 1.9 dB higher in the presence of the modulated masker. These differences in threshold obtained with the two maskers were significant. One hypothesis is that long signals can be detected in the troughs of the modulated masker, while peaks interfere with the detection of short signals. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. Univ Oldenburg, Inst Biol & Umweltwissensch, AG Zoophysiol & Verhalten, D-26111 Oldenburg, Germany. RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany. EM otto.gleich@klinik.uni-regensburg.de; Malte.Kittel@astrazeneca.com; Georg.Klump@uni-oldenburg.de; juergen.strutz@klinik.uni-regensburg.de CR BARU AV, 1971, SENSORY PROCESSES NE, P265 BROWN CH, 1986, J ACOUST SOC AM, V79, P1058, DOI 10.1121/1.393378 Buus S., 2001, JARO-J ASSOC RES OTO, V3, P120 BUUS S, 1985, J ACOUST SOC AM, V78, P1958, DOI 10.1121/1.392652 CLACK TD, 1966, J ACOUST SOC AM, V40, P1140, DOI 10.1121/1.1910199 CLARK WW, 1986, SENSORINEURAL HEARIN, P59 Eddins AC, 1998, HEARING RES, V119, P135, DOI 10.1016/S0378-5955(98)00035-5 CLOCK AE, 1993, HEARING RES, V71, P37, DOI 10.1016/0378-5955(93)90019-W COSTALUPES JA, 1983, HEARING RES, V9, P43, DOI 10.1016/0378-5955(83)90133-8 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 CRANFORD JL, 1977, BRAIN RES, V136, P559, DOI 10.1016/0006-8993(77)90081-6 DAI H, 2000, PHYSL PSYCHOPHYSICAL, P51 Dreschler WA, 2001, AUDIOLOGY, V40, P148 EHRET G, 1976, J ACOUST SOC AM, V59, P1421, DOI 10.1121/1.381030 Fay R. R., 1988, HEARING VERTEBRATES FLORENTINE M, 1988, J ACOUST SOC AM, V84, P195, DOI 10.1121/1.396964 GEISLER CD, 1980, HEARING RES, V3, P317 GERKEN GM, 1990, J ACOUST SOC AM, V88, P767, DOI 10.1121/1.399726 Gleich Otto, 2006, Hear Res, V220, P27, DOI 10.1016/j.heares.2006.06.014 Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74 Gleissner M, 2000, J PERINAT MED, V28, P104, DOI 10.1515/JPM.2000.013 GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 GREEN DM, 1966, SIGNAL DETECTION THE HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 Hamann I, 2004, JARO-J ASSOC RES OTO, V5, P49, DOI 10.1007/s10162-003-3041-2 Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9 HEIL P, 2004, P NAT ACAD SCI, V100, P6151 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 HENDERSO.D, 1969, J ACOUST SOC AM, V46, P474, DOI 10.1121/1.1911714 Kittel M, 2002, HEARING RES, V164, P69, DOI 10.1016/S0378-5955(01)00411-7 KITTEL M, 2003, P 28 GOTT NEUR C 5 M, P1021 Lam CF, 1996, J ACOUST SOC AM, V99, P3689, DOI 10.1121/1.414966 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 MANLEY GA, 1976, J PHYSIOL-LONDON, V258, P323 MCGILL WJ, 1967, J MATH PSYCHOL, V4, P351, DOI 10.1016/0022-2496(67)90030-2 Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839 Neubauer H, 2004, JARO-J ASSOC RES OTO, V5, P436, DOI 10.1007/s10162-004-5031-4 PENNER MJ, 1986, J SPEECH HEAR RES, V29, P400 PENNER MJ, 1972, J MATH PSYCHOL, V9, P186 PLOMP R, 1959, J ACOUST SOC AM, V31, P749, DOI 10.1121/1.1907781 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SCHOONEVELDT GP, 1989, J ACOUST SOC AM, V85, P273, DOI 10.1121/1.397734 SOLECKI JM, 1990, J ACOUST SOC AM, V88, P779, DOI 10.1121/1.399727 STELMACH GE, 1992, HUM FACTORS, V34, P53 Syka J, 2005, HEARING RES, V206, P177, DOI 10.1016/j.heares.2005.01.013 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 VELLUTI RA, 1994, HEARING RES, V72, P19, DOI 10.1016/0378-5955(94)90200-3 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Verhey JL, 1999, J ACOUST SOC AM, V106, P2733, DOI 10.1121/1.428101 WALL L G, 1981, Journal of Auditory Research, V21, P29 WATSON CS, 1972, J ACOUST SOC AM, V52, P633, DOI 10.1121/1.1913153 WATSON CS, 1969, J ACOUST SOC AM, V46, P989, DOI 10.1121/1.1911819 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Zar JH, 1984, BIOSTATISTICAL ANAL Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 55 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2007 VL 224 IS 1-2 BP 101 EP 114 DI 10.1016/j.heares.2006.12.002 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 139JE UT WOS:000244427300010 PM 17223296 ER PT J AU Huang, J Yang, ZG Ping, JL Liu, X Wu, XH Li, L AF Huang, Juan Yang, Zhigang Ping, Junli Liu, Xian Wu, Xihong Li, Liang TI The influence of the perceptual or fear learning on rats' prepulse inhibition induced by changes in the correlation between two spatially separated noise sounds SO HEARING RESEARCH LA English DT Article DE acoustic startle; prepulse inhibition; sound correlation; fear conditioning; perceptual learning ID ACOUSTIC STARTLE RESPONSE; REFLEX MODIFICATION; ATTENTIONAL MODULATION; GAP DETECTION; INFERIOR COLLICULUS; BACKGROUND-NOISE; TEMPORAL ACUITY; ANIMAL-MODEL; DISCRIMINATION; EYEBLINK AB Perceptually grouping a sound source with its reflections and separating them from irrelevant background noise sounds need computation of sound correlations and are critical for identifying and localizing the sound source in a complex acoustic environment. Using the prepulse inhibition of the acoustic startle reflex (ASR) as a measure, the present study investigated whether rats are able to detect correlation changes between sounds from different spatial locations. The results show that the rat's ASR amplitude was suppressed when the startle-eliciting stimulus was preceded by either an uncorrelated noise fragment or an anti-phase noise fragment that was embedded in two identical (correlated) but spatially separated noises. Suppression of the ASR amplitude increased as the duration of the noise fragment increased from 5 ms to 40 ms. The suppressive effect was also progressively enhanced after rats underwent successive testing sessions. Moreover, an enhanced suppression of the ASR amplitude was observed after rats were exposed to footshock that was precisely paired with a 100-ms correlation-change fragment. The results indicate that rats are able to detect the correlation change between sounds from two separated spatial locations, and the detection can be facilitated by both perceptual learning and emotional learning. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada. Peking Univ, Speech & Hearing Res Ctr, Natl Key Lab Machine Percept, Dept Psychol, Beijing 100871, Peoples R China. RP Li, L (reprint author), Univ Toronto, Ctr Res Biol Commun Syst, Dept Psychol, Mississauga, ON L5L 1C6, Canada. EM liangli@pku.edu.cn CR ABEL SM, 2004, APPL ACOUST, V65 Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Barsz K, 1998, HEARING RES, V115, P13, DOI 10.1016/S0378-5955(97)00173-1 Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857 Bohmelt AH, 1999, INT J PSYCHOPHYSIOL, V32, P239, DOI 10.1016/S0167-8760(99)00019-7 BRAFF DL, 1990, ARCH GEN PSYCHIAT, V47, P181 Carlson S, 1996, HEARING RES, V99, P168, DOI 10.1016/S0378-5955(96)00098-6 CROFTON KM, 1990, PSYCHOBIOLOGY, V18, P467 DAWSON ME, 1993, J ABNORM PSYCHOL, V102, P633, DOI 10.1037//0021-843X.102.4.633 DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034 Fendt M, 2001, PSYCHOPHARMACOLOGY, V156, P216, DOI 10.1007/s002130100794 Filion DL, 2003, BIOL PSYCHOL, V64, P283, DOI 10.1016/S0301-0511(03)00077-2 FILION DL, 1993, BIOL PSYCHOL, V35, P185, DOI 10.1016/0301-0511(93)90001-O FILION DL, 1994, PSYCHOPHYSIOLOGY S, V31, pS46 GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821 GEWIRTZ JC, 1995, BEHAV NEUROSCI, V109, P388, DOI 10.1037//0735-7044.109.3.388 GIBSON JJ, 1955, PSYCHOL REV, V62, P32, DOI 10.1037/h0048826 GRAHAM FK, 1975, PSYCHOPHYSIOLOGY, V12, P238, DOI 10.1111/j.1469-8986.1975.tb01284.x Hazlett EA, 2001, BIOL PSYCHIAT, V50, P281, DOI 10.1016/S0006-3223(01)01094-0 Heekeren K, 2004, NEUROPSYCHOBIOLOGY, V49, P88, DOI 10.1159/000076416 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 ISON JR, 1983, PSYCHOL BULL, V94, P3, DOI 10.1037/0033-2909.94.1.3 Ison JR, 2000, HEARING RES, V145, P169, DOI 10.1016/S0378-5955(00)00088-5 Jennings PD, 1996, PSYCHOPHYSIOLOGY, V33, P148, DOI 10.1111/j.1469-8986.1996.tb02118.x KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R Landis C, 1939, STARTLE PATTERN Leitner DS, 1997, PSYCHOPHARMACOLOGY, V134, P213, DOI 10.1007/s002130050444 Leitner DS, 1997, PERCEPT PSYCHOPHYS, V59, P774, DOI 10.3758/BF03206023 Li L, 2003, CHINESE SCI BULL, V48, P2031, DOI 10.1360/03wc0209 Li L, 2002, HEARING RES, V168, P98, DOI 10.1016/S0378-5955(02)00356-8 Li L, 1998, PHYSIOL BEHAV, V65, P133, DOI 10.1016/S0031-9384(98)00143-7 MUSSATWHITLOW BJ, 1997, PSYCHOPHYSIOLOGY S, V34, pS66 Norris CM, 1996, PSYCHOBIOLOGY, V24, P160 PERLSTEIN WM, 1993, PSYCHOPHYSIOLOGY, V30, P347, DOI 10.1111/j.1469-8986.1993.tb02056.x Plappert CF, 2004, BEHAV BRAIN RES, V152, P403, DOI 10.1016/j.bbr.2003.10.025 Plappert CF, 2006, BEHAV NEUROSCI, V120, P16, DOI 10.1037/0735-7044.120.1.16 POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852 REIJMERS LGJE, 1994, BRAIN RES, V661, P174 SABERI K, 1990, J ACOUST SOC AM, V87, P1732, DOI 10.1121/1.399422 Sakai M, 2005, BEHAV NEUROSCI, V119, P961, DOI 10.1037/0735-7044.119.4.961 Schell AM, 2000, PSYCHOPHYSIOLOGY, V37, P409, DOI 10.1017/S0048577200981757 SCHELL AM, 1995, PSYCHOPHYSIOLOGY, V32, P266, DOI 10.1111/j.1469-8986.1995.tb02955.x SIKES RW, 1992, J NEUROPHYSIOL, V68, P1720 Thorne GL, 2005, INT J PSYCHOPHYSIOL, V56, P121, DOI 10.1016/j.ijpsycho.2004.11.006 Turner JG, 2006, BEHAV NEUROSCI, V120, P188, DOI 10.1037/0735-7044.120.1.188 VILLANUEVA L, 1989, J NEUROPHYSIOL, V61, P391 Wright BA, 1997, J NEUROSCI, V17, P3956 Wright BA, 2001, P NATL ACAD SCI USA, V98, P12307, DOI 10.1073/pnas.211220498 WU MF, 1984, J EXP PSYCHOL ANIM B, V10, P221 YOUNG JS, 1983, J ACOUST SOC AM, V73, P1686, DOI 10.1121/1.389391 ZOU D, 2006, IN PRESS NEUROPHARMA NR 52 TC 9 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2006.09.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500001 PM 17098386 ER PT J AU Bielefeld, EC Henderson, D AF Bielefeld, Eric C. Henderson, Donald TI Influence of sympathetic fibers on noise-induced hearing loss in the chinchilla SO HEARING RESEARCH LA English DT Article DE superior cervical ganglion; noise; DPOAE; cochlea; sympathetic ID COCHLEAR BLOOD-FLOW; OTOACOUSTIC EMISSIONS; ACOUSTIC TRAUMA; CERVICAL SYMPATHECTOMY; ADRENERGIC INNERVATION; THRESHOLD SHIFT; GUINEA-PIG; EAR; STIMULATION; GANGLION AB The influence of the sympathetic efferent fibers on cochlear susceptibility to noise-induced hearing loss is still an open question. In the current study, we explore the effects of unilateral and bilateral Superior Cervical Ganglion (SCG) ablation in the chinchilla on hearing loss from noise exposure, as measured with inferior colliculus (IC) evoked potentials, distortion product otoacoustic emissions (DPOAE), and outer hair cell (OHC) loss. The SCG was isolated at the level of the bifurcation of the carotid artery and removed unilaterally in 15 chinchillas. Another eight chinchillas underwent bilateral ablation. Twelve animals were employed as sham controls. Noise exposure was a 4 kHz octave band noise for I It at 110 dB SPL. Results showed improved recovery of DPOAE amplitudes after noise exposure in ears that underwent SCGectomy, as well as lower evoked potential threshold shifts relative to sham controls. Effects of SCGectomy on OHC loss were small. Results of the study suggest that sympathetic fibers do exert some influence on susceptibility to noise, but the influence may not be a major one. (c) 2006 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Bielefeld, EC (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM ecb2@buffalo.edu RI Bielefeld, Eric/D-2015-2012 CR Amonoo-Kuofi HS, 1999, CLIN ANAT, V12, P345, DOI 10.1002/(SICI)1098-2353(1999)12:5<345::AID-CA5>3.0.CO;2-L BORG E, 1982, ACTA PHYSIOL SCAND, V115, P281, DOI 10.1111/j.1748-1716.1982.tb07077.x BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566 DENSERT O, 1974, ACTA OTO-LARYNGOL, V77, P185, DOI 10.3109/00016487409124616 DENSERT O, 1974, ACTA OTO-LARYNGOL, V78, P345, DOI 10.3109/00016487409126365 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Harris KC, 2005, HEARING RES, V208, P14, DOI 10.1016/j.heares.2005.04.009 HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HILDESHEIMER M, 1991, HEARING RES, V51, P49, DOI 10.1016/0378-5955(91)90006-U Hildesheimer M, 2002, HEARING RES, V163, P46, DOI 10.1016/S0378-5955(01)00371-9 Horner KC, 2001, EUR J NEUROSCI, V13, P405, DOI 10.1046/j.0953-816X.2000.01386.x Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 HULTCRANTZ E, 1982, ACTA OTO-LARYNGOL, V94, P439, DOI 10.3109/00016488209128932 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KEMP DT, 1990, EAR HEARING, V11, P93 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M Laurikainen EA, 1997, HEARING RES, V105, P141, DOI 10.1016/S0378-5955(96)00198-0 LEE AH, 1985, HEARING RES, V19, P127, DOI 10.1016/0378-5955(85)90116-9 Le Prell CG, 2003, JARO, V4, P276, DOI 10.1007/s10162-002-3018-6 PICKLES JO, 1979, ACTA OTO-LARYNGOL, V87, P69, DOI 10.3109/00016487909126388 REN TY, 1993, ACTA OTO-LARYNGOL, V113, P146, DOI 10.3109/00016489309135783 SHIBAMORI Y, 1994, BRAIN RES, V646, P223, DOI 10.1016/0006-8993(94)90082-5 SNYDER DL, 1994, LAB ANIMAL, V23, P42 Spoendlin H, 1966, Acta Otolaryngol, V61, P423 Spoendlin H, 1981, Adv Otorhinolaryngol, V27, P1 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zheng XY, 2000, HEARING RES, V144, P187, DOI 10.1016/S0378-5955(00)00065-4 NR 29 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 11 EP 19 DI 10.1016/j.heares.2006.09.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500002 PM 17092669 ER PT J AU Didyk, LA Dirckx, JJJ Bogdanov, VB Lysenko, VA Gorgo, YP AF Didyk, L. A. Dirckx, J. J. J. Bogdanov, V. B. Lysenko, V. A. Gorgo, Yu. P. TI The mechanical reaction of the pars flaccida of the eardrum to rapid air pressure oscillations modeling different levels of atmospheric disturbances SO HEARING RESEARCH LA English DT Article DE middle ear; tympanic membrane; pars flaccida; mechanical reactions; rapid pressure fluctuations ID MIDDLE-EAR PRESSURE; TYMPANIC MEMBRANE; GERBIL; SYSTEM AB Atmospheric pressure fluctuations (APF) might induce mechanical effects in the pars flaccida (PF) of the eardrum. To clarify these effects, different kinds of pressure oscillations (PO), chosen within the range of naturally occurring APF, were applied to the middle ears (ME) of gerbils. The linear displacement of the PF during a PO in the ME was measured by laser interferometry. The compliance of the PF to PO was calculated as the ratio of the amplitude of a PF oscillation to the amplitude of a PO. The displacement of the PF traced the PO in the entire range of frequencies (from 10 mHz to 200 mHz) and amplitudes (from 10 Pa to 110 Pal applied to the ME. Moreover, the PF is found to be displaced by pressure pulses of a few pascals only using a PO with a complex shape. The differences found in the compliance of the PF due to PO with low (less than 20 Pal and high (more than 90 Pa) amplitude point out that the mechanism of pressure regulation in the ME through the mechanical reaction of the PF in gerbil ears is better adapted to ordinary levels of natural APF than to extraordinary levels. The implications of these findings for the physiology of the human ME with respect to adaptation to natural APF are discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine. Univ Antwerp, Lab Biomed Phys, B-2020 Antwerp, Belgium. Taras Shevchenko Natl Univ, Dept Biol, UA-01033 Kiev, Ukraine. RP Didyk, LA (reprint author), Natl Acad Sci Ukraine, Inst Phys, Pr Nauki 46, UA-03028 Kiev, Ukraine. EM didyk@iop.kiev.ua; Joris.Dirckx@ua.ac.be; vlabogd@yahoo.com; lysenko_v@yahoo.com; yugorgo@ukr.net CR Ars B., 2003, FIBROCARTILAGINOUS E, P57 Bedard AJ, 2000, PHYS TODAY, V53, P32, DOI 10.1063/1.883019 Bert P., 1878, PRESSION BAROMETRIQU BULL G, 1988, Z METEOROL, V38, P265 Delyukov A, 1999, INT J BIOMETEOROL, V43, P31, DOI 10.1007/s004840050113 Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2 DIRCKX JJJ, 2003, FIBOCARTILAGINOUS EU, P113 EDEN AR, 1990, LARYNGOSCOPE, V100, P67 Esteve D, 2003, FIBROCARTILAGINOUS E, P159 Esteve D, 2001, J FR ORL, V50, P223 GANNON PJ, 1994, ARCH OTOLARYNGOL, V120, P1382 Gossard E. E., 1975, WAVES ATMOSPHERE ATM GREEN JE, 1968, J ACOUST SOC AM, V44, P1456, DOI 10.1121/1.1911286 HECHT CS, 1993, LARYNGOSCOPE, V103, P1218 HELLSTROM S, 2004, INT S MIDDL EAR PRES, P14 HELLSTROM S, 1983, ACTA PHYSIOL SCAND, V118, P337, DOI 10.1111/j.1748-1716.1983.tb07280.x Kompanets V S, 1968, Voen Med Zh, V6, P61 LEE CY, 2001, HEARING RES, P146 LIM DJ, 1970, ACTA OTO-LARYNGOL, V70, P176 Lumley J, 1964, STRUCTURE ATMOSPHERI MEZERNITSKY PG, 1934, MED METEOROLOGY BRIE MOLVAER OI, 1978, ACTA OTO-LARYNGOL, V85, P24, DOI 10.3109/00016487809121419 NAGAI T, 1989, ARCH OTO-RHINO-LARYN, V246, P210, DOI 10.1007/BF00453664 NAGAI T, 1989, ARCH OTORHINOLARYNGO, V245, P169 RICHNER H, 1978, INT J BIOMETEOROL, V22, P242, DOI 10.1007/BF01552805 ROCKLEY TJ, 1992, ACTA OTO-LARYNGOL, V112, P816, DOI 10.3109/00016489209137479 Sade J, 1997, ACTA OTO-LARYNGOL, V117, P289, DOI 10.3109/00016489709117789 Sade J, 2001, OTOL NEUROTOL, V22, P133 SCHRAPNEL HJ, 1832, LONDON MED GAZ, V10, P120 STENFORS LE, 1979, ACTA OTO-LARYNGOL, V88, P395, DOI 10.3109/00016487909137184 Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 Vladimirskiĭ B M, 1982, Probl Kosm Biol, V43, P174 NR 32 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 20 EP 28 DI 10.1016/j.heares.2006.09.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500003 PM 17098387 ER PT J AU Santurette, S Dau, T AF Santurette, Sebastien Dau, Torsten TI Binaural pitch perception in normal-hearing and hearing-impaired listeners SO HEARING RESEARCH LA English DT Article DE binaural pitch; hearing impairment; melody recognition; spectral and temporal resolution; auditory modeling ID AUDITORY FILTER SHAPES; DICHOTIC PITCHES; EDGE PITCH; LEVEL DIFFERENCES; HUGGINS PITCH; GAP DETECTION; NOISE; SENSATION; DECAY; TIME AB The effects of hearing impairment on the perception of binaural-pitch stimuli were investigated. Several experiments were performed with normal-hearing and hearing-impaired listeners, including detection and discrimination of binaural pitch, and melody recognition using different types of binaural pitches. For the normal-hearing listeners, all types of binaural pitches could be perceived immediately and were musical. The hearing-impaired listeners could be divided into three groups based on their results: (a) some perceived all types of binaural pitches, but with decreased salience or musicality compared to normal-hearing listeners; (b) some could only perceive the strongest pitch types; (c) some were unable to perceive any binaural pitch at all. The performance of the listeners was not correlated with audibility. Additional experiments investigated the correlation between performance in binaural-pitch perception and performance in measures of spectral and temporal resolution. Reduced frequency discrimination appeared to be linked to poorer melody recognition skills. Reduced frequency selectivity was also found to impede the perception of binaural-pitch stimuli. Overall, binaural-pitch stimuli might be very useful tools within clinical diagnostics for detecting specific deficiencies in the auditory system. (c) 2006 Elsevier B.V. All rights reserved. C1 Tech Univ Denmark, Orsted DTU, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark. RP Dau, T (reprint author), Tech Univ Denmark, Orsted DTU, Ctr Appl Hearing Res, DTU Bygning 352,Orsteda Plads, DK-2800 Lyngby, Denmark. EM ses@oersted.dtu.dk; tda@oersted.dtu.dk RI Santurette, Sebastien/B-6872-2009 OI Santurette, Sebastien/0000-0002-6868-5734 CR Akeroyd MA, 2000, J ACOUST SOC AM, V108, P316, DOI 10.1121/1.429467 Akeroyd MA, 2001, J ACOUST SOC AM, V110, P1498, DOI 10.1121/1.1390336 CRAMER EM, 1958, J ACOUST SOC AM, V30, P413, DOI 10.1121/1.1909628 Culling JF, 1999, HEARING RES, V127, P143, DOI 10.1016/S0378-5955(98)00193-2 Culling JF, 1998, J ACOUST SOC AM, V103, P3509, DOI 10.1121/1.423059 Dougherty RF, 1998, NEUROREPORT, V9, P3001, DOI 10.1097/00001756-199809140-00015 DURLACH NI, 1960, J ACOUST SOC AM, V32, P1075, DOI 10.1121/1.1908315 Fisher LD, 1993, BIOSTATISTICS METHOD FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Hartmann W. M., 1984, J ACOUST SOC AM, V75, pS22 Hartmann WM, 2001, J ACOUST SOC AM, V109, P294, DOI 10.1121/1.1331680 Hartmann WM, 2003, J ACOUST SOC AM, V114, P3317, DOI 10.1121/1.1624072 HARTMANN WM, 1984, J ACOUST SOC AM, V75, P528, DOI 10.1121/1.390486 HARTMANN WM, 1993, J ACOUST SOC AM, V93, P3400, DOI 10.1121/1.405695 Julesz B., 1971, FDN CYCLOPEAN PERCEP KLEIN MA, 1981, J ACOUST SOC AM, V70, P51, DOI 10.1121/1.386581 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005 MEDDIS R, 1990, J ACOUST SOC AM, V87, P1813, DOI 10.1121/1.399379 Moore BC., 2003, INTRO PSYCHOL HEARIN PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 RAATGEVER J, 1986, J ACOUST SOC AM, V80, P429, DOI 10.1121/1.394039 SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 Shamma S, 2001, TRENDS COGN SCI, V5, P340, DOI 10.1016/S1364-6613(00)01704-6 SHAMMA SA, 1989, J ACOUST SOC AM, V86, P989, DOI 10.1121/1.398734 Slaney M., 1998, 1998010 INT RES CORP YOST WA, 1991, J ACOUST SOC AM, V89, P838, DOI 10.1121/1.1894644 Zeng FG, 2005, J NEUROPHYSIOL, V93, P3050, DOI 10.1152/jn.00985.2004 ZHANG PX, 2004, J ACOUST SOC AM, V115, P2534 NR 34 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 29 EP 47 DI 10.1016/j.heares.2006.09.013 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500004 PM 17107767 ER PT J AU Guiraud, J Gallego, S Arnold, L Boyle, P Truy, E Collet, L AF Guiraud, Jeanne Gallego, Stephane Arnold, Laure Boyle, Patrick Truy, Eric Collet, Lionel TI Effects of auditory pathway anatomy and deafness characteristics? (1): On electrically evoked auditory brainstem responses SO HEARING RESEARCH LA English DT Article DE EABR latencies; tonotopy; cochlear implant; deafness characteristics ID COCHLEAR IMPLANT USERS; SPEECH PROCESSING STRATEGIES; GUINEA-PIG; ELECTRODE DISCRIMINATION; CURRENT DISTRIBUTIONS; CHANNEL INTERACTION; OPERATING RANGES; DIFFERENT SITES; PITCH RANKING; CURRENT LEVEL AB The purpose of this study was to distinguish the effects of different parameters on latencies of wave IIIe, wave Ve, and interpeak interval IIIe-Ve of electrical auditory brainstem responses (EABRs). EABRs were recorded from all the intra-cochlear electrodes in eight adult HiRes90K (R) cochlear implant users. The relationship between latencies and stimulation sites in the cochlea was characterized to assess activity along the auditory pathway. Audiograms before implantation, psychophysics at first fitting and duration of deafness were used to describe the influence of deafness on latencies. A decreasing baso-apical latency gradient was found for waves IIIe and Ve, while the interpeak interval IIIe-Ve remained the same along the electrode array. Electrical stimulation enabling to stimulate various parts of the cochlea at the same time, this could indicate an anatomical way of compensating for the delay the acoustic wave takes to reach the cochlea apex in a non-implanted ear. However, psychophysical levels were also found to increase at the cochlear base showing that the latency gradient could result from an increasing gradient of neural degeneration toward the base. Correlations of EABR latencies with psychophysics, audiometric data and duration of deafness show that factors linked to deafness have indeed an influence on EABR latencies. The possible explanations for the latency shift observed, whether they are anatomical and/or pathological, are exposed. (c) 2006 Elsevier B.V. All rights reserved. C1 Edouard Herriot Univ Hosp, Dept Audiol & Otorhinolaryngol, F-69437 Lyon, France. Univ Lyon 1, Neurosci & Sensorial Syst Lab, CNRS, UMR 5020, F-69003 Lyon, France. Edouard Herriot Univ Hosp, Dept Otolaryngol Head & Neck Surg, F-69437 Lyon, France. Dept Clin Res, Cambridge CB2 5LD, England. RP Guiraud, J (reprint author), Edouard Herriot Univ Hosp, Dept Audiol & Otorhinolaryngol, 5 Pl Arsonval, F-69437 Lyon, France. EM jeanne_guiraud@hotmail.com; sgallego@hotmail.fr; laurea@abionics.fr; patrickb@abionics.fr; eric.truy@chu-lyon.fr; lionel.collet@chu-lyon.fr CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W ABBAS PJ, 1990, USE MASKING EABR EVA Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 ABBAS PJ, 1988, HEARING RES, V36, P153, DOI 10.1016/0378-5955(88)90057-3 ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 ALLUM JHJ, 1990, SCAND AUDIOL, V19, P263, DOI 10.3109/01050399009070782 BLACK R, 1980, J ACOUST SOC AM, V67, P686 BLACK RC, 1983, ANN NY ACAD SCI, V405, P137, DOI 10.1111/j.1749-6632.1983.tb31626.x Blamey P, 1996, Audiol Neurootol, V1, P293 BRIMACOMBE JA, 1984, AUDIOLOGY, V23, P321 BROWN CJ, 1994, EAR HEARING, V15, P168, DOI 10.1097/00003446-199404000-00006 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554 Cohen L T, 1996, Audiol Neurootol, V1, P265 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Don M, 1998, J ACOUST SOC AM, V104, P2280, DOI 10.1121/1.423741 Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002 Firszt JB, 2003, EAR HEARING, V24, P184, DOI 10.1097/01.AUD.0000061230.58992.9A Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Gallego S, 1996, ACTA OTO-LARYNGOL, V116, P228, DOI 10.3109/00016489609137830 Gallego S, 1997, ACTA OTO-LARYNGOL, V117, P164, DOI 10.3109/00016489709117761 GALLEGO S, 1999, ELECTROENCEPHALOGR C, V108, P521 GARDI JN, 1985, COCHLEAR IMPLANTS, P351 Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4 Gordon KA, 2006, AUDIOL NEURO-OTOL, V11, P7, DOI 10.1159/000088851 GORGA MP, 1988, J SPEECH HEAR RES, V31, P87 GYO K, 1980, ACTA OTO-LARYNGOL, V90, P25, DOI 10.3109/00016488009131694 HALL RD, 1990, HEARING RES, V49, P155, DOI 10.1016/0378-5955(90)90102-U Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711 HERMANN B, 1990, 2 INT COCHL IMPL S I, P57 HINOJOSA R, 1985, ACTA OTO-LARYNGOL, V99, P8, DOI 10.3109/00016488509119139 Hughes ML, 2006, J ACOUST SOC AM, V119, P1527, DOI 10.1121/1.2163273 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 Lafon JC, 1964, TEST PHONETIQUE MESU LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 LUSTED HS, 1984, LARYNGOSCOPE, V94, P878 MASON SM, 1993, ADV OTO-RHINO-LARYNG, V48, P136 MCDERMOTT HJ, 1994, J ACOUST SOC AM, V96, P155, DOI 10.1121/1.410475 McKay CM, 1999, HEARING RES, V136, P159, DOI 10.1016/S0378-5955(99)00121-5 Miller CA, 2003, HEARING RES, V175, P200 MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M MOLLER A, 1985, AUDITORY BRAINSTEM R MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4 Morgan DL, 2001, MUSCLE NERVE, V24, P372, DOI 10.1002/1097-4598(200103)24:3<372::AID-MUS1008>3.0.CO;2-7 MORRIS D, 1999, C IMPL AUD PROSTH AU Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 NAGEL D, 1974, ARCH OTO-RHINO-LARYN, V206, P293, DOI 10.1007/BF00460282 NicolasPuel C, 1996, HEARING RES, V100, P181, DOI 10.1016/0378-5955(96)00112-8 OLEARY SJ, 1985, HEARING RES, V18, P273, DOI 10.1016/0378-5955(85)90044-9 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PFINGST BE, 1980, ANN OTO RHINOL LARYN, V89, P1 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Pfingst BE, 1999, HEARING RES, V134, P105, DOI 10.1016/S0378-5955(99)00079-9 PFINGST BE, 1984, ARCH OTOLARYNGOL, V110, P140 Propst EJ, 2006, LARYNGOSCOPE, V116, P317, DOI 10.1097/01.mlg.0000199401.26626.4b RATTAY F, 1987, J THEOR BIOL, V125, P339, DOI 10.1016/S0022-5193(87)80066-8 SCHMIDT JM, 1985, ACTA OTO-LARYNGOL, V99, P14, DOI 10.3109/00016488509119140 SHALLOP JK, 1990, EAR HEARING, V11, P5, DOI 10.1097/00003446-199002000-00004 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 SIMMONS FB, 1983, ANN NY ACAD SCI, V405, P422, DOI 10.1111/j.1749-6632.1983.tb31656.x SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61 STARR A, 1979, ANN OTO RHINOL LARYN, V88, P550 Thai-Van H, 2002, ANN OTO RHINOL LARYN, V111, P1008 Truy E, 1998, LARYNGOSCOPE, V108, P554, DOI 10.1097/00005537-199804000-00017 VANDENHONERT C, 1986, HEARING RES, V21, P109, DOI 10.1016/0378-5955(86)90033-X VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Vasconcelos Belmiro Cavalcanti do Egito, 2003, Pesqui Odontol Bras, V17, P126 Wable J, 2001, AUDIOLOGY, V40, P265 WALSH SM, 1982, HEARING RES, V7, P281, DOI 10.1016/0378-5955(82)90041-7 WARING MD, 1992, LARYNGOSCOPE, V102, P1293, DOI 10.1288/00005537-199211000-00017 WARING MD, 1995, EVOKED POTENTIAL, V96, P338, DOI 10.1016/0168-5597(95)00022-K YLIKOSKI J, 1974, ACTA OTO-LARYNGOL, P23 ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 82 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 48 EP 60 DI 10.1016/j.heares.2006.09.014 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500005 PM 17157463 ER PT J AU Bohne, BA Harding, GW Lee, SC AF Bohne, Barbara A. Harding, Gary W. Lee, Steve C. TI Death pathways in noise-damaged outer hair cells SO HEARING RESEARCH LA English DT Article DE cell-death pathways; noise damage; chinchilla; histopathology ID CHINCHILLA COCHLEA; INTENSE NOISE; INDUCED APOPTOSIS; EXPOSURE; MICROSCOPY; MORPHOLOGY; ONCOSIS; LENGTH; ORGAN; CORTI AB Using morphological criteria, death pathways in outer hair cells (OHCs) were determined in chinchilla organs of Corti that had been exposed to a high- or moderate-level octave band of noise (OBN) centered at either 0.5 or 4-kHz. The specimens were part of our large collection of plastic-embedded flat preparations of chinchilla cochleae. Three death pathways were identified: (1) oncotic - swollen, pale-staining cell with a swollen nucleus, (2) apoptotic - shrunken, dark-staining cell with a pyknotic nucleus and (3) a newly defined third pathway - no basolateral plasma membrane but cellular debris arranged in the shape of an intact OHC with a nucleus deficient in nucleoplasm. To minimize the secondary loss of OHCs from the entrance of endolymph into the organ of Corti, the specimens used for quantitative analysis of death pathways had the following characteristics: (1) the level to which they were exposed was less than or equal to 95 dB SPL. (2) the exposure duration was 6-216 h, (3) fixation for microscopic examination took place in vivo 1-2 h post-exposure and (4) there were no focal OHC lesions in the organs of Corti. Fifty-eight noise-exposed cochleae met these criteria. In these specimens, degenerating and missing OHCs were classified as to which death pathway the cells had followed or were following. Nine non-noise-exposed cochleae were also evaluated for OHC death pathways. The number of OHCs following the third death pathway was significantly greater in the noise-exposed cochleae than the non-noise-exposed cochleae for total exposure energies greater than those produced by 75 dB SPL for 216 h to a 0.5-kHz OBN and 57 dB SPL for 48 h to a 4-kHz OBN. In cochleae exposed to either octave band, OHCs dying by oncosis or apoptosis were uncommon. (c) 2006 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Bohne, BA (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave, St Louis, MO 63110 USA. EM bohneb@ent.wustl.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X BEAGLEY HA, 1965, ACTA OTOLARYNGOL, V60, P437, DOI 10.3109/00016486509127027 Ben-Sasson S. A., 1995, CELL DEATH DIFFER, P29 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohne BA, 2000, AM J OTOL, V21, P505 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 BOHNE BA, 1976, HEARING DAVIS ESSAYS, P85 BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 BURSCH W, 1990, CARCINOGENESIS, V11, P847, DOI 10.1093/carcin/11.5.847 CLARKE PGH, 1990, ANAT EMBRYOL, V181, P195 COVELL WP, 1963, AMRLTDR6299 Cummings MC, 1997, AM J SURG PATHOL, V21, P88, DOI 10.1097/00000478-199701000-00010 Fried M P, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P285 Han WJ, 2006, HEARING RES, V211, P85, DOI 10.1016/j.heares.2005.10.004 HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4 Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6 Hu BH, 2006, HEARING RES, V211, P16, DOI 10.1016/j.heares.2005.08.006 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Jugdutt BI, 2005, MOL CELL BIOCHEM, V270, P177, DOI 10.1007/s11010-005-4507-9 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kitanaka C, 1999, CELL DEATH DIFFER, V6, P508, DOI 10.1038/sj.cdd.4400526 KRESSEL M, 1994, CELL TISSUE RES, V278, P549 Labat-Moleur F, 1998, J HISTOCHEM CYTOCHEM, V46, P327 Majno G., 1996, CELLS TISSUES DIS PR, P175 MAJNO G, 1995, AM J PATHOL, V146, P3 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Nishizaki K, 1999, HEARING RES, V130, P131, DOI 10.1016/S0378-5955(99)00002-7 RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313 SCHMITT NC, 2004, MIDW RES M ASS RES O, P132 SCHWEICH.JU, 1973, TERATOLOGY, V7, P253, DOI 10.1002/tera.1420070306 Slepecky N. B., 1996, COCHLEA, P44 Wangemann P., 1996, COCHLEA, P130 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 NR 37 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 61 EP 70 DI 10.1016/j.heares.2006.10.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500006 PM 17141990 ER PT J AU Aizawa, N Eggermont, JJ AF Aizawa, Naotaka Eggermont, Jos J. TI Mild noise-induced hearing loss at young age affects temporal modulation transfer functions in adult cat primary auditory cortex SO HEARING RESEARCH LA English DT Article DE cat; auditory cortex; single unit clusters; noise trauma; temporal modulation transfer functions ID RECEPTOR ORGAN DAMAGE; VOICE ONSET TIME; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; AMPLITUDE-MODULATION; RESPONSES; INHIBITION; TRAUMA; REPRESENTATIONS; POTENTIALS AB Kittens were exposed for 2 h to a 1/3rd octave band of noise centered at 5 kHz and at 120 dB SPL. After the exposure, they were kept in a quiet room for at least 4 weeks, and until they were mature. The noise-exposed cats showed on average 16.5 dB higher ABR thresholds and 13.2 dB higher thresholds at the characteristic frequency (CF) than the control cats for frequencies between 4 and 16 kHz. The frequency-tuning curve bandwidth at 20 dB above threshold was significantly increased compared to controls in the CF region of the hearing loss. In noise-exposed cats, temporal modulation-transfer functions (tMTFs) to amplitude-modulated (AM) noise, but not to periodic click trains, showed a marked increase for modulation frequencies (MFs) below 6 Hz. The vectorstrength in noise-exposed cats increased for all modulation frequencies below 32 Hz for neurons with a CF in the range of the hearing loss. The tMTFs for AMnoise in the noise-exposed group were less band-pass compared to the controls, and in that sense the mild hearing loss could be considered as effectively reducing the central activation in the same way as a reduced sound pressure level. Effects of reduced central inhibition are visible in the broadening of frequency-tuning curves, and in the increased limiting rates for AMnoise. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada. EM eggermon@ucalgary.ca CR Aizawa N, 2006, JARO-J ASSOC RES OTO, V7, P71, DOI 10.1007/s10162-005-0026-3 Backoff PM, 1999, HEARING RES, V134, P77, DOI 10.1016/S0378-5955(99)00071-4 BACON SP, 1985, AUDIOLOGY, V24, P117 Bonham BH, 2004, J NEUROPHYSIOL, V91, P841, DOI 10.1152/jn.00017.2003 Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 Eggermont JJ, 2006, J NEUROPHYSIOL, V96, P746, DOI 10.1152/jn.00059.2006 EGGERMONT JJ, 1995, J NEUROPHYSIOL, V73, P227 Fisher N. I., 1993, STAT ANAL CIRCULAR D FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y Koch U, 1998, J NEUROPHYSIOL, V80, P71 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Lu T, 2000, J NEUROPHYSIOL, V84, P236 MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 Ngan EM, 2001, HEARING RES, V156, P44, DOI 10.1016/S0378-5955(01)00264-7 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283 Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SZCZEPANIAK WS, 1995, ANN OTO RHINOL LARYN, V104, P399 Tomita M, 2004, HEARING RES, V193, P39, DOI 10.1016/j.heares.2004.03.002 NR 31 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 71 EP 82 DI 10.1016/j.heares.2006.09.016 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500007 PM 17123758 ER PT J AU Wagner, W Heppelmann, G Muller, J Janssen, T Zenner, HP AF Wagner, W. Heppelmann, G. Mueller, J. Janssen, T. Zenner, H. -P. TI Olivocochlear reflex effect on human distortion product otoacoustic emissions is largest at frequencies with distinct fine structure dips SO HEARING RESEARCH LA English DT Article DE olivocochlear efferents; olivocochlear bundle; olivocochlear reflex; contralateral suppression; otoacoustic emissions; distortion products ID CONTRALATERAL SOUND STIMULATION; COCHLEAR MICROMECHANICAL PROPERTIES; MEDIAL EFFERENT SYSTEM; BROAD-BAND NOISE; ACOUSTIC STIMULATION; RAPID ADAPTATION; TIME-COURSE; GUINEA-PIG; HUMAN EAR; SUPPRESSION AB Activity of the medial olivocochlear efferents can be inferred by measuring the change of the level of distortion product otoacoustic emissions (DPOAE) during ipsilateral or contralateral acoustic stimulation, the so-called medial olivocochlear reflex (MOCR). A limitation of this measurement strategy, however, is the distinct variability of MOCR values depending on DPOAE primary tone levels and frequency, which makes selection of the stimulus parameters difficult. The objective of this study was to evaluate the dependence of MOCR values on DPOAE fine structure in humans. MOCR during contralateral acoustic stimulation was measured at frequencies with distinct non-monotonicity ("dip") in the DPOAE fine structure, and in frequencies with flat fine structure. One hundred and twenty one different primary tone level combinations were used (L-1 = 50-60 dB SPL, L-2 = 35-45 dB SPL, 1 dB steps). The measurement was repeated on another day. The major findings were: (1) Largest MOCR effects can be found in frequencies which exhibit a distinct dip in DPOAE fine structure. (2) Primary tone levels have a critical influence on the magnitude of the MOCR effect. MOCR changes of up to 23 dB following a L, change of only I dB were observed. Averages of the maximum MOCR change per I dB step were in the 3-5 dB-range. Both findings can be interpreted in the light of the DPOAE two-generator model [Heitmann, J., Waldmann, B., Schnitzler, H.U., Plinkert, P.K., Zenner, H.P. 1998. Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1-f2 removes DP-gram fine structure - evidence for a secondary generator. Journal of the Acoustical Society of America 103, 1527-1531]. According to the present results we propose, that assessing MOCR specifically at frequencies with a distinct dip in the DPOAE fine structure, in combination with fine variation of the stimulus tone levels, allows for a more targeted search for maximum MOCR effects. Future studies must show if this approach can contribute to the further clarification of the physiological roles of the olivocochlear efferents. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tubingen, Dept Otorhinolaryngol, Tubingen Hearing Res Ctr, D-72076 Tubingen, Germany. Tech Univ Munich, Dept Otorhinolaryngol, D-8000 Munich, Germany. RP Wagner, W (reprint author), Univ Tubingen, Dept Otorhinolaryngol, Tubingen Hearing Res Ctr, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM w.wagner@med.uni-tuebingen.de CR Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Dhar S, 2004, EAR HEARING, V25, P573, DOI 10.1097/00003446-200412000-00006 Di Girolamo S, 2001, HEARING RES, V162, P80, DOI 10.1016/S0378-5955(01)00370-7 GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010 Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 James AL, 2002, CLIN OTOLARYNGOL, V27, P106, DOI 10.1046/j.1365-2273.2002.00541.x Janssen T, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P498, DOI 10.1142/9789812704931_0068 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Kumar UA, 2004, EAR HEARING, V25, P142, DOI 10.1097/01.AUD.0000120363.56591.E6 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Liberman MC, 1998, J COMMUN DISORD, V31, P471, DOI 10.1016/S0021-9924(98)00019-7 Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286 Luebke AE, 2002, J NEUROSCI, V22, P4241 Maison SF, 2000, J NEUROSCI, V20, P4701 Meinke DK, 2005, HEARING RES, V208, P89, DOI 10.1016/j.heares.2005.05.004 MOULIN A, 1992, ACTA OTO-LARYNGOL, V112, P210 Moulin A, 1998, NEUROREPORT, V9, P3741, DOI 10.1097/00001756-199811160-00031 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K Muller J, 2005, J ACOUST SOC AM, V118, P3747, DOI 10.1121/1.2109127 Murugasu E, 1996, J NEUROSCI, V16, P325 Nieschalk M, 1997, HNO, V45, P378, DOI 10.1007/s001060050113 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 RAJAN R, 1995, J NEUROPHYSIOL, V74, P598 Relkin EM, 2005, JARO-J ASSOC RES OTO, V6, P119, DOI 10.1007/s10162-004-5047-9 Sasaki N, 2000, TOHOKU J EXP MED, V191, P71, DOI 10.1620/tjem.191.71 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 Sliwinska-Kowalska M, 2002, INT J AUDIOL, V41, P113 Timpe-Syverson G K, 1999, J Am Acad Audiol, V10, P371 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Wagner W, 2005, LARYNGOSCOPE, V115, P2021, DOI 10.1097/01.MLG.0000181463.16591.A7 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WHITEHEAD ML, 1991, HEARING RES, V51, P55, DOI 10.1016/0378-5955(91)90007-V WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P1130, DOI 10.1121/1.412226 Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 NR 47 TC 21 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 83 EP 92 DI 10.1016/j.heares.2006.10.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500008 PM 17137736 ER PT J AU Dravis, C Wu, T Chumley, MJ Yokoyama, N Wei, SN Wu, DK Marcus, DC Henkemeyer, M AF Dravis, Christopher Wu, Tao Chumley, Michael J. Yokoyama, Nobuhiko Wei, Shiniu Wu, Doris K. Marcus, Daniel C. Henkemeyer, Mark TI EphB2 and ephrin-B2 regulate the ionic homeostasis of vestibular endolymph SO HEARING RESEARCH LA English DT Article DE Ephrin-B2; EphB2; receptor tyrosine kinase; vestibular epithelium; dark cells; transitional cells; endolymph; potassium; ionic homeostasis ID RECEPTOR TYROSINE KINASE; CRYSTAL-STRUCTURE; STRIA VASCULARIS; DARK CELLS; INNER-EAR; AUTOPHOSPHORYLATION SITE; TRANSEPITHELIAL VOLTAGE; TRANSMEMBRANE LIGANDS; TRANSPORT MECHANISMS; COMMISSURAL AXONS AB The ability to transport cations and anions across epithelia is critical for the regulation of pH, ionic homeostasis, and volume of extracellular fluids. Although the transporters and channels that facilitate ion and water movement across cell membranes are well known, the molecular mechanisms and signal transduction events that regulate these activities remain poorly understood. The Eph family of receptor tyrosine kinases and their membrane-anchored ephrin ligands are well known to transduce bidirectional signals that control axon guidance and other cell migration/adhesion events during development. However, these molecules are also expressed in non-motile epithelial cells, including EphB2 in K+-secreting vestibular dark cells and ephrin-B2 in the adjacent transitional cells of the inner ear. Consistent with these expression patterns, mice with cytoplasmic domain mutations that interfere with EphB2 forward signaling or ephrin-B2 reverse signaling exhibit a hyperactive circling (waltzing) locomotion associated with a decreased amount of endolymph fluid that normally fills the vestibular labyrinth. Endolymph is unusual as an extracellular fluid in that it is normally high in K+ and low in Na+. Direct measurement of this fluid in live animals revealed significant decreases in K+ concentration and endolymphatic potential in both EphB2 and ephrin-B2 mutant mice. Our findings provide evidence that bidirectional signaling mediated by B-subclass Ephs and ephrins controls the production and ionic homeostasis of endolymph fluid and thereby provide the first evidence that these molecules can control the activities of mature epithelial cells. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Texas, SW Med Ctr, Ctr Dev Biol, Dallas, TX 75390 USA. Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA. Natl Inst Deafness & Commun Disorders, Mol Biol Lab, Rockville, MD 20850 USA. RP Henkemeyer, M (reprint author), Univ Texas, SW Med Ctr, Ctr Dev Biol, Dallas, TX 75390 USA. EM mark.henkemeyer@utsouthwestern.edu CR Bergemann AD, 1998, ONCOGENE, V16, P471, DOI 10.1038/sj.onc.1201557 Bissonnette JP, 1996, J COMP NEUROL, V368, P620, DOI 10.1002/(SICI)1096-9861(19960513)368:4<620::AID-CNE12>3.0.CO;2-L Borgnia M, 1999, ANNU REV BIOCHEM, V68, P425, DOI 10.1146/annurev.biochem.68.1.425 BRAMBILLA R, 1995, EMBO J, V14, P3116 Bruckner K, 1997, SCIENCE, V275, P1640, DOI 10.1126/science.275.5306.1640 Buchert M, 1999, J CELL BIOL, V144, P361, DOI 10.1083/jcb.144.2.361 Casey JR, 1998, BIOCHEM CELL BIOL, V76, P709, DOI 10.1139/bcb-76-5-709 Contractor A, 2002, SCIENCE, V296, P1864, DOI 10.1126/science.1069081 Cowan CA, 2004, DEV BIOL, V271, P263, DOI 10.1016/j.ydbio.2004.03.026 Cowan CA, 2002, TRENDS CELL BIOL, V12, P339, DOI 10.1016/S0962-8924(02)02317-6 Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5 Cowan CA, 2001, NATURE, V413, P174, DOI 10.1038/35093123 Dalva MB, 2000, CELL, V103, P945, DOI 10.1016/S0092-8674(00)00197-5 Davis MJ, 2001, AM J PHYSIOL-HEART C, V281, pH1835 DAVIS S, 1994, SCIENCE, V266, P816, DOI 10.1126/science.7973638 Davy A, 2005, DEV DYNAM, V232, P1, DOI 10.1002/dvdy.20200 DEEN PMT, 1998, CURR OPIN CELL BIOL, V10 Dravis C, 2004, DEV BIOL, V271, P272, DOI 10.1016/j.ydbio.2004.03.027 Dubyak GR, 2004, ADV PHYSIOL EDUC, V28, P143, DOI 10.1152/advan.00046.2004 Ellis C, 1996, ONCOGENE, V12, P1727 Flanagan JG, 1997, CELL, V90, P403 Flanagan JG, 1998, ANNU REV NEUROSCI, V21, P309, DOI 10.1146/annurev.neuro.21.1.309 Frisen J, 1999, EMBO J, V18, P5159, DOI 10.1093/emboj/18.19.5159 Gale NW, 1996, NEURON, V17, P9, DOI 10.1016/S0896-6273(00)80276-7 Gale NW, 1996, ONCOGENE, V13, P1343 Gow A, 2004, J NEUROSCI, V24, P7051, DOI 10.1523/JNEUROSCI.1640-04.2004 Grunwald IC, 2001, NEURON, V32, P1027, DOI 10.1016/S0896-6273(01)00550-5 HANKS SK, 1988, SCIENCE, V241, P42, DOI 10.1126/science.3291115 Henderson JT, 2001, NEURON, V32, P1041, DOI 10.1016/S0896-6273(01)00553-0 Henkemeyer M, 1996, CELL, V86, P35, DOI 10.1016/S0092-8674(00)80075-6 Himanen JP, 2004, NAT NEUROSCI, V7, P501, DOI 10.1038/nn1237 Himanen JP, 1998, NATURE, V396, P486 Himanen JP, 2001, NATURE, V414, P933, DOI 10.1038/414933a Hock B, 1998, ONCOGENE, V17, P255, DOI 10.1038/sj.onc.1201907 Hockley D, 1998, JAVA REP, V3, P6 Holland SJ, 1996, NATURE, V383, P722, DOI 10.1038/383722a0 Hollander E, 1997, CNS SPECTRUMS, V2, P16 Jentsch TJ, 2004, NAT CELL BIOL, V6, P1039, DOI 10.1038/ncb1104-1039 Jentsch TJ, 2005, J CLIN INVEST, V115, P2039, DOI 10.1172/JCI25470 Kass RS, 2005, J CLIN INVEST, V115, P1986, DOI 10.1172/JCI26011 Kitajiri S, 2004, HEARING RES, V187, P25, DOI 10.1016/S0378-5955(03)00338-1 Kitajiri SI, 2004, J CELL SCI, V117, P5087, DOI 10.1242/jcs.01393 Kullander K, 2002, NAT REV MOL CELL BIO, V3, P475, DOI 10.1038/nrm856 Lu Q, 2001, CELL, V105, P69, DOI 10.1016/S0092-8674(01)00297-5 MARCUS DC, 1994, HEARING RES, V73, P101, DOI 10.1016/0378-5955(94)90287-9 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 Morsli H, 1998, J NEUROSCI, V18, P3327 Orioli D, 1996, EMBO J, V15, P6035 Pasquale EB, 2005, NAT REV MOL CELL BIO, V6, P462, DOI 10.1038/nrm1662 SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M Stapleton D, 1999, NAT STRUCT BIOL, V6, P44 Stein E, 1998, J BIOL CHEM, V273, P1303, DOI 10.1074/jbc.273.3.1303 Strupp M, 2001, CURR OPIN NEUROL, V14, P11, DOI 10.1097/00019052-200102000-00003 Takasu MA, 2002, SCIENCE, V295, P491, DOI 10.1126/science.1065983 TANAKA M, 2005, EMBO J TANAKA M, 2005, J BIOL CHEM Thanos CD, 1999, SCIENCE, V283, P833, DOI 10.1126/science.283.5403.833 Torres R, 1998, NEURON, V21, P1453, DOI 10.1016/S0896-6273(00)80663-7 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 1996, HEARING RES, V94, P94, DOI 10.1016/0378-5955(96)00008-1 Wangemann P, 2002, AUDIOL NEURO-OTOL, V7, P199, DOI 10.1159/000063736 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6 Wybenga-Groot LE, 2001, CELL, V106, P745, DOI 10.1016/S0092-8674(01)00496-2 Zisch AH, 1998, ONCOGENE, V16, P2657, DOI 10.1038/sj.onc.1201823 NR 67 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 93 EP 104 DI 10.1016/j.heares.2006.10.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500009 PM 17158005 ER PT J AU Palmer, AR Liu, LF Shackleton, TM AF Palmer, Alan R. Liu, Liang-fa Shackleton, Trevor M. TI Changes in interaural time sensitivity with interaural level differences in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE interaural time differences; interaural level differences; inferior colliculus ID SUPERIOR OLIVARY COMPLEX; FREQUENCY SOUND LOCALIZATION; AUDITORY-NERVE FIBERS; CENTRAL NUCLEUS; TEMPORAL DISPARITIES; BINAURAL INTERACTION; MAMMALIAN COCHLEA; PHASE-LOCKING; SINGLE TONES; GUINEA-PIG AB We measured interaural time difference (ITD) sensitivity of 72 cells in the inferior colliculus of the anaesthetised guinea pig as a function of frequency and interaural level difference (ILD). For many units there was a "null" frequency, where varying the ILD made no difference to the position of the peak of the ITD sensitivity. This null frequency was not necessarily at the characteristic frequency (CF): it occurred at CF in less than a third of the neurons for which we had sufficient data (14/50). Equally often, the null occurred below (15/50) and less often, above CF (8/50). The remaining (13/50) neurons showed clear phase changes, but these were erratic or parallel and no null could be attributed. In 33 of the 37 neurons with an identifiable null frequency, the peak ITD moved towards the recording side with increasing ILD, for frequencies above the null, and away for frequencies below the null. The changes in ITD sensitivity expressed as phase were maximally about 0.2-0.3 cycles. Many of the changes in response phase with ILD are in the same direction and magnitude as changes in the phase locking with sound level in auditory nerve fibres. Thus, these changes in phase sensitivity at the basilar membrane and auditory nerve are maintained through to ITD tuning in the IC. This is consistent with a coincidence detection mechanism. However, some of the more complex phenomena which we observe are consistent with convergence at the IC. (c) 2006 Elsevier B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100853, Peoples R China. RP Palmer, AR (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM alan.palmer@ihr.mrc.ac.uk; liangfa-liu@hotmail.com; trevor.shackleton@ihr.mrc.ac.uk CR ALLEN JB, 1983, J ACOUST SOC AM, V73, P2071, DOI 10.1121/1.389575 ANDERSON DJ, 1971, J ACOUST SOC AM, V49, P1131, DOI 10.1121/1.1912474 Batra R, 1997, J NEUROPHYSIOL, V78, P1237 Batra R, 1997, J NEUROPHYSIOL, V78, P1222 BEYERL BD, 1978, BRAIN RES, V145, P209, DOI 10.1016/0006-8993(78)90858-2 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511 BUUNEN TJF, 1978, J ACOUST SOC AM, V64, P772, DOI 10.1121/1.382042 CAIRD D, 1983, EXP BRAIN RES, V52, P385 CARNEY LH, 1994, HEARING RES, V76, P31, DOI 10.1016/0378-5955(94)90084-1 CASE SM, 2005, J NEUROSCI, V25, P7575 CROW G, 1978, J ACOUST SOC AM, V64, P493, DOI 10.1121/1.381999 ELVERLAND HH, 1978, EXP BRAIN RES, V32, P117 Evans EF, 1977, PSYCHOPHYSICS PHYSL, P185 GLEICH O, 1988, HEARING RES, V32, P81, DOI 10.1016/0378-5955(88)90148-7 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1585, DOI 10.1121/1.2143590 HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5 Jeffress L. A., 1948, J COMP PHYSIOL PSYCH, V61, P468 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 Kiang NYS, 1965, ACTA OTOLARYNG STOCK, V59, P186, DOI 10.3109/00016486509124552 KLINKE R, 1980, EXP BRAIN RES, V38, P137 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 1996, HEARING RES, V97, P136 McAlpine D, 1998, J NEUROSCI, V18, P6026 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Palmer AR, 2005, INFERIOR COLLICULUS, P377, DOI 10.1007/0-387-27083-3_13 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Palmer AR, 2004, CURR OPIN NEUROBIOL, V14, P457, DOI 10.1016/j.conb.2004.06.001 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569 Robles L, 2001, PHYSIOL REV, V81, P1305 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 Ruggero MA, 2000, P NATL ACAD SCI USA, V97, P11744, DOI 10.1073/pnas.97.22.11744 RUGGERO MA, 1987, J NEUROPHYSIOL, V58, P379 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SCHWEIZER H, 1981, J COMP NEUROL, V201, P25, DOI 10.1002/cne.902010104 Shackleton TM, 2003, J NEUROSCI, V23, P716 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 46 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 105 EP 113 DI 10.1016/j.heares.2006.10.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500010 PM 17141992 ER PT J AU Pichora-Fuller, MK Schneider, BA MacDonald, E Pass, HE Brown, S AF Pichora-Fuller, M. Kathleen Schneider, Bruce A. MacDonald, Ewen Pass, Hollis E. Brown, Sasha TI Temporal jitter disrupts speech intelligibility: A simulation of auditory aging SO HEARING RESEARCH LA English DT Article DE aging; temporal jitter; neural synchrony; speech intelligibility; word identification ID AGE-RELATED-CHANGES; MASKING-LEVEL DIFFERENCES; NORMAL-HEARING; FREQUENCY-SELECTIVITY; OLD ADULTS; NOISE; YOUNG; DISCRIMINATION; ENVELOPE; INTENSITY AB We disrupted periodicity cues by temporally jittering the speech signal to explore how such distortion might affect word identification. Jittering distorts the fine structure of the speech signal with negligible alteration of either its long-term spectral or amplitude envelope characteristics. In Experiment 1, word identification in noise was significantly reduced in young, normal-hearing adults when sentences were temporally jittered at frequencies below 1.2 kHz. The accuracy of the younger adults in identifying jittered speech in noise was similar to that found previously for older adults with good audiograms when they listened to intact speech in noise. In Experiment 2, to rule out the possibility that the reductions in word identification were due to spectral distortion, we also tested a simulation of cochlear hearing loss that produced spectral distortion equivalent to that produced by jittering, but this simulation had significantly less temporal distortion than was produced by jittering. There was no significant reduction in the accuracy of word identification when only the frequency region below 1.2 kHz was spectrally distorted. Hence, it is the temporal distortion rather than the spectral distortion of the low-frequency components that disrupts word identification. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Toronto, Dept Psychol, Mississauga, ON L5L 1C6, Canada. Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada. Univ British Columbia, Sch Audiol & Speech Sci, Vancouver, BC V6T 1Z3, Canada. RP Pichora-Fuller, MK (reprint author), Univ Toronto, Dept Psychol, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada. EM kpfuller@utm.utoronto.ca RI MacDonald, Ewen/B-8841-2013 CR ABEL SM, 1990, SCAND AUDIOL, V19, P43, DOI 10.3109/01050399009070751 Alain C, 2001, J ACOUST SOC AM, V109, P2211, DOI 10.1121/1.1367243 ALLEN JB, 1977, IEEE T ACOUST SPEECH, V25, P235, DOI 10.1109/TASSP.1977.1162950 BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 BILGER RC, 1984, J SPEECH HEAR RES, V27, P32 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 Divenyi P. L., 1999, CURRENT OPINION OTOL, V7, P282, DOI 10.1097/00020840-199910000-00012 DRULLMAN R, 1995, J ACOUST SOC AM, V98, P1796, DOI 10.1121/1.413378 DRULLMAN R, 1995, J ACOUST SOC AM, V97, P585, DOI 10.1121/1.413112 Dubno JR, 2000, J ACOUST SOC AM, V107, P538, DOI 10.1121/1.428322 Durlach N.I., 1972, F MODERN AUDITORY TH, P371 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Gates George A, 2003, J Am Acad Audiol, V14, P574, DOI 10.3766/jaaa.14.10.6 Grose J H, 1996, J Am Acad Audiol, V7, P168 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HUMES LE, 1988, J ACOUST SOC AM, V83, P188, DOI 10.1121/1.396420 HUMES LE, 1991, J ACOUST SOC AM, V90, P1933, DOI 10.1121/1.401673 Humes L E, 1996, J Am Acad Audiol, V7, P161 MILLS JH, IN PRESS SEM HEAR Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 2003, J PHONETICS, V31, P563, DOI 10.1016/S0095-4470(03)00011-1 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 KATHLEEN M, 1991, J SPEECH HEAR RES, V34, P1410 PICHORAFULLER MK, 1992, J ACOUST SOC AM, V91, P2129, DOI 10.1121/1.403673 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Pichora-Fuller MK, 1998, PERCEPT PSYCHOPHYS, V60, P1197, DOI 10.3758/BF03206169 Pichora-Fuller MK, 2003, INT J AUDIOL, V42, pS11 PICHORAFULLER MK, 1999, J ACOUST SOC AM, V105, P1345, DOI 10.1121/1.426381 RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4 Schneider B. A., 1997, J SPEECH LANGUAGE PA, V21, P111 Schneider BA, 2000, HDB AGING COGNITION, P155 Snyder JS, 2005, COGNITIVE BRAIN RES, V24, P492, DOI 10.1016/j.cogbrainres.2005.03.002 Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294 TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950 TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813 VONGPAISAL T, IN PRESS J SPEECH LA Wingfield A, 1996, J Am Acad Audiol, V7, P175 Zeng FG, 1999, NEUROREPORT, V10, P3429, DOI 10.1097/00001756-199911080-00031 NR 44 TC 57 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 114 EP 121 DI 10.1016/j.heares.2006.10.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500011 PM 17157462 ER PT J AU Gleich, O Hamann, I Kittel, MC Klump, GM Strutz, J AF Gleich, Otto Hamann, Ingo Kittel, Malte C. Klump, Georg M. Strutz, Juergen TI Forward masking in gerbils: The effect of age SO HEARING RESEARCH LA English DT Article DE presbyacusis; aging; peripheral hearing loss; central hearing loss; psychoacoustic testing; temporal processing ID NORMAL-HEARING; GAP DETECTION; OLDER-ADULTS; PSYCHOMETRIC FUNCTIONS; MERIONES-UNGUICULATUS; INFERIOR COLLICULUS; SPEECH RECOGNITION; TEMPORAL ACUITY; AUDITORY-NERVE; CBA MOUSE AB We investigated forward masking in 21 gerbils as a function of age (5-47 months) using 400 ms maskers at 40 dB SPL and a 20 ms, 2.85 kHz probe presented 2.5 ins after the masker. Elevated thresholds for the unmasked probe were only observed in animals older than 3 years. Unmasked thresholds showed no significant age-dependent hearing loss in animals below 3 years of age. In these animals without peripheral hearing loss, we found a significant age-dependent increase of masker-induced threshold shift. A regression analysis revealed that threshold shift increased from 23 dB in I year old gerbils to 37 dB in 3 year old animals. Increased forward masking in these animals with no sign of peripheral hearing loss points to a central processing deficit. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. Univ Oldenburg, AG Zoophysiol & Verhalten, FB 7, D-26111 Oldenburg, Germany. RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany. EM otto.gleich@klinik.uni-regensburg.de; ingo-kva@online.no; Malte.Kittel@astrazeneca.com; Georg.Klump@uni-oldenburg.de; juergen.strutz@klinik.uni-regensburg.de CR AREHART KH, 1990, J SPEECH HEAR RES, V33, P433 BARGONES JY, 1995, J ACOUST SOC AM, V98, P99, DOI 10.1121/1.414446 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Dooling RJ, 2001, HEARING RES, V152, P159, DOI 10.1016/S0378-5955(00)00249-5 Dubno JR, 2003, J ACOUST SOC AM, V113, P2084, DOI 10.1121/1.1555611 Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421 EGAN JP, 1969, PERCEPT PSYCHOPHYS, V6, P209, DOI 10.3758/BF03207019 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Gleich Otto, 2006, Hear Res, V220, P27, DOI 10.1016/j.heares.2006.06.014 Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74 GREEN DM, 1966, SIGNAL DETECTION THE Hamann I, 2004, JARO-J ASSOC RES OTO, V5, P49, DOI 10.1007/s10162-003-3041-2 Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Ison JR, 2003, J ACOUST SOC AM, V114, P522, DOI 10.1121/1.1577553 Lam CF, 1996, J ACOUST SOC AM, V99, P3689, DOI 10.1121/1.414966 Moore B. C. J., 1989, INTRO PSYCHOL HEARIN MOORE BCJ, 1983, J ACOUST SOC AM, V73, P1249, DOI 10.1121/1.389273 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 Poth EA, 2001, HEARING RES, V161, P81, DOI 10.1016/S0378-5955(01)00352-5 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Sommers MS, 1998, J ACOUST SOC AM, V103, P1067, DOI 10.1121/1.421220 Sumner CJ, 2003, J ACOUST SOC AM, V113, P893, DOI 10.1121/1.1515777 Walton J, 1999, HEARING RES, V127, P86, DOI 10.1016/S0378-5955(98)00175-0 Walton JP, 1998, J NEUROSCI, V18, P2764 WATSON CS, 1972, J ACOUST SOC AM, V52, P633, DOI 10.1121/1.1913153 YATES GK, 1985, HEARING RES, V17, P1, DOI 10.1016/0378-5955(85)90124-8 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 NR 31 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 122 EP 128 DI 10.1016/j.heares.2006.11.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500012 PM 17158007 ER PT J AU Frederiksen, BL Caye-Thomasen, P Lund, SP Wagner, N Asal, K Olsen, NV Thomsen, J AF Frederiksen, Birgitte Lidegaard Caye-Thomasen, Per Lund, Soren Peter Wagner, Niels Asal, Korhan Olsen, Niels Vidiendal Thomsen, Jens TI Does erythropoietin augment noise induced hearing loss? SO HEARING RESEARCH LA English DT Article DE EPO; NIHL; inner ear; auditory function; guinea pigs; rats; blood flow ID CENTRAL-NERVOUS-SYSTEM; BLOOD-FLOW; INNER-EAR; PLEIOTROPIC FUNCTIONS; CA2+ MOBILIZATION; IN-VITRO; RECEPTOR; NEUROPROTECTION; EXPRESSION; ISCHEMIA AB Noise-induced hearing loss may result from excessive release of glutamate, nitrogen oxide and reactive oxygen species. The effects of these factors on the inner ear may potentially be prevented or reduced by erythropoietin (EPO), as indicated by previously demonstrated neuro-protective effects of EPO upon damage to the central nervous system and the retina. This paper reports three separate trials, conducted to investigate the hypothesis that noise-induced hearing loss is prevented or reduced by erythropoietin. The trials employed three different modes of drug application, different administration time windows and different rodent species. In trial 1, guinea pigs were exposed to 110 dB SPL, 4-20 kHz wide band noise (WBN) for 8 h. EPO was administered to the round window membrane 24 h after noise exposure, either sustained by pump for a week or by single dose middle ear instillation. In trial 2, rats were exposed to 105 dB SPL, 4-20 kHz WBN for 8 h. EPO was administered by single dose middle ear instillation I or 14 h after noise exposure. In trial 3, rats were exposed to 105 dB SPL, 4-20 kHz WBN for 8 or 3 x 8 h. EPO was injected intraperitoneally I h before noise exposure. Oto-acoustic emissions and auditory brainstem responses (at 16 kHz) were recorded before and after noise exposure in all trials. The noise exposure induced a hearing loss in all animals. In trial 1, no recovery and no improvement of hearing occurred in any treatment group. In trial 2 and 3, a partial hearing recovery was seen. However, the hearing loss of the EPO treated animals was significantly worse than controls in trial 2. In trial 3, the hearing of the EPO treated animals exposed for 3 x 8 h was significantly worse than controls. Thus, surprisingly, the results from 2 of the 3 present trials indicate that erythropoietin may in fact augment noise-induced hearing loss. This is contradictory to the beneficial effect of EPO reported by the vast majority of studies on stressed neural tissues. EPO administration may alter the blood flow dynamics of the cochlear vascular bed during or after noise exposure, by a potential induction of vasoconstriction. This may be the cause of the surprising findings. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Copenhagen, Gentofte Hosp, Dept Otorhinolaryngol Head & Neck Surg, DK-2900 Hellerup, Denmark. Natl Inst Occupat Hlth, AMI, Copenhagen, Denmark. Univ Copenhagen Hosp, Dept Neuroanaesthesia, DK-2100 Copenhagen, Denmark. RP Caye-Thomasen, P (reprint author), Univ Copenhagen, Gentofte Hosp, Dept Otorhinolaryngol Head & Neck Surg, Niels Andersens Vej 65, DK-2900 Hellerup, Denmark. EM peca@gentoftehosp.kbhamt.dk CR BodeBoger SM, 1996, KIDNEY INT, V50, P1255, DOI 10.1038/ki.1996.435 Brines ML, 2000, P NATL ACAD SCI USA, V97, P10526, DOI 10.1073/pnas.97.19.10526 Buemi M, 2003, J NEUROPATH EXP NEUR, V62, P228 Caye-Thomasen P, 2005, HEARING RES, V203, P21, DOI 10.1016/j.heares.2004.11.017 CAYETHOMASEN P, 2004, AUDIOL MED, V2, P174, DOI 10.1080/16513860410018006 CERAMI A, 2002, NEPHROL DIAL TRANS S, V1, P8 Chattopadhyay A, 2000, BIOCHEM PHARMACOL, V59, P419, DOI 10.1016/S0006-2952(99)00277-4 Digicaylioglu M, 2001, NATURE, V412, P641, DOI 10.1038/35088074 Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7 Grimm C, 2002, NAT MED, V8, P718, DOI 10.1038/nm723 Henderson D, 2006, EAR HEARING, V27, P1, DOI 10.1097/01.aud.0000191942.36672.f3 Ishikawa A, 1999, UROL RES, V27, P312 Johnson KL, 1998, ACTA OTO-LARYNGOL, V118, P660 Junk AK, 2002, P NATL ACAD SCI USA, V99, P10659, DOI 10.1073/pnas.152321399 JUUL S, 2002, ACTA PAEDIATR, V438, P36 Juul SE, 1998, PEDIATR RES, V43, P40, DOI 10.1203/00006450-199801000-00007 Kawakami M, 2001, J BIOL CHEM, V276, P39469, DOI 10.1074/jbc.M105832200 Latoni J, 1996, ACTA OTO-LARYNGOL, V116, P388, DOI 10.3109/00016489609137862 Marrero MB, 1998, KIDNEY INT, V53, P1259, DOI 10.1046/j.1523-1755.1998.00887.x Marti HH, 2000, NEWS PHYSIOL SCI, V15, P225 Miller JM, 2003, AUDIOL NEURO-OTOL, V8, P207, DOI 10.1159/000071061 Morakkabati N, 1996, EXP HEMATOL, V24, P392 Morishita E, 1997, NEUROSCIENCE, V76, P105 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 QUIRK WS, 1995, AM J OTOL, V16, P322 Rasmussen AN, 2005, INT J AUDIOL, V44, P237, DOI 10.1080/14992020500057640 Renzi MJ, 2002, MOL BRAIN RES, V104, P86, DOI 10.1016/S0169-328X(02)00323-6 SANAKA M, 1998, P NATL ACAD SCI USA, V95, P4635 Sasaki R, 2001, NEWS PHYSIOL SCI, V16, P110 Sasaki R, 2003, INTERNAL MED, V42, P142, DOI 10.2169/internalmedicine.42.142 Scherer EQ, 2001, J MEMBRANE BIOL, V182, P183, DOI 10.1007/s00232-001-0041-1 Shingo T, 2001, J NEUROSCI, V21, P9733 Siren AL, 2001, EUR ARCH PSY CLIN N, V251, P179, DOI 10.1007/s004060170038 Springborg JB, 2002, BRIT J PHARMACOL, V135, P823, DOI 10.1038/sj.bjp.0704521 UMEMURA K, 1993, EUR ARCH OTO-RHINO-L, V250, P342 Wu XC, 1999, EXP PHYSIOL, V84, P917 NR 36 TC 6 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2007 VL 223 IS 1-2 BP 129 EP 137 DI 10.1016/j.heares.2006.11.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 132LO UT WOS:000243944500013 PM 17158006 ER PT J AU Kluk, K Moore, BCJ AF Kluk, Karolina Moore, Brian C. J. TI Dead regions in the cochlea and enhancement of frequency discrimination: Effects of audiogram slope, unilateral versus bilateral loss, and hearing-aid use SO HEARING RESEARCH LA English DT Article DE dead regions; cortical plasticity; frequency discrimination; reorganisation ID PSYCHOPHYSICAL TUNING CURVES; LOUDNESS PERCEPTION; CORTICAL REORGANIZATION; IMPAIRED TEENAGERS; LOCAL IMPROVEMENT; DIFFERENCE LIMENS; PITCH PERCEPTION; AUDITORY-SYSTEM; ORGAN DAMAGE; LOSS CUTOFF AB Following a restricted lesion of the cochlea, which produces a "dead region" (DR), animal experiments have revealed an increase in the cortical representation of frequencies just below the edge frequency (f(e)) of the DR. This may result ill improved difference limens for frequency (DLFs) just below f(e), In previous studies to assess this, the value off, was not determined precisely. We measured DLFs using human subjects with DRs for whom the values of f(e) had been determined precisely using psychophysical tuning curves. To prevent use of loudness cues, stimuli for the measurement of DLFs had a mean level falling along an equal-loudness contour and levels were roved over a 12-dB range. DLFs were measured for thirteen subjects with a DR in at least one ear. Almost all subjects with bilateral hearing loss exhibited enhanced DLFs near f(e), consistent with cortical reorganisation. This Occurred for subjects whose audiograms had both steep and shallow slopes, regardless of hearing aid use, and for two subjects with low-frequency DRs. One subject with a high-frequency DR in one ear and good hearing in the other ear showed all enhanced DLF in her better ear. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Kluk, K (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM kk278@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Amitay S, 2005, PERCEPT PSYCHOPHYS, V67, P691, DOI 10.3758/BF03193525 Buus S, 2002, JARO-J ASSOC RES OTO, V3, P120, DOI 10.1007/s101620010084 Delhommeau K, 2005, JARO-J ASSOC RES OTO, V6, P171, DOI 10.1007/s10162-005-5055-4 Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 EVANS EF, 1978, AUDIOLOGY, V17, P369 Florentine M, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P30, DOI 10.1007/0-387-27045-0_5 FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021 Gabriel D, 2006, HEARING RES, V213, P49, DOI 10.1016/j.heares.2005.12.007 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Goldstein J.L., 1977, PSYCHOPHYSICS PHYSL, P337 Heinz MG, 2001, NEURAL COMPUT, V13, P2273, DOI 10.1162/089976601750541804 Huss M, 2005, J ACOUST SOC AM, V117, P3841, DOI 10.1121/1.1920167 Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400 KLUK K, IN PRESS INT J AUDIO Kluk K, 2005, HEARING RES, V200, P115, DOI 10.1016/j.heares.2004.09.003 Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LOEB GE, 1983, BIOL CYBERN, V47, P149, DOI 10.1007/BF00337005 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 Micheyl C, 1998, J ACOUST SOC AM, V104, P1039, DOI 10.1121/1.423322 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 Moore B. C. J., 2005, PITCH NEURAL CODING, P234 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102 Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 MOORE BCJ, 1974, J ACOUST SOC AM, V55, P359, DOI 10.1121/1.1914512 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P888, DOI 10.1121/1.1914343 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 MOORE BCJ, 2002, SOUND FDN EARLY AMPL, P153 Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89 Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839 Moore BCJ, 2003, INT J AUDIOL, V42, P465, DOI 10.3109/14992020309081516 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Munro KJ, 2005, INT J AUDIOL, V44, P470, DOI 10.1080/14992020500145783 NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579 PARSONS CH, 2006, P AUSTR NEUR SOC, V16, P28 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 Rajan R, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P224 Rajan R, 1998, J COMP NEUROL, V399, P35 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 SEK A, 2005, INT J AUDIOL, P408 Shamma S, 2000, J ACOUST SOC AM, V107, P2631, DOI 10.1121/1.428649 SRULOVICZ P, 1983, J ACOUST SOC AM, V73, P1266, DOI 10.1121/1.389275 Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9 Thai-Van H, 2004, REV NEUROPSYCHOL, V14, P5 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888 Vestergaard MD, 2003, INT J AUDIOL, V42, P249, DOI 10.3109/14992020309078344 VICKERS D, 2005, P BRIT SOC AUD SHORT, P32 Vogten LL, 1974, FACTS MODELS HEARING, P142 NR 57 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 1 EP 15 DI 10.1016/j.heares.2006.06.020 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300001 PM 17071031 ER PT J AU Moore, BCJ Glasberg, BR Hopkins, K AF Moore, Brian C. J. Glasberg, Brian R. Hopkins, Kathryn TI Frequency discrimination of complex tones by hearing-impaired subjects: Evidence for loss of ability to use temporal fine structure SO HEARING RESEARCH LA English DT Article DE pitch; temporal fine structure; hearing impairment; frequency discrimination; phase sensitivity ID MODULATION RATE DISCRIMINATION; AUDITORY FILTER SHAPES; AMPLITUDE-MODULATION; UNRESOLVED HARMONICS; PITCH PERCEPTION; PHASE-LOCKING; NERVE FIBERS; HAIR-CELLS; GUINEA-PIG; LISTENERS AB For normally hearing subjects, thresholds for discriminating the fundamental frequency (F0) of a complex tone, F0DLs, increase when the number of the lowest harmonic, N, is above eight. A previous study showed that F0DLs were affected by component phase for N above 7, and it was argued that the increase in F0DLs with increasing N reflects a loss of temporal fine structure information. Here, subjects with moderate hearing loss were tested in a similar experiment. F0DLs were measured for tones with three successive harmonics, added in cosine or alternating phase. The center frequency was 2000 Hz. N was varied by changing the mean F0. A background noise was used to mask combination tones. F was roved across trials and N was roved by +/- 1, to reduce use of excitation pattern cues. F0DLs were smaller for cosine than for alternating phase for four out of six subjects, and this occurred once N exceeded 5. 111 contrast to the result for normally hearing subjects, F0DLs decreased with increasing N. Performance was much worse than obtained for normally hearing subjects at the same center frequency, suggesting that most of the hearing-impaired subjects had a poor ability to use temporal fine structure information. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Moore, BCJ (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM bcjm@cam.ac.uk RI Hopkins, Kathryn/E-2203-2012; Moore, Brian/I-5541-2012 CR Arehart KH, 1999, J ACOUST SOC AM, V106, P993, DOI 10.1121/1.427111 AREHART KH, 1994, J ACOUST SOC AM, V95, P3574, DOI 10.1121/1.409975 BACON SP, 1992, J SPEECH HEAR RES, V35, P642 Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Bernstein JGW, 2005, J ACOUST SOC AM, V117, P3816, DOI 10.1121/1.1904268 Buss E, 2004, EAR HEARING, V25, P242, DOI 10.1097/01.AUD.0000130796.93809.09 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 CARLYON RP, 1994, J ACOUST SOC AM, V95, P3541, DOI 10.1121/1.409971 FORMBY C, 1986, AUDIOLOGY, V25, P10 FREYMAN RL, 1987, J SPEECH HEAR RES, V30, P28 Fullgrabe C, 2003, J ACOUST SOC AM, V113, P49, DOI 10.1121/1.1523383 GIBSON L, 1970, 89M AC SOC AM, P63 Gilbert G, 2006, J ACOUST SOC AM, V119, P2438, DOI 10.1121/1.2173522 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gockel H, 2006, J ACOUST SOC AM, V120, P957, DOI 10.1121/1.2211408 Grant KW, 1998, J ACOUST SOC AM, V104, P1051, DOI 10.1121/1.423323 Hall JW, 2003, J ACOUST SOC AM, V113, P986, DOI 10.1121/1.1532004 HARRISON RV, 1979, ARCH OTO-RHINO-LARYN, V224, P71, DOI 10.1007/BF00455226 Hoekstra A., 1977, PSYCHOPHYSICS PHYSL, P263 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 HOUTSMA AJM, 1978, J ACOUST SOC AM, V66, P88 HOUTSMA AJM, 1972, J ACOUST SOC AM, V51, P520, DOI 10.1121/1.1912873 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 Kaernbach C, 2001, J ACOUST SOC AM, V110, P1039, DOI 10.1121/1.1381535 Lacher-Fougere S, 2005, J ACOUST SOC AM, V118, P2519, DOI 10.1121/1.2032747 Lacher-Fougere S, 1998, AUDIOLOGY, V37, P109 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 Lemanska J., 2002, Archives of Acoustics, V27 LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LORENZI C, UNPUB SPEECH PERCEPT Moore B., 1998, COCHLEAR HEARING LOS Moore B. C. J., 2005, PITCH NEURAL CODING, P234 Moore B. C. J., 1976, BRIT J AUDIOL, V10, P17, DOI 10.3109/03005367609078803 Moore B. C. J., 1988, BASIC ISSUES HEARING, P421 MOORE BCJ, 1977, PSYCHOPHYSICS PHYSL, P349 MOORE BCJ, 1979, Q J EXP PSYCHOL, V31, P229, DOI 10.1080/14640747908400722 Moore BCJ, 2002, J ACOUST SOC AM, V111, P327, DOI 10.1121/1.1424871 Moore BCJ, 2006, J ACOUST SOC AM, V119, P480, DOI 10.1121/1.2139070 MOORE BCJ, 1990, ADV AUDIOL, P187 MOORE BCJ, 1993, J ACOUST SOC AM, V93, P452, DOI 10.1121/1.405625 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2006, J ACOUST SOC AM, V120, P934, DOI 10.1121/1.2216906 MOORE BCJ, 1992, BRIT J AUDIOL, V26, P229, DOI 10.3109/03005369209076641 Moore GA, 2003, J ACOUST SOC AM, V113, P977, DOI 10.1121/1.1536631 Moore RA, 2001, BMC INFECT DIS, V1, part. no., DOI 10.1186/1471-2334-1-3 Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852 PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X PATTERSON RD, 1987, J ACOUST SOC AM, V82, P1560, DOI 10.1121/1.395146 Pick G., 1977, PSYCHOPHYSICS PHYSL, P273 PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 PLOMP R, 1968, J ACOUST SOC AM, V43, P764, DOI 10.1121/1.1910894 Renken R, 2004, J ACOUST SOC AM, V115, P2257, DOI 10.1121/1.690076 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 ROSEN S, 1987, PSYCHOPHYSICS SPEECH, P481 Rosen S., 1986, FREQUENCY SELECTIVIT, P373 ROSENS, 1986, AUDITORY FREQUENCY S, P419 RUGGERO MA, 1994, AUDIOLOGY, V33, P131 SCHNEIDER G, 1992, ENDOCYT CELL RES, V9, P1 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 WOOLF NK, 1981, HEARING RES, V4, P335, DOI 10.1016/0378-5955(81)90017-4 NR 67 TC 30 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 16 EP 27 DI 10.1016/j.heares.2006.08.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300002 PM 17030477 ER PT J AU Vautrin, J Travo, C Boyer, C Venteo, S Favre, D Dechesne, CJ AF Vautrin, Jean Travo, Cecile Boyer, Catherine Venteo, Stephanie Favre, Daniel Dechesne, Claude J. TI Ocsyn and mitochondrial-canalicular complexes in vestibular hair cells SO HEARING RESEARCH LA English DT Article DE inner ear; sensory cells; mitochondria; canalicular reticulum; rat; guinea pig; confocal microscopy ID SYNAPTOPHYSIN EXPRESSION; CA2+ HOMEOSTASIS; CUTICULAR PLATE; END-ORGANS; PROTEIN; IMMUNOREACTIVITY; MICROTUBULES; ORGANIZATION; TRANSPORT; GANGLION AB Ocsyn. a syntaxin-interacting protein characterized by Safieddine et al. [Safieddine, S., Ly, C.D., Wang Y.-X., Kachar, B., Petralia, R.S., Wenthold, R.J., 2002. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol. Cell. Neurosci., 20, 343-353] in the guinea pig organ of Corti was primarily identified in organelles located at the subapical region of inner hair cells. They proposed that in cochlear inner hair cells, ocsyn was involved in protein trafficking associated to recycling endosomes. Ocsyn happens to be highly homologous to syntabulin with an almost identical syntaxin-binding domain. Syntabulin is believed to attach syntaxin-containing vesicles to kinesin for their axonal transport along microtubules. The present study shows the distribution of ocsyn in guinea pig and rat vestibular hair cells using immunocytochemistry and confocal microscopy. Ocsyn was characterized by intense immunolabeled spots distributed exclusively in type I and 11 vestibular hair cells. The subcuticular region under the cuticular plate exhibited particularly densely packed spots. In the neck region of the sensory cells, where microtubules are abundant, there was no colocalization of ocsyn and alpha-tubulin. Ocsyn labeled spots were also present in the medial and basal hair cell regions, particularly in the supranuclear and infranuclear regions. Mitochondria are particularly numerous in these three regions (subcuticular, supranuclear and infranuclear). Double labeling of ocsyri and cytochrome c showed that ocsyn was present in the same zones that mitochondria. This, together with the great similarity of ocsyn and syntabulin, suggest that, akin to syntabulin, ocsyn is involved in addressing organelles. We propose that ocsyn is involved in the formation of the canalicular-mitochondrial complexes depicted by Spicer et al. [Spicer, S.S., Thomopoulos, G.N., Schulte, B.A., 1999. Novel membranous structures in apical and basal compartments of inner hear cells. J. Comp. Neurol., 409, 424-437]. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Montpellier 2, LIRDEF, F-34095 Montpellier 5, France. Univ Montpellier 2, INSERM, U343, F-34095 Montpellier, France. INSERM, U583, INM, F-34091 Montpellier 5, France. RP Dechesne, CJ (reprint author), Univ Montpellier 2, LIRDEF, CC 077,Pl Bataillon, F-34095 Montpellier 5, France. EM Jean.Vautrin@univ-montp2.fr; cecile.travo@montp.inserm.fr; c.boyer@univ-montp2.fr; venteo@univ-montp2.fr; favre@univ-montp2.fr; claudejd@univ-montp2.fr CR Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8 Boyer C, 2001, J NEUROSCI, V21, P2640 Budd SL, 1996, J NEUROCHEM, V66, P403 Cunningham CD, 2000, HEARING RES, V143, P69, DOI 10.1016/S0378-5955(00)00022-8 Dechesne CJ, 1997, DEV BRAIN RES, V99, P103, DOI 10.1016/S0165-3806(96)00216-7 DECHESNE CJ, 1987, ACTA OTO-LARYNGOL, V103, P18, DOI 10.3109/00016488709134693 DECHESNE CJ, 1995, AUDIT NEUROSCI, V1, P341 DESMADRYL G, 1992, EXP BRAIN RES, V89, P105 Eybalin M, 2002, EUR J NEUROSCI, V15, P1409, DOI 10.1046/j.1460-9568.2002.01978.x FAVRE D, 1983, ACTA OTO-LARYNGOL, V96, P15, DOI 10.3109/00016488309132870 Griesinger CB, 2004, EUR J NEUROSCI, V20, P41, DOI 10.1111/j.1460-9568.2004.03452.x Gunter TE, 2000, CELL CALCIUM, V28, P285, DOI 10.1054/ceca.2000.0168 Holstein GR, 2005, EXP BRAIN RES, V162, P287, DOI 10.1007/s00221-004-2194-5 HYDE GE, 1995, OTOLARYNG HEAD NECK, V113, P530, DOI 10.1177/019459989511300503 JAEGER RG, 1994, HEARING RES, V77, P207, DOI 10.1016/0378-5955(94)90268-2 Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0 Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267 Richardson GP, 1997, J NEUROSCI, V17, P9506 Ruttiger L, 2004, P NATL ACAD SCI USA, V101, P12922, DOI 10.1073/pnas.0402660101 Safieddine S, 2002, MOL CELL NEUROSCI, V20, P343, DOI 10.1006/mcne.2002.1120 Safieddine S, 1999, EUR J NEUROSCI, V11, P803, DOI 10.1046/j.1460-9568.1999.00487.x SCARFONE E, 1991, J NEUROSCI, V11, P1173 Spicer SS, 1999, J COMP NEUROL, V409, P424 Su QN, 2004, NAT CELL BIOL, V6, P941, DOI 10.1038/ncb1169 WERTH JL, 1994, J NEUROSCI, V14, P348 Zhai RG, 2004, NAT CELL BIOL, V6, P918, DOI 10.1038/ncb1004-918 NR 26 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 28 EP 34 DI 10.1016/j.heares.2006.07.017 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300003 PM 17045436 ER PT J AU Hoffman, LF Ross, MD Varelas, J Jones, SM Jones, TA AF Hoffman, Larry F. Ross, Muriel D. Varelas, Joseph Jones, Sherri M. Jones, Timothy A. TI Afferent synapses are present in utricular hair cells from otoconia-deficient mice SO HEARING RESEARCH LA English DT Article DE head-tilt; synaptic ribbon; labyrinth; gravity orientation; vestibular ID MORPHOLOGICAL-CHANGES; RIBBON SYNAPSES; FINE-STRUCTURE; MUTANT MICE; GUINEA-PIG; MOUSE; ORGAN; CORTI; CAT; WEIGHTLESSNESS AB The head tilt mouse (het/het, abbr. het) is a naturally occurring mutant whose salient phenotypic traits include the complete absence of otocoina in both the utricle and saccule. Cursory histologic evaluation has indicated that the neuroepithelia exhibit a normal appearance. Though evidence exists indicating that utricular function is severely if not completely compromised in these animals, it is not yet known whether afferent synapses exist within utricular hair cells of otoconia-deficient mutants. The absence of synapses would be suggestive of a trophic relationship between stimulus-evoked hair cell activation and the afferent synapse. To address this question, we have conducted an ultrastructural survey of utricular sensory epithelia from confirmed het mice. The specific objective was to determine whether utricular hair Cells Made Synaptic contact with afferent neurons. We found that both type I and 11 hair cells from utricles of het mice exhibited afferent synapses that were found at numerous sites distributed throughout the Utricle. These results indicate that afferent synapses within vestibular hair cells do not critically depend upon stimulus-evoked activity. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Los Angeles, CA 90095 USA. Univ Calif Los Angeles, David Geffen Sch Med, Brain Res Inst, Los Angeles, CA 90095 USA. Univ New Mexico, Hlth Sci Ctr, Dept Neurosci, Albuquerque, NM 87131 USA. NASA, Ames Res Ctr, BioVIS Technol Ctr, Moffett Field, CA 94035 USA. E Carolina Univ, Dept Commun Sci & Disorders, Sch Allied Hlth Sci, Greenville, NC 27858 USA. RP Hoffman, LF (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Box 951624, Los Angeles, CA 90095 USA. EM lfh@ucla.edu CR ADES HW, 1965, ROLE VESTIBULAR ORGA, P23 Bergstrom RA, 1998, GENETICS, V150, P815 BUSH G, 2002, VESTIBULOOCULAR REFL DEOL MS, 1966, J EMBRYOL EXP MORPH, V16, P543 FAVRE D, 1986, ANAT EMBRYOL, V175, P69, DOI 10.1007/BF00315457 FAVRE D, 1979, J NEUROCYTOL, V8, P765, DOI 10.1007/BF01206675 Harrod CG, 2003, BRAIN RES, V972, P75, DOI 10.1016/S0006-8993(03)02505-8 HEYWOOD P, 1976, ACTA OTO-LARYNGOL, V82, P359, DOI 10.3109/00016487609120920 HOFFMAN L, 2000, ABS ASS RES OTOLARYN, V23, P168 Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008 Lane PW, 1987, MOUSE NEWS LETT, V77, P129 Lenzi D, 1999, J NEUROSCI, V19, P119 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 Lim D, 1978, VESTIBULAR MECH HLTH, P195 Lysakowski A, 1997, J COMP NEUROL, V389, P419, DOI 10.1002/(SICI)1096-9861(19971222)389:3<419::AID-CNE5>3.0.CO;2-3 Lysakowski A, 1999, ANN NY ACAD SCI, V871, P422, DOI 10.1111/j.1749-6632.1999.tb09209.x MBIENE JP, 1988, ANAT EMBRYOL, V177, P331, DOI 10.1007/BF00315841 Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504 PARK JC, 1987, HEARING RES, V28, P87, DOI 10.1016/0378-5955(87)90156-0 Ross MD, 2000, ACTA OTO-LARYNGOL, V120, P490, DOI 10.1080/000164800750045983 Ross M D, 1993, J Vestib Res, V3, P241 Ross M D, 1994, Acta Otolaryngol Suppl, V516, P1 Ross MD, 1997, J COMP NEUROL, V379, P333, DOI 10.1002/(SICI)1096-9861(19970317)379:3<333::AID-CNE2>3.0.CO;2-4 ROSS MD, 1985, AVIAT SPACE ENVIR MD, V56, P338 SAITO K, 1980, J ULTRA MOL STRUCT R, V71, P222, DOI 10.1016/S0022-5320(80)90108-2 Schmitz F, 2006, P NATL ACAD SCI USA, V103, P2926, DOI 10.1073/pnas.0510060103 SIEGEL JH, 1981, BRAIN RES, V220, P188, DOI 10.1016/0006-8993(81)90224-9 SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942 Sweet H, 1980, MOUSE NEWS LETT, V63, P19 TRUNE D R, 1983, Journal of Neurogenetics, V1, P53, DOI 10.3109/01677068309107072 VEENHOF VB, 1969, VERHANDELINGEN, V58, P1 vonGersdorff H, 1996, NEURON, V16, P1221, DOI 10.1016/S0896-6273(00)80148-8 NR 35 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 35 EP 42 DI 10.1016/j.heares.2006.05.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300004 PM 17023128 ER PT J AU Vetesnik, A Nobili, R AF Vetesnik, A. Nobili, R. TI The approximate scaling law of the cochlea box model SO HEARING RESEARCH LA English DT Article DE cochlea amplifier; scaling law; local covariance; distributed parameter control ID BASILAR-MEMBRANE STIFFNESS; PHYSICAL PRINCIPLES; MOSSBAUER TECHNIQUE; AUDITORY PHYSICS; HEARING THEORY; MOTION AB The hydrodynamic box-model of the cochlea is reconsidered here for the primary-V Purpose of studying in detail the approximate scaling law that governs tonotopic responses in the frequency domain. "Scaling law" here means that any two Solutions representing waveforms elicited by tones of equal amplitudes differ only by a complex factor depending on frequency. It is shown that this property holds with excellent approximation almost all along the basilar membrane (BM) length. with the exception of small region adjacent to the BM base. The analytical expression of the approximate law is explicitly given and compared to numerical solutions carried Out On a virtually exact implementation of the model. It differs significantly from that derived by Sondhi in 1978, which suffers from an inaccuracy in the hyperbolic approximation of the exact Green's function. Since the cochleae of mammals do not exhibit the scaling properties of the box model, the subject presented here may appear to be just an academic exercise. The results Of our study, however. are significant in that a more general scaling law should hold for real cochleae. To support this hypothesis, an argument related to the problem of cochlear amplifier-gain stabilization is advanced. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Padua, Dept Phys G Galilei, I-35131 Padua, Italy. Univ Tubingen, Dept Otolaryngol, D-72076 Tubingen, Germany. RP Nobili, R (reprint author), Univ Padua, Dept Phys G Galilei, Via Marzolo 8, I-35131 Padua, Italy. EM renato.nobili@pd.infn.it CR ALLEN JB, 1979, J ACOUST SOC AM, V66, P123, DOI 10.1121/1.383064 ALLEN JB, 1977, J ACOUST SOC AM, V61, P110, DOI 10.1121/1.381272 Bekesy G., 1960, EXPT HEARING de Boer E., 1991, PHYS REP, V203, P127 DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3 DEBOER E, 1984, PHYS REP, V105, P141, DOI 10.1016/0370-1573(84)90108-X Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUMMER AW, 1981, J ACOUST SOC AM, V70, P1298, DOI 10.1121/1.387144 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 LESSER MB, 1972, J FLUID MECH, V51, P497, DOI 10.1017/S0022112072002320 Milne-Thomson L. M., 1957, THEORETICAL HYDRODYN Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 Nobili R, 1998, TRENDS NEUROSCI, V21, P159, DOI 10.1016/S0166-2236(97)01192-2 Nobili R, 2003, JARO-J ASSOC RES OTO, V4, P478, DOI 10.1007/s10162-002-3055-1 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 Penrose R., 1955, P CAMBRIDGE PHILOS S, P406, DOI DOI 10.1017/S0305004100030401 RANKE OF, 1950, J ACOUST SOC AM, V22, P772, DOI 10.1121/1.1906688 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 SIEBERT WM, 1974, J ACOUST SOC AM, V56, P594, DOI 10.1121/1.1903296 SONDHI MM, 1978, J ACOUST SOC AM, V63, P1468, DOI 10.1121/1.381893 Stakgold I., 1979, GREENS FUNCTIONS BOU Whittaker E. T., 1935, COURSE MODERN ANAL Zweig G, 1976, Cold Spring Harb Symp Quant Biol, V40, P619 NR 24 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 43 EP 53 DI 10.1016/j.heares.2006.08.012 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300005 PM 17008036 ER PT J AU Chen, GD AF Chen, Guang-Di TI Prestin gene expression in the rat cochlea following intense noise exposure SO HEARING RESEARCH LA English DT Article DE prestin; OHC motor protein; cochlear amplification; noise-induced hearing loss; OHC cytoskeleton ID OUTER HAIR-CELLS; ELECTROKINETIC SHAPE CHANGES; INDUCED HEARING-LOSS; ACTIN-FILAMENTS; MOTOR PROTEIN; INNER-EAR; F-ACTIN; ELECTROMOTILITY; LOCALIZATION; CYTOSKELETAL AB Noise-induced permanent loss of cochlear amplification was observed previously with the majority of outer hair cells (OHCs) still surviving in the cochlea and even with a normal OHC receptor potential, indicated by CM (cochlear microphonics) recording [Chen, G.D., Fechter, L.D., 2003. The relationship between noise-induced hearing loss and hair cell loss in rats. Hear. Res. 177(1-2), 81-90 Chen, G.D., Liu, Y., 2005. Mechanisms of noise-induced hearing loss potentiation by hypoxia. Hear. Res. 200, 1-9]. This study focused on effects of an intense noise exposure (10-20 kHz at a level of 110 dB SPL for 4 It) on the OHC motor protein (prestin) and structural proteins in the OHC membrane skeleton. The noise exposure significantly disrupted CM and CAP (cochlear compound action potential). The injured CM recovered after]-week resting period. The impaired CAP at frequencies lower than the noise band also recovered. However, the CAP recovery at frequencies of the noise band stopped at a linear line one week after the noise exposure, indicating a permanent loss of cochlear amplification. Gene expression of prestin, beta-spectrin, and beta-actin was significantly up-regulated after the noise exposure. The elevated gene expression peaked at the 3rd post-exposure day and returned to baseline 4 weeks after the noise exposure. The up-regulated gene expression may be in response to injury of the proteins, which may be responsible for the loss of cochlear amplification. (c) 2006 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Chen, GD (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM gchen7@buffalo.edu CR Ashmore J, 2002, BRIT MED BULL, V63, P59, DOI 10.1093/bmb/63.1.59 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ATTANASIO G, 1994, HEARING RES, V81, P199, DOI 10.1016/0378-5955(94)90165-1 Belyantseva IA, 2000, J NEUROSCI, V20, part. no. BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559 CHEN GD, IN PRESS HEAR RES Chen GD, 2003, HEARING RES, V177, P81, DOI 10.1016/S0378-5955(02)00802-X Chen GD, 2005, HEARING RES, V200, P1, DOI 10.1016/j.heares.2004.08.016 Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 DALLOS P, 1974, AUDIOLOGY, V13, P277 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870 GOLD T, 1948, PROC R SOC SER B-BIO, V135, P492, DOI 10.1098/rspb.1948.0025 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 He DZZ, 2003, J NEUROSCI, V23, P9089 HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 Jia SP, 2005, NAT NEUROSCI, V8, P1028, DOI 10.1038/nn1509 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 KUHN B, 1995, HEARING RES, V84, P139, DOI 10.1016/0378-5955(95)00021-U Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LIU Z, 1992, CHIN J OTORHINOLARYN, V27, P24 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Rao DB, 2001, HEARING RES, V161, P113, DOI 10.1016/S0378-5955(01)00366-5 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Tolomeo JA, 1996, BIOPHYS J, V71, P421 Wu Xudong, 2004, Brain Res Mol Brain Res, V126, P30 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yu N, 2006, BRAIN RES, V1095, P51, DOI 10.1016/j.brainres.2006.04.017 ZENNER HP, 1981, ARCH OTO-RHINO-LARYN, V230, P81, DOI 10.1007/BF00665383 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 Zheng J, 2003, NEUROSCI LETT, V347, P13, DOI 10.1016/S0304-3940(03)00597-4 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zhong H, 1999, BIOCHEM BIOPH RES CO, V259, P523, DOI 10.1006/bbrc.1999.0815 NR 42 TC 20 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 54 EP 61 DI 10.1016/j.heares.2006.08.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300006 PM 17005342 ER PT J AU Kevanishvili, Z Hofmann, G Burdzgla, I Pietsch, M Gamgebeli, Z Yarin, Y Tushishvili, M Zahnert, T AF Kevanishvili, Zurab Hofmann, Gert Burdzgla, Irina Pietsch, Markus Gamgebeli, Zurab Yarin, Yury Tushishvili, Michael Zahnert, Thomas TI Behavior of evoked otoacoustic emission under low-frequency tone exposure: Objective study of the bounce phenomenon in humans SO HEARING RESEARCH LA English DT Article DE bounce phenomenon; EOAE effects; acquisition dependence; exposure intensity dependence; ipsilateral vs. contralateral effects ID COMPOUND ACTION-POTENTIALS; POSTEXPOSURE RESPONSIVENESS; AUDITORY SYSTEM; SENSITIZATION; MODULATION; COCHLEA; SOUND; SENSITIVITY AB The bounce phenomenon has been investigated in humans, evaluating alterations of click evoked otoacoustic emission (EOAE) after presentation of 250-Hz frequency loud tones during 3 min. EOAE changes were manifested in initial augmentation followed by reduction, peaking at 1 and 3 min of post-exposure time, respectively. Recoveries took 5-7 min afterwards. Under linear and nonlinear EOAE acquisition modes both manifestations of bounce appeared similar. At lower exposure intensities, 65-75 dB SPL, augmentations prevailed over reductions. At higher intensities, 80-95 dB SPL, augmentations and reductions were of similar magnitudes. At highest intensity, 100 dB SPL, an obvious EOAE drop has hardly been preceded by any augmentation. Based upon these data, the bounce is considered to be a compound of two opposite events, appearance of each being dependent upon the exposure level. Subjects with high bounce indices in one ear displayed comparable indices in other ear too. Low bounce magnitudes were accordingly typical for particular subjects irrespective of the ears tested. EOAE alterations were observed under ipsilateral, but not contralateral exposures of tones. It has been concluded therefore that the bounce involves peripheral receptor rather than central neural mechanisms. No EOAE shifts were seen under application of clicks without any low-frequency exposure tones. Correspondingly, the bounce is judged to reflect inner-ear processes triggered by low-frequency tones, but not by regular presentations of test-stimuli. (c) 2006 Elsevier B.V. All rights reserved. C1 Ctr Audiol & Hearing Rehabil, GE-0179 Tbilisi, Rep of Georgia. Tech Univ Dresden, Otorhinolaryngol Clin, D-01307 Dresden, Germany. Univ Munich, D-80539 Munich, Germany. RP Kevanishvili, Z (reprint author), Ctr Audiol & Hearing Rehabil, Chavchavadze Ave 33, GE-0179 Tbilisi, Rep of Georgia. EM zuriko_k@hotmail.com CR BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 Chen Jiahua, 2000, P1 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 HIRSH IJ, 1952, J ACOUST SOC AM, V24, P131, DOI 10.1121/1.1906867 HIRSH IJ, 1955, J ACOUST SOC AM, V27, P1186, DOI 10.1121/1.1908157 HUGHES JR, 1954, J ACOUST SOC AM, V26, P1064, DOI 10.1121/1.1907450 HUGHES JR, 1957, J ACOUST SOC AM, V29, P275, DOI 10.1121/1.1908854 HUGHES JR, 1958, PHYSIOL REV, V38, P91 Janssen T, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P498, DOI 10.1142/9789812704931_0068 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6 KIRKCONNELL CS, 2001, CRYOCOOLERS, V11, P69 KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P552, DOI 10.1121/1.1911928 NOFFSING.PD, 1970, J ACOUST SOC AM, V47, P546, DOI 10.1121/1.1911927 NORTON SJ, 1989, HEARING RES, V38, P243, DOI 10.1016/0378-5955(89)90069-5 PATUZZI R, 1984, HEARING RES, V13, P1, DOI 10.1016/0378-5955(84)90089-3 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 RUSSELL IJ, 1992, J NEUROSCI, V12, P1587 ZWICKER E, 1984, J ACOUST SOC AM, V75, P545, DOI 10.1121/1.390488 NR 22 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 62 EP 69 DI 10.1016/j.heares.2006.05.014 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300007 PM 17052872 ER PT J AU Gu, FM Han, HL Zhang, LS AF Gu, Feng-ming Han, Hong-lei Zhang, Lian-shan TI Effects of vasopressin on gene expression in rat inner ear SO HEARING RESEARCH LA English DT Article DE vasopressin; inner ear; gene expression; microarray; aquaporin; endolymphatic hydrops ID ANTI-DIURETIC HORMONE; ADENYLATE-CYCLASE; CYTOCHEMICAL-LOCALIZATION; ENDOLYMPHATIC SAC; MENIERES-DISEASE; STRIA VASCULARIS; MARGINAL CELLS; ARGININE-VASOPRESSIN; MESSENGER-RNAS; GUINEA-PIG AB Vasopressin regulates water excretion from the kidney by increasing water permeability of the collecting duct as a hormone secreted from the posterior pituitary. A clinical study reported that plasma levels of arginine vasopressin were significantly higher in patients suffering from Meniere's disease. It was histologically confirmed that chronic administration of vasopressin induced endolymphatic hydrops in guinea pigs. However, the mechanism of endolymphatic hydrops induced by vasopressin is still unclear. We use cDNA microarray to study the effects of vasopressin on gene expression profiles in rat inner ear to elucidate the possible mechanism of the induced hydrolabyrinth. Wistar rats were intraperitoneally injected with 50 kg/kg arginine vasopressin once a day for one week. Hydrolabyrinth in rat inner ear induced by administration of vasopressin was detected by HE stain. The bullae were dissected out for total RNA extraction. cDNAs were synthesized by reverse transcription and labeled with Cyanine3 (Cy3) or Cyanine5 (Cy5). The Biostar R-40s cDNA microarray was hybridized with the above cDNAs and the changes of mRNA expression intensity were showed by data analysis. Furthermore, the changes of aquaporins expression level were measured by reverse transcription polymerase chain (RT-PCR). Endolymphatic hydrops were present in rats intraperitoneally injected with vasopressin. 226 known differentially expressed genes were screened out in rat inner ear induced by vasopressin injection. Of the 226 genes, IS transcripts were increased by 5-fold or more, and 7 transcripts were decreased to 0.2-fold or less. Ten differentially expressed genes were identified that associate with cell signal transduction, 14 differentially expressed genes were identified that relate to ion transport, 7 differentially expressed genes were involved in vesicle-mediated transport, and 2 differentially expressed genes were aquaporin 2 (AQP2) and aquaporin 7 (AQP7), The expression level of AQP2 was significantly higher and AQP7 was significantly lower. These results suggest that there are obvious differences in gene expression profiles in inner ear between vasopressin injected rats and normal control rats. Vasopressin may disturb fluid homeostasis in inner ear by way of signal transduction, ion transport, vesicle-mediated transport and aquaporins. It is likely that up-regulated expression of AQP2 mRNA and down-regulated expression of AQP7 mRNA in the rat inner ear caused by vasopressin induce an increased production and a decreased absorption of endolymph, resulting in endolymphatic hydrops. (c) 2006 Published by Elsevier B.V. C1 Fudan Univ, Dept Otolaryngol Eye Ear Nose & Throat Hosp, Shanghai 200031, Peoples R China. China Japan Friendship Hosp, Dept Otolaryngol, Beijing 100029, Peoples R China. Union Med Univ, Beijing 100730, Peoples R China. Peking Union Med Hosp, Chinese Acad Sci, Dept Otolaryngol, Beijing 100730, Peoples R China. RP Gu, FM (reprint author), Fudan Univ, Dept Otolaryngol Eye Ear Nose & Throat Hosp, 83 Fenyang Rd, Shanghai 200031, Peoples R China. EM fengming.gu@gmail.com; hanhonglei@hotmail.com; zhangls@sohu.com CR AHLSTROM P, 1975, LARYNGOSCOPE, V85, P1241, DOI 10.1288/00005537-197507000-00016 ANNIKO M, 1981, HEARING RES, V4, P11, DOI 10.1016/0378-5955(81)90033-2 BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231 Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Brooks HL, 2003, AM J PHYSIOL-RENAL, V284, pF218, DOI 10.1152/ajprenal.00054.2002 Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042 COMACCHIO F, 1992, AM J OTOL, V13, P477 Drescher M J, 2000, Brain Res Mol Brain Res, V76, P289 DUGUE B, 1993, SCAND J CLIN LAB INV, V53, P555, DOI 10.3109/00365519309092553 FERRARY E, 1991, ACTA OTO-LARYNGOL, V111, P281, DOI 10.3109/00016489109137388 FUKUSHIMA M, 2004, ACTA OTO-LARYNGOL, V553, P13 Furuta H, 1999, ACTA OTO-LARYNGOL, V119, P53 Hibino H, 1997, J NEUROSCI, V17, P4711 Horii A, 2001, BRAIN RES, V914, P179, DOI 10.1016/S0006-8993(01)02799-8 Kitamura M, 2003, CRYST GROWTH DES, V3, P25, DOI 10.1021/cg025575h Kitano H, 1997, NEUROREPORT, V8, P2289, DOI 10.1097/00001756-199707070-00038 Kitano H, 1994, Ear Nose Throat J, V73, P921 Knepper MA, 1997, CURR OPIN CELL BIOL, V9, P560, DOI 10.1016/S0955-0674(97)80034-8 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 Lee JH, 2001, ACTA OTO-LARYNGOL, V121, P902, DOI 10.1080/000164801317166754 Lim JS, 2003, LARYNGOSCOPE, V113, P1321, DOI 10.1097/00005537-200308000-00011 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 MEES K, 1984, ARCH OTO-RHINO-LARYN, V240, P55, DOI 10.1007/BF00464345 Mhatre AN, 2002, HEARING RES, V170, P59, DOI 10.1016/S0378-5955(02)00452-5 MINTEGUIAGA C, 1998, PFLUGERS ARCH, V436, P940 Nishimoto G, 1999, AM J PHYSIOL-RENAL, V276, pF254 OUDAR O, 1990, CELL TISSUE RES, V262, P579, DOI 10.1007/BF00305255 OUDAR O, 1991, EUR ARCH OTO-RHINO-L, V248, P386, DOI 10.1007/BF01463559 Patil RV, 1997, BIOCHEM BIOPH RES CO, V238, P392, DOI 10.1006/bbrc.1997.7310 Sawada S, 1997, Acta Otolaryngol Suppl, V528, P109 Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011 SCHACHT J, 1985, HEARING RES, V20, P9, DOI 10.1016/0378-5955(85)90053-X Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P395, DOI 10.1007/BF00464650 ZENNER HP, 1979, ARCH OTO-RHINO-LARYN, V222, P275, DOI 10.1007/BF01261174 NR 38 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 70 EP 78 DI 10.1016/j.heares.2006.08.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300008 PM 17070001 ER PT J AU Roberts, B Holmes, SD AF Roberts, Brian Holmes, Stephen D. TI Grouping and the pitch of a mistuned fundamental component: Effects of applying simultaneous multiple mistunings to the other harmonics SO HEARING RESEARCH LA English DT Article DE auditory grouping; harmonic relations; mistuning; pitch shifts ID COMPLEX TONES; PERCEPTUAL SEGREGATION; SPECTRAL PATTERN; PARTIALS; FREQUENCY; FUSION; SHIFTS; MODEL; TEMPLATE; HEARING AB Mistuning a harmonic produces In exaggerated change in its pitch. This occurs because the component becomes inconsistent with the regular pattern that Causes the other harmonics (Constituting the spectral frame) to integrate perceptually. These pitch shifts were measured when the fundamental (F0) component of a complex tone (norminal FO frequency = 200 Hz) was mistuned by +8% and -8%,). The pitch-shift gradient was defined as the difference between these values and its magnitude was used its a measure of frame integration. An independent Ad random perturbation (spectral jitter) wits applied simulateously to most or all of the frame components. The gradient magnitude declined gradually as the degree of jitter increased from 0% to +/- 40% of F0. The component adjacent to the mistuned target made the largest contribution to the gradient. but more distant components also contributed. The Stimuli were passed through an auditory model, and the exponential height of the F0-period peak in the averaged summary autocorrelation function correlated well with the gradient magnitude. The fit improved when the weighting on more distant channels was attenuated by a factor of three per octave. The results are consistent with a grouping mechanism that computes a weighted average of periodicity strength across several components. (c) 2006 Elsevier B.V. All rights reserved. C1 Aston Univ, Sch Life & Hth Sci, Birmingham B4 7ET, W Midlands, England. Univ Birmingham, Sch Psychol, Birmingham B15 2TT, W Midlands, England. RP Roberts, B (reprint author), Aston Univ, Sch Life & Hth Sci, Birmingham B4 7ET, W Midlands, England. EM b.roberts@aston.ac.uk CR BALAGUERBALLEST.E, 2006, BRIT SOC AUD ANN M E Bregman AS., 1990, AUDITORY SCENE ANAL Brunstrom JM, 1998, J ACOUST SOC AM, V104, P3511, DOI 10.1121/1.423934 Brunstrom JM, 2001, J ACOUST SOC AM, V110, P391, DOI 10.1121/1.1379079 Brunstrom JM, 2000, J ACOUST SOC AM, V107, P1566, DOI 10.1121/1.428441 CHALIKIA MH, 1993, PERCEPT PSYCHOPHYS, V53, P125, DOI 10.3758/BF03211722 DARWIN CJ, 1994, J ACOUST SOC AM, V95, P2631, DOI 10.1121/1.409832 DEBOER E, 1976, HDB SENSORY PHYSL, V5, P479 de Cheveigne A, 1999, J ACOUST SOC AM, V106, P887, DOI 10.1121/1.427104 deCheveigne A, 1997, J ACOUST SOC AM, V102, P1083, DOI 10.1121/1.419612 DEMANY L, 1988, J ACOUST SOC AM, V83, P687, DOI 10.1121/1.396164 DEMANY L, 1992, HEARING RES, V61, P161, DOI 10.1016/0378-5955(92)90047-Q FINE PA, 1993, MUSIC PERCEPT, V11, P39 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Hartmann W. M., 1988, AUDITORY FUNCTION, P623 HARTMANN WM, 1990, J ACOUST SOC AM, V88, P1712, DOI 10.1121/1.400246 Hartmann WM, 1996, J ACOUST SOC AM, V99, P567, DOI 10.1121/1.414514 HARTMANN WM, 2004, 129 MICH STAT U Henke W. L., 1997, MITSYN COHERENT FAMI Kadia SC, 2003, J NEUROPHYSIOL, V89, P1603, DOI 10.1152/jn.00271.2001 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 Lin JY, 1998, J ACOUST SOC AM, V103, P2608, DOI 10.1121/1.422781 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936 MOORE BCJ, 1986, J ACOUST SOC AM, V80, P479, DOI 10.1121/1.394043 Pierce John R., 1992, SCI MUSICAL SOUND PLOMP R, 1964, J ACOUST SOC AM, V36, P1628, DOI 10.1121/1.1919256 Pressnitzer D., 2001, PHYSL PSYCHOPHYSICAL, P84 RAKOWSKI A, 1980, J ACOUST SOC AM, V68, P467, DOI 10.1121/1.384759 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 Roberts B, 2003, J ACOUST SOC AM, V114, P2118, DOI 10.1121/1.1605411 Roberts B, 2001, J ACOUST SOC AM, V110, P2479, DOI 10.1121/1.1410965 Roberts B, 2005, ACTA ACUST UNITED AC, V91, P945 Roberts B, 1998, J ACOUST SOC AM, V104, P2326, DOI 10.1121/1.423771 Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0 Snedecor G. W., 1967, STAT METHODS TERHARDT E, 1971, 7TH P INT C AC, V3, P621 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 NR 39 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 79 EP 88 DI 10.1016/j.heares.2006.08.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300009 PM 17055676 ER PT J AU Chen, WC Davis, RL AF Chen, Wei Chun Davis, Robin L. TI Voltage-gated and two-pore-domain potassium channels in murine spiral ganglion neurons SO HEARING RESEARCH LA English DT Article DE Kv3.3; TWIK-1; KCNK; tandem pore; spiral ganglion; auditory; cochlea ID DOMAIN K+ CHANNELS; RAT-BRAIN; DIFFERENTIAL EXPRESSION; AUDITORY NEURONS; NERVE-TERMINALS; FIRING PATTERNS; ALPHA-SUBUNITS; MOUSE; CURRENTS; TREK-1 AB The systematically varied firing features Of spiral ganglion neurous provide an excellent model system for the exploration of how graded ion channel distributions can be used to organize neuronal firing across a population of neurons. Elucidating the underlying mechanisms that determine neuronal response properties requires a complete Understanding of the combination of ion channels. auxiliary proteins, modulators, and second messengers that form this highly organized system in the auditory periphery. Toward this goal, we built upon previous studies of voltage-gated K+-selective ion channels (Kv), and expanded Our analysis to K+-selective leak channels (KCNK), which can play a major role in setting the basic firing characteristics of spirit] ganglion neurons. To begin a more comprehensive analysis of Kv and KCNK channels, a screening approach was employed. RT-PCR was utilized to examine gene expression, the major results of which were confirmed with immunochemistry. initial Studies validated this approach by accurately detecting voltage-dependent K+ channels that were documented previously in the spiral ganglion. Furthermore, an additional channel type within the Kv3 family, Kv3.3, was identified and further characterized. The major focus Of the Study. however, was to systematically examine gene expression levels of the KCNK family of K+-selective leak channels. These channel types determine the resting membrane potential which has a major impact oil setting the level Of neuronal excitation. TWIK-1. TASK-3. TASK-1, and TREK-1 were expressed in the spiral ganglion TWIK-1 was specifically localized with immunocytochemistry to the neuronal sonata and initial processes of spiral ganglion neurons in vitro. (c) 2006 Elsevier B.V. All rights reserved. C1 Rutgers State Univ, Nelson Labs, Dept Cell Biol & Neurosci, Piscataway, NJ 08854 USA. RP Davis, RL (reprint author), Rutgers State Univ, Nelson Labs, Dept Cell Biol & Neurosci, 604 Allison Rd, Piscataway, NJ 08854 USA. EM rldavis@rci.rutgers.edu CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244 Adamson CL, 2002, J NEUROSCI, V22, P1385 Berg AP, 2004, J NEUROSCI, V24, P6693, DOI 10.1523/JNEUROSCI.1408-04.2004 Bockenhauer D, 2001, NAT NEUROSCI, V4, P486 Brooke RE, 2004, EUR J NEUROSCI, V20, P3313, DOI 10.1111/j.1460-9568.2004.03730.x Chen HJ, 2003, NEURON, V40, P15, DOI 10.1016/S0896-6273(03)00570-1 Cluzeaud F, 1998, AM J PHYSIOL-CELL PH, V275, pC1602 Czirjak G, 2002, J BIOL CHEM, V277, P5426, DOI 10.1074/jbc.M107138200 Fernandez FR, 2003, J BIOL CHEM, V278, P40890, DOI 10.1074/jbc.M304235200 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 Fink M, 1996, EMBO J, V15, P6854 GHANSHANI S, 1992, GENOMICS, V12, P190, DOI 10.1016/0888-7543(92)90365-Y Ginzinger DG, 2002, EXP HEMATOL, V30, P503, DOI 10.1016/S0301-472X(02)00806-8 Goldstein SAN, 1998, J MOL MED-JMM, V76, P13, DOI 10.1007/s109-1998-8100-0 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 Holt AG, 2006, HEARING RES, V216, P146, DOI 10.1016/j.heares.2006.03.009 Hossain WA, 2005, J NEUROSCI, V25, P6857, DOI 10.1523/JNEUROSCI.0123-05.2005 Jagger DJ, 2002, NEUROSCIENCE, V109, P169, DOI 10.1016/S0306-4522(01)00454-7 Kanjhan R, 2004, NEUROREPORT, V15, P437, DOI 10.1097/01.wnr.0000114978.66165.39 Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045 KETCHUM KA, 1995, NATURE, V376, P690, DOI 10.1038/376690a0 Knaus HG, 1996, J NEUROSCI, V16, P955 Lesage F, 1996, EMBO J, V15, P6400 Lesage F, 1997, FEBS LETT, V402, P28, DOI 10.1016/S0014-5793(96)01491-3 Lesage F, 1996, EMBO J, V15, P1004 Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 Lopes CMB, 2001, J BIOL CHEM, V276, P24449, DOI 10.1074/jbc.C100184200 Maingret F, 1999, J BIOL CHEM, V274, P26691, DOI 10.1074/jbc.274.38.26691 Maingret F, 2000, EMBO J, V19, P2483, DOI 10.1093/emboj/19.11.2483 Maingret F, 2000, J BIOL CHEM, V275, P10128, DOI 10.1074/jbc.275.14.10128 Massova I, 1997, J MOL MODEL, V3, P17, DOI 10.1007/s008940050021 McMahon A, 2004, EUR J NEUROSCI, V19, P3317, DOI 10.1111/j.1460-9568.2004.03385.x Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294 Mo ZL, 2002, J PHYSIOL-LONDON, V542, P763, DOI 10.1113/jphysiol.2002.017202 Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019 Morrison TB, 1998, BIOTECHNIQUES, V24, P960 Morrison TB, 1998, BIOTECHNIQUES, V24, P962 Morrison TB, 1998, BIOTECHNIQUES, V24, P954 Mourre C, 1999, J PHARMACOL EXP THER, V291, P943 Nicolas MT, 2004, BRAIN RES, V1017, P46, DOI 10.1016/j.brainres.2004.05.012 Plant LD, 2005, CURR OPIN NEUROBIOL, V15, P326, DOI 10.1016/j.conb.2005.05.008 Pountney DJ, 1999, FEBS LETT, V450, P191, DOI 10.1016/S0014-5793(99)00495-0 Rajan S, 2005, CELL, V121, P37, DOI 10.1016/j.cell.2005.01.019 Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 Ririe KM, 1997, ANAL BIOCHEM, V245, P154, DOI 10.1006/abio.1996.9916 Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0 SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 Serodio P, 1998, J NEUROPHYSIOL, V79, P1081 Standridge M, 2000, RRD ENDOCRINOL, V1, P185 TALLEY CE, 2000, P SOC PHOTO-OPT INS, V1, P11 Talley EM, 2003, NEUROSCIENTIST, V9, P46, DOI 10.1177/1073858402239590 Talley EM, 2001, J NEUROSCI, V21, P7491 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x Xu HD, 1996, J GEN PHYSIOL, V108, P405, DOI 10.1085/jgp.108.5.405 Zhou ZP, 2005, J NEUROSCI, V25, P7558, DOI 10.1523/JNEUROSCI.1735-05.2005 NR 58 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 89 EP 99 DI 10.1016/j.heares.2006.09.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300010 PM 17079103 ER PT J AU Chatterjee, M Sarampalis, A Oba, SI AF Chatterjee, Monita Sarampalis, Anastasios Oba, Sandra I. TI Auditory stream segregation with cochlear implants: A preliminary report SO HEARING RESEARCH LA English DT Article DE auditory streaming; cochlear implants; modulation ID FUNDAMENTAL-FREQUENCY; IMPAIRED LISTENERS; SEQUENCES; ATTENTION AB Auditory stream segregation was measured in cochlear implant (0) listeners using a subjective "Yes-No" task in which listeners indicated whether a sequence of stimuli was perceived as two separate streams or not. Stimuli were brief, 50-ms pulse trains A and B, presented in an A_B_A_A_B_A...sequence, with 50 ms in between consecutive stimuli. All stimuli were carefully loudness-balanced prior to the experiments. The cochlear electrode location of A was fixed, while the location of B was varied systematically. Measures of electrode discrimination and subjective perceptual difference were also included for comparison. There was strong intersubject variation in the pattern of results. One of the participants participated in a second series of experiments, the results of which indicated that he was able to perceptually segregate stimuli that were different in cochlear electrode location, as well as stimuli that were different in temporal envelope. Although preliminary, these results suggest that it is possible for some cochlear implant listeners to perceptually segregate stimuli based on differences in cochlear location as well as temporal envelope. (c) 2006 Elsevier B.V. All rights reserved. C1 House Ear Res Inst, Dept Auditory Implants & Percept, Los Angeles, CA 90057 USA. RP Chatterjee, M (reprint author), Univ Maryland, Dept Speech & Hearing Sci, 0100 LeFrak Hall, College Pk, MD 20742 USA. EM mchatterjee@hesp.umd.edu CR Bregman AS., 1990, AUDITORY SCENE ANAL CARLYON RP, 2004, TRENDS COGN SCI, V8, P1364 CHATTERJEE M, 2002, J ACOUST SOC AM, V111, P2429 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 Cusack R, 2004, J EXP PSYCHOL HUMAN, V30, P643, DOI 10.1037/0096-1523.30.4.643 DIVENYI PL, 1997, IEEE MOH MOUNT WORKS, DOI UNSP 14.1.1-14.1.4 GAUDRAIN E, 2006, J ACOUST SOC AM, V119, P3238 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 Grimault N, 2001, BRIT J AUDIOL, V35, P173 Grimault N, 2000, J ACOUST SOC AM, V108, P263, DOI 10.1121/1.429462 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 Hong RS, 2006, J ACOUST SOC AM, V120, P360, DOI 10.1121/1.2204450 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 Mackersie CL, 2003, J SPEECH LANG HEAR R, V46, P912, DOI 10.1044/1092-4388(2003/071) McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553 MICHEYL C, 2005, AUDITORY SIGNAL PROC Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 Qin MK, 2005, EAR HEARING, V26, P451, DOI 10.1097/01.aud.0000179689.79868.06 ROBERT ME, 2002, HOUSE EAR I NUCL RES Roberts B, 2002, J ACOUST SOC AM, V112, P2074, DOI 10.1121/1.1508784 Shani M, 1999, ISRAEL MED ASSOC J, V1, P1 SHANNON RV, 1990, J ACOUST SOC AM, V87, P905, DOI 10.1121/1.398902 Snyder JS, 2006, J COGNITIVE NEUROSCI, V18, P1, DOI 10.1162/089892906775250021 Stainsby TH, 2004, HEARING RES, V192, P119, DOI 10.1016/j.heares.2004.02.003 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T Vliegen J, 1999, J ACOUST SOC AM, V105, P339, DOI 10.1121/1.424503 ZENG FG, 1991, Q J EXP PSYCHOL-A, V43, P565 NR 27 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 100 EP 107 DI 10.1016/j.heares.2006.09.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300011 PM 17071032 ER PT J AU Weisz, N Hartmann, T Dohrmann, K Schlee, W Norena, A AF Weisz, Nathan Hartmann, Thomas Dohrmann, Katalin Schlee, Winfried Norena, Arnaud TI High-frequency tinnitus without hearing loss does not mean absence of deafferentation SO HEARING RESEARCH LA English DT Article DE tinnitus; tinnitus spectrum; hearing loss; dead regions; pitch scaling ID CORTICAL REORGANIZATION AB A broad consensus within the neuroscience of tinnitus holds that this audiologic condition is triggered by central deafferentation, mostly due to cochlear damage. The absence of audiometrically detectable hearing loss however poses a challenge to this rather generalizing assumption. The aim of this study was therefore to scrutinize cochlear functioning in a sample of tinnitus subjects audiometrically matched to a normal hearing control group. Two tests were applied: the Threshold Equalizing Noise (TEN) test and a pitch scaling task. To perform well on both tasks relatively normal functioning of inner hair cells is a requirement. In the TEN test the tinnitus group revealed a circumscribed increment of thresholds partially overlapping with the tinnitus spectrum. Abnormal slopes were observed in the pitch scaling task which indicated that tinnitus subjects, when presented with a high-frequency stimulus, relied heavily on input derived from lower-frequency inner hair cells (off-frequency listening). In total both results argue for the presence of a deafferentation also in tinnitus subjects with audiometrically normal thresholds and therefore favour the deafferentation assumption posed by most neuroscientific theories. (c) 2006 Elsevier B.V. All rights reserved. C1 INSERM, U280, F-69500 Bron, France. Univ Konstanz, Dept Psychol, D-7750 Constance, Germany. Univ Lyon 1, CNRS, UMR 5020, F-69622 Villeurbanne, France. RP Weisz, N (reprint author), INSERM, U280, 95 Blvd Pinel, F-69500 Bron, France. EM weisz@lyon.inserm.fr RI Schlee, Winfried/C-8983-2011 OI Schlee, Winfried/0000-0001-7942-1788 CR Diesch E, 2004, EUR J NEUROSCI, V19, P1093, DOI 10.1111/j.1460-9568.2004.03191.x Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 Gouveris H, 2005, OTOLARYNG HEAD NECK, V132, P550, DOI 10.1016/j.otohns.2004.09.031 Greenwood DD, 1997, HEARING RES, V103, P199, DOI 10.1016/S0378-5955(96)00175-X Henry J A, 2000, J Am Acad Audiol, V11, P138 Henry JA, 2004, J REHABIL RES DEV, V41, P871, DOI 10.1682/JRRD.2003.10.0158 Irvine DRF, 1997, ACTA OTO-LARYNGOL, P39 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 MOORE BC, 2000, BRIT J AUDIOL, V4, P205 Moore BC., 2003, INTRO PSYCHOL HEARIN Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Pinheiro J. C., 2000, MIXED EFFECTS MODELS R Development Core Team, 2004, R LANG ENV STAT COMP Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 Vernon JA, 2003, OTOLARYNG CLIN N AM, V36, P293, DOI 10.1016/S0030-6665(02)00162-7 Weisz N, 2005, PLOS MED, V2, P546, DOI 10.1371/journal.pmed.0020153 Weisz N, 2005, BRAIN, V128, P2722, DOI 10.1093/brain/awh588 Wienbruch C, 2006, NEUROIMAGE, V33, P180, DOI 10.1016/j.neuroimage.2006.06.023 NR 19 TC 98 Z9 104 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 108 EP 114 DI 10.1016/j.heares.2006.09.003 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300012 PM 17079102 ER PT J AU Tornabene, SV Sato, K Pham, L Billings, P Keithley, EM AF Tornabene, Stephen V. Sato, Kunihiro Pham, Liem Billings, Peter Keithley, Elizabeth M. TI Immune cell recruitment following acoustic trauma SO HEARING RESEARCH LA English DT Article DE cochlea; chemokines; macrophages; wound healing ID SPIRAL LIGAMENT FIBROCYTES; NECROSIS-FACTOR-ALPHA; INNER-EAR; PROINFLAMMATORY CYTOKINES; COCHLEAR INFLAMMATION; CONTUSION INJURY; MOUSE COCHLEA; SPINAL-CORD; EXPRESSION; RAT AB Acoustic trauma induces Cochlear inflammation. We hypothesized that chemokines are involved in the recruitment of leukocytes as part of a wound healing response. The cochleas of NIH-Swiss mice, exposed to octave-band noise (8-16 kHz, at I IS dB) for 2 hi were examined after the termination of exposure. Leukocytes were identified immunohistochemistry with antibodies to CD45 and F4/80. Gene array analysis followed by RT-PCR was performed Oil cochlear tissue to identify Up-regulation of chemokine and adhesion molecule mRNA. The expression of the adhesion Molecule ICAM-1 was also investigated immunochemistry. Few CD45- or F4/80-positive leukocytes were observed in the non-exposed cochlea. Following acoustic trauma however, the number of CD45-positive cells was dramatically increased especially after 2 and 4 days, after which time the numbers decreased. F4/80-positive cells also increased in number over the course of a week. Gene array analysis indicated increased expression of monocyte chemoattractant protein 5 (MCP-5), monocyte chemoattractant protein I (MCP-1), macrophage inflammatory protein-1 beta (MIP-1 beta) and ICAM-1. RT-PCR, performed using primers for the individual mRNA sequences, confirmed the increased expression of MCP-1, MCP-5. MIP-1, and ICAM-1 relative to non-exposed mice. In the normal cochlea, ICAM-1 immunohistochemical expression was observed in venules, spiral ligament fibrocytes and in endosteal cells of the scala tympani. Expression increased to include more of the spiral ligament and endosteal cells after acoustic trauma. A cochlear inflammatory response is initiated in response to acoustric trauma and involves the recruitment of circulating leukocytes to the inner ear. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA. San Diego VA Med Ctr, Dept Vet Affairs, Div Med Res, La Jolla, CA USA. RP Keithley, EM (reprint author), Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ekeithley@ucsd.edu CR Abrashkin KA, 2006, HEARING RES, V218, P20, DOI 10.1016/j.heares.2006.04.001 Adams JC, 2002, OTOL NEUROTOL, V23, P316, DOI 10.1097/00129492-200205000-00015 BOZIC CR, 1995, J IMMUNOL, V154, P6048 DEWALD O, 2005, CIRC RES, V96, P812 DiPietro LA, 2001, WOUND REPAIR REGEN, V9, P28, DOI 10.1046/j.1524-475x.2001.00028.x DIPIETRO LA, 1995, AM J PATHOL, V146, P868 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764 Ghirnikar RS, 2000, J NEUROSCI RES, V59, P63, DOI 10.1002/(SICI)1097-4547(20000101)59:1<63::AID-JNR8>3.0.CO;2-W HARRIS JP, 1990, ACTA OTO-LARYNGOL, V110, P357, DOI 10.3109/00016489009107455 Hashimoto S, 2005, AUDIOL NEURO-OTOL, V10, P35, DOI 10.1159/000082306 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Hirose K, 2005, J COMP NEUROL, V489, P180, DOI 10.1002/cne.20619 Ichimiya I, 2000, INT J PEDIATR OTORHI, V56, P45, DOI 10.1016/S0165-5876(00)00408-0 Lee RH, 2001, J SURG RES, V101, P104, DOI 10.1006/jsre.2001.6261 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Ma CL, 2000, LARYNGOSCOPE, V110, P451, DOI 10.1097/00005537-200003000-00024 Maeda K, 2005, HEARING RES, V202, P154, DOI 10.1016/j.heares.2004.08.022 McTigue DM, 1998, J NEUROSCI RES, V53, P368, DOI 10.1002/(SICI)1097-4547(19980801)53:3<368::AID-JNR11>3.0.CO;2-1 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Otto VI, 2001, NEUROREPORT, V12, P2059, DOI 10.1097/00001756-200107030-00053 Park JE, 2004, AM J SURG, V187, p11S, DOI 10.1016/S0002-9610(03)00296-4 Rancan M, 2001, J NEUROSCI RES, V63, P438, DOI 10.1002/1097-4547(20010301)63:5<438::AID-JNR1039>3.3.CO;2-G Satoh H, 1997, ACTA OTO-LARYNGOL, V117, P80, DOI 10.3109/00016489709117996 Satoh H, 2002, LARYNGOSCOPE, V112, P1627, DOI 10.1097/00005537-200209000-00019 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 TAKAHASHI M, 1988, ACTA OTO-LARYNGOL, V106, P409, DOI 10.3109/00016488809122264 VALENTE A, 1988, BIOCHEMISTRY-US, V17, P4162 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Yimtae K, 2001, LARYNGOSCOPE, V111, P1631, DOI 10.1097/00005537-200109000-00026 Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3 NR 31 TC 34 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 115 EP 124 DI 10.1016/j.heares.2006.09.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300013 PM 17081714 ER PT J AU Soeta, Y Nakagawa, S AF Soeta, Yoshiharu Nakagawa, Seiji TI Complex tone processing and critical band in the human auditory cortex SO HEARING RESEARCH LA English DT Article DE auditory-evoked fields (AEFs); critical band; critical bandwidth; magnetoencephalography (MEG); N1m ID EVOKED MAGNETIC-FIELDS; ITERATED RIPPLED NOISE; ELECTROPHYSIOLOGICAL EVIDENCE; PITCH STRENGTH; LOUDNESS; SOUNDS; REPRESENTATION; BANDWIDTH; RESPONSES AB Psychophysical experiments in humans have indicated that the auditory system has a well-defined bandwidth for resolution of complex stimuli. This bandwidth is known as the critical bandwidth (CBW). Physiological correlates of the CBW were examined in the human auditory cortex. Two- and three-tone complexes were used as the sound stimuli with all signals presented at 55 dB sound pressure level (SPL). The duration of stimulation was 500 ins, with rise and fall ramps of 10 ins. Tell normal-hearing subjects took part in the study. Auditory-evoked fields were recorded using a 122-channel whole-head magnetometer in a magnetically shielded room. The latencies, source strengths, and coordinates of the N1m waves, which were found above the left and right temporal lobes approximately 100 ms after the onset of stimulation, were analyzed. The results indicated that NI in amplitudes were approximately constant when the frequency separation of a two-tone complex or the total bandwidth of a three-tone complex was less than the CBW; however, the N1m amplitudes increased with increasing frequency separation or total bandwidth when these were greater than the CBW. These findings indicate critical band-like behavior in the human auditory cortex. The NI in amplitudes in the right hemisphere were significantly greater than those in the left hemisphere, which may reflect a right-hemispheric dominance in the processing of tonal Stimuli. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. RP Soeta, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp CR Ando Y, 1999, COMPUTATIONAL ACOUST, P63 BURROWS DL, 1990, J ACOUST SOC AM, V88, P180, DOI 10.1121/1.399938 Ehret G, 1997, J COMP PHYSIOL A, V181, P635, DOI 10.1007/s003590050146 Fishman YI, 2000, J ACOUST SOC AM, V108, P247, DOI 10.1121/1.429461 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GREENWOOD D, 1961, J ACOUST SOC AM, V33, P484, DOI 10.1121/1.1908699 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Ritter S, 2005, NEUROIMAGE, V27, P533, DOI 10.1016/j.neuroimage.2005.05.003 SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4 SAMSON S, 1994, NEUROPSYCHOLOGIA, V32, P231, DOI 10.1016/0028-3932(94)90008-6 Sato S, 2002, J SOUND VIB, V250, P47, DOI 10.1006/jsvi.2001.3888 SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235 Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 SIDTIS JJ, 1981, NEUROPSYCHOLOGIA, V19, P103, DOI 10.1016/0028-3932(81)90050-6 SIDTIS JJ, 1980, NEUROPSYCHOLOGIA, V18, P321, DOI 10.1016/0028-3932(80)90127-X SKINNER PH, 1970, J ACOUST SOC AM, V48, P557, DOI 10.1121/1.1912171 Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012 Soeta Y, 2005, NEUROREPORT, V16, P1787, DOI 10.1097/01.wnr.0000185961.88593.4f Soeta Y, 2005, HEARING RES, V205, P256, DOI 10.1016/j.heares.2005.03.026 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193 ZERLIN S, 1986, J ACOUST SOC AM, V79, P1612, DOI 10.1121/1.393297 Zhang CY, 1997, J ACOUST SOC AM, V102, P2925, DOI 10.1121/1.420347 Zwicker E, 1999, PSYCHOACOUSTICS FACT ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 30 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2006 VL 222 IS 1-2 BP 125 EP 132 DI 10.1016/j.heares.2006.09.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 117YN UT WOS:000242909300014 PM 17081712 ER PT J AU Coffey, CS Ebert, CS Marshall, AF Skaggs, JD Falk, SE Crocker, WD Pearson, JM Fitzpatrick, DC AF Coffey, Charles S. Ebert, Charles S., Jr. Marshall, Allen F. Skaggs, John D. Falk, Stephanie E. Crocker, William D. Pearson, James M. Fitzpatrick, Douglas C. TI Detection of interaural correlation by neurons in the superior olivary complex, inferior colliculus and auditory cortex of the unanesthetized rabbit SO HEARING RESEARCH LA English DT Article DE sound localization; interaural temporal disparities; interaural time differences; acoustic space ID LOW-FREQUENCY NEURONS; TIME DIFFERENCE DISCRIMINATION; CHICK BRAIN-STEM; SOUND LOCALIZATION; DELAY-LINES; COINCIDENCE DETECTION; BINAURAL-INTERACTION; CROSS-CORRELATION; NOISE STIMULI; TONOTOPIC ORGANIZATION AB A critical binaural cue important for sound localization and detection of signals in noise is the interaural time difference (ITD), or difference in the time of arrival of sounds at each ear. The ITD can be determined by cross-correlating the sounds at the two ears and finding the ITD where the correlation is maximal. The amount of interaural correlation is affected by properties of spaces and can therefore be used to assess spatial attributes. To examine the neural basis for sensitivity to the overall level of the interaural correlation, we identified subcollicular neurons and neurons in the inferior colliculus (IC) and auditory cortex of unanesthetized rabbits that were sensitive to ITDs and examined their responses as the interaural correlation was varied. Neurons at each brain level could show linear or non-linear responses to changes in interaural correlation. The direction of the non-linearities in most neurons was to increase the slope of the response change for correlations near 1.0. The proportion of neurons with non-linear responses was similar in subcollicular and IC neurons but increased in the auditory cortex. Non-linear response functions to interaural correlation were not related to the type of response as determined by the tuning to ITDs across frequencies. The responses to interaural correlation were also not related to the frequency tuning of the neuron, unlike the responses to ITD, which broadens for neurons tuned to lower frequencies. The neural discriminibility of the ITD using frozen noise in the best neurons was similar to the behavioral acuity in humans at a reference correlation of 1.0. However, for other reference ITDs the neural discriminibility was more linear and generally better than the human discriminibility of the interaural correlation, suggesting that stimulus rather than neural variability is the basis for the decline in human performance at lower levels of interaural correlation. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Fitzpatrick, DC (reprint author), Univ N Carolina, Sch Med, Dept Otolaryngol Head & Neck Surg, 101 Med Res Bldg A,CB 7070, Chapel Hill, NC 27599 USA. EM dcf@med.unc.edu CR AHACKILETON TM, 2005, J ASS RES OTOLARYNG, P1 ALBECK Y, 1995, J NEUROPHYSIOL, V74, P1689 Ando Y., 1998, ARCHITECTURAL ACOUST BABKOFF H, 1966, J ACOUST SOC AM, V41, P87 BALAUERT J, 1997, SPATIAL HEARING PSYC Batra R, 1997, J NEUROPHYSIOL, V78, P1237 Batra R, 1997, J NEUROPHYSIOL, V78, P1222 Batra R, 2004, JARO-J ASSOC RES OTO, V5, P238, DOI 10.1007/s10162-004-4027-4 BATRA R, 1989, J NEUROPHYSIOL, V61, P257 Beckius GE, 1999, J NEUROSCI, V19, P3146 Bernstein LR, 1996, J ACOUST SOC AM, V100, P1754, DOI 10.1121/1.416072 Bernstein LR, 1996, J ACOUST SOC AM, V100, P3774, DOI 10.1121/1.417237 BERNSTEIN LR, 1992, J ACOUST SOC AM, V91, P306, DOI 10.1121/1.402773 Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857 BRAND A, 2001, ASS RES OTOLARYNGOL, V24, P59 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a CARR CE, 1993, BRAIN RES, V628, P330, DOI 10.1016/0006-8993(93)90975-S CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311 Culling JF, 2001, J ACOUST SOC AM, V110, P1020, DOI 10.1121/1.1383296 DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681 Faller C, 2004, J ACOUST SOC AM, V116, P3075, DOI 10.1121/1.1791872 Fitzpatrick DC, 2002, HEARING RES, V168, P79, DOI 10.1016/S0378-5955(02)00359-3 Fitzpatrick DC, 2000, J NEUROSCI, V20, P1605 Fitzpatrick DC, 2001, J NEUROSCI, V21, P4844 Funabiki K, 1998, J PHYSIOL-LONDON, V508, P851, DOI 10.1111/j.1469-7793.1998.851bp.x GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326 GREEN DM, 1966, SIGNAL DETECTION THE Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004 Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 vanderHeijden M, 1997, J ACOUST SOC AM, V102, P2966, DOI 10.1121/1.420351 JAIN M, 1991, J ACOUST SOC AM, V90, P1918, DOI 10.1121/1.401671 Joris PX, 2006, J NEUROSCI, V26, P279, DOI 10.1523/JNEUROSCI.2285-05.2006 Joris PX, 1996, J NEUROPHYSIOL, V76, P2137 Joris PX, 2003, J NEUROSCI, V23, P6345 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 KOEHNKE J, 1986, J ACOUST SOC AM, V79, P1558, DOI 10.1121/1.393682 Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 KUWADA S, 1979, SCIENCE, V206, P586, DOI 10.1126/science.493964 Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 Mardia K. V., 1972, STAT DIRECTIONAL DAT McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 1998, J NEUROSCI, V18, P6026 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MCMULLEN NT, 1982, EXP NEUROL, V75, P208, DOI 10.1016/0014-4886(82)90019-X OVERHOLT EM, 1992, J NEUROSCI, V12, P1698 PALMER AR, 1990, HEARING RES, V50, P71, DOI 10.1016/0378-5955(90)90034-M POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 REALE RA, 1990, J NEUROPHYSIOL, V64, P1247 Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4 SAKITT B, 1973, NATURE, V241, P133, DOI 10.1038/241133a0 Shackleton TM, 2003, J NEUROSCI, V23, P716 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 SPITZER MW, 1995, J NEUROPHYSIOL, V73, P1668 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 Yang LC, 1999, J NEUROSCI, V19, P2313 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1986, J NEUROPHYSIOL, V55, P280 YIN TCT, 1987, J NEUROPHYSIOL, V58, P562 YOUNG SR, 1983, J NEUROSCI, V3, P1373 Zhou Y, 2005, J NEUROSCI, V25, P3046, DOI 10.1523/JNEUROSCI.3064-04.2005 NR 67 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 1 EP 16 DI 10.1016/j.jheares.2006.06.005 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700001 PM 16978812 ER PT J AU Heffner, RS Koay, G Heffner, HE AF Heffner, R. S. Koay, G. Heffner, H. E. TI Hearing in large (Eidolon helvum) and small (Cynopterus brachyotis) non-echolocating fruit bats SO HEARING RESEARCH LA English DT Article DE audiogram; megachiroptera; yinpterochiroptera; pteropodiformes; straw-colored fruit bat; dog-faced fruit bat; echolocation; evolution ID BIG BROWN BAT; MONKEY SAIMIRI-SCIUREUS; PURE-TONE THRESHOLDS; LEAF-NOSED BATS; SOUND-LOCALIZATION; PRIMITIVE MAMMALS; AUDITORY-SENSITIVITY; EPTESICUS-FUSCUS; ROUSETTUS-AEGYPTIACUS; BEHAVIORAL AUDIOGRAMS AB Comparing the hearing abilities of echolocating and non-echolocating bats can provide insight into the effect of echolocation on more basic hearing abilities. Toward this end, we determined the audiograms of two species of non-echolocating bats, the straw-colored fruit bat (Eidolon helvum), a large (230-350 g) African fruit bat, and the dog-faced fruit bat (Cynopterus brachyotis), a small (3045 g) bat native to India and Southeast Asia. A conditioned suppression/avoidance procedure with a fruit juice reward was used for testing. At 60 dB SPL, the hearing range of E. helvum extends from 1.38 to 41 kHz with best sensitivity at 8 kHz; the hearing range of C brachyotis extends from 2.63 to 70 kHz with best sensitivity at 10 kHz. As with all other bats tested so far, neither species was able to hear below 500 Hz, suggesting that they may not use a time code for perceiving pitch. Comparison of the high-frequency hearing abilities of echolocating and non-echolocating bats suggests that the use of laryngeal echolocation has resulted in additional selective pressure to hear high frequencies. However, the typical high-frequency sensitivity of small non-echolocating mammals would have been sufficient to support initial echolocation in the early evolution of bats, a finding that supports the possibility of multiple origins of echolocation. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. RP Heffner, RS (reprint author), Univ Toledo, Dept Psychol, Toledo, OH 43606 USA. EM Rickye.Heffner@utoledo.edu CR Babushina Ye. S., 1991, Biophysics, V36 BEECHER MD, 1974, J ACOUST SOC AM, V55, P196, DOI 10.1121/1.1928152 BROWN CH, 1984, ANIM BEHAV, V32, P66, DOI 10.1016/S0003-3472(84)80325-5 Butler RA, 1975, HDB SENSORY PHYSL AU, V2, P247 CALFORD MB, 1987, AUSTR MAMMALOGY, V10, P97 Calford M.B., 1985, Australian Mammalogy, V8, P309 DALLAND JI, 1965, SCIENCE, V150, P1185, DOI 10.1126/science.150.3700.1185 Eick GN, 2005, MOL BIOL EVOL, V22, P1869, DOI 10.1093/molbev/msi180 Flydal K, 2001, J COMP PHYSIOL A, V187, P265, DOI 10.1007/s003590100198 FROST SB, 1994, HEARING RES, V76, P67, DOI 10.1016/0378-5955(94)90088-4 GILLETTE RG, 1973, AM J PHYS ANTHROPOL, V38, P365, DOI 10.1002/ajpa.1330380234 GREEN S, 1975, J EXP ANAL BEHAV, V23, P255, DOI 10.1901/jeab.1975.23-255 GRINNELL AD, 1972, Z VERGL PHYSIOL, V76, P82, DOI 10.1007/BF00395501 HEFFNER H, 1980, J ACOUST SOC AM, V68, P154 Heffner H. E., 1995, METHODS COMP PSYCHOA, P73 Heffner H. E., 2006, CURRENT PROTOCOLS NE HEFFNER H, 1970, J COMP PHYSIOL PSYCH, V71, P175, DOI 10.1037/h0029138 HEFFNER HE, 1969, J AUD RES, V9, P12 HEFFNER HE, 1985, J COMP PSYCHOL, V99, P275, DOI 10.1037//0735-7036.99.3.275 Heffner H.E., 2003, HDB RES METHODS EXPT, P413, DOI 10.1002/9780470756973.ch19 HEFFNER HE, 1994, HEARING RES, V73, P244, DOI 10.1016/0378-5955(94)90240-2 HEFFNER HE, 1983, BEHAV NEUROSCI, V97, P310, DOI 10.1037/0735-7044.97.2.310 HEFFNER HE, 1969, J AUD RES, V9, P19 HEFFNER R, 1971, J ACOUST SOC AM, V49, P1888, DOI 10.1121/1.1912596 Heffner R. S., 2001, AUDITORY BIOL LAB MO, P31 Heffner RS, 2001, HEARING RES, V157, P138, DOI 10.1016/S0378-5955(01)00298-2 HEFFNER RS, 1994, HEARING RES, V73, P185, DOI 10.1016/0378-5955(94)90233-X HEFFNER RS, 1992, HEARING RES, V62, P206, DOI 10.1016/0378-5955(92)90188-S HEFFNER RS, 1993, J COMP NEUROL, V331, P418, DOI 10.1002/cne.903310311 HEFFNER RS, 1990, HEARING RES, V46, P239, DOI 10.1016/0378-5955(90)90005-A HEFFNER RS, 1995, HEARING RES, V88, P190, DOI 10.1016/0378-5955(95)00112-H HEFFNER RS, 1983, BEHAV NEUROSCI, V97, P299, DOI 10.1037/0735-7044.97.2.299 HEFFNER RS, 1982, J COMP PHYSIOL PSYCH, V96, P926, DOI 10.1037/0735-7036.96.6.926 HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 Heffner RS, 1996, HEARING RES, V99, P13, DOI 10.1016/S0378-5955(96)00074-3 HEFFNER RS, 1985, J MAMMAL, V66, P745, DOI 10.2307/1380801 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8 HIENZ RD, 1982, HEARING RES, V8, P71, DOI 10.1016/0378-5955(82)90035-1 Jackson LL, 1997, J COMP PSYCHOL, V111, P100, DOI 10.1037//0735-7036.111.1.100 Jackson LL, 1999, J ACOUST SOC AM, V106, P3017, DOI 10.1121/1.428121 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Jones ML, 1982, ZOOLOGICAL GARTEN, V52, P113 KELLY JB, 1986, HEARING RES, V24, P269, DOI 10.1016/0378-5955(86)90025-0 Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 2002, HEARING RES, V171, P111, DOI 10.1016/S0378-5955(02)00492-6 Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 KOAY G, 2002, HEARING RES, V171, P97 Koay G, 1998, HEARING RES, V119, P37, DOI 10.1016/S0378-5955(98)00037-9 Koay G, 1998, J COMP PSYCHOL, V112, P371, DOI 10.1037/0735-7036.112.4.371 LONG GR, 1975, J COMP PHYSIOL, V100, P211 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 NEUWEILER G, 1984, J COMP PHYSIOL, V154, P133, DOI 10.1007/BF00605398 OWREN MJ, 1988, J COMP PSYCHOL, V102, P99 PFINGST BE, 1975, J ACOUST SOC AM, V57, P431, DOI 10.1121/1.380466 Popper AN, 2004, ICES J MAR SCI, V61, P1057, DOI 10.1016/j.icesjms.2004.06.005 RAVIZZA RJ, 1969, J AUD RES, V9, P1 RAVIZZA RJ, 1969, J AUD RES, V9, P8 Reimer K, 1995, ZOOL-ANAL COMPLEX SY, V99, P121 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 RYAN MJ, 1983, J COMP PHYSIOL, V150, P413 Schmidt S., 1984, Myotis, V21-22, P62 Sivian LJ, 1933, J ACOUST SOC AM, V4, P288, DOI 10.1121/1.1915608 SUTHERLAND D, 1988, ASS RES OT ABSTR, V11, P232 Teeling EC, 2005, SCIENCE, V307, P580, DOI 10.1126/science.1105113 Waters DA, 2003, ACTA CHIROPTEROL, V5, P209 WEBSTER DB, 1972, BRAIN BEHAV EVOLUT, V5, P41, DOI 10.1159/000123736 WENDT G. R., 1934, COMP PSYCHOL MONOGR, V10, P1 WENSTRUP JJ, 1984, J COMP PHYSIOL, V155, P91, DOI 10.1007/BF00610934 WOLLACK CH, 1963, J AUD RES, V3, P121 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 NR 71 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 17 EP 25 DI 10.1016/j.heares.2006.06.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700002 PM 16982165 ER PT J AU Langemann, U Klump, GM AF Langemann, Ulrike Klump, Georg M. TI Asymmetry of masking in the European starling: Behavioural auditory thresholds SO HEARING RESEARCH LA English DT Article DE bird; signal detection in narrow-band noise; intensity difference limen (IDL); envelope spectrum; temporal processing ID MODULATION TRANSFER-FUNCTIONS; EXCITATION-PATTERN MODEL; AMPLITUDE-MODULATION; STURNUS-VULGARIS; INTENSITY DISCRIMINATION; NOISE; BANDWIDTH; CARRIERS; LEVEL AB Psychophysical studies of simultaneous masking with human observers exhibit an asymmetry in the amount of masking that depends on the relative bandwidths of signals and maskers. For noise bands up to the bandwidth of one auditory filter, masked auditory thresholds are considerably lower when the bandwidth of the signal exceeds that of the masker compared to the reversed condition. We investigate asymmetry of masking in an animal model, that will allow to study the mechanisms associated with the asymmetry of masking effect. European starlings (Sturnus vulgaris) were trained in a Go/NoGo paradigm to report the detection of a 500 ms noise signal centred in a 700 ms noise masker. Signals and maskers with centre frequencies of 2 kHz had bandwidths of 4 Hz or 256 Hz. Thresholds for detecting the 256 Hz wide-band signal in a 4 Hz narrow-band masker were considerably lower compared to detecting the 4 Hz narrow-band signal in a 256 Hz wide masker and compared to all other conditions. The asymmetry of masking in starlings was on average 15 and 17 dB for 40 and 70 dB SPL overall masker level, respectively. Our animal model thus proved perceptual abilities similar to human subjects. The results are discussed with respect to the importance of both intensity and temporal cues for signal detection. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Oldenburg, Fak 5, Inst Biol & Umweltwissensch, D-26129 Oldenburg, Germany. RP Langemann, U (reprint author), Univ Oldenburg, Fak 5, Inst Biol & Umweltwissensch, Carl von Ossietzky Str 9-11, D-26129 Oldenburg, Germany. EM ulrike.langemann@uni-oldenburg.de CR BEE MA, 2004, ABSTR ASS RES OTOLAR, V27, P106 BOS CE, 1966, J ACOUST SOC AM, V39, P708, DOI 10.1121/1.1909945 BUUS S, 1995, J ACOUST SOC AM, V98, P112, DOI 10.1121/1.414466 BUUS S, 1990, J ACOUST SOC AM, V87, P2643, DOI 10.1121/1.399057 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 Dooling R. J., 1995, METHODS COMP PSYCHOA, P161 Dooling R. J., 2000, COMP HEARING BIRDS R, P308 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 Ewert SD, 2004, J ACOUST SOC AM, V116, P478, DOI 10.1121/1.1737399 EWERT SD, 2002, J ACOUST SOC AM, V102, P2921 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 FLORENTINE M, 1981, J ACOUST SOC AM, V70, P1646, DOI 10.1121/1.387219 GLEICH O, 1994, J ACOUST SOC AM, V95, P401, DOI 10.1121/1.408333 Gockel H, 2002, J ACOUST SOC AM, V111, P2759, DOI 10.1121/1.1480422 GREEN DM, 1966, SIGNAL DETECTION THE Greenewalt CH, 1968, BIRD SONG ACOUSTICS HACKER MJ, 1979, PERCEPT PSYCHOPHYS, V26, P168, DOI 10.3758/BF03208311 Hall JL, 1997, J ACOUST SOC AM, V101, P1023, DOI 10.1121/1.418027 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 HELLMAN RP, 1972, PERCEPT PSYCHOPHYS, V11, P241, DOI 10.3758/BF03206257 HOSE B, 1987, BRAIN RES, V422, P367, DOI 10.1016/0006-8993(87)90946-2 Klump Georg, 2000, P193, DOI 10.1002/9783527609734.ch7 KLUMP GM, 1990, NATURWISSENSCHAFTEN, V77, P545, DOI 10.1007/BF01139270 KLUMP GM, 2001, PHYSL PSYCHOPHYSICAL, P266 KLUMP GM, 1991, HEARING RES, V52, P1, DOI 10.1016/0378-5955(91)90182-9 Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 Krumbholz K, 2001, J ACOUST SOC AM, V110, P2096, DOI 10.1121/1.1395583 LANGEMANN U, 1995, HEARING RES, V84, P167, DOI 10.1016/0378-5955(95)00023-W Lawson J. L., 1950, THRESHOLD SIGNALS MAIWALD D, 1967, ACUSTICA, V18, P193 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Swets J.A., 1964, SIGNAL DETECTION REC SWICKER E, 1957, J ACOUST SOC AM, V29, P548 TABACHNICK BG, 1996, USING MULTIVARIATE Verhey JL, 2002, J ACOUST SOC AM, V111, P1018, DOI 10.1121/1.1430690 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 WAKEFIELD GH, 1990, J ACOUST SOC AM, V88, P1367, DOI 10.1121/1.399714 NR 40 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 26 EP 35 DI 10.1016/j.heares.2006.06.018 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700003 PM 16973317 ER PT J AU Kiefer, J Bohnke, F Adunka, O Arnold, W AF Kiefer, Jan Boehnke, Frank Adunka, Oliver Arnold, Wolfgang TI Representation of acoustic signals in the human cochlea in presence of a cochlear implant electrode SO HEARING RESEARCH LA English DT Article DE cochlea; inner ear; cochlear implant; basilar membrane; model; electric-acoustic stimulation; frequency representation; round window; impedance ID AUDITORY-SYSTEM; HEARING-LOSS; STIMULATION; PRESERVATION; MEMBRANE AB Background: In subjects with remaining low frequency hearing, combined electric-acoustic stimulation (EAS) of the auditory system is a new therapeutic perspective. Intracochlear introduction of a cochlear implant electrode, however, may alter the biomechanical properties of the inner ear and thus affect perception of acoustic stimuli. Study design: Based on histological observations of morphologic changes after cochlear implantation in cadaveric and post mortem studies the effects of basilar membrane (BM) stiffening in the ascending basal and middle turns of the cochlea due to close contact of the BM with the electrode were simulated in a 3D-computational finite element model of the inner ear. To verify our simulated results, pre- and postoperative pure-tone audiograms of 13 subjects with substantial residual hearing, who underwent cochlear implantation, were evaluated. Results: In the scenario of partial BM-fixation, acoustic energy of middle (2 kHz) and high (6 kHz) frequency was focused basally and apically to the fixed section, increasing BM displacement amplitudes up to 6 dB at a stimulation level of 94 dB (SPL). Lower frequencies were not affected by fixation in the basal and middle turn of the cochlea. In implanted subjects, a small but significant decrease of thresholds was observed at 1.5 kHz, a place in tonotopy adjacent to the tip region of the implanted electrode. Conclusion: Our model suggests that stiffening of the basilar membrane adjacent to an implanted electrode into the basal and middle cochlear turn did not affect BM movement in the low frequency area. Focussing of acoustic energy may increase perception in regions adjacent to the fixed section. Observations in implanted subjects were concordant with our model predictions. High frequencies, however, should not be amplified in patients using EAS to avoid disturbances in discrimination due to tonotopically incorrect frequency representation. (c) 2006 Published by Elsevier B.V. C1 Tech Univ Munich, Klinikum Rechts Isar, Klin & Poliklin HNO Heilkunde, Dept Otolaryngol, D-81675 Munich, Germany. Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC USA. RP Kiefer, J (reprint author), Tech Univ Munich, Klinikum Rechts Isar, Klin & Poliklin HNO Heilkunde, Dept Otolaryngol, Ismaninger Str 22, D-81675 Munich, Germany. EM J.Kiefer@lrz.tum.de CR Adunka O, 2004, ACTA OTO-LARYNGOL, V124, P807, DOI 10.1080/00016480410018179 Adunka O, 2004, LARYNGOSCOPE, V114, P1237, DOI 10.1097/00005537-200407000-00018 ADUNKA O, 2005, PRESERVATION BASAL, P302 Bohnke F, 1999, ORL J OTO-RHINO-LARY, V61, P305, DOI 10.1159/000027688 Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P40 Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005 Gantz BJ, 2005, LARYNGOSCOPE, V115, P796, DOI 10.1097/01.MLG.0000157695.07536.D2 Gstoettner W, 2000, WIEN KLIN WOCHENSCHR, V112, P477 Kiefer J, 1998, AUDIOLOGY, V37, P382 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 Nadol JB, 2004, OTOL NEUROTOL, V25, P257, DOI 10.1097/00129492-200405000-00010 Plenk Jr H, 1986, TECHNIQUES BIOCOMPAT, P35 Skarzynski H, 2002, ORL J OTO-RHINO-LARY, V64, P247, DOI 10.1159/000064134 VOLDRICH L, 1978, ACTA OTO-LARYNGOL, V86, P331, DOI 10.3109/00016487809107511 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645 NR 16 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 36 EP 43 DI 10.1016/j.heares.2006.07.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700004 PM 16962268 ER PT J AU Calderon, A Derr, A Stagner, BB Johnson, KR Martin, G Noben-Trauth, K AF Calderon, Alfredo Derr, Adam Stagner, Barden B. Johnson, Kenneth R. Martin, Glen Noben-Trauth, Konrad TI Cochlear developmental defect and background-dependent hearing thresholds in the Jackson circler (jc) mutant mouse SO HEARING RESEARCH LA English DT Article DE Jackson circler; hearing loss; vestibular deficits; cochlea malformation; genetic background ID PRODUCT OTOACOUSTIC EMISSIONS; ENLARGED VESTIBULAR AQUEDUCT; BRAIN-STEM RESPONSE; INNER-EAR; PENDRED-SYNDROME; MODIFIER GENES; JERKER MOUSE; MICE; STEREOCILIA; MUTATIONS AB Jackson circler (jc) is a spontaneous, recessive mouse mutation that results in circling behavior and an impaired acoustic startle response. In this study, we refined the phenotypic and genetic parameters of the original jc mutation and characterized a new mutant allele, jc(2J). In open-field behavior tests, homozygous jc mutants exhibited abnormal circling and ambulatory behavior that was indistinguishable from that of phenotypically similar mutants with defects in the vestibule of the inner ear. The jc/jc and jc(2J)/jc(2J) mice had stable elevated auditory-evoked brainstem response (ABR) thresholds at the 16 kHz stimulus of 88 +/- 9 dB sound pressure levels (SPL) and 43 +/- 11 dB SPL, respectively. Peak latencies and peak time intervals were normal in jc mutants. The jc mice showed no measurable distortion-product otoacoustic emissions (DPOAEs) above the system noise floor. In the mutant cochlea, the apical turn failed to form due to the developmental growth arrest of the cochlear duct at the level of the first turn at gestational day 13.5. In a large intrasubspecific intercross, jc localized to a 0.2cM interval at position 25cM on chromosome 10, which is homologous to the human 6q21 region. On CZECHII/Ei and CAST/Ei backgrounds jc/jc mutant hearing thresholds at the 16 kHz stimulus were significantly lower than those observed on the C57BL/6J background, with means of 62 +/- 22 dB SPL and 55 +/- 18 dB SPL, respectively. Genome-wide linkage scans of backcross, intercross, and congenic progeny revealed a complex pattern of genetic and stochastic effects. (c) 2006 Elsevier B.V. All rights reserved. C1 NIDOCD, Neurogenet Sect, Inst Mol Biol, Rockville, MD 20850 USA. Jerry L Pettis Mem Vet Adm Med Ctr, Loma Linda, CA 92357 USA. Jackson Lab, Bar Harbor, ME 04609 USA. RP Noben-Trauth, K (reprint author), NIDOCD, Neurogenet Sect, Inst Mol Biol, 5 Res Court, Rockville, MD 20850 USA. EM nobentk@nidcd.nih.gov CR Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3 Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116 CHURCHILL GA, 1994, GENETICS, V138, P963 CORDES SP, 1994, CELL, V79, P1025, DOI 10.1016/0092-8674(94)90033-7 Curtin JA, 2003, CURR BIOL, V13, P1129, DOI 10.1016/S0960-9822(03)00374-9 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 DEOL MS, 1954, J GENET, V52, P562, DOI 10.1007/BF02985081 Di Palma F, 2001, NAT GENET, V27, P103 Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579 Eppig JT, 2005, NUCLEIC ACIDS RES, V33, pD471, DOI 10.1093/nar/gki113 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 Fedrowitz M, 2003, NEUROSCIENCE, V118, P867, DOI 10.1016/S0306-4522(02)00939-9 Flagella M, 1999, J BIOL CHEM, V274, P26946, DOI 10.1074/jbc.274.38.26946 Flint J, 2005, NAT REV GENET, V6, P271, DOI 10.1038/nrg1576 HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815 Hequembourg S, 2001, JARO, V2, P118 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Ikeda A, 1999, HUM MOL GENET, V8, P1761, DOI 10.1093/hmg/8.9.1761 Iughetti P, 2000, AM J MED GENET, V95, P482, DOI 10.1002/1096-8628(20001218)95:5<482::AID-AJMG14>3.0.CO;2-X Jimenez AM, 2001, JARO, V2, P233 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 1999, HUM MOL GENET, V8, P645, DOI 10.1093/hmg/8.4.645 Johnson KR, 2006, BRAIN RES, V1091, P79, DOI 10.1016/j.brainres.2006.02.021 JONES SM, 2005, JARO-J ASSOC RES OTO, P1 Kaiser A, 2001, EUR J NEUROSCI, V14, P1129, DOI 10.1046/j.0953-816x.2001.01726.x Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 LANDER E, 1995, NAT GENET, V11, P241, DOI 10.1038/ng1195-241 Legare ME, 2000, GENOME RES, V10, P42 Manly KF, 2001, MAMM GENOME, V12, P930, DOI 10.1007/s00335-001-1016-3 MARTIN P, 1993, DEV BIOL, V159, P549, DOI 10.1006/dbio.1993.1263 Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6 *MGD, 2005, MOUS GEN INF PROJ Mondini C, 1997, AM J OTOL, V18, P288 Montcouquiol M, 2003, NATURE, V423, P173, DOI 10.1038/nature01618 MUNDINUS C, 1791, OPUSCULA CAROLI MUND, P7 Nadeau JH, 2003, CURR OPIN GENET DEV, V13, P290, DOI 10.1016/S0959-437X(03)00061-3 Nadeau JH, 2001, NAT REV GENET, V2, P165, DOI 10.1038/35056009 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Phippard D, 1999, J NEUROSCI, V19, P5980 Pryor SP, 2005, J MED GENET, V42, P159, DOI 10.1136/jmg.2004.024208 Quint E, 2003, CURR TOP DEV BIOL, V57, P45, DOI 10.1016/S0070-2153(03)57002-8 Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055 Siemens J, 2002, P NATL ACAD SCI USA, V99, P14946, DOI 10.1073/pnas.232579599 SJOSTROM B, 1990, EUR ARCH OTO-RHINO-L, V247, P51 SOUTHARD JL, 1970, MOUSE NEWS LETT, V42, P30 Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Torres MA, 1996, DEVELOPMENT, V122, P3381 Tsukamoto K, 2003, EUR J HUM GENET, V11, P916, DOI 10.1038/sj.ejhg.5201073 Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933 Vazquez AE, 2001, HEARING RES, V156, P31, DOI 10.1016/S0378-5955(01)00265-9 Wang JB, 2005, NAT GENET, V37, P980, DOI 10.1038/ng1622 Witmer PD, 2003, GENOME RES, V13, P485, DOI 10.1101/gr.717903 Xu PX, 1999, NAT GENET, V23, P113 Zheng LL, 2000, CELL, V102, P377, DOI 10.1016/S0092-8674(00)00042-8 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 ZHOU RZ, 1995, HEARING RES, V88, P98, DOI 10.1016/0378-5955(95)00105-D ZHOU RZ, 1995, HEARING RES, V88, P87, DOI 10.1016/0378-5955(95)00104-C NR 60 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 44 EP 58 DI 10.1016/j.heares.2006.07.008 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700005 PM 16962269 ER PT J AU Konig, O Schaette, R Kempter, R Gross, M AF Koenig, Ovidiu Schaette, Roland Kempter, Richard Gross, Manfred TI Course of hearing loss and occurrence of tinnitus SO HEARING RESEARCH LA English DT Article DE tinnitus; noise-induced hearing loss; audiometric difference; audiogram steepness; audiogram edge; tinnitus pitch ID DORSAL COCHLEAR NUCLEUS; ENRICHED ACOUSTIC ENVIRONMENT; PURE-TONE TRAUMA; FREQUENCY DISCRIMINATION; AUDITORY-CORTEX; PLASTICITY; DAMAGE; HYPERACTIVITY; PREVALENCE; EXPOSURE AB Chronic tinnitus is often accompanied by a hearing impairment, but it is still unknown whether hearing loss can actually cause tinnitus. The association between the pitch of the tinnitus sensation and the audiogram edge in patients with high-frequency hearing loss suggests a functional relation, but a large fraction of patients with hearing loss does not present symptoms of tinnitus. We therefore, investigated how the occurrence of tinnitus is related to the shape of the audiogram. We analyzed a sample where all patients had noise-induced hearing loss, containing 30 patients without tinnitus, 24 patients with tone-like tinnitus, and 17 patients with noise-like tinnitus. All patients had moderate to severe high-frequency hearing loss, and only minor to moderate hearing loss at low frequencies. We found that tinnitus patients had less overall hearing loss than patients without tinnitus. Moreover, the maximum steepness of the audiogram was higher in patients with tinnitus (-52.9 +/- 1.9 dB/octave) compared to patients without tinnitus (-43.1 +/- 2.4 dB/octave). Differences in overall hearing loss and maximum steepness between tone-like and noise-like tinnitus were not significant. For tone-like tinnitus, there was a clear association between the tinnitus pitch and the edge of the audiogram, with tinnitus pitch being on average 1.48 +/- 0.12 octaves above the audiogram edge frequency, and 0.81 +/- 0.1 octaves above the frequency with the steepest slope. Our results suggest that the occurrence of tinnitus is promoted by a steep audiogram slope. A steep slope leads to abrupt discontinuities in the activity along the tonotopic axis of the auditory system, which could be misinterpreted as sound. (c) 2006 Elsevier B.V. All rights reserved. C1 Humboldt Univ, Inst Theroret Biol, D-10115 Berlin, Germany. Med Fac Berlin, Charite, Dept Audiol & Phoniatr, D-14195 Berlin, Germany. Bernstein Ctr Computat Neurosci Berlin, D-10115 Berlin, Germany. Med Fac Berlin, Charite, Ctr Res Neurosci, D-10117 Berlin, Germany. RP Schaette, R (reprint author), Humboldt Univ, Inst Theroret Biol, Invalidenstr 43, D-10115 Berlin, Germany. EM r.schaette@biologie.hu-berlin.de CR Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BURNS EM, 1984, AUDIOLOGY, V23, P426 CHUNG DY, 1984, AUDIOLOGY, V23, P441 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0 Folmer RL, 2006, OTOLARYNG HEAD NECK, V134, P132, DOI 10.1016/j.otohns.2005.09.030 Gerken GM, 1996, HEARING RES, V97, P75 Henry JA, 1999, P 6 INT TINN SEM, P51 Jastreboff P J, 2000, J Am Acad Audiol, V11, P162 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MCSHANE DP, 1988, CLIN OTOLARYNGOL, V13, P323, DOI 10.1111/j.1365-2273.1988.tb00760.x Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 Norena AJ, 2006, NEUROREPORT, V17, P559, DOI 10.1097/00001756-200604240-00001 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Ochi K, 2003, LARYNGOSCOPE, V113, P427, DOI 10.1097/00005537-200303000-00007 PHOON WH, 1993, OCCUP MED-OXFORD, V43, P35, DOI 10.1093/occmed/43.1.35 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 ROBERTS LE, IN PRESS ACTA OTOLAR Schaette R, 2006, EUR J NEUROSCI, V23, P3124, DOI 10.1111/j.1460-9568.04774.x Seki S, 2002, HEARING RES, V173, P172, DOI 10.1016/S0378-5955(02)00518-X Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 Sindhusake Doungkamol, 2004, J Am Acad Audiol, V15, P269 Sindhusake D, 2003, EAR HEARING, V24, P501, DOI 10.1097/01.AUD.0000100204.08771.3D Surr R K, 1999, J Am Acad Audiol, V10, P489 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 Weisz N, 2005, P 8 INT TINN SEM, P76 NR 36 TC 64 Z9 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 59 EP 64 DI 10.1016/j.heares.2006.07.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700006 PM 16962270 ER PT J AU Jones, SJ AF Jones, S. J. TI Cortical processing of quasi-periodic versus random noise sounds SO HEARING RESEARCH LA English DT Article DE auditory evoked potentials; auditory cortex; iterated rippled noise; pitch onset response; temporal regularity ID HUMAN AUDITORY-CORTEX; ITERATED RIPPLED NOISE; TONOTOPIC ORGANIZATION; MAGNETIC-FIELDS; COMPLEX TONES; EVOKED POTENTIALS; PITCH; REPRESENTATION; FREQUENCY; MAPS AB The first objective was to confirm using auditory evoked potentials (AEPs) the findings of magnetoencephalographic studies; that quasi-periodic iterated rippled noise (IRN) elicits a population response in the human auditory cortex which is topographically distinct from that elicited by random noise with a similar overall frequency spectrum. AEPs were recorded at the onset of random noise from silence, at the transition from random noise to IRN with a period of 5 ms, and in the two complementary conditions, IRN onset from silence and the transition from IRN to random noise. An N1/P2 complex was recorded to all four stimuli, that to the transition to IRN being significantly the most anteriorly distributed on the scalp. The second objective was to determine whether the response to the transition to IRN was due to detection of its quasi-periodicity, rather than its spectral "ripples". Virtually no effect was found of applying a 2 kHz low- or high-pass filter, above which it is unlikely that the spectral ripples at intervals of 200 Hz would have been resolved on the cochlear partition. It is concluded that a substantial neuronal population in the auditory cortex is influenced by temporal regularity in sounds, and that this population is equally responsive to spectral frequencies below and above 2 kHz. (c) 2006 Elsevier B.V. All rights reserved. C1 UCL Natl Hosp Neurol & Neurosurg, Dept Clin Neurophysiol, London WC1N 3BG, England. RP Jones, SJ (reprint author), UCL Natl Hosp Neurol & Neurosurg, Dept Clin Neurophysiol, Queen Sq, London WC1N 3BG, England. EM sjjones@ion.ucl.ac.uk CR Bendor D, 2005, NATURE, V436, P1161, DOI 10.1038/nature03867 Bilecen D, 1998, HEARING RES, V126, P19, DOI 10.1016/S0378-5955(98)00139-7 ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201 Formisano E, 2003, NEURON, V40, P859, DOI 10.1016/S0896-6273(03)00669-X Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949 Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140 Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0 Hung J, 2001, EXP BRAIN RES, V140, P56, DOI 10.1007/s002210100783 Jones SJ, 1998, EVOKED POTENTIAL, V108, P131, DOI 10.1016/S0168-5597(97)00077-4 Jones SJ, 2001, CLIN NEUROPHYSIOL, V112, P965, DOI 10.1016/S1388-2457(01)00515-6 Jones SJ, 2003, EXP BRAIN RES, V150, P506, DOI 10.1007/s00221-003-1482-9 Jones SJ, 2000, CLIN NEUROPHYSIOL, V111, P1569, DOI 10.1016/S1388-2457(00)00360-6 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 MAKELA JP, 1988, ELECTROEN CLIN NEURO, V69, P423, DOI 10.1016/0013-4694(88)90064-8 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 Moore BCJ, 1997, INTRO PSYCHOL HEARIN MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Pantev C, 1996, HEARING RES, V100, P164, DOI 10.1016/0378-5955(96)00124-4 Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 Schonwiesner M, 2002, NEUROIMAGE, V17, P1144, DOI 10.1006/nimg.2002.1250 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 Schulze H, 2002, EUR J NEUROSCI, V15, P1077, DOI 10.1046/j.1460-9568.2002.01935.x Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Soeta Y, 2005, HEARING RES, V205, P256, DOI 10.1016/j.heares.2005.03.026 Talavage TM, 2004, J NEUROPHYSIOL, V91, P1282, DOI 10.1152/jn.01125.2002 Vaz Pato M., 1999, COGNITIVE BRAIN RES, V7, P295, DOI 10.1016/S0926-6410(98)00032-9 VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 YAMAMOTO T, 1992, ACTA OTO-LARYNGOL, V112, P201 Yost WA, 1997, J ACOUST SOC AM, V101, P1644, DOI 10.1121/1.418148 NR 35 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 65 EP 72 DI 10.1016/j.heares.2006.06.019 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700007 PM 16963209 ER PT J AU Willott, JF VandenBosche, J Shimizu, T Ding, DL Salvi, R AF Willott, James F. VandenBosche, Justine Shimizu, Toru Ding, Da-Lian Salvi, Richard TI Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: Auditory brainstem response thresholds and cytocochleograms SO HEARING RESEARCH LA English DT Article DE mouse; ABR; augmented acoustic environment; hearing loss; cochleograms; hair cells; gonadal hormones; sex differences ID ANTEROVENTRAL COCHLEAR NUCLEUS; PRODUCT OTOACOUSTIC EMISSIONS; AGING C57BL-6J MICE; HAIR CELL LOSS; HEARING-LOSS; SEX-DIFFERENCES; DBA/2J MICE; PROLONGED EXPOSURE; ESTROGEN-RECEPTORS; CALBINDIN D-28K AB Gonadectomized and surgically intact adult C57BL/6J (B6) mice of both sexes were exposed for 12 h nightly to a high-frequency augmented acoustic environment (AAE): repetitive bursts of a half-octave noise band centered at 20 kHz, 70 dB SPL. The effects of sex, gonadectomy, and AAE treatment on genetic progressive hearing loss (exhibited by B6 mice) were evaluated by obtaining auditory brainstem response thresholds at ages 3-, 6-, and 9-months; hair cell counts (cytocochleograms) were obtained at 9 months. A sex difference in the rate of genetic progressive hearing loss in B6 mice (observed by earlier studies) was confirmed, with females exhibiting a faster rate of threshold elevations and more severe loss of hair cells at age 9 months. Gonadectomy had no consistent effects on the rate or severity of hearing loss in non-exposed mice of either sex. An unexpected finding was that the high-frequency AAE treatment caused additional ABR threshold elevations and hair cell loss. In an earlier study, the same high-frequency AAE treatment on DBA/2J mice ameliorated hearing loss. The most severe AAE-induced losses occurred in surgically intact females, suggesting a potentiating effect of ovarian hormone(s). (c) 2006 Elsevier B.V. All rights reserved. C1 Univ S Florida, Dept Psychol, Tampa, FL 33620 USA. Jackson Lab, Bar Harbor, ME 04609 USA. SUNY Buffalo, Dept Biochem, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Willott, JF (reprint author), Univ S Florida, Dept Psychol, 4202 E Fowler Ave,PCD4188G, Tampa, FL 33620 USA. EM jimw@niu.edu CR Arnold AP, 1996, HORM BEHAV, V30, P495, DOI 10.1006/hbeh.1996.0053 BELISLE S, 1985, AM J OBSTET GYNECOL, V153, P394 BERGMAN MD, 1989, J STEROID BIOCHEM, V33, P1027, DOI 10.1016/0022-4731(89)90405-6 Bittar R S, 2001, Int Tinnitus J, V7, P41 COLEMAN JR, 1994, HEARING RES, V80, P209, DOI 10.1016/0378-5955(94)90112-0 Davis R R, 2003, Noise Health, V5, P19 DAVIS RR, 2001, HDB MOUSE AUDITORY R, P477, DOI 10.1201/9781420038736.sec5 Di Palma F, 2001, NAT GENET, V27, P103 EATON A, 2006, BEHAV NEUROSCI, V120, P1 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P429, DOI 10.1201/9781420038736.ch28 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 Garcia-Segura LM, 2001, PROG NEUROBIOL, V63, P29, DOI 10.1016/S0301-0082(00)00025-3 Guimaraes P, 2004, HEARING RES, V192, P83, DOI 10.1016/j.heares.2004.01.013 HARDING GW, 2004, HEARING RES, V204, P90 Henry KR, 2002, HEARING RES, V170, P107, DOI 10.1016/S0378-5955(02)00391-X Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5 Hequembourg S, 2001, JARO, V2, P118 HOLME RH, 2003, J ASS RES OTOLARYNOL, V5, P66 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 LAUGEL GR, 1987, HEARING RES, V31, P245, DOI 10.1016/0378-5955(87)90194-8 LAUGEL GR, 1988, ACTA OTO-LARYNGOL, V106, P34, DOI 10.3109/00016488809107368 Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 2000, J ACOUST SOC AM, V107, P2162, DOI 10.1121/1.428497 McFadden SL, 1999, J COMP NEUROL, V413, P101 McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 Nathan CAO, 1999, ACTA OTO-LARYNGOL, V119, P853 NELSON JF, 1992, ENDOCRINOLOGY, V130, P805, DOI 10.1210/en.130.2.805 NELSON JF, 1981, BIOL REPROD, V24, P784, DOI 10.1095/biolreprod24.4.784 NELSON JF, 1975, ACTA ENDODRINOL, V80, P742 NELSON JF, 1995, NEUROBIOL AGING, V16, P837, DOI 10.1016/0197-4580(95)00072-M NELSON JF, 1982, BIOL REPROD, V27, P327, DOI 10.1095/biolreprod27.2.327 Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 Papalexi E, 2005, HORM BEHAV, V48, P291, DOI 10.1016/j.yhbeh.2005.03.009 Picazo O, 2003, BRAIN RES, V990, P20, DOI 10.1016/S0006-8993(03)03380-8 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Stenberg AE, 1999, HEARING RES, V136, P29, DOI 10.1016/S0378-5955(99)00098-2 Toran-Allerand CD, 1999, FRONT NEUROENDOCRIN, V20, P97, DOI 10.1006/frne.1999.0177 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 Usui T, 2006, ENDOCR J, V53, P7, DOI 10.1507/endocrj.53.7 Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017 WILLOTT JF, 2005, JARO-J ASSOC RES OTO, V28, P1 WILLOTT JF, 1996, ILSI MONOGRAPHS PATH, P179 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2006, HEARING RES, V216, P138, DOI 10.1016/j.heares.2006.01.010 Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 Willott JF, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P205 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 Zhang Y, 2004, J NEUROSCI, V24, P5315, DOI 10.1523/JNEUROSCI.0913-04.2004 Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010 NR 59 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 73 EP 81 DI 10.1016/j.heares.2006.07.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700008 PM 16973316 ER PT J AU Chen, L Sun, W Salvi, RJ AF Chen, Lin Sun, Wei Salvi, Richard J. TI Effects of nimodipine, an L-type calcium channel antagonist, on the chicken's cochlear potentials SO HEARING RESEARCH LA English DT Article DE L-type calcium channel; hair cell; neurotransmitter release; nimodipine; chicken; cochlear potential ID GUINEA-PIG COCHLEA; GATED CA2+ CHANNELS; ACTIVATED POTASSIUM CHANNELS; SPIRAL GANGLION-CELLS; INNER HAIR-CELLS; TRANSMITTER RELEASE; DISCHARGE PATTERNS; ALPHA(1D) SUBUNIT; SENSORY NEURONS; KAINIC ACID AB At most synapses in the brain, neurotransmitter release depends on N-type or P/Q-type calcium channels. However, available in vitro experimental data suggest that there exist almost exclusively L-type calcium channels in sensory hair cells of most species. To test whether chicken hair cells depend on L-type calcium channels for neurotransmitter release, we examined the effects of nimodipine, a selective L-type calcium channel antagonist, on acoustically evoked cochlear potentials in 10-15 week old chickens in vivo. Diffusion of nimodipine into scala tympani significantly elevated threshold, dramatically decreased the amplitude and increased the latency of the compound action potential within 20 min of drug application. The summating potential was also significantly reduced in amplitude, but the cochlear microphonic was relatively less affected. All the effects were reversible after nimodipine was washed out with artificial perilymph except that the cochlear microphonic amplitude remained decreased. Application of omega-conotoxin GVIA, an N-type calcium channel antagonist and agatoxin Tk, a P-type calcium channel antagonist had no observable effects on the cochlear potentials. These results suggest that L-type calcium channels control neurotransmitter release from avian hair cells. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Chen, L (reprint author), Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China. EM linchen@ustc.edu.cn RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 CR ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49 Bao H, 2003, J NEUROPHYSIOL, V90, P155, DOI 10.1152/jn.00242.2002 BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E BORN DE, 1988, J NEUROSCI, V8, P901 Brandt A, 2005, J NEUROSCI, V25, P11577, DOI 10.1523/JNEUROSCI.3411-05.2005 Catterall WA, 2000, ANNU REV CELL DEV BI, V16, P521, DOI 10.1146/annurev.cellbio.16.1.521 Chen L, 1996, HEARING RES, V98, P152, DOI 10.1016/0378-5955(96)00086-X CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J Doughty JM, 1998, J PHYSIOL-LONDON, V512, P365, DOI 10.1111/j.1469-7793.1998.365be.x Duncan RK, 2003, J PHYSIOL-LONDON, V547, P357, DOI 10.1113/jphysiol.2002.029785 DUNLAP K, 1995, TRENDS NEUROSCI, V18, P89 FOX AP, 1987, J PHYSIOL-LONDON, V394, P149 FOX AP, 1987, J PHYSIOL-LONDON, V394, P173 FUCHS PA, 1990, J PHYSIOL-LONDON, V429, P553 FUCHS PA, 1988, J NEUROSCI, V8, P2460 HILLE B, 1992, IONIC CHANNELS EXCIT, P83 Hisashi K, 1995, HEARING RES, V91, P196, DOI 10.1016/0378-5955(95)00191-3 HUDSPETH AJ, 1986, HEARING RES, V22, P21, DOI 10.1016/0378-5955(86)90070-5 KIMITSUKI T, 1994, ACTA OTO-LARYNGOL, V114, P144, DOI 10.3109/00016489409126033 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14889, DOI 10.1073/pnas.94.26.14889 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 Marchetti C, 1996, NEUROSCI LETT, V207, P77, DOI 10.1016/0304-3940(96)12492-7 MartinezDunst C, 1997, J NEUROSCI, V17, P9133 Martini M, 2000, BIOPHYS J, V78, P1240 MILLER RJ, 1987, SCIENCE, V235, P46, DOI 10.1126/science.2432656 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 Reuter H, 1996, CURR OPIN NEUROBIOL, V6, P331, DOI 10.1016/S0959-4388(96)80116-4 RIOS E, 1987, NATURE, V325, P717, DOI 10.1038/325717a0 Rispoli G, 2000, NEUROREPORT, V11, P2769, DOI 10.1097/00001756-200008210-00032 ROBERTS WM, 1988, ANNU REV CELL BIOL, V4, P63, DOI 10.1146/annurev.cb.04.110188.000431 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Robertson D, 2002, J NEUROPHYSIOL, V87, P2734, DOI 10.1152/jn.00327.2001 Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x Rosenblatt KP, 1997, NEURON, V19, P1061, DOI 10.1016/S0896-6273(00)80397-9 SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227 SALVI RJ, 1994, J COMP PHYSIOL A, V174, P351 Samaranayake H, 2004, J PHYSIOL-LONDON, V560, P13, DOI 10.1113/jphysiol.2004.069856 SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 Schnee ME, 2003, J PHYSIOL-LONDON, V549, P697, DOI 10.1113/jphysiol.2002.037481 Skinner LJ, 2003, J NEUROPHYSIOL, V90, P320, DOI 10.1152/jn.01155.2002 Snutch T P, 2001, Curr Opin Pharmacol, V1, P11, DOI 10.1016/S1471-4892(01)00012-1 Spassova M, 2001, J PHYSIOL-LONDON, V535, P689, DOI 10.1111/j.1469-7793.2001.00689.x Sueta T, 2004, HEARING RES, V188, P117, DOI 10.1016/S0378-5955(03)00374-5 Sun H, 2000, J ACOUST SOC AM, V107, P2136, DOI 10.1121/1.428495 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 ZIDANIC M, 1995, BIOPHYS J, V68, P1323 NR 50 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 82 EP 90 DI 10.1016/j.heares.2006.08.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700009 PM 16996235 ER PT J AU Shechter, B Depireux, DA AF Shechter, Barak Depireux, Didier A. TI Response adaptation to broadband sounds in primary auditory cortex of the awake ferret SO HEARING RESEARCH LA English DT Article DE auditory cortex; adaptation; grating; ferret; second-order adaptation; coding; primary auditory cortex; AI ID SPECTROTEMPORAL REVERSE CORRELATION; MODULATION TRANSFER-FUNCTIONS; AMPLITUDE-MODULATION; CONTRAST ADAPTATION; RECEPTIVE-FIELDS; DYNAMIC SPECTRA; UNIT RESPONSES; CAT; NEURONS; REPRESENTATION AB Driven by previous reports of adaptation to persistent stimuli in other brain regions, we investigated adaptive effects in the Primary Auditory Cortex of awake non-behaving ferrets (Mustela putorius furo). Electrophysiological data was obtained in response to the presentation of auditory gratings with a structured spectro-temporal envelope of varying bandwidth which had repeated transitions between low and high modulation depths. The responses were analyzed in terms of the evoked spike rates and in terms of the degree of phase locking to the modulation. We found two populations of cells, both of which showed adaptation in the traditional sense. For one population, we also found a second order of adaptation -i.e., adaptation of the adaptation. This suggests the existence of at least two coding strategies which differ in the weight placed on sensory context. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Maryland, Dept Anat & Neurobiol, Sch Med, Baltimore, MD 21201 USA. Univ Maryland, Program Neurosci, Sch Med, Baltimore, MD 21201 USA. RP Shechter, B (reprint author), Univ Maryland, Dept Anat & Neurobiol, Sch Med, 20 Pennh St,HSF 2 Rm S251, Baltimore, MD 21201 USA. EM bshec001@umaryland.edu CR Attias H, 1997, ADV NEUR IN, V9, P27 Baccus SA, 2002, NEURON, V36, P909, DOI 10.1016/S0896-6273(02)01050-4 Bartlett EL, 2005, J NEUROPHYSIOL, V94, P83, DOI 10.1152/jn.01124.2004 Bieser A, 1996, EXP BRAIN RES, V108, P273 Bruno RM, 2002, J NEUROSCI, V22, P10966 Chi TS, 1999, J ACOUST SOC AM, V106, P2719, DOI 10.1121/1.428100 Crowder NA, 2006, J NEUROPHYSIOL, V95, P271, DOI 10.1152/jn.00871.2005 Dean I, 2005, NAT NEUROSCI, V8, P1684, DOI 10.1038/nn1541 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DEWEESE M, 1995, NUOVO CIMENTO D, V17, P733, DOI 10.1007/BF02451830 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 Eggermont JJ, 2001, HEARING RES, V157, P1, DOI 10.1016/S0378-5955(01)00259-3 Fairhall AL, 2001, NATURE, V412, P787, DOI 10.1038/35090500 Kim KJ, 2001, J NEUROSCI, V21, P287 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Klein DJ, 2006, J COMPUT NEUROSCI, V20, P111, DOI 10.1007/s10827-005-3589-4 KLEIN DJ, 2003, EURASIP J APPL SIG P, V7, P659 Kohn A, 2003, NEURON, V39, P681, DOI 10.1016/S0896-6273(03)00438-0 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524 Kvale MN, 2004, J NEUROPHYSIOL, V91, P604, DOI 10.1152/jn.00484.2003 LAUGHLIN S, 1981, Z NATURFORSCH C, V36, P910 Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Reinagel P, 2001, NATURE, V412, P776, DOI 10.1038/35090669 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 RREDISH AD, 2004, MCLUST SPIKE SORTING SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 Shapley R., 1984, PROGR RETINAL RES, V3, P263, DOI 10.1016/0278-4327(84)90011-7 Smirnakis SM, 1997, NATURE, V386, P69, DOI 10.1038/386069a0 Spinks RL, 2003, J NEUROPHYSIOL, V90, P1324, DOI 10.1152/jn.00169.2003 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 VANSTEVENINCK RRD, 1994, P IEEE INT C SYST MA, P302 Werner-Reiss U, 2006, EXP BRAIN RES, V168, P272, DOI 10.1007/s00221-005-0184-x Wojtczak M, 2003, J ACOUST SOC AM, V114, P991, DOI 10.1121/1.1593067 NR 36 TC 12 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 91 EP 103 DI 10.1016/j.heares.2006.08.002 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700010 PM 16982164 ER PT J AU Stamataki, S Francis, HW Lehar, M May, BJ Ryugo, DK AF Stamataki, Sofia Francis, Howard W. Lehar, Mohamed May, Bradford J. Ryugo, David K. TI Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice SO HEARING RESEARCH LA English DT Article DE cochlea; afferent innervation; synapse; ultrastructure; presbycusis ID ANTEROVENTRAL COCHLEAR NUCLEUS; SENSORINEURAL HEARING-LOSS; AUDITORY-NERVE FIBERS; AGE-RELATED LOSS; DEAF WHITE CATS; MOUSE MODEL; DENDRITIC SPINES; SERIAL SECTIONS; FUNCTIONAL AGE; SYNAPSES AB Hearing deficits have often been associated with loss of or damage to receptor hair cells and/or degeneration of spiral ganglion cells. There are, however, some physiological abnormalities that are not reliably attributed to loss of these cells. The afferent synapse between radial fibers of spiral ganglion neurons and inner hair cells (IHCs) emerges as another site that could be involved in transmission abnormalities. We tested the hypothesis that the structure of these afferent terminals would differ between young animals and older animals with significant hearing loss. Afferent endings and their synapses were examined by transmission electron microscopy at approximately 45% distance from the basal end of the cochlea in 2-3 month-old and 8-12 month-old C57BL/6J mice. The number of terminals in older animals was reduced by half compared to younger animals. In contrast, there was no difference in the density of SGCs between the age groups. Older animals featured enlarged terminals and mitochondria and enlarged postsynaptic densities and presynaptic bodies. These morphological changes may be a combination of pathologic, adaptive and compensatory responses to sensory dysfunction. Improved knowledge of these processes is necessary to understand the role of afferent connectivity in dysfunction of the aging cochlea. (c) 2006 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. RP Francis, HW (reprint author), Johns Hopkins Univ, Dept Otolaryngol Head & Neck Surg, Johns Hopkins Outpatient Ctr, 601 N Caroline St,6th Floor, Baltimore, MD 21287 USA. EM hfrancis@jhmi.edu CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 BertoniFreddari C, 1996, GERONTOLOGY, V42, P170 BERTONIFREDDARI C, 1989, PATHOL RES PRACT, V185, P799 CAVANAGH JB, 1964, INT REV EXP PATHOL, V3, P219 Chen MA, 2006, OTOL NEUROTOL, V27, P316, DOI 10.1097/00129492-200604000-00005 DEGROOT DMG, 1988, J MICROSC-OXFORD, V151, P23 Di Palma F, 2001, NAT GENET, V27, P103 FALIA JC, 2001, J AM MED INFORM ASSN, V8, P1 FALIA JC, 2001, J MICROSC-OXFORD, V202, P468 Francis HW, 2006, J NEUROSCI METH, V150, P150, DOI 10.1016/j.jneumeth.2005.06.020 Francis HW, 2004, BRAIN RES, V1016, P182, DOI 10.1016/j.brainres.2004.05.016 Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0 Furness DN, 2003, J NEUROSCI, V23, P11296 FURUKAWA K, 1995, EXP NEUROL, V133, P153, DOI 10.1006/exnr.1995.1018 Geinisman Y, 1996, J COMP NEUROL, V368, P413 Halpain S, 2005, PROG BRAIN RES, V147, P29, DOI 10.1016/S0079-6123(04)47003-4 Halpain S, 1998, J NEUROSCI, V18, P9835 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 Jansen HG, 1997, MICROSC RES TECHNIQ, V36, P96, DOI 10.1002/(SICI)1097-0029(19970115)36:2<96::AID-JEMT3>3.0.CO;2-T JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Kowald A, 2000, J THEOR BIOL, V202, P145, DOI 10.1006/jtbi.1999.1046 Krishna BS, 2002, J COMPUT NEUROSCI, V13, P71, DOI 10.1023/A:1020116122533 LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LIBERMAN MC, 1990, J COMP NEUROL, V301, P443, DOI 10.1002/cne.903010309 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 LISMAN JE, 1993, TRENDS NEUROSCI, V16, P141, DOI 10.1016/0166-2236(93)90122-3 Lolova IS, 1997, MECH AGEING DEV, V97, P193, DOI 10.1016/S0047-6374(97)00062-6 Muller M, 2005, HEARING RES, V202, P63, DOI 10.1016/j.heares.2004.08.011 Murthy VN, 2001, NEURON, V32, P673, DOI 10.1016/S0896-6273(01)00500-1 NADOL JB, 1979, OTOLARYNG HEAD NECK, V87, P818 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 PAULER M, 1986, ARCH OTO-RHINO-LARYN, V243, P200, DOI 10.1007/BF00470622 Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Rivas A, 2005, OTOL NEUROTOL, V26, P415, DOI 10.1097/01.mao.0000169764.00798.84 Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 Schmiedt RA, 1996, J NEUROPHYSIOL, V76, P2799 SCHUKNECHT HF, 1994, OTOLARYNG HEAD NECK, V110, P530 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 SOBKOWICZ HM, 1982, J NEUROSCI, V2, P942 Spiwoks-Becker I, 2004, EUR J NEUROSCI, V19, P1559, DOI 10.1111/j.1460-9568.2004.03198.x Spoendlin H, 1990, Acta Otolaryngol Suppl, V470, P61 SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493 Stankovic K, 2004, J NEUROSCI, V24, P8651, DOI 10.1523/JNEUROSCI.0733-04.2004 Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Walmsley B, 1998, TRENDS NEUROSCI, V21, P81, DOI 10.1016/S0166-2236(97)01170-3 White JA, 2000, HEARING RES, V141, P12, DOI 10.1016/S0378-5955(99)00204-X WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 NR 57 TC 38 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 104 EP 118 DI 10.1016/j.heares.2006.07.014 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700011 PM 17005343 ER PT J AU Sendowski, I Abaamrane, L Raffin, F Cros, A Clarencon, D AF Sendowski, I. Abaamrane, L. Raffin, F. Cros, A. Clarencon, D. TI Therapeutic efficacy of intra-cochlear administration of methylprednisolone after acoustic trauma caused by gunshot noise in guinea pigs SO HEARING RESEARCH LA English DT Article DE acoustic trauma; impulse noise; guinea pig; methylprednisolone; osmotic pump ID SENSORINEURAL HEARING-LOSS; INNER-EAR; GLUCOCORTICOID RECEPTORS; STEROID-THERAPY; FREE-RADICALS; NITRIC-OXIDE; HAIR-CELLS; PREDNISOLONE; PHARMACOKINETICS; AGENTS AB The therapeutic efficacy of cochlear infusion of methylprednisolone (MP) after an impulse noise trauma (170 dB SPL peak) was evaluated in guinea pigs. The compound action potential threshold shifts were measured over a 14 days recovery period after the gunshot exposure. For each animal, one of the cochlea was perfused directly into the scala tympani with MP during 7 days via a mini-osmotic pump, whereas the other cochlea was not pump-implanted. The functional study of hearing was supplemented by histological analysis. Forty eight hours after the trauma, significant differences between auditory threshold shifts in the implanted and non-implanted ears were observed for frequencies above 8 kHz. At day 7, the difference was significant for only one frequency and no difference was observed after 14 days recovery. Cochleograms showed that the hair cell losses were significantly lower in the MP treated ears. This work indicates that direct infusion of MP into perilymphatic space accelerates hearing recovery, reduces hair cell losses after impulse noise trauma but does not limit permanent threshold shifts. (c) 2006 Elsevier B.V. All rights reserved. C1 CRSSA, Dept Radiobiol, F-38702 La Tronche, France. RP Sendowski, I (reprint author), CRSSA, Dept Radiobiol, 24 Ave Maquis Gresivaudan,BP 87, F-38702 La Tronche, France. EM isendowski@crssa.net; L.abaamrane@crssa.net; Fraffin@crssa.net; Didierclarencon@crssa.net CR Aoki D, 2006, OTOLARYNG HEAD NECK, V134, P783, DOI 10.1016/j.otohns.2005.12.029 Arnold W, 2005, AUDIOL NEURO-OTOL, V10, P53, DOI 10.1159/000082575 Bachmann G, 2001, HNO, V49, P538, DOI 10.1007/s001060170078 Canlon B, 1988, Scand Audiol Suppl, V27, P1 Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5 Czock D, 2005, CLIN PHARMACOKINET, V44, P61, DOI 10.2165/00003088-200544010-00003 d'Aldin C, 1999, ANN NY ACAD SCI, V884, P328, DOI 10.1111/j.1749-6632.1999.tb08652.x De Bosscher K, 2000, P NATL ACAD SCI USA, V97, P3919, DOI 10.1073/pnas.97.8.3919 Diem R, 2003, J NEUROSCI, V23, P6993 Doyle KJ, 2004, OTOL NEUROTOL, V25, P1034, DOI 10.1097/00129492-200411000-00031 El-Hennawi DM, 2005, J LARYNGOL OTOL, V119, P2 Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 Fu ES, 2005, J NEUROSURG ANESTH, V17, P82, DOI 10.1097/01.ana.0000163199.10365.38 Fujioka M, 2006, J NEUROSCI RES, V83, P575, DOI 10.1002/jnr.20764 García-Purriños F J, 2005, Acta Otorrinolaringol Esp, V56, P74 Ghosh A, 2005, EMERG MED J, V22, P732, DOI 10.1136/emj.2005.029066 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308 HENRY KR, 1992, ACTA OTO-LARYNGOL, V112, P599, DOI 10.3109/00016489209137447 Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3 Jackson LE, 2002, OTOLARYNG CLIN N AM, V35, P639, DOI 10.1016/S0030-6665(02)00023-3 JUHN SK, 1981, ACTA OTO-LARYNGOL, V91, P529, DOI 10.3109/00016488109138538 Karlidag T, 2002, AURIS NASUS LARYNX, V29, P147, DOI 10.1016/S0385-8146(01)00137-7 KOLLS J, 1994, P SOC EXP BIOL MED, V205, P220 Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011 Lamm K, 1998, HEARING RES, V115, P149, DOI 10.1016/S0378-5955(97)00186-X Lefebvre PP, 2002, ACTA OTO-LARYNGOL, V122, P698, DOI 10.1080/003655402/000028037 LIGHT JP, 2004, HEAD NECK SURG, V12, P378 LILES WC, 1995, BLOOD, V86, P3181 Mori T, 2004, AURIS NASUS LARYNX, V31, P395, DOI 10.1016/j.anl.2004.09.008 MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664 Nagashima R, 2005, J PHARMACOL SCI, V99, P301, DOI 10.1254/jphs.CPJ05004X Niedermeyer HP, 2003, AUDIOL NEURO-OTOL, V8, P316, DOI 10.1159/000073516 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N SCHREINER L, 1963, ARCH OHREN NASEN KEH, V9, P587 Seidman MD, 2004, OTOLARYNG CLIN N AM, V37, P973, DOI 10.1016/j.otc.2004.03.005 Sendowski I, 2006, ACTA OTO-LARYNGOL, V126, P122, DOI 10.1080/00016480500312547 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shi XR, 2002, HEARING RES, V164, P49 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 Shirwany NA, 1998, AM J OTOL, V19, P230 Silverstein H, 1996, Ear Nose Throat J, V75, P468 Silverstein H, 1999, Ear Nose Throat J, V78, P595 Suc B, 1994, Ann Otolaryngol Chir Cervicofac, V111, P319 Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9 Tahera Y, 2006, J NEUROSCI RES, V83, P1066, DOI 10.1002/jnr.20795 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 Takemura K, 2004, HEARING RES, V196, P58, DOI 10.1016/j.heares.2004.06.003 TENCATE WJF, 1992, HEARING RES, V60, P199, DOI 10.1016/0378-5955(92)90021-E TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Terunuma Tsumoru, 2003, Brain Res Mol Brain Res, V120, P65 Tobita T, 2002, HEARING RES, V165, P30, DOI 10.1016/S0378-5955(01)00394-X Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Yildirim Erkan, 2006, Heart Lung Circ, V15, P124, DOI 10.1016/j.hlc.2005.10.001 NR 60 TC 23 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 119 EP 127 DI 10.1016/j.heares.2006.08.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700012 PM 17008037 ER PT J AU Sugahara, K Rubel, EW Cunningham, LL AF Sugahara, Kazuma Rubel, Edwin W. Cunningham, Lisa L. TI JNK signaling in neomycin-induced vestibular hair cell death SO HEARING RESEARCH LA English DT Article DE hair cell; aminoglycoside; JNK; caspase; apoptosis; ototoxicity; utricle ID TERMINAL KINASE PROTECTS; C-JUN; IN-VITRO; SENSORY EPITHELIA; NEURONAL APOPTOSIS; CASPASE ACTIVATION; PEPTIDE INHIBITOR; GENTAMICIN; AMINOGLYCOSIDE; PATHWAYS AB Mechanosensory hair cells are susceptible to apoptotic death in response to exposure to ototoxic drugs, including aminoglycoside antibiotics. The c-Jun n-terminal kinase (JNK) is a stress-activated protein kinase that can promote apoptotic cell death in a variety of systems. Inhibition of the JNK signaling pathway can prevent aminoglycoside-induced death of cochlear and vestibular sensory hair cells. We used an in vitro preparation of utricles from adult mice to examine the role of JNK activation in aminoglycoside-induced hair cell death. CEP-11004 was used as an indirect inhibitor of JNK signaling. Immunohistochemistry showed that both JNK and its downstream target c-Jun are phosphorylated in hair cells of utricles exposed to neomycin. CEP-11004 inhibited neomycin-induced phosphorylation of both JNK and c-Jun. CEP-11004 inhibited hair cell death in utricles exposed to moderate doses of neomycin. However, the results were not uniform across the dose-response function; CEP-11004 did not inhibit hair cell death in utricles exposed to high-dose neomycin. The CEP-11004-induced protective effect was not due to inhibition of PKC or p38, since neither Chelerythrine nor SB203580 could mimic the protective effect of CEP-11004. In addition, inhibition of JNK inhibited the activation of caspase-9 in hair cells. These results indicate that JNK plays an important role in neomycin-induced vestibular hair cell death and caspase-9 activation. (c) 2006 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Yamaguchi Univ, Sch Med, Dept Otolaryngol, Ube, Yamaguchi 7550585, Japan. RP Cunningham, LL (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, Box 250908, Charleston, SC 29425 USA. EM cunninll@musc.edu CR Bodmer D, 2002, LARYNGO RHINO OTOL, V81, P853, DOI 10.1055/s-2002-36100 Bonny C, 2001, DIABETES, V50, P77, DOI 10.2337/diabetes.50.1.77 Borsello T, 2003, NAT MED, V9, P1180, DOI 10.1038/nm911 Cheng Alan G, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P343, DOI 10.1097/01.moo.0000186799.45377.63 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 CUENDA A, 1995, FEBS LETT, V364, P229, DOI 10.1016/0014-5793(95)00357-F Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 CUNNINGHAM LL, BRAIN RES Cunningham LL, 2002, J NEUROSCI, V22, P8532 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Gallo KA, 2002, NAT REV MOL CELL BIO, V3, P663, DOI 10.1038/nrm906 Ham J, 2000, BIOCHEM PHARMACOL, V60, P1015, DOI 10.1016/S0006-2952(00)00372-5 Harper SJ, 2001, CELL SIGNAL, V13, P299, DOI 10.1016/S0898-6568(01)00148-6 Harris CA, 2001, J BIOL CHEM, V276, P37754 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Ichijo H, 1997, SCIENCE, V275, P90, DOI 10.1126/science.275.5296.90 Ip YT, 1998, CURR OPIN CELL BIOL, V10, P205, DOI 10.1016/S0955-0674(98)80143-9 JIANG H, 2005, CELL DEATH DIFFER Lang HN, 1997, HEARING RES, V111, P177, DOI 10.1016/S0378-5955(97)00098-1 Lee Ji Eun, 2004, Acta Otolaryngol Suppl, P69 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Maroney AC, 2001, J BIOL CHEM, V276, P25302, DOI 10.1074/jbc.M011601200 Matsui JI, 2003, J NEUROSCI, V23, P6111 Matsui JI, 2002, J NEUROSCI, V22, P1218 Matsui JI, 2004, J NEUROBIOL, V61, P250, DOI 10.1002/neu.20054 Murakata C, 2002, BIOORG MED CHEM LETT, V12, P147, DOI 10.1016/S0960-894X(01)00690-4 Pirvola U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Saitoh M, 1998, EMBO J, V17, P2596, DOI 10.1093/emboj/17.9.2596 Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7 Shimizu A, 2003, ACTA OTO-LARYNGOL, V123, P459, DOI 10.1080/00016480310001312 Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477 Tournier C, 2000, SCIENCE, V288, P870, DOI 10.1126/science.288.5467.870 Vago P, 1998, NEUROREPORT, V9, P431, DOI 10.1097/00001756-199802160-00014 Wang J, 2003, J NEUROSCI, V23, P8596 Whitfield J, 2001, NEURON, V29, P629, DOI 10.1016/S0896-6273(01)00239-2 Whitmarsh AJ, 1996, J MOL MED-JMM, V74, P589, DOI 10.1007/s001090050063 Willaime-Morawek S, 2003, NEUROSCIENCE, V119, P387, DOI 10.1016/S0306-4522(02)00996-X XIA ZG, 1995, SCIENCE, V270, P1326, DOI 10.1126/science.270.5240.1326 Yang DD, 1997, NATURE, V389, P865, DOI 10.1038/39899 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X NR 43 TC 28 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2006 VL 221 IS 1-2 BP 128 EP 135 DI 10.1016/j.heares.2006.08.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 105RT UT WOS:000242050700013 PM 17005344 ER PT J AU Choudhury, N Song, GJ Chen, FY Matthews, S Tschinkel, T Zheng, JF Jacques, SL Nuttall, AL AF Choudhury, Niloy Song, Guiju Chen, Fangyi Matthews, Scott Tschinkel, Tanja Zheng, Jiefu Jacques, Steven L. Nuttall, Alfred L. TI Low coherence interferometry of the cochlear partition SO HEARING RESEARCH LA English DT Article ID BASILAR-MEMBRANE VIBRATION; GUINEA-PIG COCHLEA; HETERODYNE LASER INTERFEROMETER; MOSSBAUER TECHNIQUE; CAPACITIVE PROBE; RECORDING DEPTH; INNER-EAR; TOMOGRAPHY; MOTION AB Interferometric measurement of the vibration of the organ of Corti in the isolated guinea pig cochlea was conducted using low-coherence light (1310 +/- 47 nm wavelength) from a superluminescent diode. The short coherence length of the light source localized measurements along the axial direction to within a similar to 10-mu m window (in tissue), even when using a low numerical-aperture lens. The ability to accomplish this is important because measurement of the vibration of the basal-turn organ of Corti is generally done via a small hole in the bone of the cochlea, which effectively limits the numerical aperture. The axial localization, combined with the inherent sensitivity of the method, allowed distinct measurements of the basilar membrane (BM) and the putative reticular lamina (RL) vibration using only the native tissue reflectance, that is without requiring the use of reflective particles. The system was first operated in a scanning mode as an optical coherence tomography (OCT) system to yield an image of the organ of Corti. The reflectance of intensity from the BM and RL was 8 x 10(-5) and 8 x 10(-6), respectively. The internal structure between the BM and RL presented a variable reflectivity of about 10(-7). A mirror would define a reflectance of 1.00. Then the instrument was operated as a homodyne interferometer to measure the displacement of either the BM or RL. Vibration at 16 kHz was induced by a piezoelectric actuator, causing whole movement of a dissected cochlea. After calibration of the system, we demonstrated clear measurement of mechanically driven vibration for both the BM and RL of 0.30 nm above a noise floor equivalent to 0.03 nm. OCT interferometry, when adapted for in vivo organ of Corti measurements, appears suitable to determine the micromechanical vibration of cells and tissue elements of the organ. (c) 2006 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Oregon Hlth & Sci Univ, Beaverton, OR 97006 USA. Univ Appl Sci, Tech Fach Hsch Berlin, D-13353 Berlin, Germany. Oregon Hlth & Sci Univ, Dept Dermatol, Portland, OR 97239 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Shanghai Jiao Tong Univ, Dept Otolaryngol, Shanghai 200030, Peoples R China. RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97239 USA. EM nuttall@ohsu.edu CR Bekesy G., 1960, EXPT HEARING Cooper NP, 1999, J ACOUST SOC AM, V106, pL59, DOI 10.1121/1.428147 Cooper NP, 1999, J NEUROSCI METH, V88, P93, DOI 10.1016/S0165-0270(99)00017-5 Dalhoff E, 1998, J MOD OPTIC, V45, P765, DOI 10.1080/09500349808230620 Dalhoff E, 2001, J ACOUST SOC AM, V110, P1725, DOI 10.1121/1.1404975 de La Rochefoucauld O, 2005, J ACOUST SOC AM, V117, P1267, DOI 10.1121/1.1848177 Fercher AF, 2003, REP PROG PHYS, V66, P239, DOI 10.1088/0034-4885/66/2/204 HONG F, 2006, 29 MIDW M ASS RES OT HUANG D, 1991, SCIENCE, V254, P1178, DOI 10.1126/science.1957169 JOHNSTON.BM, 1967, SCIENCE, V158, P389, DOI 10.1126/science.158.3799.389 KHANNA SM, 1986, HEARING RES, V23, P9, DOI 10.1016/0378-5955(86)90172-3 Khanna S M, 1989, Acta Otolaryngol Suppl, V467, P69 Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7 KLIAUGA P, 1983, PHYS MED BIOL, V28, P359, DOI 10.1088/0031-9155/28/4/004 KOHLLOFF.LU, 1972, ACUSTICA, V27, P66 KOSSL M, 1995, P NATL ACAD SCI USA, V92, P276, DOI 10.1073/pnas.92.1.276 LEPAGE EL, 1987, J ACOUST SOC AM, V82, P126, DOI 10.1121/1.395556 Lukashkin AN, 2005, J NEUROSCI METH, V148, P122, DOI 10.1016/j.jneumeth.2005.04.014 MORIOKA I, 1995, HEARING RES, V83, P142, DOI 10.1016/0378-5955(95)00002-L NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A Ren TY, 2001, J ACOUST SOC AM, V109, P826, DOI 10.1121/1.1337957 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBERTSO.D, 1974, SCIENCE, V186, P153, DOI 10.1126/science.186.4159.153 Rollins AM, 1998, OPT EXPRESS, V3, P219 RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B Scheid D, 2004, FEMS MICROBIOL ECOL, V50, P101, DOI 10.1016/j.femsec.2004.06.001 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 TONNDORF J, 1977, ACTA OTO-LARYNGOL, V83, P113, DOI 10.3109/00016487709128820 WILSON JP, 1973, J SOUND VIB, V30, P483, DOI 10.1016/S0022-460X(73)80169-5 Wong BJF, 2000, J BIOMED OPT, V5, P367, DOI 10.1117/1.1310165 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 NR 31 TC 32 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2006.06.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800001 PM 16945496 ER PT J AU Ohlemiller, KK Lett, JM Gagnon, PM AF Ohlemiller, Kevin K. Lett, Jadynn M. Gagnon, Patricia M. TI Cellular correlates of age-related endocochlear potential reduction in a mouse model SO HEARING RESEARCH LA English DT Article DE cochlea; stria vascularis; spiral ligament; marginal cells; intermediate cells; basal cells; fibrocytes; presbycusis ID SENSORINEURAL HEARING-LOSS; SPIRAL LIGAMENT PATHOLOGY; PIGMENTED GUINEA-PIGS; COCHLEAR LATERAL WALL; STRIA VASCULARIS; INNER-EAR; SUPEROXIDE-DISMUTASE; MRL-FAS(LPR) MOUSE; C57-B16 MOUSE; ROUND WINDOW AB Age-related degeneration of cochlear stria vascularis and resulting reduction in the endocochlear potential (EP) are the hallmark features of strial presbycusis, one of the major forms of presbycusis, or age-related hearing loss (ARHL) (Schuknecht, H.F., 1964. Further observations on the pathology of presbycusis. Archives of Otolaryugology 80, 369-382; Schuknecht, H.F., 1993. Pathology of the Ear. Lea and Febiger, Philadelphia; Schuknecht, H.F., Gacek, M.R., 1993. Cochlear pathology in presbycusis. Annals of Otology, Rhinology and Laryngology 102, 1-16). It is unclear whether there are multiple forms of strial ARHL having different sequences of degenerative events and different risk factors. Human temporal bone studies suggest that the initial pathology usually affects strial marginal cells, then spreads to other strial cell types. While inheritance studies support a moderate genetic influence, no contributing genes have been identified. Establishment of mouse models of strial ARHL may promote the identification of underlying genes and gene/environment interactions. We have found that BALB/cJ mice show significant EP reduction by 19 months of age. The reduction only occurs in a subset of animals. To identify key anatomical correlates of the EP reduction, we compared several cochlear lateral wall metrics, in BALBs with those in C57BL/6J (136) mice, which show little EP reduction for ages up to 26 months. Among the measures obtained, marginal cell density and spiral ligament thickness were the best predictors of both the EP decline in BALBs, and EP stability in B6. Our results indicate that the sequence of strial degeneration in BALBs is like that suggested for humans. Additional strain comparisons we have performed suggest that genes governing strial melanin production do not play a role. (c) 2006 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid, St Louis, MO 63110 USA. EM kohlemiller@wustl.edu CR Bao JX, 2005, J NEUROSCI, V25, P3041, DOI 10.1523/JNEUROSCI.5277-04.2005 Barrenas ML, 1997, AUDIOLOGY, V36, P187 Bartels S, 2001, HEARING RES, V154, P116, DOI 10.1016/S0378-5955(01)00213-1 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 CABLE J, 1993, PIGM CELL RES, V6, P215, DOI 10.1111/j.1600-0749.1993.tb00605.x CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N CONLEE JW, 1988, ACTA OTO-LARYNGOL, V106, P64, DOI 10.3109/00016488809107372 COVELL W. P., 1957, LARYNGOSCOPE, V67, P118 Di Girolamo S, 2001, AUDIOLOGY, V40, P322 Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 Dunaway G, 2003, HEARING RES, V177, P1, DOI 10.1016/S0378-5995(02)-00767-0 FOX RR, 1997, HDB GENETICALLY STAN, P95467 Gates GA, 1999, ARCH OTOLARYNGOL, V125, P654 Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 Gratton MA, 1997, HEARING RES, V114, P1, DOI 10.1016/S0378-5955(97)00025-7 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 HAMERS FPT, 2002, AUDIOL NEURO-OTOL, V8, P305 HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 Hequembourg S, 2001, JARO, V2, P118 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7 JACKSON IJ, 1988, P NATL ACAD SCI USA, V85, P4392, DOI 10.1073/pnas.85.12.4392 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 JOHNSON R, 1992, NAT GENET, V1, P226, DOI 10.1038/ng0692-226 JOHNSSON LG, 1972, LARYNGOSCOPE, V82, P1105, DOI 10.1288/00005537-197207000-00002 Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4 Lang H, 2002, HEARING RES, V172, P118, DOI 10.1016/S0378-5955(02)00552-X LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 MIKAELIA.DO, 1974, ACTA OTO-LARYNGOL, V77, P327, DOI 10.3109/00016487409124632 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408 *NAT CTR HLTH STAT, 1994, PREV CHAR PERS HEAR Nelson EG, 2003, LARYNGOSCOPE, V113, P1672, DOI 10.1097/00005537-200310000-00006 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 2004, J COMP NEUROL, V479, P103, DOI 10.1002/cne.20326 Ohlemiller Kevin K., 2004, Journal of Comparative Neurology, V469, P377, DOI 10.1002/cne.11011 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 2002, JARO, V3, P444, DOI 10.1007/s10162-002-2041-y PAULER M, 1988, LARYNGOSCOPE, V98, P754 Rarey KE, 1996, ACTA OTO-LARYNGOL, V116, P833, DOI 10.3109/00016489609137935 Ruckenstein MJ, 1999, HEARING RES, V131, P22, DOI 10.1016/S0378-5955(99)00018-0 Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6 SAITOH Y, 1995, NEUROBIOL AGING, V16, P129, DOI 10.1016/0197-4580(94)00153-7 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHMIEDT RA, 2001, ASS RES OTOLARYNGOLO, V24, P149 Schmiedt RA, 2002, J NEUROSCI, V22, P9643 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 Schuknecht HF, 1993, PATHOLOGY EAR SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Spicer SS, 2005, HEARING RES, V205, P225, DOI 10.1016/j.heares.2005.03.022 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006 STEEL KP, 1996, CLIN ASPECTS HEARING, P10 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 TACHEUCHI S, 2000, BIOPHYS J, V79, P2572 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Voisey J, 2002, PIGM CELL RES, V15, P10, DOI 10.1034/j.1600-0749.2002.00039.x Wangemann P., 1996, COCHLEA, P130 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Wolters FLC, 2003, HEARING RES, V179, P53, DOI 10.1016/S0378-5955(03)00080-7 Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6 Yamasoba T, 2003, NEUROSCI LETT, V347, P171, DOI 10.1016/S0304-3940(03)00675-X YANZ JL, 1985, AUDIOLOGY, V24, P260 ZUMGOTTESBERGE AMM, 1988, PIGM CELL RES, V1, P238 NR 76 TC 32 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 10 EP 26 DI 10.1016/j.heares.2006.06.012 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800002 PM 16901664 ER PT J AU Otto, G Ingo, H Malte, KC Georg, K Jurgen, S AF Otto, Gleich Ingo, Hamann Malte, Kittel C. Georg, Klump M. Juergen, Strutz TI A quantitative analysis of psychometric functions for different auditory tasks in gerbils SO HEARING RESEARCH LA English DT Article DE presbyacusis; aging; hearing loss; psychoacoustic testing; temporal processing; gap detection ID QUIET-AGED GERBILS; MERIONES-UNGUICULATUS; MONGOLIAN GERBIL; GAP DETECTION; NORMAL-HEARING; NERVE FIBERS; NOISE; THRESHOLDS; MASKING; YOUNG AB The psychometric function relates the probability of a correct response to the variation of a physical stimulus parameter. In many perceptual tasks one point on this function is defined by a more or less arbitrary threshold criterion and threshold is used to study the effects of various treatments or age. Besides threshold, the shape of the psychometric function provides additional information. The variability of internal (neural) noise and the sensorineural transduction function will affect the shape of the psychometric function and may, therefore, reveal important features in the processing of stimulus characteristics. Here we analyze the effect of age on psychometric functions from gerbils: (A) for the detection of a tone or noise pulse in silence which is generally regarded as a measure of cochlear function and (B) for a gap detection task, investigating aspects of temporal processing that involve the ascending auditory pathway. Our data show that the slope of the psychometric function for the detection of tone and noise pulses in silence is independent of age and threshold. In contrast, the steepness of the psychometric function is decreased in gerbils with impaired temporal resolution. We discuss these observations in the context of physiological data from young and old animals. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. Univ Oldenburg, AG Zoophysiol & Verhalten, Inst Biol & Umweltwissensch, D-26111 Oldenburg, Germany. RP Otto, G (reprint author), Univ Regensburg, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany. EM otto.gleich@klinik.uni-regensburg.de; ingo-kva@online.no; Matte.Kittel@astrazeneca.com; juergen.strutz@Klinik.uni-regensburg.de; juergen.strutz@klinik.uni-regensburg.de CR ALLEN P, 1994, J SPEECH HEAR RES, V37, P105 AREHART KH, 1990, J SPEECH HEAR RES, V33, P433 ARRINGTO.LR, 1973, LAB ANIM SCI, V23, P262 BARGONES JY, 1995, J ACOUST SOC AM, V98, P99, DOI 10.1121/1.414446 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CHEAL M, 1986, EXP AGING RES, V12, P3 CRAIK FIM, 1969, DECISION MAKING AGE, P147 DAVIS AC, 1997, SCOTT BROWNS OTOLARY EGAN JP, 1969, PERCEPT PSYCHOPHYS, V6, P209, DOI 10.3758/BF03207019 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 Gleich O, 2003, NEUROREPORT, V14, P1877, DOI 10.1097/01.wnr.0000089569.45990.74 Gleich O, 1997, AUDIOL NEURO-OTOL, V2, P113 GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696 GREEN DM, 1974, SIGNAL DETECTION THE HALL JL, 1981, J ACOUST SOC AM, V69, P1763, DOI 10.1121/1.385912 Hamann I, 2004, JARO-J ASSOC RES OTO, V5, P49, DOI 10.1007/s10162-003-3041-2 Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9 HELLSTROM LI, 1990, HEARING RES, V50, P163, DOI 10.1016/0378-5955(90)90042-N HELLSTROM LI, 1991, HEARING RES, V53, P217, DOI 10.1016/0378-5955(91)90055-E Lam CF, 1996, J ACOUST SOC AM, V99, P3689, DOI 10.1121/1.414966 Lam CF, 1997, J ACOUST SOC AM, V102, P3697, DOI 10.1121/1.420155 Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78 PENNER MJ, 1986, J SPEECH HEAR RES, V29, P400 REES JN, 1971, J GERONTOL, V26, P133 SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 Strasburger H, 2001, PERCEPT PSYCHOPHYS, V63, P1348, DOI 10.3758/BF03194547 TROUP GM, 1969, EXP GERONTOL, V4, P139, DOI 10.1016/0531-5565(69)90001-1 Walton JP, 1998, J NEUROSCI, V18, P2764 WATSON CS, 1972, J ACOUST SOC AM, V52, P633, DOI 10.1121/1.1913153 Zar JH, 1984, BIOSTATISTICAL ANAL ZHOU B, 1995, J ACOUST SOC AM, V98, P828, DOI 10.1121/1.413509 NR 35 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 27 EP 37 DI 10.1016/j.heares.2006.06.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800003 ER PT J AU MacLennan, AJ Benner, SJ Andringa, A Chaves, AH Rosing, JL Vesey, R Karpman, AM Cronier, SA Lee, N Erway, LC Miller, ML AF MacLennan, A. John Benner, Shannon J. Andringa, Anastasia Chaves, Alicia H. Rosing, Joanna L. Vesey, Rachel Karpman, Adam M. Cronier, Samantha A. Lee, Nancy Erway, Larry C. Miller, Marian L. TI The S1P(2) sphingosine 1-phosphate receptor is essential for auditory and vestibular function SO HEARING RESEARCH LA English DT Article DE ear; lysophospholipid; AGR16; H218; Edg-5; vestibular ID SMOOTH-MUSCLE-CELLS; PROTEIN-COUPLED RECEPTORS; SIGNALING PATHWAYS; MAMMALIAN-CELLS; CALCIUM SIGNALS; MUTANT MICE; SPHINGOSINE-1-PHOSPHATE; EDG3; MIGRATION; HEARING AB Sphingosine I-phosphate (SIP) is an endogenous growth factor with potent effects on many different cell types. Most of these effects are produced by activation of one or more of a family of G-protein coupled receptors. The S1P(2) receptor can mediate SIP-induced proliferation, differentiation and survival in a wide variety of cells in culture. However, identifying essential in vivo functions for S1P2 has been hampered by its ubiquitous expression and the failure to detect any anatomical abnormalities in initial analyses Of S1P(2) knockout mice. We report here that all S1P(2) knockout mice are profoundly deaf from postnatal day 22 and approximately half display a progressive loss of vestibular function with aging. Anatomically, both the auditory and vestibular systems appear to develop normally but then degrade. Morphological defects associated with hearing are first detected at 3 weeks postnatal as deformations of the organ of Corti/Nuel's space. By one year of age structures within the scala media are dramatically altered. The S1P(2) knockout mice also display a loss of otoconia consistent with the vestibular impairment. The present data are the first to indicate that SIP signaling plays critical roles, in vivo, in auditory and vestibular functions. The data further establish that the SIP signaling occurs through the S1P(2) receptor and makes an essential. contribution to the structural maintenance of these systems, raising the possibility that properly targeted enhancement of this signaling may prove to be clinically beneficial. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Cincinnati, Dept Cellular & Mol Physiol, Cincinnati, OH 45267 USA. Univ Cincinnati, Dept Environm Hlth, Cincinnati, OH 45267 USA. Univ Florida, Dept Neurosci, Gainesville, FL 32610 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. RP MacLennan, AJ (reprint author), Univ Cincinnati, Dept Cellular & Mol Physiol, 231 Albert Sabin Way,Room 4155 MSB, Cincinnati, OH 45267 USA. EM john.maclen@uc.edu CR An S, 1998, J Cell Biochem Suppl, V30-31, P147 An SZ, 2000, J BIOL CHEM, V275, P288, DOI 10.1074/jbc.275.1.288 An SZ, 1999, MOL PHARMACOL, V55, P787 Ancellin N, 1999, J BIOL CHEM, V274, P18997, DOI 10.1074/jbc.274.27.18997 Beer MS, 2000, ANN NY ACAD SCI, V905, P118 Bergstrom RA, 1998, GENETICS, V150, P815 Biacabe B, 2001, AURIS NASUS LARYNX, V28, P85, DOI 10.1016/S0385-8146(00)00080-8 Chun J, 2002, PHARMACOL REV, V54, P265, DOI 10.1124/pr.54.2.265 DAVIS AC, 1989, INT J EPIDEMIOL, V18, P911, DOI 10.1093/ije/18.4.911 ERWAY L, 1971, GENETICS, V67, P97 GARY LE, 1988, TOXICOL APPL PHARM, V92, P266 Goetzl EJ, 1998, FASEB J, V12, P1589 Gonda K, 1999, BIOCHEM J, V337, P67, DOI 10.1042/0264-6021:3370067 Hobson JP, 2001, SCIENCE, V291, P1800, DOI 10.1126/science.1057559 Ishii I, 2002, J BIOL CHEM, V277, P25152, DOI 10.1074/jbc.M200137200 Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008 Kon J, 1999, J BIOL CHEM, V274, P23940, DOI 10.1074/jbc.274.34.23940 Lim D, 1978, VESTIBULAR MECH HLTH, P195 Lim D J, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P17 MACLENNAN AJ, 1994, MOL CELL NEUROSCI, V5, P201, DOI 10.1006/mcne.1994.1024 MacLennan AJ, 2001, EUR J NEUROSCI, V14, P203, DOI 10.1046/j.0953-816x.2001.01634.x MacLennan AJ, 2000, DEV NEUROSCI-BASEL, V22, P283, DOI 10.1159/000017452 Meacci E, 2002, BIOCHEM J, V362, P349, DOI 10.1042/0264-6021:3620349 Melton L, 1996, BONE S3, V18, P121 Moolenaar WH, 1999, EXP CELL RES, V253, P230, DOI 10.1006/excr.1999.4702 Ohmori T, 2003, CARDIOVASC RES, V58, P170, DOI 10.1016/S0008-6363(03)00260-8 Ohmori T, 2004, J THROMB HAEMOST, V2, P203, DOI 10.1111/j.1538-7836.2004.0562h.x Okamoto H, 1999, BIOCHEM BIOPH RES CO, V260, P203, DOI 10.1006/bbrc.1999.0886 Okamoto H, 2000, MOL CELL BIOL, V20, P9247, DOI 10.1128/MCB.20.24.9247-9261.2000 Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X Osada M, 2002, BIOCHEM BIOPH RES CO, V299, P483, DOI 10.1016/S0006-291X(02)02671-2 Pyne S, 2000, BIOCHEM J, V349, P385, DOI 10.1042/0264-6021:3490385 Pyne S, 1999, BIOCHEM SOC T, V27, P404 ROGERS JM, 1989, TERATOLOGY, V39, P515, DOI 10.1002/tera.1420390602 ROSS MD, 1976, ANN OTO RHINOL LARYN, V85, P1 Ryu Y, 2002, CIRC RES, V90, P325, DOI 10.1161/hh0302.104455 Simpson EM, 1997, NAT GENET, V16, P19, DOI 10.1038/ng0597-19 Thalmann R, 2001, ANN NY ACAD SCI, V942, P162 Van Brocklyn JR, 1999, J BIOL CHEM, V274, P4626, DOI 10.1074/jbc.274.8.4626 WEINDRUCH R, 1989, Ear Nose and Throat Journal, V68, P925 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 Zhang GF, 1999, GENE, V227, P89, DOI 10.1016/S0378-1119(98)00589-7 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 43 TC 44 Z9 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 38 EP 48 DI 10.1016/j.heares.2006.06.016 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800004 PM 16945494 ER PT J AU van Wieringen, A Carlyon, RP Macherey, O Wouters, J AF van Wieringen, Astrid Carlyon, Robert P. Macherey, Olivier Wouters, Jan TI Effects of pulse rate on thresholds and loudness of biphasic and alternating monophasic pulse trains in electrical hearing SO HEARING RESEARCH LA English DT Article DE cochlear implants; pulse shape; rate; alternating monophasic ID COCHLEAR-IMPLANT USERS; PSYCHOPHYSICAL DETECTION THRESHOLDS; AUDITORY-NERVE; PHASE DURATION; STIMULATION; SENSITIVITY; SEPARATION; FREQUENCY; GAP AB Detection thresholds and most comfortable loudnesses (MCLs) were determined as a function of pulse rate for standard biphasic pulse trains (BP) and for anodic and cathodic monophasic phases alternating at fixed intervals (ALT-m). Three different phase durations were examined. With a 100-mu s phase duration, thresholds for the ALT-m stimulus were substantially (up to 12 dB) lower than for the BP stimuli at relatively low rates (200 pps), but were similar to the BP thresholds at high rates (>= 1000 pps). Thresholds for BP pulse trains decreased monotonically with increasing rate, whereas the function for ALT-m waveforms was non-monotonic with a maximum between 400 and 1000 pps. These trends occurred for three different cochlear implant devices, different electrode configurations, and, generally, for different phase durations (10.8,25, and 100 mu s/phase). However, at the shorter phase durations, thresholds remained lower for the ALT-m stimulus, even at 5000 pps, the highest rate studied. Dynamic ranges of the BP pulse trains increased with increasing rate, irrespective of the phase duration under test, but for the ALT-m stimuli this was only true at the shorter phase durations tested. At a 100-mu s phase duration, dynamic ranges for the ALT-m waveforms did not differ significantly as a function of rate. The results confirm previous reports that delaying charge recovery, in this case by switching from a BP to an ALT-m wave shape, can substantially reduce thresholds [Van Wieringen, A., Carlyon, R.P., Laneau, J., Wouters, J., 2005. Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear. Hear. Res. 200, 73-86; Carlyon, R.P., van Wieringen, A., Decks, J.M., Long, C.J., Lyzenga, J, Wouters, J., 2005. Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation. Hear. Res. 205, 210224]. However, at high pulse rates, this advantage only occurs at short phase durations. In addition, we show that the complex interaction between the effects of pulse shape, rate, and phase duration on thresholds can be captured by the simple linear model described by Carlyon et al. (c) 2006 Elsevier B.V. All rights reserved. C1 Katholieke Univ Leuven, Dept Neurosci, ExpORL, B-3000 Louvain, Belgium. MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England. RP van Wieringen, A (reprint author), Katholieke Univ Leuven, Dept Neurosci, ExpORL, Herestr 49, B-3000 Louvain, Belgium. EM astrid.vanwieringen@med.kuleuven.be RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015 CR Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 CLOPTON BM, 1983, ANN NY ACAD SCI, P146 Geurts L, 2000, J ACOUST SOC AM, V108, P2949, DOI 10.1121/1.1321011 GUTTMAN R, 1971, J GEN PHYSIOL, V58, P304, DOI 10.1085/jgp.58.3.304 Holden LK, 2002, EAR HEARING, V23, P463, DOI 10.1097/01.AUD.0000034718.53595.99 Hutcheon B, 2000, TRENDS NEUROSCI, V23, P216, DOI 10.1016/S0166-2236(00)01547-2 Kreft HA, 2004, J ACOUST SOC AM, V115, P1885, DOI 10.1121/1.1701895 Laneau J, 2005, J NEUROSCI METH, V142, P131, DOI 10.1016/j.jneumeth.2004.08.015 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Loizou Philipos C., 2003, Ear and Hearing, V24, P12, DOI 10.1097/01.AUD.0000052900.42380.50 MACHEREY O, 2006, ASYMMETRIC PULSES CO McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1 Middlebrooks JC, 2004, J ACOUST SOC AM, V116, P452, DOI 10.1121/1.1760795 Miller AL, 1997, HEARING RES, V109, P21, DOI 10.1016/S0378-5955(97)00037-3 Miller AL, 1999, HEARING RES, V134, P89, DOI 10.1016/S0378-5955(99)00072-6 Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665 Pfingst BE, 1996, HEARING RES, V98, P77, DOI 10.1016/0378-5955(96)00071-8 PFINGST BE, 1993, J ACOUST SOC AM, V94, P1287, DOI 10.1121/1.408155 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Skinner M W, 2000, J Am Acad Audiol, V11, P203 *SPSS INC, 2000, SPSS 12 0 van Wieringen A, 2005, HEARING RES, V200, P73, DOI 10.1016/j.heares.2004.08.006 van Wieringen A, 2001, EAR HEARING, V22, P528, DOI 10.1097/00003446-200112000-00008 VIEMEISTER NF, 1991, J ACOUST SOC AM, V90, P858, DOI 10.1121/1.401953 Wilson BS, 1997, BRIT J AUDIOL, V31, P205 NR 32 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 49 EP 60 DI 10.1016/j.heares.2006.06.015 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800005 PM 16904278 ER PT J AU Dixit, A Vaney, N Tandon, OP AF Dixit, Abhinav Vaney, Neelam Tandon, O. P. TI Effect of caffeine on central auditory pathways: An evoked potential study SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; mid latency response; slow vertex response; peak latency; interpeak latency ID SELECTIVE ATTENTION; BRAIN; PERFORMANCE; RESPONSES; GENERATORS; RECEPTORS; CAT; EEG AB Caffeine is consumed in various forms like tea, coffee, chocolates and colas. The present study evaluated the effect of caffeine on auditory brainstem response (ABR), mid latency response (MLR) and slow vertex response (SVR) in 40 male volunteers. The recordings were done using a computerized evoked potential recorder by 10-20 electrode placement system. The subjects consumed 3 mg/kg body weight of caffeine after 12 It abstinence from caffeine in any form. The data obtained revealed that latencies of waves IV and V along with I-V interpeak interval of ABR decreased significantly. This was accompanied with significant increase in amplitude of wave V. MLR latencies and latency of PI wave of SVR was significantly decreased following caffeine ingestion. The results indicated that caffeine improves transmission in the peripheral and central brain auditory pathways. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Coll Med Sci, Dept Physiol, New Delhi 110095, India. GTB Hosp, New Delhi 110095, India. RP Dixit, A (reprint author), Near Vet Hosp, Moti Bagh 1, New Delhi 110021, India. EM abhinavdr@yahoo.com; neelamvaney@rediffmail.com; optandon@hotmaii.com CR AZCONA O, 1995, BRIT J CLIN PHARMACO, V40, P393 Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8 BONATI M, 1982, CLIN PHARMACOL THER, V32, P98 CLUBLEY M, 1979, BRIT J CLIN PHARMACO, V7, P157 Daly J, 1993, CAFFEINE COFFEE HLTH, P97 DEIBER MP, 1988, ELECTROEN CLIN NEURO, V71, P187, DOI 10.1016/0168-5597(88)90004-4 Deslandes AC, 2004, ARQ NEURO-PSIQUIAT, V62, P385, DOI 10.1590/S0004-282X2004000300002 DEWS PB, 1982, ANNU REV NUTR, V2, P323, DOI 10.1146/annurev.nu.02.070182.001543 DICKERSON LW, 1992, EXP NEUROL, V117, P313, DOI 10.1016/0014-4886(92)90141-C Dixit A, 2004, IND J PHYSL PHARM, V48, P79 Don M, 2002, HDB CLIN AUDIOLOGY, P274 FARAH K, 2003, IND J PHYSL PHARM, V47, P393 FISCHER C, 1995, EVOKED POTENTIAL, V96, P261, DOI 10.1016/0168-5597(94)00273-H Fisone G, 2004, CELL MOL LIFE SCI, V61, P857, DOI 10.1007/s00018-003-3269-3 FREDHOLM BB, 1995, PHARMACOL TOXICOL, V76, P93 Fredholm BB, 1999, PHARMACOL REV, V51, P83 FREDHOLM BB, 1994, PHARMACOL REV, V46, P143 HASENFRATZ M, 1994, PSYCHOPHARMACOLOGY, V114, P281, DOI 10.1007/BF02244850 Kawamura N, 1996, PSYCHIAT CLIN NEUROS, V50, P217, DOI 10.1111/j.1440-1819.1996.tb02745.x LATINI R, 1978, TOXICOL LETT, V2, P267, DOI 10.1016/0378-4274(78)90024-3 Lorist MM, 1996, PSYCHOPHYSIOLOGY, V33, P354, DOI 10.1111/j.1469-8986.1996.tb01059.x Lorist MM, 2003, BRAIN COGNITION, V53, P82, DOI 10.1016/S0278-2626(03)00206-9 LORIST MM, 1994, PSYCHOPHARMACOLOGY, V113, P411, DOI 10.1007/BF02245217 Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 MOLLER AR, 1994, ELECTROEN CLIN NEURO, V92, P215, DOI 10.1016/0168-5597(94)90065-5 Orth M, 2005, CLIN NEUROPHYSIOL, V116, P308, DOI 10.1016/j.clinph.2004.08.012 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Ruijter J, 2000, PSYCHOPHYSIOLOGY, V37, P427, DOI 10.1017/S0048577200981514 SALAMY A, 1975, BRAIN RES, V96, P361, DOI 10.1016/0006-8993(75)90748-9 Seidl R, 2000, AMINO ACIDS, V19, P635, DOI 10.1007/s007260070013 Stockard J, 1992, ELECTRODIAGNOSIS CLI, P503 STOCKARD JJ, 1978, ANN NEUROL, V3, P368, DOI 10.1002/ana.410030416 TANDON OP, 1990, INDIAN J MED RES-B, V92, P252 TRIPATHI KD, 1999, ESSENTIALS MED PHARM, P222 UNDEM BJ, 2001, GOODMAN GILMANS PHAR, P743 VAUGHAN HG, 1970, ELECTROEN CLIN NEURO, V28, P360, DOI 10.1016/0013-4694(70)90228-2 Yadav Asha, 2002, Indian J Physiol Pharmacol, V46, P449 Yadav Asha, 2003, Indian Journal of Physiology and Pharmacology, V47, P423 NR 39 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 61 EP 66 DI 10.1016/j.heares.2006.06.017 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800006 PM 16914275 ER PT J AU Meenderink, SWF Narins, PM AF Meenderink, Sebastiaan W. F. Narins, Peter M. TI Stimulus frequency otoacoustic emissions in the Northern leopard frog, Rana pipiens pipiens: Implications for inner ear mechanics SO HEARING RESEARCH LA English DT Article DE stimulus frequency otoacoustic emissions; frog; Amphibian; linear coherent reflection; nonlinear distortion ID AMPHIBIAN PAPILLA; TEMPERATURE-DEPENDENCE; COCHLEA AB Otoacoustic emissions (OAEs) are weak sounds that originate from the inner ear which are traditionally classified/named based on their evoking stimulus. Recently, it has been argued that such a classification, at least for mammals, misrepresents the underlying mechanisms of emission-generation. As an alternative classification, it has been suggested to recognize that OAEs arise either via nonlinear distortion or linear coherent reflection. For non-mammalian vertebrates, data on evoked OAEs that arise via the latter mechanism are largely missing. Here, we present the first measurements of stimulus frequency OAEs (SFOAEs), which are emissions thought to arise via linear coherent reflection, from an amphibian (the Northern leopard frog, Rana pipiens pipiens). Their properties as a function of the evoking stimulus frequencies and levels are described and subsequently compared with the previously reported properties of distortion product OAEs (DPOAEs) from the same frog species. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. RP Meenderink, SWF (reprint author), Univ Calif Los Angeles, Dept Physiol Sci, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA. EM swfmeenderink@yahoo.com CR BERGEVIN C, 2006, ASS RES OTOLARYNGOL, V29, P24 BRASS D, 1991, J ACOUST SOC AM, V90, P2415, DOI 10.1121/1.402046 de Kleine E, 2000, J ACOUST SOC AM, V107, P3308, DOI 10.1121/1.429403 HAU LW, 2004, 5306 SOC NEUR HILLERY CM, 1987, HEARING RES, V25, P233, DOI 10.1016/0378-5955(87)90095-5 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34 LEWIS ER, 1983, SCAN ELECTRON MICROS, P189 LEWIS ER, 1982, J COMP PHYSIOL, V145, P437 MANLEY GA, 1987, HEARING RES, V26, P257, DOI 10.1016/0378-5955(87)90062-1 Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8 Meenderink SWF, 2006, JARO-J ASSOC RES OTO, V7, P246, DOI 10.1007/s10162-006-0039-6 Meenderink SWF, 2004, HEARING RES, V192, P107, DOI 10.1016/j.heares.2004.01.015 Meenderink SWF, 2005, JARO-J ASSOC RES OTO, V6, P37, DOI 10.1007/s10162-004-5019-0 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 Palmer AR, 1982, J PHYSL, V324, P66 RONKEN DA, 1991, J ACOUST SOC AM, V90, P2428, DOI 10.1121/1.402047 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SIMMONS DD, 1992, J COMP NEUROL, V322, P191, DOI 10.1002/cne.903220205 Smotherman MS, 1999, J NEUROSCI, V19, P5275 Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1 vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3 Vassilakis PN, 2004, J ACOUST SOC AM, V116, P3713, DOI 10.1121/1.1811571 WHITEHEAD ML, 1986, AUDITORY FREQUENCY S, P39 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 NR 29 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 67 EP 75 DI 10.1016/j.heares.2006.07.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800007 PM 16942850 ER PT J AU Kermany, MH Parker, LL Guo, YK Miller, D Swanson, DJ Yoo, TJ Goldowitz, D Zuo, J AF Kermany, Mohammad Habiby Parker, Lisan L. Guo, Yun-Kal Miller, Darla Swanson, Douglas J. Yoo, Tai-June Goldowitz, Dan Zuo, Jian TI Identification of 17 hearing impaired mouse strains in the TMGC ENU-mutagenesis screen SO HEARING RESEARCH LA English DT Article DE presbycusis; noise-induced hearing loss (NIHL); auditory brainstern response (ABR); fibrocyte; ganglia; mouse; mutant ID ETHYL-N-NITROSOUREA; GENOME-WIDE; MICE; OTOTOXICITY; INHERITANCE; CADHERIN-23; DEAFNESS; MUTANTS; COCHLEA; LOCUS AB The Tennessee Mouse Genome Consortium (TMGC) employed an N-ethyl-N-nitrosourea (ENU)-mutagenesis scheme to identify mouse recessive mutants with hearing phenotypes. We employed auditory brainstem responses (ABR) to click and 8, 16, and 32 kHz stimuli and screened 285 pedigrees (1819 mice of 8-11 weeks old in various mixed genetic backgrounds) each bred to carry a homozygous ENU-induced mutation. To define mutant pedigrees, we measured >= 12 mice per pedigree in >= 2 generations and used a criterion where the mean ABR threshold per pedigree was two standard deviations above the mean of all offspring from the same parental strain. We thus identified 17 mutant pedigrees (6%), all exhibiting hearing loss at high frequencies (>= 16 kHz) with an average threshold elevation of 30-35 dB SPL. Interestingly, four mutants showed sex-biased hearing loss and six mutants displayed wide range frequency hearing loss. Temporal bone histology revealed that six of the first nine mutants displayed cochlear morphological defects: degeneration of spiral ganglia, spiral ligament fibrocytes or inner hair cells (but not outer hair cells) mostly in basal turns. In contrast to other ENU-mutagenesis auditory screens, our screen identified high-frequency, mild and sex-biased hearing defects. Further characterization of these 17 mouse models will advance our understanding of presbycusis and noise-induced hearing loss in humans. (c) 2006 Elsevier B.V. All rights reserved. C1 St Jude Childrens Hosp, Dept Dev Neurobiol, Memphis, TN 38105 USA. Inst Neurosci, Dept Otolaryngol, Dept Mol Sci, Dept Med, Memphis, TN 38163 USA. Oak Ridge Natl Lab, Div Life Sci, Oak Ridge, TN 37831 USA. Univ Tennessee, Ctr Hlth Sci, Dept Anat & Neurobiol, Memphis, TN 38163 USA. RP Zuo, J (reprint author), St Jude Childrens Hosp, Dept Dev Neurobiol, 332 N Lauderdale St, Memphis, TN 38105 USA. EM jian.zuo@stjude.org CR Cordes SP, 2005, MICROBIOL MOL BIOL R, V69, P426, DOI 10.1128/MMBR.69.3.426-439.2005 de Angelis MH, 2000, NAT GENET, V25, P444, DOI 10.1038/78146 Friedman TB, 2003, ANNU REV GENOM HUM G, V4, P341, DOI 10.1146/annurev.genom.4.070802.110347 GAO J, UNPUB ORPHAN GLUTAMA Gates GA, 2005, LANCET, V366, P1111, DOI 10.1016/S0140-6736(05)67423-5 Goldfarb Abraham, 2002, Journal of Basic and Clinical Physiology and Pharmacology, V13, P75 Goldowitz Dan, 2004, Brain Res Mol Brain Res, V132, P105 Henry KR, 2004, HEARING RES, V190, P141, DOI 10.1016/S0378-5955(03)00401-5 Hequembourg S, 2001, JARO, V2, P118 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 Hultcrantz M, 2006, ACTA OTO-LARYNGOL, V126, P10, DOI 10.1080/00016480510038617 Jablonski MM, 2005, VISUAL NEUROSCI, V22, P595, DOI 10.1017/S0952523805225087 Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8] Keithley EM, 2005, HEARING RES, V209, P76, DOI 10.1016/j.heares.2005.06.009 Kujawa SG, 2006, J NEUROSCI, V26, P2115, DOI 10.1523/JNEUROSCI.4985-05.2006 McFadden SL, 2001, AUDIOLOGY, V40, P313 Munroe RJ, 2000, NAT GENET, V24, P318, DOI 10.1038/73563 Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Nolan PM, 2000, NAT GENET, V25, P440, DOI 10.1038/78140 Noveroske JK, 2000, MAMM GENOME, V11, P478, DOI 10.1007/s003350010093 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Ruttiger L, 2004, P NATL ACAD SCI USA, V101, P12922, DOI 10.1073/pnas.0402660101 Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Trune DR, 2002, HEARING RES, V167, P170, DOI 10.1016/S0378-5955(02)00384-2 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010 NR 30 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 76 EP 86 DI 10.1016/j.heares.2006.07.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800008 PM 16949226 ER PT J AU Deng, YQ Chen, YY Reuss, L Altenberg, GA AF Deng, Yanqin Chen, Yongyue Reuss, Luis Altenberg, Guillermo A. TI Mutations of connexin 26 at position 75 and dominant deafness: Essential role of arginine for the generation of functional gap-junctional channels SO HEARING RESEARCH LA English DT Article DE Cx26; hemichannels; gap junction; aromatic amino acids; skin disease; genetic disease ID NONJUNCTIONAL PLASMA-MEMBRANE; NONSYNDROMIC HEARING-LOSS; INNER-EAR; XENOPUS-OOCYTES; PALMOPLANTAR KERATODERMA; CHEMICAL RESCUE; METABOLIC INHIBITION; EXTRACELLULAR LOOP; MOLECULAR-GENETICS; R75Q MUTATION AB Gap-junctional channels are large intercellular aqueous pores formed by head-to-head association of two gap-junctional hemichannels (connexin hexamers), one from each of the adjacent cells. The mechano-transduction of sound waves into electrical impulses occurs in the cochlea, which houses the organ of Corti. Hereditary deafness is frequent and mutations of connexin 26, the predominant connexin of the cochlea, are its most frequent cause. Mutations of R75 cause deafness and disrupt gap-junctional communication. Here, we determined the effects of substitutions of R75 with different residues (alanine, asparagine, aspartic acid, lysine, phenylalanine, tyrosine or tryptophan) on formation of gap-junctional channels and hemichannels. We show that connexin 26 R75 is essential for the formation of gap-junctional channels. Substitution of R75 with aromatic residues yields functional hemichannels that display altered voltage dependence, whereas substitution with other residues yields non-functional hemichannels. The expression of R75 mutants has a dominant negative effect on gap-junctional communication mediated by wild-type connexin 26, independently of the ability of the mutants to form functional gap-junctional hemichannels. Our results show that the arginine located at position 75 of connexin 26 is essential for function, and cannot be replaced by other residues. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Texas, Med Branch, Dept Neurosci & Cell Biol, Galveston, TX 77555 USA. Univ Texas, Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Galveston, TX 77555 USA. RP Altenberg, GA (reprint author), Univ Texas, Med Branch, Dept Neurosci & Cell Biol, Galveston, TX 77555 USA. EM galtenbe@utmb.edu CR Bao XY, 2005, J BIOL CHEM, V280, P8647, DOI 10.1074/jbc.M413536200 Bao XY, 2004, J BIOL CHEM, V279, P9689, DOI 10.1074/jbc.M311438200 Bao XY, 2004, AM J PHYSIOL-CELL PH, V286, pC647, DOI 10.1152/ajpcell.00295.2003 Beltramello M, 2005, NAT CELL BIOL, V7, P63, DOI 10.1038/ncb1205 Beltramello M, 2003, BIOCHEM BIOPH RES CO, V305, P1024, DOI 10.1016/S0006-291X(03)00868-4 Boehlein SK, 1997, J BIOL CHEM, V272, P12384, DOI 10.1074/jbc.272.19.12384 Button B, 2001, J GEN PHYSIOL, V117, P457, DOI 10.1085/jgp.117.5.457 CHEN Y, 2005, FASEB J Cohen-Salmon M, 2002, CURR BIOL, V12, P1106, DOI 10.1016/S0960-9822(02)00904-1 Contreras JE, 2002, P NATL ACAD SCI USA, V99, P495, DOI 10.1073/pnas.012589799 Ebihara L, 1996, BIOPHYS J, V71, P742 Feldmann D, 2005, AM J MED GENET A, V137A, P225, DOI 10.1002/ajmg.a.30765 Foote CI, 1998, J CELL BIOL, V140, P1187, DOI 10.1083/jcb.140.5.1187 Forge A, 2002, AUDIOL NEURO-OTOL, V7, P141, DOI 10.1159/000058299 Forge A, 2002, BRIT MED BULL, V63, P5, DOI 10.1093/bmb/63.1.5 Forge A, 2003, J COMP NEUROL, V467, P207, DOI 10.1002/cne.10916 Forge A, 2003, CELL COMMUN ADHES, V10, P341, DOI 10.1080/15419060390263010 Harris AL, 2001, Q REV BIOPHYS, V34, P325 Hua VB, 2003, J MEMBRANE BIOL, V194, P59, DOI 10.1007/s00232-003-2026-8 Jentsch TJ, 2000, NAT REV NEUROSCI, V1, P21, DOI 10.1038/35036198 John SA, 1999, J BIOL CHEM, V274, P236, DOI 10.1074/jbc.274.1.236 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001 Kronengold J, 2003, J GEN PHYSIOL, V122, P389, DOI 10.1085/jgp.200308861 Kudo T, 2003, HUM MOL GENET, V12, P995, DOI 10.1093/hmg/ddg116 Maeda Y, 2005, HUM MOL GENET, V14, P1641, DOI 10.1093/hmg/ddi172 Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076 METHFESSEL C, 1986, PFLUG ARCH EUR J PHY, V407, P577, DOI 10.1007/BF00582635 Mo L, 1999, J MEMBRANE BIOL, V168, P253, DOI 10.1007/s002329900514 Oh S, 1999, J GEN PHYSIOL, V114, P339, DOI 10.1085/jgp.114.3.339 Oshima A, 2003, J BIOL CHEM, V278, P1807, DOI 10.1074/jbc.M207713200 PAUL DL, 1991, J CELL BIOL, V115, P1077, DOI 10.1083/jcb.115.4.1077 Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224 Piazza V, 2005, CLIN GENET, V68, P161, DOI 10.1111/j.1399-0004.2005.00468.x Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I Richard G, 1998, HUM GENET, V103, P393, DOI 10.1007/s004390050839 Ripps H, 2004, CELL MOL NEUROBIOL, V24, P647, DOI 10.1023/B:CEMN.0000036403.43484.3d Rizzuto R, 2003, ONCOGENE, V22, P8619, DOI 10.1038/sj.onc.1207105 Rynkiewicz MJ, 1996, BIOCHEMISTRY-US, V35, P16174, DOI 10.1021/bi961311i Sosinsky GE, 2005, BBA-BIOMEMBRANES, V1711, P99, DOI 10.1016/j.bbamem.2005.04.001 SPRAY DC, 1981, J GEN PHYSIOL, V77, P77, DOI 10.1085/jgp.77.1.77 Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 Suchyna TM, 1999, BIOPHYS J, V77, P2968 Thomson SC, 2003, KIDNEY BLOOD PRESS R, V26, P10, DOI 10.1159/000069766 Unger VM, 1999, SCIENCE, V283, P1176, DOI 10.1126/science.283.5405.1176 Uyguner O, 2002, CLIN GENET, V62, P306, DOI 10.1034/j.1399-0004.2002.620409.x VAN CAMP G., 2006, HEREDITARY HEARING L Vergara L, 2003, J MEMBRANE BIOL, V196, P173, DOI 10.1007/s00232-003-0636-9 Wang HL, 2004, NEUROBIOL DIS, V15, P361, DOI 10.1016/j.nbd.2003.11.005 Williams DM, 2000, J BIOL CHEM, V275, P38127, DOI 10.1074/jbc.C000606200 Yum SW, 2002, NEUROBIOL DIS, V11, P43, DOI 10.1006/nbdi.2002.0545 Zhang YP, 2005, P NATL ACAD SCI USA, V102, P15201, DOI 10.1073/pnas.0501859102 NR 52 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 87 EP 94 DI 10.1016/j.heares.2006.07.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800009 PM 16945493 ER PT J AU Xu, H Wang, W Tang, ZQ Xu, TL Chen, L AF Xu, Han Wang, Wei Tang, Zheng-Quan Xu, Tian-Le Chen, Lin TI Taurine acts as a glycine receptor agonist in slices of rat inferior colliculus SO HEARING RESEARCH LA English DT Article DE taurine; glycine receptor; central nucleus of inferior colliculus; brain slice; rat; whole-cell patch-clamp ID NEUROTRANSMITTER AMINO-ACIDS; FOCAL CEREBRAL-ISCHEMIA; CENTRAL-NERVOUS-SYSTEM; GABA-A RECEPTOR; OLFACTORY-BULB; ELECTRICAL-STIMULATION; DEVELOPMENTAL-CHANGES; GABAERGIC INHIBITION; CALCIUM HOMEOSTASIS; AUDITORY-SYSTEM AB Taurine is an important endogenous amino acid for neural development and for many physiological functions,but little is known about its functional role in the central auditory system. We investigated in young rats (P10-P14) the effects of taurine on the neuronal responses and synaptic transmissions in the central nucleus of the inferior colliculus (ICC) with a brain slice preparation and with whole-cell patch-clamp recordings. Perfusion of taurine at I mM reliably evoked a current across the membrane and decreased the input resistance in neurons of the ICC. Taurine also depressed the spontaneous and current-evoked firing of ICC neurons. All these effects were reversible after washout and could be blocked by 3 mu M strychnine, an antagonist of glycine receptors, but not by 10 mu M bicuculline, an antagonist of GABA(A) receptors. When the inhibitory receptors were not pharmacologically blocked, taurine reversibly reduced the postsynaptic currents/potentials evoked by electrically stimulating the commissure of the inferior colliculus or the ipsilateral lateral lemniscus. The results demonstrate that taurine reduces the neuronal excitability and depresses the synaptic transmission in the ICC by activating glycine-gated chloride channels. Our findings suggest that taurine acts as a ligand of glycine receptors in the ICC and can be involved in the information processing of the central auditory system similarly like the neuro transmitter glycine. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Sci & Technol China, Sch Life Sci, Audit Res Lab, Hefei 230027, Peoples R China. Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China. RP Xu, TL (reprint author), Univ Sci & Technol China, Sch Life Sci, Audit Res Lab, Hefei 230027, Peoples R China. EM tlxu@ion.ac.cn; linchen@ustc.edu.cn RI WANG, WEI/A-2176-2013; WANG, WEI/F-4992-2013; WANG, WEI/G-7605-2014; Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 CR AGRAWAL HC, 1971, BIOCHEM J, V122, P759 APRISON MH, 1969, COMP BIOCHEM PHYSIOL, V28, P1345, DOI 10.1016/0010-406X(69)90571-4 Backus KH, 1998, J PHYSIOL-LONDON, V507, P783, DOI 10.1111/j.1469-7793.1998.783bs.x Belluzzi O, 2004, NEUROSCIENCE, V124, P929, DOI 10.1016/j.neurosceince.2003.12.032 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chaput MA, 2004, CHEM SENSES, V29, P83, DOI 10.1093/chemse/bjh008 Chen L, 2001, MOL BRAIN RES, V88, P135, DOI 10.1016/S0169-328X(01)00042-0 Chen L, 1999, HEARING RES, V138, P106, DOI 10.1016/S0378-5955(99)00156-2 Chen WQ, 2001, J NEUROSCI RES, V66, P612, DOI 10.1002/jnr.10027 COLLINS GCS, 1974, BRIT J PHARMACOL, V50, pP451 DAVIES WE, 1994, ADV EXP MED BIOL, V359, P393 DAVIES WE, 1990, PROG CLIN BIOL RES, V351, P397 Davies WE, 1996, ADV EXP MED BIOL, V403, P631 DAVISON AN, 1971, NATURE, V234, P107, DOI 10.1038/234107a0 DEBELLER.JS, 1973, J NEUROCHEM, V21, P441, DOI 10.1111/j.1471-4159.1973.tb04264.x del Olmo N, 2004, EUR J NEUROSCI, V19, P1875, DOI 10.1111/j.1460.9568.2004.03309.x del Olmo N, 2000, BRAIN RES, V864, P298, DOI 10.1016/S0006-8993(00)02211-3 Dominy J, 2004, J NEUROCHEM, V89, P1195, DOI 10.1111/j.1471-4159.2004.02410.x El Idrissi A, 1999, J NEUROSCI, V19, P9459 Flint AC, 1998, NEURON, V20, P43, DOI 10.1016/S0896-6273(00)80433-X Foos TM, 2002, NEUROCHEM RES, V27, P21, DOI 10.1023/A:1014890219513 Friauf E, 1997, J COMP NEUROL, V385, P117, DOI 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5 FRITSCHY JM, 1995, J COMP NEUROL, V359, P154, DOI 10.1002/cne.903590111 Galarreta M, 1996, J NEUROSCI, V16, P92 GOLDEN GT, 1989, NEUROCHEM RES, V14, P465, DOI 10.1007/BF00964862 HARDING NJ, 1993, HEARING RES, V65, P211, DOI 10.1016/0378-5955(93)90214-L HAUSSER MA, 1992, BRAIN RES, V571, P103, DOI 10.1016/0006-8993(92)90514-A Horner KC, 1997, HEARING RES, V109, P135, DOI 10.1016/S0378-5955(97)00057-9 Hornung JP, 1996, J COMP NEUROL, V367, P413, DOI 10.1002/(SICI)1096-9861(19960408)367:3<413::AID-CNE7>3.0.CO;2-8 Hussy N, 1997, J PHYSIOL-LONDON, V502, P609, DOI 10.1111/j.1469-7793.1997.609bj.x HUXTABLE RJ, 1992, PHYSIOL REV, V72, P101 Huxtable RJ, 2000, ADV EXP MED BIOL, V483, P1 HUXTABLE RJ, 1989, PROG NEUROBIOL, V32, P471, DOI 10.1016/0301-0082(89)90019-1 JIANG HY, 2005, 28 ANN M ASS RES OT, V28, P315 Kakazu Y, 1999, J NEUROSCI, V19, P2843 Kamisaki Y, 1996, ADV EXP MED BIOL, V403, P445 KAMISAKI Y, 1993, BRAIN RES, V627, P181 Kirsch J, 1998, NATURE, V392, P717, DOI 10.1038/33694 KISHI M, 1988, BIOCHIM BIOPHYS ACTA, V939, P615, DOI 10.1016/0005-2736(88)90109-5 KONTRO P, 1980, BRAIN RES, V184, P129, DOI 10.1016/0006-8993(80)90592-2 KUBO T, 1992, J PHARMACOBIO-DYNAM, V15, P519 LAURIE DJ, 1992, J NEUROSCI, V12, P1063 LOMBARDINI JB, 1994, ADV EXP MED BIOL, V359, P9 Ma CL, 2002, NEUROSCIENCE, V114, P207, DOI 10.1016/S0306-4522(02)00130-6 MACLENNAN AJ, 1991, NEUROSCIENCE, V43, P369, DOI 10.1016/0306-4522(91)90301-4 Matsumoto K, 1996, J CEREBR BLOOD F MET, V16, P114 MCCOWN TJ, 1987, J PHARMACOL EXP THER, V243, P603 Mori M, 2002, J PHYSIOL-LONDON, V539, P191, DOI 10.1013/jphysiol.2001.013147 NAGELHUS EA, 1993, NEUROSCIENCE, V54, P615, DOI 10.1016/0306-4522(93)90233-6 NAMIMA M, 1983, J NEUROCHEM, V40, P1, DOI 10.1111/j.1471-4159.1983.tb12645.x OJA SS, 1992, J NEUROSCI RES, V32, P551, DOI 10.1002/jnr.490320410 PALKOVITS M, 1986, J NEUROCHEM, V47, P1333, DOI 10.1111/j.1471-4159.1986.tb00761.x PASANTESMORALES H, 1980, J NEUROCHEM, V34, P244, DOI 10.1111/j.1471-4159.1980.tb04651.x PERLMAN M, 1989, PEDIATRICS, V83, P796 Piechotta K, 2001, J COMP NEUROL, V438, P336 Puopolo M, 1998, NEUROREPORT, V9, P2319, DOI 10.1097/00001756-199807130-00031 RIBAK CE, 1988, EPILEPSY RES, V2, P9 Saransaari P, 2000, AMINO ACIDS, V19, P509, DOI 10.1007/s007260070003 SCHMIEDEN V, 1992, EMBO J, V11, P2025 SIEGHART W, 1995, PHARMACOL REV, V47, P181 Sivaramakrishnan S, 2004, J NEUROSCI, V24, P5031, DOI 10.1523/JNEUROSCI.0357-04.2004 SOLIS JM, 1988, NEUROSCI LETT, V91, P53, DOI 10.1016/0304-3940(88)90248-0 STURMAN JA, 1986, ANN NY ACAD SCI, V477, P196, DOI 10.1111/j.1749-6632.1986.tb40337.x STURMAN JA, 1993, PHYSIOL REV, V73, P119 TOKUTOMI N, 1989, BRIT J PHARMACOL, V97, P353 Turecek R, 2001, NATURE, V411, P587, DOI 10.1038/35079084 TYSON JE, 1989, PEDIATRICS, V83, P406 UCHIYAMATSUYUKI Y, 1994, J NEUROCHEM, V62, P1074 VALLECALLESANDOVAL MH, 1991, INT J DEV NEUROSCI, V9, P571, DOI 10.1016/0736-5748(91)90018-H Wang DS, 1998, BRAIN RES, V792, P41, DOI 10.1016/S0006-8993(98)00119-X Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wisden W, 1992, Curr Opin Neurobiol, V2, P263, DOI 10.1016/0959-4388(92)90113-Y Wu H, 2005, BRAIN RES, V1038, P123, DOI 10.1016/j.brainres.2005.01.058 Wu SH, 2004, J NEUROSCI, V24, P4625, DOI 10.1523/JNEUROSCI.0318-04.2004 Wu ZY, 2003, AMINO ACIDS, V24, P155, DOI 10.1007/s00726-002-0314-8 Xu H, 2004, BRAIN RES, V1021, P232, DOI 10.1016/j.brainres.2004.07.001 Yoshida M, 2004, J NEUROBIOL, V60, P166, DOI 10.1002/neu.20003 Young TL, 2004, NEURON, V41, P867, DOI 10.1016/S0896-6273(04)00141-2 Zhang Y, 2000, HEARING RES, V147, P92, DOI 10.1016/S0378-5955(00)00123-4 NR 79 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 95 EP 105 DI 10.1016/j.heares.2006.07.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800010 PM 16949227 ER PT J AU Soeta, Y Nakagawa, S AF Soeta, Yoshiharu Nakagawa, Seiji TI Auditory evoked magnetic fields in relation to interaural time delay and interaural correlation SO HEARING RESEARCH LA English DT Article DE auditory evoked field; Nlm; interaural time delay; interaural correlation ID SOUND IN-SPACE; CROSS-CORRELATION; INFERIOR COLLICULUS; ASYMMETRIC PERFORMANCES; CORTICAL REPRESENTATION; LEVEL DIFFERENCES; CORRELATION MODEL; HUMAN BRAIN; LOCALIZATION; LATERALIZATION AB The detection of interaural time differences (ITD) for sound localization depends on the similarity between the left and right ear signals, namely interaural correlation (IAC). Human localization performance deteriorates with decreasing IACs. In order to examine activity related to localization performance in the human cortex, auditory evoked magnetic fields to the ITD of bandpass noises with different IACs were analyzed. When the JAC was 0.95, the N1m, amplitudes, i.e., the estimated equivalent current dipole moments, increased with increasing ITD. However the effect of ITD on the N1m amplitudes was not significant when the IAC was 0.5. When the ITD was 0.7 ins, the N1m amplitudes decreased with decreasing IACs. There were no systematic changes in the source location of N1m in the auditory cortex related to changes in ITD or IAC. The results suggest that localization performance is reflected in N1m amplitudes. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Inst AIST, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. RP Soeta, Y (reprint author), Natl Inst AIST, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp CR ALBECK Y, 1995, J NEUROPHYSIOL, V74, P1689 Ando Y., 1998, ARCHITECTURAL ACOUST ANDO Y, 1986, J ACOUST SOC AM, V80, P833, DOI 10.1121/1.393906 Ando Y., 1987, Journal of the Acoustical Society of Japan (E), V8 BLAUERT J, 1986, J ACOUST SOC AM, V79, P806, DOI 10.1121/1.393471 Blauert J., 1983, SPATIAL HEARING PSYC Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026 BURKE KA, 1994, NEUROPSYCHOLOGIA, V32, P1409, DOI 10.1016/0028-3932(94)00074-3 BUTLER RA, 1994, NEUROPSYCHOLOGIA, V32, P221, DOI 10.1016/0028-3932(94)90007-8 Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005 COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294 D'Angelo WR, 2003, J NEUROPHYSIOL, V90, P2827, DOI 10.1152/jn.00269.2003 Fujiki N, 2002, EUR J NEUROSCI, V16, P2207, DOI 10.1046/j.1460-9568.2002.02276.x Itoh K, 2000, NEUROSCI LETT, V292, P215, DOI 10.1016/S0304-3940(00)01465-8 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JEFFRESS LA, 1962, J ACOUST SOC AM, V34, P1122, DOI 10.1121/1.1918257 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 Kaiser J, 2000, J NEUROSCI, V20, P6631 Keller CH, 1996, J NEUROSCI, V16, P4300 KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163 Krumbholz K, 2005, CEREB CORTEX, V15, P317, DOI 10.1093/cercor/bhh133 KUROZUMI K, 1983, J ACOUST SOC AM, V74, P1726, DOI 10.1121/1.390281 LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358 LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325 Maeder PP, 2001, NEUROIMAGE, V14, P802, DOI 10.1006/nimg.2001.0888 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MCEVOY L, 1994, HEARING RES, V78, P249, DOI 10.1016/0378-5955(94)90031-0 MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U MCEVOY LK, 1990, AUDIOLOGY, V29, P163 MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003 OSMAN E, 1971, J ACOUST SOC AM, V50, P1494, DOI 10.1121/1.1912803 Palomaki K, 2000, NEUROREPORT, V11, P1535, DOI 10.1097/00001756-200005150-00033 Palomaki KJ, 2005, COGNITIVE BRAIN RES, V24, P364, DOI 10.1016/j.cogbrainres.2005.02.013 Palomaki KJ, 2002, COGNITIVE BRAIN RES, V14, P294, DOI 10.1016/S0926-6410(02)00132-5 Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4 SAMS M, 1993, HEARING RES, V67, P89, DOI 10.1016/0378-5955(93)90236-T SAYERS BM, 1957, J ACOUST SOC AM, V29, P973, DOI 10.1121/1.1914990 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Shackleton TM, 2005, JARO-J ASSOC RES OTO, V6, P244, DOI 10.1007/s10162-005-0005-8 Soeta Y, 2004, HEARING RES, V196, P109, DOI 10.1016/j.heares.2004.07.002 Soeta Y, 2006, NEUROREPORT, V17, P505, DOI 10.1097/01.wnr.0000208998.31072.e4 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2 UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0 WEBSTER FA, 1951, J ACOUST SOC AM, V50, P1494 Woldorff MG, 1999, HUM BRAIN MAPP, V7, P49, DOI 10.1002/(SICI)1097-0193(1999)7:1<49::AID-HBM5>3.0.CO;2-J YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1987, J NEUROPHYSIOL, V58, P562 Zimmer U, 2005, NEURON, V47, P893, DOI 10.1016/j.neuron.2005.07.019 NR 51 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 106 EP 115 DI 10.1016/j.heares.2006.07.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800011 PM 16934951 ER PT J AU Li, HZ Sabes, JH Sinex, DG AF Li, Hongzhe Sabes, Jennifer H. Sinex, Donal G. TI Responses of inferior colliculus neurons to SAM tones located in inhibitory response areas SO HEARING RESEARCH LA English DT Article DE amplitude modulation; inhibition; inferior colliculus; physiology; chinchilla ID SUPERIOR OLIVARY COMPLEX; COMBINATION-SENSITIVE NEURONS; AMPLITUDE-MODULATED SIGNALS; GERBIL COCHLEAR NUCLEUS; SINGLE UNIT RESPONSES; BIG BROWN BAT; LATERAL LEMNISCUS; GLYCINERGIC INHIBITION; FREQUENCY MODULATIONS; AUDITORY RESPONSES AB In order to examine the effect of inhibition on processing auditory temporal information, responses of single neurons in the inferior colliculus of the chinchilla to sinusoidally amplitude-modulated (SAM) tones alone and the presence of a steady-state tone were obtained. The carrier frequency of the SAM tone was either the characteristic frequency (CF) or a frequency in the inhibitory response area of a studied neuron. When the carrier frequency was set to the neuron's CF, neurons responded in synchrony to the SAM-tone envelope, as expected. When the carrier frequency was set to a frequency at which pure tones produced inhibition, SAM tones elicited little or no response, also as expected. However, when the same SAM tone was paired with a pure tone whose frequency was set to the neuron's CF, responses synchronized to the SAM tone envelope were obtained. These modulated responses were typically one-half cycle out-of-phase with the response to the SAM tone at CF, suggesting that they arose from cyclic inhibition and release from inhibition by the SAM tone. The results demonstrate that the representation of temporal information by inferior colliculus neurons is influenced by temporally-patterned inhibition arising from locations remote from CF. (c) 2006 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Tempe, AZ 85287 USA. Utah State Univ, Dept Psychol, Logan, UT 84322 USA. RP Sinex, DG (reprint author), Utah State Univ, Dept Psychol, Logan, UT 84322 USA. EM hongzhe@u.washington.edu; Jennifer.Henderson-Sabes@ucsfmedctr.org; don.sinex@usu.edu CR Backoff PM, 1999, HEARING RES, V134, P77, DOI 10.1016/S0378-5955(99)00071-4 Burger RM, 1998, J NEUROPHYSIOL, V80, P1686 CARRELL TD, 1992, PERCEPT PSYCHOPHYS, V52, P437, DOI 10.3758/BF03206703 Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5 Casseday JH, 1997, J NEUROPHYSIOL, V77, P1595 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 Darwin C. J., 1995, P387, DOI 10.1016/B978-012505626-7/50013-3 EHRET G, 1985, J COMP PHYSIOL A, V156, P619, DOI 10.1007/BF00619111 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z Gardner EP, 2000, PRINCIPLES NEURAL SC, P451 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 HALL JW, 1984, J ACOUST SOC AM, V76, P50, DOI 10.1121/1.391005 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 Koch U, 1998, J NEUROPHYSIOL, V80, P71 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 KUFFLER SW, 1953, J NEUROPHYSIOL, V16, P37 Kuwada S, 1999, J NEUROSCI, V19, P2273 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LI H, 2002, ABSTR ASS RES OT LI H, 2003, ABSTR ASS RES OT Lu Y, 1998, J NEUROPHYSIOL, V79, P2303 MERCHAN MA, 1994, J COMP NEUROL, V342, P259, DOI 10.1002/cne.903420209 MERZENIC.MM, 1974, BRAIN RES, V77, P397, DOI 10.1016/0006-8993(74)90630-1 Nataraj K, 2005, J NEUROPHYSIOL, V93, P3294, DOI 10.1152/jn.01152.2004 Nataraj K, 2006, J NEUROPHYSIOL, V95, P2179, DOI 10.1152/jn.01148.2005 Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 Portfors CV, 2002, HEARING RES, V168, P131, DOI 10.1016/S0378-5955(02)00376-3 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 RHODE WS, 1976, TEST SIGNIFICANCE ME Richards VM, 1996, J ACOUST SOC AM, V99, P1645, DOI 10.1121/1.414736 RYAN A, 1978, EXP BRAIN RES, V32, P389 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SCHULZ DW, 1981, BRAIN RES, V209, P177, DOI 10.1016/0006-8993(81)91179-3 Sinex DG, 2005, J NEUROPHYSIOL, V94, P3523, DOI 10.1152/jn.01194.2004 Sinex DG, 2002, JARO, V3, P390, DOI 10.1007/s101620020026 Sinex DG, 2002, HEARING RES, V168, P150, DOI 10.1016/S0378-5955(02)00366-0 Snyder RL, 2002, J NEUROPHYSIOL, V87, P434 Verhey JL, 2003, EXP BRAIN RES, V153, P405, DOI 10.1007/s00221-003-1607-1 Yang LC, 1997, J NEUROPHYSIOL, V77, P324 YOST WA, 1991, HEARING RES, V56, P8, DOI 10.1016/0378-5955(91)90148-3 YOST WA, 1994, HEARING RES, V79, P48, DOI 10.1016/0378-5955(94)90126-0 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 51 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2006 VL 220 IS 1-2 BP 116 EP 125 DI 10.1016/j.heares.2006.07.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 094JX UT WOS:000241236800012 PM 16945495 ER PT J AU Lychakov, DV Rebane, YT Lombarte, A Fuiman, LA Takabayashi, A AF Lychakov, D. V. Rebane, Y. T. Lombarte, A. Fuiman, L. A. Takabayashi, A. TI Fish otolith asymmetry: Morphometry and modeling SO HEARING RESEARCH LA English DT Article DE fish; sacculus; utriculus; Otolith asymmetry; mathematical modeling ID WEIGHTLESSNESS; SHAPE AB Mathematical modeling suggests that relatively large values of otolith mass asymmetry in fishes can alter acoustic functionality and may be responsible for abnormal fish behavior when subjected to weightlessness during parabolic or space flight [D.V. Lychakov, Y.T. Rebane, Otolith mass asymmetry in 18 species of fish and pigeon, J. Grav. Physiol. 11 (3) (2004) 17-34; D.V. Lychakov, Y.T. Rebane, Fish otolith mass asymmetry: morphometry and influence on acoustic functionality, Hear. Res. 201 (2005) 55-69]. The results of morphometric studies of otolith mass asymmetry suppose that the absolute value and the sign of the otolith mass asymmetry can change many times during the growth of individual fish within the range +/- 20% [D.V. Lychakov, Y.T. Rebane, Otolith mass asymmetry in 18 species of fish and pigeon, J. Grav. Physiol. 11 (3) (2004) 17-34; D.V. Lychakov, Y.T. Rebane, Fish otolith mass asymmetry: morphometry and influence on acoustic functionality, Hear. Res. 201 (2005) 55-69]. This implies that the adverse effects of otolith asymmetry on acoustic and vestibular functionality could change during the lifetime of an individual fish. The aims of the present article were to examine the nature of otolith mass asymmetry fluctuation and to quantify otolith mass asymmetry in a large number of teleost fishes to verify our previous measurements. A dimensionless measure of otolith mass asymmetry, chi, was calculated as the difference between the masses of the right and left paired otoliths divided by average otolith mass. Saccular otolith mass asymmetry was studied in 59 Mediterranean teleost species (395 otolith pairs), 14 Black Sea teleost species (42 otolith pairs), red drum (196 otolith pairs) and guppy (30 otolith pairs). Utricular otolith mass asymmetry was studied in carp (103 otolith pairs) and goldfish (45 otolith pairs). In accordance with our previous results the value of chi did not depend on fish size (length or mass), systematic or ecological position of the fish, or otolith growth rate. In the great majority of the fishes studied, the saccular otolith chi was small vertical bar chi vertical bar < 0.05 (or < 5%). Mathematical modeling indicates that values of chi vary among individual fish, but that the value is probably stable during a fish's lifetime. (c) 2006 Published by Elsevier B.V. C1 Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg 194223, Russia. Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia. CSIC, CMIMA, Inst Ciencies Mar, Dept Recursos Marins Renovables, E-08003 Barcelona, Spain. Univ Texas, Inst Marine Sci, Dept Marine Sci, Port Aransas, TX 78373 USA. Fujita Hlth Univ, Sch Hlth Sci, Toyoake, Aichi 4701192, Japan. RP Lychakov, DV (reprint author), Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, Thorez Pr 44, St Petersburg 194223, Russia. EM Lychakov@iephb.ru RI Lombarte, Antoni/D-3142-2013 CR deJong HAA, 1996, AVIAT SPACE ENVIR MD, V67, P463 Egorov A.D., 1970, KOSMICHESKAYA BIOL A, V4, P85 Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103 Helling K, 2005, J VESTIBUL RES-EQUIL, V15, P59 Hilbig R, 2002, J Gravit Physiol, V9, pP29 HOFF GR, 1993, COMP BIOCHEM PHYS A, V106, P209, DOI 10.1016/0300-9629(93)90502-U HOFFMAN RB, 1977, AVIAT SPACE ENVIR MD, V48, P712 Lombarte A, 2006, SCI MAR, V70, P147 LOMBARTE A, 1995, J MORPHOL, V225, P179, DOI 10.1002/jmor.1052250204 Lychakov DV, 2000, HEARING RES, V143, P83, DOI 10.1016/S0378-5955(00)00026-5 LYCHAKOV DV, 1992, J EVOL BIOCHEM PHYS+, V28, P531 LYCHAKOV DV, 1988, KOSM BIOL AVIAK MED+, V22, P27 Lychakov DV., 2002, THESIS SECHENOV I ST, V1, P1 Lychakov DV., 2002, THESIS SECHENOV I ST, V2, P1 Lychakov D.V., 2004, J GRAV PHYSL, V11, P17 Lychakov DV, 2005, HEARING RES, V201, P55, DOI 10.1016/j.heares.2004.08.017 Rahmann H, 2002, J Gravit Physiol, V9, pP19 Takabayashi Akira, 2003, Biol Sci Space, V17, P293, DOI 10.2187/bss.17.293 VONBAUMGARTEN RJ, 1982, PHYSIOLOGIST S6, V25, P33 NR 19 TC 9 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 1 EP 11 DI 10.1016/j.heares.2006.03.019 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300001 PM 16859847 ER PT J AU MacArthur, CJ Hefeneider, SH Kempton, JB Parrish, SK McCoy, SL Trune, DR AF MacArthur, Carol J. Hefeneider, Steven H. Kempton, J. Beth Parrish, Sarah K. McCoy, Sharon L. Trune, Dennis R. TI Evaluation of the mouse model for acute otitis media SO HEARING RESEARCH LA English DT Article DE otitis media; mouse; inflammation; Streptococcus pneumoniae; auditory brainstem response; middle ear ID NONTYPABLE HAEMOPHILUS-INFLUENZAE; ROUND WINDOW MEMBRANE; SENSORINEURAL HEARING-LOSS; MIDDLE-EAR; STREPTOCOCCUS-PNEUMONIAE; CHINCHILLA MODEL; RAT MODEL; NASOPHARYNGEAL COLONIZATION; CYTOKINE GENES; MURINE MODEL AB Various animal models have been employed for otitis media research. The mouse has been studied less, in spite of its many advantages. To better understand the suitability of the mouse for studies of otitis media, an evaluation was made of its middle ear inflammatory processes following inoculation with heat-killed Streptococcus pneumoniae (strain 6A), one of the three most common bacteria to cause otitis media in the human. A total of 94 BALB/c mice were injected transtympanically with three concentrations of heat-killed bacteria (10(4), 10(6), and 10(9) organisms per ml) and inflammation evaluated with both histologic examination and auditory brainstem response audiometry. Dose-related measures of the time course of inflammation showed it was maximal at 3 days. PBS-injected control mice also demonstrated some degree of middle ear inflammation. Therefore, inflammation measures from PBS injected mice were used as the threshold above which histologic inflammatory changes would be considered a response to bacteria. These quantitative comparisons of bacterial and PBS inoculations revealed the most significant middle ear measures of inflammation were amount of fluid in the middle ear, tympanic membrane thickness, and number of inflammatory cells. The induction of middle ear inflammation in the mouse demonstrated the applicability of this model for investigations of otitis media. (c) 2006 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol, Portland, OR 97239 USA. Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Oregon Hlth Sci Univ, Dept Med, Div Rheumatol, Portland, OR 97239 USA. Vet Affairs Med Ctr, Dept Immunol, Portland, OR 97239 USA. Targeted Gene Delivery Inc, Portland, OR 97201 USA. RP MacArthur, CJ (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol, 3181 SW Sam Jackson Pk Rd,PV-01, Portland, OR 97239 USA. EM macarthc@ohsu.edu CR Akira S, 2004, NAT REV IMMUNOL, V4, P499, DOI 10.1038/nri1391 Antonelli PJ, 2003, LARYNGOSCOPE, V113, P1764, DOI 10.1097/00005537-200310000-00019 BIKHAZI P, 1995, LARYNGOSCOPE, V105, P629, DOI 10.1288/00005537-199506000-00013 Bluestone CD, 2001, OTITIS MEDIA INFANTS CARLSEN BD, 1992, INFECT IMMUN, V60, P2850 Cureoglu S, 2004, LARYNGOSCOPE, V114, P622, DOI 10.1097/00005537-200404000-00006 DeMaria TF, 1997, INFECT IMMUN, V65, P4431 DeMaria TF, 1996, INFECT IMMUN, V64, P5187 ENGEL F, 1995, INFECT IMMUN, V63, P1305 Eskola J, 2001, NEW ENGL J MED, V344, P403, DOI 10.1056/NEJM200102083440602 Goycoolea M V, 1988, Laryngoscope, V98, P1, DOI 10.1288/00005537-198806001-00002 GOYCOOLEA MV, 1995, ACTA OTO-LARYNGOL, V115, P282, DOI 10.3109/00016489509139310 Hardisty RE, 2003, JARO, V4, P130, DOI 10.1007/s10162-002-3015-9 Hebda PA, 2002, LARYNGOSCOPE, V112, P1657, DOI 10.1097/00005537-200209000-00024 HERMANSSON A, 1988, AM J OTOLARYNG, V9, P97, DOI 10.1016/S0196-0709(88)80013-9 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X Hunter SE, 1999, OTOLARYNG HEAD NECK, V120, P884, DOI 10.1016/S0194-5998(99)70331-1 ICHIMIYA I, 1990, ARCH OTOLARYNGOL, V116, P324 Jewett BS, 1999, OTOLARYNG HEAD NECK, V121, P7, DOI 10.1016/S0194-5998(99)70114-2 Johnson M, 1997, LARYNGOSCOPE, V107, P1405, DOI 10.1097/00005537-199710000-00020 KREKORIAN TD, 1991, LARYNGOSCOPE, V101, P648 KREKORIAN TD, 1990, ACTA OTO-LARYNGOL, V109, P288, DOI 10.3109/00016489009107445 LIM DJ, 1990, ANN OTO RHINOL LARYN, V99, P33 Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1 Long JP, 2003, INFECT IMMUN, V71, P5531, DOI 10.1128/IAI.71.10.5531-5540.2003 MacArthur CJ, 2006, LARYNGOSCOPE, V116, P1071, DOI 10.1097/01.mlg.0000224527.41288.c4 McCoy SL, 2005, J IMMUNOL, V174, P3006 Meek RB, 1999, ANN OTO RHINOL LARYN, V108, P31 Melhus A, 2003, APMIS, V111, P989, DOI 10.1034/j.1600-0463.2003.1111012.x Melhus A, 2000, INFECT IMMUN, V68, P4024, DOI 10.1128/IAI.68.7.4024-4031.2000 Melhus A, 2001, J ANTIMICROB CHEMOTH, V48, P397, DOI 10.1093/jac/48.3.397 Mitchell CR, 1997, OTOLARYNG HEAD NECK, V117, P459, DOI 10.1016/S0194-5998(97)70014-7 Mitchell CR, 1999, AUDIOL NEURO-OTOL, V4, P80, DOI 10.1159/000013824 NAGUIB MB, 1994, LARYNGOSCOPE, V104, P1003 PAPARELLA MM, 1984, ANN OTO RHINOL LARYN, V93, P623 Ryding M, 2002, ANN OTO RHINOL LARYN, V111, P261 Sabirov A, 2001, INFECT IMMUN, V69, P2964, DOI 10.1128/IAI.69.5.2964-2971.2001 Sato K, 1999, INFECT IMMUN, V67, P1943 SCHACHERN PA, 1992, ARCH OTOLARYNGOL, V118, P53 Tong HH, 2000, INFECT IMMUN, V68, P4593, DOI 10.1128/IAI.68.8.4593-4597.2000 Tong HH, 2000, INFECT IMMUN, V68, P921, DOI 10.1128/IAI.68.2.921-924.2000 Tonnaer ELGM, 2003, LARYNGOSCOPE, V113, P322, DOI 10.1097/00005537-200302000-00023 Trune DR, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P505 Watanabe K, 1997, ANN OTO RHINOL LARYN, V106, P394 Wurfel MM, 2005, J IMMUNOL, V175, P2570 Yoon YJ, 2002, J KOREAN MED SCI, V17, P230 NR 46 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 12 EP 23 DI 10.1016/j.heares.2006.05.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300002 PM 16887307 ER PT J AU Lineton, B Thornton, ARD Baker, VJ AF Lineton, B. Thornton, A. R. D. Baker, V. J. TI An investigation into the relationship between input-output nonlinearities and rate-induced nonlinearities of click-evoked otoacoustic emissions recorded using maximum length sequences SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; click evoked; maximum length sequences; rate-suppression ID STIMULATED ACOUSTIC EMISSIONS; BRAIN-STEM RESPONSES; IPSILATERAL SUPPRESSION; TEMPORAL INTERACTIONS; QUALITY ESTIMATION; LEVEL; EARS AB The maximum length sequence (MLS) technique allows otoacoustic emissions (OAEs) to be recorded using clicks presented at very high presentation rates. It has previously been found that increasing the click presentation rate leads to increasing suppression (termed "rate-suppression") of the MLS evoked OAE (Hine, J.E., Thornton, A.R.D., 1997. Transient evoked otoacoustic emissions recorded using maximum length sequences as a function of stimulus rate and level. Ear Hear. 18, 121-128). It has been suggested that the source of rate-suppression arises from the same nonlinear processes that give rise to the well-known nonlinear growth of OAEs. Based on this assumption, a simple model of rate-suppression (Kapadia, S., Lutman, M.E., 2001. Static input-output nonlinearity as the source of nonlinear effects in maximum length sequence click-evoked OAEs. Br. J. Audiol. 35, 103-112) predicts that both input-output (I/O) nonlinearity and rate-suppression can be unified by characterising the stimulus in terms of its acoustic power which, at high rates, is proportional to the click presentation rate. The objective of this study was to test this simple model by recording MLS OAEs from a group of normally hearing adults over a range of stimulus rates from 40 to 5000 clicks/s, and of stimulus levels from 45 to 70 dB peSPL. The results are broadly in agreement with the predictions from the model, though there appears to be some tendency for the model to slightly overestimate the degree of rate-suppression for a given degree of I/O nonlinearity. It is also suggested that the model may break down more significantly in the presence of spontaneous OAEs. (c) 2006 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. Univ Southampton, Sch Med, Div Clin Neurosci, Southampton SO16 7PX, Hants, England. RP Lineton, B (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. EM bl@isvr.soton.ac.uk CR COOPER HE, 2006, THESIS U SOUTHAMPTON Davies W.D.T., 1966, Control, V10 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 GOBSCH H, 1993, HEARING RES, V69, P176, DOI 10.1016/0378-5955(93)90105-A Harte JM, 2005, J ACOUST SOC AM, V117, P2989, DOI 10.1121/1.1893285 Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4 Hine JE, 1997, HEARING RES, V108, P28, DOI 10.1016/S0378-5955(97)00036-1 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Johannesen PT, 1998, SCAND AUDIOL, V27, P37, DOI 10.1080/010503998419687 Kapadia S, 2001, BRIT J AUDIOL, V35, P103 Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KULAWIEC JT, 1995, EAR HEARING, V16, P515 LINAGRANADE G, 1997, HEARING RES, V107, P92 LUTMAN ME, 1990, SCAND AUDIOL, V19, P3, DOI 10.3109/01050399009070745 Maat B, 2000, J ACOUST SOC AM, V108, P2272, DOI 10.1121/1.1312357 NEELY ST, 1988, J ACOUST SOC AM, V83, P652, DOI 10.1121/1.396542 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 Patuzzi R., 1996, COCHLEA, P186 PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RASSMUSSEN AN, 1998, BRIT J AUDIOL, V32, P355 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 RUTTEN WLC, 1980, HEARING RES, V2, P263, DOI 10.1016/0378-5955(80)90062-3 Ryan S, 1996, HEARING RES, V94, P140, DOI 10.1016/0378-5955(96)00021-4 SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834 Talmadge C., 1993, BIOPHYSICS HAIR CELL, P25 TAVARTKILADZE GA, 1997, OTOACOUSTIC EMISSION, P110 TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 Thornton ARD, 1997, BRIT J AUDIOL, V31, P493, DOI 10.3109/03005364000000043 THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519 THORNTON ARD, 1994, BRIT J AUDIOL, V28, P227, DOI 10.3109/03005369409086572 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 ZWICKER E, 1983, HEARING RES, V11, P359, DOI 10.1016/0378-5955(83)90067-9 NR 40 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 24 EP 35 DI 10.1016/j.heares.2006.05.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300003 PM 16839721 ER PT J AU Micheyl, C Delhommeau, K Perrot, X Oxenham, AJ AF Micheyl, Christophe Delhommeau, Karine Perrot, Xavier Oxenham, Andrew J. TI Influence of musical and psychoacoustical training on pitch discrimination SO HEARING RESEARCH LA English DT Article DE musicians; pitch; frequency discrimination; auditory training; perceptual learning ID AUDITORY FREQUENCY DISCRIMINATION; EAR DIFFERENCES; NON-MUSICIANS; DOMINANCE; NONMUSICIANS; SPECIFICITY; PERCEPTION; TASK AB This study compared the influence of musical and psych oacoustical training on auditory pitch discrimination abilities. In a first experiment, pitch discrimination thresholds for pure and complex tones were measured in 30 classical musicians and 30 non-musicians, none of whom had prior psychoacoustical training. The non-musicians' mean thresholds were more than six times larger than those of the classical musicians initially, and still about four times larger after 2 h of training using an adaptive two-interval forced-choice procedure; this difference is two to three times larger than suggested by previous studies. The musicians' thresholds were close to those measured in earlier psychoacoustical studies using highly trained listeners, and showed little improvement with training; this suggests that classical musical training can lead to optimal or nearly optimal pitch discrimination performance. A second experiment was performed to determine how much additional training was required for the non-musicians to obtain thresholds as low as those of the classical musicians from experiment 1. Eight new non-musicians with no prior training practiced the frequency discrimination task for a total of 14 h. It took between 4 and 8 h of training for their thresholds to become as small as those measured in the classical musicians from experiment 1. These findings supplement and qualify earlier data in the literature regarding the respective influence of musical and psychoacoustical training on pitch discrimination performance. (c) 2006 Elsevier B.V. All rights reserved. C1 MIT, Elect Res Lab, Cambridge, MA 02139 USA. CNRS, UMR 7593, Paris, France. Montreal Neurol Inst, Neuropsychol Dept, Montreal, PQ, Canada. Univ Lyon 1, CNRS, UMR 5020, F-69365 Lyon, France. Univ Minnesota, Dept Psychol, Minneapolis, MN 55455 USA. RP Micheyl, C (reprint author), MIT, Elect Res Lab, 50 Vassar St,Bldg 36-758, Cambridge, MA 02139 USA. EM cmicheyl@mit.edu CR Amitay S, 2005, PERCEPT PSYCHOPHYS, V67, P691, DOI 10.3758/BF03193525 Roth Daphne Ari-Even, 2003, Journal of Basic and Clinical Physiology and Pharmacology, V14, P137 BEVER TG, 1974, SCIENCE, V185, P537, DOI 10.1126/science.185.4150.537 CAMPBELL RA, 1963, J ACOUST SOC AM, V35, P1511, DOI 10.1121/1.1918738 DELHOMMEAU K, 2005, JARO-J ASSOC RES OTO, V6, P1 Delhommeau K, 2002, PERCEPT PSYCHOPHYS, V64, P426, DOI 10.3758/BF03194715 DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034 Demany L, 2002, J ACOUST SOC AM, V111, P1377, DOI 10.1121/1.1445791 DIVENYI PL, 1977, J ACOUST SOC AM, V62, P624, DOI 10.1121/1.381564 GREEN DM, 1966, SIGNAL DETECTION THE Grimault N, 2003, HEARING RES, V184, P41, DOI 10.1016/S0378-5955(03)00214-4 Grimault N, 2002, PERCEPT PSYCHOPHYS, V64, P189, DOI 10.3758/BF03195785 Irvine DRF, 2000, J ACOUST SOC AM, V108, P2964, DOI 10.1121/1.1323465 JOHNSON PR, 1977, CORTEX, V13, P385 Johnsrude IS, 2000, BRAIN, V123, P155, DOI 10.1093/brain/123.1.155 KIMURA D, 1964, Q J EXP PSYCHOL, V16, P355, DOI 10.1080/17470216408416391 Kishon-Rabin Liat, 2001, Journal of Basic and Clinical Physiology and Pharmacology, V12, P125 Roth Daphne Ari-Even, 2004, Journal of Basic and Clinical Physiology and Pharmacology, V15, P15 LOCKHEAD GR, 1981, J ACOUST SOC AM, V70, P387, DOI 10.1121/1.386773 MESSERLI P, 1995, NEUROPSYCHOLOGIA, V33, P395, DOI 10.1016/0028-3932(94)00123-7 MIYAZAKI K, 1989, MUSIC PERCEPT, V7, P1 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 PERETZ I, 1992, NEUROPSYCHOLOGIA, V30, P227 PERETZ I, 1983, BRAIN COGNITION, V2, P313, DOI 10.1016/0278-2626(83)90016-7 SIDTIS JJ, 1981, NEUROPSYCHOLOGIA, V19, P103, DOI 10.1016/0028-3932(81)90050-6 SIDTIS JJ, 1980, NEUROPSYCHOLOGIA, V18, P321, DOI 10.1016/0028-3932(80)90127-X SPIEGEL MF, 1984, J ACOUST SOC AM, V76, P1690, DOI 10.1121/1.391605 WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251 WRIGHT BA, 1995, AUDITORY SIGNAL PROC ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 ZATORRE RJ, 1991, BRAIN, V114, P2403, DOI 10.1093/brain/114.6.2403 NR 32 TC 100 Z9 102 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 36 EP 47 DI 10.1016/j.heares.2006.05.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300004 PM 16839723 ER PT J AU Dammeijer, PFM van Dijk, P Manni, JJ van Mameren, H AF Dammeijer, Patrick F. M. van Dijk, Paul Manni, Johannes J. van Mameren, Henk TI Stapedius muscle fiber characterization during postnatal development in the rat SO HEARING RESEARCH LA English DT Article DE stapedius; myosin ATPase lability; myosin heavy chain; muscle development; rat ID MYOSIN HEAVY-CHAIN; SKELETAL-MUSCLE; SOUND-TRANSMISSION; MASSETER MUSCLE; REFLEX; ISOFORMS; ATPASE; EXPRESSION; IDENTIFICATION; TRANSITIONS AB The stapedius muscle (SM) is reported to prevent cochlear damage by noise. Functional demands are then the ability of fast contraction with long endurance. At the end of the third postnatal week, the middle ear of the rat is completely pneumatized and according to electrophysiological data, the auditory function starts to match the adult. We investigated the developmental changes in myosin composition of SM fibres using consecutive complete SM cross-sections (taken from rats on post natal day (PND) 7, 14, 16, 21, 28, 42 and 84) which were processed by enzymehistochemistry to determine acid/alkali lability of myofibrillar adenosine triphosphatase (mATPase) and by immunohistochemistry using myosin heavy chain (MHC) antibodies (mAb). Fibres were assigned to mATPase type I, IIA, IIB, IIX or `Miscellaneous' categories. Per mATPase category, the fibres were attributed to groups with specific MHC isoform compositions. Neonatal MHC expression could not be documented with the mAb used. However, embryonal (Emb) MHC was expressed at PND 7, very little at PND 14; at later PND fibres did not show Emb MHC. In general, the mATPase-based classification did not show large alterations after PND 21. Expression of MHC IIB, which was present in almost 50% of the fibres at PND 7 and 14, diminished to 3% at PND 84. A decrease in number of fibres expressing more than one MHC isoform was found. These results show that the SM is a precociously developing muscle compared to limb muscles and even to the diaphragm. Moreover, it is shown that the expression of the adult MHC isoform phenotype coincides with the onset of auditory function in the third postnatal week. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Maastricht, Dept Anat Embryol, NL-6200 MD Maastricht, Netherlands. Univ Hosp Maastricht, Dept Otorhinolaryngol & Head & Neck Surg, NL-6202 AZ Maastricht, Netherlands. RP Dammeijer, PFM (reprint author), Univ Maastricht, Dept Anat Embryol, POB 616, NL-6200 MD Maastricht, Netherlands. EM pdammeijer@home.nl; p.van-dijk@ae.unimaas.nl; jman@skno.azm.nl; h.vanmameren@ae.unimaas.nl CR ADAMS GR, 1999, AM J PHYSIOL, V276, P954 Agbulut O, 2003, BIOL CELL, V95, P399, DOI 10.1016/S0248-4900(03)00087-X BORG E, 1984, ACOUSTIC REFLEX BASI, P50 BORG E, 1975, ACTA OTO-LARYNGOL, V79, P325, DOI 10.3109/00016487509124694 BREDMAN JJ, 1991, HISTOCHEM J, V23, P160, DOI 10.1007/BF01046587 BREDMAN JJ, 1992, HISTOCHEM J, V24, P260, DOI 10.1007/BF01046840 BROOKE MH, 1970, ARCH NEUROL-CHICAGO, V23, P369 BUTLERBROWNE GS, 1984, DEV BIOL, V102, P324, DOI 10.1016/0012-1606(84)90197-0 DALBIS A, 1989, EUR J BIOCHEM, V183, P583, DOI 10.1111/j.1432-1033.1989.tb21087.x Dammeijer PFM, 2000, HEARING RES, V141, P169, DOI 10.1016/S0378-5955(99)00220-8 Di Maso NA, 2000, AM J PHYSIOL-REG I, V278, pR1099 FLETCHER JL, 1960, J ACOUST SOC AM, V32, P401, DOI 10.1121/1.1908079 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F Geiger PC, 2001, J APPL PHYSIOL, V90, P380 GORZA L, 1990, J HISTOCHEM CYTOCHEM, V38, P257 GUTH L, 1970, EXP NEUROL, V28, P365, DOI 10.1016/0014-4886(70)90244-X Hoh Joseph F. Y., 1992, Current Opinion in Rheumatology, V4, P801 JOHNSON BD, 1994, J APPL PHYSIOL, V77, P481 Lucas CA, 2000, BIOCHEM BIOPH RES CO, V272, P303, DOI 10.1006/bbrc.2000.2768 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 MOORMAN AFM, 1984, CELL DIFFER DEV, V14, P113, DOI 10.1016/0045-6039(84)90036-8 OGILVIE RW, 1990, STAIN TECHNOL, V65, P231 ONO J, 1980, HNO, V28, P104 Pang XD, 1997, J ACOUST SOC AM, V102, P3576, DOI 10.1121/1.420399 PEREIRA JAAS, 1995, HISTOCHEM J, V27, P715 Perie S, 2000, ANN OTO RHINOL LARYN, V109, P216 Pette D, 2000, MICROSC RES TECHNIQ, V50, P500, DOI 10.1002/1097-0029(20000915)50:6<500::AID-JEMT7>3.3.CO;2-Z Pilz PKD, 1997, HEARING RES, V105, P171, DOI 10.1016/S0378-5955(96)00206-7 Sant'ana Pereira J A, 1995, J Muscle Res Cell Motil, V16, P21 SCHIAFFINO G, 1990, DYNAMIC STATE MUSCLE, P329 Schiaffino S, 1996, PHYSIOL REV, V76, P371 SCHIAFFINO S, 1989, J MUSCLE RES CELL M, V10, P197, DOI 10.1007/BF01739810 STARON RS, 1993, HISTOCHEMISTRY, V100, P149, DOI 10.1007/BF00572901 Usami A, 2003, ANAT HISTOL EMBRYOL, V32, P244, DOI 10.1046/j.1439-0264.2003.00481.x VANDENBERGE H, 1990, HEARING RES, V48, P209, DOI 10.1016/0378-5955(90)90061-S WHALEN RG, 1981, NATURE, V292, P805, DOI 10.1038/292805a0 WIECZOREK DF, 1985, J CELL BIOL, V101, P618, DOI 10.1083/jcb.101.2.618 WORMALD PJ, 1995, CLIN OTOLARYNGOL, V20, P59, DOI 10.1111/j.1365-2273.1995.tb00013.x ZAKRISSON JE, 1975, ACTA OTO-LARYNGOL, V79, P1, DOI 10.3109/00016487509124648 NR 39 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 48 EP 55 DI 10.1016/j.heares.2006.05.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300005 PM 16839722 ER PT J AU Thornton, ARD Lineton, B Baker, VJ Slaven, A AF Thornton, A. R. D. Lineton, B. Baker, V. J. Slaven, A. TI Nonlinear properties of otoacoustic emissions in normal and impaired hearing SO HEARING RESEARCH LA English DT Article DE Nonlinear systems; maximum length sequences; cochlear amplifier; otoacoustic emissions; Volterra kernels; cochlear pathology ID MAXIMUM LENGTH SEQUENCES; SUPPRESSION; HUMANS; CLICKS; LEVEL AB Click-evoked otoacoustic emissions (CEOAEs) exhibit nonlinearities in amplitude and time domains. The first objective of this study was to investigate whether there is any correlation between the temporal and amplitude nonlinearities of CEOAEs in normals. Additionally there is evidence that pathology affects the normal cochlear nonlinearity. The second objective was to investigate whether pathology affects the temporal nonlinear components. Conventional and maximum length sequence (MLS) CEOAEs were recorded in normal subjects and in patients with mild hearing loss. The slope of the input-output (I/O) function of the conventional CEOAE measured the amplitude nonlinearity. Two measures of temporal nonlinearity were the magnitude of the suppression that occurs with increase in stimulus rate and the amplitudes of the second and third order temporal interaction components (Volterra slices). The amplitude nonlinearity is well correlated with both the magnitude of the rate suppression and the amplitudes of the Volterra slices. The `linear' CEOAE amplitude showed no differences between the normal and patient groups but the differences in the Volterra slices were substantial. This suggests that the first sign of damage to the cochlea is that the system becomes more linear. Hence the Volterra slices may provide a sensitive measure of cochlear damage. (c) 2006 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton Sect, Southampton SO14 0YG, Hants, England. Univ Southampton, Sch Med, Dept Clin Neurosci, Southampton SO16 7PX, Hants, England. RP Thornton, ARD (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton Sect, Mailpoint OAU, Southampton SO14 0YG, Hants, England. EM ardt@soton.ac.uk CR Arnold DJ, 1999, ARCH OTOLARYNGOL, V125, P215 BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 DEBOER J, 2004, COMMUNICATION ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 GRANDORI F, 1995, ADV OTOACOUSTIC EMIS, V2, P48 Hall AJ, 1999, AUDIOLOGY, V38, P277 Hine JE, 2002, HEARING RES, V165, P128, DOI 10.1016/S0378-5955(02)00295-2 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Kapadia S, 2001, BRIT J AUDIOL, V35, P103 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kemp DT, 1980, PSYCHOPHYSICAL PHYSL, P34 KEMP DT, 1990, EAR HEARING, V11, P93 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 O-Uchi T, 1994, Acta Otolaryngol Suppl, V514, P89 PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001 PRIEVE BA, 1995, EAR HEARING, V16, P521 Rasmussen AN, 1998, BRIT J AUDIOL, V32, P355, DOI 10.3109/03005364000000087 Ryan S, 1996, HEARING RES, V94, P140, DOI 10.1016/0378-5955(96)00021-4 Slaven A, 2003, HEARING RES, V179, P113, DOI 10.1016/S0378-5955(03)00101-1 STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 TAVARTKILADZE GA, 1997, OTOACOUSTIC EMISSION, P110 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 Thornton ARD, 1997, BRIT J AUDIOL, V31, P493, DOI 10.3109/03005364000000043 Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M NR 30 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 56 EP 65 DI 10.1016/j.heares.2006.05.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300006 PM 16839724 ER PT J AU Lee, JH Heo, JH Chang, SO Kim, CS Oh, SH AF Lee, Jun Ho Heo, Jeong-Hwa Chang, Sun O. Kim, Chong-Sun Oh, Seung-Ha TI Reactive blue 2, an antagonist of rat P2Y(4), increases K+ secretion in rat cochlea strial marginal cells SO HEARING RESEARCH LA English DT Article DE voltage-sensitive vibrating probe; strial marginal cell; cochlea; rat; P2Y(4); reactive blue ID P2X(2) RECEPTOR SUBUNIT; ION-CHANNEL FUNCTION; I-SK CHANNEL; INNER-EAR; APICAL MEMBRANE; AUDITORY NEUROTRANSMISSION; ISK/KVLQT1 CHANNELS; SOUND TRANSDUCTION; GUINEA-PIG; VASCULARIS AB Extracellular ATP decreases K+ secretion in strial marginal cells via apical P2Y(4) receptors. We investigated the effect of reactive blue 2 (RB-2), an antagonist of rat P2Y(4), on rat strial marginal cells using a voltage-sensitive vibrating probe. The application of RB-2 increased K+ secretion in a dose-dependent manner, and this increase was characterized as a peak followed by a partial relaxation to a steady-state. Moreover, this response was similar to that caused by 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Suramin had no similar effect, except at high concentration. Thus, we tested the effects of these chemicals on P2Y(4) receptors in strial marginal cells. Both RB-2 and DIDS had antagonistic activities at P2Y(4), and the antagonist potency at P2Y(4) paralleled the potency of K+ secretion. Interestingly, 2'- and 3'-O-(4-benzoyl-benzoyl)adenosine 5'-triphosphate (BzATP) exhibited an agonistic effect at P2Y(4) receptor, which was blocked by RB-2, but not by pyridoxalphosphate-6-azophenyl-2', 4'-disulfonic acid (PPADS). Based on these results, we speculate that direct and/or indirect inhibitory mechanisms between P2Y(4) and KENQ1/KCNEI K+ channels exist in strial marginal cell. (c) 2006 Elsevier B.V. All rights reserved. C1 Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, Seoul 110744, South Korea. Seoul Natl Univ, Bundang Hosp, Dept Otolaryngol Head & Neck Surg, Coll Med, Songnam 463707, Kunggi Do, South Korea. RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Otolaryngol Head & Neck Surg, 28 Yeongon Dong, Seoul 110744, South Korea. EM junlee@snu.ac.kr; amaranthh@paran.com; suno@snu.ac.kr; chongkim@plaza.snu.ac.kr; shaoh@snu.ac.kr RI Oh, Seung Ha/J-5540-2012 CR Boeynaems JM, 2005, SEMIN THROMB HEMOST, V31, P139, DOI 10.1055/s-2005-869519 Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 Glanzel M, 2003, EUR J MED CHEM, V38, P303, DOI 10.1016/S0223-5234(02)01449-6 Glanzel M, 2005, EUR J MED CHEM, V40, P1262, DOI 10.1016/j.ejmech.205.07.007 Housley GD, 2002, AUDIOL NEURO-OTOL, V7, P55, DOI 10.1159/000046865 Housley GD, 1999, J NEUROSCI, V19, P8377 Housley GD, 1998, J COMP NEUROL, V393, P403 Khakh BS, 2001, PHARMACOL REV, V53, P107 Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1 Lee JH, 2002, AUDIOL NEURO-OTOL, V7, P100, DOI 10.1159/000057657 Lee SY, 2003, MOL PHARMACOL, V63, P878, DOI 10.1124/mol.63.4.878 Lee SY, 2003, CELL BIOCHEM BIOPHYS, V39, P75, DOI 10.1385/CBB:39:1:75 Marcus DC, 2001, AM J PHYSIOL-CELL PH, V281, pC282 Marcus Daniel C., 1996, Keio Journal of Medicine, V45, P301 Marcus Daniel C, 2005, Cell Commun Signal, V3, P13, DOI 10.1186/1478-811X-3-13 MARCUS DC, 1994, BIOPHYS J, V66, P1939 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 Morse DM, 2001, AM J PHYSIOL-CELL PH, V280, P1485 Ralevic V, 1998, PHARMACOL REV, V50, P413 Sage CL, 2002, J MEMBRANE BIOL, V185, P103, DOI 10.1007/s00232-001-0116-z Salt AN, 2001, ANN NY ACAD SCI, V942, P306 SHEN Z, 1995, J MEMBRANE BIOL, V146, P283 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 Shen ZJ, 1998, HEARING RES, V123, P157, DOI 10.1016/S0378-5955(98)00110-5 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 Sunose H, 1997, HEARING RES, V114, P107, DOI 10.1016/S0378-5955(97)00152-4 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X Wangemann P, 1996, AUDIT NEUROSCI, V2, P187 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2001, J MEMBRANE BIOL, V182, P171, DOI 10.1007/s00232-001-0042-0 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 Wildman SS, 2003, BRIT J PHARMACOL, V140, P1177, DOI 10.1038/sj.bjp.0705544 NR 33 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 66 EP 73 DI 10.1016/j.heares.2006.05.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300007 PM 16839719 ER PT J AU Jin, Z Mannstrom, P Skjonsberg, A Jarlebark, L Ulfendahl, M AF Jin, Zhe Mannstrom, Paula Skjonsberg, Asa Jarlebark, Leif Ulfendahl, Mats TI Auditory function and cochlear morphology in the German waltzing guinea pig SO HEARING RESEARCH LA English DT Article DE deafness; inner ear; melanocytes; phenotype; recessive genes; stria vascularis ID MYOSIN-VIIA GENE; STRIA VASCULARIS; INNER-EAR; DEAFNESS; STRAIN; MOUSE; HEREDITY; MUTATION; HEARING; TRAUMA AB The German waltzing guinea pig is a new strain of animals with a recessively inherited inner ear defect resulting in deafness and severe vestibular dysfunction. Measurements of auditory brainstem responses (ABRs) demonstrated that the homozygotes (gw/gw) are deaf while the heterozygotes (gw/+) have normal hearing. In the gw/gw cochlea, a collapse of Reissner's membrane leads to the absence of scala media. Melanin pigment accumulation was clearly observed in the gw/gw stria vascularis, and both the height and width of stria vascularis were significantly reduced. Ultrastructural observations further detailed the disorganization of stria vascularis in the gw/gw animals: marginal cells lacked basolateral infoldings; intermediate cells (melanocytes) were scarce and degenerated; and basal cells were difficult to identify. The level of degeneration of the organ of Corti varied between individual gw/gw animals. The density of spiral ganglion neurons was significantly decreased in old (1-2 years of age) gw/gw animals. In contrast, no pathological changes were observed in the cochleae of gw/+ animals. Our data suggest that the degeneration originates in the stria vascularis (most likely in the melanocytes), and that this is the primary cause for inner ear defects in the German waltzing guinea pig. Here, we describe the auditory function and cochlear morphology in this spontaneously mutated guinea pig strain. (c) 2006 Elsevier B.V. All rights reserved. C1 Karolinska Inst, Ctr Hearing & Commun Res, Dept Clin Neurosci, SE-17176 Stockholm, Sweden. Stockholm Univ, Karolinska Hosp, Dept Otolaryngol, SE-17176 Stockholm, Sweden. RP Ulfendahl, M (reprint author), Stockholm Univ, Karolinska Hosp, Dept Clin Neurosci, Ctr Hearing & Commun Res,Karolinska Inst, Bldg M1-02, SE-17176 Stockholm, Sweden. EM zhe.jin@ki.se; paula.mannstrom@ki.se; asa.skjonsberg@ki.se; leif.jarlebark@ki.se; mats.ulfendahl@ki.se RI Jin, Zhe/C-5150-2008 CR CABLE J, 1993, PIGM CELL RES, V6, P215, DOI 10.1111/j.1600-0749.1993.tb00605.x CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 ERNSTSON S, 1970, ACTA OTO-LARYNGOL, V69, P358, DOI 10.3109/00016487009123377 ERNSTSON S, 1971, ACTA OTO-LARYNGOL, V71, P469, DOI 10.3109/00016487109125391 ERNSTON S, 1971, ACTA OTO-LARYNGOL, V72, P303, DOI 10.3109/00016487109122487 ERNSTSON S, 1969, ACTA OTO-LARYNGOL, V67, P521, DOI 10.3109/00016486909125480 Ernstson S, 1972, Acta Otolaryngol Suppl, V297, P1 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x Halsey K, 2005, HEARING RES, V201, P99, DOI 10.1016/j.heares.2004.09.010 Heid S, 1998, HEARING RES, V115, P101, DOI 10.1016/S0378-5955(97)00182-2 HORNER KC, 1987, HEARING RES, V26, P327, DOI 10.1016/0378-5955(87)90068-2 Hoshino T, 2000, HEARING RES, V140, P145, DOI 10.1016/S0378-5955(99)00192-6 IBSEN LH, 1929, ANAT REC, V44, P294 Linthicum FH, 2001, OTOL NEUROTOL, V22, P708, DOI 10.1097/00129492-200109000-00027 Liu XZ, 1997, NAT GENET, V16, P188, DOI 10.1038/ng0697-188 Liu XZ, 1997, NAT GENET, V17, P268, DOI 10.1038/ng1197-268 LURIE M. H., 1941, ANN OTOL RHINOL AND LARYNGOL, V50, P113 LURIE MH, 1939, LARYNGOSCOPE, V49, P558 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 MAIR IWS, 1976, ARCH OTO-RHINO-LARYN, V212, P1, DOI 10.1007/BF00456358 PAPARELLA MM, 1991, OTOLARYNGOLOGY, V2, P1579 REARDON W, 1992, J MED GENET, V29, P521, DOI 10.1136/jmg.29.8.521 Rivas A, 2005, OTOL NEUROTOL, V26, P415, DOI 10.1097/01.mao.0000169764.00798.84 Rozengurt N, 2003, HEARING RES, V177, P71, DOI 10.1016/S0378-5955(02)00799-2 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Skjonsberg A, 2005, AUDIOL NEURO-OTOL, V10, P323, DOI 10.1159/000087349 STEEL KP, 1989, DEVELOPMENT, V107, P453 TASAKI I, 1959, J NEUROPHYSIOL, V22, P149 Wangemann P, 2004, BMC MED, V2, DOI 10.1186/1741-7015-2-30 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Weil D, 1997, NAT GENET, V16, P191, DOI 10.1038/ng0697-191 NR 33 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 74 EP 84 DI 10.1016/j.heares.2006.06.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300008 PM 16870368 ER PT J AU Dajani, HR Picton, TW AF Dajani, Hilmi R. Picton, Terence W. TI Human auditory steady-state responses to changes in interaural correlation SO HEARING RESEARCH LA English DT Article DE steady-state responses; binaural hearing; interaural correlation; time constants; binaural sluggishness; auditory modeling ID BINAURAL INTERACTION COMPONENT; HUMAN EVOKED-POTENTIALS; AURAL CORRELATION; SOUND-SOURCE; BRAIN-STEM; CORRELATION DISCRIMINATION; INFERIOR COLLICULUS; LEVEL DIFFERENCE; TIME DIFFERENCE; PHASE DISPARITY AB Steady-state responses were evoked by noise stimuli that alternated between two levels of interaural correlation rho at a frequency f(m). With rho alternating between +1 and 0, responses at fm dropped steeply above 4 Hz, but persisted up to 64 Hz. Two time constants of 47 and 4.4 ms with delays of 198 and 36 ms, respectively, were obtained by fitting responses to a transfer function based on symmetric exponential windows. The longer time constant, possibly reflecting cortical integration, is consistent with perceptual binaural "sluggishness". The shorter time constant may reflect running cross-correlation in the high brainstem or primary auditory cortex. Responses at 2f(m) peaked with an amplitude of 848 +/- 479 nV (f(m) = 4 Hz). Investigation of this robust response revealed that: (1) changes in rho and later-alization evoked similar responses, suggesting a common neural origin, (2) response was most dependent on stimulus frequencies below 1000 Hz, but frequencies up to 4000 Hz also contributed, and (3) when rho alternated between [0.2-1] and 0, response amplitude varied linearly with rho, and the physiological response threshold was close to the average behavioral threshold (rho = 0.31). This steady-state response may prove useful in the objective investigation of binaural hearing. (c) 2006 Elsevier B.V. All rights reserved. C1 Rotman Res Inst Baycrest, Toronto, ON M6A 2E1, Canada. Univ Toronto, Toronto, ON M6A 2E1, Canada. RP Dajani, HR (reprint author), Rotman Res Inst Baycrest, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. EM h.dajani@utoronto.ca; tpicton@rotman-baycrest.on.ca CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607 Akeroyd MA, 1999, J ACOUST SOC AM, V105, P2807, DOI 10.1121/1.426897 Akeroyd MA, 2001, J ACOUST SOC AM, V110, P2516, DOI 10.1121/1.1412442 Babkoff H, 2002, HEARING RES, V165, P117, DOI 10.1016/S0378-5955(02)00292-7 Bates D, 1988, NONLINEAR REGRESSION Bernstein LR, 2001, J ACOUST SOC AM, V109, P1604, DOI 10.1121/1.1354203 BLAUERT J, 1972, AUDIOLOGY, V11, P265 Boehnke SE, 2002, J ACOUST SOC AM, V112, P1617, DOI 10.1121/1.1504857 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026 Bullock TH, 1997, P NATL ACAD SCI USA, V94, P1, DOI 10.1073/pnas.94.1.1 Chait M, 2005, J NEUROSCI, V25, P8518, DOI 10.1523/JNEUROSCI.1266-05.2005 ConeWesson B, 1997, HEARING RES, V106, P163, DOI 10.1016/S0378-5955(97)00016-6 Culling JF, 2001, J ACOUST SOC AM, V110, P1020, DOI 10.1121/1.1383296 Culling JF, 1998, J ACOUST SOC AM, V103, P3540, DOI 10.1121/1.423061 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681 GABRIEL KJ, 1981, J ACOUST SOC AM, V69, P1394, DOI 10.1121/1.385821 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 GRANTHAM DW, 1978, J ACOUST SOC AM, V63, P511, DOI 10.1121/1.381751 GRANTHAM DW, 1982, J ACOUST SOC AM, V72, P1178, DOI 10.1121/1.388326 GRANTHAM DW, 1979, J ACOUST SOC AM, V65, P1509, DOI 10.1121/1.382915 Griffiths TD, 2000, HUM BRAIN MAPP, V9, P72, DOI 10.1002/(SICI)1097-0193(200002)9:2<72::AID-HBM2>3.0.CO;2-9 HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4 Holube I, 1998, J ACOUST SOC AM, V104, P2412, DOI 10.1121/1.423773 John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Joris PX, 2006, J NEUROSCI, V26, P279, DOI 10.1523/JNEUROSCI.2285-05.2006 Joris P. X., 1996, Society for Neuroscience Abstracts, V22, P648 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Kaernbach C, 2004, EXP PSYCHOL, V51, P240, DOI 10.1027/1618-3169.51.4.240 KILLION MC, 1989, J ACOUST SOC AM, V85, P1775, DOI 10.1121/1.397969 KILLION MC, 1989, J ACOUST SOC AM, V83, P1688 KOLLMEIER B, 1990, J ACOUST SOC AM, V87, P1709, DOI 10.1121/1.399419 Kuwada S, 2006, J NEUROPHYSIOL, V95, P1309, DOI 10.1152/jn.00901.2005 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Mardia K. V., 1972, STAT DIRECTIONAL DAT MCEVOY LK, 1990, AUDIOLOGY, V29, P163 MCEVOY LK, 1991, AUDIOLOGY, V30, P286 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Picton Terence W, 2005, J Am Acad Audiol, V16, P140, DOI 10.3766/jaaa.16.3.3 Picton TW, 2003, INT J AUDIOL, V42, P177, DOI 10.3109/14992020309101316 Picton TW, 1985, HUMAN COMMUNICATION, V9, P127 POLLACK I, 1959, J ACOUST SOC AM, V31, P1250, DOI 10.1121/1.1907852 RIEDEL H, 2004, J ACOUST SOC AM, V116, P2599 ROBINSON PA, 2001, PHYS REV E, V63, P1 ROSE JE, 1966, J NEUROPHYSIOL, V29, P288 ROSS B, 2004, NEUROL CLIN NEUROPHY, V18, P1 Schwarz DWF, 2005, CLIN NEUROPHYSIOL, V116, P658, DOI 10.1016/j.clinph.2004.09.014 SOVIJARV.AR, 1974, BRAIN RES, V73, P455, DOI 10.1016/0006-8993(74)90669-6 Spitzer MW, 1998, J NEUROPHYSIOL, V80, P3062 SPITZER MW, 1993, J NEUROPHYSIOL, V69, P1245 Stollman MHP, 1996, BRIT J AUDIOL, V30, P227, DOI 10.3109/03005369609079043 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Tollin DJ, 2005, J NEUROSCI, V25, P10648, DOI 10.1523/JNEUROSCI.1609-05.2005 Trahiotis C, 2005, SOUND SOURCE LOCALIZ Warren JD, 2002, NEURON, V34, P139, DOI 10.1016/S0896-6273(02)00637-2 WEISS TF, 1988, HEARING RES, V33, P175, DOI 10.1016/0378-5955(88)90030-5 Witton C, 2000, J ACOUST SOC AM, V108, P1826, DOI 10.1121/1.1310195 Wong WYS, 2004, EAR HEARING, V25, P57, DOI 10.1097/01.AUD.0000111257.11898.64 ZUREK PM, 1992, EAR HEARING, V13, P307, DOI 10.1097/00003446-199210000-00008 NR 66 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 85 EP 100 DI 10.1016/j.heares.2006.06.003 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300009 PM 16870369 ER PT J AU Grant, L Slapnick, S Kennedy, H Hackney, C AF Grant, Lisa Slapnick, Susan Kennedy, Helen Hackney, Carole TI Ryanodine receptor localisation in the mammalian cochlea: An ultrastructural study SO HEARING RESEARCH LA English DT Article DE hair cells; calcium-induced calcium release; subsurface cisternae; synatoplasmic cistern; cochlear efferents; immunogold; hearing ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; INTRACELLULAR CALCIUM-RELEASE; SUBSURFACE CISTERNAE; TRANSMITTER RELEASE; CA2+ STORE; CHANNELS; INNER; EXOCYTOSIS; PLASTICITY AB Calcium-induced calcium release (CICR) in the mammalian cochlea has been suggested to enhance neurotransmitter release from inner hair cells and facilitate the efferent response in outer hair cells. Light microscopic evidence exists for the presence of ryanodine receptors in the organ of Corti but there is so far no information about their ultrastructural localisation. We have therefore used post-embedding immunogold labeling with antibodies that predominantly recognise ryanodine receptor isoforms 1 (RyR1) and 2 (RyR2) to investigate their distribution in rat cochleae. In inner hair cells, the highest levels of labeling were observed over an area of rough endoplasmic reticulum that lies in the cytoplasmic region beneath the nucleus; in outer hair cells, the cytoplasmic region above the nucleus displayed most labeling. Labeling was also associated with the subsurface cisternae adjacent to the lateral membranes of both types of hair cell, with the efferent terminals on the outer hair cells and was observed in adjacent supporting cells. Labeling in outer hair cells was significantly higher than that in inner hair cells or in the supporting cells. Our results support the presence of RyR1 in the cochlea but do not rule out the presence of other isoforms. CICR may be involved in the control of calcium levels in the base of the inner hair cells and supporting cells, and in the cholinergic efferent response and motile behaviour of the outer hair cells. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Keele, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England. Univ Wisconsin, Dept Anat, Madison, WI 53706 USA. Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. Univ Bristol, Dept Physiol, Bristol BS8 1TD, Avon, England. RP Hackney, C (reprint author), Univ Keele, Sch Life Sci, Inst Sci & Technol Med, Keele ST5 5BG, Staffs, England. EM lisa.grant@bristol.ac.uk; Slapnick@wise.edu; helen.kennedy@bristol.ac.uk; coa38@keele.ac.uk CR Berridge MJ, 1998, NEURON, V21, P13, DOI 10.1016/S0896-6273(00)80510-3 Berridge MJ, 2003, NAT REV MOL CELL BIO, V4, P517, DOI 10.1038/nrm1155 Bobbin RP, 2001, NEUROREPORT, V12, P2923, DOI 10.1097/00001756-200109170-00034 Bobbin RP, 2002, HEARING RES, V174, P172, DOI 10.1016/S0378-5955(02)00654-8 Bouchard R, 2003, PROG NEUROBIOL, V69, P391, DOI 10.1016/S0301-0082(03)00053-4 Carter AG, 2002, J NEUROSCI, V22, P21 Dallos P, 1997, J NEUROSCI, V17, P2212 Emptage NJ, 2001, NEURON, V29, P197, DOI 10.1016/S0896-6273(01)00190-8 ENDO M, 1970, NATURE, V228, P34, DOI 10.1038/228034a0 Evans MG, 2000, CELL CALCIUM, V28, P195, DOI 10.1054/ceca.2000.0145 Fettiplace R, 2006, NAT REV NEUROSCI, V7, P19, DOI 10.1038/nrn1828 Fill M, 2002, PHYSIOL REV, V82, P893, DOI 10.1152/physrev.00013.2002 FORGE A, 1993, HEARING RES, V64, P175, DOI 10.1016/0378-5955(93)90003-J Frolenkov GI, 2000, J NEUROSCI, V20, P5940 Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862 FUCHS PA, 2006, VERTEBRATE HAIR CELL, P249 FURNESS DN, 1990, EUR ARCH OTO-RHINO-L, V247, P12 Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796 Hackney CM, 2005, J NEUROSCI, V25, P7867, DOI 10.1523/JNEUROSCI.1196-05.2005 Hafidi A, 2005, NEUROSCIENCE, V130, P475, DOI 10.1016/j.neuroscience.2004.09.038 Hall JD, 1997, BIOPHYS J, V73, P1243 Issa NP, 1996, P NATL ACAD SCI USA, V93, P9527, DOI 10.1073/pnas.93.18.9527 Kennedy ADM, 2002, BMC HEALTH SERV RES, V2, DOI 10.1186/1472-6963-2-2 Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267 Lelli A, 2003, J NEUROSCI, V23, P6894 Lioudyno M, 2004, J NEUROSCI, V24, P11160, DOI 10.1523/JNEUROSCI.3674-04.2004 LLANO I, 2000, J NEUROSCI, V23, P6894 Mammano F, 1999, J NEUROSCI, V19, P6918 Marcotti W, 2004, J PHYSIOL-LONDON, V557, P613, DOI 10.1113/jphysiol.2003.060137 Meldolesi J, 1998, TRENDS BIOCHEM SCI, V23, P10, DOI 10.1016/S0968-0004(97)01143-2 Morton-Jones RT, 2006, NEUROSCIENCE, V137, P275, DOI 10.1016/j.neuroscience.2005.09.011 Moser T, 2000, P NATL ACAD SCI USA, V97, P883, DOI 10.1073/pnas.97.2.883 Murugasu E, 1996, AUDIT NEUROSCI, V2, P363 Narita K, 2000, J GEN PHYSIOL, V115, P519, DOI 10.1085/jgp.115.4.519 OTTERSEN OP, 1989, ANAT EMBRYOL, V180, P1, DOI 10.1007/BF00321895 PARSONS TD, 1994, NEURON, V13, P875, DOI 10.1016/0896-6273(94)90253-4 Pyott SJ, 2004, J NEUROSCI, V24, P9469, DOI 10.1523/JNEUROSCI.3162-04.2004 Ricci AJ, 2000, J PHYSIOL-LONDON, V524, P423, DOI 10.1111/j.1469-7793.2000.00423.x Rose CR, 2001, NEURON, V31, P519, DOI 10.1016/S0896-6273(01)00402-0 Sakaguchi N, 1998, J HISTOCHEM CYTOCHEM, V46, P29 Sorrentino V, 1995, Adv Pharmacol, V33, P67, DOI 10.1016/S1054-3589(08)60666-3 Spicer SS, 1998, ANAT REC, V251, P97, DOI 10.1002/(SICI)1097-0185(199805)251:1<97::AID-AR15>3.0.CO;2-6 Sridhar TS, 1997, J NEUROSCI, V17, P428 Tucker T, 1995, NEURON, V15, P1323, DOI 10.1016/0896-6273(95)90011-X Williams AJ, 2002, FRONT BIOSCI, V7, pD1223, DOI 10.2741/williams Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 46 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 101 EP 109 DI 10.1016/j.heares.2006.06.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300010 PM 16889917 ER PT J AU Zheng, QY Yu, H Washington, JL Kisley, LB Kikkawa, YS Pawlowski, KS Wright, CG Alagramam, KN AF Zheng, Q. Y. Yu, H. Washington, J. L. Kisley, L. B. Kikkawa, Y. S. Pawlowski, K. S. Wright, C. G. Alagramam, K. N. TI A new spontaneous mutation in the mouse protocadherin 15 gene SO HEARING RESEARCH LA English DT Article DE deafness; cochlear hair cells; Pcdh15; mouse ID USHER-SYNDROME; HEARING-LOSS; PCDH15; MICE; ADHESION; ALLELES; STRAINS; MUTANT; 1F AB We have characterized a new allele of the protocadherin 15 gene (designated Pcdh15(av-6J)) that arose as a spontaneous, recessive mutation in the C57BL/6J inbred strain at Jackson Laboratory. Analysis revealed an inframe deletion in Pcdh15, which is predicted to result in partial deletion of cadherin domain (domain 9) in Pcdh15. Morphologic study revealed normal to moderately defective cochlear hair cell stereocilia in Pcdh15(av-6J) mutants at postnatal day 2 (P2). Stereocilia abnormalities were consistently present at P5 and P10. Degenerative changes including loss of inner and outer hair cells were seen at P20, with severe sensory cell loss in all cochlear turns occurring by P40. The hair cell phenotype observed in the 6J allele between PO and P20 is the least severe phenotype yet observed in Pcdh15 alleles. However, young Pcdh15(av-6J) mice are unresponsive to auditory stimulation and show circling behavior indicative of vestibular dysfunction. Since these animals show severe functional deficits but have relatively mild stereocilia defects at a young age they may provide an appropriate model to test for a direct role of Pcdh15 in mechanotransduction. (c) 2006 Elsevier B.V. All rights reserved. C1 Case Western Reserve Univ, Cleveland, OH 44106 USA. Jackson Lab, Bar Harbor, ME 04609 USA. Univ Texas, SW Med Ctr, Dallas, TX 75390 USA. RP Alagramam, KN (reprint author), Case Western Reserve Univ, 11100 Euclid Ave, Cleveland, OH 44106 USA. EM kna3@case.edu RI Zheng, Qing/C-1731-2012 CR Ahmed ZM, 2003, HUM MOL GENET, V12, P3215, DOI 10.1093/hmg/ddg358 Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277 Alagramam KN, 1999, GENETICS, V152, P1691 Alagramam KN, 2005, JARO-J ASSOC RES OTO, V6, P106, DOI 10.1007/s10162-005-5032-3 Alagramam KN, 2001, NAT GENET, V27, P99 Alagramam KN, 2001, HUM MOL GENET, V10, P1709, DOI 10.1093/hmg/10.16.1709 Ben-Yosef T, 2003, NEW ENGL J MED, V348, P1664, DOI 10.1056/NEJMoa021502 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Gumbiner BM, 2005, NAT REV MOL CELL BIO, V6, P622, DOI 10.1038/nrm1699 Hampton LL, 2003, HEARING RES, V180, P67, DOI 10.1016/S0378-5955(03)00107-2 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 Patel SD, 2003, CURR OPIN STRUC BIOL, V13, P690, DOI 10.1016/j.sbi.2003.10.007 Pawlina G, 2006, J ECON MANAGE STRAT, V15, P1, DOI 10.1111/j.1530-9134.2006.00090.x Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1 Senften M, 2006, J NEUROSCI, V26, P2060, DOI 10.1523/JNEUROSCI.4521-05.2006 TAYLOR BA, 1994, GENOMICS, V21, P626, DOI 10.1006/geno.1994.1323 Washington JL, 2005, HEARING RES, V202, P161, DOI 10.1016/j.heares.2004.09.014 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 18 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 110 EP 120 DI 10.1016/j.heares.2006.06.010 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300011 PM 16887306 ER PT J AU de Boer, J Thornton, ARD AF de Boer, Jessica Thornton, A. Roger D. TI Volterra Slice otoacoustic emissions recorded using maximum length sequences from patients with sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE evoked otoacoustic emissions; hearing loss; maximum length sequence; Volterra series; non-linearity ID AMINOGLYCOSIDE-INDUCED OTOTOXICITY; ACOUSTIC EMISSIONS; IMPAIRED SUBJECTS; NORMALLY HEARING; CLICK; IDENTIFICATION; EARS AB When normally hearing ears are stimulated with maximum length sequences (MLS) of clicks, a family of non-linear temporal interaction components of otoacoustic emissions (OAEs) can be derived, which have been named Volterra Slice OAEs (VS OAEs). This study investigates the sensitivity of VS OAEs to sensorineural hearing impairment in adults, compared to that of the widely used derived non-linear click evoked OAE (DNL CEOAE). VS OAEs and DNL CEOAEs were obtained from 24 normally hearing and 24 hearing impaired ears using a custom-built MLS system and a Otodynamics `IL088' OAE Analyzer, respectively. The results show that, based on waveform reproducibility, VS OAEs are as successful as DNL CEOAEs at separating normal from impaired ears at the audiometric frequencies of 1 and 2 kHz, where a strong correlation is found between the amplitudes of the two OAE types. At 4 kHz however, VS OAEs are a significantly better indicator of hearing loss than DNL CEOAEs. This difference at 4 kHz appears to be due to the lack of stimulus artefact contamination of VS OAEs in the early, high frequency portion of the response. The findings suggest that VS OAEs may provide a better diagnostic and monitoring tool for hearing loss at high frequencies than the conventional DNL CEOAE. (c) 2006 Published by Elsevier B.V. C1 Royal S Hants Hosp, Southamapton Outstn, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP de Boer, J (reprint author), Royal S Hants Hosp, Southamapton Outstn, MRC, Inst Hearing Res, Brintons Terrace Mailpoint OAU, Southampton SO14 0YG, Hants, England. EM jdbl@soton.ac.uk CR Attias J, 2001, NOISE HEALTH, V3, P19 BONFILS P, 1989, ANN OTO RHINOL LARYN, V98, P326 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 Davis A, 2003, INT J PEDIATR OTORHI, V67, pS193, DOI 10.1016/j.ijporl.2003.08.024 GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 Hall AJ, 1999, AUDIOLOGY, V38, P277 Harris FP, 2002, OTOACOUSTIC EMISSION, P213 Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4 Hine JE, 2005, HEARING RES, V203, P122, DOI 10.1016/j.heares.2004.11.019 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 HOTZ MA, 1994, LARYNGOSCOPE, V104, P1130 Hussain DM, 1998, EAR HEARING, V19, P434, DOI 10.1097/00003446-199812000-00005 Kapadia S, 2001, BRIT J AUDIOL, V35, P103 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 LUTMAN ME, 1993, BRIT J AUDIOL, V27, P103, DOI 10.3109/03005369309077899 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794 PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 PROBST R, 1993, PROG BRAIN RES, V97, P91 Punnett A, 2004, PEDIATR BLOOD CANCER, V42, P598, DOI 10.1002/pbc.20036 Schetzen M., 1989, VOLTERRA WIENER THEO Shi Y, 1991, IEEE Trans Biomed Eng, V38, P834 Slaven A, 2003, HEARING RES, V179, P113, DOI 10.1016/S0378-5955(03)00101-1 Sliwinska-Kowalska M, 2001, NOISE HEALTH, V3, P75 Stavroulaki P, 2002, ARCH OTOLARYNGOL, V128, P150 Thompson DC, 2001, JAMA-J AM MED ASSOC, V286, P2000, DOI 10.1001/jama.286.16.2000 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 ZAKZANIS KK, 2000, ARCH CLIN NEUROL, V16, P653 NR 32 TC 2 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2006 VL 219 IS 1-2 BP 121 EP 136 DI 10.1016/j.heares.2006.06.009 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 085YW UT WOS:000240641300012 PM 16887305 ER PT J AU Brunso-Bechtold, JK Evans, SD Henkel, CK AF Brunso-Bechtold, Judy K. Evans, Stephanie D. Henkel, Craig K. TI Synaptogenesis in the inferior colliculus of the pre-hearing postnatal ferret SO HEARING RESEARCH LA English DT Article DE postnatal development; electron microscopy; auditory midbrain ID RAT; NUCLEUS; FEATURES AB Although intrinsic organization in the inferior colliculus (IC) has been surveyed in a variety of species, current knowledge of synaptogenesis within the mammalian inferior colliculus is limited. The present study surveyed the ultrastructure of the central nucleus of the inferior colliculus in postnatal day (P) P4, P7, P14, and P28 ferrets, prior to the onset of hearing at the end of the first postnatal month with the goal of beginning to characterize the time course of synapse formation in relation to the development of afferent projection patterns within the IC. Results suggest that initial synaptogenesis has occurred in the IC by P4 and continues during the period when maturation of the distribution of axons from brainstem auditory nuclei is taking place. (c) 2006 Elsevier B.V. All rights reserved. C1 Wake Forest Univ, Dept Neurobiol & Anat, Winston Salem, NC 27157 USA. Wake Forest Univ, Neurosci Program, Winston Salem, NC 27157 USA. RP Brunso-Bechtold, JK (reprint author), Wake Forest Univ, Dept Neurobiol & Anat, Med Ctr Blvd, Winston Salem, NC 27157 USA. EM jbrunso@wfubmc.edu CR Aitkin L, 1996, J COMP NEUROL, V375, P77, DOI 10.1002/(SICI)1096-9861(19961104)375:1<77::AID-CNE5>3.0.CO;2-L Aitkin L, 1997, HEARING RES, V113, P69, DOI 10.1016/S0378-5955(97)00128-7 BRUNSOBECHTOLD JK, 1992, J COMP NEUROL, V324, P539, DOI 10.1002/cne.903240407 BRUNSOBECHTOLD JK, 1996, PROGR BRAIN RES NEUR, V108, P65 Gabriele ML, 2000, J COMP NEUROL, V416, P368, DOI 10.1002/(SICI)1096-9861(20000117)416:3<368::AID-CNE8>3.0.CO;2-C GONZALEZHERNANDEZ TH, 1989, NEUROSCIENCE, V30, P127, DOI 10.1016/0306-4522(89)90359-X KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 KEIGER CJ, 2003, ASS RES OT ABSTR, V26, P145 Kraushaar U, 2002, PFLUG ARCH EUR J PHY, V445, P279, DOI 10.1007/s00424-002-0924-8 PYSH JJ, 1969, AM J ANAT, V124, P411, DOI 10.1002/aja.1001240402 Brunso-Bechtold JK, 2005, INFERIOR COLLICULUS, P537, DOI 10.1007/0-387-27083-3_18 NR 11 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 1 EP 4 DI 10.1016/j.heares.2006.03.017 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000001 PM 16766149 ER PT J AU Riedel, H Kollmeier, B AF Riedel, Helmut Kollmeier, Birger TI Interaural delay-dependent changes in the binaural difference potential of the human auditory brain stem response SO HEARING RESEARCH LA English DT Article DE binaural difference potential; interaural time difference; auditory brain stem response; delay line; Jeffress model; chirp; lateralization; azimuth ID SUPERIOR OLIVARY COMPLEX; UNIT EXCITATORY RESPONSES; HUMAN EVOKED-POTENTIALS; HIGH-FREQUENCY NEURONS; TIME DIFFERENCES; INTERACTION COMPONENT; INFERIOR COLLICULUS; SOUND LOCALIZATION; COINCIDENCE DETECTION; TEMPORAL DISPARITIES AB Binaural difference potentials (BDs) are thought to be generated by neural units in the brain stem responding specifically to binaural stimulation. They are computed by subtracting the sum of monaural responses from the binaural response, BD = B - (L + R). BDs in dependency on the interaural time difference (ITD) have been measured and compared to the Jeffress model in a number of studies with conflicting results. The classical Jeffress model assuming binaural coincidence detector cells innervated by bilateral excitatory cells via two delay lines predicts a BD latency increase of ITD/2. A modification of the model using only a single delay line as found in birds yields a BD latency increase of ITD. The objective of this study is to measure BDs with a high signal-to-noise ratio for a large range of ITDs and to compare the data with the predictions of some models in the literature including that of Jeffress. Chirp evoked BDs were recorded for 17 ITDs in the range from 0 to 2 ms at a level of 40 dB nHL for four channels (A1, A2, PO9, PO10) from 11 normal hearing subjects. For each binaural condition 10,000 epochs were collected while 40,000 epochs were recorded for each of the two monaural conditions. Significant BD components are observed for ITDs up to 2 ms. The peak-to-peak amplitude of the first components of the BD, DP1-DN1, is monotonically decreasing with ITD. This is in contrast with click studies which reported a constant BD-amplitude for ITDs up to I ms. The latency of the BD-component DN1 is monotonically, but nonlinearly increasing with ITD. In the current study, DN1 latency is found to increase faster than ITD/2 but slower than ITD incompatible with either variant of the Jeffress model. To describe BD waveforms, the computational model proposed by Ungan et al. [Hearing Research 106, 66-82, 1997] using ipsilateral excitatory and contralateral inhibitory inputs to the binaural cells was implemented with only four parameters and successfully fitted to the BD data. Despite its simplicity the model predicts features which can be physiologically tested: the inhibitory input must arrive slightly before the excitatory input, and the duration of the inhibition must be considerably longer than the standard deviations of excitatory and inhibitory arrival times to the binaural cells. With these characteristics, the model can accurately describe BD amplitude and latency as a function of the ITD. (c) 2006 Elsevier B.V. All rights reserved. C1 Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. RP Riedel, H (reprint author), Carl von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. EM helmut.riedel@uni-oldenburg.de CR Batra R, 1997, J NEUROPHYSIOL, V78, P1237 Batra R, 1997, J NEUROPHYSIOL, V78, P1222 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Brantberg K, 1999, AUDIOL NEURO-OTOL, V4, P88, DOI 10.1159/000013825 Breebaart J, 2001, J ACOUST SOC AM, V110, P1074, DOI 10.1121/1.1383297 CAIRD D, 1983, EXP BRAIN RES, V52, P385 Campbell RAA, 2004, CURR BIOL, V14, pR886, DOI 10.1016/j.cub.2004.09.070 CARR CE, 1990, J NEUROSCI, V10, P3227 CARR CE, 1988, P NATL ACAD SCI USA, V85, P8311, DOI 10.1073/pnas.85.21.8311 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833 Delb W, 2003, HNO, V51, P99, DOI 10.1007/s00106-002-0727-4 Delb WF, 2004, INT J AUDIOL, V43, P69, DOI 10.1080/14992020400050012 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 Fitzpatrick DC, 2002, HEARING RES, V168, P79, DOI 10.1016/S0378-5955(02)00359-3 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 FURST M, 1990, HEARING RES, V49, P347, DOI 10.1016/0378-5955(90)90113-4 Furst M, 2004, HEARING RES, V187, P63, DOI 10.1016/S0378-5955(03)00331-9 GALAMBOS R, 1959, AM J PHYSIOL, V197, P527 GAUMOND RP, 1991, J ACOUST SOC AM, V89, P454, DOI 10.1121/1.400482 GERULL G, 1984, AUDIOLOGY, V23, P265 Goksoy C, 2005, BRAIN RES, V1054, P183, DOI 10.1016/j.brainres.2005.06.083 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 Gopal KV, 1999, SCAND AUDIOL, V28, P85, DOI 10.1080/010503999424806 Granzow M., 2001, Zeitschrift fur Audiologie, V40 HALL JL, 1965, J ACOUST SOC AM, V37, P814, DOI 10.1121/1.1909447 HALLIDAY R, 1978, ELECTROEN CLIN NEURO, V45, P118, DOI 10.1016/0013-4694(78)90350-4 Hancock KE, 2004, J NEUROSCI, V24, P7110, DOI 10.1523/JNEUROSCI.0762-04.2004 Harper NS, 2004, NATURE, V430, P682, DOI 10.1038/nature02768 HOTH S, 1986, AUDIOLOGY, V25, P248 ITO S, 1988, HEARING RES, V35, P9, DOI 10.1016/0378-5955(88)90036-6 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517 Jiang ZD, 1996, EVOKED POTENTIAL, V100, P505 JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P146, DOI 10.1016/0168-5597(91)90152-N JONES SJ, 1991, ELECTROEN CLIN NEURO, V80, P399, DOI 10.1016/0168-5597(91)90088-F JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K JORIS PX, 2004, J NEUROPHYSIOL Joris PX, 1996, J NEUROPHYSIOL, V76, P2137 Joris PX, 1998, NEURON, V21, P1235, DOI 10.1016/S0896-6273(00)80643-1 Joris PX, 1998, J NEUROPHYSIOL, V79, P253 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181 Konishi M, 2003, ANNU REV NEUROSCI, V26, P31, DOI 10.1146/annurev.neuro.26.041002.131123 Krumbholz K, 2005, EUR J NEUROSCI, V21, P230, DOI 10.1111/j.1460-9568.2004.03836.x KUWADA S, 1987, J NEUROPHYSIOL, V57, P1338 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LEVINE RA, 1991, HEARING RES, V57, P121, DOI 10.1016/0378-5955(91)90081-J McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 McAlpine D, 1996, HEARING RES, V97, P136 McAlpine D, 2003, TRENDS NEUROSCI, V26, P347, DOI 10.1016/S0166-2236(03)00140-1 MCEVOY L, 1993, HEARING RES, V67, P98, DOI 10.1016/0378-5955(93)90237-U MCEVOY LK, 1990, AUDIOLOGY, V29, P163 MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003 MCEVOY LK, 1991, AUDIOLOGY, V30, P286 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1 Melcher JR, 1996, HEARING RES, V95, P144, DOI 10.1016/0378-5955(96)00032-9 NELDER JA, 1965, COMPUT J, V7, P308 OVERHOLT EM, 1992, J NEUROSCI, V12, P1698 Picton T W, 1991, Acta Otolaryngol Suppl, V491, P139 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3 Pratt H, 1997, HEARING RES, V108, P1, DOI 10.1016/S0378-5955(97)00033-6 Rayleigh L., 1907, PHILOS MAG, V13, P214 Riedel H, 2002, HEARING RES, V169, P85, DOI 10.1016/S0378-5955(02)00342-8 Riedel H., 2001, Zeitschrift fur Audiologie, V40 Riedel Helmut, 2003, Z Med Phys, V13, P75 Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8 SAMS M, 1993, HEARING RES, V67, P89, DOI 10.1016/0378-5955(93)90236-T Sharbrough F., 1991, J CLIN NEUROPHYSIOL, V8, P200 SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 Stevens SS, 1936, AM J PSYCHOL, V48, P297, DOI 10.2307/1415748 Stollman MHP, 1996, BRIT J AUDIOL, V30, P227, DOI 10.3109/03005369609079043 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P164 TSUCHITANI C, 1988, J NEUROPHYSIOL, V59, P184 Ungan P, 2001, CLIN NEUROPHYSIOL, V112, P485, DOI 10.1016/S1388-2457(00)00550-2 Ungan P, 2002, HEARING RES, V167, P81, DOI 10.1016/S0378-5955(02)00351-9 Ungan P, 1996, ELECTROEN CLIN NEURO, V99, P479, DOI 10.1016/S0013-4694(96)96503-7 UNGAN P, 1989, ELECTROEN CLIN NEURO, V73, P306, DOI 10.1016/0013-4694(89)90109-0 Ungan P, 1997, HEARING RES, V106, P66, DOI 10.1016/S0378-5955(97)00003-8 von Bekesy G, 1930, PHYS Z, V31, P857 VONBERGEIJK WA, 1962, J ACOUST SOC AM 2, V34, P1431 WADA SI, 1989, ELECTROEN CLIN NEURO, V72, P535, DOI 10.1016/0013-4694(89)90231-9 Wagner H., 2005, Zeitschrift fur Audiologie, V44 Walger M, 2003, HNO, V51, P125, DOI 10.1007/s00106-002-0662-4 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 YIN TCT, 1987, J NEUROPHYSIOL, V58, P562 YOUNG SR, 1983, J NEUROSCI, V3, P1373 NR 95 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 5 EP 19 DI 10.1016/j.heares.2006.03.018 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000002 PM 16762518 ER PT J AU Abrashkin, KA Izumikawa, M Miyazawa, T Wang, CH Crumling, MA Swiderski, DL Beyer, LA Gong, TWL Raphael, Y AF Abrashkin, Karen A. Izumikawa, Masahiko Miyazawa, Toru Wang, Chih-Hung Crumling, Mark A. Swiderski, Donald L. Beyer, Lisa A. Gong, Tzy-Wen L. Raphael, Yehoash TI The fate of outer hair cells after acoustic or ototoxic insults SO HEARING RESEARCH LA English DT Article DE guinea pig; mouse; prestin; overstimulation; ototoxicity; outer hair cell; supporting cell ID AMINOGLYCOSIDE OTOTOXICITY; GENTAMICIN TREATMENT; APOPTOTIC CELLS; MOTOR PROTEIN; RAT ORGAN; IN-VIVO; COCHLEA; CORTI; PRESTIN; TRAUMA AB In epithelial sheets, clearance of dead cells may occur by one of several routes, including extrusion into the lumen, phagocytic clearance by invading lymphocytes, or phagocytosis by neighboring cells. The fate of dead cochlear outer hair cells is unclear. We investigated the fate of the "corpses" of dead outer hair cells in guinea pigs and mice following drug or noise exposure. We examined whole mounts and plastic sections of normal and lesioned organ of Corti for the presence of prestin, a protein unique to outer hair cells. Supporting cells, which are devoid of prestin in the normal ear, contained clumps of prestin in areas of hair cell loss. The data show that cochlear supporting cells surround the corpses and/or debris of degenerated outer hair cells, and suggest that outer hair cell remains are phagocytosed by supporting cells within the epithelium. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Rm 9301 MSRB-3, Ann Arbor, MI 48109 USA. EM Yoash@umich.edu CR Belyantseva IA, 2000, J NEUROSCI, V20, part. no. Bok D, 1993, J Cell Sci Suppl, V17, P189 Brough DE, 1997, J VIROL, V71, P9206 CARY RB, 1994, J CELL SCI, V107, P1609 Chung SB, 2000, NAT CELL BIOL, V2, P931 COTANCHE DA, 1990, HEARING RES, V46, P29, DOI 10.1016/0378-5955(90)90137-E Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 Daudet N, 1998, J COMP NEUROL, V401, P145 Dini L, 2002, MICROSC RES TECHNIQ, V57, P530, DOI 10.1002/jemt.10107 Engström H, 1970, Ciba Found Symp, P127 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Hawkins J E Jr, 1973, Adv Otorhinolaryngol, V20, P125 Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8 Lauber K, 2004, MOL CELL, V14, P277, DOI 10.1016/S1097-2765(04)00237-0 Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2 Nakajima M, 1996, AM J PATHOL, V148, P631 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 Rosenblatt J, 2001, CURR BIOL, V11, P1847, DOI 10.1016/S0960-9822(01)00587-5 Sobkowicz HM, 1996, ACTA OTO-LARYNGOL, V116, P257, DOI 10.3109/00016489609137836 SPOENDLIN H, 1976, EFFECTS NOISE HEARIN, V270, P69 Sun WB, 1998, WORLD J GASTROENTERO, V4, P77 Suzuki Y, 1996, CHEM SENSES, V21, P467, DOI 10.1093/chemse/21.4.467 Wang J, 2003, J NEUROSCI, V23, P8596 Wang ZM, 2000, NEUROREPORT, V11, P1389, DOI 10.1097/00001756-200005150-00008 Wu Xudong, 2004, Brain Res Mol Brain Res, V126, P30 Yamasoba T, 2003, NEUROSCI LETT, V347, P171, DOI 10.1016/S0304-3940(03)00675-X Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 32 TC 37 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 20 EP 29 DI 10.1016/j.heares.2006.04.001 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000003 PM 16777363 ER PT J AU Throckmorton, CS Kucukoglu, MS Remus, JJ Collins, LM AF Throckmorton, Chandra S. Kucukoglu, M. Selin Remus, Jeremiah J. Collins, Leslie M. TI Acoustic model investigation of a multiple carrier frequency algorithm for encoding fine frequency structure: Implications for cochlear implants SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Conference on Implantable Auditory Prostheses CY AUG, 2005 CL Asilomar, CA DE frequency discrimination; frequency modulation; acoustic model; cochlear implant ID SPEECH-RECOGNITION; ELECTRODE DISCRIMINATION; ELECTRICAL-STIMULATION; SIGNAL PROCESSORS; NORMAL-HEARING; NOISE; PERCEPTION; CHANNELS; PITCH; PERFORMANCE AB Current cochlear implants provide frequency resolution through the number of channels. Improving resolution by increasing channels is limited by factors such as the physiological feasibility of increasing the number of electrodes, the inability to increase the number of channels for those already implanted, and the increased possibility of channel interactions reducing channel efficacy. Recent studies have suggested an alternative method: providing a continuum of pitch percepts for each channel based on the frequency content of that channel. This study seeks to determine the frequency resolution necessary for the highest performance gain, which may give some indication of the feasibility for implementation in implants. A discrete set of carrier frequencies, instead of a continuum, are evaluated using an acoustic model to measure speech recognition. Performance increased as the number of available frequencies increased, and substantive improvement was seen with as few as two frequencies per channel. The effect of variable frequency discrimination was also assessed, and the results suggest that frequency modulation can still provide benefits with poor frequency discrimination on some channels. These results suggest that if two or more discriminable frequencies per channel can be generated for cochlear implant subjects then an improvement in speech recognition may be possible. (c) 2006 Elsevier B.V. All rights reserved. C1 Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA. RP Collins, LM (reprint author), Duke Univ, Dept Elect & Comp Engn, 130 Hudson Hall,POB 90291, Durham, NC 27708 USA. EM cst@ee.duke.edu; msk5@ee.duke.edu; jjr6@ee.duke.edu; lcollins@ee.duke.edu CR Baskent D, 2003, J ACOUST SOC AM, V113, P2064, DOI 10.1121/1.1558357 BLAMEY PJ, 1987, J ACOUST SOC AM, V82, P38, DOI 10.1121/1.395542 Clark G., 1987, ADV OTORHINOLARYNGOL, V38, P1 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 Dorman Michael F, 2002, Am J Audiol, V11, P119, DOI 10.1044/1059-0889(2002/014) Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 Dorman MF, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/063) Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940 Dorman MF, 2000, EAR HEARING, V21, P590, DOI 10.1097/00003446-200012000-00006 Fearn R, 2000, ANN OTO RHINOL LARYN, V109, P51 Fearn R. A., 2001, THESIS U NEW S WALES FLANAGAN JL, 1980, J ACOUST SOC AM, V68, P412, DOI 10.1121/1.384752 FLANAGAN JL, 1966, AT&T TECH J, V45, P1493 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 1999, J ACOUST SOC AM, V105, P1889, DOI 10.1121/1.426725 Fu QJ, 1998, J ACOUST SOC AM, V104, P3586, DOI 10.1121/1.423941 Geier L, 1999, ANN OTO RHINOL LARYN, V108, P80 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711 Kessler D K, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P8 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 KUCUKOGLU MS, 2006, 29 ARO MIDW M BALT M Landsberger DM, 2005, J ACOUST SOC AM, V117, P319, DOI 10.1121/1.1830672 Loizou PC, 2000, J ACOUST SOC AM, V108, P2377, DOI 10.1121/1.1317557 McKay C. M., 2000, Acoustics Research Letters Online, V1, DOI 10.1121/1.1318742 MCKAY CM, 1992, ACTA OTO-LARYNGOL, V112, P752, DOI 10.3109/00016489209137470 McKay CM, 1996, J ACOUST SOC AM, V100, P1081, DOI 10.1121/1.416294 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 Nie KB, 2005, IEEE T BIO-MED ENG, V52, P64, DOI 10.1109/TBME.2004.839799 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Patrick J., 1991, EAR HEARING S1, V12, P3 Rubinstein JT, 1999, AM J OTOL, V20, P445 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shipp D B, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P194 THORNTON AR, 1978, J SPEECH HEAR RES, V21, P507 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 Throckmorton CS, 2002, J ACOUST SOC AM, V112, P285, DOI 10.1121/1.1482073 TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 Tyler RS, 1986, IOWA PHONEME SENTENC van Dijk JE, 1999, AUDIOLOGY, V38, P109 WILSON BS, 1991, AM J OTOL, V12, P56 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 46 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 30 EP 42 DI 10.1016/j.heares.2006.03.020 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000004 PM 16797896 ER PT J AU Zhou, JX Balaban, C Durrant, JD AF Zhou, Jianxun Balaban, Carey Durrant, John D. TI Effect of intracochlear perfusion of vanilloids on cochlear neural activity in the guinea pig SO HEARING RESEARCH LA English DT Article DE capsaicin; cochlear neural activity; pain ID PROTEIN-KINASE-C; SPIRAL GANGLION NEURONS; INNER-EAR; CAPSAICIN RECEPTOR; KANAMYCIN CHALLENGE; BACKGROUND ACTIVITY; MESSENGER-RNA; ROUND-WINDOW; RAT; VR1 AB Recent findings show that the vanilloid receptor subtype 1 (TRPV1) is expressed by cochlear outer hair cells and spiral ganglion cells, and that its expression is up-regulated in ganglion cells after aminoglycoside treatment. This study tested the hypothesis that agents that act on TRPV1 receptors affect the spectrum of ensemble background activity (EBA). Consecutive intracochlear perfusions of the TRPV1 agonist, capsaicin (CAP 0.1, 1, and 10 parts per million), as well as its antagonist capsazepine (CZP), were used to test effects of TRPV1 activation on EBA recorded from the cochlear base. Perfusion with CAP alone produced a dose-dependent increase of the 900-Hz peak ratio (power normalized re the overall spectrum) of the EBA. The CAP effect was attenuated during concurrent perfusion with CZP. These findings are consistent with the hypothesis that TRPV1 activation increases background activity of spiral ganglion cells and support a role of TRPV1 in gating spontaneous and evoked auditory nerve excitability. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA. Univ Pittsburgh, Dept Otolaryngol, Eye & Ear Inst 107, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Dept Neurobiol, Eye & Ear Inst 107, Pittsburgh, PA 15213 USA. RP Durrant, JD (reprint author), Univ Pittsburgh, Dept Commun Sci & Disorders, Forbes Tower 4033, Pittsburgh, PA 15260 USA. EM durrant@pitt.edu CR BALABAN CD, IN PRESS VOLTA REV Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7 Benham CD, 2003, CELL CALCIUM, V33, P479, DOI 10.1016/S0143-4160(03)00063-0 Bhave G, 2003, P NATL ACAD SCI USA, V100, P12480, DOI 10.1073/pnas.2032100100 Caterina MJ, 1997, NATURE, V389, P816 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 Correll CC, 2004, NEUROSCI LETT, V370, P55, DOI 10.1016/j.neulet.2004.07.058 Crandall M, 2002, PAIN, V98, P109, DOI 10.1016/S0304-3959(02)00034-9 CULP WJ, 1989, BRAIN, V112, P1317, DOI 10.1093/brain/112.5.1317 daCosta DL, 1997, EXP BRAIN RES, V116, P259, DOI 10.1007/PL00005754 daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 Garcia MM, 1997, J COMP NEUROL, V385, P1 Hansen MR, 2001, J NEUROSCI, V21, P2256 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Huang SM, 2002, P NATL ACAD SCI USA, V99, P8400, DOI 10.1073/pnas.122196999 Hwang SW, 2000, P NATL ACAD SCI USA, V97, P6155, DOI 10.1073/pnas.97.11.6155 Kiang NYS, 1965, RES MONOGRAPH, V35 Kitahara T, 2005, NEUROSCIENCE, V135, P639, DOI 10.1016/j.neuroscience.2005.06.056 Kitahara T, 2005, HEARING RES, V201, P132, DOI 10.1016/j.heares.2004.09.007 Kitahara T, 2004, HEARING RES, V196, P39, DOI 10.1016/j.heares.2004.02.002 LAMOTTE RH, 1992, J PHYSIOL-LONDON, V448, P749 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 Mezey E, 2000, P NATL ACAD SCI USA, V97, P3655, DOI 10.1073/pnas.060496197 Phillips E, 2004, J BIOL CHEM, V279, P17165, DOI 10.1074/jbc.M313328200 Premkumar LS, 2000, NATURE, V408, P985, DOI 10.1038/35050121 Premkumar LS, 2004, J NEUROPHYSIOL, V91, P1442, DOI 10.1152/jn.00745.2003 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Strassman AM, 1996, NATURE, V384, P560, DOI 10.1038/384560a0 SZOLCSANYI J, 1988, BRAIN RES, V446, P262, DOI 10.1016/0006-8993(88)90885-2 SZOLCSANYI J, 1987, J PHYSIOL-LONDON, V388, P9 Tominaga M, 1998, NEURON, V21, P531, DOI 10.1016/S0896-6273(00)80564-4 Toth A, 2003, LIFE SCI, V73, P487, DOI 10.1016/S0024-3205(03)00310-2 Vass Z, 2001, NEUROSCIENCE, V103, P189, DOI 10.1016/S0306-4522(00)00521-2 Vass Z, 1997, NEUROSCIENCE, V79, P605, DOI 10.1016/S0306-4522(96)00641-0 Vellani V, 2001, J PHYSIOL-LONDON, V534, P813, DOI 10.1111/j.1469-7793.2001.00813.x Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 Zhou JX, 2004, J ACOUST SOC AM, V116, P2738, DOI 10.1121/1.179829 NR 39 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 43 EP 49 DI 10.1016/j.heares.2006.02.013 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000005 PM 16781098 ER PT J AU Seither-Preisler, A Patterson, RD Krumbholz, K Seither, S Lutkenhoner, B AF Seither-Preisler, A. Patterson, Roy D. Krumbholz, K. Seither, S. Luetkenhoener, B. TI From noise to pitch: Transient and sustained responses of the auditory evoked field SO HEARING RESEARCH LA English DT Article DE pitch; spectral bandwidth; temporal coding; auditory cortex; RIS; MEG; pitch onset response; sustained field ID ITERATED RIPPLED NOISE; NEUROMAGNETIC EVIDENCE; MAGNETIC-FIELDS; HESCHLS GYRUS; NEURAL TRANSDUCTION; SENSORY MEMORY; SOUND-LEVEL; HUMAN-BRAIN; LOWER LIMIT; CORTEX AB In recent magnetoencephalographic studies, we established a novel component of the auditory evoked field, which is elicited by a transition from noise to pitch in the absence of a change in energy. It is referred to as the 'pitch onset response'. To extend our understanding of pitch-related neural activity, we compared transient and sustained auditory evoked fields in response to a 2000-ms segment of noise and a subsequent 1000-ms segment of regular interval sound (RIS). RIS provokes the same long-term spectral representation in the auditory system as noise, but is distinguished by a definite pitch, the salience of which depends on the degree of temporal regularity. The stimuli were presented at three steps of increasing regularity and two spectral bandwidths. The auditory evoked fields were recorded from both cerebral hemispheres of twelve subjects with a 37-channel magnetoencephalographic system. Both the transient and the sustained components evoked by noise and RIS were sensitive to spectral bandwidth. Moreover, the pitch salience of the RIS systematically affected the pitch onset response, the sustained field, and the off-response. This indicates that the underlying neural generators reflect the emergence, persistence and offset of perceptual attributes derived from the temporal regularity of a sound. (c) 2006 Elsevier B.V. All rights reserved. C1 Munster Univ Hosp, ENT Clin, Dept Expt Audiol, D-48149 Munster, Germany. Univ Cambridge, Dept Physiol, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England. MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Seither-Preisler, A (reprint author), Graz Univ, Dept Psychol, Cognit Sci Sect, Univ Pl 2-3, A-8010 Graz, Austria. EM annemarie.seither-preisler@uni-graz.at CR BILSEN FA, 1966, ACUSTICA, V17, P295 BRAAK H, 1978, ANAT EMBRYOL, V152, P141, DOI 10.1007/BF00315922 Cariani P, 1999, NEURAL PLAST, V6, P147, DOI 10.1155/NP.1999.147 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 Gutschalk A, 2004, NEUROIMAGE, V22, P755, DOI 10.1016/j.neuroimage.2004.01.025 Gutschalk A, 2002, NEUROIMAGE, V15, P207, DOI 10.1006/nimg.2001.0949 Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 Hari R, 1990, ADV AUDIOL, V6, P222 HARI R, 1987, AUDIOLOGY, V26, P31 Hawley ML, 2005, HEARING RES, V204, P101, DOI 10.1016/j.heares.2005.01.005 HOUTSMA AJM, 1991, J ACOUST SOC AM, V90, P1674, DOI 10.1121/1.401911 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Krumbholz K, 2000, J ACOUST SOC AM, V108, P1170, DOI 10.1121/1.1287843 Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1 Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132 Lutkenhoner B, 2003, NEUROIMAGE, V18, P58, DOI 10.1006/nimg.2002.1325 Lutkenhoner B, 2006, NEUROIMAGE, V30, P927, DOI 10.1016/jneuroimiage.2005.10.034 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 Martin BA, 1999, EAR HEARING, V20, P33, DOI 10.1097/00003446-199902000-00004 Martin BA, 2000, J ACOUST SOC AM, V107, P2155, DOI 10.1121/1.428556 Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 Meddis R, 1997, J ACOUST SOC AM, V102, P1811, DOI 10.1121/1.420088 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 1996, ACUSTICA, V82, P335 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Ostroff JM, 1998, EAR HEARING, V19, P290, DOI 10.1097/00003446-199808000-00004 Patterson RD, 1998, J ACOUST SOC AM, V104, P2967, DOI 10.1121/1.423879 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 Patterson RD, 2002, NEURON, V36, P767, DOI 10.1016/S0896-6273(02)01060-7 Pressnitzer D, 2001, J ACOUST SOC AM, V109, P2074, DOI 10.1121/1.1359797 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9 RUPP A, AUDITORY SIGNAL PROC, P119 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 Schneider P, 2002, NAT NEUROSCI, V5, P688, DOI 10.1038/nn871 Schneider P, 2005, NAT NEUROSCI, V8, P1241, DOI 10.1038/nn1530 Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 Seither-Preisler A, 2006, HEARING RES, V213, P88, DOI 10.1016/j.heares.2006.01.003 SHAMMA SA, 1986, J ACOUST SOC AM, V80, P133, DOI 10.1121/1.394173 Shofner WP, 2002, PERCEPT PSYCHOPHYS, V64, P437, DOI 10.3758/BF03194716 SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232 Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012 Sumner CJ, 2002, J ACOUST SOC AM, V111, P2178, DOI 10.1121/1.1453451 TERHARDT E, 1982, J ACOUST SOC AM, V71, P671, DOI 10.1121/1.387543 Wallace MN, 2002, EXP BRAIN RES, V143, P499, DOI 10.1007/s00221-002-1014-z YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 ZATORRE RJ, 1991, BRAIN, V114, P2403, DOI 10.1093/brain/114.6.2403 Zwicker E., 1990, PSYCHOACOUSTICS FACT NR 57 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 50 EP 63 DI 10.1016/j.heares.2006.04.005 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000006 PM 16814971 ER PT J AU Soeta, Y Nakagawa, S Matsuoka, K AF Soeta, Yoshiharu Nakagawa, Seiji Matsuoka, Katsunori TI The effect of center frequency and bandwidth on the auditory evoked magnetic field SO HEARING RESEARCH LA English DT Article DE magnetoencephalography; auditory evoked response; Nlm; loudness; center frequency; bandwidth ID INTENSITY-DISCRIMINATION; TONOTOPIC ORGANIZATION; COMPLEX SOUNDS; HUMAN-BRAIN; CEREBRAL-CORTEX; MIDDLE-EAR; REPRESENTATION; STIMULUS; NOISE; TONES AB Auditory evoked magnetic fields in relation to the center frequency of sound with a certain bandwidth were examined by magnetoencephalography (MEG). Octave band, 1/3 octave band, and 130 Hz bandwidth noises were used as the sound stimuli. All signals were presented at 60 dB SPL. The stimulus duration was 500 ms, with rise and fall ramps of 10 ms. Ten normal-hearing subjects took part in the study. Auditory evoked fields were recorded using a 122 channel whole-head magnetometer in a magnetically shielded room. The latencies, source strengths and coordinates of the N1m wave, which was found above the left and right temporal lobes around 100 ms after the stimulus onset, were analyzed. The results demonstrated that the middle frequency range had shorter N1m latencies and larger N1m amplitudes, and that the lower and higher frequency stimuli had relatively delayed N1m latencies and decreased N1m amplitudes. The N1m amplitudes correlated well to the loudness values in the frequency ranges between 250 and 2000 Hz. The source locations of N1m did not reveal any systematic changes related to the center frequency and bandwidth. (c) 2006 Elsevier B.V. All rights reserved. C1 Natl Inst AIST, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. RP Soeta, Y (reprint author), Natl Inst AIST, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp CR Ando Y., 1998, ARCHITECTURAL ACOUST Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036 BAK CK, 1985, ELECTROEN CLIN NEURO, V61, P141, DOI 10.1016/0013-4694(85)91053-3 Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132 CARLYON RP, 1984, J ACOUST SOC AM, V76, P1369, DOI 10.1121/1.391453 ELBERLING C, 1982, ACTA NEUROL SCAND, V65, P553 Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x GOLDSTEIN JL, 1974, SENSATION MEASUREMEN, P223 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1 Kiang NY-s, 1965, DISCHARGE PATTERNS S LACHS G, 1984, IEEE T SYST MAN CYB, V14, P819 Lakatos P, 2005, NEUROREPORT, V16, P933, DOI 10.1097/00001756-200506210-00011 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1 MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470 Moore BC., 2003, INTRO PSYCHOL HEARIN NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 ONCHI Y, 1961, J ACOUST SOC AM, V33, P794, DOI 10.1121/1.1908801 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 PICKLES JO, 1983, HEARING RES, V12, P239, DOI 10.1016/0378-5955(83)90109-0 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0 Relkin EM, 1997, J ACOUST SOC AM, V101, P2735, DOI 10.1121/1.418561 Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 RUBINSTEIN M, 1966, J ACOUST SOC AM, V44, P1420 SCHLAUCH RS, 1987, J SPEECH HEAR RES, V30, P13 Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 SHAW EAG, 1974, J ACOUST SOC AM, V56, P1848, DOI 10.1121/1.1903522 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012 Suzuki Y, 2004, J ACOUST SOC AM, V116, P918, DOI 10.1121/1.1763601 VASAMA JP, 1995, ACTA OTO-LARYNGOL, V115, P616, DOI 10.3109/00016489509139376 Vogten LL, 1974, FACTS MODELS HEARING, P142 WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 WIENER FM, 1946, J ACOUST SOC AM, V18, P401, DOI 10.1121/1.1916378 YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732 Zwislocki J., 1965, HDB MATH PSYCHOL, VIII, P1 ZWISLOCKI JJ, 1962, J ACOUST SOC AM, V35, P1514 NR 48 TC 2 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 64 EP 71 DI 10.1016/j.heares.2006.04.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000007 PM 16797895 ER PT J AU Okoyama, S Ohbayashi, M Ito, M Harada, S AF Okoyama, Shigeo Ohbayashi, Masao Ito, Makoto Harada, Shinichi TI Neuronal organization of the rat inferior colliculus participating in four major auditory pathways SO HEARING RESEARCH LA English DT Article DE neuronal classification; collateral projections; retrograde tracing; ascending pathway; descending pathway; commissural pathway ID FREQUENCY-RESPONSE AREAS; SUPERIOR OLIVARY COMPLEX; MEDIAL GENICULATE-BODY; CENTRAL NUCLEUS; GUINEA-PIG; GABAERGIC NEURONS; COCHLEAR NUCLEUS; BRAIN-SLICES; ALBINO-RAT; CELL-TYPES AB The central nucleus of the inferior colliculus (CNIC) contains different types of neurons and is a source of ascending projection to the medial geniculate body (MGB), commissural projection to the contralateral IC, direct descending projection to the cochlea nucleus (CN) and indirect projection to the CN via the superior olivary complex (SOC). Using a retrograde tracing technique, we examined what kind of neurons and what percentage of neurons of each type recognized in the CNIC participated in the above-mentioned four projection pathways. We also examined whether the individual CNIC neurons send the collateral to the NIGB, the contralateral IC, the CN and the soc. In the present study, we demonstrated that the neurons participating in the four projections could be morphologically classified into two types of neurons with soma size variation. The percentages of neurons of each type differed among the four projection pathways. Using a double-labeling technique, we found very few double-labeled neurons, indicating the collateral projections to the ipsilateral MGB and the contralateral IC. There were no double-labeled neurons in the collateral projections between the other combinations of targets. Therefore, we conclude that the ascending projection, the commissural projection and the descending projection to these targets arise from separate populations of neurons. (c) 2006 Elsevier B.V. All rights reserved. C1 Kanazawa Univ, Grad Sch Med Sci, Ctr Biomed Res & Educ, Lab Neuroanat, Kanazawa, Ishikawa 9208640, Japan. Kanazawa Univ, Grad Sch Med Sci, Div Neurosci, Kanazawa, Ishikawa 9208640, Japan. RP Okoyama, S (reprint author), Kanazawa Univ, Grad Sch Med Sci, Ctr Biomed Res & Educ, Lab Neuroanat, Kanazawa, Ishikawa 9208640, Japan. EM okoyama@med.kanazawa-u.ac.jp CR Bal R, 2002, NEUROSCI LETT, V317, P42, DOI 10.1016/S0304-3940(01)02425-9 Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009 Covey E, 1996, J NEUROSCI, V16, P3009 FAYELUND H, 1986, ANAT EMBRYOL, V175, P35, DOI 10.1007/BF00315454 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 FAYELUND H, 1988, UPSALA J MED SCI, V93, P1 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 FITZPATRICK KA, 1975, J COMP NEUROL, V164, P185, DOI 10.1002/cne.901640204 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GONZALEZHERNANDEZ TH, 1991, HEARING RES, V52, P17, DOI 10.1016/0378-5955(91)90184-B González Hernández T H, 1986, Brain Res, V368, P268, DOI 10.1016/0006-8993(86)90571-8 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 IRVINE DRF, 1990, J NEUROPHYSIOL, V63, P570 Kelly JB, 2002, HEARING RES, V168, P35, DOI 10.1016/S0378-5955(02)00372-6 Kuwada S, 1997, J NEUROSCI, V17, P7565 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 MALMIERCA MS, 1993, J COMP NEUROL, V333, P1, DOI 10.1002/cne.903330102 Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 Malmierca MS, 2005, EUR J NEUROSCI, V21, P2701, DOI 10.1111/j.1460-9568.2005.04103.x Malmierca MS, 2003, EXP BRAIN RES, V153, P522, DOI 10.1007/s00221-003-1615-1 McAlpine D, 1996, HEARING RES, V97, P136 MEININGER V, 1986, NEUROSCIENCE, V17, P1159, DOI 10.1016/0306-4522(86)90085-0 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 OLIVER DL, 1984, J COMP NEUROL, V222, P237, DOI 10.1002/cne.902220207 OLIVER DL, 1992, INFERIOR SUPERIOR CO OLIVER DL, 1984, NEUROSCIENCE, V11, P409, DOI 10.1016/0306-4522(84)90033-2 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J OLIVER DL, 2005, NEURAL ORG INFERIOR OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 Peruzzi D, 2000, NEUROSCIENCE, V101, P403, DOI 10.1016/S0306-4522(00)00382-1 POPELAR J, 1982, ACTA NEUROBIOL EXP, V42, P299 Rees A, 1997, J NEUROPHYSIOL, V77, P2945 Reetz G, 1999, BRAIN RES, V816, P527, DOI 10.1016/S0006-8993(98)01230-X RIBAK CE, 1986, J NEUROCYTOL, V15, P421, DOI 10.1007/BF01611726 ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345 ROCKEL AJ, 1973, J COMP NEUROL, V147, P61, DOI 10.1002/cne.901470104 ROCKEL AJ, 1973, J COMP NEUROL, V147, P11, DOI 10.1002/cne.901470103 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A SCHULLER G, 1991, EUR J NEUROSCI, V3, P648, DOI 10.1111/j.1460-9568.1991.tb00851.x Shiraishi S, 2001, MOL BRAIN RES, V96, P122, DOI 10.1016/S0169-328X(01)00282-0 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 Syka J, 2000, EXP BRAIN RES, V133, P254, DOI 10.1007/s002210000426 Wu SH, 2002, HEARING RES, V168, P43, DOI 10.1016/S0378-5955(02)00375-1 NR 45 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 72 EP 80 DI 10.1016/j.heares.2006.04.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000008 PM 16814970 ER PT J AU McDermott, HJ Sucher, CM AF McDermott, Hugh J. Sucher, Catherine M. TI Perceptual dissimilarities among acoustic stimuli and ipsilateral electric stimuli SO HEARING RESEARCH LA English DT Article DE cochlear implant; hearing aid; electro-acoustic stimulation ID COCHLEAR IMPLANTATION; AUDITORY-SYSTEM; HEARING-LOSS AB Five users of cochlear implants who had residual acoustic hearing in the implanted ear postoperatively participated in a study comparing the percepts elicited by acoustic and electric stimuli. The stimuli comprised pulse trains delivered to single electrodes and pure tones presented ipsilaterally. In the experiments, 12 equally loud stimuli with differing frequencies, electrode positions, and pulse rates were generated. Subjects listened to all of the possible pairs of stimuli in each set, and provided a relative dissimilarity rating for the members of each stimulus pair. The data were analyzed using non-metric multi-dimensional scaling techniques. Stimulus spaces were plotted in two dimensions to represent the results for each subject with each stimulus set. The results suggested that one dimension was associated with a pitch-like percept, related to the acoustic tone frequency and the active electrode position. The second dimension separated the acoustic stimuli from the electric stimuli. Generally, the electric pulse rate seemed to have a relatively small perceptual effect in this experimental context. Overall, the results show that acoustic pure tones are perceived as very different from electric pulse trains delivered to single electrode positions with constant rate, even when both the acoustic and the electric stimuli are presented to the same ear. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP McDermott, HJ (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM hughm@unimelb.edu.au CR BOGGESS WJ, 1989, LARYNGOSCOPE, V99, P1002 Collins LM, 2000, J ACOUST SOC AM, V108, P2353, DOI 10.1121/1.1314320 Dillon H., 2001, HEARING AIDS Gantz BJ, 2004, ACTA OTO-LARYNGOL, V124, P344, DOI 10.1080/00016480410016423 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Henshall K R, 2001, J Am Acad Audiol, V12, P478 Kiefer J, 1998, AUDIOLOGY, V37, P382 Kiefer J, 2004, ACTA OTO-LARYNGOL, V124, P272, DOI 10.1080/00016480310000755 Kiefer J, 2005, AUDIOL NEURO-OTOL, V10, P134, DOI 10.1159/000084023 KRUSKAL JB, 1964, PSYCHOMETRIKA, V29, P115, DOI 10.1007/BF02289694 McKay CM, 1996, J ACOUST SOC AM, V99, P1079, DOI 10.1121/1.414594 RIZER FM, 1988, OTOLARYNG HEAD NECK, V98, P203 Schiffman Susan S., 1981, INTRO MULTIDIMENSION SKARZYNSKI H, 2003, MED SCI MONITOR, V9, pCS26 Turner CW, 2004, J ACOUST SOC AM, V115, P1729, DOI 10.1121/1.1687425 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 YOUNG FW, 1979, ALSCAL USERS GUIDE D NR 17 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 81 EP 88 DI 10.1016/j.heares.2006.05.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000009 PM 16777362 ER PT J AU Takeda, T Takeda, S Kakigi, A Okada, T Nishioka, R Taguchi, D AF Takeda, Taizo Takeda, Setsuko Kakigi, Akinobu Okada, Teruhiko Nishioka, Rie Taguchi, Daizo TI A comparison of dehydration effects of V-2-antagonist (OPC-31260) on the inner ear between systemic and round window applications SO HEARING RESEARCH LA English DT Article DE vasopressin; V-2-antagonist; OPC-31260; endolymphatic hydrops; Meniere's disease ID ENDOLYMPHATIC HYDROPS; MENIERES-DISEASE; ANTIDIURETIC-HORMONE; ANTAGONIST OPC-31260; VASOPRESSIN; SAC; AQUAPORINS; EXPRESSION; RAT; COCHLEA AB V-2-antagonist (OPC-31260 (OPC)) application to the scala tympani reduced endolymphatic hydrops. In the present study, we investigated whether systemic administration or local infusion via the round window (RW application) of OPC would be more suitable for clinical use. In Experiment 1, the increase ratios of the cross-sectional area of the scala media of experimentally induced endolymphatic hydrops were quantitatively assessed among four groups of non-OPC application, RW application of xanthan gum, systemic application of OPC and RW application of OPC. In Experiment 2, the effects of systemic and RW applications of OPC on plasma vasopressin (p-VP) concentrations and plasma osmolality (p-OSM) were investigated. In Experiment 3, endocochlear DC potential (EP) was measured in guinea pigs with the RW application of OPC. Electron microscopic observations of the stria vascularis and the hair cells were also made. Both systemic and RW applications of OPC significantly reduced endolymphatic hydrops. However, systemic application resulted in the distension of the Reissner's membrane in the non-operated ear, which seemed to be caused by elevated p-VP levels resulting from the systemic application of OPC. In contrast, RW application of OPC produced no apparent toxic effects in the inner ear, as indicated electrophysiological or morphological changes. Thus, drug delivery via the round window is more useful for the clinical application of OPC for medical decompression. (c) 2006 Elsevier B.V. All rights reserved. C1 Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Kochi 7838505, Japan. Kochi Med Sch, Dept Anat, Nanko Ku, Kochi 7838505, Japan. RP Takeda, T (reprint author), Kochi Med Sch, Dept Otolaryngol, Nanko Ku, Oko Cho, Kochi 7838505, Japan. EM takedat@med.kochi-u.ac.jp CR AGRE P, 1993, AM J PHYSIOL, V265, pF461 Aoki M, 2005, CLIN OTOLARYNGOL, V30, P521, DOI 10.1111/j.1749-4486.2005.01107.x Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Fleeman LM, 2000, AUST VET J, V78, P825, DOI 10.1111/j.1751-0813.2000.tb10497.x Fukushima K, 2005, ORL J OTO-RHINO-LARY, V67, P282, DOI 10.1159/000089409 Huang DL, 2002, HEARING RES, V165, P85, DOI 10.1016/S0378-5955(02)00288-5 KITANO H, 1994, ENT J, V73, P824 Kitano H, 1999, NEUROREPORT, V10, P1205, DOI 10.1097/00001756-199904260-00009 Kumagami H, 1998, PFLUG ARCH EUR J PHY, V436, P970, DOI 10.1007/s004240050731 LINSAY JR, 1942, ARCH OTOLARYNGOL, V35, P853 MARCUS DC, 1983, HEARING RES, V12, P17, DOI 10.1016/0378-5955(83)90116-8 Marples D, 1998, AM J PHYSIOL-RENAL, V275, pF400 Merves M, 2000, LARYNGOSCOPE, V110, P1925, DOI 10.1097/00005537-200011000-00030 Mhatre AN, 1999, BIOCHEM BIOPH RES CO, V264, P157, DOI 10.1006/bbrc.1999.1323 MINAGAWA H, 1998, SPACE FORUM, V4, P19 Nielsen S, 1999, J AM SOC NEPHROL, V10, P647 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 Sawada S, 2002, NEUROREPORT, V13, P1127, DOI 10.1097/00001756-200207020-00011 SHAMBAUG.GE, 1969, ARCH OTOLARYNGOL, V89, P816 Stankovic KM, 1995, AM J PHYSIOL-CELL PH, V269, pC1450 STERKERS O, 1988, PHYSIOL REV, V68, P1083 Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X Takeda T, 1997, Acta Otolaryngol Suppl, V528, P80 Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 Takeda T, 2003, HEARING RES, V182, P9, DOI 10.1016/S0378-5955(03)00135-7 Takumi Y, 1998, EUR J NEUROSCI, V10, P3584, DOI 10.1046/j.1460-9568.1998.00360.x YAMAMURA Y, 1992, BRIT J PHARMACOL, V105, P787 YAZAWA Y, 1981, ORL J OTO-RHINO-LARY, V43, P121 NR 28 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 89 EP 97 DI 10.1016/j.heares.2006.05.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000010 PM 16781097 ER PT J AU Stainsby, TH Moore, BCJ AF Stainsby, Thomas H. Moore, Brian C. J. TI Temporal masking curves for hearing-impaired listeners SO HEARING RESEARCH LA English DT Article DE temporal masking curves; forward masking; decay of masking; linear temporal integrator; sensorineural hearing loss; reduced compression ID BASILAR-MEMBRANE NONLINEARITY; TUNING CURVES; PERIPHERAL COMPRESSION; COCHLEAR COMPRESSION; AUDITORY COMPRESSION; FREQUENCIES; MECHANICS; ADDITIVITY; MODEL; AGE AB The decay of forward masking was investigated for three subjects with moderate sensorineural hearing loss. For such subjects, compression on the basilar membrane (BM) is thought to be largely absent, enabling one to determine the decay of masking without the influence of compression. Temporal masking curves (TMCs), plots of the masker level at threshold against delay between masker offset and signal onset, were measured for delays of 0, 15, 30, 45, 60, and 75 ins, for signal frequencies, f(s), of 500, 1000, 2000, 4000, and 6000 Hz. Masker frequencies were 0.5, 0.8, 1.0, 1.15, and 1.3 times f(s). Most of the TMCs were well fitted with single-segment straight lines, which, except for high masker levels, were roughly parallel for each fs, supporting the belief that BM compression was largely absent in these subjects. However, the slopes of the TMCs were greater for f(s) = 500 and 1000 Hz than for higher frequencies, which may indicate that the decay of forward masking is not the same for all signal frequencies. The results suggest that it may not be valid to infer BM compression at low signal frequencies by using a reference TMC for a high f(s). (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Stainsby, TH (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM ths22@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Borg E, 1995, SCAND AUDIOL S40, V24, P1 BURKHARD MD, 1975, J ACOUST SOC AM, V58, P214, DOI 10.1121/1.380648 Cooper N. P., 2004, COMPRESSION COCHLEA, P1 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X Fitzgibbons PJ, 1995, J ACOUST SOC AM, V98, P3140, DOI 10.1121/1.413803 Gehr SE, 1999, J ACOUST SOC AM, V106, P2793, DOI 10.1121/1.428104 Gifford RH, 2005, J ACOUST SOC AM, V118, P3823, DOI 10.1121/1.2126933 Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526 HOUTGAST T, 1973, ACUSTICA, V29, P168 JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KLUK K, 2006, IN PRESS INT J AUDIO LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lister J, 2002, J ACOUST SOC AM, V111, P2793, DOI 10.1121/1.1476685 Lopez-Poveda EA, 2005, HEARING RES, V205, P172, DOI 10.1016/j.heares.2005.03.015 Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838 MOLLER AR, 1972, FDN MODERN AUDITORY, V2, P133 Moore B., 1998, COCHLEAR HEARING LOS Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 2004, HEARING RES, V188, P70, DOI 10.1016/S0378-5955(03)00347-2 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 2004, EAR HEARING, V25, P478, DOI 10.1097/01.aud.0000145992.31135.89 Moore BCJ, 1998, PSYCHOL REV, V105, P108, DOI 10.1037/0033-295X.105.1.108 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 NELSON DA, 1989, J SPEECH HEAR RES, V32, P298 Nelson DA, 2004, J ACOUST SOC AM, V115, P2221, DOI 10.1121/1.1689341 NELSON DA, 1987, J ACOUST SOC AM, V81, P709, DOI 10.1121/1.395131 OLOUGHLIN BJ, 1981, HEARING RES, V5, P343, DOI 10.1016/0378-5955(81)90057-5 Oxenham AJ, 1997, MODELING SENSORINEURAL HEARING LOSS, P273 OXENHAM AJ, 1995, J ACOUST SOC AM, V98, P1921, DOI 10.1121/1.413376 Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78 Oxenham AJ, 2001, J ACOUST SOC AM, V110, P3169, DOI 10.1121/1.1414706 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852 OXENHAM AJ, 1994, HEARING RES, V80, P105, DOI 10.1016/0378-5955(94)90014-0 Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812 Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0 Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247 RHODE WS, 1974, J ACOUST SOC AM, V55, P588, DOI 10.1121/1.1914569 Rhodes CH, 1997, DIAGN MOL PATHOL, V6, P49, DOI 10.1097/00019606-199702000-00008 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Robles L, 2001, PHYSIOL REV, V81, P1305 ROSEN S, 1992, J ACOUST SOC AM, V92, P773, DOI 10.1121/1.403946 Rosengard PS, 2005, J ACOUST SOC AM, V117, P3028, DOI 10.1121/1.1883367 Schuknecht HF, 1993, PATHOLOGY EAR SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SHANNON RV, 1976, J ACOUST SOC AM, V59, P1460, DOI 10.1121/1.381007 Williams EJ, 2005, HEARING RES, V201, P44, DOI 10.1016/j.heares.2004.10.006 Winer BJ, 1991, STAT PRINCIPLES EXPT Wojtczak M, 2001, J ACOUST SOC AM, V109, P1571, DOI 10.1121/1.1356702 Yates Graeme K., 1995, P41, DOI 10.1016/B978-012505626-7/50004-2 YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M NR 55 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2006 VL 218 IS 1-2 BP 98 EP 111 DI 10.1016/j.heares.2006.05.007 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 077LN UT WOS:000240031000011 PM 16843625 ER PT J AU Rhode, WS AF Rhode, William S. TI Contributions of Aage Moller in the study of the cochlear nucleus SO HEARING RESEARCH LA English DT Article DE physiology using microelectrodes ID UNIT RESPONSES; DYNAMIC PROPERTIES; MOSSBAUER TECHNIQUE; BASILAR-MEMBRANE; SINGLE NEURONS; CAT; RAT; AMPLITUDE; TONES; NOISE AB At a time when little was known about processing in the auditory system, Aage Moller undertook an extensive investigation of the response properties of cochlear nucleus (CN) neurons. With an excellent background in physiological acoustics and a command of computational techniques he systematically explored neural tuning, rate-level functions, and receptive fields of CN neurons using microelectrode recordings. He chose to employ more natural stimuli than just pure tones and employed a variety of stimuli consisting of tones, clicks, noise, amplitude- and frequency-modulated signals to document both intensity and temporal response characteristics. The response to noise stimuli was quantified using linear systems analysis which was very innovative at that time. By choosing to perform the studies in the white rat rather than cat, he provided important comparative data on this first center of the central auditory system. Over a span of ten years he provided a significant body of observations of CN units properties that has rarely been equaled. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. RP Rhode, WS (reprint author), Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. EM rhode@neurophys.wisc.edu CR EVANS EF, 1973, EXP BRAIN RES, V17, P402 Fay R. R., 1988, HEARING VERTEBRATES FRINSINA R, 1990, HEARING RES, V44, P123 GALAMBOS R, 1951, FED PROC, V10, P47 GLATTKE TJ, 1969, J ACOUST SOC AM, V45, P419, DOI 10.1121/1.1911390 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GREENWOOD DD, 1965, J NEUROPHYSIOL, V28, P865 MOLLER AR, 1970, ACTA PHYSIOL SCAND, V78, P289, DOI 10.1111/j.1748-1716.1970.tb04665.x MOLLER AR, 1976, EXP BRAIN RES, V25, P307 MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812 MOLLER AR, 1969, ACTA PHYSIOL SCAND, V76, P503, DOI 10.1111/j.1748-1716.1969.tb04497.x MOLLER AR, 1973, BRAIN RES, V57, P443, DOI 10.1016/0006-8993(73)90148-0 MOLLER AR, 1976, J PHYSIOL-LONDON, V259, P63 MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574 MOLLER AR, 1977, AUDIOLOGY, V17, P446 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x MOLLER AR, 1971, ACTA PHYSIOL SCAND, V81, P540, DOI 10.1111/j.1748-1716.1971.tb04931.x MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542 MOLLER AR, 1970, ACTA PHYSIOL SCAND, V78, P299, DOI 10.1111/j.1748-1716.1970.tb04666.x MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P530, DOI 10.1111/j.1748-1716.1969.tb04408.x MOLLER AR, 1977, J NEUROSCI RES, V4, P1 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 PFALZ REINHARD K. J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1472, DOI 10.1121/1.1918372 PFEIFFER RR, 1965, BIOPHYS J, V5, P301 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1994, HEARING RES, V77, P43, DOI 10.1016/0378-5955(94)90252-6 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 Robles L, 2001, PHYSIOL REV, V81, P1305 ROSE JE, 1959, B JOHNS HOPKINS HOSP, V104, P211 Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 VANGISBERGEN JAM, 1975, EXP BRAIN RES, V23, P387 Young ED, 2002, SPR HDB AUD, V15, P160 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 36 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 2 EP 6 DI 10.1016/j.heares.2006.02.007 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300002 PM 16644161 ER PT J AU Recio-Spinoso, A van Dijk, P AF Recio-Spinoso, Alberto van Dijk, Pim TI Analysis of responses to noise in the ventral cochlear nucleus using Wiener kernels SO HEARING RESEARCH LA English DT Article DE Wiener kernels; cochlear nucleus; nonlinear analysis ID AUDITORY-NERVE FIBERS; SPECTROTEMPORAL RECEPTIVE-FIELDS; FREQUENCY-SELECTIVITY; AMPLITUDE-MODULATION; PHASE-LOCKING; CAT; NEURONS; STIMULI; CHINCHILLA; PATTERNS AB Responses to noise were recorded in ventral cochlear nucleus (VCN) neurons of anesthetized chinchillas and cats, then analyzed using Wiener-kernel theory. First-order kernels, which are proportional to reverse-correlation functions, of primary-like (PL) and primary-like with notch (PLN) neurons having low characteristic frequency (CF) are similar to those obtained in auditory nerve fibers (ANFs). Such kernels consist of lightly damped transient oscillations with frequency equal to the neuron's CF. The first-order kernel of high-CF PL and PLN neurons displays no evidence of tuning to CF. Second-order kernels of the aforementioned VCN neuron types also resemble those in the nerve, irrespective of CF. In general, first- and second-order Wiener kernels of chopper neurons are similar to those obtained in high-CF ANFs. This is likely the consequence of the poor phase-locking capabilities to near-CF tones exhibited by chopper neurons. By analyzing second-order kernels using singular-value decomposition, it was possible to estimate group delays for the entire neuronal population, regardless of the neuron's type or CF. This was done by analyzing the highest-ranking singular vector (FSV). Amplitude values of FSVs in chopper neurons in the cat are substantially larger than in high-spontaneous ANFs. (c) 2006 Elsevier B.V. All rights reserved. C1 Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands. Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. Univ Groningen, Med Ctr, Dept Otorhinolaryngol, Groningen, Netherlands. Univ Groningen, Sch Behav & Cognit Neurosci, NL-9700 RB Groningen, Netherlands. RP Recio-Spinoso, A (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands. EM a.recio@lumc.nl RI Van Dijk, Pim/E-8019-2010; Recio-Spinoso, Alberto/F-7744-2013 OI Van Dijk, Pim/0000-0002-8023-7571; CR BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Carney LH, 1999, J ACOUST SOC AM, V105, P2384, DOI 10.1121/1.426843 CARNEY LH, 1988, J NEUROPHYSIOL, V60, P1653 CLOPTON BM, 1991, HEARING RES, V52, P329, DOI 10.1016/0378-5955(91)90023-3 DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 de BOER E., 1967, J AUD RES, V7, P209 EGGERMONT JJ, 1993, HEARING RES, V66, P177, DOI 10.1016/0378-5955(93)90139-R EVANS EF, PSYCHOPHYSICS PHYSL, P185 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y JOHNSON DH, 1980, J ACOUST SOC AM, V68, P876, DOI 10.1121/1.384826 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 KIM PJ, 1994, J ACOUST SOC AM, V95, P410, DOI 10.1121/1.408335 Lewis ER, 2002, HEARING RES, V174, P206, DOI 10.1016/S0378-5955(02)00695-0 Marmarelis PZ, 1978, ANAL PHYSL SYSTEMS W MOLLER AR, 1983, HEARING RES, V11, P267, DOI 10.1016/0378-5955(83)90062-X MOLLER AR, 1979, ACUSTICA, V41, P258 MOLLER AR, 1977, J ACOUST SOC AM, V62, P135 MOLLER AR, 1974, ACUSTICA, V31, P292 MOLLER AR, 1970, ACTA PHYSIOL SCAND, V78, P299, DOI 10.1111/j.1748-1716.1970.tb04666.x PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 Recio A, 2000, HEARING RES, V146, P167, DOI 10.1016/S0378-5955(00)00111-8 Recio-Spinoso A, 2005, J NEUROPHYSIOL, V93, P3615, DOI 10.1152/jn.00882.2004 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 Rhode WS, 1998, HEARING RES, V117, P39, DOI 10.1016/S0378-5955(98)00002-1 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RHODE WS, 1985, HEARING RES, V18, P159, DOI 10.1016/0378-5955(85)90008-5 Schetzen M., 1989, VOLTERRA WIENER THEO SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 VANGISBERGEN JAM, 1975, EXP BRAIN RES, V23, P387 van der Heijden M, 2003, J NEUROSCI, V23, P9194 VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WICKESBERG RE, 1984, HEARING RES, V14, P155, DOI 10.1016/0378-5955(84)90014-5 YAMADA W, 1997, DIVERSITY AUDITORY M, P111 Yamada WM, 1999, HEARING RES, V130, P155, DOI 10.1016/S0378-5955(99)00005-2 NR 37 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 7 EP 18 DI 10.1016/j.heares.2006.03.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300003 PM 16644154 ER PT J AU Joris, PX Louage, DH Cardoen, L van der Heijden, M AF Joris, Philip X. Louage, Dries H. Cardoen, Liesbeth van der Heijden, Marcel TI Correlation index: A new metric to quantify temporal coding SO HEARING RESEARCH LA English DT Article DE phase-locking; vector strength; temporal; correlogram; fine-structure; envelope; revcor ID AUDITORY-NERVE FIBERS; BROAD-BAND NOISE; ANTEROVENTRAL COCHLEAR NUCLEUS; NEURONAL SPIKE TRAINS; INTERAURAL TIME SENSITIVITY; STOCHASTIC POINT PROCESSES; AMPLITUDE-MODULATION; NEURAL SYNCHRONIZATION; INFERIOR COLLICULUS; DYNAMIC PROPERTIES AB The standard procedure to study temporal encoding Of Sound waveforms in the auditory system has been Fourier analysis of responses to periodic stimuli. We introduce a new metric-correlation index (CI)-which is based on a simple counting of spike coincidences. It can be used for responses to aperiodic stimuli and does not require knowledge of the stimulus. Moreover, the basic procedure of comparing spiketimes in spiketrains is more physiological than currently used methods for temporal analysis. The CI is the peak value of the normalized shuffled autocorrelogram (SAC), which provides a quantitative summary of temporal structure in the neural response to arbitrary stimuli. We illustrate the CI and SACs by comparing temporal coding in the auditory nerve and output fibers of the cochlear nucleus. (c) 2006 Elsevier B.V. All rights reserved. C1 Katholieke Univ Leuven, Lab Auditory Neurophysiol, Sch Med, B-3000 Louvain, Belgium. RP Joris, PX (reprint author), Katholieke Univ Leuven, Lab Auditory Neurophysiol, Sch Med, Campus Gasthuisberg 0&N Bus 1021,Herestr 49, B-3000 Louvain, Belgium. EM philip.joris@med.kuleuven.be; Dries.Louage@med.kuleuven.be; Liesbeth.Cardoen@student.kuleuven.ac.be; Marcel.Vanderheyden@med.kuleuven.be RI Joris, Philip/D-9608-2011 CR AERTSEN AMHJ, 1979, BIOL CYBERN, V32, P175, DOI 10.1007/BF00337394 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Carney LH, 2002, ACTA ACUST UNITED AC, V88, P334 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 Delgutte B., 1997, HDB PHONETIC SCI, P507 DENG L, 1987, J ACOUST SOC AM, V82, P2001, DOI 10.1121/1.395644 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 Eggermont JJ, 1990, CORRELATIVE BRAIN FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y GERSTEIN GL, 1972, BIOPHYS J, V12, P453 GERSTEIN GL, 1960, BIOPHYS J, V1, P15 GOBLICK TJ, 1969, J ACOUST SOC AM, V46, P924, DOI 10.1121/1.1911812 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 GREENWOOD DD, 1986, J ACOUST SOC AM, V79, P1857, DOI 10.1121/1.393194 HARTMANN WM, 1997, SIGNALS SOUND SENSAT Heinz MG, 2001, J ACOUST SOC AM, V110, P2065, DOI 10.1121/1.1404977 JOHNSON DH, 1980, J ACOUST SOC AM, V68, P1115, DOI 10.1121/1.384982 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 Joris PX, 2005, J NEUROPHYSIOL, V93, P1857, DOI 10.1152/jn.00962.2004 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Joris PX, 1998, J NEUROSCI, V18, P3955 Joris PX, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P478 Joris PX, 2003, J NEUROSCI, V23, P6345 KIANG NYS, 1990, HEARING RES, V49, P1 Kiang NYS, 1965, RES MONOGRAPH, V35 KIM DO, 1979, J NEUROPHYSIOL, V42, P16 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S Liang L, 2002, J NEUROPHYSIOL, V87, P2237, DOI 10.1152/jn.00834.2001 Louage DHG, 2004, J NEUROPHYSIOL, V91, P2051, DOI 10.1152/jn.00816.2003 Louage DHG, 2005, J NEUROSCI, V25, P1560, DOI 10.1523/JNEUROSCI.4742-04.2005 Louage DHG, 2006, J NEUROSCI, V26, P96, DOI 10.1523/JNEUROSCI.2339-05.2006 MOLLER AR, 1974, EXP NEUROL, V45, P104, DOI 10.1016/0014-4886(74)90104-6 MOLLER AR, 1977, J ACOUST SOC AM, V62, P135 MOLLER AR, 1973, BRAIN RES, V57, P443, DOI 10.1016/0006-8993(73)90148-0 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x PERKEL DH, 1967, BIOPHYS J, V7, P391 PERKEL DH, 1967, BIOPHYS J, V7, P419 REES A, 1989, J ACOUST SOC AM, V85, P1978, DOI 10.1121/1.397851 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 RODIECK RW, 1967, J NEUROPHYSIOL, V30, P1043 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 RUGGERO MA, 1973, J NEUROPHYSIOL, V36, P569 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SHAMMA SA, 1985, J ACOUST SOC AM, V78, P1622, DOI 10.1121/1.392800 Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957 SPIROU GA, 1990, J NEUROPHYSIOL, V63, P1169 TENKATE JH, 1988, J ACOUST SOC AM, V84, P2092, DOI 10.1121/1.397054 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANGISBERGER JAM, 1975, EXP BRAIN RES, V23, P367 Wong JC, 1998, HEARING RES, V123, P61, DOI 10.1016/S0378-5955(98)00098-7 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 54 TC 42 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 19 EP 30 DI 10.1016/j.heares.2006.03.010 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300004 PM 16644160 ER PT J AU Needham, K Paolini, AG AF Needham, Karina Paolini, Antonio G. TI Neural timing, inhibition and the nature of stellate cell interaction in the ventral cochlear nucleus SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; stellate neurons; chopper cells; onset cells; intracellular; commissural ID GUINEA-PIG; GLYCINE IMMUNOREACTIVITY; RESPONSE PROPERTIES; COMMISSURAL NEURONS; MULTIPOLAR CELLS; CHOPPER UNITS; CAT; REGULARITY; BRAIN; NOISE AB The ventral cochlear nucleus (VCN) stellate cell population comprises two clusters: narrowly-tuned, excitatory T stellate neurons, and D stellate neurons, a broadly-tuned population of inhibitory cells. These neurons respond to best frequency (BF) tone bursts in a chopper or onset manner, respectively. Through extensive local and commissural projections the D stellate population provides a source of fast inhibitory input to both intrinsic and contralateral T stellate neurons. Whilst the nature of interactions between intrinsic stellate populations is difficult to examine, our previous intracellular investigations of the commissural pathway have provided a means by which to study this relationship in the in vivo preparation. It is the aim of this paper to both review and extend our understanding of the link between stellate populations and their involvement in the commissural pathway by presenting an overview of the results attained in our recently expanded study. The sample of 17 intracellular and 34 extracellular onset chopper (O(C)) and late/ideal (On(L)/On(1)) neurons revealed antidromic activity in 31.4% of neurons following contralateral stimulation, providing physiological evidence that On(L)/On(1) neurons also contribute projections to the commissural connection. Alternatively, 64.7/0 of the 34 intracellularly-recorded chopper neurons displayed fast, monosynaptic inhibitory potentials. This commissural input was found to influence the timing of neural activity in chopper neurons, providing insight into the relationship that exists between T and D stellate neurons. (c) 2006 Elsevier B.V. All rights reserved. C1 La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Bion Ear Inst, Melbourne, Vic 3002, Australia. RP Paolini, AG (reprint author), La Trobe Univ, Sch Psychol Sci, Bundoora, Vic 3086, Australia. EM kneedham@bionicear.org; a.paolini@latrobe.edu.au CR ADAMS JC, 1983, NEUROSCI LETT, V37, P205, DOI 10.1016/0304-3940(83)90431-7 ADAMS JC, 1993, NATO ADV SCI INST SE, V239, P133 Alibardi L, 1998, ANN ANAT, V180, P427 Alibardi L, 2000, ANN ANAT, V182, P207, DOI 10.1016/S0940-9602(00)80023-0 Alibardi L., 2000, Journal of Submicroscopic Cytology and Pathology, V32, P555 ALTSCHULER RA, 1986, BRAIN RES, V369, P316, DOI 10.1016/0006-8993(86)90542-1 Arnott RH, 2004, JARO-J ASSOC RES OTO, V5, P153, DOI 10.1007/s10162-003-4036-8 Babalian AL, 1999, NEUROREPORT, V10, P1913, DOI 10.1097/00001756-199906230-00022 Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038 BLACKBURN CC, 1992, J NEUROPHYSIOL, V68, P124 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 CANT NB, 1981, NEUROSCIENCE, V6, P2643, DOI 10.1016/0306-4522(81)90109-3 DAVIS KA, 2005, JARO-J ASSOC RES OTO, V6, P1 Davis KA, 2000, J NEUROPHYSIOL, V83, P926 Doucet JR, 1997, J COMP NEUROL, V385, P245 Doucet JR, 1999, J COMP NEUROL, V408, P515 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 Jiang D, 1996, J NEUROPHYSIOL, V75, P380 Joris PX, 1998, J NEUROSCI, V18, P10157 Josephson EM, 1998, J NEUROCYTOL, V27, P841, DOI 10.1023/A:1006959532686 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485 KOLSTON J, 1992, ANAT EMBRYOL, V186, P443 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 MAST TE, 1970, J NEUROPHYSIOL, V33, P108 Needham K, 2003, J NEUROSCI, V23, P6357 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6 Palmer AR, 1996, J NEUROPHYSIOL, V75, P780 Paolini AG, 2004, J NEUROPHYSIOL, V92, P2615, DOI 10.1152/jn.00327.2004 Paolini AG, 2005, EUR J NEUROSCI, V21, P1236, DOI 10.1111/j.1460-9568.2005.03958.x Paolini AG, 1999, J NEUROPHYSIOL, V81, P2347 PEYRET D, 1987, ACTA OTO-LARYNGOL, V104, P71, DOI 10.3109/00016488709109049 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 SAINTMARIE RL, 1993, NATO ADV SCI INST SE, V239, P121 Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W Shore SE, 2003, EXP BRAIN RES, V153, P427, DOI 10.1007/s00221-003-1610-6 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X WENTHOLD RJ, 1988, J COMP NEUROL, V276, P423, DOI 10.1002/cne.902760307 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 WU SH, 1986, J NEUROSCI, V6, P2691 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 57 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 31 EP 42 DI 10.1016/j.heares.2006.01.016 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300005 PM 16554129 ER PT J AU Verhey, JL Winter, IM AF Verhey, Jesko L. Winter, Ian M. TI The temporal representation of the delay of iterated rippled noise with positive or negative gain by chopper units in the cochlear nucleus SO HEARING RESEARCH LA English DT Article DE multi-polar cell; pitch; inter-spike intervals; autocorrelation ID AMPLITUDE-MODULATION; NEURONAL MECHANISMS; RESPONSE PROPERTIES; PITCH STRENGTH; COMPLEX TONES; TIME-DOMAIN; CLASSIFICATION; CHINCHILLA; REGULARITY; CAT AB The role of chopper units in representing the pitch of complex sounds is unresolved. Traditionally chopper units have been regarded as primarily responding to the stimulus envelope of complex stimuli. This has been supported by the response of chopper units to iterated rippled noise (IRN) as they can provide a robust representation of the delay of IRN with positive gain (+) in their first-order interspike intervals and for some chopper units this representation is relatively level independent. The envelope modulation of IRN(+), and pitch, is at the reciprocal of the delay, the pitch of IRN with negative gain (IRN(-)) is often at twice the delay. This distinction between IRN(+) and IRN(-) can be used to help determine whether a unit is simply responding to modulation or to stimulus fine structure. Chopper units with relatively high best frequencies (1317) are unable to represent the distinction between IRN(+) and IRN(-). However, in this study it is shown that at least some chopper units, with low BFs (< 1.25 kHz), can represent the pitch of the IRN(-) as perceived perceptually. (c) 2006 Elsevier B.V. All rights reserved. C1 Ctr Neural Basis Hearing, Physiol Lab, Cambridge CB2 3EG, England. Univ Oldenburg, D-26111 Oldenburg, Germany. RP Winter, IM (reprint author), Ctr Neural Basis Hearing, Physiol Lab, Downing St, Cambridge CB2 3EG, England. EM imw1001@cam.ac.uk CR BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y FRISINA RD, 1990, HEARING RES, V44, P123, DOI 10.1016/0378-5955(90)90075-Z KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S LANGNER G, 1981, EXP BRAIN RES, V44, P450 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Louage DHG, 2005, J NEUROSCI, V25, P1560, DOI 10.1523/JNEUROSCI.4742-04.2005 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 Neuert V, 2005, J NEUROPHYSIOL, V93, P2766, DOI 10.1152/jn.00774.2004 RHODE WS, 1994, J NEUROPHYSIOL, V71, P1797 Shofner WP, 1999, J NEUROPHYSIOL, V81, P2662 SHOFNER WP, 1991, J ACOUST SOC AM, V90, P2450, DOI 10.1121/1.402049 TENKATE JH, 1988, J ACOUST SOC AM, V84, P2092, DOI 10.1121/1.397054 Wiegrebe L, 2001, J NEUROPHYSIOL, V85, P1206 WIEGREBE L, 2001, PHYSL PSYCHOPHYSICAL Wiegrebe L, 2004, J ACOUST SOC AM, V115, P1207, DOI 10.1121/1.1643359 Winter IM, 2001, J PHYSIOL-LONDON, V537, P553, DOI 10.1111/j.1469-7793.2001.00553.x Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 23 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 43 EP 51 DI 10.1016/j.heares.2006.02.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300006 PM 16716545 ER PT J AU McGinley, MJ Oertel, D AF McGinley, Matthew J. Oertel, Donata TI Rate thresholds determine the precision of temporal integration in principal cells of the ventral cochlear nucleus SO HEARING RESEARCH LA English DT Article DE ventral cochlear nucleus; synaptic integration; temporal coding; temporal summation; integration window; action potential generation; current ramp ID AUDITORY-NERVE FIBERS; CA1 PYRAMIDAL NEURONS; RESPONSE PROPERTIES; OCTOPUS CELLS; HORSERADISH-PEROXIDASE; LATERAL LEMNISCUS; COINCIDENCE DETECTION; POTASSIUM CURRENTS; OUTWARD CURRENTS; UNIT RESPONSES AB The three types of principal cells of the ventral cochlear nucleus (VCN), bushy, octopus, and T stellate, differ in the detection of coincidence among synaptic inputs. To explore the role of the action-potential-generation mechanism in the detection of coincident inputs, we examined responses to depolarizing currents that increased at varying rates. To fire an action potential, bushy cells, likely of the globular subtype, had to be depolarized faster than 4.8 +/- 2.8 mV/ms, octopus cells faster than 9.5 +/- 3.6 mV/ms, and T stellate cells fired irrespective of the rate of depolarization. The threshold rate of depolarization permitted definition of a time window over which depolarization could contribute to generating action potentials. This integration window differed between cell types. It was 5.3 +/- 1.8 ms for bushy cells and 1.4 +/- 0.3 ms for octopus cells. T Stellate cells fired action potentials in response to even slow depolarizations, showing that their integration window was unlimited so that temporal summation in these cells is limited by the time course of synaptic potentials. The rate of depolarization threshold in octopus and bushy cells was decreased by alpha-dendrotoxin while T stellate cells were largely insensitive to ot-dendrotoxin indicating that low-voltage-activated K(+) conductances (g(KL)) are important determinants of the integration window. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Wisconsin, Dept Physiol, Madison, WI 53706 USA. RP Oertel, D (reprint author), Univ Wisconsin, Dept Physiol, 1300 Univ Ave, Madison, WI 53706 USA. EM oertel@physiology.wisc.edu CR Adams JC, 1997, AUDIT NEUROSCI, V3, P335 ADAMS JC, 1976, J COMP NEUROL, V170, P107, DOI 10.1002/cne.901700108 Azouz R, 2000, P NATL ACAD SCI USA, V97, P8110, DOI 10.1073/pnas.130200797 Azouz R, 2003, NEURON, V37, P513, DOI 10.1016/S0896-6273(02)01186-8 Bair W, 2004, J NEUROSCI, V24, P7305, DOI 10.1523/JNEUROSCI.0554-04.2004 Bal R, 2000, J NEUROPHYSIOL, V84, P806 Bal R, 2001, J NEUROPHYSIOL, V86, P2299 Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Brew HM, 2005, HEARING RES, V206, P116, DOI 10.1016/j.heares.2004.12.012 Brew HM, 1995, J NEUROSCI, V15, P8011 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7 CANT NB, 1986, J COMP NEUROL, V247, P457, DOI 10.1002/cne.902470406 CAO X, 2006, ASS RES OTOLARYNGOL, P29 Cao XJ, 2005, J NEUROPHYSIOL, V94, P821, DOI 10.1152/jn.01049.2004 Carney LH, 1998, J NEUROSCI, V18, P1096 Carney LH, 1999, CURR OPIN NEUROBIOL, V9, P442, DOI 10.1016/S0959-4388(99)80066-X Dodson PD, 2002, J NEUROSCI, V22, P6953 Doucet JR, 1997, J COMP NEUROL, V385, P245 Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001 Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51 FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P143, DOI 10.1098/rspb.1993.0021 Fujino K, 2001, J NEUROSCI, V21, P7372 Gardner SM, 1999, J NEUROSCI, V19, P8721 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Golding NL, 1999, J NEUROSCI, V19, P2897 GRISSMER S, 1994, MOL PHARMACOL, V45, P1227 HOPKINS WF, 1994, PFLUG ARCH EUR J PHY, V428, P382, DOI 10.1007/BF00724522 Hopkins WF, 1998, J PHARMACOL EXP THER, V285, P1051 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1022 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 Koch C, 1996, CEREB CORTEX, V6, P93, DOI 10.1093/cercor/6.2.93 Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 Magee JC, 1998, J NEUROSCI, V18, P7613 Mainen ZF, 1995, NEURON, V15, P1427, DOI 10.1016/0896-6273(95)90020-9 MANIS PB, 1991, J NEUROSCI, V11, P2865 MCGINLEY MJ, 2005, ASS RES OTOLARYNGOL, P28 Migliore M, 2003, J COMPUT NEUROSCI, V14, P185, DOI 10.1023/A:1021906818333 Mittmann W, 2005, J PHYSIOL-LONDON, V563, P369, DOI 10.1113/jphysiol.2004.075028 MOLLER AR, 1975, J NEUROPHYSIOL, V38, P812 MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574 MOLLER AR, 1971, ACTA PHYSIOL SCAND, V81, P540, DOI 10.1111/j.1748-1716.1971.tb04931.x MOLLER AR, 1969, ACTA PHYSIOL SCAND, V75, P542 MOLLER AR, 1976, ACTA PHYSIOL SCAND, V98, P157, DOI 10.1111/j.1748-1716.1976.tb00235.x OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OERTEL D, 1985, J ACOUST SOC AM, V78, P328, DOI 10.1121/1.392494 OERTEL D, 1983, J NEUROSCI, V3, P2043 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 Owen DG, 1997, BRIT J PHARMACOL, V120, P1029, DOI 10.1038/sj.bjp.0701004 PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667 Pouille F, 2001, SCIENCE, V293, P1159, DOI 10.1126/science.1060342 PRICE GR, 1978, J ACOUST SOC AM, V64, P1400, DOI 10.1121/1.382106 Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 RHODE WS, 1983, J COMP NEUROL, V213, P448, DOI 10.1002/cne.902130408 Rodrigues ARA, 2006, J NEUROPHYSIOL, V95, P76, DOI 10.1152/jn.00624.2005 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3083, DOI 10.1152/jn.00126.2002 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002 Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 SCHOFIELD BR, 1995, J COMP NEUROL, V360, P135, DOI 10.1002/cne.903600110 Schwarz DWF, 1997, HEARING RES, V114, P127, DOI 10.1016/S0378-5955(97)00162-7 Scott LL, 2005, J NEUROSCI, V25, P7887, DOI 10.1523/JNEUROSCI.1016-05.2005 Sekerli M, 2004, IEEE T BIO-MED ENG, V51, P1665, DOI 10.1109/TBME.2004.827531 SMITH PH, 1987, J COMP NEUROL, V266, P360, DOI 10.1002/cne.902660305 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349 Soares D, 2002, J NEUROPHYSIOL, V88, P152, DOI 10.1152/jn.00674.2001 Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533 SPIROU GA, 2005, SOC NEUROSCI ABSTR Svirskis G, 2003, BIOL CYBERN, V89, P333, DOI 10.1007/s00422-003-0438-2 Svirskis G, 2003, NETWORK-COMP NEURAL, V14, P137, DOI 10.1088/0954-898X/14/1/308 Svirskis G, 2004, J NEUROPHYSIOL, V91, P2465, DOI 10.1152/jn.00717.2003 TOLBERT LP, 1982, NEUROSCIENCE, V7, P3031, DOI 10.1016/0306-4522(82)90228-7 Trussell LO, 1997, CURR OPIN NEUROBIOL, V7, P487, DOI 10.1016/S0959-4388(97)80027-X Wang FC, 1999, EUR J BIOCHEM, V263, P230, DOI 10.1046/j.1432-1327.1999.00493.x WANG H, 1994, J NEUROSCI, V14, P4588 WHITE JA, 1994, J NEUROPHYSIOL, V71, P1774 WINTER IM, 1990, J ACOUST SOC AM, V88, P1437, DOI 10.1121/1.399720 WU SH, 1987, HEARING RES, V30, P99 WU SH, 1995, J NEUROPHYSIOL, V73, P780 WU SH, 1984, J NEUROSCI, V4, P1577 Zhang XD, 2005, NEURAL COMPUT, V17, P2571, DOI 10.1162/089976605774320584 Zhao M, 2001, J COMP NEUROL, V433, P255, DOI 10.1002/cne.1139 NR 91 TC 42 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 52 EP 63 DI 10.1016/j.heares.2006.02.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300007 PM 16647828 ER PT J AU Cant, NB Benson, CG AF Cant, Nell B. Benson, Christina G. TI Wisteria floribunda lectin is associated with specific cell types in the ventral cochlear nucleus of the gerbil, Meriones unguiculatus SO HEARING RESEARCH LA English DT Article DE auditory system; octopus cells; multipolar cells; perineuronal nets ID CALCIUM-BINDING PROTEINS; AUDITORY BRAIN-STEM; CHONDROITIN SULFATE PROTEOGLYCANS; TERMINAL N-ACETYLGALACTOSAMINE; GLUTAMATE-RECEPTOR SUBUNITS; CENTRAL-NERVOUS-SYSTEM; PERINEURONAL NETS; OCTOPUS CELLS; EXTRACELLULAR-MATRIX; POTASSIUM CHANNEL AB The cochlear nucleus is made up of a number of diverse cell types with different anatomical and physiological properties. A plant lectin, Wisteria floribunda agglutinin, that recognizes specific carbohydrate residues in the extracellular matrix binds to some cell types in the ventral cochlear nucleus but not to cells in the dorsal cochlear nucleus. In the ventral cochlear nucleus, the most intensely labeled cells are octopus cells, a subset of multipolar cells and cochlear root neurons. The multipolar cells that are labeled may correspond to the population that projects to the inferior colliculus. (c) 2006 Elsevier B.V. All rights reserved. C1 Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA. RP Cant, NB (reprint author), Duke Univ, Med Ctr, Dept Neurobiol, POB 3209,213 Bryan Res Bldg, Durham, NC 27710 USA. EM nellcant@neuro.duke.edu CR ADAMS JC, 1986, ARCH OTOLARYNGOL, V112, P1253 ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305 Adams JC, 1997, AUDIT NEUROSCI, V3, P335 ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 ARAI R, 1991, J COMP NEUROL, V310, P21, DOI 10.1002/cne.903100105 Bal R, 2000, J NEUROPHYSIOL, V84, P806 Bal R, 2001, J NEUROPHYSIOL, V86, P2299 Bandtlow CE, 2000, PHYSIOL REV, V80, P1267 Bertolotto A, 1996, CELL TISSUE RES, V283, P283, DOI 10.1007/s004410050538 Bilak MM, 1996, NEUROSCIENCE, V75, P1075, DOI 10.1016/0306-4522(96)00197-2 BRAWER JR, 1974, J COMP NEUROL, V155, P251, DOI 10.1002/cne.901550302 Braz JM, 2002, P NATL ACAD SCI USA, V99, P15148, DOI 10.1073/pnas.222546999 Brown MC, 2003, EXP BRAIN RES, V153, P491, DOI 10.1007/s00221-003-1679-y Bruckner G, 2004, J MOL HISTOL, V35, P115 Bruckner G, 2000, J COMP NEUROL, V428, P616, DOI 10.1002/1096-9861(20001225)428:4<616::AID-CNE3>3.0.CO;2-K Bruckner G, 1998, ANAT EMBRYOL, V197, P249, DOI 10.1007/s004290050135 BRUCKNER G, 1994, BRAIN RES, V658, P67 Burette A, 2001, J COMP NEUROL, V431, P1, DOI 10.1002/1096-9861(20010226)431:1<1::AID-CNE1051>3.0.CO;2-E Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CANT NB, 2006, IN PRESS J COMP NEUR Celio MR, 1998, TRENDS NEUROSCI, V21, P510, DOI 10.1016/S0166-2236(98)01298-3 CELIO MR, 1994, BRAIN RES REV, V19, P128, DOI 10.1016/0165-0173(94)90006-X Doucet JR, 1997, J COMP NEUROL, V385, P245 Doucet JR, 1999, J COMP NEUROL, V408, P515 FENG JJ, 1994, J COMP NEUROL, V346, P1, DOI 10.1002/cne.903460102 Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001 Laabs T, 2005, CURR OPIN NEUROBIOL, V15, P116, DOI 10.1016/j.conb.2005.01.014 Ginsberg SD, 2005, J COMP NEUROL, V487, P107, DOI 10.1002/cne.20535 GLEICH O, 1994, HEARING RES, V78, P49, DOI 10.1016/0378-5955(94)90043-4 Golding NL, 1999, J NEUROSCI, V19, P2897 Gray D, 1999, J COMP NEUROL, V409, P452, DOI 10.1002/(SICI)1096-9861(19990705)409:3<452::AID-CNE9>3.0.CO;2-I Halpern M, 1998, MICROSC RES TECHNIQ, V41, P519, DOI 10.1002/(SICI)1097-0029(19980615)41:6<519::AID-JEMT7>3.3.CO;2-C HARRISON JM, 1966, J COMP NEUROL, V126, P391, DOI 10.1002/cne.901260303 HARRISON JM, 1965, J COMP NEUROL, V124, P15, DOI 10.1002/cne.901240103 Hartig W, 2001, BRAIN RES, V899, P123, DOI 10.1016/S0006-8993(01)02211-9 Hartig W, 1999, BRAIN RES, V842, P15, DOI 10.1016/S0006-8993(99)01784-9 Hilbig H, 2001, ANAT EMBRYOL, V203, P45, DOI 10.1007/s004290000135 Horn AK, 2003, J COMP NEUROL, V455, P341, DOI 10.1002/cne.10495 HUNTER C, 1993, J NEUROSCI, V13, P1932 Kleene R, 2004, NAT REV NEUROSCI, V5, P195, DOI 10.1038/nrn1349 Korada S, 2000, HEARING RES, V140, P23, DOI 10.1016/S0378-5955(99)00182-3 Lander C, 1997, J NEUROSCI, V17, P1928 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E Luo L, 1999, NAT MED, V5, P117, DOI 10.1038/4806 Lurie DI, 1997, J COMP NEUROL, V380, P319, DOI 10.1002/(SICI)1096-9861(19970414)380:3<319::AID-CNE3>3.0.CO;2-5 Matthews RT, 2002, J NEUROSCI, V22, P7536 McInvale AC, 2002, J COMP NEUROL, V450, P382, DOI 10.1002/cne.10328 Miesenbock G, 2005, ANNU REV NEUROSCI, V28, P533, DOI 10.1146/annurev.neuro.28.051804.101610 Mojsilovic-Petrovic J, 2004, J NEUROSCI METH, V133, P39, DOI 10.1016/j.jneumeth.2003.09.026 Møller A R, 2001, Am J Audiol, V10, P68, DOI 10.1044/1059-0889(2001/012) MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOORE JK, 1986, NEUROBIOLOGY HEARING, P283 Morawski M, 2004, EXP NEUROL, V188, P309, DOI 10.1016/j.expneurol.2004.04.017 Morris NP, 2000, EUR J NEUROSCI, V12, P828, DOI 10.1046/j.1460-9568.2000.00970.x NAKAGAWA F, 1986, J COMP NEUROL, V243, P280, DOI 10.1002/cne.902430210 NAKAGAWA F, 1986, J NEUROCYTOL, V15, P389, DOI 10.1007/BF01611440 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Palmer AR, 2003, EXP BRAIN RES, V153, P418, DOI 10.1007/s00221-003-1602-6 Perney TM, 1997, J COMP NEUROL, V386, P178 Preuss TM, 1998, SOMATOSENS MOT RES, V15, P211, DOI 10.1080/08990229870772 Rauch U, 1997, CELL TISSUE RES, V290, P349, DOI 10.1007/s004410050940 Richter E, 1983, Adv Otorhinolaryngol, V31, P59 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 Romand R, 1997, CENTRAL AUDITORY SYS, P97 Rosenberger MH, 2003, J COMP NEUROL, V462, P101, DOI 10.1002/cne.10713 Ruoslahti E, 1996, GLYCOBIOLOGY, V6, P489, DOI 10.1093/glycob/6.5.489 RYUGO DK, 1995, J COMP NEUROL, V358, P102, DOI 10.1002/cne.903580107 Salazar I, 1998, ANAT EMBRYOL, V198, P331, DOI 10.1007/s004290050188 SEEGER G, 1994, NEUROSCIENCE, V58, P371, DOI 10.1016/0306-4522(94)90044-2 Smith PH, 2005, J COMP NEUROL, V482, P349, DOI 10.1002/cne.20407 SPICER SS, 1992, J HISTOCHEM CYTOCHEM, V40, P1 Spicer SS, 1996, J COMP NEUROL, V365, P217, DOI 10.1002/(SICI)1096-9861(19960205)365:2<217::AID-CNE2>3.0.CO;2-8 THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209 VENSTROM KA, 1993, FASEB J, V7, P996 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X WICKESBERG RE, 1991, J COMP NEUROL, V313, P457, DOI 10.1002/cne.903130306 Wright DD, 1996, J COMP NEUROL, V364, P729, DOI 10.1002/(SICI)1096-9861(19960122)364:4<729::AID-CNE10>3.0.CO;2-K Yamaguchi Y, 2000, CELL MOL LIFE SCI, V57, P276, DOI 10.1007/PL00000690 Young E.D., 2004, SYNAPTIC ORG BRAIN, P125 NR 82 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 64 EP 72 DI 10.1016/j.heares.2006.01.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300008 PM 16497454 ER PT J AU Schofield, BR Coomes, DL AF Schofield, Brett R. Coomes, Diana L. TI Pathways from auditory cortex to the cochlear nucleus in guinea pigs SO HEARING RESEARCH LA English DT Article DE inferior colliculus; superior olivary complex; descending pathways; efferent system ID SUPERIOR OLIVARY COMPLEX; INFERIOR COLLICULUS; DESCENDING PROJECTIONS; TRAPEZOID BODY; FINE-STRUCTURE; LARGE NEURONS; BRAIN-STEM; RAT; ORGANIZATION; CELLS AB The inferior colliculus (IC) and superior olivary complex (SOC) are important sources of descending pathways to the cochlear nucleus. The IC and SOC are also targets of direct projections from the auditory cortex but it is not known if cortical axons contact the cells that project to the cochlear nucleus. Multi-labeling techniques were used to address this question in guinea pigs. A fluorescent anterograde tracer was injected into temporal cortex to label corticofugal axons. Different fluorescent tracers were injected into one or both cochlear nuclei to label olivary and collicular cells. The brain was subsequently processed for fluorescence microscopy and the IC and SOC were examined for apparent contacts between cortical axons and retrogradely labeled cells. The results suggest that cortical axons contact cochlear nucleus-projecting cells in both IC and SOC. In both regions, contacts were more numerous on the side ipsilateral to the injected cortex. In the IC, the contacted cells projected ipsilaterally or contralaterally to the CN. In the SOC, the contacted cells projected ipsilaterally, contralaterally or bilaterally to the CN. We conclude that auditory cortex is in a position to modulate descending pathways from both the IC and SOC to the cochlear nucleus. (c) 2006 Elsevier B.V. All rights reserved. C1 Northeastern Ohio Univ Coll Med & Pharm, Dept Neurobiol, Rootstown, OH 44272 USA. RP Schofield, BR (reprint author), Northeastern Ohio Univ Coll Med & Pharm, Dept Neurobiol, 4209 State Route 44,POB 95, Rootstown, OH 44272 USA. EM bschofie@neoucom.edu CR Alibardi L, 1999, J BRAIN RES, V39, P429 Alibardi L, 2000, EUR J HISTOCHEM, V44, P365 ASCHOFF A, 1988, EXP BRAIN RES, V71, P241 Bartlett EL, 2000, NEUROSCIENCE, V100, P811, DOI 10.1016/S0306-4522(00)00340-7 BENSON CG, 1990, J COMP NEUROL, V296, P415, DOI 10.1002/cne.902960307 Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x Coomes DL, 2004, HEARING RES, V191, P67, DOI 10.1016/j.heares.2004.01.009 COOMES DL, 2002, ASS RES OTOLARYNGOL, V25, P114 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x COOMES DL, 2003, ASS RES OTOLARYNGOL, V26, P93 DESMEDT JE, 1960, NEURAL MECH AUDITORY, P152 DEWSON JAMES H., 1966, BRAIN RES, V2, P151, DOI 10.1016/0006-8993(66)90020-5 Doucet JR, 2003, EXP BRAIN RES, V153, P461, DOI 10.1007/s00221-003-1604-4 Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 Helfert RH, 1997, CENTRAL AUDITORY SYS, P193 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2 Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 MALMIERCA MS, 1995, J COMP NEUROL, V357, P124, DOI 10.1002/cne.903570112 MITANI A, 1983, NEUROSCI LETT, V42, P185, DOI 10.1016/0304-3940(83)90404-4 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Ostapoff EM, 1997, J COMP NEUROL, V381, P500, DOI 10.1002/(SICI)1096-9861(19970519)381:4<500::AID-CNE9>3.0.CO;2-6 RYAN AF, 1984, J NEUROSCI, V4, P298 SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153 Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 Schofield BR, 2002, J COMP NEUROL, V453, P217, DOI 10.1002/cne.10402 Schofield BR, 2005, HEARING RES, V206, P3, DOI 10.1016/j.heares.2005.03.005 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107 SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N Shore SE, 1998, HEARING RES, V116, P33, DOI 10.1016/S0378-5955(97)00207-4 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Thompson AM, 2005, INFERIOR COLLICULUS, P182, DOI 10.1007/0-387-27083-3_6 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 Thompson AM, 2000, MICROSC RES TECHNIQ, V51, P330, DOI 10.1002/1097-0029(20001115)51:4<330::AID-JEMT4>3.0.CO;2-X Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, NEUROREPORT, V11, P3989, DOI 10.1097/00001756-200012180-00017 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weedman DL, 1996, J COMP NEUROL, V371, P311 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 NR 51 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 81 EP 89 DI 10.1016/j.heares.2006.01.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300010 PM 16874906 ER PT J AU Shore, SE Zhou, JX AF Shore, Susan E. Zhou, Jianxun TI Somatosensory influence on the cochlear nucleus and beyond SO HEARING RESEARCH LA English DT Article DE auditory; cochlear nucleus; pathways; trigeminal; reticular formation; somatosensory; non-auditory projections ID TRIGEMINAL GANGLION STIMULATION; GUINEA-PIG; INFERIOR COLLICULUS; HORSERADISH-PEROXIDASE; FUNCTIONAL-ORGANIZATION; SUBNUCLEUS INTERPOLARIS; MICROSCOPIC FEATURES; RETROGRADE TRANSPORT; RETICULAR-FORMATION; EXTERNAL NUCLEUS AB Interactions between somatosensory and auditory systems occur at peripheral levels in the central nervous system. The cochlear nucleus (CN) receives innervation from trigeminal sensory structures: the ophthalmic division of the trigerninal ganglion and the caudal and interpolar regions of the spinal trigerninal nucleus (Sp51 and Sp5C). These projections terminate primarily in the granule cell domain, but also in magnocellular regions of the ventral and dorsal CN. Additionally, new evidence is presented demonstrating that cells in the lateral paragiganticular regions of the reticular formation (RE) also project to the CN. Not unlike the responses obtained from electrically stimulating the trigeminal system, stimulating RF regions can also result in excitation/inhibition of dorsal CN neurons. The origins and central connections of these projection neurons are associated with systems controlling vocalization and respiration. Electrical stimulation of trigeminal and RF projection neurons can suppress acoustically driven activity of not only CN neurons, but also neurons in the inferior colliculus. Together with the anatomical observations, these physiological observations suggest that one function of somatosensory input to the auditory system is to suppress responses to "expected" body-generated sounds such as vocalization or respiration. This would serve to enhance responses to "unexpected" external ly-generated sounds, such as the vocalizations of other animals. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Ann Arbor, MI 48109 USA. RP Shore, SE (reprint author), Univ Michigan, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM sushore@umich.edu CR Aigner M, 1997, J COMP NEUROL, V380, P16, DOI 10.1002/(SICI)1096-9861(19970331)380:1<16::AID-CNE2>3.0.CO;2-W AITKIN LM, 1978, J NEUROPHYSIOL, V41, P837 AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 Bell C, 1997, BRAIN BEHAV EVOLUT, V50, P17, DOI 10.1159/000113352 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 BURIAN M, 1989, ARCH OTO-RHINO-LARYN, V246, P238, DOI 10.1007/BF00463563 BUTTNERENNEVER J, 1986, PROG BRAIN RES, V64, P89 DARIANSMITH I, 1963, J PHYSIOL-LONDON, V168, P129 Davis KA, 1996, J NEUROPHYSIOL, V76, P3012 Eliades SJ, 2003, J NEUROPHYSIOL, V89, P2194, DOI 10.1152/jn.00627.2002 Eliades SJ, 2005, CEREB CORTEX, V15, P1510, DOI 10.1093/cercor/bhi030 Golding NL, 1997, J NEUROPHYSIOL, V78, P248 GSTOETTNER W, 1991, NEUROSCI LETT, V122, P163, DOI 10.1016/0304-3940(91)90848-N HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 Haenggeli CA, 2005, J COMP NEUROL, V484, P191, DOI 10.1002/cne.20466 HAYASHI H, 1984, J NEUROPHYSIOL, V51, P890 HIRABA K, 1988, J NEUROPHYSIOL, V60, P1333 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 JACQUIN MF, 1989, J COMP NEUROL, V282, P45, DOI 10.1002/cne.902820105 Jain R, 2006, NEUROSCI LETT, V395, P71, DOI 10.1016/j.neulet.2005.10.077 Joris PX, 1998, J NEUROSCI, V18, P3955 Jurgens U, 2002, NEUROSCI BIOBEHAV R, V26, P235, DOI 10.1016/S0149-7634(01)00068-9 Kanold PO, 2001, J NEUROSCI, V21, P7848 KEVETTER GA, 1989, BRAIN BEHAV EVOLUT, V34, P193, DOI 10.1159/000116505 KOHLER S, 2005, TEMPORAL EFFECTS TRI MONTGOMERY JC, 1994, NEUROSCI LETT, V174, P145, DOI 10.1016/0304-3940(94)90007-8 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 MUGNAINI E, 1980, J NEUROCYTOL, V9, P537, DOI 10.1007/BF01204841 NAZRUDDIN S S, 1989, Brain Research, V490, P219 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Ohlrogge M, 2001, J COMP NEUROL, V436, P290 PARHAM K, 1995, J NEUROPHYSIOL, V73, P550 Populin LC, 2002, J NEUROSCI, V22, P2826 PORTER JD, 1982, J COMP NEUROL, V204, P56, DOI 10.1002/cne.902040107 RHODE WS, 1983, J COMP NEUROL, V213, P426, DOI 10.1002/cne.902130407 RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 ROMFH JH, 1979, EXP NEUROL, V65, P99, DOI 10.1016/0014-4886(79)90251-6 Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110 Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 SUEMUNE S, 1992, BRAIN RES, V586, P162, DOI 10.1016/0006-8993(92)91389-V TAKEMURA M, 1991, EXP NEUROL, V111, P324, DOI 10.1016/0014-4886(91)90099-X Tammer R, 2004, BEHAV BRAIN RES, V151, P331, DOI 10.1016/j.bbr.2003.09.008 Usunoff K.G., 1997, ADV ANAT EMBRYOL CEL, V136, P1 Vass Z, 1998, NEUROSCIENCE, V84, P559, DOI 10.1016/S0306-4522(97)00503-4 Vass Z, 1997, NEUROSCIENCE, V79, P605, DOI 10.1016/S0306-4522(96)00641-0 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 Wolff A, 1997, NEUROSCI LETT, V221, P125, DOI 10.1016/S0304-3940(96)13305-X Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L Young E. D., 1998, SYNAPTIC ORG BRAIN, P121 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343 Zhou JX, 2006, J COMP NEUROL, V495, P100, DOI 10.1002/cne.20863 NR 56 TC 51 Z9 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 90 EP 99 DI 10.1016/j.heares.2006.01.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300011 PM 16513306 ER PT J AU Ryugo, DK Montey, KL Wright, AL Bennett, ML Pongstaporn, T AF Ryugo, D. K. Montey, K. L. Wright, A. L. Bennett, M. L. Pongstaporn, T. TI Postnatal development of a large auditory nerve terminal: The endbulb of Held in cats SO HEARING RESEARCH LA English DT Article DE hearing; postsynaptic densities; puncta adherentia; synapses; synaptic vesicles ID ANTEROVENTRAL COCHLEAR NUCLEUS; DEAF WHITE CATS; PRIMARY AXOSOMATIC ENDINGS; SPHERICAL BUSHY CELLS; FINE-STRUCTURE; ULTRASTRUCTURAL ANALYSIS; VENTRAL COCHLEAR; BRAIN-STEM; SEQUENTIAL ALTERATIONS; NEURONAL ARCHITECTURE AB The endbulbs of Held are formed by the ascending branches of myelinated auditory nerve fibers and represent one of the largest synaptic endings in the brain. Most of the developmental changes in structure occur during the first 30 postnatal days of age. The neonatal endbulb begins as a flattened expansion with many filopodia, resembling a growth cone and characterized by numerous puncta adherentia and synapses associated with small postsynaptic densities; the most impressive feature of the ending at this age is its highly irregular plasma membrane that interdigitates with that of the postsynaptic spherical bushy cell. During these first 30 days, the number of puncta adherentia diminishes, postsynaptic densities nearly double in size, intermembraneous cisternae emerge, and plasma membranes flatten. These features endow the endbulb with an adult-like appearance. On the other hand, synaptic vesicle density increases progressively from approximately 50/mu m(2) at birth to 100/mu m(2) at adulthood. Mitochondria size remains constant over this developmental period but mitochondrial volume fraction increases until 60 days postnatal. Although many features of endbulb morphology stabilize by 30 days, other features suggest that endbulb development continues into the third month of age. Many of these observations correlate with the maturation of physiological response properties and suggest issues for further study. (c) 2006 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Neurosci, Baltimore, MD 21205 USA. RP Ryugo, DK (reprint author), Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave,Traylor Res Bldg,Room 510, Baltimore, MD 21205 USA. EM dryugo@bme.jhu.edu CR Ahmari SE, 2000, NAT NEUROSCI, V3, P445 BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 BRUGGE JF, 1981, HEARING RES, V5, P217, DOI 10.1016/0378-5955(81)90047-2 BRUGGE JF, 1978, J NEUROPHYSIOL, V41, P1557 CAJAL SRY, 1909, HISTOLOGIE SYSTEME N, V1, P754 CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6 Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-# CARR CE, 1990, J NEUROSCI, V10, P3227 Dunn ME, 1998, ANAT EMBRYOL, V197, P9 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 Friedman HV, 2000, NEURON, V27, P57, DOI 10.1016/S0896-6273(00)00009-X Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 GENTSCHE.T, 1973, BRAIN RES, V62, P37, DOI 10.1016/0006-8993(73)90618-5 GULLEY RL, 1977, J CELL BIOL, V75, P837, DOI 10.1083/jcb.75.3.837 HELD H, 1918, ARCH ANAT PHYSL ANAT, P302 IBATA Y, 1976, J NEUROCYTOL, V5, P395, DOI 10.1007/BF01181647 JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X JHAVERI S, 1982, NEUROSCIENCE, V7, P855, DOI 10.1016/0306-4522(82)90047-1 Jontes JD, 2000, NAT NEUROSCI, V3, P231 KETTNER RE, 1985, J NEUROSCI, V5, P275 KOPPL C, 1994, J COMP NEUROL, V339, P438, DOI 10.1002/cne.903390310 Koppl C, 1997, J COMP NEUROL, V378, P265 Larramendi L. M., 1969, NEUROBIOLOGY CEREBEL, P803 Leake PA, 2002, J COMP NEUROL, V448, P6, DOI 10.1002/cne.10176 Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14 Lendvai B, 2000, NATURE, V404, P876, DOI 10.1038/35009107 LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205 LIBERMAN MC, 1980, HEARING RES, V3, P45, DOI 10.1016/0378-5955(80)90007-6 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Lorente de No R, 1933, LARYNGOSCOPE, V43, P327 Lu B, 2004, PROG BRAIN RES, V146, P137, DOI 10.1016/S0079-6123(03)46010-X MOLNAR CE, 1968, PR INST ELECTR ELECT, V56, P993, DOI 10.1109/PROC.1968.6450 Morara S, 2001, NEUROSCIENCE, V108, P655, DOI 10.1016/S0306-4522(01)00433-X MUGNAINI E, 1969, NEUROBIOLOGY CEREBEL, P749 NEISES GR, 1982, ANAT REC, V204, P271, DOI 10.1002/ar.1092040312 Nicol MJ, 2002, J PHYSIOL-LONDON, V539, P713, DOI 10.1013/jphysiol.2001.012972 Oleskevich S, 2004, J PHYSIOL-LONDON, V560, P709, DOI 10.1113/jphysiol.2004.066652 Peters A, 1991, FINE STRUCTURE NERVO, V3rd PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 PFEIFFER RR, 1966, SCIENCE, V154, P667, DOI 10.1126/science.154.3749.667 Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5 ROMAND R, 1984, EXP BRAIN RES, V56, P395 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Ryugo DK, 1997, J COMP NEUROL, V385, P230, DOI 10.1002/(SICI)1096-9861(19970825)385:2<230::AID-CNE4>3.0.CO;2-2 RYUGO DK, 1982, J COMP NEUROL, V210, P239, DOI 10.1002/cne.902100304 Ryugo DK, 2003, HEARING RES, V181, P73, DOI 10.1016/S0378-5955(03)00171-0 RYUGO DK, 1991, J COMP NEUROL, V305, P35, DOI 10.1002/cne.903050105 Ryugo DK, 2005, SCIENCE, V310, P1490, DOI 10.1126/science.1119419 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 Ryugo DK, 1996, J COMP NEUROL, V365, P141, DOI 10.1002/(SICI)1096-9861(19960129)365:1<141::AID-CNE11>3.0.CO;2-T SENTO S, 1989, J COMP NEUROL, V280, P553, DOI 10.1002/cne.902800406 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 Snyder RL, 1997, J COMP NEUROL, V384, P293, DOI 10.1002/(SICI)1096-9861(19970728)384:2<293::AID-CNE9>3.0.CO;2-X SPOENDLIN H, 1973, P185 Suter DM, 2000, J NEUROBIOL, V44, P97, DOI 10.1002/1097-4695(200008)44:2<97::AID-NEU2>3.0.CO;2-U Trussell LO, 2002, CURR OPIN NEUROBIOL, V12, P400, DOI 10.1016/S0959-4388(02)00335-5 VAUGHN JE, 1989, SYNAPSE, V3, P255, DOI 10.1002/syn.890030312 WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2 WALSH EJ, 1988, HEARING RES, V36, P233, DOI 10.1016/0378-5955(88)90065-2 Walsh Edward J., 1992, P161 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 Wang YX, 1998, J NEUROSCI, V18, P1148 NR 65 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 100 EP 115 DI 10.1016/j.heares.2006.01.007 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300012 PM 16497457 ER PT J AU Feng, JJ Morest, DK AF Feng, Jane J. Morest, D. Kent TI Development of synapses and expression of a voltage-gated potassium channel in chick embryonic auditory nuclei SO HEARING RESEARCH LA English DT Article DE Kv3.1; translocation; nucleus magnocellularis; nucleus laminaris; astrocyte; axon initial segment ID FREQUENCY FIRING NEURONS; BRAIN-STEM; N-MAGNOCELLULARIS; COCHLEAR NUCLEUS; UP-REGULATION; KV3 CHANNELS; K+ CHANNELS; SYSTEM; LAMINARIS; CURRENTS AB The potassium channel protein, Kv3.1, is abundantly expressed in the chick auditory pathway. Its b-isoform is found in nucleus magnocellularis, which receives the cochlear input, both before and after the establishment of synaptic connections. It is also present in cell cultures in the absence of any peripheral input. However, the expression of this isoform in the embryo has been shown to increase with development. Here, we address the question of the correlation between maturation of synapses in the auditory pathway and the pattern of expression of the b-isoform in a series of embryos prepared for immunohistochemistry at Hamburger-Hamilton stages equivalent to E10, E12, E14, and E17. We show here that this subunit translocates from the perinuclear cytoplasm to the cell membrane domain in nucleus magnocellularis at the time that cochlear nerve endings emerge as endbulbs of Held (E17). In nucleus laminaris, by this time, while abundant Kv3.1b occurs in the perinuclear cytoplasm, a translocation to the cell membrane domain has not yet occurred, and the mature peri-synaptic localization is delayed to a later stage. This difference suggests a hierarchy in the developmental expression of Kv3.1. An unexpected finding is the expression of the a-isoform of Kv3.1 in astrocytes, especially those which surround the developing nuclei and their connecting fibers. We also report here for the first time the presence of Kv3.1b in the initial segments of axons at the times when they begin to form. Our observations suggest that the Kv3.1 channel protein is regulated through mechanisms linked to the development of synaptic activity. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. So Connecticut State Univ, Dept Biol, New Haven, CT 06515 USA. RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. EM kentmorest@neuron.uchc.edu CR Anderova M, 2004, GLIA, V48, P311, DOI 10.1002/glia.20076 Bekar LK, 2002, GLIA, V39, P207, DOI 10.1002/glia.10096 BOOK KJ, 1991, EXP NEUROL, V111, P228, DOI 10.1016/0014-4886(91)90011-Z Brenowitz S, 2001, J NEUROSCI, V21, P9487 Brew HM, 1995, J NEUROSCI, V15, P8011 Carr CE, 1996, J COMP NEUROL, V373, P467, DOI 10.1002/(SICI)1096-9861(19960930)373:4<467::AID-CNE1>3.0.CO;2-# Carr CE, 2001, CURR OPIN NEUROBIOL, V11, P727, DOI 10.1016/S0959-4388(01)00276-8 Chung S, 1998, NEUROSCI LETT, V242, P73, DOI 10.1016/S0304-3940(98)00029-9 Cramer KS, 2000, DEV BIOL, V224, P138, DOI 10.1006/dbio.2000.9779 Devaux J, 2003, J NEUROSCI, V23, P4509 Elezgarai I, 2003, NEUROSCIENCE, V118, P889, DOI 10.1016/S0306-4522(03)00068-X Feng J, 2001, J NEUROSCI RES, V65, P121, DOI 10.1002/jnr.1135 Gan L, 1998, J NEUROBIOL, V37, P69, DOI 10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6 Gan L, 1996, J BIOL CHEM, V271, P5859 Gurantz D, 2000, J NEUROBIOL, V42, P347, DOI 10.1002/(SICI)1097-4695(20000215)42:3<347::AID-NEU6>3.0.CO;2-J Hallows JL, 1998, J NEUROSCI, V18, P5682 HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104 Hendriks R, 1999, J NEUROSCI RES, V58, P805, DOI 10.1002/(SICI)1097-4547(19991215)58:6<805::AID-JNR7>3.0.CO;2-V Hendriks R, 1999, J NEUROSCI RES, V58, P791, DOI 10.1002/(SICI)1097-4547(19991215)58:6<791::AID-JNR6>3.0.CO;2-3 Henne J, 2004, J NEUROSCI RES, V75, P44, DOI 10.1002/jnr.10830 Ishikawa T, 2003, J NEUROSCI, V23, P10445 JACKSON H, 1978, J COMP PHYSIOL PSYCH, V92, P682, DOI 10.1037/h0077496 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X JHAVERI S, 1982, NEUROSCIENCE, V7, P809, DOI 10.1016/0306-4522(82)90045-8 JOSEPH AW, 1993, J NEUROPHYSIOL, V69, P1197 Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279 Liu SQJ, 1998, J NEUROSCI, V18, P2881 Liu SQJ, 1998, J NEUROSCI, V18, P8758 LUNEAU CJ, 1991, P NATL ACAD SCI USA, V88, P3932, DOI 10.1073/pnas.88.9.3932 Macica CM, 2003, J NEUROSCI, V23, P1133 Parameshwaran S, 2001, J NEUROSCI, V21, P485 Parameshwaran-Iyer S, 2003, J NEUROBIOL, V55, P165, DOI 10.1002/neu.10198 PARKS TN, 1975, J COMP NEUROL, V164, P435, DOI 10.1002/cne.901640404 PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756 PERNEY T M, 1991, Current Opinion in Cell Biology, V3, P663, DOI 10.1016/0955-0674(91)90039-2 Perney TM, 1997, J COMP NEUROL, V386, P178 Pollock NS, 2002, J COMP NEUROL, V452, P381, DOI 10.1002/cne.10401 REYES AD, 1994, J NEUROSCI, V14, P5352 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 RUBEL EW, 1975, J COMP NEUROL, V164, P411, DOI 10.1002/cne.901640403 RUBEL EW, 1976, J COMP NEUROL, V166, P469, DOI 10.1002/cne.901660408 Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0 Rudy B, 1999, ANN NY ACAD SCI, V868, P304, DOI 10.1111/j.1749-6632.1999.tb11295.x SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0 Smart SL, 1997, GLIA, V20, P127, DOI 10.1002/(SICI)1098-1136(199706)20:2<127::AID-GLIA4>3.0.CO;2-6 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 Van Lunteren E, 2002, J MUSCLE RES CELL M, V23, P197, DOI 10.1023/A:1020967106084 von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004 Wang LY, 1998, P NATL ACAD SCI USA, V95, P1882, DOI 10.1073/pnas.95.4.1882 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x WEISER M, 1995, J NEUROSCI, V15, P4298 Zhou XN, 2001, J NEUROSCI RES, V65, P24, DOI 10.1002/jnr.1124 NR 54 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 116 EP 126 DI 10.1016/j.heares.2006.01.012 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300013 PM 16530363 ER PT J AU Harris, JA Rubel, EW AF Harris, Julie A. Rubel, Edwin W. TI Afferent regulation of neuron number in the cochlear nucleus: Cellular and molecular analyses of a critical period SO HEARING RESEARCH LA English DT Article DE cochlear nucleus; critical period; microarray; deafferentation; neuron death ID STEM AUDITORY NUCLEI; UNILATERAL ODOR DEPRIVATION; BRAIN-STEM; PROTEIN-SYNTHESIS; GENE-EXPRESSION; MAGNOCELLULARIS NEURONS; INTRACELLULAR CALCIUM; ELECTRICAL-ACTIVITY; ACTION-POTENTIALS; OLFACTORY-BULB AB The neurons of the cochlear nucleus are dependent on input from the auditory nerve for survival during a critical period of development in a variety of vertebrate species. The molecules that underlie this age-dependent vulnerability to deafferentation are for the most part unknown, although recent studies have begun to yield interesting candidate genes. Here, we review the studies that originally described the presence of afferent dependent neuron survival in the cochlear nucleus and the age-dependency of this effect, as well as more recent work that seeks to understand the mechanisms underlying the neuron loss that occurs and the basis of this critical period. While much of the past work on cochlear nucleus neuronal susceptibility has been conducted looking at one or two genes at a time, recent advances in genomics make it possible to screen tens of thousands of genes while looking for candidate genes that are determinants of the critical period response to afferent deprivation. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Grad Program Neurobiol & Behav, CHDD Bldg,Rm CD176,Box 357923, Seattle, WA 98195 USA. EM jharris1@u.washington.edu; rubel@u.washington.edu CR Baldi A, 2000, EUR J NEUROSCI, V12, P2281, DOI 10.1046/j.1460-9568.2000.00119.x Benn SC, 2004, NAT REV NEUROSCI, V5, P686, DOI 10.1038/nrn1477 BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 BORN DE, 1988, J NEUROSCI, V8, P901 BRUNJES PC, 1983, BRAIN RES BULL, V11, P501, DOI 10.1016/0361-9230(83)90121-1 Campenot RB, 2004, J NEUROBIOL, V58, P217, DOI 10.1002/neu.10322 CHOI DW, 1992, J NEUROBIOL, V23, P1261, DOI 10.1002/neu.480230915 Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4 Ehret G, 1976, J Am Audiol Soc, V1, P179 Fields RD, 2005, CELL CALCIUM, V37, P433, DOI 10.1016/j.ceca.2005.01.011 FRAZIER LL, 1988, J COMP NEUROL, V269, P355, DOI 10.1002/cne.902690304 GALLI L, 1988, SCIENCE, V242, P90, DOI 10.1126/science.3175637 GALLIRESTA L, 1993, J NEUROSCI, V13, P243 GOEDERT M, 1978, BRAIN RES, V148, P264, DOI 10.1016/0006-8993(78)90401-8 HAMBURGER V, 1949, J EXP ZOOL, V111, P457, DOI 10.1002/jez.1401110308 HARRIS JA, 2005, ABSTRACT ITINEARY PL Harris JA, 2005, J COMP NEUROL, V493, P460, DOI 10.1002/cne.20776 Hashisaki G T, 1989, J Comp Neurol, V283, P5 Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710 Hensch TK, 2004, ANNU REV NEUROSCI, V27, P549, DOI 10.1146/annurev.neuro.27.070203.144327 HUBEL DH, 1970, J PHYSIOL-LONDON, V206, P419 HUBEL DH, 1964, N-S ARCH EX PATH PH, V248, P492, DOI 10.1007/BF00348878 HYSON RL, 1989, J NEUROSCI, V9, P2835 JACKSON H, 1982, J COMP NEUROL, V210, P80, DOI 10.1002/cne.902100109 LEVIMONTALCINI R, 1949, J COMP NEUROL, V91, P209, DOI 10.1002/cne.900910204 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 Lin X, 2000, Brain Res Dev Brain Res, V119, P297 LIPPE WR, 1994, J NEUROSCI, V14, P1486 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC LORENZ KZ, 1958, SCI AM, V199, P67 Lu Y, 2005, J NEUROPHYSIOL, V93, P1418, DOI 10.1152/jn.00659.2004 MARTIN MR, 1981, J COMP NEUROL, V197, P169, DOI 10.1002/cne.901970113 Mizrahi A, 2003, NAT NEUROSCI, V6, P1201, DOI 10.1038/nn1133 Mizrahi A, 2004, J NEUROSCI, V24, P3147, DOI 10.1523/JNEUROSCI.5218-03.2004 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 Mostafapour SP, 2002, J NEUROSCI, V22, P4670 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 PARKS TN, 1979, J COMP NEUROL, V183, P665, DOI 10.1002/cne.901830313 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 Riccio A, 1999, SCIENCE, V286, P2358, DOI 10.1126/science.286.5448.2358 RICH T, 1999, NAT CELL BIOL, V1, P69 RUBEL EW, 2004, PLASTICITY AUDITORY, V21, P8 Ryugo DK, 2003, BRAIN RES BULL, V60, P435, DOI 10.1016/S0361-9230(03)00049-2 SAUNDERS JC, 1973, BRAIN RES, V63, P59, DOI 10.1016/0006-8993(73)90076-0 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 Smittkamp SE, 2005, HEARING RES, V204, P48, DOI 10.1016/j.heares.2004.12.011 SNIDER WD, 1992, J NEUROBIOL, V23, P1231, DOI 10.1002/neu.480230913 Stern EA, 2001, NEURON, V31, P305, DOI 10.1016/S0896-6273(01)00360-9 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 Turrigiano GG, 2004, NAT REV NEUROSCI, V5, P97, DOI 10.1038/nrn1327 WALSH EJ, 1987, HEARING RES, V28, P97, DOI 10.1016/0378-5955(87)90157-2 Walsh GS, 2004, J NEUROSCI, V24, P9638, DOI 10.1523/JNEUROSCI.1299-04.2004 West AE, 2001, P NATL ACAD SCI USA, V98, P11024, DOI 10.1073/pnas.191352298 WIESEL TN, 1963, J NEUROPHYSIOL, V26, P1003 Wilkinson Brandy L, 2002, Brain Res Mol Brain Res, V99, P67 Wilkinson BL, 2003, NEUROSCIENCE, V120, P1071, DOI 10.1016/S0306-4522(03)00387-7 Zhao J, 2004, HEARING RES, V189, P63, DOI 10.1016/S0378-5955(03)00370-8 ZIRPEL L, 1995, J NEUROPHYSIOL, V74, P1355 Zirpel L, 1998, J NEUROPHYSIOL, V79, P2288 Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127 Zirpel L, 2000, J NEUROSCI, V20, P6267 NR 63 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 127 EP 137 DI 10.1016/j.heares.2006.03.016 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300014 PM 16874907 ER PT J AU Willott, JF Bosch, JV Shimizu, T Ding, DL AF Willott, James F. Bosch, Justine Vanden Shimizu, Toru Ding, Da-Lian TI Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus SO HEARING RESEARCH LA English DT Article DE mice; sensorineural hearing loss; augmented acoustic environment; cochlear nucleus; hair cells ID CONDUCTIVE HEARING-LOSS; HAIR CELL LOSS; INFERIOR COLLICULUS; C57BL/6J MICE; PROLONGED EXPOSURE; AUDITORY FUNCTION; AGE; MOUSE; STRAINS; NEURONS AB DBA/2.1 (D2) mice, which exhibit very early progressive sensorineural hearing loss, were treated for 12 h nightly with an augmented acoustic environment (AAE) initiated before the onset of hearing. The AAE consisted of repetitive bursts of a 70 dB sound pressure level, half-octave noise band centered at 20 kHz (i.e. low frequencies were excluded). At 55 days of age, AAE-treated mice, compared to control mice, exhibited less elevation of auditory brainstem response thresholds for tone frequencies from 16 to 32 kHz and fewer missing outer hair cells in the high-frequency tonotopic region of the cochlea, The dorsal region of their anteroventral cochlear nucleus (most strongly stimulated by the AAE) was larger, had more surviving neurons, and larger neurons than those of untreated control mice. These and previous findings using an AAE band containing lower frequencies indicate that AAE treatment effects are frequency-related. The findings provide support for the hypothesis that the beneficial effects of AAE treatment on the cochlea are associated with increased physiological activity evoked by the AAE, and the central AAE effects result from increased AAE-evoked neural activity and a healthier cochlea providing the auditory input. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ S Florida, Dept Psychol, Tampa, FL 33620 USA. Jackson Lab, Bar Harbor, ME 04609 USA. Univ Buffalo, Buffalo, NY USA. RP Willott, JF (reprint author), Univ S Florida, Dept Psychol, 4202 E Fowler Ave,PCD4118G, Tampa, FL 33620 USA. EM jimw@niu.edu CR BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9 BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0 Bohne BA, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P171 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 Ding DL, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P189, DOI 10.1201/9781420038736.ch13 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P243, DOI 10.1201/9781420038736.ch18 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 HENRY KR, 1980, AUDIOLOGY, V19, P369 Javel E., 1986, NEUROBIOLOGY HEARING, P213 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Kiang N.Y.S., 1965, MIT RES MONOGRAPH, V35 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 RALLS K, 1967, ANIM BEHAV, V15, P123, DOI 10.1016/S0003-3472(67)80022-8 Ramon, 1909, HISTOLOGIE SYSTEME N Rhode WS, 1991, NEUROBIOLOGY HEARING, P47 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 Shnerson A, 1983, AUDITORY PSYCHOBIOLO, P395 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 SUNDIN V, 1999, SOC NEUR MIAM Trettel J, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P279, DOI 10.1201/9781420038736.ch19 TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 Turner JG, 1998, HEARING RES, V118, P101, DOI 10.1016/S0378-5955(98)00024-0 WEBSTER DB, 1983, EXP NEUROL, V79, P130, DOI 10.1016/0014-4886(83)90384-9 WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1 WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684 WILLIS RD, 1984, J VAC SCI TECHNOL A, V2, P57, DOI 10.1116/1.572625 WILLOTT JF, 2005, JARO-J ASSOC RES OTO, V28, P1 WILLOTT JF, 1996, ILSI MONOGRAPHS PATH, P179 Willott JF, 1999, HEARING RES, V135, P78, DOI 10.1016/S0378-5955(99)00094-5 Willott JF, 2000, HEARING RES, V142, P79, DOI 10.1016/S0378-5955(00)00014-9 Willott JF, 2004, J COMP NEUROL, V472, P358, DOI 10.1002/cne.20065 WILLOTT JF, 1982, NEUROSCI LETT, V34, P13, DOI 10.1016/0304-3940(82)90085-4 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1981, J NEUROPHYSIOL, V45, P35 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 Willott JF, 2000, HEARING RES, V147, P275, DOI 10.1016/S0378-5955(00)00137-4 NR 41 TC 7 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 138 EP 145 DI 10.1016/j.heares.2006.01.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300015 PM 16497456 ER PT J AU Holt, AG Asako, M Duncan, RK Lomax, CA Juiz, JM Altschuler, RA AF Holt, Avril Genene Asako, Mikiya Duncan, R. Keith Lomax, Catherine A. Juiz, Jose M. Altschuler, Richard A. TI Deafness associated changes in expression of two-pore domain potassium channels in the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE auditory; deafness; potassium channels; plasticity; cochlear nucleus ID CEREBELLAR GRANULE CELLS; CENTRAL AUDITORY-SYSTEM; K+ CHANNEL; INFERIOR COLLICULUS; ELECTRICAL-STIMULATION; FUNCTIONAL EXPRESSION; MUSCARINIC INHIBITION; CEREBRAL-ISCHEMIA; NOISE EXPOSURE; SIZE CHANGES AB Two-pore domain potassium channels (K-2PD(+)) play an important role in setting resting membrane potential by regulating background leakage of potassium ions, which in turn controls neuronal excitability. To determine whether these channels contribute to activitydependent plasticity following deafness, we used quantitative real-time PCR to examine the expression of 10 K-2PD(+), subunits in the rat cochlear nucleus at 3 days, 3 weeks and 3 months after bilateral cochlear ablation. There was a large sustained decrease in the expression of TASK-5, a subunit that is predominantly expressed in auditory brain stem neurons, and in the TASK-1 subunit which is highly expressed in several types of cochlear nucleus neurons. TWIK-1 and THIK-2 also showed significant decreases in expression that were maintained across all time points. TWIK-2, TREK-1 and TREK-2 showed no significant change in expression at 3 days but showed large decreases at 3 weeks and 3 months following deafness. TRAAK and TASK-3 subunits showed significant decreases at 3 days and 3 weeks following deafness, but these differences were no longer significant at 3 months. Dramatic changes in expression of K-2PD(+), subunits suggest these channels may play a role in deafness-associated changes in the excitability of cochlear nucleus neurons. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, Ann Arbor, MI 48109 USA. Kansai Med Univ, Dept Otolaryngol, Osaka, Japan. Univ Castilla La Mancha, Albacete 02071, Spain. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. RP Holt, AG (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol Head & Neck Surg, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM avrilhol@umich.edu CR Ashmole I, 2001, PFLUG ARCH EUR J PHY, V442, P828, DOI 10.1007/s004240100620 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 BLEDSOE SC, 1997, LANG SCI, P513 Boyd DF, 2000, J PHYSIOL-LONDON, V529, P321, DOI 10.1111/j.1469-7793.2000.00321.x Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Caminos E, 2005, BRAIN RES, V1056, P118, DOI 10.1016/j.brainres.2005.07.031 Chambard JM, 2005, PFLUG ARCH EUR J PHY, V450, P34, DOI 10.1007/s00424-004-1366-2 Czirjak G, 2001, AM J PHYSIOL-CELL PH, V281, pC700 Enyeart JA, 2003, MOL PHARMACOL, V64, P132, DOI 10.1124/mol.64.1.132 Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 Fujino K, 2001, J NEUROSCI, V21, P7372 Gnatenco C, 2002, BRAIN RES, V931, P56, DOI 10.1016/S0006-8993(02)02261-8 Imig TJ, 2005, J COMP NEUROL, V490, P391, DOI 10.1002/cne.20674 Kaczmarek LK, 2005, HEARING RES, V206, P133, DOI 10.1016/j.heares.2004.11.023 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kang DW, 2004, J PHYSIOL-LONDON, V554, P64, DOI 10.1113/jphysiol.2003.054387 Kanold PO, 2005, J NEUROPHYSIOL, V93, P2887, DOI 10.1152/jn.00910.2004 Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045 Kawano A, 1997, ADV OTO-RHINO-LARYNG, V52, P33 Kim D, 2005, CURR PHARM DESIGN, V11, P2717, DOI 10.2174/1381612054546824 Kim JS, 2005, J PHARMACOL EXP THER, V314, P618, DOI 10.1124/jpet.105.084418 LESPERANCE MM, 1995, HEARING RES, V86, P77, DOI 10.1016/0378-5955(95)00056-A Li ZB, 2005, BIOCHEM BIOPH RES CO, V327, P1163, DOI 10.1016/j.bbrc.2004.12.124 Liu W, 2004, CLIN EXP PHARMACOL P, V31, P174, DOI 10.1111/j.1440-1681.2004.03964.x Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lu Y, 2004, J COMP NEUROL, V470, P93, DOI 10.1002/cne.11037 LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 Macica CM, 2003, J NEUROSCI, V23, P1133 Millar JA, 2000, P NATL ACAD SCI USA, V97, P3614, DOI 10.1073/pnas.050012597 MOLLER AR, 2005, ANATOMICAL PHYSL BAS, P1 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7 Niparko JK, 1999, LARYNGOSCOPE, V109, P1721, DOI 10.1097/00005537-199911000-00001 Pal B, 2005, HEARING RES, V199, P57, DOI 10.1016/j.heares.2004.07.020 Plant LD, 2005, CURR OPIN NEUROBIOL, V15, P326, DOI 10.1016/j.conb.2005.05.008 Rajan S, 2001, J BIOL CHEM, V276, P7302, DOI 10.1074/jbc.M008985200 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002 Rusznak Z, 2004, CELL MOL LIFE SCI, V61, P1532, DOI 10.1007/s00018-004-4082-3 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 Song P, 2005, NAT NEUROSCI, V8, P1335, DOI 10.1038/nn1533 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Talley EM, 2001, J NEUROSCI, V21, P7491 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 WOMBLE MD, 1992, J PHYSIOL-LONDON, V457, P93 Xu XH, 2004, MOL BRAIN RES, V120, P205, DOI 10.1016/j.molbrainres.2003.09.020 Yeom M, 2005, BIOCHEM BIOPH RES CO, V326, P321, DOI 10.1016/j.bbrc.2004.11.034 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 NR 54 TC 26 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 146 EP 153 DI 10.1016/j.heares.2006.03.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300016 PM 16650703 ER PT J AU Rubio, ME AF Rubio, Maria E. TI Redistribution of synaptic AMPA receptors at glutamatergic synapses in the dorsal cochlear nucleus as an early response to cochlear ablation in rats SO HEARING RESEARCH LA English DT Article DE cochlear ablation; rat; electron microscopy; postembedding immunogold labeling; AMPA receptors ID STEM AUDITORY NUCLEI; BRAIN-STEM; GUINEA-PIG; DIFFERENTIAL DISTRIBUTION; DESCENDING PROJECTIONS; HIPPOCAMPAL-NEURONS; CONGENITAL DEAFNESS; OSSICLE REMOVAL; ACOUSTIC TRAUMA; FUSIFORM CELLS AB This study investigated whether unilateral deafferentation of the presynaptic neuron is key in the control of morphology and the subunit composition and expression of AMPA type glutamate receptors (GluRs) in neurons of the dorsal cochlear nucleus (DCN). Data showed that there are morphological changes at the postsynaptic sites which precede presynaptic changes at the auditory nerve (AN) synaptic ending in response to peripheral damage, in particular that the postsynaptic densities (PSD) of the AN on fusiform cells (FC) are thicker after denervation. Moreover, GluR2, GluR3 and GluR4 AMPA receptor subunits were redistributed, not only at the synapse of FCs receiving direct contact with the AN, but also at the glutarnatergic synapse of the parallel fibers on FC and on cartwheel cells (CwC) which are indirectly innervated by the AN. Interestingly, the same synapses in the DCN contralateral to the lesion and with a normal AN synaptic input also redistributed AMPA receptor subunits at the synapse in respond to deafferentation. In these synapses, there was an increase of immunogold labeling for GluR2/3 subunits but not for GluR2 at 2 days after deafferentation. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Connecticut, Dept Physiol & Neurobiol, Storrs, CT 06269 USA. RP Rubio, ME (reprint author), Univ Connecticut, Dept Physiol & Neurobiol, 75 N Eagleville Rd, Storrs, CT 06269 USA. EM maria.rubio@uconn.edu CR Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 BLISS TVP, 1993, NATURE, V361, P31, DOI 10.1038/361031a0 BOETTCHER FA, 1993, J ACOUST SOC AM, V94, P2123, DOI 10.1121/1.407484 BROWN MC, 1990, HEARING RES, V49, P105, DOI 10.1016/0378-5955(90)90098-A Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 DAVIS KA, 2000, AM PHYSL SOC, P926 Dosemeci A, 2001, P NATL ACAD SCI USA, V98, P10428, DOI 10.1073/pnas.181336998 Gardner SM, 1999, J NEUROSCI, V19, P8721 Gardner SM, 2001, J NEUROSCI, V21, P7428 GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 Golding NL, 1997, J NEUROPHYSIOL, V78, P248 GULLEY RL, 1977, J CELL BIOL, V75, P837, DOI 10.1083/jcb.75.3.837 HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335 KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 Lawrence JJ, 2000, J NEUROSCI, V20, P4864 Lee DJ, 2003, J NEUROCYTOL, V32, P229, DOI 10.1023/B:NEUR.0000010082.99874.14 Lissin DV, 1998, P NATL ACAD SCI USA, V95, P7097, DOI 10.1073/pnas.95.12.7097 Liu SQJ, 2000, NATURE, V405, P454 Malinow R, 2002, ANNU REV NEUROSCI, V25, P103, DOI 10.1146/annurev.neuro.25.112701.142758 MANIS PB, 1989, J NEUROPHYSIOL, V61, P149 Martone ME, 1999, J NEUROSCI, V19, P1988 MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X MUGNAINI E, 1985, J COMP NEUROL, V235, P61, DOI 10.1002/cne.902350106 Murthy VN, 2001, NEURON, V32, P673, DOI 10.1016/S0896-6273(01)00500-1 Nusser Z, 2000, CURR OPIN NEUROBIOL, V10, P337, DOI 10.1016/S0959-4388(00)00086-6 O'Brien RJ, 1998, NEURON, V21, P1067 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 OSEN KK, 1995, J COMP NEUROL, V357, P482, DOI 10.1002/cne.903570311 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 Petralia RS, 2004, EUR J NEUROSCI, V19, P2017, DOI 10.1111/j.1460-9568.2004.03324.x PETRALIA RS, 2000, HEARING RES, V3496, P1 Petralia RS, 1996, J COMP NEUROL, V372, P356 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 Rao A, 1997, NEURON, V19, P801, DOI 10.1016/S0896-6273(00)80962-9 Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5 Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249 Rubio ME, 1998, J COMP NEUROL, V399, P341, DOI 10.1002/(SICI)1096-9861(19980928)399:3<341::AID-CNE4>3.0.CO;2-0 Rubio ME, 1997, NEURON, V18, P939, DOI 10.1016/S0896-6273(00)80333-5 Rubio ME, 1999, J NEUROSCI, V19, P5549 RYUGO DK, 1993, J COMP NEUROL, V329, P20, DOI 10.1002/cne.903290103 Shen K, 1999, SCIENCE, V284, P162, DOI 10.1126/science.284.5411.162 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M SHORE SE, 1991, HEARING RES, V52, P255, DOI 10.1016/0378-5955(91)90205-N SMITH PH, 1985, J COMP NEUROL, V237, P127, DOI 10.1002/cne.902370110 SPANGLER KM, 1987, J COMP NEUROL, V259, P452, DOI 10.1002/cne.902590311 Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 Turrigiano GG, 1998, NATURE, V391, P892, DOI 10.1038/36103 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x Wang YX, 1998, J NEUROSCI, V18, P1148 Weedman DL, 1996, J COMP NEUROL, V369, P345 WENTHOLD RJ, 1992, J BIOL CHEM, V267, P501 WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 Zirpel L, 2000, J NEUROSCI, V20, P6267 NR 64 TC 27 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 154 EP 167 DI 10.1016/j.heares.2006.03.007 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300017 PM 16644159 ER PT J AU Jin, YM Godfrey, DA Wang, J Kaltenbach, JA AF Jin, Yong-Ming Godfrey, Donald A. Wang, Jie Kaltenbach, James A. TI Effects of intense tone exposure on choline acetyltransferase activity in the hamster cochlear nucleus SO HEARING RESEARCH LA English DT Article DE acetylcholinesterase; auditory; facial nerve; microdissection; plasticity; tinnitus ID SPONTANEOUS NEURAL ACTIVITY; SUPERIOR OLIVARY COMPLEX; OLIVOCOCHLEAR NEURONS; ACOUSTIC TRAUMA; BRAIN-STEM; SOUND EXPOSURE; RAT; TINNITUS; ACETYLCHOLINESTERASE; SYSTEM AB Choline acetyltransferase (ChAT) activity has been mapped in the cochlear nucleus (CN) of control hamsters and hamsters that had been exposed to an intense tone. ChAT activity in most CN regions of hamsters was only a third or less of the activity in rat CN, but in granular regions ChAT activity was similar in both species. Eight days after intense tone exposure, average ChAT activity increased on the tone-exposed side as compared to the opposite side, by 74% in the anteroventral CN (AVCN), by 5511,, in the granular region dorsolateral to it, and by 74% in the deep layer of the dorsal CN (DCN). In addition, average ChAT activity in the exposed-side AVCN and fusiform soma layer of DCN was higher than in controls, by 152% and 67%, respectively. Two months after exposure, average ChAT activity was still 53% higher in the exposed-side deep layer of DCN as compared to the opposite side. Increased ChAT activity after intense tone exposure may indicate that this exposure leads to plasticity of descending cholinergic innervation to the CN, which might affect spontaneous activity in the DCN that has been associated with tinnitus. (c) 2006 Elsevier B.V. All rights reserved. C1 Med Univ Ohio, Dept Surg, Div Otolaryngol, Toledo, OH 43614 USA. Wayne State Univ, Dept Otolaryngol, Detroit, MI USA. RP Godfrey, DA (reprint author), Med Univ Ohio, Dept Surg, Div Otolaryngol, 3065 Arlington Ave, Toledo, OH 43614 USA. EM dgodfrey@meduohio.edu CR ARMSTRONG DM, 1991, J COMP NEUROL, V304, P596, DOI 10.1002/cne.903040407 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 CARRON M, 2006, ARO ABSTR, V29, P45 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Chen K, 1999, NEUROSCIENCE, V90, P1043, DOI 10.1016/S0306-4522(98)00503-X CHEN KJ, 1995, HEARING RES, V89, P137, DOI 10.1016/0378-5955(95)00131-6 CHEN KJ, 1994, HEARING RES, V77, P168 COLLINGE C, 1991, HEARING RES, V53, P159, DOI 10.1016/0378-5955(91)90051-A GODFREY DA, 1987, HEARING RES, V28, P253, DOI 10.1016/0378-5955(87)90053-0 GODFREY DA, 1987, HEARING RES, V28, P237, DOI 10.1016/0378-5955(87)90052-9 GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8 GODFREY DA, 1983, HEARING RES, V11, P133, DOI 10.1016/0378-5955(83)90076-X GODFREY DA, 1981, J HISTOCHEM CYTOCHEM, V29, P720 Godfrey DA, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P139, DOI 10.1007/978-1-4419-8712-9_13 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P697 GODFREY DA, 1990, HEARING RES, V49, P259, DOI 10.1016/0378-5955(90)90108-2 Golding NL, 1996, J NEUROSCI, V16, P2208 Hazell J., 1999, P 6 INT TINN SEM TIN, P133 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X Heller AJ, 2003, OTOLARYNG CLIN N AM, V36, P239, DOI 10.1016/S0030-6665(02)00160-3 HOOVER DB, 1985, NEUROSCIENCE, V15, P481, DOI 10.1016/0306-4522(85)90226-X Horvath M, 2000, J COMP NEUROL, V422, P95 Jin YM, 2005, J NEUROSCI RES, V81, P91, DOI 10.1002/jnr.20536 Jin YM, 2006, J NEUROSCI RES, V83, P157, DOI 10.1002/jnr.20706 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Lowry OH, 1972, FLEXIBLE SYSTEM ENZY Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Moller AR, 2003, OTOLARYNG CLIN N AM, V36, P249, DOI 10.1016/S003-6665(02)00170-6 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 Raji-Kubba J, 2002, J CHEM NEUROANAT, V24, P75, DOI 10.1016/S0891-0618(02)00022-4 Rasmussen G.L., 1960, NEURAL MECHANISMS AU, P105 Sanchez-Gonzalez MA, 2003, HEARING RES, V185, P65, DOI 10.1016/S0378-5955(03)00213-2 SASAKI CT, 1981, LARYNGOSCOPE, V91, P2018 SCHWEITZER L, 1984, J COMP NEUROL, V225, P228, DOI 10.1002/cne.902250208 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1 Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L Yao WP, 1996, J COMP NEUROL, V373, P27 Zhang JS, 2000, HEARING RES, V140, P7, DOI 10.1016/S0378-5955(99)00181-1 Zhang JS, 2003, HEARING RES, V185, P13, DOI 10.1016/S0378-5955(03)00276-4 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 NR 57 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 168 EP 175 DI 10.1016/j.heares.2006.02.002 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300018 PM 16549284 ER PT J AU Ma, WLD Young, ED AF Ma, Wei-Li Diana Young, Eric D. TI Dorsal cochlear nucleus response properties following acoustic trauma: Response maps and spontaneous activity SO HEARING RESEARCH LA English DT Article DE dorsal cochlear nucleus; acoustic trauma; response maps; spontaneous activity ID STEM AUDITORY NUCLEI; COMPLEX-SPIKING NEURONS; SPONTANEOUS NEURAL ACTIVITY; INFERIOR COLLICULUS; BRAIN-STEM; GUINEA-PIG; ELECTRICAL-STIMULATION; INTENSE SOUND; NERVE FIBERS; HEARING-LOSS AB Recordings from single neurons in the dorsal cochlear nucleus (DCN) of unanesthetized (decerebrate) cats were done to characterize the effects of acoustic, trauma. Trauma was produced by a 250 Hz band of noise centered at 10 kHz, presented at 105-120 dB SPL for 4 h. After a one-month recovery period, neurons were recorded in the DCN. The threshold shift, determined from compound action-potential audiograms, showed a sharp threshold elevation of about 60 dB at BFs above an edge frequency of 5-10 kHz. The response maps of neurons with best frequencies (BFs) above the edge did not show the typical organization of excitatory and inhibitory areas seen in the DCN of unexposed animals. Instead, neurons showed no response to sound, weak responses that were hard to tune and characterize, or "tail" responses, consisting of broadly-tuned, predominantly excitatory responses, with a roughly low-pass shape similar to the tuning curves of auditory nerve fibers with similar threshold shifts. In some tail responses whose BFs were near the edge of the threshold elevation, a second weak high-frequency response was seen that suggests convergence of auditory nerve inputs with widely separated BFs on these cells. Spontaneous rates among neurons with elevated thresholds were not increased over those in populations of principal neurons in unexposed animals. (c) 2006 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21205 USA. Johns Hopkins Univ, Ctr Hearing & Balance, Baltimore, MD 21205 USA. RP Young, ED (reprint author), Johns Hopkins Univ, Dept Biomed Engn, 505 Traylor Res Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. EM dma@bme.jhu.edu; eyoung@jhu.edu CR Abbott SD, 1999, NEUROSCIENCE, V93, P1375, DOI 10.1016/S0306-4522(99)00300-0 Anderson MJ, 2004, HEARING RES, V188, P29, DOI 10.1016/S0378-5955(03)00348-4 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 BORN DE, 1988, J NEUROSCI, V8, P901 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Davis KA, 2000, J NEUROPHYSIOL, V83, P926 Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 Davis KA, 1997, J NEUROSCI, V17, P6798 Ding J, 1999, J NEUROPHYSIOL, V82, P3434 EVANS EF, 1973, EXP BRAIN RES, V17, P402 GEISLER CD, 1989, J ACOUST SOC AM, V86, P2192, DOI 10.1121/1.398480 GERKEN GM, 1984, HEARING RES, V13, P249, DOI 10.1016/0378-5955(84)90078-9 GODFREY DA, 1975, J COMP NEUROL, V162, P269, DOI 10.1002/cne.901620207 HARRISON RV, 1981, J ACOUST SOC AM, V70, P1036, DOI 10.1121/1.386954 Heinz MG, 2005, JARO-J ASSOC RES OTO, V6, P91, DOI 10.1007/s10162-004-5043-0 Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Joris PX, 1998, J NEUROSCI, V18, P3955 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kanold PO, 2001, J NEUROSCI, V21, P7848 Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Leake PA, 2000, HEARING RES, V147, P221, DOI 10.1016/S0378-5955(00)00133-7 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1984, HEARING RES, V16, P33, DOI 10.1016/0378-5955(84)90023-6 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 Milbrandt JC, 2000, HEARING RES, V147, P251, DOI 10.1016/S0378-5955(00)00135-0 Miller RL, 1997, J ACOUST SOC AM, V101, P3602, DOI 10.1121/1.418321 Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963 NELKEN I, 1994, J NEUROPHYSIOL, V71, P2446 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 Ohlrogge M, 2001, J COMP NEUROL, V436, P290 Oleskevich S, 2002, J PHYSIOL-LONDON, V540, P447, DOI 10.1113/jphysiol.2001.013821 PALMER AR, 1993, PROG BRAIN RES, V97, P107 PARHAM K, 1995, J NEUROPHYSIOL, V73, P550 PFEIFFER RR, 1966, EXP BRAIN RES, V1, P220 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X Rajan R, 1998, J COMP NEUROL, V399, P35 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Redd EE, 2000, HEARING RES, V147, P160, DOI 10.1016/S0378-5955(00)00129-5 Reiss LAJ, 2005, J NEUROSCI, V25, P3680, DOI 10.1523/JNEUROSCI.4963-04.2005 RHODE WS, 1987, J NEUROPHYSIOL, V57, P414 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 Rhode WS, 1999, J NEUROPHYSIOL, V82, P1019 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Salvi R., 1982, NEW PERSPECTIVES NOI, P165 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Spirou GA, 1999, J NEUROPHYSIOL, V82, P648 SPIROU GA, 1991, J NEUROPHYSIOL, V66, P1750 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x VOIGT HF, 1990, J NEUROPHYSIOL, V64, P1590 Wang J, 1996, J NEUROPHYSIOL, V75, P171 Wang JA, 2002, HEARING RES, V168, P238, DOI 10.1016/S0378-5955(02)00360-X Willott JF, 1997, J COMP NEUROL, V385, P405 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 2001, INTEGRATIVE FUNCTION, P160 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4 Young ED, 2003, SYNAPTIC ORG BRAIN, P125 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384 NR 90 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 176 EP 188 DI 10.1016/j.heares.2006.03.011 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300019 PM 16630701 ER PT J AU Illing, RB Reisch, A AF Illing, Robert-Benjamin Reisch, Adrian TI Specific plasticity responses to unilaterally decreased or increased hearing intensity in the adult cochlear nucleus and beyond SO HEARING RESEARCH LA English DT Article DE synaptic remodeling; cochlear lesion; cochlear implant; GAP-43; c-Fos ID AUDITORY BRAIN-STEM; ELECTRICAL INTRACOCHLEAR STIMULATION; LONG-TERM POTENTIATION; IMMEDIATE-EARLY GENES; C-FOS; OLIVOCOCHLEAR NEURONS; TRANSCRIPTION FACTORS; MESSENGER-RNA; EXPRESSION; RAT AB Variations of sensory activation in strength and pattern are known to affect structure and function of the mammalian brain. Whereas such malleability is readily granted to forebrain structures at early developmental stages, acceptance of experience-dependent structural plasticity has been slow for the adult brainstem. Over the past years we have identified consequences of cochlear ablation, noise trauma., or electrical intracochlear stimulation on neurons and circuitry of the auditory brainstem of the adult rat. We found that loss of sensory activation as well as a substitution for it entail specific molecular, ultrastructural, and morphological changes to central auditory neurons. Here, we make a first attempt to compare these different patterns of central remodeling. We tentatively suggest that after hearing loss or intracochlear stimulation responses of the central neural network in the adult brainstem suit the concept of functional adaptation. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, D-79106 Freiburg, Germany. RP Illing, RB (reprint author), Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, Killianstr 5, D-79106 Freiburg, Germany. EM robert.illing@uniklinik-freiburg.de CR ABRAHAM WC, 1994, P NATL ACAD SCI USA, V91, P10049, DOI 10.1073/pnas.91.21.10049 Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2 COLE AJ, 1989, NATURE, V340, P474, DOI 10.1038/340474a0 DEMMER J, 1993, MOL BRAIN RES, V17, P279, DOI 10.1016/0169-328X(93)90012-E Fleischmann A, 2003, J NEUROSCI, V23, P9116 Forster CR, 1998, NEUROREPORT, V9, P3531 Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W Illing RB, 2002, EXP NEUROL, V175, P226, DOI 10.1006/exnr.2002.7895 ILLING RB, 1995, NEUROSCI LETT, V194, P9, DOI 10.1016/0304-3940(95)11706-3 Illing RB, 2005, HEARING RES, V206, P185, DOI 10.1016/j.heares.2005.01.016 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 Illing RB, 2001, NEUROREPORT, V12, P875, DOI 10.1097/00001756-200103260-00050 Jones MW, 2001, NAT NEUROSCI, V4, P289, DOI 10.1038/85138 KACZMAREK L, 1992, BEHAV NEURAL BIOL, V57, P263, DOI 10.1016/0163-1047(92)90276-A KACZMAREK L, 1993, J NEUROSCI RES, V34, P377, DOI 10.1002/jnr.490340402 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080 KUHL PK, 1992, SCIENCE, V255, P606, DOI 10.1126/science.1736364 Lunds R, 1978, DEV PLASTICITY BRAIN Michler SA, 2003, AUDIOL NEURO-OTOL, V8, P190, DOI 10.1159/000071060 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Moller AR, 2001, NEUROL RES, V23, P565, DOI 10.1179/016164101101199009 Møller A R, 2001, Am J Audiol, V10, P68, DOI 10.1044/1059-0889(2001/012) Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 Pena M, 2003, P NATL ACAD SCI USA, V100, P11702, DOI 10.1073/pnas.1934290100 PURVES D, 1985, PRINCIPLES NEURAL DE ROBERTSON HA, 1992, BIOCHEM CELL BIOL, V70, P729 Sumner CJ, 2005, J NEUROPHYSIOL, V94, P4234, DOI 10.1152/jn.00401.2005 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Warr W., 1992, MAMMALIAN AUDITORY P WORLEY PF, 1993, J NEUROSCI, V13, P4776 Yao WP, 1996, AUDIT NEUROSCI, V2, P241 NR 32 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 189 EP 197 DI 10.1016/j.heares.2005.12.014 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300020 PM 16624512 ER PT J AU Idrizbegovic, E Salman, H Niu, XZ Canlon, B AF Idrizbegovic, Esma Salman, Hazim Niu, Xianzhi Canlon, Barbara TI Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice SO HEARING RESEARCH LA English DT Article DE hair cells; spiral ganglion neurons; calbindin; calretinin; parvalbumin; aging; presbycusis ID AUDITORY BRAIN-STEM; CALBINDIN D-28K IMMUNOREACTIVITY; INDUCED HEARING-LOSS; INFERIOR COLLICULUS; CBA/CAJ MICE; F1-HYBRID STRAINS; INBRED STRAINS; NERVOUS-SYSTEM; UP-REGULATION; CELL-DEATH AB The BALB/c mouse is an established model for the early development of sensorineural hearing loss, and is homozygous for the Ah1 allele (age-related hearing loss). The present study was designed to determine how auditory peripheral pathology influences calcium-binding protein immunoreactivity in the cochlear nucleus in aged BALB/c mice. To address this issue the loss of hair cells, spiral ganglion neurons (SGN), and neurons in the dorsal (DCN) and posteroventral (PVCN) cochlear nucleus of BALB/c mice at 1 and 24 months of age were quantified using CAST stereological methods. These values were then compared to the percent increase in immunopositive calcium-binding proteins in the cochlear nucleus. By 24 months of age there was a near complete loss of all outer hair cells (OHC). The inner hair cell (IHC) loss was near complete in the more apical and basal regions, while in the mid-regions approximately 50% were missing. The SGN in the apical and middle turns show a 20% loss (re: 1 month) and the basal turn up to 80% loss. A statistically significant decrease in the density of DCN and PVCN neurons (25%) was found at 24 months of age compared to the one month old animals. The percentage of parvalbumin and calretinin positive neurons in the DCN and the PVCN in relation to the density of Nissl stained neurons showed significant increases at 24 months compared to the 1 month old animals. We also determine the relationship between peripheral pathology and the percent increase in calcium-binding protein immunoreactivity. In the DCN, the percent increase of calretinin and parvalbumin was correlated to the loss of SGN, IHCs and OHCs. In the PVCN, parvalbumin was correlated to SGN, IHC, and OHC loss. The percent increase in calbindin immunoreactivity was not correlated to any peripheral pathology. The data here suggest a percent increase in calcium-binding protein immunoreactivity in the cochlea nucleus in the 24 month old mice may reflect an endogenous protective strategy that is designed to counteract calcium overload that is prominent during aging and degeneration. These results will be valuable for understanding the relationship among the peripheral and central auditory system in a model demonstrating a rapidly progressive presbyacusis. (c) 2006 Elsevier B.V. All rights reserved. C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. Karlinska Univ Hosp, Dept Audiol, Stockholm, Sweden. RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, Eulers Vag 8, S-17177 Stockholm, Sweden. EM Barbara.Canlon@fyfa.ki.se CR Alvarado JC, 2004, J COMP NEUROL, V470, P63, DOI 10.1002/cne.11038 BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 CELIO MR, 1990, NEUROSCIENCE, V35, P375, DOI 10.1016/0306-4522(90)90091-H Dekkers J, 2004, NEUROSCIENCE, V123, P459, DOI 10.1016/j.neuroscience.2003.07.013 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V FRISINA RD, 1995, HEARING RES, V85, P53, DOI 10.1016/0378-5955(95)00029-4 Fuentes-Santamaria V, 2003, J COMP NEUROL, V460, P585, DOI 10.1002/cne.10676 GUNDERSEN HJG, 1988, APMIS, V96, P857 Heizmann CW, 1995, CALCIUM REGULATION C Idrizbegovic E, 2001, HEARING RES, V158, P102, DOI 10.1016/S0378-5955(01)00295-7 Idrizbegovic E, 2003, HEARING RES, V179, P33, DOI 10.1016/S0378-5955(03)00076-5 Idrizbegovic E, 2004, NEUROBIOL AGING, V25, P1085, DOI 10.1016/j.neuroimaging.2003.11.004 Idrizbegovic E, 1999, NEUROSCI LETT, V259, P49, DOI 10.1016/S0304-3940(98)00911-2 Idrizbegovic E, 1998, BRAIN RES, V800, P86, DOI 10.1016/S0006-8993(98)00504-6 Idrizbegovic E, 2001, AUDIOL NEURO-OTOL, V6, P132, DOI 10.1159/000046820 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 LALONDE J, 2004, J NEUROSCI, V24, P55 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E LUKAS W, 1994, NEUROSCIENCE, V61, P307, DOI 10.1016/0306-4522(94)90233-X MILLER RJ, 1995, BIOCHEM SOC T, V23, P629 MOCKEL V, 1994, BRAIN RES, V648, P109, DOI 10.1016/0006-8993(94)91911-9 Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 ORRENIUS S, 1994, J NEURAL TRANSM-SUPP, P1 Paxinos G., 2004, MOUSE BRAIN STEREOTA SCHMIDTKASTNER R, 1992, EXP NEUROL, V117, P230, DOI 10.1016/0014-4886(92)90132-A Spencer RF, 2002, HEARING RES, V171, P129, DOI 10.1016/S0378-5955(02)00494-X Terro F, 1998, BRAIN RES, V809, P319, DOI 10.1016/S0006-8993(98)00883-X VATER M, 1994, J COMP NEUROL, V341, P534, DOI 10.1002/cne.903410409 Verkhratsky A, 1998, TRENDS NEUROSCI, V21, P2, DOI 10.1016/S0166-2236(97)01156-9 Viberg A, 2004, HEARING RES, V197, P1, DOI 10.1016/j.heares.2004.04.016 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7 Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8 NR 40 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 198 EP 206 DI 10.1016/j.heares.2006.01.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300021 PM 16874908 ER PT J AU Caspary, DA Hughes, LF Schatteman, TA Turner, JG AF Caspary, Donald A. Hughes, Larry F. Schatteman, Tracy A. Turner, Jeremy G. TI Age-related changes in the response properties of cartwheel cells in rat dorsal cochlear nucleus SO HEARING RESEARCH LA English DT Article DE auditory; aging; cartwheel cells; dorsal cochlear nucleus; response properties ID COMPLEX-SPIKING NEURONS; PARALLEL FIBER STIMULATION; LABELED FUSIFORM CELLS; HEARING-LOSS; GUINEA-PIG; INFERIOR COLLICULUS; SPEECH RECOGNITION; AUDITORY-SYSTEM; FISCHER-344 RAT; DISCHARGE CHARACTERISTICS AB The fusiform cell and deep layers of the dorsal cochlear nucleus (DCN) show neurotransmitter and functional age-related changes suggestive of a downregulation of inhibitory efficacy onto DCN output neurons. Inhibitory circuits implicated in these changes include vertical and D-multipolar cells. Cartwheel cells comprise a large additional population of DCN inhibitory neurons. Cartwheel cells receive excitatory inputs from granule cell parallel fibers and provide a source of glycinergic inhibitory input onto apical dendrites of DCN fusiform cells. The present study compared the response properties from young and aged units meeting cartwheel-cell criteria in anesthetized rats. Single unit recordings from aged cartwheel cells revealed significantly higher thresholds, increased spontaneous activity and significantly altered rate-level functions characterized by hyperexcitability at higher intensities. Aged cartwheel cells showed a significant reduction in off-set suppression. Collectively, these findings suggest a loss of tonic and perhaps response inhibition onto aged DCN cartwheel neurons. These changes likely reflect a compensatory downregulation of synaptic inhibition in response to a loss of excitatory drive from auditory and non-auditory excitatory inputs via granule cells. The impact of increased excitability of cartwheel cells on DCN output neurons is likely to be complex, influenced by loss of glycinergic release and/or subunit receptor changes which would only partially off-set age-related loss of inhibition onto the somata and basal dendrites of fusiform cells. (c) 2006 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Caspary, DA (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629, Springfield, IL 62794 USA. EM dcaspary@siumed.edu CR AKHTAR ND, 1991, J COMP NEUROL, V307, P200, DOI 10.1002/cne.903070204 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P563, DOI 10.1007/BF00964919 BERREBI AS, 1990, J NEUROCYTOL, V19, P643, DOI 10.1007/BF01188033 BERREBI AS, 1991, ANAT EMBRYOL, V183, P427 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T BROWN AM, 1988, HEARING RES, V34, P27, DOI 10.1016/0378-5955(88)90048-2 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BURIAN M, 1988, NEUROSCI LETT, V84, P13, DOI 10.1016/0304-3940(88)90329-1 Caspary DM, 2002, HEARING RES, V168, P163, DOI 10.1016/S0378-5955(02)00363-5 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary DM, 2001, NOISE INDUCED HEARIN, P169 Caspary DM, 2005, J NEUROSCI, V25, P10952, DOI 10.1523/JNEUROSCI.2451-05.2005 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 Davis KA, 1997, J NEUROSCI, V17, P6798 Ding J, 1999, J NEUROPHYSIOL, V82, P3434 DUBNO JR, 1984, J ACOUST SOC AM, V76, P87, DOI 10.1121/1.391011 FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Fuchs JL, 1998, J COMP NEUROL, V395, P209 Golding NL, 1997, J NEUROPHYSIOL, V78, P248 Golding NL, 1996, J NEUROSCI, V16, P2208 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 GREENWOOD DD, 1998, J ACOUST SOC AM, V7, P2592 Hancock KE, 2002, J NEUROPHYSIOL, V87, P2505, DOI 10.1152/jn00342.2001 Hancock KE, 2002, J NEUROPHYSIOL, V87, P2520, DOI 10.1152/jn.00343.2001 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549 HUNTSMAN MM, 1995, J COMP NEUROL, V352, P235, DOI 10.1002/cne.903520207 JONES EG, 1993, CEREB CORTEX, V3, P361, DOI 10.1093/cercor/3.5.361-a KAAS JH, 1991, ANNU REV NEUROSCI, V14, P137, DOI 10.1146/annurev.neuro.14.1.137 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874 MANIS PB, 1989, J NEUROPHYSIOL, V61, P149 MANIS PB, 1990, J NEUROSCI, V10, P2338 MANIS PB, 1994, J COMP NEUROL, V348, P261, DOI 10.1002/cne.903480208 May BJ, 2000, HEARING RES, V148, P74, DOI 10.1016/S0378-5955(00)00142-8 Mendelson JR, 2001, HEARING RES, V158, P84, DOI 10.1016/S0378-5955(01)00294-5 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T Molitor SC, 2003, J NEUROPHYSIOL, V89, P2225, DOI 10.1152/jn.00709.2002 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 Moore KA, 2002, J NEUROSCI, V22, P6724 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 MUGNAINI E, 1980, J NEUROCYTOL, V9, P537, DOI 10.1007/BF01204841 MULROW CD, 1990, ANN INTERN MED, V113, P188 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 Ohlrogge M, 2001, J COMP NEUROL, V436, P290 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 Ostroff JM, 2003, HEARING RES, V181, P1, DOI 10.1016/S0378-5955(03)00113-8 Palombi PS, 1996, J NEUROPHYSIOL, V76, P3114 PARHAM K, 1995, J NEUROPHYSIOL, V73, P550 Ralston HJ, 1996, J COMP NEUROL, V371, P325 Reiss LAJ, 2005, J NEUROSCI, V25, P3680, DOI 10.1523/JNEUROSCI.4963-04.2005 RUBIO ME, 2004, J COMP NEUROL, V447, P253 Schmolesky MT, 2000, NAT NEUROSCI, V3, P384 SCHNEIDER BA, 1994, J ACOUST SOC AM, V95, P980, DOI 10.1121/1.408403 Shore SE, 2005, EUR J NEUROSCI, V21, P3334, DOI 10.1111/j.1460-9568.2005.04142.x Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 SPONGR VP, 1992, ARCH OTOLARYNGOL, V118, P157 Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 Sutherland DP, 1998, HEARING RES, V120, P86, DOI 10.1016/S0378-5955(98)00056-2 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Thomas A, 1980, Br J Audiol, V14, P76, DOI 10.3109/03005368009078906 Tremblay KL, 2002, NEUROREPORT, V13, P1865, DOI 10.1097/00001756-200210280-00007 Tremblay KL, 2003, CLIN NEUROPHYSIOL, V114, P1332, DOI 10.1016/S1388-2457(03)00114-7 Turner JG, 2005, HEARING RES, V202, P129, DOI 10.1016/j.heares.2004.09.011 WALLER HJ, 1994, J NEUROPHYSIOL, V71, P467 Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1 Weedman DL, 1996, J COMP NEUROL, V369, P345 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 WEINSTEIN BE, 1982, J SPEECH HEAR RES, V25, P593 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott JF, 1997, J COMP NEUROL, V385, P405 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F Woody CD, 1998, BRAIN RES, V789, P74, DOI 10.1016/S0006-8993(98)00017-1 WOUTERLOOD FG, 1984, J COMP NEUROL, V227, P136, DOI 10.1002/cne.902270114 Young E.D., 2004, SYNAPTIC ORG BRAIN, P125 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1384 NR 81 TC 17 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 207 EP 215 DI 10.1016/j.heares.2006.03.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300022 PM 16644158 ER PT J AU Frisina, RD Walton, JP AF Frisina, Robert D. Walton, Joseph P. TI Age-related structural and functional changes in the cochlear nucleus SO HEARING RESEARCH LA English DT Article DE presbycusis; glycine; auditory brainstem; central auditory system; aging ID SENSORINEURAL HEARING-LOSS; INFERIOR COLLICULUS; CBA/J MICE; FISCHER-344 RATS; SYNAPTIC CHANGES; AGING C57BL/6J; MOUSE; YOUNG; MORPHOLOGY; INHERITANCE AB Presbycusis - age-related hearing loss - is a key communication disorder and chronic medical condition of our aged population. The cochlear nucleus is the major site of projections from the auditory portion of the inner ear. Relative to other levels of the peripheral and central auditory systems, relatively few studies have been conducted examining age-related changes in the cochlear nucleus. The neurophysiological investigations suggest declines in glycine-mediated inhibition, reflected in increased firing rates in cochlear nucleus neurons from old animals relative to young adults. Biochemical investigations of glycine inhibition in the cochlear nucleus are consistent with the functional aging declines of this inhibitory neurotransmitter system that affect complex sound processing. Anatomical reductions in neurons of the cochlear nucleus and their output pathways can occur due to aging changes in the brain, as well as due to age-dependent plasticity of the cochlear nucleus in response to the age-related loss of inputs from the cochlea, particularly from the basal, high-frequency regions. Novel preventative and curative biomedical interventions in the future aimed at alleviating the hearing loss that comes with age, will likely emanate from increasing our knowledge and understanding of its neural and molecular bases. To the extent that this sensory deficit resides in the central auditory system, including the cochlear nucleus, future neural therapies will be able to improve hearing in the elderly. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Anat & Biomed Engn, Rochester, NY 14642 USA. RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA. EM rdf@q.ent.rochester.edu CR Allen PD, 2003, HEARING RES, V186, P17, DOI 10.1016/S0378-5955(03)00300-9 BANAYSCHWARTZ M, 1989, NEUROCHEM RES, V14, P555, DOI 10.1007/BF00964918 BRINER W, 1989, NEUROBIOL AGING, V10, P295, DOI 10.1016/0197-4580(89)90039-0 CASPARY DM, 2005, J NEUROSCI, V47, P10952 Frisina Robert D., 2001, Seminars in Hearing, V22, P213, DOI 10.1055/s-2001-15627 Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1 Frisina RD, 2005, INFERIOR COLLICULUS, P559, DOI 10.1007/0-387-27083-3_19 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 FRISINDA DR, 2001, FUNCTIONAL NEUROBIOL, P569 Helfert RH, 1999, J COMP NEUROL, V406, P285 Helfert RH, 2003, HEARING RES, V183, P18, DOI 10.1016/S0378-5955(03)00194-1 KEITHLEY EM, 1990, HEARING RES, V49, P169, DOI 10.1016/0378-5955(90)90103-V Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4 Walton JP, 1998, J NEUROSCI, V18, P2764 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U Willott JF, 1997, J COMP NEUROL, V385, P405 WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 Willott JF, 1991, AGING AUDITORY SYSTE, P286 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 WILLOTT JF, 1994, HEARING RES, V74, P1, DOI 10.1016/0378-5955(94)90171-6 Willott JF, 1996, DEV BRAIN RES, V91, P218, DOI 10.1016/0165-3806(95)00188-3 Zheng QY, 2005, HUM MOL GENET, V14, P103, DOI 10.1093/hmg/ddi010 NR 29 TC 27 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN-JUL PY 2006 VL 216 BP 216 EP 223 DI 10.1016/j.heares.2006.02.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 064NL UT WOS:000239096300023 PM 16597491 ER PT J AU Excoffon, KJDA Avenarius, MR Hansen, MR Kimberling, WJ Najmabadi, H Smith, RJH Zabner, J AF Excoffon, KJDA Avenarius, MR Hansen, MR Kimberling, WJ Najmabadi, H Smith, RJH Zabner, J TI The Coxsackievirus and Adenovirus Receptor: A new adhesion protein in cochlear development SO HEARING RESEARCH LA English DT Article DE Coxsackievirus and Adenovirus Receptor; CAR; CXADR; usher syndrome; deafness; cochlea ID MEDIATED GENE-TRANSFER; INNER-EAR; USHER-SYNDROME; HAIR-CELLS; RESPIRATORY VIRUSES; OTITIS-MEDIA; B VIRUS; CAR; EXPRESSION; THERAPY AB The Coxsackievirus and Adenovirus Receptor (CAR) is an essential regulator of cell growth and adhesion during development. The gene for CAR, CXADR, is located within the genomic locus for Usher syndrome type 1E (USH1E). Based on this and a physical interaction with harmonin, the protein responsible for USH1C, we hypothesized that CAR may be involved in cochlear development and that mutations in CXADR may be responsible for USH1E. The expression of CAR in the cochlea was determined by PCR and immunofluorescence microscopy. We found that CAR expression is highly regulated during development. In neonatal mice, CAR is localized to the junctions of most cochlear cell types but is restricted to the supporting and strial cells in adult cochlea. A screen of two populations consisting of non-syndromic deaf and Usher 1 patients for mutations in CXADR revealed one haploid mutation (P356S). Cell surface expression, viral receptor activity, and localization of the mutant form of CAR were indistinguishable from wild-type CAR. Although we were unable to confirm a role for CAR in autosomal recessive, non-syndromic deafness, or Usher syndrome type 1, based on its regulation, localization, and molecular interactions, CAR remains an attractive candidate for genetic deafness. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Internal Med, Div Pulm Med, Iowa City, IA 52242 USA. Boys Town Natl Res Hosp, Ctr Hereditary Commun Disorders, Omaha, NE 68131 USA. Social Welf & Rehabil Sci Univ, Genet Res Ctr, Tehran, Iran. Univ Iowa, Interdept PhD Program Genet, Iowa City, IA 52242 USA. RP Smith, RJH (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. EM richard-smith@uiowa.edu; joseph-zabner@uiowa.edu CR Ahmed ZM, 2003, CLIN GENET, V63, P431, DOI 10.1034/j.1399-0004.2003.00109.x Asher DR, 2005, GENESIS, V42, P77, DOI 10.1002/gene.20127 Barald KF, 2004, DEVELOPMENT, V131, P4119, DOI 10.1242/dev.01339 Boeda B, 2002, EMBO J, V21, P6689, DOI 10.1093/emboj/cdf689 Bowles NE, 2002, MOL GENET METAB, V77, P257, DOI 10.1016/S1096-7192(02)00168-3 Bruning A, 2004, EXP CELL RES, V298, P624, DOI 10.1016/j.yexcr.2004.05.001 Chaib H, 1997, HUM MOL GENET, V6, P27, DOI 10.1093/hmg/6.1.27 Coyne CB, 2005, ADV DRUG DELIVER REV, V57, P869, DOI 10.1016/j.addr.2005.01.007 Davis LE, 1995, OTOLARYNG HEAD NECK, V113, P695, DOI 10.1016/S0194-5998(95)70007-2 Dorner AA, 2005, J CELL SCI, V118, P3509, DOI 10.1242/jcs.02476 Excoffon KJDA, 2005, AM J RESP CELL MOL, V32, P498, DOI 10.1165/rcmb.2005-0031OC Excoffon KJDA, 2003, J VIROL, V77, P2559, DOI 10.1128/JVI.77.4.2559-2567.2003 Excoffon KJDA, 2004, J CELL SCI, V117, P4401, DOI 10.1242/jcs.01300 Farinas I, 2001, J NEUROSCI, V21, P6170 Heikkinen T, 2000, VACCINE, V19, pS51, DOI 10.1016/S0264-410X(00)00278-4 Ishimoto S, 2002, HEARING RES, V173, P187, DOI 10.1016/S0378-5955(02)00579-8 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kanzaki S, 2002, HEARING RES, V169, P112, DOI 10.1016/S0378-5955(02)00347-7 Kawamoto K, 2003, MOL THER, V7, P484, DOI 10.1016/S1525-0016(03)00058-3 Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 Matei V, 2005, DEV DYNAM, V234, P633, DOI 10.1002/dvdy.20551 Monobe H, 2003, INT J PEDIATR OTORHI, V67, P801, DOI 10.1016/S0165-5876(03)00124-1 Musher DM, 2003, NEW ENGL J MED, V348, P1256, DOI 10.1056/NEJMra021771 Nakaizumi T, 2004, AUDIOL NEURO-OTOL, V9, P135, DOI 10.1159/000077264 Noramly S, 2002, J NEUROBIOL, V53, P100, DOI 10.1002/neu.10131 Okegawa T, 2001, CANCER RES, V61, P6592 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Roelvink PW, 1998, J VIROL, V72, P7909 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Scanlan MJ, 1999, BBA-GENE STRUCT EXPR, V1445, P39, DOI 10.1016/S0167-4781(99)00033-0 Selmani Z, 2005, EUR ARCH OTO-RHINO-L, V262, P331, DOI 10.1007/s00405-004-0816-y Staecker H, 2004, OTOLARYNG CLIN N AM, V37, P1091, DOI 10.1016/j.otc.2004.05.001 Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X Thoelen I, 2002, BMC GENET, V3, DOI 10.1186/1471-2156-3-1 Verpy E, 2000, NAT GENET, V26, P51 Walters RW, 1999, J BIOL CHEM, V274, P10219, DOI 10.1074/jbc.274.15.10219 Walters RW, 2002, CELL, V110, P789, DOI 10.1016/S0092-8674(02)00912-1 Weiss MA, 1997, INT J DEV NEUROSCI, V15, P577, DOI 10.1016/S0736-5748(96)00112-8 NR 38 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2006.02.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900001 PM 16678988 ER PT J AU Cartee, LA Miller, CA van den Honert, C AF Cartee, LA Miller, CA van den Honert, C TI Spiral ganglion cell site of excitation I: Comparison of scala tympani and intrameatal electrode responses SO HEARING RESEARCH LA English DT Article DE auditory nerve; cats; cochlear implant; electrical stimulation; single fiber recording ID AUDITORY-NERVE FIBERS; COCHLEAR NEURAL MEMBRANE; ELECTRICAL-STIMULATION; PHYSIOLOGICAL-PROPERTIES; GUINEA-PIG; CAT; NEURONS; RECORDINGS; POTENTIALS; PATTERNS AB To determine the site of excitation on the spiral ganglion cell in response to electrical stimulation similar to that from a cochlear implant, single-fiber responses to electrical stimuli delivered by an electrode positioned in the scala tympani were compared to responses from stimuli delivered by an electrode placed in the internal auditory meatus. The response to intrameatal stimulation provided a control set of data with a known excitation site, the central axon of the spiral ganglion cell. For both intrameatal and scala tympani stimuli, the responses to single-pulse, summation, and refractory stimulus protocols were recorded. The data demonstrated that summation pulses, as opposed to single pulses, are likely to give the most insightful measures for determination of the site of excitation. Single-fiber summation data for both scala tympani and intrameatally stimulated fibers were analyzed with a clustering algorithm. Combining cluster analysis and additional numerical modeling data, it was hypothesized that the scala tympani responses corresponded to central excitation, peripheral excitation adjacent to the cell body, and peripheral excitation at a site distant from the cell body. Fibers stimulated by an intrameatal electrode demonstrated the greatest range of jitter measurements indicating that greater fiber independence may be achieved with intrameatal stimulation. (c) 2006 Elsevier B.V. All rights reserved. C1 N Carolina State Univ, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. Univ N Carolina, Chapel Hill, NC USA. Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52240 USA. Cochlear Amer Englewood, Englewood, CO USA. RP Cartee, LA (reprint author), N Carolina State Univ, Joint Dept Biomed Engn, 2110 Faucette Dr,118 Weaver Labs,Box 7625, Raleigh, NC 27695 USA. EM lacartee@ncsu.edu CR ADAMO NJ, 1973, J NEUROCYTOL, V2, P91, DOI 10.1007/BF01099211 Badi AN, 2002, ARCH OTOLARYNGOL, V128, P1019 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CARTEE LA, 2006, IN PRESS HEAR RES Cartee LA, 2000, HEARING RES, V146, P143, DOI 10.1016/S0378-5955(00)00109-X Cartee LA, 2000, HEARING RES, V146, P153, DOI 10.1016/S0378-5955(00)00110-6 Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Javel E, 2000, HEARING RES, V140, P45, DOI 10.1016/S0378-5955(99)00186-0 JAVEL E, 1987, ANN OTO RHINOL LARYN, V96, P26 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 KOHLLOFFEL LUE, 1974, ARCH OTORHINOLARYNGO, V109, P179 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 Litvak L, 2003, J ACOUST SOC AM, V114, P2099, DOI 10.1121/1.1612494 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 MILLER CA, 2003, 2003 MIDW M ASS RES Mino H, 2004, IEEE T BIO-MED ENG, V51, P13, DOI 10.1109/TBME.2003.820383 MOXON EC, 1965, THESIS MIT CAMBRIDGE Moxon E.C., 1971, THESIS MIT CAMBRIDGE Rattay F, 1990, ELECT NERVE STIMULAT ROBERTSON D, 1976, BRAIN RES, V109, P487, DOI 10.1016/0006-8993(76)90029-9 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 SIMMONS BF, 1983, ANN NY ACAD SCI, V405, P259 SPACH MS, 1985, IEEE T BIO-MED ENG, V32, P743, DOI 10.1109/TBME.1985.325489 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 Theodoridis S., 2003, PATTERN RECOGNITION VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VERVEEN A. A., 1962, ACTA MORPHOL NEERLANDO SCAND, V5, P79 ZAPPIA JJ, 1990, OTOLARYNG HEAD NECK, V103, P575 NR 34 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 10 EP 21 DI 10.1016/j.heares.2006.02.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900002 PM 16624511 ER PT J AU Cartee, LA AF Cartee, LA TI Spiral ganglion cell site of excitation II: Numerical model analysis SO HEARING RESEARCH LA English DT Article DE auditory neuron; cochlear implant; electrical stimulation; Hodgkin-Huxley equations; neural model ID ELECTRICAL-STIMULATION; MYELINATED NERVE; AUDITORY-NERVE; NEURONS; PROPAGATION; POTENTIALS; MEMBRANE; CATS AB An anatomically based model of cochlear neuron electrophysiology has been developed and used to interpret the physiological responses of the auditory neuron to electrical summation and refractory pulse-pair stimuli. For summation pulses, the summation time constant, is tau(sum), indicates the ability of the membrane to hold charge after cessation of a pulse. When a spiral ganglion cell with a cell body was simulated, the value of tau(sum) was elevated at the peripheral node adjacent to the cell body. For refraction pulses, the refraction time constant, tau(ref), indicates the duration of the relative refractory period of the membrane. In spiral ganglion cell simulations, tau(ref) was decreased at the peripheral node adjacent to the cell body and slightly elevated at other peripheral nodes. The extent of the cell body influence on tau(sum) and tau(ref) was high localized. Excitation times for the nodes adjacent to the cell body were either simultaneous or near simultaneous resulting in similar response latencies. Results indicate that values of tau(sum) and tau(ref) may be useful for distinguishing central and peripheral excitation sites while latency measures alone are not a good indication of site of excitation. (c) 2006 Elsevier B.V. All rights reserved. C1 N Carolina State Univ, Joint Dept Biomed Engn, Raleigh, NC 27695 USA. Univ N Carolina, Chapel Hill, NC USA. RP Cartee, LA (reprint author), N Carolina State Univ, Joint Dept Biomed Engn, Box 7625, Raleigh, NC 27695 USA. EM lacartee@ncsu.edu CR ADAMO NJ, 1973, J NEUROCYTOL, V2, P91, DOI 10.1007/BF01099211 CARTEE LA, 2006, HEAR RES CARTEE LA, 1995, ANN BIOMED ENG S1, V23, pS80 Cartee LA, 2000, HEARING RES, V146, P153, DOI 10.1016/S0378-5955(00)00110-6 COLOMBO J, 1987, HEARING RES, V31, P287, DOI 10.1016/0378-5955(87)90197-3 COOLEY JW, 1966, BIOPHYS J, V6, P583 CRANK J, 1947, P CAMB PHILOS SOC, V43, P50 Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 FRANKENHAEUSER B, 1964, J PHYSIOL-LONDON, V171, P302 Gardenhire LW, 1964, P 1964 NAT TEL C, P1 GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 KOHLLOFFEL LUE, 1974, ARCH OTORHINOLARYNGO, V109, P179 LIBERMAN MC, 1984, J COMP NEUROL, V223, P163, DOI 10.1002/cne.902230203 MCNEAL DR, 1976, IEEE T BIO-MED ENG, V23, P329, DOI 10.1109/TBME.1976.324593 POLLARD AE, 1987, MED BIOL ENG COMPUT, V25, P261, DOI 10.1007/BF02447422 REILLY JP, 1985, IEEE T BIO-MED ENG, V32, P1001, DOI 10.1109/TBME.1985.325509 ROBERTSON D, 1976, BRAIN RES, V109, P487, DOI 10.1016/0006-8993(76)90029-9 RUBINSTEIN JT, 1991, BIOPHYS J, V60, P538 SAMPFLI R, 1952, ERGEB PHYSL, V148, P70 SPACH MS, 1985, IEEE T BIO-MED ENG, V32, P743, DOI 10.1109/TBME.1985.325489 TASAKI I, 1955, AM J PHYSIOL, V181, P639 NR 23 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 22 EP 30 DI 10.1016/j.heares.2006.02.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900003 PM 16624510 ER PT J AU Mazurek, B Amarjargal, N Haupt, H Gross, J AF Mazurek, B Amarjargal, N Haupt, H Gross, J TI High potassium concentrations protect inner and outer hair cells in the newborn rat culture from ischemia-induced damage SO HEARING RESEARCH LA English DT Article DE potassium; ischemia; hair cell loss; newborn rat; organ of Corti culture ID PLASMA-MEMBRANE CA2+-ATPASE; CALCIUM-PUMP ACTIVITY; GUINEA-PIG; CA2+ HOMEOSTASIS; SENSORY CELLS; CHANNELS; DEPOLARIZATION; NEURONS; COCHLEA; DEATH AB Several studies indicate that an increase in the extracellular potassium (K+) concentration is a factor exerting a damaging effect on cochlear hair cells (HCs). The present study was designed to examine the effects of high extracellular K+ concentrations on the HCs under normoxic and ischemic conditions. Organotypic cultures of the organ of Corti of newborn rats were exposed to normoxia and ischemia at K+ concentrations of 5-70 mM in artificial perilymph for 3-4 h. The number of IHCs and OHCs in the apical, medial and basal parts of the cochlea were counted 24 h later. The work resulted in two main findings: (1) extracellular K+ concentrations of 30-70 mM had no effect on the HCs under normoxic conditions: (2) tinder ischemic conditions, a clear HC loss. mainly in the medial and basal cochlear parts, was observed at 5 mM K+ as previously reported. In contrast, a high extracellular K+ concentration strongly attenuated the HC loss. This effect nearly completely disappeared by the addition of both eosin, an inhibitor of the plasma membrane calcium ATPase (PMCA), and linopirdine, an inhibitor of the KCNQ4 channel, indicating that a normal activity of the PMCA and the KCNQ4 channels are key factors for HC survival under ischemia and depolarizing conditions. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Med Berlin, Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany. RP Gross, J (reprint author), Univ Med Berlin, Charite, Dept Otorhinolaryngol, Mol Biol Res Lab, Spandauer Damm 130 Bld 31, D-14050 Berlin, Germany. EM birgit.mazurek@charite.de; nyamaa.amra@charite.de; heidemarie.haupt@charite.de; johann.gross@charite.de CR Babnigg G, 2003, J BIOL CHEM, V278, P14872, DOI 10.1074/jbc.M210418200 Beisel KW, 2000, MOL BRAIN RES, V82, P137 Boyer C, 1998, EUR J NEUROSCI, V10, P971, DOI 10.1046/j.1460-9568.1998.00107.x Boyer C, 2001, J NEUROSCI, V21, P2640 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Dallos P, 1996, SPRINGER HDB AUDITOR, P1 DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K Engel J, 2002, ADV OTO-RHINO-LARYNG, V59, P35 Flock A, 2003, AUDIOL NEURO-OTOL, V8, P59, DOI 10.1159/000069002 FRANKLIN JL, 1995, J NEUROSCI, V15, P643 Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143 Garcia ML, 2001, J NEUROSCI RES, V64, P661, DOI 10.1002/jnr.1120 Huy PTB, 2002, ORL-J OTO-RHIN-LARYN, V64, P120 IKEDA K, 1992, PFLUG ARCH EUR J PHY, V420, P493, DOI 10.1007/BF00374624 Jentsch TJ, 2000, NAT REV NEUROSCI, V1, P21, DOI 10.1038/35036198 Kennedy HJ, 2002, CELL CALCIUM, V31, P127, DOI 10.1054/ceca.2001.0267 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 Lampe BJ, 1997, NEUROSCI LETT, V222, P135, DOI 10.1016/S0304-3940(97)13347-X Lipton P, 1999, PHYSIOL REV, V79, P1431 Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 Martinez-Sanchez M, 2004, NEUROSCIENCE, V128, P729, DOI 10.1016/j.neuroscience.2004.06.074 Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5 MEIER K, 1988, ENDOCRINOLOGY, V122, P2764 Nilles R, 1995, HNO, V43, P716 Nouvian R, 2003, EUR J NEUROSCI, V17, P2553, DOI 10.1046/j.1460-9568.2003.02715.x OKANO Y, 1975, ARCH OTO-RHINO-LARYN, V209, P121, DOI 10.1007/BF00456369 Oliver D, 2003, J NEUROSCI, V23, P2141 Osborn Kenneth D, 2004, Biophys J, V87, P1892, DOI 10.1529/biophysj.103.039404 Pottorf WJ, 2002, J NEUROCHEM, V83, P1002, DOI 10.1046/j.1471-4159.2002.01221.x ROMERO PJ, 1984, BIOCHIM BIOPHYS ACTA, V778, P245, DOI 10.1016/0005-2736(84)90365-1 Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x Semaan Maroun T, 2005, Curr Opin Otolaryngol Head Neck Surg, V13, P301, DOI 10.1097/01.moo.0000186335.44206.1c Shieh CC, 2000, PHARMACOL REV, V52, P557 Tan CT, 2001, HEARING RES, V154, P81, DOI 10.1016/S0378-5955(01)00222-2 Usachev YM, 2001, J NEUROCHEM, V76, P1756, DOI 10.1046/j.1471-4159.2001.00169.x Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Xiao AY, 2001, NEUROSCIENCE, V108, P61, DOI 10.1016/S0306-4522(01)00394-3 Yao CJ, 1999, J NEUROCHEM, V73, P457, DOI 10.1046/j.1471-4159.1999.0730457.x ZENNER HP, 1986, ARCH OTO-RHINO-LARYN, V243, P108, DOI 10.1007/BF00453760 ZENNER HP, 1994, EUR ARCH OTO-RHINO-L, V251, P143 NR 40 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 31 EP 38 DI 10.1016/j.heares.2006.02.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900004 PM 16678987 ER PT J AU Braun, M AF Braun, M TI A retrospective study of the spectral probability of spontaneous otoacoustic emissions: Rise of octave shifted second mode after infancy SO HEARING RESEARCH LA English DT Article DE spontaneous otoacoustic emission; medial olivocochlear system; neonate; octave ID ACTIVE MICROMECHANICAL PROPERTIES; SPONTANEOUS CELLULAR VIBRATIONS; DISTORTION-PRODUCT; NON-MUSICIANS; SELECTIVE ATTENTION; EAR RESONANCE; COCHLEA; SENSITIVITY; PREVALENCE; AMPLITUDE AB The recording of otoacoustic emissions (OAEs) is today a widely used tool in medical diagnosis. The mechanisms of OAE generation in the cochlea and their transmission to the external ear canal, however, are not well understood and a matter of long-standing debates. Here, the frequency distribution of 1660 spontaneous otoacoustic emissions (SOAEs) from three surveys, covering 296 human subjects, is analyzed. Neonates show a monomodal distribution with a peak at 4 kHz. but both children (5-11 y) and adults show an identical bimodal distribution, with two peaks in an octave distance (1.5 and 3 kHz). For the combined children and adult data, distribution density at the two peak tops is 2.8 and 2.7 times as high as at the low between them. Mean SOAE amplitudes are unrelated to the two peaks, but show a significant narrow-band dip precisely at the low in between at 2140 Hz (P < 0.008). External ear canal resonance can explain the single 4 kHz mode at birth and the 3 kHz mode in children and adults. The octave shifted 1.5 kHz mode remains without mechanical explanation. It may reflect descending neural influence from central octave band processing. The results are relevant for the interpretation of OAE levels in medical diagnosis. (c) 2006 Elsevier B.V. All rights reserved. C1 Neurosci Mus, S-67195 Klassbol, Sweden. RP Braun, M (reprint author), Neurosci Mus, Gamsbyn 14, S-67195 Klassbol, Sweden. EM nombraun@telia.com CR Abdala C, 2003, J ACOUST SOC AM, V114, P3239, DOI 10.1121/1.1625930 Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 BENTLER RA, 1989, J SPEECH HEAR DISORD, V54, P264 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BONFILS P, 1992, LARYNGOSCOPE, V102, P182 Braun M, 2000, HEARING RES, V145, P130, DOI 10.1016/S0378-5955(00)00083-6 Braun M, 1998, HEARING RES, V118, P129, DOI 10.1016/S0378-5955(98)00028-8 Braun M, 1997, HEARING RES, V114, P197, DOI 10.1016/S0378-5955(97)00160-3 Braun M, 2005, HEARING RES, V210, P85, DOI 10.1016/j.heares.2005.05.015 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4 GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X Goode RL, 1996, AM J OTOL, V17, P813 Guinan Jr J.J., 1996, COCHLEA, P435 Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 KEEFE DH, 1994, J ACOUST SOC AM, V95, P355, DOI 10.1121/1.408380 KEILSON SE, 1993, ACTA OTO-LARYNGOL, V113, P591, DOI 10.3109/00016489309135869 KHANNA SM, 1993, BRIT J AUDIOL, V27, P79, DOI 10.3109/03005369309077895 KRUGER B, 1987, ACTA OTO-LARYNGOL, V103, P578 LAFRENIERE D, 1991, ARCH OTOLARYNGOL, V117, P1382 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 MCFADDEN D, 1993, P NATL ACAD SCI USA, V90, P11900, DOI 10.1073/pnas.90.24.11900 MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F MICHEYL C, 1995, BRAIN COGNITION, V29, P127, DOI 10.1006/brcg.1995.1272 Micheyl C, 1997, NEUROREPORT, V8, P1047, DOI 10.1097/00001756-199703030-00046 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M Norena A, 2002, HEARING RES, V171, P66, DOI 10.1016/S0378-5955(02)00388-X Perrot X, 1999, NEUROSCI LETT, V262, P167, DOI 10.1016/S0304-3940(99)00044-0 PIERSON LL, 1994, AM J OTOLARYNG, V15, P37, DOI 10.1016/0196-0709(94)90038-8 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185 Russell A.F., 1992, THESIS U ILLINOIS UR Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 SMURZYNSKI J, 1992, HEARING RES, V58, P227, DOI 10.1016/0378-5955(92)90132-7 SPEKTOR Z, 1991, LARYNGOSCOPE, V101, P965 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V VANDIJK P, 1994, J ACOUST SOC AM, V96, P163, DOI 10.1121/1.411438 WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8 WESTWOOD GFS, 1992, BRIT J AUDIOL, V26, P143, DOI 10.3109/03005369209079032 WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 49 TC 5 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 39 EP 46 DI 10.1016/j.heares.2006.03.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900005 PM 16644155 ER PT J AU Prado-Guitierrez, P Fewster, LM Heasman, JM Mckay, CM Shepherd, RK AF Prado-Guitierrez, P Fewster, LM Heasman, JM Mckay, CM Shepherd, RK TI Effect of interphase gap and pulse duration on electrically evoked potentials is correlated with auditory nerve survival SO HEARING RESEARCH LA English DT Article DE neural degeneration; deafness; electrical stimulation; cochlear implant; neural prostheses; EABR; ECAP ID SENSORINEURAL HEARING-LOSS; PSYCHOPHYSICAL DETECTION THRESHOLDS; COCHLEAR IMPLANT USERS; FUNCTIONAL-RESPONSES; SPIRAL GANGLION; GUINEA-PIGS; BRAIN-STEM; IN-VIVO; STIMULATION; SINGLE AB We investigated the effect of pulse duration (PD) and interphase-gap (IPG) on the electrically-evoked auditory brain stem response (EABR) and viiith nerve compound action potential (ECAP) of deafened guinea pigs in order to test the hypothesis that the extent of change in these neural responses is affected by the histological status of the auditory nerve. Fifteen guinea pigs were deafened by coadministration of kanamycin and furosemide. Animals were acutely implanted with an 8-band electrode array at 1, 4 or 12 weeks following deafening. EABR and ECAP input/output functions were recorded in response to charge balanced biphasic current pulses. We determined the change in current required to equalize; (i) the EABR amplitude when the duration of the current pulse was doubled (104208 mu s/phase); and (ii) the EABR and ECAP amplitudes when the IPG was increased from 8 to 58 mu s using a 104 mu s/phase current pulse. Following the completion of each experiment the cochleae were examined quantitatively for spiral ganglion neuron survival. As expected, the current level required to evoke an EABR with equal amplitude was lower when the animal was stimulated with current pulses of 208 compared with 104 mu s/phase. Moreover, the current level required to evoke EABR/ECAPs with equal amplitude was lower when current pulses had an IPG of 58 versus 8 mu s. Importantly, there was a reduction in the magnitude of this effect with greater neural loss; the reduced efficacy of changing both PD and IPG on these electrically-evoked potentials was statistically correlated with neural survival. These results may provide a tool for investigating the contribution of auditory nerve survival to clinical performance among cochlear implant subjects. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3052, Australia. Bion Ear Inst, Melbourne, Vic 3002, Australia. RP Shepherd, RK (reprint author), Univ Melbourne, Dept Otolaryngol, Parkville, Vic 3052, Australia. EM rshepherd@bionicear.org RI Shepherd, Robert/I-6276-2012 CR ABBAS PJ, 1991, HEARING RES, V51, P139, DOI 10.1016/0378-5955(91)90012-X BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1835 BRUMMER SB, 1977, IEEE T BIO-MED ENG, V24, P59, DOI 10.1109/TBME.1977.326218 Carlyon RP, 2005, HEARING RES, V205, P210, DOI 10.1016/j.heares.2005.03.021 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 Felix H, 1985, Acta Otolaryngol Suppl, V423, P67 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HINOJOSA R, 1983, ANN NY ACAD SCI, V405, P459, DOI 10.1111/j.1749-6632.1983.tb31662.x Huang CQ, 1999, IEEE T BIO-MED ENG, V46, P461, DOI 10.1109/10.752943 KOLES ZJ, 1972, J PHYSIOL-LONDON, V227, P351 Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1 McKay CM, 1999, J ACOUST SOC AM, V106, P998, DOI 10.1121/1.428052 McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316 Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1 Miller CA, 1995, HEARING RES, V92, P100, DOI 10.1016/0378-5955(95)00205-7 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PARKINS CW, 1987, HEARING RES, V31, P267, DOI 10.1016/0378-5955(87)90196-1 PFINGST BE, 1991, J ACOUST SOC AM, V90, P1857, DOI 10.1121/1.401665 PRADOGUTIERREZ P, 2004, 3 INT COCHL IMPL C I Robblee L S, 1990, NEURAL PROSTHESES FU, P25 Rose C., 1990, YALE JL HUMAN, V2, P37 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Shepherd RK, 2001, ANN BIOMED ENG, V29, P195, DOI 10.1114/1.1355276 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x SKINNER MW, 1994, AM J OTOL, V15, P15 Skinner MW, 2002, EAR HEARING, V23, P207, DOI 10.1097/00003446-200206000-00005 Smith DW, 1997, J ACOUST SOC AM, V102, P2228, DOI 10.1121/1.419636 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 TASAKI I, 1955, AM J PHYSIOL, V181, P639 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1979, ANN BIOMED ENG, V7, P117 Zeng FG, 1998, NEUROREPORT, V9, P1845, DOI 10.1097/00001756-199806010-00033 NR 44 TC 35 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 47 EP 55 DI 10.1016/j.heares.2006.03.006 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900006 PM 16644157 ER PT J AU Wu, CH Jen, PHS AF Wu, CH Jen, PHS TI The role of GABAergic inhibition in shaping duration selectivity of bat inferior collicular neurons determined with temporally patterned sound trains SO HEARING RESEARCH LA English DT Article DE bat; bicuculline; duration selectivity; GABA; pulse repetition rate; pulse trains ID BIG BROWN BAT; EPTESICUS-FUSCUS; TUNING CHARACTERISTICS; PULSE TRAINS; GLYCINERGIC INHIBITION; SPACE REPRESENTATION; RESPONSE PROPERTIES; AUDITORY MIDBRAIN; REPETITION RATE; FM BAT AB A previous study has shown that duration selectivity of neurons in the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus becomes sharper with increasing pulse repetition rate (PRR). The present study examines the role of GABAergic inhibition in improving duration selectivity of bat IC neurons with PRR by means of iontophoretic application of GABA as well as its antagonist, bicuculline. Duration selectivity of IC neurons is studied by plotting the duration tuning curves with the number of impulses per pulse against the pulse duration. Duration tuning curves of IC neurons are described as band-, short-, long- and all-pass in terms of filtering properties to sound duration. Bicuculline application produces more pronounced broadening of duration tuning curves at high than at low PRR. Conversely, GABA application produces more pronounced narrowing of duration tuning curves at low than at high PRR. In either case, sharpening of duration selectivity of IC neurons with increasing PRR is abolished during drug application. The duration tuning curves of IC neurons progressively broadens with recording depth. Broadening of duration tuning curves during bicuculline application is more pronounced for neurons at upper than at deep IC. This progressive decrease in duration selectivity with recording depth is discussed in relation to spatial distribution gradient of GABA(A) receptors in the IC. Possible biological significance of these findings relevant to bat echolocation is discussed. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. Univ Missouri, Intedisciplinary Neurosci Program, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, 208 Lefevre Hall, Columbia, MO 65211 USA. EM jenp@missouri.edu CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Chen GD, 1998, HEARING RES, V122, P142, DOI 10.1016/S0378-5955(98)00103-8 Cooper J. R., 1982, BIOMEDICAL BASIS NEU Ehrlich D, 1997, J NEUROPHYSIOL, V77, P2360 FENG AS, 1990, PROG NEUROBIOL, V34, P313, DOI 10.1016/0301-0082(90)90008-5 Fubara BM, 1996, J COMP NEUROL, V369, P83 Fuzessery ZM, 1999, HEARING RES, V137, P137, DOI 10.1016/S0378-5955(99)00133-1 Galazyuk AV, 2000, J NEUROPHYSIOL, V83, P128 Galazyuk AV, 1997, J COMP PHYSIOL A, V180, P301, DOI 10.1007/s003590050050 GELFAND SA, 1990, HEARING, P257 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 Griffin DR, 1958, LISTENING DARK He JF, 1997, J NEUROSCI, V17, P2615 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Jen PHS, 2001, J COMP PHYSIOL A, V187, P605, DOI 10.1007/s003590100233 Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408 Jen PHS, 2002, BRAIN RES, V948, P159, DOI 10.1016/S0006-8993(02)03056-1 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Koch U, 1998, J NEUROPHYSIOL, V80, P71 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 Lu Y, 1998, J NEUROPHYSIOL, V79, P2303 NARINS PM, 1980, BRAIN BEHAV EVOLUT, V17, P48, DOI 10.1159/000121790 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 Perez-Gonzalez D, 2006, J NEUROPHYSIOL, V95, P823, DOI 10.1152/jn.00741.2005 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POON PWF, 1990, EXP BRAIN RES, V79, P83 ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345 SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674 Smalling JM, 2001, NEUROREPORT, V12, P3539, DOI 10.1097/00001756-200111160-00033 Surlykke A, 2000, J ACOUST SOC AM, V108, P2419, DOI 10.1121/1.1315295 Wu M, 1991, Chin J Physiol, V34, P145 WU M, 1995, LERHINOLOPHE, V11, P75 Wu MI, 1996, J COMP PHYSIOL A, V179, P385 WU MI, 1995, HEARING RES, V85, P155, DOI 10.1016/0378-5955(95)00042-3 Zhou XM, 2001, J COMP PHYSIOL A, V187, P63, DOI 10.1007/s003590000179 Zhou XM, 2002, J COMP PHYSIOL A, V188, P815, DOI 10.1007/s00359-002-0367-x NR 48 TC 13 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 56 EP 66 DI 10.1016/j.heares.2006.03.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900007 PM 16644156 ER PT J AU Sigalovsky, IS Melcher, JR AF Sigalovsky, IS Melcher, JR TI Effects of sound level on fMRI activation in human brainstem, thalamic and cortical centers SO HEARING RESEARCH LA English DT Article DE BOLD; sound intensity; level coding; cardiac gating; sparse imaging; interleaved sampling ID PRIMARY AUDITORY-CORTEX; DEPENDENT REPRESENTATION; TEMPORAL ENVELOPE; PRESSURE LEVEL; HESCHLS GYRUS; STIMULI; NOISE; CAT; INTENSITY; FREQUENCY AB The dependence of fMRI activation on sound level was examined throughout the auditory pathway of normal human listeners using continuous broadband noise, a stimulus widely used in neuroscientific investigations of auditory processing, but largely neglected in neuro-imaging. Several specialized techniques were combined here for the first time to enhance detection of brainstem activation, mitigate scanner noise, and recover temporal resolution lost by the mitigation technique. The main finding was increased activation with increasing level in cochlear nucleus, superior olive, inferior colliculus, medial geniculate body and auditory cortical areas. We suggest that these increases reflect monotonically increasing activity in a preponderance of individual auditory neurons responsive to broadband noise. While the time-course of activation changed with level, the change was subtle and only significant in a part of the cortex. To our knowledge, these are the first fMRI data showing the effects of sound level in subcortical centers or for a non-tonal, non-speech stimulus at any stage of the pathway. The present results add to the body of parametric data in normal human listeners and are fundamental to the design of any fMRI experiment employing continuous noise. (c) 2006 Elsevier B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. RP Sigalovsky, IS (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM plumbum@alum.mit.edu CR AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 Arthurs OJ, 2002, TRENDS NEUROSCI, V25, P27, DOI 10.1016/S0166-2236(00)01995-0 Belin P, 1999, NEUROIMAGE, V10, P417, DOI 10.1006/nimg.1999.0480 Bilecen D, 2002, NEUROIMAGE, V17, P710, DOI 10.1006/nimg.2002.1133 Brechmann A, 2002, J NEUROPHYSIOL, V87, P423 Budd TW, 2003, NEUROIMAGE, V20, P1783, DOI 10.1016/j.neuroimaging.2003.07.026 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 Dale W., 1999, PROSTATE J, V1, P179, DOI 10.1046/j.1525-1411.1999.14005.x Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N Fischl B, 1999, NEUROIMAGE, V9, P195, DOI 10.1006/nimg.1998.0396 Fomby T. B., 1984, ADV ECONOMETRIC METH FRISTON KJ, 1995, HUMAN BRAIN MAPPING, V2, P165 Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 Grady CL, 1997, NEUROREPORT, V8, P2511, DOI 10.1097/00001756-199707280-00019 Guimaraes AR, 1998, HUM BRAIN MAPP, V6, P33, DOI 10.1002/(SICI)1097-0193(1998)6:1<33::AID-HBM3>3.0.CO;2-M Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 Harms MP, 2005, J NEUROPHYSIOL, V93, P210, DOI 10.1152/jn.00712.2004 Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002 Harms MP, 2003, HUM BRAIN MAPP, V20, P168, DOI 10.1002/hbm.10136 Hart HC, 2002, HEARING RES, V171, P177, DOI 10.1016/S0378-5955(02)00498-7 Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X Hawley ML, 2005, HEARING RES, V204, P101, DOI 10.1016/j.heares.2005.01.005 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Jancke L, 1999, NEUROSCI LETT, V266, P125, DOI 10.1016/S0304-3940(99)00288-8 Jancke L, 1998, NEUROPSYCHOLOGIA, V36, P875, DOI 10.1016/S0028-3932(98)00019-0 KAJIKAWA Y, 2005, J NEUROPHYSIOL, V93, P2 Lasota KJ, 2003, J COMPUT ASSIST TOMO, V27, P213, DOI 10.1097/00004728-200303000-00018 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005 MILLEN SJ, 1995, LARYNGOSCOPE, V105, P1305, DOI 10.1288/00005537-199512000-00008 Mohr CM, 1999, J ACOUST SOC AM, V105, P2738, DOI 10.1121/1.426942 Mulert C, 2005, NEUROIMAGE, V28, P49, DOI 10.1016/j.neuroimage.2005.05.041 NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410 PHILLIPS DP, 1985, HEARING RES, V18, P87, DOI 10.1016/0378-5955(85)90112-1 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 RADEMACHER J, 1993, CEREB CORTEX, V3, P313, DOI 10.1093/cercor/3.4.313 Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 NR 40 TC 40 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 67 EP 76 DI 10.1016/j.heares.2006.03.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900008 PM 16644153 ER PT J AU Wang, HT Luo, B Zhou, KQ Xu, TL Chen, L AF Wang, HT Luo, B Zhou, KQ Xu, TL Chen, L TI Sodium salicylate reduces inhibitory postsynaptic currents in-neurons of rat auditory cortex SO HEARING RESEARCH LA English DT Article DE sodium salicylate; inhibitory postsynaptic current; tinnitus; auditory cortex; whole-cell patch-clamp; rat; brain slice ID INFERIOR COLLICULUS; ANIMAL-MODEL; TINNITUS; OTOTOXICITY; PLASTICITY; AI AB Sodium salicylate (SS) is a medicine for anti-inflammation and for chronic pain relief with a side effect of tinnitus. To understand the cellular mechanisms of tinnitus induced by SS in the central auditory system, we examined effects of SS on evoked and miniature inhibitory postsynaptic currents (eIPSCs and mIPSCs) recorded from layer II/III pyramidal neurons of rat auditory cortex in a brain slice preparation with whole-cell patch-clamp techniques. Both eIPSCs and mIPSCs recorded from the auditory cortex could be completely blocked by bicuculline; a selective GABA(A) receptor antagonist. SS did not change the input resistance of neurons but was found to reversibly depress eIPSCs in a concentration-dependent manner. SS reduced eIPSCs to 82.3% of the control level at 0.5 mM (n = 7) and to 60.9% at 1.4 mM (n = 12). In addition, SS at 1.4 mM significantly reduced the amplitude of mIPSCs from 24.12 +/- 1.44 pA to 19.92 +/- 1.31 pA and reduced the frequency of mIPSCs from 1.34 +/- 0.23 Hz to 0.89 +/- 0.13 Hz (n = 6). Our results demonstrate that SS attenuates inhibitory postsynaptic currents in the auditory cortex, suggesting that the alteration of inhibitory neural circuits may be one of the cellular mechanisms for tinnitus induced by SS in the central auditory region. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, Hefei 230027, Peoples R China. Univ Sci & Technol China, Sch Life Sci, Lab Receptor Pharmacol, Hefei 230027, Peoples R China. Chinese Acad Sci, Shanghai Inst Biol Sci, Inst Neurosci, Shanghai 200031, Peoples R China. RP Chen, L (reprint author), Univ Sci & Technol China, Sch Life Sci, Auditory Res Lab, 443 Yellow Mt Rd, Hefei 230027, Peoples R China. EM linchen@ustc.edu.cn RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 CR Basta D, 2004, NEUROSCI RES, V50, P237, DOI 10.1016/j.neures.2004.07.003 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O DEER BC, 1982, J OTOLARYNGOL, V11, P260 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2005, DRUG DISCOV TODAY, V10, P1283, DOI 10.1016/S1359-6446(05)03542-7 Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Gignoux M, 1966, J Fr Otorhinolaryngol Chir Maxillofac, V15, P631 Guitton MJ, 2003, J NEUROSCI, V23, P3944 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 Liu YX, 2005, HEARING RES, V205, P271, DOI 10.1016/j.heares.2005.03.028 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Lockwood AH, 1998, NEUROLOGY, V50, P114 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Paxinos G, 2005, RAT BRAIN STEREOTAXI, V5th Peng BG, 2003, NEUROSCI LETT, V343, P21, DOI 10.1016/S0304-3940(03)00296-9 PRIETO JJ, 1994, J COMP NEUROL, V344, P349, DOI 10.1002/cne.903440304 PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Reyes SA, 2002, HEARING RES, V171, P43, DOI 10.1016/S0378-5955(02)00346-5 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 SILVERST.H, 1967, ANN OTO RHINOL LARYN, V76, P118 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Xu H, 2005, NEUROREPORT, V16, P813, DOI 10.1097/00001756-200505310-00007 NR 32 TC 38 Z9 45 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 77 EP 83 DI 10.1016/j.heares.2006.03.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900009 PM 16632286 ER PT J AU Kim, Y Xin, J Qi, YY AF Kim, Y Xin, J Qi, YY TI A study of hearing aid gain functions based on a nonlinear nonlocal feedforward cochlea model SO HEARING RESEARCH LA English DT Article DE cochlea model; intelligibility; model based amplification; noises; adaptive amplification ID AUDIBILITY; MECHANICS AB A model based sound amplification method is proposed and studied to enhance the ability of the hearing impaired. The model consists of mechanical equations on basilar membrane and outer hair cell (OHC). The OHC is described by a nonlinear nonlocal feedforward model. In addition, a perceptive correction is defined to account for the lumped effect of higher level auditory processing, motivated by the intelligibility function of the hearing impaired. The gain functions are computed by matching the impaired model output to the perceptively weighted normal output, and qualitative agreement is achieved with NAL-NL:1 prescription on clean signals. For noisy signals, an adaptive gain strategy is proposed based on the signal to noise ratios (SNR) computed by the model. The adaptive gain functions provide less gain as SNRs decrease so that the intelligibility can be higher with the adaptivity. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA. Univ Texas, Inst Computat Engn & Sci, Austin, TX 78712 USA. Qualcomm Inc, San Diego, CA 92121 USA. RP Xin, J (reprint author), Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA. EM kimy@ices.utexas.edu; jxin@math.uci.edu CR American National Standards Institute (ANSI), 1997, AM NAT STAND METH CA, VANSI S3.5-1997 Ching TYC, 1998, J ACOUST SOC AM, V103, P1128, DOI 10.1121/1.421224 Ching TYC, 2001, EAR HEARING, V22, P212, DOI 10.1097/00003446-200106000-00005 De Boer E, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P331, DOI 10.1142/9789812704931_0046 DILLON H, 2001, HEARING AID Geisler C. D., 1998, SOUND SYNAPSE GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 KILLION M, 1996, HAIR CELLS HEARING A Kim Y, 2005, MULTISCALE MODEL SIM, V4, P664, DOI 10.1137/040612464 LEVEQUE RJ, 1988, SIAM J APPL MATH, V48, P191, DOI 10.1137/0148009 LIM K, 2000, THESIS STANFORD U Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4 MOORE B, 2000, COCHLEAR HEARING LOS *NAT AC LABS, 2003, NAL NLI SOFTW NEELY ST, 1985, J ACOUST SOC AM, V78, P345, DOI 10.1121/1.392497 Oxenham AJ, 2003, EAR HEARING, V24, P352, DOI 10.1097/01.AUD.0000090470.73934.78 Pickles JO, 1988, INTRO PHYSL HEARING Porat B., 1997, COURSE DIGITAL SIGNA Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 NR 20 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 84 EP 96 DI 10.1016/j.heares.2006.03.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900010 PM 16678986 ER PT J AU Anderson, M Bostrom, M Pfaller, K Glueckert, R Schrott-Fischer, A Gerdin, B Rask-Andersen, H AF Anderson, M Bostrom, M Pfaller, K Glueckert, R Schrott-Fischer, A Gerdin, B Rask-Andersen, H TI Structure and locomotion of adult in vitro regenerated spiral ganglion growth cones - A study using video microscopy and SEM SO HEARING RESEARCH LA English DT Article DE spiral ganglion; growth cone; SEM; TLVM; in vitro ID NERVE GROWTH; CYTOSKELETAL DYNAMICS; NEUROTROPHIC FACTOR; AUDITORY NEURONS; CYTOCHALASIN-B; AXON GUIDANCE; INNER-EAR; CELLS; EXPRESSION; MYOSIN AB Neuronal development and neurite regeneration depends on the locomotion and navigation of nerve growth cones (GCs). There are few detailed descriptions of the GC function and structure in the adult auditory system. In this study. GCs of adult dissociated and cultured spiral ganglion (SG) neurons were analyzed in vitro utilizing combined high resolution scanning electron microscopy (SEM) and time lapse video microscopy (TLVM). Axon kinesis was assessed on planar substratum with growth factors BDNF, NT-3 and GDNF. At the nano-scale level, lamellipodial abdomen of the expanding GC was found to be decorated with short surface specializations, which at TLVM were considered to be related to their crawling capacity. Filopodia were devoid of these surface structures, supporting its generally described sensory role. Microspikes appearing on lamellipodia and axons, showed circular adhesions, which at TLVM were found to provide anchorage of the navigating and turning axon. Neurons and GCs expressed the DCC-receptor for the guidance molecule netrin-1. Asymmetric ligand-based stimulation initiated turning responses suggest that this attractant cue influences steering of GC in adult regenerating auditory neurites. Hopefully, these findings may be used for ensuing tentative navigation of spiral ganglion neurosis to induce regenerative processes in the human ear. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Uppsala Hosp, Dept Surg Sci, Unit Otosurg, Uppsala, Sweden. Univ Uppsala Hosp, Dept Surg Sci, Unit Plast Surg, Uppsala, Sweden. Med Univ Innsbruck, Dept Anat Histol & Embryol, Div Histol & Embryol, Innsbruck, Austria. Med Univ Innsbruck, Dept Otolaryngol, Innsbruck, Austria. RP Anderson, M (reprint author), Univ Uppsala Hosp, Dept Surg Sci, Unit Otosurg, Uppsala, Sweden. EM malin.anderson@gmail.com CR Aletsee C, 2001, JARO, V2, P377, DOI 10.1007/s101620010086 Aletsee C, 2000, HNO, V48, P457, DOI 10.1007/s001060050597 ALETTA JM, 1988, J NEUROSCI, V8, P1425 BRAY D, 1985, J NEUROSCI, V5, P3204 BRAY D, 1979, J CELL SCI, V37, P391 BRAY D, 1970, P NATL ACAD SCI USA, V65, P905, DOI 10.1073/pnas.65.4.905 Brewer GJ, 1999, EXP NEUROL, V159, P237, DOI 10.1006/exnr.1999.7123 BRIDGMAN PC, 1989, J CELL BIOL, V108, P95, DOI 10.1083/jcb.108.1.95 BUNGE MB, 1973, J CELL BIOL, V56, P713, DOI 10.1083/jcb.56.3.713 Dent EW, 2003, NEURON, V40, P209, DOI 10.1016/S0896-6273(03)00633-0 Farinas I, 2001, J NEUROSCI, V21, P6170 Fazeli A, 1997, NATURE, V386, P796, DOI 10.1038/386796a0 Gillespie LN, 2005, HEARING RES, V199, P117, DOI 10.1016/j.heares.2004.07.004 Harrison RG, 1907, ANAT REC, V1, P116, DOI 10.1002/ar.1090010503 Hasson T, 1997, CURR OPIN NEUROBIOL, V7, P615, DOI 10.1016/S0959-4388(97)80080-3 HEDGECOCK EM, 1990, NEURON, V4, P61, DOI 10.1016/0896-6273(90)90444-K Hegarty JL, 1997, J NEUROSCI, V17, P1959 Johansson K, 2001, DEV BRAIN RES, V130, P133, DOI 10.1016/S0165-3806(01)00221-8 Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007 KNECHT DA, 1987, SCIENCE, V236, P1081, DOI 10.1126/science.3576221 LAMOUREUX P, 1989, Nature (London), V340, P159, DOI 10.1038/340159a0 LEFEBVRE PP, 1992, ACTA OTO-LARYNGOL, V112, P288 LEFEBVRE PP, 1991, ACTA OTO-LARYNGOL, V111, P304, DOI 10.3109/00016489109137392 LETOURNEAU PC, 1987, CELL MOTIL CYTOSKEL, V8, P193, DOI 10.1002/cm.970080302 Lin CH, 1996, NEURON, V16, P769, DOI 10.1016/S0896-6273(00)80097-5 MARSH L, 1984, J CELL BIOL, V99, P2041, DOI 10.1083/jcb.99.6.2041 MING G, 2001, NEURON, V29, P311 MITCHISON T, 1988, NEURON, V1, P761, DOI 10.1016/0896-6273(88)90124-9 Miura M, 2001, BRAIN RES, V905, P1, DOI 10.1016/S0006-8993(01)02038-8 Pamulova L, 2006, OTOL NEUROTOL, V27, P270, DOI 10.1097/01.mao.0000187239.56583.d2 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Ramon y Cajal S., 1890, ANAT ANZEIGER, V21, P609 Rask-Andersen H, 2005, HEARING RES, V203, P180, DOI 10.1016/j.heares.2004.12.005 REYNOLDS BA, 1992, SCIENCE, V255, P1707, DOI 10.1126/science.1553558 Rochlin MW, 1999, MOL BIOL CELL, V10, P2309 Seaman C, 2001, MECH DEVELOP, V103, P173, DOI 10.1016/S0925-4773(01)00350-1 Small J V, 1988, Electron Microsc Rev, V1, P155 Suter DM, 1998, CURR OPIN NEUROBIOL, V8, P106, DOI 10.1016/S0959-4388(98)80014-7 Svitkina TM, 2003, J CELL BIOL, V160, P409, DOI 10.1083/jcb.200210174 TessierLavigne M, 1996, SCIENCE, V274, P1123, DOI 10.1126/science.274.5290.1123 VANDEWATER TR, 1989, ACTA OTO-LARYNGOL, V108, P227, DOI 10.3109/00016488909125522 vanWeering DHJ, 1997, J BIOL CHEM, V272, P249 Whitlon DS, 2006, NEUROSCIENCE, V138, P653, DOI 10.1016/j.neuroscience.2005.11.030 NR 43 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2006 VL 215 IS 1-2 BP 97 EP 107 DI 10.1016/j.heares.2006.03.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 052ZX UT WOS:000238273900011 PM 16684592 ER PT J AU Murashita, H Tabuchi, K Hoshino, T Tsuji, S Hara, A AF Murashita, H Tabuchi, K Hoshino, T Tsuji, S Hara, A TI The effects of tempol, 3-aminobenzamide and nitric oxide synthase inhibitors on acoustic injury of the mouse cochlea SO HEARING RESEARCH LA English DT Article DE acoustic injury; cochlea; tempol; poly (ADP-ribose) synthetase (PARS); nitric oxide synthase ID TRANSIENT LOCAL ANOXIA; FREE-RADICAL SCAVENGER; POLY(ADP-RIBOSE) POLYMERASE; SUPEROXIDE-DISMUTASE; HYDROGEN-PEROXIDE; GUINEA-PIG; CELL-DEATH; DYSFUNCTION; TRAUMA; DAMAGE AB Oxygen free radicals have been implicated in the pathogenesis of acoustic injury of the cochlea. The purpose of this study was to evaluate the effects of tempol (a superoxide anion scavenger), 3-aminobenzamide (a poly (ADP-ribose) synthetase (PARS) inhibitor), N-nitro-(L)-arginine (a non-selective nitric oxide synthase (NOS) inhibitor), 7-nitroindazole (a selective neuronal NOS inhibitor) and aminoguanidine (a selective inducible NOS inhibitor) on acoustic injury. Mice were exposed to a 4 kHz pure tone of 110-128 dB SPL for 4 h. Tempol, 3-amino benzamide or N-nitro-(L)-arginine was intraperitoneally administered immediately before the onset of acoustic overexposure, while 7-nitroindazole or aminoguanidine was intraperitoneally administered every 12 h starting immediately before the onset of acoustic overexposure. The threshold shift of the auditory brainstem response (ABR) and hair cell loss were then evaluated one and two weeks after acoustic overexposure. Tempol and 3-aminobenzamide significantly protected the cochlea against acoustic injury, whereas the NOS inhibitors did not exert any protective effect. These findings suggest that reactive oxygen species and PARS are involved in acoustic injury of the cochlea. However, further study is necessary to elucidate the roles of nitric oxide and nitric oxide synthase in acoustic injury. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tsukuba, Grad Sch Comprehens Human Sci Majors Funct & Regu, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan. Tsukuba Univ Hosp, Dept Otolaryngol, Tsukuba, Ibaraki, Japan. RP Hara, A (reprint author), Univ Tsukuba, Grad Sch Comprehens Human Sci Majors Funct & Regu, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. EM haraakir@md.tsukuba.ac.jp CR Cookson MR, 1998, J NEUROCHEM, V70, P501 Dais CGD, 1996, HEARING RES, V99, P1 FRIDOVICH I, 1995, ANNU REV BIOCHEM, V64, P97, DOI 10.1146/annurev.bi.64.070195.000525 Hara A, 2000, HEARING RES, V143, P110, DOI 10.1016/S0378-5955(00)00029-0 HELLER B, 1995, J BIOL CHEM, V270, P11176, DOI 10.1074/jbc.270.19.11176 HYSLOP PA, 1988, J BIOL CHEM, V263, P1665 Laight DW, 1997, ENVIRON TOXICOL PHAR, V3, P65, DOI 10.1016/S1382-6689(96)00143-3 Monti E, 1996, FREE RADICAL BIO MED, V21, P463, DOI 10.1016/0891-5849(96)00124-4 Murphy MP, 1999, BBA-BIOENERGETICS, V1411, P401, DOI 10.1016/S0005-2728(99)00029-8 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Reddan J, 1992, Lens Eye Toxic Res, V9, P385 SAMUNI A, 1991, J CLIN INVEST, V87, P1526, DOI 10.1172/JCI115163 SAMUNI A, 1988, J BIOL CHEM, V263, P17921 SCHRAUFSTATTER IU, 1986, P NATL ACAD SCI USA, V83, P4908, DOI 10.1073/pnas.83.13.4908 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Shi XR, 2002, HEARING RES, V164, P49 Szabo C, 1997, J CLIN INVEST, V100, P723, DOI 10.1172/JCI119585 Tabuchi K, 1999, ACTA OTO-LARYNGOL, V119, P179 Tabuchi K, 2003, TOHOKU J EXP MED, V200, P195, DOI 10.1620/tjem.200.195 Tabuchi K, 2000, ANN OTO RHINOL LARYN, V109, P715 Takemoto T, 2004, EUR J PHARMACOL, V487, P113, DOI 10.1016/j.ejphar.2004.01.019 Takumida M, 1998, ORL J OTO-RHINO-LARY, V60, P246, DOI 10.1159/000027605 Tsuji S, 2002, HEARING RES, V166, P72, DOI 10.1016/S0378-5955(02)00299-X Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 NR 25 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 1 EP 6 DI 10.1016/j.heares.2005.12.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900001 PM 16516419 ER PT J AU Ghanooni, R Decaestecker, C Simon, P Gablus, HJ Hassid, S Choufani, G AF Ghanooni, R Decaestecker, C Simon, P Gablus, HJ Hassid, S Choufani, G TI Characterization of patterns of expression of protein kinase C-alpha, -delta -eta, -gamma and -zeta and their correlations to p53, galectin-3, the retinoic acid receptor-beta and the macrophage migration inhibitory factor (MIF) in human cholesteatomas SO HEARING RESEARCH LA English DT Article DE cholesteatoma; galectin; MIF; p53; PKC; RAR beta ID MIDDLE-EAR CHOLESTEATOMA; DIFFERENTIATION; CALCYCLIN; APOPTOSIS; OVEREXPRESSION; PROLIFERATION; CELLS; GENE; SKIN AB Cholesteatoma, is a benign disease characterized by the presence of an unrestrained growth and the accumulation of keratin in the middle ear cavity. Due to roles in cell proliferation, apoptosis and differentiation members of the protein kinase C (PKC) family could be involved in disease progression. This study focuses on the expression of protein kinase C-alpha, -delta, -eta, -gamma and -zeta in the epithelial tissues of 56 human cholesteatomas and their correlations with those of previously characterized distributions of p53, galectin-3, retinoic acid receptor-beta (RAR beta) and macrophage migration inhibitory factor (MIF). We have previously reported this marker set to be correlated with keratinocyte differentiation in human cholesteatomas. Our present data clearly show that the percentage of PKC-alpha (but not PKC-delta, -gamma, -eta and -zeta)-immunopositive cells in epithelial tissue fro recurrent cholesteatomas was significantly higher than in non-recurrent cases. Correlations between the PKC isoenzymes and the biological markers were non-uniform. PKC-alpha (but not PKC-alpha, -gamma, -eta and -zeta) expression in epithelial cholesteatoma cells correlated significantly and positively with the percentages of p53-immunopositive cells. The patterns of PKC-alpha and -delta expression, but not of PKC-gamma, -eta and -zeta correlated significantly and positively with galectin-3 expression. In addition, the correlation levels between the expression of PKC-alpha and -delta and that of galectin-3 varied depending on the infection and recurrence status. Presence of RARP correlated significantly (and positively) with the expression of PKC-gamma and -zeta and also in relation to the infection and recurrence status. MIF correlated presence significantly (and positively) with that of the five PKCs under study, depending on whether the cholesteatomas were non-infected or infected as well as non-recurrent or recurrent. In conclusion, the present study suggests that modifications occurring at the level of keratinocyte differentiation in human cholesteatomas involve distinct effectors, to which the activation of PKC-alpha, -delta, -eta, -gamma and -zeta can be added. C1 Erasme Univ Hosp, Dept Otolaryngol, B-1070 Brussels, Belgium. Erasme Univ Hosp, Dept Head & Neck Surg, B-1070 Brussels, Belgium. Univ Libre Bruxelles, Fac Med, Lab Histopathol, Brussels, Belgium. Univ Munich, Inst Physiol Chem, D-8000 Munich, Germany. RP Ghanooni, R (reprint author), Erasme Univ Hosp, Dept Otolaryngol, 808 Route Lennik, B-1070 Brussels, Belgium. EM rosemaryam_ghanooni@yahoo.fr CR Albino AP, 1998, AM J OTOL, V19, P30 Albino AP, 1998, AM J OTOL, V19, P7 Blobe GC, 1996, CANCER SURV, V27, P213 Choufani G, 1999, LARYNGOSCOPE, V109, P1825, DOI 10.1097/00005537-199911000-00019 Choufani G, 2001, LARYNGOSCOPE, V111, P1656, DOI 10.1097/00005537-200109000-00031 Cordon-Cardo C, 1999, J EXP MED, V190, P1367, DOI 10.1084/jem.190.10.1367 Donn RP, 2004, J ENDOCRINOL, V182, P1, DOI 10.1677/joe.0.1820001 FERRARI S, 1987, J BIOL CHEM, V262, P8325 FINKENZELLER G, 1992, CELL SIGNAL, V4, P163, DOI 10.1016/0898-6568(92)90080-R Fisher GJ, 1996, FASEB J, V10, P1002 Fisher GJ, 1998, J INVEST DERMATOL, V110, P297, DOI 10.1046/j.1523-1747.1998.00112.x Gabius HJ, 2004, CHEMBIOCHEM, V5, P740, DOI 10.1002/cbic.200300753 Gabius HJ, 1997, EUR J BIOCHEM, V243, P543, DOI 10.1111/j.1432-1033.1997.t01-1-00543.x Haake AR, 1997, EXP CELL RES, V231, P83, DOI 10.1006/excr.1996.3441 Hofmann J, 1997, FASEB J, V11, P649 Jaken S, 2000, BIOESSAYS, V22, P245, DOI 10.1002/(SICI)1521-1878(200003)22:3<245::AID-BIES6>3.0.CO;2-X Kadrofske MM, 1998, ARCH BIOCHEM BIOPHYS, V349, P7, DOI 10.1006/abbi.1997.0447 Kojima H, 1998, ARCH OTOLARYNGOL, V124, P261 Lahm Harald, 2004, Glycoconj J, V20, P227 Legendre H, 2003, MODERN PATHOL, V16, P491, DOI 10.1097/01.MP.0000068235.45178.C1 Manni A, 1996, CELL GROWTH DIFFER, V7, P1187 Miyazaki H, 1999, LARYNGOSCOPE, V109, P1785, DOI 10.1097/00005537-199911000-00012 RABVINOVICH GA, 2002, BIOCHIM BIOPHYS ACTA, V1572, P274 SANO H, 2001, MOD ASP IMMUNOBIOL, V2, P4 Sheikholeslam-Zadeh R, 2001, LARYNGOSCOPE, V111, P1042, DOI 10.1097/00005537-200106000-00020 SHINODA H, 1995, LARYNGOSCOPE, V105, P1232, DOI 10.1288/00005537-199511000-00018 Simon P, 2001, HEARING RES, V156, P1, DOI 10.1016/S0378-5955(01)00230-1 SPANDAU DF, 1994, ONCOGENE, V9, P1861 Swope MD, 1999, REV PHYSIOL BIOCH P, V139, P1, DOI 10.1007/BFb0033647 Timoshenko AV, 1999, MOL CELL BIOCHEM, V197, P137, DOI 10.1023/A:1006989529992 WAYS KD, 1996, J CLIN INVEST, V95, P1906 ZENG FY, 1993, INT J BIOCHEM, V25, P1019, DOI 10.1016/0020-711X(93)90116-V NR 32 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 7 EP 16 DI 10.1016/j.heares.2006.01.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900002 PM 16513304 ER PT J AU Briaire, JJ Frijns, JHM AF Briaire, JJ Frijns, JHM TI The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: A model approach SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrode design; eCAP; volume conduction; neural degeneration ID ELECTRICALLY STIMULATED COCHLEA; ROTATIONALLY SYMMETRICAL MODEL; POSTOPERATIVE PERFORMANCE; VOLUME CONDUCTION; SPEECH-PERCEPTION; ELECTRODE ARRAY; AUDITORY-NERVE; EXCITATION; INTRACOCHLEAR; PREDICTORS AB Cochlear implant research endeavors to optimize the spatial selectivity, threshold and dynamic range with the objective of improving the speech perception performance of the implant user. One of the ways to achieve some of these goals is by electrode design. New cochlear implant electrode designs strive to bring the electrode contacts into close proximity to the nerve fibers in the modiolus: this is done by placing the contacts on the medial side of the array and positioning the implant against the medial wall of scala tympani. The question remains whether this is the optimal position for a cochlea with intact neural fibers and, if so, whether it is also true for a cochlea with degenerated neural fibers. In this study a computational model of the implanted human cochlea is used to investigate the optimal position of the array with respect to threshold, dynamic range and spatial selectivity for a cochlea with intact nerve fibers and for degenerated nerve fibers. In addition, the model is used to evaluate the predictive value of eCAP measurements for obtaining peri-operative information on the neural status. The model predicts improved threshold, dynamic range and spatial selectivity for the peri-modiolar position at the basal end of the cochlea, with minimal influence of neural degeneration. At the apical end of the array (1.5 cochlear turns), the dynamic range and the spatial selectivity are limited due to the occurrence of cross-turn stimulation, with the exception of the condition without neural degeneration and with the electrode array along the lateral wall of scala tympani. The eCAP simulations indicate that a large P-0 peak occurs before the N1P1 complex when the fibers are not degenerated. The absence of this peak might be used as an indicator for neural degeneration. (c) 2006 Elsevier B.V. All rights reserved. C1 Leiden Univ, Med Ctr, ENT Dept, NL-2300 RC Leiden, Netherlands. RP Briaire, JJ (reprint author), Leiden Univ, Med Ctr, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands. EM J.J.Briaire@LUMC.nl RI Briaire, Jeroen/A-7972-2008; Frijns, Johan/H-6249-2011 OI Briaire, Jeroen/0000-0003-4302-817X; CR Albu S., 1997, Acta Oto-Rhino-Laryngologica Belgica, V51, P11 ASCHENDORFF A, 1999, 1999 C IMPL AUD PROS, P56 Boex C, 2003, J ACOUST SOC AM, V114, P2058, DOI 10.1121/1.1610452 Briaire JJ, 2000, SIMULAT PRACT THEORY, V8, P57, DOI 10.1016/S0928-4869(00)00007-0 Briaire JJ, 2005, HEARING RES, V205, P143, DOI 10.1016/j.heares.2005.03.020 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen SG, 2002, ALLERGY ASTHMA PROC, V23, P59 Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3 Donaldson GS, 2001, ARCH OTOLARYNGOL, V127, P956 Firszt JB, 2003, EAR HEARING, V24, P184, DOI 10.1097/01.AUD.0000061230.58992.9A Friedland DR, 2003, OTOL NEUROTOL, V24, P582, DOI 10.1097/00129492-200307000-00009 FRIJINS JHM, 2004, COCHLEAR IMPLANTS IN, V1273 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Frijns JHM, 2000, SIMULAT PRACT THEORY, V8, P75, DOI 10.1016/S0928-4869(00)00008-2 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D HALTER JA, 1991, J THEOR BIOL, V148, P345, DOI 10.1016/S0022-5193(05)80242-5 KUZMA JA, 1999, 1999 C IMPL AUD PROS, P60 Lai WK, 2000, AUDIOL NEURO-OTOL, V5, P333, DOI 10.1159/000013899 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T PASANISI E, 2002, LARYNGOSCOPE, V119, P1653 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Rubinstein JT, 1999, AM J OTOL, V20, P445 Saunders E, 2002, EAR HEARING, V23, p28S Schuknecht HF, 1993, PATHOLOGY EAR SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 Summerfield A Q, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P105 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 van der Beek FB, 2005, EAR HEARING, V26, P577, DOI 10.1097/01.aud.0000188116.30954.21 Wackym PA, 2004, LARYNGOSCOPE, V114, P71, DOI 10.1097/00005537-200401000-00012 WALTZMAN SB, 1995, ANN OTO RHINOL LARYN, V104, P15 Wesselink W. A., 1999, Medical and Biological Engineering and Computing, V37, P228, DOI 10.1007/BF02513291 NR 38 TC 38 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 17 EP 27 DI 10.1016/j.heares.2006.01.015 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900003 PM 16520009 ER PT J AU Kanzaki, S Beyer, LA Swiderski, DL Izumikawa, M Stover, T Kawamoto, K Raphael, Y AF Kanzaki, S Beyer, LA Swiderski, DL Izumikawa, M Stover, T Kawamoto, K Raphael, Y TI P27(Kip1) deficiency causes organ of Corti pathology and hearing loss SO HEARING RESEARCH LA English DT Article DE hair cell; cell cycle; deafness; p27(Kip1); mouse ID HAIR-CELLS; MICE LACKING; BASILAR PAPILLA; INNER-EAR; PROLIFERATION; INHIBITOR; GENE; HYPERPLASIA; EXPRESSION; GENERATION AB p27(Kip1) (p27) has been shown to inhibit several cyclin-dependent kinase molecules and to play a central role in regulating entry into the cell cycle. Once hair cells in the cochlea are formed, p27 is expressed in non-sensory cells of the organ of Corti and prevents their re-entry into the cell cycle. In one line of p27 deficient mice (p27(-/-)), cell division in the organ of Corti continues past its normal embryonic time, leading to continual production of cells in the organ of Corti. Here we report on the structure and function of the inner ear in another line of p27 deficient mice originating from the Memorial Sloan-Kettering Cancer Center. The deficiency in p27 expression of these mice is incomplete, as they retain expression of amino acids 52-197. We determined that mice homozygote for this mutation had severe hearing loss and their organ of Corti exhibited an increase in the number of inner and outer hair cells. There also was a marked increase in the number of supporting cells, with severe pathologies in pillar cells. These data show similarities between this P27(Kip1) mutation and another, previously reported null allele of this gene, and suggest that reducing the inhibition on the cell cycle in the organ of Corti leads to pathology and dysfunction. Manipulations to regulate the time and place of p27 inhibition will be necessary for inducing functionally useful hair cell regeneration. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Sch Med, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Keio Univ, Dept Otolaryngol, Shinjuku Ku, Tokyo 1600016, Japan. Univ Hannover, Dept Otolaryngol, D-30167 Hannover, Germany. Kansai Med Univ, Dept Otolaryngol, Osaka, Japan. RP Raphael, Y (reprint author), Univ Michigan, Sch Med, Kresge Hearing Res Inst, MSRB 3 Room 9303,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. EM yoash@umich.edu RI Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 CR Sato M, 2004, DEV CELL, V6, P458 Baldassarre G, 2000, CELL GROWTH DIFFER, V11, P517 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Chen P, 2003, NAT CELL BIOL, V5, P422, DOI 10.1038/ncb976 Chen P, 1999, DEVELOPMENT, V126, P1581 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dong YY, 2003, NEUROREPORT, V14, P759, DOI 10.1097/01.wnr.0000066199.94941.ed Fero ML, 1996, CELL, V85, P733, DOI 10.1016/S0092-8674(00)81239-8 Izumikawa M, 2005, NAT MED, V11, P271, DOI 10.1038/nm1193 Kiyokawa H, 1996, CELL, V85, P721, DOI 10.1016/S0092-8674(00)81238-6 Koff A, 1995, Prog Cell Cycle Res, V1, P141 Lowenheim H, 1999, P NATL ACAD SCI USA, V96, P4084, DOI 10.1073/pnas.96.7.4084 Lumpkin EA, 2003, GENE EXPR PATTERNS, V3, P389, DOI 10.1016/S1567-133X(03)00089-9 Nakayama K, 1996, CELL, V85, P707, DOI 10.1016/S0092-8674(00)81237-4 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 RAPHAEL Y, 1994, HEARING RES, V80, P53, DOI 10.1016/0378-5955(94)90008-6 Ruben RJ, 1967, ACTA OTO-LARYNGOL, P1 Sage C, 2005, SCIENCE, V307, P1114, DOI 10.1126/science.1106642 Sasaki K, 2000, Brain Res Mol Brain Res, V77, P209 Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 Tarui T, 2005, CEREB CORTEX, V15, P1343, DOI 10.1093/cercor/bhi017 Woods C, 2004, NAT NEUROSCI, V7, P1310, DOI 10.1038/nn1349 NR 24 TC 25 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 28 EP 36 DI 10.1016/j.heares.2006.01.014 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900004 PM 16513305 ER PT J AU Kanzaki, S Beyer, L Karolyi, IJ Dolan, DF Fang, Q Probst, FJ Camper, SA Raphael, Y AF Kanzaki, S Beyer, L Karolyi, IJ Dolan, DF Fang, Q Probst, FJ Camper, SA Raphael, Y TI Transgene correction maintains normal cochlear structure and function in 6-month-old Myo15a mutant mice SO HEARING RESEARCH LA English DT Article DE Shaker2 mouse; cytocaud; phenotypic rescue; BAC transgene ID INDUCED HEARING-LOSS; HAIR CELL PATHOLOGY; UNCONVENTIONAL MYOSIN; SHAKER-2 MOUSE; DEAFNESS DFNB3; GENE DOSAGE; GUINEA-PIG; INNER-EAR; STEREOCILIA; ALLELES AB The shaker2 (sh2) mouse is a murine model for human non-syndromic deafness DFNB3. The mice have abnormal circling behavior suggesting a balanced disorder, and profound deafness. The insertion of a bacterial artificial chromosome (BAC) transgene containing the Myo15a gene into sh2/sh2 zygotes confers hearing capability and abolishes the circling behavior in 1-month-old transgenic animals. In this study, we investigated both the hearing and the morphology of the cochlea in Myo15a mutants carrying this BAC transgene at two, four, or six months of age. The hearing threshold of these mice is normal, with no physiologically significant differences compared to agematched heterozygous sh2J mice (with or without the BAC transgene). In six-month-old transgenic mice with the BAC, the morphology of hair cells in the apical and upper basal turns of the cochlea is normal. Hair cells of lower basal turn, however, were missing in some mutant animals. This study demonstrates that BAC transgene correction cannot only maintain normal morphology but also confer stable hearing function in Myo15a mutant mice for as long as 6 months. In addition, excess Myo15a expression has no physiologically significant protective or deleterious effects on hearing of normal mice, suggesting that the dosage of Myo15a may not be problematic for gene therapy. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Keio Univ, Dept Otolaryngol, Shinjuku Ku, Tokyo 1600016, Japan. Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA. Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, MSRB 3 Room 9303, Ann Arbor, MI 48109 USA. EM yoash@umich.edu RI Fang, Qing/D-6338-2012; Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 CR Anderson DW, 2000, HUM MOL GENET, V9, P1729, DOI 10.1093/hmg/9.12.1729 ANNIKO M, 1980, ARCH OTO-RHINO-LARYN, V226, P45, DOI 10.1007/BF00455401 Belyantseva IA, 2005, NAT CELL BIOL, V7, P148, DOI 10.1038/ncb1219 Belyantseva IA, 2003, P NATL ACAD SCI USA, V100, P13958, DOI 10.1073/pnas.2334417100 Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 Delprat B, 2005, HUM MOL GENET, V14, P401, DOI 10.1093/hmg/ddi036 DEOL MS, 1954, J GENET, V52, P562, DOI 10.1007/BF02985081 DOBROVOLSKAIA-ZAVASDKAIA N., 1928, ARCH BIOL, V38, P457 FitzPatrick DR, 2005, TRENDS GENET, V21, P249, DOI 10.1016/j.tig.2005.02.012 Friedman TB, 2003, ANNU REV GENOM HUM G, V4, P341, DOI 10.1146/annurev.genom.4.070802.110347 Friedman TB, 2002, ADV OTO-RHINO-LARYNG, V61, P124 Haider NB, 2002, HUM MOL GENET, V11, P1195, DOI 10.1093/hmg/11.10.1195 Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P289, DOI 10.1159/000064447 KAROLYI IJ, 2003, HUM MOL GENET KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X Liang Y, 1998, AM J HUM GENET, V62, P904, DOI 10.1086/301786 Liang Y, 1999, GENOMICS, V61, P243, DOI 10.1006/geno.1999.5976 Liburd N, 2001, HUM GENET, V109, P535, DOI 10.1007/s004390100604 MAEDA Y, 2005, HUM MOL GENET Mburu P, 2003, NAT GENET, V34, P421, DOI 10.1038/ng1208 Morton CC, 2002, HUM MOL GENET, V11, P1229, DOI 10.1093/hmg/11.10.1229 NIEDZIELSKI AS, 1991, HEARING RES, V57, P107, DOI 10.1016/0378-5955(91)90079-O Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X OSBORNE MP, 1984, CELL TISSUE RES, V237, P43 Probst FJ, 1998, SCIENCE, V280, P1444, DOI 10.1126/science.280.5368.1444 RAPHAEL Y, 1994, HEARING RES, V76, P173, DOI 10.1016/0378-5955(94)90098-1 Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1 Schedl A, 1996, CELL, V86, P71, DOI 10.1016/S0092-8674(00)80078-1 Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a Snell GD, 1939, J HERED, V30, P447, DOI 10.1093/jhered/30.10.447 SOBIN A, 1982, ARCH OTO-RHINO-LARYN, V236, P1, DOI 10.1007/BF00464051 Wang AH, 1998, SCIENCE, V280, P1447, DOI 10.1126/science.280.5368.1447 Yu RN, 1998, NAT GENET, V20, P353, DOI 10.1038/3822 NR 33 TC 7 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 37 EP 44 DI 10.1016/j.heares.2006.01.017 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900005 PM 16580798 ER PT J AU Lu, TK Zhak, S Dallos, P Sarpeshkar, R AF Lu, Timothy K. Zhak, Serhii Dallos, Peter Sarpeshkar, Rahul TI Fast cochlear amplification with slow outer hair cells SO HEARING RESEARCH LA English DT Article DE cochlear amplifier; outer hair cell; receptor potential; membrane time constant low-pass filtering; electromotility; negative feedback ID GUINEA-PIG COCHLEA; BASILAR-MEMBRANE; FREQUENCY-RESPONSE; TECTORIAL MEMBRANE; MAMMALIAN COCHLEA; MECHANOELECTRICAL-TRANSDUCTION; OTOACOUSTIC EMISSIONS; HYDRODYNAMIC-FORCES; INPUT IMPEDANCE; TRAVELING-WAVE AB In mammalian cochleas, outer hair cells (OHCs) produce mechanical amplification over the entire audio-frequency range (up to 100 kHz). Under the 'somatic electromotility' theory, mechano-electrical transduction modulates the OHC transmembrane potential, driving an 0HC mechanical response which generates cycle-by-cycle mechanical amplification. Yet, though the OHC motor responds up to at least 70 kHz, the OHC membrane RC time constant (in vitro upper limit similar to 1000 Hz) reduces the potential driving the motor at high frequencies. Thus, the mechanism for high-frequency amplification with slow OHCs has been. a two-decade-long mystery. Previous models fit to experimental data incorporated slow OHCs but did not explain how the OHC time constant limitation is overcome. Our key contribution is showing that negative feedback due to organ-of-Corti functional anatomy with adequate OHC gain significantly extends closed-loop system bandwidth and increases resonant gain. The OHC gain-bandwidth product, not just bandwidth, determines if high-frequency amplification is possible. Due to the cochlea's collective traveling-wave architecture, a single OHC's gain need not be great. OHC piezoelectricity increases the effectiveness of negative-feedback but is not essential for amplification. Thus, emergent closed-loop network dynamics differ significantly from open-loop component dynamics, a generally important principle in complex biological systems. (c) 2006 Elsevier B.V. All rights reserved. C1 MIT, Analog VLSI & Biol Syst Grp, Res Lab Elect, Cambridge, MA 02139 USA. Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. Northwestern Univ, Dept Neurobiol & Physiol, Auditory Physiol Lab, Evanston, IL 60208 USA. Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Evanston, IL 60208 USA. RP Sarpeshkar, R (reprint author), MIT, Analog VLSI & Biol Syst Grp, Res Lab Elect, 77 Massachusetts Ave,Room 38-276, Cambridge, MA 02139 USA. EM rahuls@mit.edu CR ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 Bode H. W., 1945, NETWORK ANAL FEEDBAC BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chadwick RS, 1996, P NATL ACAD SCI USA, V93, P2564, DOI 10.1073/pnas.93.6.2564 Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385 Cheatham MA, 2004, J PHYSIOL-LONDON, V560, P821, DOI 10.1113/jphysiol.204.069559 Choe Y, 1998, P NATL ACAD SCI USA, V95, P15321, DOI 10.1073/pnas.95.26.15321 CODY AR, 1992, HEARING RES, V62, P166, DOI 10.1016/0378-5955(92)90182-M COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y Csete ME, 2002, SCIENCE, V295, P1664, DOI 10.1126/science.1069981 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DEBOER E, 1990, LECT NOTES BIOMATH, V87, P333 de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436 DEBOER E, 1990, HEARING RES, V44, P83, DOI 10.1016/0378-5955(90)90024-J DEEN WM, 1998, ANAL TRANSPORT PHENO, P253 Deo N, 2004, BIOPHYS J, V86, P3519, DOI 10.1529/biophysj.103.026658 Dimitriadis EK, 1999, J ACOUST SOC AM, V106, P1880, DOI 10.1121/1.427937 Dong XX, 2002, BIOPHYS J, V82, P1254 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 FERNANDEZ C, 1952, J ACOUST SOC AM, V24, P519 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 Franklin G. F., 2002, FEEDBACK CONTROL DYN FREEMAN DM, 1990, HEARING RES, V48, P31, DOI 10.1016/0378-5955(90)90197-W FREEMAN DM, 1990, HEARING RES, V48, P17, DOI 10.1016/0378-5955(90)90196-V Fukazawa T, 1997, HEARING RES, V113, P182, DOI 10.1016/S0378-5955(97)00138-X GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 He DZZ, 1999, P NATL ACAD SCI USA, V96, P8223, DOI 10.1073/pnas.96.14.8223 He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HUBBARD A, 1993, SCIENCE, V259, P68, DOI 10.1126/science.8418496 HUBBARD AE, 2000, S REC DEV AUD MECH W, P167 IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367 Khanna SM, 2000, HEARING RES, V149, P55, DOI 10.1016/S0378-5955(00)00162-3 KINSLER LE, 1962, FUNDAMENTALS ACOUSTI, P186 Kolston PJ, 1999, P NATL ACAD SCI USA, V96, P3676, DOI 10.1073/pnas.96.7.3676 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LIBERMAN MC, 1984, HEARING RES, V16, P55, DOI 10.1016/0378-5955(84)90025-X Lim KM, 2002, HEARING RES, V170, P190, DOI 10.1016/S0378-5955(02)00491-4 LU TK, 2006, AUDITORY MECH PROCES, P432 LU TK, 2003, THESIS MASACHUSETTES LYNCH TJ, 1982, J ACOUST SOC AM, V72, P108, DOI 10.1121/1.387995 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 MARKIN VS, 1995, BIOPHYS J, V69, P138 MOUNTAIN DC, 1994, J ACOUST SOC AM, V95, P350, DOI 10.1121/1.408273 MOUNTAIN DC, 2003, 146 M AC SOC AM Mountain DC, 1983, MECHANICS HEARING, P119 Murugasu E, 1996, J NEUROSCI, V16, P325 Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 Nilsen KE, 2000, P NATL ACAD SCI USA, V97, P11751, DOI 10.1073/pnas.97.22.11751 Nobili R, 1996, J ACOUST SOC AM, V99, P2244, DOI 10.1121/1.415412 Ospeck M, 2003, BIOPHYS J, V84, P739 Overstreet EH, 2002, J PHYSIOL-LONDON, V545, P279, DOI 10.1113/jphysiol.2002.025205 Preyer S, 1996, AUDIT NEUROSCI, V2, P145 PREYER S, 1994, HEARING RES, V77, P116, DOI 10.1016/0378-5955(94)90259-3 PURIA S, 1991, J ACOUST SOC AM, V89, P287, DOI 10.1121/1.400675 Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M Robles L, 2001, PHYSIOL REV, V81, P1305 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4 Sarpeshkar R, 1998, ANALOG INTEGR CIRC S, V16, P245, DOI 10.1023/A:1008218308069 SARPESHKAR R, 2000, S REC DEV AUD MECH, P216 Scheid D, 2004, FEMS MICROBIOL ECOL, V50, P101, DOI 10.1016/j.femsec.2004.06.001 Scherer MP, 2004, BIOPHYS J, V87, P1378, DOI 10.1529/biophysj.103.037184 SELLICK PM, 1983, HEARING RES, V10, P101, DOI 10.1016/0378-5955(83)90020-5 SHERA CA, 1991, J ACOUST SOC AM, V89, P1276, DOI 10.1121/1.400650 Shera CA, 2003, J ACOUST SOC AM, V114, P244, DOI 10.1121/1.1575750 Spector AA, 2003, J ACOUST SOC AM, V113, P453, DOI 10.1121/1.1526493 Spector AA, 2005, ANN BIOMED ENG, V33, P991, DOI 10.1007/s10439-005-5749-0 Spector AA, 2005, J BIOMECH ENG-T ASME, V127, P391, DOI 10.1115/1894233 Steele CR, 1999, ORL J OTO-RHINO-LARY, V61, P238, DOI 10.1159/000027681 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Talmadge CL, 1998, J ACOUST SOC AM, V104, P1517, DOI 10.1121/1.424364 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 THORNE PR, 1984, J ACOUST SOC AM, V76, P440, DOI 10.1121/1.391136 ULFENDAHL M, 1995, NEUROREPORT, V6, P1157, DOI 10.1097/00001756-199505300-00021 VONBEKESY G, 1960, EXPT HEARING, P406 Weitzel EK, 2003, J ACOUST SOC AM, V114, P1462, DOI 10.1121/1.1596172 WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472 WRIGHT A, 1984, HEARING RES, V13, P89, DOI 10.1016/0378-5955(84)90099-6 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWEIG G, 1991, J ACOUST SOC AM, V89, P1229, DOI 10.1121/1.400653 ZWISLOCKI JJ, 1979, ACTA OTO-LARYNGOL, V87, P267, DOI 10.3109/00016487909126419 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 NR 91 TC 29 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 45 EP 67 DI 10.1016/j.heares.2006.01.018 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900006 PM 16603325 ER PT J AU Frey, A Lampert, A Waldegger, S Jeck, N Waldegger, P Artunc, F Seebohm, G Lang, UE Kupka, S Pfister, M Hoppe, J Gerloff, C Schaeffeler, E Schwab, M Lang, F AF Frey, A Lampert, A Waldegger, S Jeck, N Waldegger, P Artunc, F Seebohm, G Lang, UE Kupka, S Pfister, M Hoppe, J Gerloff, C Schaeffeler, E Schwab, M Lang, F TI Influence of gain of function epithelial chloride channel ClC-Kb mutation on hearing thresholds SO HEARING RESEARCH LA English DT Article DE chloride channels; stria vascularis; single nucleotide polymorphism; Cl- secretion; hearing loss ID STRIAL MARGINAL CELLS; INNER-EAR; MESSENGER-RNA; GENE PROMOTER; EXPRESSION; RAT; DEAFNESS; KIDNEY; BARTTIN; COCHLEA AB Hearing depends on functional ClC-K-type chloride channels composed of barttin with ClC-Ka or ClC-Kb. Loss-of-function mutations of the barttin gene BSND or of both, the ClC-Ka gene CLNKA and the ClC-Kb gene CLNKB lead to congenital deafness and renal salt wasting. Recently, we identified the gain-of-function mutation ClC-Kb(T411S) which is associated with increased blood pressure. To explore the impact of ClC-Kb(T411S) on hearing, healthy volunteers (n = 329) and individuals suffering from tinnitus (n = 246) volunteered for hearing tests (n = 348) and genetic analysis (n = 575). 19.1% of the individuals were heterozygote (ClC-Kb(T41IS)/ClC-Kb) and 1.7% homozygote carriers. Pure tone average hearing threshold (PTAt) for air conduction was significantly (p < 0.033) lower in ClC-Kb(T481S) carriers (13.2 +/- 1.2 dB) than in wild-type individuals (17.1 +/- 0.9 dB). The prevalence of ClC-Kb(T411S) carriers was significantly increased (29.7%) in individuals with PTAt < 15 dB (p < 0.05) and significantly decreased (13.2%) in individuals with PTAt > 30 dB (P < 0.017). The difference was largely due to the female population. Bone conduction was less affected pointing to an effect of the mutation on middle ear function. Tinnitus tended to be more frequent in ClC-Kb(T411S) carriers, a difference, however, not statistically significant. In conclusion, hearing thresholds are slightly lower in carriers of ClC-Kb(T411S), i.e., the gain-of-function polymorphism ClC-Kb(T481S) exerts a subtle but significant protective effect against hearing loss. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Tubingen, Dept Physiol, D-72076 Tubingen, Germany. Univ Tubingen, Dept Otolaryngol, D-72076 Tubingen, Germany. Univ Tubingen, Dept Neurol, D-72076 Tubingen, Germany. Univ Marburg, Dept Pediat, D-35032 Marburg, Germany. Dr Margarete Fischer Bosch Inst Clin Pharmacol, D-7000 Stuttgart, Germany. RP Lang, F (reprint author), Univ Tubingen, Dept Physiol, Gmelinstr 5, D-72076 Tubingen, Germany. EM florian.lang@uni-tuebingen.de CR Ando M, 2000, NEUROSCI LETT, V284, P171, DOI 10.1016/S0304-3940(00)01021-1 Beitz E, 1999, HEARING RES, V132, P76, DOI 10.1016/S0378-5955(99)00036-2 Birkenhager R, 2001, NAT GENET, V29, P310, DOI 10.1038/ng752 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Estevez R, 2001, NATURE, V414, P558, DOI 10.1038/35107099 Hartmann R, 2002, HEARING RES, V172, P145, DOI 10.1016/S0378-5955(02)00576-2 Ikeda K, 1997, HEARING RES, V107, P1, DOI 10.1016/S0378-5955(97)00009-9 Jeck N, 2004, HYPERTENSION, V43, P1175, DOI 10.1161/01.HYP.0000129824.12959.f0 Jeck N, 2004, KIDNEY INT, V65, P190, DOI 10.1111/j.1523-1755.2004.00363.x Kobayashi K, 2002, J AM SOC NEPHROL, V13, P1992, DOI 10.1097/01.ASN.0000023434.47132.3D Maehara H, 2003, NEUROREPORT, V14, P1571, DOI 10.1097/01.wnr.0000087905.78892.55 MARCUS DC, 1987, HEARING RES, V30, P55, DOI 10.1016/0378-5955(87)90183-3 Nascimento DS, 2003, PFLUG ARCH EUR J PHY, V446, P593, DOI 10.1007/s00424-003-1095-y Neyroud N, 1997, NAT GENET, V15, P186, DOI 10.1038/ng0297-186 Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2 Schlingmann KP, 2004, NEW ENGL J MED, V350, P1314, DOI 10.1056/NEJMoa032843 Simon DB, 1997, NAT GENET, V17, P171, DOI 10.1038/ng1097-171 Tu TY, 1999, ACTA OTO-LARYNGOL, V119, P544 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X Wagner CA, 2000, CELL PHYSIOL BIOCHEM, V10, P1, DOI 10.1159/000016341 Waldegger S, 2002, PFLUG ARCH EUR J PHY, V444, P411, DOI 10.1007/s00424-002-0819-8 Waldegger S, 2000, J AM SOC NEPHROL, V11, P1331 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 NR 23 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 68 EP 75 DI 10.1016/j.heares.2006.02.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900007 PM 16549283 ER PT J AU PiCClotti, PM Fetoni, AR Paludetti, G Wolf, FI Torsello, A Trolani, D Ferraresi, A Pola, R Sergi, B AF PiCClotti, PM Fetoni, AR Paludetti, G Wolf, FI Torsello, A Trolani, D Ferraresi, A Pola, R Sergi, B TI Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE noise; cochlea; VEGF; VEGF-receptors ID COCHLEAR BLOOD-FLOW; GUINEA-PIG; IN-VIVO; MOUSE COCHLEA; GENE-TRANSFER; RECEPTORS; EXPOSURE; CELLS; ANGIOGENESIS; NEUROPATHY AB Noise-induced hearing loss has been associated with alterations in cochlear blood flow. Our study analyzed the expression of Vascular Endothelial Growth Factor (VEGF) and its functional receptors, Flt-1 and Flk-1, in the cochlear structures of noise-exposed and unexposed guinea pigs. VEGF is a prototypical angiogenic agent, with multiple functions on vascular biology, ranging from vascular permeability to endothelial cell migration, proliferation, differentiation, and survival. Acoustic trauma was induced by a continuous pure tone of 6 kHz, at 120 dB SPL for 30 min. Auditory function was evaluated by electrocochleographic recordings at 2-20 kHz for 7 days. Noise-induced cochlear morphological changes were studied by immunohistochemistry and scanning electron microscopy. The expression of VEGF and its receptors was examined by immunohistochemistry and western blotting analysis. The hearing threshold shift reached a level of 60 dB SPL on day I after trauma and underwent a partial recovery over time, reaching a value of about 20 dB SPL on day 7. Outer hair cell loss was more prominent in the area located 14-16 min from the apex. Increased cochlear VEGF expression was observed in noise-exposed animals, in particular at the level of stria vascularis, spiral ligament, and spiral ganglion cells. No changes were observed in the expression of VEGF-receptors. Our data suggest a role for VEGF in the regulation of the vascular network in the inner ear after acoustic trauma and during auditory recovery, with potentially important clinical and therapeutic implications. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Sacred Heart, Sch Med, Inst Otolaryngol, I-00168 Rome, Italy. Univ Sacred Heart, Sch Med, Dept Internal Med, I-00168 Rome, Italy. Univ Sacred Heart, Sch Med, Inst Pathol, I-00168 Rome, Italy. Univ Sacred Heart, Sch Med, Inst Human Physiol, I-00168 Rome, Italy. RP Sergi, B (reprint author), Univ Sacred Heart, Sch Med, Inst Otolaryngol, Lgo A Gemelli 8, I-00168 Rome, Italy. EM bruno.sergi@rm.unicatt.it CR Attanasio G, 2001, ACTA OTO-LARYNGOL, V121, P465, DOI 10.1080/000164801300366598 AXELSSON A, 1987, HEARING RES, V31, P183, DOI 10.1016/0378-5955(87)90125-0 Carmeliet R, 2002, SEMIN CELL DEV BIOL, V13, P1, DOI 10.1006/scdb.2001.0291 Cody AR, 1980, SCAND AUDIOL S, V12, P121 FERRARA N, 1992, ENDOCR REV, V13, P18, DOI 10.1210/er.13.1.18 Fetoni AR, 2003, ACTA OTO-LARYNGOL, V123, P192, DOI 10.1080/00016480310001484 Gerber HP, 1997, J BIOL CHEM, V272, P23659, DOI 10.1074/jbc.272.38.23659 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 Isner J M, 2001, Hum Gene Ther, V12, P1593 Kuroki M, 1996, J CLIN INVEST, V98, P1667, DOI 10.1172/JCI118962 Lamm K, 1996, Audiol Neurootol, V1, P148 Michel O, 2001, HEARING RES, V155, P175, DOI 10.1016/S0378-5955(01)00262-3 MINCHENKO A, 1994, LAB INVEST, V71, P374 Neufeld G, 1999, FASEB J, V13, P9 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Oosthuyse B, 2001, NAT GENET, V28, P131, DOI 10.1038/88842 Picciotti P, 2004, EXP GERONTOL, V39, P1253, DOI 10.1016/j.exger.2004.06.003 Picciotti PM, 2005, ACTA OTO-LARYNGOL, V125, P1152, DOI 10.1080/00016480510044241 PLATE KH, 1992, NATURE, V359, P845, DOI 10.1038/359845a0 QUIRK WS, 1995, AM J OTOL, V16, P322 SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281 Schratzberger P, 2001, J CLIN INVEST, V107, P1083, DOI 10.1172/JCI12188 SCHRETER RK, 2000, PSYCHIAT PRACTICE MA, V6, P4 Sergi B, 2003, HEARING RES, V182, P56, DOI 10.1016/S0378-5955(03)00142-4 SHIMA DT, 1995, MOL MED, V1, P182 Simovic D, 2001, ARCH NEUROL-CHICAGO, V58, P761, DOI 10.1001/archneur.58.5.761 Sondell M, 1999, J NEUROSCI, V19, P5731 Wang J, 2002, NEUROSCIENCE, V111, P635 WANG J, 2003, J NEUROSCI, V17, P8596 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 YAMINE H, 1991, ACTA OTOLARYNGOL, V111, P85 Zou J, 2005, HEARING RES, V202, P13, DOI 10.1016/j.heares.2004.10.008 NR 33 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 76 EP 83 DI 10.1016/j.heares.2006.02.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900008 PM 16603326 ER PT J AU Polley, DB Cobos, I Merzenich, MM Rubenstein, JLR AF Polley, DB Cobos, I Merzenich, MM Rubenstein, JLR TI Severe hearing loss in Dlxl mutant mice SO HEARING RESEARCH LA English DT Article DE ABR; branchial arch; incus; stapes; mouse; ossicles; development ID HOMEOBOX GENES; TRANSCRIPTIONAL REGULATION; BRANCHIAL ARCHES; EXPRESSION; DIFFERENTIATION; SKELETAL; LACKING AB The Dlx homeobox gene family participates in regulating middle and inner ear development. A significant role for Dlx1, in particular, has been demonstrated in the development of the middle ear ossicles, but the functional consequences of Dlx1 gene mutation on hearing thresholds has not been assessed. The present study characterizes auditory brainstem responses to click and tonal stimuli in a non-lethal variant of a Dlx1 gene knockout. We found that peripheral hearing thresholds for click and tonal stimuli were significantly elevated in homozygous Dlx1 knockout (Dlx1(-/-)) compared to both heterozygous (Dlx1(-/-)) and wild type (Dlx1(+/+)) mice. Thus, abnormal morphogenesis of the incus and stapes that has been documented previously with histological measures is now known to result in a severe peripheral hearing deficit. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Psychiat, Nina Ireland Lab Dev Neurobiol, San Francisco, CA 94158 USA. Univ Calif San Francisco, Dept Otolaryngol, WM Keck Fdn Ctr Integrat Neurosci, Coleman Mem Lab, San Francisco, CA 94143 USA. RP Rubenstein, JLR (reprint author), Univ Calif San Francisco, Dept Psychiat, Nina Ireland Lab Dev Neurobiol, San Francisco, CA 94158 USA. EM daniel.polley@vanderbilt.edu; john.rubenstein@ucsf.edu CR Acampora D, 1999, DEVELOPMENT, V126, P3795 Beverdam A, 2002, GENESIS, V34, P221, DOI 10.1002/gene.10156 Brown ST, 2005, J COMP NEUROL, V483, P48, DOI 10.1002/cne.20418 Cobos I, 2005, NAT NEUROSCI, V8, P1059, DOI 10.1038/nn1499 Depew MJ, 2005, J ANAT, V207, P501 Depew MJ, 2002, SCIENCE, V298, P381, DOI 10.1126/science.1075703 Depew MJ, 1999, DEVELOPMENT, V126, P3831 Ellies DL, 1997, GENOMICS, V45, P580, DOI 10.1006/geno.1997.4978 Ferrari D, 2002, DEV BIOL, V252, P257, DOI 10.1006/dbio.2002.0862 Harris SE, 2003, FRONT BIOSCI, V8, pS1249, DOI 10.2741/1170 Hassan MQ, 2004, MOL CELL BIOL, V24, P9248, DOI 10.1128/MCB.24.20.9248-9261.2004 HENRY KR, 1980, AUDIOLOGY, V19, P369 Lezot F, 2002, CONNECT TISSUE RES, V43, P509, DOI 10.1080/03008200290000583 Panganiban G, 2002, DEVELOPMENT, V129, P4371 Qiu MS, 1997, DEV BIOL, V185, P165, DOI 10.1006/dbio.1997.8556 Thomas BL, 1997, DEVELOPMENT, V124, P4811 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 NR 17 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2006 VL 214 IS 1-2 BP 84 EP 88 DI 10.1016/j.heares.2006.02.008 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 046NI UT WOS:000237817900009 PM 16632068 ER PT J AU Hernandez, PP Moreno, V Olivari, FA Allende, ML AF Hernandez, PP Moreno, V Olivari, FA Allende, ML TI Sub-lethal concentrations of waterborne copper are toxic to lateral line neuromasts in zebrafish (Danio rerio) SO HEARING RESEARCH LA English DT Article DE zebrafish; lateral line; mechanosensory cells; copper toxicity; hair cell regeneration ID HAIR CELL-DEATH; POSTEMBRYONIC DEVELOPMENT; EMBRYONIC-DEVELOPMENT; TRANSPORTER CTR1; FM1-43; EXPOSURE; SYSTEM; FISH; CURRENTS; MUTANTS AB in teleosts. the lateral line system is composed of neuromasts containing hair cells that are analogous to those present in the inner ear of all vertebrates. In the zebrafish embryo and early larva, this system is composed of the anterior lateral line (ALL). which covers the head, and the posterior lateral line (PLL), present in the trunk and tail. The mechanosensory hair cells found in neuromasts can be labeled in Vivo using fluorescent dyes such as 4-di-2-Asp (DiAsp) or FM 1-43. We have studied the effects of water-borne copper exposure on the function of the lateral line system in zebrafish larvae. our results show that transient incubation of post-hatching larvae for 2 h with non-lethal concentrations of copper (1-50 mu M CuSO4) induces cellular damage localized to neuromasts, apoptosis, and loss of hair cell markers. This effect is specific to copper, as other metals did not show these effects. Since hair cells in fish can regenerate, we followed the reappearance of viable hair cells in neuromasts after copper removal. In the PLL, we determined that there is a threshold concentration of copper above which regeneration does not occur, whereas, at lower concentrations, the length of time it takes for viable hair cells to reappear is dependent oil the amount of copper used during the treatment. The ALL behaves differently though, as regeneration can Occur even after treatments with concentrations of copper an order of magnitude higher than the one that irreversibly affects the PLL. Regeneration of hair cells is dependent oil cell division within the neuromasts as damage that precludes proliferation prevents reappearance of this cell type. (C) 2005 Published by Elsevier B.V. C1 Univ Chile, Fac Ciencias, Millennium Nucleus Dev Biol, Santiago, Chile. Univ Chile, Fac Ciencias, Dept Biol, Santiago, Chile. RP Allende, ML (reprint author), Univ Chile, Fac Ciencias, Millennium Nucleus Dev Biol, Encinas 3370,Edificio Milenio,Casilla 653, Santiago, Chile. EM allende@uchile.cl RI Allende, Miguel/C-5167-2008 OI Allende, Miguel/0000-0002-2783-2152 CR ABRAMS JM, 1993, DEVELOPMENT, V117, P29 BALAK KJ, 1990, J NEUROSCI, V10, P2502 Blechinger SR, 2002, ENVIRON HEALTH PERSP, V110, P1041 Carreau ND, 2005, ECOTOX ENVIRON SAFE, V61, P1, DOI 10.1016/j.ecoenv.2004.01.008 Clearwater SJ, 2002, COMP BIOCHEM PHYS C, V132, P269, DOI 10.1016/S1532-0456(02)00078-9 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 COLLAZO A, 1994, SCIENCE, V264, P426, DOI 10.1126/science.8153631 Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066 ENRNEST S, 2000, HUM MOL GENET, V9, P2189 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Gaetke LM, 2003, TOXICOLOGY, V189, P147, DOI 10.1016/S0300-483X(03)00159-8 Gale JE, 2001, J NEUROSCI, V21, P7013 Ghysen A, 2004, CURR OPIN NEUROBIOL, V14, P67, DOI 10.1016/j.conb.2004.01.012 Griesinger CB, 2002, J NEUROSCI, V22, P3939 Grosell M, 2003, COMP BIOCHEM PHYS C, V135, P179, DOI 10.1016/S1532-0456(03)00089-9 Haffter P, 1996, DEVELOPMENT, V123, P1 Handy RD, 2003, COMP BIOCHEM PHYS A, V135, P25, DOI 10.1016/S1095-6433(03)00018-7 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Ishida S, 2002, P NATL ACAD SCI USA, V99, P14298, DOI 10.1073/pnas.162491399 KIMMEL CB, 1995, DEV DYNAM, V203, P253 Lee J, 2002, J BIOL CHEM, V277, P4380, DOI 10.1074/jbc.M104728200 Liang GH, 2003, NEUROTOXICOL TERATOL, V25, P349, DOI 10.1016/S0892-0362(03)00008-4 Mackenzie NC, 2004, GENE, V328, P113, DOI 10.1016/j.gene.2003.11.019 Meyers JR, 2003, J NEUROSCI, V23, P4054 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627 Nicolson T, 1998, NEURON, V20, P271, DOI 10.1016/S0896-6273(00)80455-9 Nishikawa S, 1996, J HISTOCHEM CYTOCHEM, V44, P733 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 OLIVEIRA EC, 2004, CHEMOSPHERE, V56, P369 Pichon F, 2004, EVOL DEV, V6, P187, DOI 10.1111/j.1525-142X.2004.04024.x Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Reash RJ, 2004, ENVIRON MONIT ASSESS, V96, P203, DOI 10.1023/B:EMAS.0000031728.52806.68 Richardson GP, 1997, J NEUROSCI, V17, P9506 Sapede D, 2002, DEVELOPMENT, V129, P605 SCHWEITZER VG, 1993, LARYNGOSCOPE S, V103, P59 Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 Villavicencio G, 2005, ENVIRON TOXICOL CHEM, V24, P1287, DOI 10.1897/04-095R.1 Vinot I, 2005, ENVIRON POLLUT, V133, P169, DOI 10.1016/j.envpol.2004.03.002 Webb JF, 2003, DEV DYNAM, V228, P370, DOI 10.1002/dvdy.10385 Westerfield M, 1994, ZEBRAFISH BOOK GUIDE Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 NR 45 TC 59 Z9 61 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2005.10.015 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400001 PM 16386394 ER PT J AU Ohashi, M Ide, S Kimitsuki, T Komune, S Suganuma, T AF Ohashi, M Ide, S Kimitsuki, T Komune, S Suganuma, T TI Three-dimensional regular arrangement of the annular ligament of the rat stapediovestibular joint SO HEARING RESEARCH LA English DT Article DE annular ligament; stapediovestibular joint; electron microscopy; elastic fiber; rat ID ELECTRON MICROSCOPY; OTOSCLEROSIS; STAIN AB The stapes footplate articulates with the vestibular window through the annular ligament. This articulation is known as the stapediovestibular joint (SVJ). We investigated the ultrastructure of adult rat SVJ and report here on the characteristic ultrastructure of the corresponding annular ligament. Transmission electron microscopy showed that this annular ligament comprises thick ligament fibers consisting of a peripheral mantle of microfibrils and an electron-lucent central amorphous Substance that is regularly arranged in a linear fashion, forming laminated structures parallel to the horizontal plane of the SVJ. Scanning electron microscopy revealed that transverse microfibrils cross the thick ligament fibers, showing a lattice-like structure. The annular ligament was vividly stained with elastica van Gieson's stain and the Verhoeffs iron hematoxylin method. Staining of the electron-lucent central amorphous substance of the thick ligament fibers by the tannate-metal salt method revealed in intense electron density. These results indicate that the annular ligament of the SVJ is mainly composed of mature elastic fibers. (C) 2005 Elsevier B.V. All rights reserved. C1 Miyazaki Univ, Fac Med, Dept Anat, Miyazaki 8891692, Japan. Kyushu Univ, Fac Med, Dept Otolaryngol, Fukuoka 8128582, Japan. RP Suganuma, T (reprint author), Miyazaki Univ, Fac Med, Dept Anat, 5200 Kihara, Miyazaki 8891692, Japan. EM suganumat@med.miyazaki-u.ac.jp CR BOLZ EA, 1972, ACTA OTO-LARYNGOL, V73, P10, DOI 10.3109/00016487209138188 BRUNNER H, 1954, AMA ARCH OTOLARYNGOL, V59, P18 Chole RA, 2001, OTOL NEUROTOL, V22, P249, DOI 10.1097/00129492-200103000-00023 DAVIES J, 1948, J LARYNGOL OTOL, V62, P533 De Souza A, 1991, Rev Laryngol Otol Rhinol (Bord), V112, P7 FULLMER HM, 1958, J HISTOCHEM CYTOCHEM, V6, P425 GUSSEN R, 1968, AM J ANAT, V122, P397, DOI 10.1002/aja.1001220214 GUSSEN R, 1969, ACTA OTO-LARYNGOL, V248, P5 HARTY M, 1953, J Laryngol Otol, V67, P723, DOI 10.1017/S0022215100049239 JUNQUEIRA L, 2002, BASIC HISTOLOGY, P95 KAGEYAMA M, 1985, HISTOCHEM J, V17, P93, DOI 10.1007/BF01003406 Merchant SN, 2001, OTOL NEUROTOL, V22, P305, DOI 10.1097/00129492-200105000-00006 MURAKAMI T, 1973, Archivum Histologicum Japonicum, V35, P323 MYRHAUG H, 1967, ACTA OTOLARYNGOL S, V224, P156 Niedermeyer HP, 2002, ORL J OTO-RHINO-LARY, V64, P114, DOI 10.1159/000057789 Okumura Akiko, 1993, Okajimas Folia Anatomica Japonica, V69, P385 PUCHTLER H, 1979, HISTOCHEMISTRY, V62, P233, DOI 10.1007/BF00508352 REYNOLDS ES, 1963, J CELL BIOL, V17, P208, DOI 10.1083/jcb.17.1.208 Schuknecht H. F., 1974, PATHOLOGY EAR SCHUKNECHT HF, 1985, LARYNGOSCOPE, V95, P1307 STEMPAK JG, 1964, J CELL BIOL, V22, P697, DOI 10.1083/jcb.22.3.697 Verhoeff F. H., 1908, JAMA-J AM MED ASSOC, V50, P876 Whyte JR, 2002, CELLS TISSUES ORGANS, V171, P241, DOI 10.1159/000063124 WOLFF D, 1956, Ann Otol Rhinol Laryngol, V65, P895 NR 24 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 11 EP 16 DI 10.1016/j.heares.2005.11.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400002 PM 16476532 ER PT J AU Hullar, TE Williams, CD AF Hullar, TE Williams, CD TI Geometry of the semicircular canals of the chinchilla (Chinchilla laniger) SO HEARING RESEARCH LA English DT Article DE vestibular; vestibulo-ocular reflex; anatomy; afferent; prime direction; chinchilla ID AIDED 3-DIMENSIONAL RECONSTRUCTION; PLANAR RELATIONSHIPS; PHYSIOLOGIC CHARACTERISTICS; VESTIBULAR AFFERENTS; DIMENSIONAL ANALYSIS; GUINEA-PIG; ORIENTATION; CAT; MORPHOLOGY; RESPONSES AB The orientations of the semicircular canals determines the response of the canals to head rotations and, in turn, the brain's ability to interpret those motions. The geometry of chinchillas' semicircular canals has never been reported. Volumetric representations of three chinchilla skulls were generated using a microCT scanner. The centroids of each semicircular canal lumen were identified its they passed through the image slices and were regressed to a plane. Unit vectors normal to the plane representing canal orientations were used to calculate angles between canal pairs. Pitch and roll maneuvers required to bring any canal into the horizontal plane for physiologic investigation were calculated. The semicircular canals of the chinchilla were found to be relatively planar. The horizontal canal was found to be oriented 55.0 degrees anteriorly upward. Pairs of ipsilateral chinchilla canals were not orthogonal and contralateral synergistic pairs were not parallel. Despite this arrangement, the canal plane unit normal vectors were organized to respond with approximately equal overall sensitivity to rotations in any direction. The non-orthogonal chinchilla labyrinth may provide all opportunity to determine whether the frame of reference used by the central vestibular and oculomotor system is based oil directions of afferent maximum sensitivity or prime directions. (C) 2005 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, St Louis, MO 63110 USA. RP Hullar, TE (reprint author), Washington Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, 660 S Euclid Ave 8115, St Louis, MO 63110 USA. EM hullart@ent.wustl.edu CR BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182 BLANKS RHI, 1989, BRAIN RES, V487, P278, DOI 10.1016/0006-8993(89)90832-9 BLANKS RHI, 1972, AM J PHYSIOL, V223, P55 BLANKS RHI, 1985, BRAIN RES, V340, P315, DOI 10.1016/0006-8993(85)90928-X BLANKS RHI, 1975, J NEUROPHYSIOL, V38, P1250 BLANKS RHI, 1975, ACTA OTO-LARYNGOL, V80, P185, DOI 10.3109/00016487509121318 BRICHTA AM, 1988, BRAIN BEHAV EVOLUT, V32, P236, DOI 10.1159/000116551 Carey JP, 2004, OTOL NEUROTOL, V25, P345, DOI 10.1097/00129492-200405000-00024 CURTHOYS IS, 1975, ACTA OTO-LARYNGOL, V80, P197, DOI 10.3109/00016487509121319 CURTHOYS IS, 1977, J MORPHOL, V151, P17, DOI 10.1002/jmor.1051510103 De Groot J, 1959, RAT FOREBRAIN STEREO DELLASANTINA CC, 2004, J VESTIBUL RES-EQUIL, V14, P98 DELLASANTINA CC, 2005, J ASS RES OTOLARYNGO Dickman JD, 1996, EXP BRAIN RES, V111, P8 ESTES MS, 1975, J NEUROPHYSIOL, V38, P1232 EZURE K, 1984, NEUROSCIENCE, V12, P85, DOI 10.1016/0306-4522(84)90140-4 Ghanem TA, 1998, HEARING RES, V124, P27, DOI 10.1016/S0378-5955(98)00108-7 Gray A.A., 1907, LABYRINTH ANIMALS HAQUE A, 2003, EXP BRAIN RES, V155, P81 Hashimoto Shinichiro, 2003, Nihon Jibiinkoka Gakkai Kaiho, V106, P1 Hirvonen TP, 2005, J NEUROPHYSIOL, V93, P643, DOI 10.1152/jn.00160.2004 Hoffman RA, 1968, GOLDEN HAMSTER ITS B Hullar TE, 1999, J NEUROPHYSIOL, V82, P2000 Hullar TE, 2005, J NEUROPHYSIOL, V93, P2777, DOI 10.1152/jn.01002.2004 HULLAR TE, 2000, ARO MIDW M Ichijo Hiroaki, 2002, Nihon Jibiinkoka Gakkai Kaiho, V105, P1138 Konig JFR, 1963, RAT BRAIN STEREOTAXI LANDOLT JP, 1975, J COMP NEUROL, V159, P257, DOI 10.1002/cne.901590207 Lewis E R, 1994, J Vestib Res, V4, P189 MAZZA D, 1984, ACTA OTO-LARYNGOL, V98, P472, DOI 10.3109/00016488409107588 OMAN CM, 1987, ACTA OTO-LARYNGOL, V103, P1, DOI 10.3109/00016488709134691 Paxinos G., 1998, RAT BRAIN STEREOTAXI Rabbitt Richard D., 2004, VVolume 19, P153 Rabbitt RD, 1999, BIOL CYBERN, V80, P417, DOI 10.1007/s004220050536 RAMPRASHAD F, 1980, J COMP NEUROL, V192, P883, DOI 10.1002/cne.901920415 RAMPRASHAD F, 1984, AM J ANAT, V169, P295, DOI 10.1002/aja.1001690306 REISINE H, 1988, ANN NY ACAD SCI, V545, P10, DOI 10.1111/j.1749-6632.1988.tb19552.x SATO H, 1993, ACTA OTO-LARYNGOL, V113, P171, DOI 10.3109/00016489309135787 SHERWOOD NM, 1970, STEREOTAXIC ATLAS DE Slotnick B.M., 1975, STEREOTAXIC ATLAS AL SPOOR F, 1998, AM J PHYS ANTHROPOL, P211 TAKAGI A, 1989, ACTA OTO-LARYNGOL, V107, P362, DOI 10.3109/00016488909127522 TAKAGI A, 1988, OTOLARYNG HEAD NECK, V98, P195 NR 43 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 17 EP 24 DI 10.1016/j.heares.2005.11.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400003 PM 16439079 ER PT J AU Santos, F MacDonald, G Rubel, EW Raible, DW AF Santos, F MacDonald, G Rubel, EW Raible, DW TI Lateral line hair cell maturation is a determinant of aminoglycoside susceptibility in zebrafish (Danio rerio) SO HEARING RESEARCH LA English DT Article DE ototoxicity; aminoglycosides; mechanotransduction; hearing loss ID IN-VITRO; GUINEA-PIG; GENTAMICIN EXPOSURE; CASPASE ACTIVATION; BASILAR PAPILLA; FREE-RADICALS; MYOSIN VIIA; DEATH; NEOMYCIN; OTOTOXICITY AB Developmental differences in hair cell susceptibility to aminoglycoside-induced cell death has been observed in multiple species. Increased sensitivity to aminoglycosides has been temporally correlated with the onset of mechanotransduction dependent activity. We have used in vivo fluorescent vital dye markers to further investigate the determinants of aminoglycoside induced hair cell death in the lateral line of zebrafish (Danio rerio). Labeling hair cells of the lateral line in vivo with the dyes FM 1-43, To-Pro-3, and Yo-Pro-1 served as reliable indicators of hair cell viability. Results indicate that hair cell maturation is a determinant of developmental differences in Susceptibility. The age dependent differences in susceptibility to aminoglycosides are independent of the onset of mechanotransduction-dependent activity as measured by FM 1-43 uptake and independent of hair cell ability to take Lip fluorescently Conjugated aminoglycosides. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. Univ Washington, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Univ Washington, Dept Biol Struct, Seattle, WA 98195 USA. RP Rubel, EW (reprint author), Univ Washington, Virginia Merrill Bloedel Hearing Res Ctr, Box 357923, Seattle, WA 98195 USA. EM rubel@u.washington.edu; draible@u.washington.edu CR Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x BERNARD PA, 1981, LARYNGOSCOPE, V91, P1985 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 COLLAZO A, 1994, SCIENCE, V264, P426, DOI 10.1126/science.8153631 Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6 Coombs S, 1999, COMP HEARING FISH AM Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066 CORTOPASSI G, 1994, HEARING RES, V78, P27, DOI 10.1016/0378-5955(94)90040-X Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J DULON D, 1986, ANTIMICROB AGENTS CH, V30, P96 Ernest S, 2000, HUM MOL GENET, V9, P2189, DOI 10.1093/hmg/9.14.2189 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357 FRIEDMANN I, 1961, J PATHOL BACTERIOL, V81, P81, DOI 10.1002/path.1700810110 Gale JE, 2001, J NEUROSCI, V21, P7013 Geleoc GSG, 2003, NAT NEUROSCI, V6, P1019, DOI 10.1038/nn1120 Gompel N, 2001, MECH DEVELOP, V105, P69, DOI 10.1016/S0925-4773(01)00382-3 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0 KOTECHA B, 1994, HEARING RES, V73, P173, DOI 10.1016/0378-5955(94)90232-1 Langenberg T, 2003, DEV DYNAM, V228, P464, DOI 10.1002/dvdy.10395 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 Marcotti W, 2005, J PHYSIOL-LONDON, V567, P505, DOI 10.1113/jphysiol.2005.085951 MAROT M, 1980, HEARING RES, V2, P111, DOI 10.1016/0378-5955(80)90032-5 Matsui JI, 2003, J NEUROSCI, V23, P6111 Matsui JI, 2002, J NEUROSCI, V22, P1218 METCALFE WK, 1985, J COMP NEUROL, V233, P377, DOI 10.1002/cne.902330307 Meyers JR, 2003, J NEUROSCI, V23, P4054 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Nishikawa S, 1996, J HISTOCHEM CYTOCHEM, V44, P733 Pirvola U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K RAPHAEL Y, 1983, ARCH OTO-RHINO-LARYN, V238, P45, DOI 10.1007/BF00453740 Richardson GP, 1997, J NEUROSCI, V17, P9506 RYBEK LP, 2003, CURR OPIN OTOLARYNGO, V11, P328 SANTOS F, 2005, ARO ABSTR, V28, P210 Seiler C, 1999, J NEUROBIOL, V41, P424, DOI 10.1002/(SICI)1097-4695(19991115)41:3<424::AID-NEU10>3.0.CO;2-G Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Si F, 2003, J NEUROSCI, V23, P10815 Sidi S, 2003, SCIENCE, V301, P96, DOI 10.1126/science.1084370 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 SMITH C R, 1977, New England Journal of Medicine, V296, P349, DOI 10.1056/NEJM197702172960701 SOLLNER C, 2000, NATURE, V428, P955 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song JK, 1995, HEARING RES, V91, P63, DOI 10.1016/0378-5955(95)00170-0 STEYGER PS, 2003, JARO-J ASSOC RES OTO, V4, P4565 THEOPOLD HM, 1977, ACTA OTO-LARYNGOL, V84, P57, DOI 10.3109/00016487709123942 Ton C, 2005, HEARING RES, V208, P79, DOI 10.1016/j.heares.2005.05.005 Torchinsky C, 1999, J NEUROCYTOL, V28, P913, DOI 10.1023/A:1007082424477 Walker P. D., 1987, AM J PHYSIOL, V253, P495 WEEG MS, 2002, J NEUROPHYSIOL, V55, P74 Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 NR 64 TC 58 Z9 60 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 25 EP 33 DI 10.1016/j.heares.2005.12.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400004 PM 16459035 ER PT J AU Baumann, U Nobbe, A AF Baumann, U Nobbe, A TI The cochlear implant electrode-pitch function SO HEARING RESEARCH LA English DT Article DE cochlear implant; electric hearing; frequency-place function; pitch sensation ID SPEECH-PERCEPTION; DEAD REGIONS; INSERTION; HEARING; ARRAYS; NEURON; MODEL AB The cochlear frequency-place function in normal hearing cars has been found to be an exponential relationship in a wide variety of species [D.D. Greenwood, J. Acoust. Soc. Am. 87 (1990) 2592-2605]. Although it seems reasonable to assume a similar function for electrical stimulation by means of an intra-cochlear electrode array, the exact frequency-place function for this special type of stimulation needs to be investigated. Six users of the MED-EL COMBI 40+ cochlear implant device with moderate to profound hearing loss between 125 and 1000 Hz in the non-implanted ear took part in a binaural pitch adjustment experiment. The COMBI 40+ electrode array provides a deep insertion into the scala tympani and a wide spatial separation between the stimulating electrodes. Insertion depth was controlled by Stenver's view plain radiographs and the insertion angle was estimated. The task of the subjects was to adjust the frequency of a sinusoid presented in the non-implanted ear by means of an adjusting knob until they perceived the same pitch as was elicited by a reference stimulus in the implanted ear. The results show adjustments corresponding to electrode positions along the cochlea, with the exception of the two most apical electrodes for most of the Subjects. Pitch increased in an orderly fashion with an average of 98 Hz per electrode separation (40 Hz/mm). In contrast to the exponential predictions according to [D.D. Greenwood, J. Acoust. Soc. Am. 87 (1990) 2592-2605] for normal hearing, the average electrode-pitch function shows a linear relationship. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Munich, Dept Otorhinolaryngol, D-81377 Munich, Germany. Med El GmbH, A-6020 Innsbruck, Austria. Univ Munich, ENT Dept, Munich, Germany. RP Baumann, U (reprint author), Univ Munich, Dept Otorhinolaryngol, Marchioninistr 15, D-81377 Munich, Germany. EM Uwe.Baumann@med.uni-muenchen.de CR Baumann U, 2004, EAR HEARING, V25, P275, DOI 10.1097/00003446-200406000-00008 Baumann U, 2004, HEARING RES, V196, P49, DOI 10.1016/j.heares.2004.06.008 Bekesy G., 1960, EXPT HEARING BOEX C, 2006, IN PRESS J ASS RES O Cohen LT, 1996, AM J OTOL, V17, P859 DORMAN MF, 1994, J ACOUST SOC AM, V95, P1677, DOI 10.1121/1.408558 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hochmair I, 2003, ACTA OTO-LARYNGOL, V123, P612, DOI 10.1080/00016480310001844 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 SPOENDLIN H, 1989, HEARING RES, V43, P25, DOI 10.1016/0378-5955(89)90056-7 TURNER C, 1983, J ACOUST SOC AM, V73, P966, DOI 10.1121/1.389022 Yukawa K, 2004, AUDIOL NEURO-OTOL, V9, P163, DOI 10.1159/000077267 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 Zierhofer C. M., 1995, IEEE Transactions on Rehabilitation Engineering, V3, DOI 10.1109/86.372900 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 20 TC 37 Z9 37 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 34 EP 42 DI 10.1016/j.heares.2005.12.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400005 PM 16442249 ER PT J AU Murao, MS Bento, RF Sanchez, TG Ribas, GC AF Murao, MS Bento, RF Sanchez, TG Ribas, GC TI Transient evoked otoacoustic emissions after vestibular nerve section in chinchillas SO HEARING RESEARCH LA English DT Article DE olivocochlear bundle; otoacoustic emissions; chinchilla; vestibular nerve section; outer hair cells ID OLIVOCOCHLEAR BUNDLE SECTION; SUPERIOR OLIVARY COMPLEX; DISTORTION PRODUCTS; NEURONS; HUMANS; REFLEX AB Transient evoked otoacoustic emissions are believed to be sensitive to the effects of the cochlear efferent system. The most well-known function of this system is inhibitory oil cochlear response. It has been demonstrated that crossed medial efferent system section produces inhibitory control of the outer hair cells mechanisms responsible For non-linear transient evoked otoacoustic emissions generation. However, We Suppose that the uncrossed medial efferent system plays a role in outer hair cell function too. We recorded the non-linear part or transient evoked otoacoustic emissions in 17 chinchillas before and after section of the vestibular nerve (crossed and uncrossed fibers). Responses at Frequencies bands centered on 0.8, 1.6, 2.4, 3.2 and 4.0 kHz, as well as total emission responses, were analyzed. After vestibular nerve section, there Were significant increases in the amplitudes of the 2.4- and 4.0 kHz responses and of the total response. These results indicate that the medial efferent system is important to maintain normal cochlear mechanics. Uncrossed medial efferent system and lateral efferent system seem to be not important in maintaining normal cochlear mechanics. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Sao Paulo, Sch Med, Otorhinolaryngol Sci Lab, BR-01246903 Sao Paulo, Brazil. Univ Sao Paulo, Sch Med, Dept Anat, BR-01246903 Sao Paulo, Brazil. RP Murao, MS (reprint author), Rua Dona Cota,177,Sala 202, BR-37010560 Varginha, MG, Brazil. EM marciamurao@hotmail.com CR Brown MC, 2003, EXP BRAIN RES, V153, P491, DOI 10.1007/s00221-003-1679-y BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 CAZALS Y, 1987, ACTA OTO-LARYNGOL, V103, P572 Costa Deise Lima Da, 1998, Audiology (London), V37, P151 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Guinan Jr J.J., 1996, COCHLEA, P435 Kakigi A, 1997, HEARING RES, V110, P34, DOI 10.1016/S0378-5955(97)00062-2 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P374, DOI 10.3109/00016489609137860 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 WILLIAMS EA, 1994, ACTA OTO-LARYNGOL, V114, P121, DOI 10.3109/00016489409126029 NR 16 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 43 EP 48 DI 10.1016/j.heares.2005.12.013 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400006 PM 16497453 ER PT J AU Gabriel, D Veuillet, E Vesson, JF Collet, L AF Gabriel, D Veuillet, E Vesson, JF Collet, L TI Rehabilitation plasticity: Influence of hearing aid fitting on frequency discrimination performance near the hearing-loss cut-off SO HEARING RESEARCH LA English DT Article DE frequency discrimination; rehabilitation plasticity; hearing loss; hearing aid ID CENTRAL AUDITORY PLASTICITY; CORTICAL REORGANIZATION; UNILATERAL DEAFNESS; SOMATOSENSORY CORTEX; COCHLEAR LESIONS; MOTOR CORTEX; ORGAN DAMAGE; LATE-ONSET; MONKEYS; DEAFFERENTATION AB Several studies have already demonstrated that patients with steeply sloping hearing loss of cochlear origin exhibit an improvement in frequency discrimination performance at or around the cut-off frequency. This enhancement cannot be explained in terms of peripheral mechanisms and should rather be interpreted in terms of central reorganization: i.e., injury-induced cortical plasticity. However, the reversibility and time course of such reorganization has not yet been described. The main goal of the present study was therefore to investigate the occurrence of rehabilitation plasticity associated with hearing-aid fitting in human Subjects. Nine Subjects with steeply sloping hearing loss and who were candidates for auditory rehabilitation were tested. Discrimination-limen-for-frequency (DLF) enhancement was investigated at the frequency With the best DLF (bDLF) For each individual Subject before and during auditory rehabilitation (at 1 month, 3 months and 6 months). From 1 month on, frequency discrimination performance decreased significantly at the bDLF frequency, while remaining stable at other frequencies. This normalization may reflect a new central reorganization reversing the initial injury-induced changes in the cortical map. A correlation between subject's age and alteration in DLF at 1 month was also found, suggesting that plasticity operates faster in younger patients. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, CNRS GDR Protheses Audit 2213, Lab Neurosci & Syst Sensoriels, Unite CNRS UMR 5020, F-69366 Lyon 07, France. RP Gabriel, D (reprint author), Univ Lyon 1, CNRS GDR Protheses Audit 2213, Lab Neurosci & Syst Sensoriels, Unite CNRS UMR 5020, 50 Av Tony Garnier, F-69366 Lyon 07, France. EM damiengabriel@yahoo.fr CR Bilecen D, 2000, NEUROLOGY, V54, P765 Buss E, 1998, HEARING RES, V125, P98, DOI 10.1016/S0378-5955(98)00131-2 Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 Fujiki N, 1998, NEUROREPORT, V9, P3129, DOI 10.1097/00001756-199810050-00002 GARRAGHTY PE, 1991, SOMATOSENS MOT RES, V8, P347 GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469 Giraux P, 2001, NAT NEUROSCI, V4, P691, DOI 10.1038/89472 HALLPIKE C S, 1959, Acta Otolaryngol, V50, P472, DOI 10.3109/00016485909129223 HALLPIKE C S, 1951, Rev Laryngol Otol Rhinol (Bord), V72, P219 HENDRY SHC, 1986, NATURE, V320, P750, DOI 10.1038/320750a0 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Kelahan A M, 1981, Brain Res, V223, P152, DOI 10.1016/0006-8993(81)90815-5 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MERZENICH MM, 1983, NEUROSCIENCE, V8, P33, DOI 10.1016/0306-4522(83)90024-6 Olsen SO, 1999, AUDIOLOGY, V38, P61 Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4 PONS TP, 1991, SCIENCE, V252, P1857, DOI 10.1126/science.1843843 Ponton CW, 2001, HEARING RES, V154, P32, DOI 10.1016/S0378-5955(01)00214-3 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RECANZONE GH, 1993, J NEUROSCI, V13, P87 ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230 Roricht S, 1999, NEUROLOGY, V53, P106 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 SCHWABER MK, 1993, AM J OTOL, V14, P252 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 WALL JT, 1983, SCIENCE, V221, P771, DOI 10.1126/science.6879175 WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329 NR 31 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 49 EP 57 DI 10.1016/j.heares.2005.12.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400007 PM 16459036 ER PT J AU Rajan, R AF Rajan, R TI Contextual modulation of cochlear hearing desensitization depends on the type of loud sound trauma SO HEARING RESEARCH LA English DT Article DE cochlea; hearing damage; loud sounds; background noise; auditory ID BASILAR-MEMBRANE VIBRATIONS; TEMPORARY THRESHOLD SHIFT; ACOUSTIC STIMULATION; MAMMALIAN COCHLEA; MECHANICS; PATHWAYS; INTERFERENCE; TRANSDUCTION; PATTERNS; DAMAGE AB In ears in which cochlear efferent pathways were cut and with testing done Under anaesthetic conditions that preclude middle ear muscle activity (so as to examine the "intrinsic" effects of loud sound on the cochlea without any confounding effect of efferent pathways to the auditory periphery), atraumatic background white noise (WN) increases cochlear hearing loss (temporary threshold shifts, TTSs) induced by a traumatic pure tone but reduces TTSs caused by traumatic 5-kHz wide narrow band (NB) sound. The short-duration moderately intense traumata used in these Studies most likely cause TTSs by affecting cochlear mechanics and these WN modulatory effects, exerted directly on the cochlea's intrinsic susceptibility to TTSs, are not predicted by any Current description of cochlear mechanics. Here it is demonstrated that background WN reduces trauma-induced TTSs with even a relatively small increase in trauma bandwidth beyond that of a pure tone, discounting the alternative that contextual modulatory effects transition systematically along a continuum as trauma bandwidth increases from a pure tone to a broader bandwidth (albeit 2 kHz-wide NB) trauma. These results have implications for cochlear mechanics as the TTSs due to the traumatic Sound of this study are most likely due to changes in cochlear mechanics but are not easily explained by what is currently known of cochlear mechanics. (C) 2006 Elsevier B.V. All rights reserved. C1 Monash Univ, Dept Physiol, Monash, Vic 3800, Australia. RP Rajan, R (reprint author), Monash Univ, Dept Physiol, Wellington Rd, Monash, Vic 3800, Australia. EM ramesh.rajan@med.monash.edu.au RI Rajan, Ramesh/A-5945-2008 CR Chan E, 1998, NEUROSCIENCE, V83, P961, DOI 10.1016/S0306-4522(97)00446-6 Chertoff ME, 1997, J ACOUST SOC AM, V102, P441, DOI 10.1121/1.419766 CODY AR, 1985, NATURE, V315, P662, DOI 10.1038/315662a0 CODY AR, 1982, HEARING RES, V6, P199, DOI 10.1016/0378-5955(82)90054-5 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y Fridberger A, 2002, HEARING RES, V167, P214, DOI 10.1016/S0378-5955(02)00396-9 Fridberger A, 2002, J NEUROPHYSIOL, V88, P2341, DOI 10.1152/jn.00192.2002 Geisler CD, 1997, J ACOUST SOC AM, V102, P430, DOI 10.1121/1.419765 GUMMER AW, IN PRESS PULSATING F LEGOUIX JP, 1973, J ACOUST SOC AM, V53, P409, DOI 10.1121/1.1913337 Lin T, 2000, J ACOUST SOC AM, V107, P2615, DOI 10.1121/1.428648 NOWOTNY M, IN PRESS WHAT DO OHC Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X Patuzzi R. B., 1992, NOISE INDUCED HEARIN, P45 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 RAJAN R, 1995, J NEUROPHYSIOL, V74, P582 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RAJAN R, 1995, J NEUROPHYSIOL, V74, P598 Rajan R, 2000, J NEUROSCI, V20, P6684 Rajan R, 2005, J NEUROPHYSIOL, V93, P1977, DOI 10.1152/jn.00848.2004 Robles L, 2001, PHYSIOL REV, V81, P1305 RUGGERO MA, 1993, BIOPHYSICS HAIR CELL, P258 Ruggero MA, 1996, AUDIT NEUROSCI, V2, P329 Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660 STOCKWEL.CW, 1969, ANN OTO RHINOL LARYN, V78, P1144 van der Heijden M, 2005, J ACOUST SOC AM, V117, P1223, DOI 10.1121/1.1856375 ZHANG MS, 1995, HEARING RES, V85, P1, DOI 10.1016/0378-5955(95)00026-Z NR 29 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 58 EP 63 DI 10.1016/j.heares.2005.12.006 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400008 PM 16439080 ER PT J AU Dai, CF Mangiardi, D Cotanche, DA Steyger, PS AF Dai, CF Mangiardi, D Cotanche, DA Steyger, PS TI Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo SO HEARING RESEARCH LA English DT Article DE inner ear; gentamicin; hair cells; blood-labyrinth barrier ID COCHLEAR HAIR-CELLS; INNER-EAR TISSUES; AMINOGLYCOSIDE ANTIBIOTICS; ETHACRYNIC-ACID; GUINEA-PIG; STRIA VASCULARIS; CATION CHANNEL; HORSERADISH-PEROXIDASE; LLC-PK1 CELLS; GOLGI-COMPLEX AB Aminoglycoside uptake in the inner ear remains poorly understood. We subcutaneously injected a fluorescently-conjugated aminoglycoside, gentamicin-Texas Red (GTTR), to investigate the in vivo uptake of GTTR in the inner ear of several vertebrates, and in various murine sensory cells using confocal microscopy. In bullfrogs, GTTR uptake was prominent in mature hair cells, but not in immature hair cells. Avian hair cells accrued GTTR more rapidly at the base of the basilar papilla. GTTR was associated with the hair bundle; and, in guinea pigs and mice, somatic GTTR fluorescence was initially diffuse before punctate (endosomal) fluorescence could be observed. A baso-apical gradient of intracellular GTTR uptake in guinea pig cochleae could only be detected at early time points (<3 h). In 21-28 day mice, cochlear GTTR uptake was greatly reduced compared to guinea pigs, 6-day-old mice, or mice treated with ethacrynic acid. In mice, GTTR was also rapidly taken up, and retained, in the kidney, dorsal root and trigeminal ganglia. In linguinal and vibrissal tissues rapid GTTR uptake cleared over a period of several days. The preferential uptake of GTTR by mature saccular, and proximal hair cells resembles the pattern of aminoglycoside-induced hair cell death in bullfrogs and chicks. Differences in the degree of GTTR uptake in hair cells of different species suggests variation in serum levels, clearance rates from serum, and/or the developmental and functional integrity of the blood-labyrinth barrier. GTTR uptake by hair cells in vivo suggests that GTTR has potential to elucidate aminoglycoside transport mechanisms into the inner ear, and as a biotracer for in vivo pharmacokinctic studies. (C) 2006 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Fudan Univ, Eye Ear Nose & Throat Hosp, Dept Otolaryngol, Shanghai 200031, Peoples R China. Childrens Hosp, Dept Otolaryngol, Boston, MA 02115 USA. Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA. RP Steyger, PS (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM steygerp@ohsu.edu RI dai, chenkai/A-8051-2010 CR Aran JM, 1999, ANN NY ACAD SCI, V884, P60, DOI 10.1111/j.1749-6632.1999.tb08636.x AU S, 1987, BIOCHIM BIOPHYS ACTA, V902, P80, DOI 10.1016/0005-2736(87)90137-4 Baird RA, 1996, ANN NY ACAD SCI, V781, P59, DOI 10.1111/j.1749-6632.1996.tb15693.x BALOGH K, 1970, ANN OTO RHINOL LARYN, V79, P641 BEAUBIEN AR, 1991, ANTIMICROB AGENTS CH, V35, P1070 BHAVE SA, 1995, J NEUROSCI, V15, P4618 BRUMMETT RE, 1981, REV INFECT DIS, V3, pS216 Caterina MJ, 1997, NATURE, V389, P816 Chen P, 1999, DEVELOPMENT, V126, P1581 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J Ding D, 1995, Zhonghua Er Bi Yan Hou Ke Za Zhi, V30, P323 Ding DL, 2003, HEARING RES, V185, P90, DOI 10.1016/S0378-5955(03)00258-2 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 DULON D, 1993, CR ACAD SCI III-VIE, V316, P682 Dunn KW, 2002, AM J PHYSIOL-CELL PH, V283, pC905, DOI 10.1152/ajpcell.00159.2002 DUVALL AJ, 1989, ACTA OTO-LARYNGOL, V108, P397, DOI 10.3109/00016488909125545 Ehret G, 1976, J Am Audiol Soc, V1, P179 FORGE A, 1987, HEARING RES, V31, P253, DOI 10.1016/0378-5955(87)90195-X FORGE A, 1985, HEARING RES, V20, P233, DOI 10.1016/0378-5955(85)90028-0 FOX KE, 1979, ACTA OTO-LARYNGOL, V87, P72, DOI 10.3109/00016487909126389 Gale JE, 2001, J NEUROSCI, V21, P7013 Goodman L. S., 2001, GOODMAN GILMANS PHAR, V10th HACKNEY CM, 1990, LECT NOTES BIOMATH, V87, P10 Hashino E, 2000, BRAIN RES, V887, P90, DOI 10.1016/S0006-8993(00)02971-1 HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HAYASHIDA T, 1989, ACTA OTO-LARYNGOL, V108, P404, DOI 10.3109/00016488909125546 Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G HIEL H, 1992, ACTA OTO-LARYNGOL, V112, P272 Hirose K, 1999, ANN NY ACAD SCI, V884, P389, DOI 10.1111/j.1749-6632.1999.tb08657.x Hofmann T, 2003, CURR BIOL, V13, P1153, DOI 10.1016/S0960-9822(03)00431-7 HUY PTB, 1986, J CLIN INVEST, V77, P1492 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7 Jiang H, 2006, CELL DEATH DIFFER, V13, P20, DOI 10.1038/sj.cdd.4401706 KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9 Kitahara T, 2005, HEARING RES, V201, P132, DOI 10.1016/j.heares.2004.09.007 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 LEE SB, 1995, CURR OPIN CELL BIOL, V7, P183, DOI 10.1016/0955-0674(95)80026-3 LI CW, 1979, ANN OTO RHINOL LARYN, V88, P427 Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4 Macpherson LJ, 2005, CURR BIOL, V15, P929, DOI 10.1016/j/cub.2005.04.018 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 MARCHE P, 1987, KIDNEY INT, V31, P59, DOI 10.1038/ki.1987.9 MARCOTTI W, 2005, J PHYSL Meyers JR, 2003, J NEUROSCI, V23, P4054 Myrdal SE, 2005, HEARING RES, V204, P170, DOI 10.1016/j.heares.2005.02.005 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Naito H, 1997, ORL J OTO-RHINO-LARY, V59, P248 NONCLERCQ D, 1992, RENAL FAILURE, V14, P507, DOI 10.3109/08860229209047660 Porta EA, 2002, ANN NY ACAD SCI, V959, P57 PORTMANN M, 1974, ARCH OTOLARYNGOL, V100, P473 Raisinghani M, 2005, PAIN, V113, P123, DOI 10.1016/j.pain.2004.09.042 Richardson GP, 1997, J NEUROSCI, V17, P9506 RICHARDSON GP, 1989, COCHLEAR MECH STRUCT, P566 RYAN AF, 1980, HEARING RES, V3, P335, DOI 10.1016/0378-5955(80)90027-1 RYBAK LP, 1982, J OTOLARYNGOL, V11, P127 Sandoval R, 1998, J AM SOC NEPHROL, V9, P167 Sandoval RM, 2000, AM J PHYSIOL-RENAL, V279, pF884 SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236 Shnerson A, 1981, Brain Res, V254, P65 SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9 Staecker H, 1997, INT J DEV NEUROSCI, V15, P553, DOI 10.1016/S0736-5748(96)00110-4 Stanislawski L, 1997, Clin Oral Investig, V1, P131, DOI 10.1007/s007840050024 STEYGER PS, 1991, THESIS KEELE U Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 Strotmann R, 2000, NAT CELL BIOL, V2, P695 Suchy SF, 2002, AM J HUM GENET, V71, P1420, DOI 10.1086/344517 SYKA J, 1985, HEARING RES, V20, P267, DOI 10.1016/0378-5955(85)90031-0 HUY PTB, 1983, HEARING RES, V11, P191, DOI 10.1016/0378-5955(83)90078-3 von Ilberg C, 1971, Acta Otolaryngol, V71, P159, DOI 10.3109/00016487109125345 WEDEEN RP, 1983, LAB INVEST, V48, P212 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Xie Y, 2001, KIDNEY INT, V59, P959, DOI 10.1046/j.1523-1755.2001.059003959.x Xu HX, 2002, NATURE, V418, P181, DOI 10.1038/nature00882 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X Zhang ZJ, 2000, BRAIN RES, V852, P116, DOI 10.1016/S0006-8993(99)02223-4 Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 Zhou LM, 2002, AATCC REV, V2, P29 Zhou Y, 2001, NEUROSCI LETT, V315, P98, DOI 10.1016/S0304-3940(01)02356-4 ZIERHUT G, 1979, EUR J BIOCHEM, V98, P577, DOI 10.1111/j.1432-1033.1979.tb13219.x NR 88 TC 44 Z9 47 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 64 EP 78 DI 10.1016/j.heares.2005.11.011 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400009 PM 16466873 ER PT J AU Qu, CY Liang, FH Hu, W Shen, ZJ Spicer, SS Schulte, BA AF Qu, CY Liang, FH Hu, W Shen, ZJ Spicer, SS Schulte, BA TI Expression of CLC-K chloride channels in the rat cochlea SO HEARING RESEARCH LA English DT Article DE chloride channel; ClC-K1; ClC-K2; cochlea; organ of Corti; stria vascularis; spiral ligament ID STRIA-VASCULARIS; MARGINAL CELLS; GERBIL COCHLEA; SPIRAL GANGLION; MESSENGER-RNA; MICE LACKING; INNER-EAR; KIDNEY; LOCALIZATION; ACID AB Current models of the lateral K+ recycling pathway in the mammalian cochlea include two multicellular transport networks separated from one another by three interstitial gaps. The first gap is between outer hair cells and Deiters cells, the second is between outer sulcus cells and type II spiral ligament fibrocytes and the third is between intermediate and marginal cells in the stria vascularis. K+ taken up by cells bordering these interstitial spaces is accompanied by Cl-. Maintaining appropriate electrolyte balance and membrane potentials in these cells requires a mechanism for exit of the resorbed Cl-. One possible candidate For regulating this Cl- efflux is ClC-K, a chloride channel previously thought to be kidney specific. Here, we demonstrate the expression of both known isoforms of ClC-K in the organ of Corti, spiral ligament and stria vascularis of the rat cochlea by immunohistochemical, Western blot and RT-PCR analysis. These results indicate a role for ClC-K in mediating Cl- recycling in the cochlea. The widespread expression of both ClC-K. isoforms in the cochlea may help to explain the symptoms of Bartter's syndrome Type III, a mutation in the hClC-Kb gene (human homologue of ClC-K2), which results in renal salt wasting without deafness. These data support the hypothesis that both isoforms of ClC-K are co-expressed in sonic cell membranes and account for the preservation of hearing in the presence of a mutation in only one channel isoform. (C) 2006 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Schulte, BA (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,Suite 309,POB 250908, Charleston, SC 29425 USA. EM quc@musc.edu; schulteb@musc.edu CR ADACHI S, 1994, J BIOL CHEM, V269, P17677 AKIZUKI N, 2001, AM J PHYSIOL-RENAL, V280, P79 Ando M, 2000, NEUROSCI LETT, V284, P171, DOI 10.1016/S0304-3940(00)01021-1 Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a Brandt S, 1995, FEBS LETT, V377, P15, DOI 10.1016/0014-5793(95)01298-2 BURSTONE MS, 1959, J HISTOCHEM CYTOCHEM, V7, P39 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Duan D, 1997, NATURE, V390, P417 Estevez R, 2001, NATURE, V414, P558, DOI 10.1038/35107099 Estevez R, 2002, CURR OPIN STRUC BIOL, V12, P531, DOI 10.1016/S0959-440X(02)00358-5 GALLAGHER JP, 1983, BRAIN RES, V267, P249, DOI 10.1016/0006-8993(83)90877-6 Igarashi Y, 2002, J CHROMATOGR B, V781, P345, DOI 10.1016/S1570-0232(02)00431-2 INOUE C, 1987, P NATL ACAD SCI USA, V84, P6659, DOI 10.1073/pnas.84.19.6659 JIANG CW, 1993, SCIENCE, V262, P424, DOI 10.1126/science.8211164 KIEFERLE S, 1994, P NATL ACAD SCI USA, V91, P6943, DOI 10.1073/pnas.91.15.6943 Kornak U, 2001, CELL, V104, P205, DOI 10.1016/S0092-8674(01)00206-9 KUIJPERS W, 1969, THESIS CATHOLIC U NI Liu SY, 2000, CHINESE CHEM LETT, V11, P957 LIU W, 2002, AM J PHYSIOL-RENAL, V282, P451 MacIntyre N, 2001, BRIT J BIOMED SCI, V58, P190 Maehara H, 2003, NEUROREPORT, V14, P1571, DOI 10.1097/01.wnr.0000087905.78892.55 Malgrange B, 1997, NEUROREPORT, V8, P591, DOI 10.1097/00001756-199702100-00003 MARCUS DC, 1985, HEARING RES, V17, P79, DOI 10.1016/0378-5955(85)90133-9 Matsumura Y, 1999, NAT GENET, V21, P95, DOI 10.1038/5036 McGuirt JP, 1996, AUDIT NEUROSCI, V2, P135 Ramos-Vara JA, 2005, VET PATHOL, V42, P405, DOI 10.1354/vp.42-4-405 REINHOLT FP, 1990, J BONE MINER RES, V5, P1055 RYBAK LP, 1991, ORL J OTO-RHINO-LARY, V53, P72 RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2 Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 Schlingmann KP, 2004, NEW ENGL J MED, V350, P1314, DOI 10.1056/NEJMoa032843 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SHINDO M, 1992, JPN J PHYSIOL, V42, P617, DOI 10.2170/jjphysiol.42.617 Simon DB, 1997, NAT GENET, V17, P171, DOI 10.1038/ng1097-171 SMITH CA, 1954, LARYNGOSCOPE, V64, P141 SPICER SS, 2003, 26 ANN MIDW RES M, P110 SUNOSE H, 1993, AM J PHYSIOL, V265, P72 TAKEUCHI S, 1995, HEARING RES, V83, P89, DOI 10.1016/0378-5955(94)00191-R Takeuchi S, 1996, J MEMBRANE BIOL, V150, P47, DOI 10.1007/s002329900029 UCHIDA S, 1993, J BIOL CHEM, V268, P3821 UCHIDA S, 1995, J CLIN INVEST, V95, P104, DOI 10.1172/JCI117626 VANDEWALLE A, 1997, AM J PHYSIOL-RENAL, V272, P678 Waldegger S, 2002, PFLUG ARCH EUR J PHY, V444, P411, DOI 10.1007/s00424-002-0819-8 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WANGEMANN P, 2000, HEARING RES, V165, P1 Yamamoto Y, 2002, ACTA OTO-LARYNGOL, V122, P709, DOI 10.1080/003655402/000028058 YAO XF, 1994, HEARING RES, V80, P31, DOI 10.1016/0378-5955(94)90006-X ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355 NR 49 TC 12 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 79 EP 87 DI 10.1016/j.heares.2005.12.012 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400010 PM 16466872 ER PT J AU Seither-Preisler, A Patterson, R Krumbholz, K Seither, S Lutkenhoner, B AF Seither-Preisler, A Patterson, R Krumbholz, K Seither, S Lutkenhoner, B TI Evidence of pitch processing in the N100m component of the auditory evoked field SO HEARING RESEARCH LA English DT Article DE N100m latency; AEF; pitch; relative phase; AIM ID NEUROMAGNETIC EVIDENCE; COMPLEX TONES; FUNCTIONAL-ORGANIZATION; TEMPORAL INTEGRATION; STIMULUS FREQUENCY; MAGNETIC-FIELDS; SENSORY MEMORY; VIRTUAL PITCH; HUMAN BRAIN; LATENCY AB The latency of the N100m component of the auditory evoked field (AEF) is sensitive to the period and spectrum of a sound. However, little attention was paid so fair to the wave shape at stimulus onset, which might have biased previous results. This problem was fixed in the present study by aligning the first major peaks in the acoustic waveforms. The stimuli were harmonic tones (spectral range: 800-5000 Hz) with periods corresponding to 100, 200, 400, and 800 Hz. The frequency components were in sine, alternating or random phase. Simulations with a computational model suggest that the auditory-nerve activity is strongly affected by both the period and the relative phase of the stimulus, whereas the output of the more central pitch processor only depends on the period. Our AEF data, recorded from the right hemisphere of seven subjects, are consistent with the latter prediction: The latency of the N100m depends on the period, but not on the relative phase of the stimulus components. This suggests that the N100m reflects temporal pitch extraction, not necessarily implying that the underlying generators are directly involved in this analysis. (C) 2006 Elsevier B.V. All rights reserved. C1 Munster Univ Hosp, ENT Clin, Dept Expt Audiol, D-48129 Munster, Germany. Univ Cambridge, Dept Physiol, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England. MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Seither-Preisler, A (reprint author), Munster Univ Hosp, ENT Clin, Dept Expt Audiol, Kardinal von Galen Ring 10, D-48129 Munster, Germany. EM preisler@uni-muenster.de; roy.patterson@mrc-cbu.cam.ac.uk; katrin@ihr.mrc.ac.uk CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 Beagley H A, 1967, J Laryngol Otol, V81, P861, DOI 10.1017/S0022215100067815 Biermann S, 2000, J NEUROPHYSIOL, V84, P2426 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 Cheung SW, 2001, J NEUROPHYSIOL, V85, P1732 Crottaz-Herbette S, 2000, CLIN NEUROPHYSIOL, V111, P1759, DOI 10.1016/S1388-2457(00)00422-3 Eggermont JJ, 2002, AUDIOL NEURO-OTOL, V7, P71, DOI 10.1159/000057656 FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B Greenberg S., 1998, PSYCHOPHYSICAL PHYSL, P293 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 JACOBSON GP, 1992, EAR HEARING, V13, P300, DOI 10.1097/00003446-199210000-00007 JOUTSENIEMI SL, 1989, AUDIOLOGY, P325 Kaernbach C, 1998, J ACOUST SOC AM, V104, P2298, DOI 10.1121/1.423742 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Patterson RD, 1998, J ACOUST SOC AM, V104, P2967, DOI 10.1121/1.423879 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1409, DOI 10.1121/1.410285 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 Penagos H, 2004, J NEUROSCI, V24, P6810, DOI 10.1523/JNEUROSCI.0383-04.2004 Poeppel D, 1996, BRAIN COGNITION, V32, P156 PREISLER A, 1993, PERCEPT PSYCHOPHYS, V54, P589, DOI 10.3758/BF03211783 Ragot R, 1996, NEUROREPORT, V7, P905 Ragot R, 1998, NEUROREPORT, V9, P3123, DOI 10.1097/00001756-199810050-00001 RAPIN I, 1966, ELECTROEN CLIN NEURO, V21, P335, DOI 10.1016/0013-4694(66)90039-3 ROBERTS T, 1998, NEUROREPORT, V9, P3256 Roberts TPL, 2000, J CLIN NEUROPHYSIOL, V17, P114, DOI 10.1097/00004691-200003000-00002 Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 Schouten JF, 1938, P K NED AKAD WETENSC, V41, P1086 Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SHAMMA SA, 1986, J ACOUST SOC AM, V80, P133, DOI 10.1121/1.394173 Shofner WP, 2002, PERCEPT PSYCHOPHYS, V64, P437, DOI 10.3758/BF03194716 Stufflebeam SM, 1998, NEUROREPORT, V9, P91, DOI 10.1097/00001756-199801050-00018 Sumner CJ, 2002, J ACOUST SOC AM, V111, P2178, DOI 10.1121/1.1453451 VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 Wiegrebe L, 2000, J ACOUST SOC AM, V107, P3343, DOI 10.1121/1.429437 WOODS DL, 1993, HEARING RES, V66, P46, DOI 10.1016/0378-5955(93)90258-3 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 NR 50 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 88 EP 98 DI 10.1016/j.heares.2006.01.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400011 PM 16464550 ER PT J AU Lewald, J Getzmann, S AF Lewald, J Getzmann, S TI Horizontal and vertical effects of eye-position on sound localization SO HEARING RESEARCH LA English DT Article DE spatial hearing; gaze direction; binaural cues; pinna cues; azimuth; elevation ID PRIMATE SUPERIOR COLLICULUS; MINIMUM AUDIBLE ANGLE; AUDITORY LOCALIZATION; SPATIAL HEARING; INFERIOR COLLICULUS; VISUAL LOCALIZATION; NECK MUSCLES; MOVEMENTS; DIRECTION; SPACE AB The effect of gaze direction on the localization of sound sources was investigated in the azimuthal and elevational dimension using a pointing task. In both dimensions, eccentric eye-position induced a significant shift in sound localization that was opposite to the direction of eccentricity. This finding is in accordance with the view that the azimuthal and elevational components of the auditory spatial information are processed in common neural Substrates. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Dortmund, Inst Occupat Physiol, Leibniz Res Ctr Working Environm & Human Factors, D-44139 Dortmund, Germany. Ruhr Univ Bochum, Fac Psychol, Dept Cognit & Environm Psychol, D-44780 Bochum, Germany. RP Lewald, J (reprint author), Univ Dortmund, Inst Occupat Physiol, Leibniz Res Ctr Working Environm & Human Factors, Ardeystr 67, D-44139 Dortmund, Germany. EM joerg.lewald@rub.de RI Lewald, Jorg/D-3034-2009 OI Lewald, Jorg/0000-0001-9351-0170 CR ANDREDESHAYS C, 1988, EXP BRAIN RES, V69, P399 Blauert J., 1997, SPATIAL HEARING PSYC BOCK O, 1986, EXP BRAIN RES, V64, P476, DOI 10.1007/BF00340484 Fujiki N, 2002, EUR J NEUROSCI, V16, P2207, DOI 10.1046/j.1460-9568.2002.02276.x Getzmann S, 2002, HEARING RES, V169, P130, DOI 10.1016/S0378-5955(02)00387-8 Groh JM, 2001, NEURON, V29, P509, DOI 10.1016/S0896-6273(01)00222-7 GUSKI R, 1990, PERCEPTION, V19, P819, DOI 10.1068/p190819 HARTLINE PH, 1995, EXP BRAIN RES, V104, P402 HELD RICHARD, 1955, AMER JOUR PSYCHOL, V68, P526, DOI 10.2307/1418782 HILL AL, 1972, PERCEPT PSYCHOPHYS, V11, P175, DOI 10.3758/BF03210370 JAY MF, 1987, J NEUROPHYSIOL, V57, P35 JAY MF, 1984, NATURE, V309, P345, DOI 10.1038/309345a0 JONES B, 1975, PERCEPT PSYCHOPHYS, V17, P241, DOI 10.3758/BF03203206 Lewald J, 2001, NEUROSCI RES, V39, P253, DOI 10.1016/S0168-0102(00)00210-8 Lewald J, 2004, NEUROPSYCHOLOGIA, V42, P1598, DOI 10.1016/j.neuropsychologia.2004.04.012 Lewald J, 2004, J COGNITIVE NEUROSCI, V16, P828, DOI 10.1162/089892904970834 Lewald J, 2000, BEHAV BRAIN RES, V108, P105, DOI 10.1016/S0166-4328(99)00141-2 Lewald J, 1999, EXP BRAIN RES, V125, P389, DOI 10.1007/s002210050695 Lewald J, 1998, HEARING RES, V115, P206, DOI 10.1016/S0378-5955(97)00190-1 Lewald J, 1996, EXP BRAIN RES, V108, P473 Lewald J, 1997, BEHAV BRAIN RES, V87, P35, DOI 10.1016/S0166-4328(96)02254-1 Lewald J, 2001, BEHAV BRAIN RES, V121, P69, DOI 10.1016/S0166-4328(00)00386-7 Lewald J, 2002, LEARN MEMORY, V9, P268, DOI 10.1101/lm.51402 Lewald J, 1998, J ACOUST SOC AM, V104, P1586, DOI 10.1121/1.424371 Lewald J, 2002, NEUROPSYCHOLOGIA, V40, P1868, DOI 10.1016/S0028-3932(02)00071-4 LEWALD J, 2000, VISION RES, V40, P549 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MORGAN CL, 1978, PERCEPT PSYCHOPHYS, V23, P61, DOI 10.3758/BF03214296 Pavani F, 2002, CURR BIOL, V12, P1584, DOI 10.1016/S0960-9822(02)01143-0 PECK CK, 1995, EXP BRAIN RES, V103, P227 PERROTT DR, 1990, J ACOUST SOC AM, V87, P1728, DOI 10.1121/1.399421 PINEK B, 1989, CORTEX, V25, P175 PLATT BB, 1972, PERCEPT PSYCHOPHYS, V12, P245, DOI 10.3758/BF03212884 Recanzone GH, 1998, P NATL ACAD SCI USA, V95, P869, DOI 10.1073/pnas.95.3.869 SHELTON BR, 1980, PERCEPT PSYCHOPHYS, V28, P589, DOI 10.3758/BF03198830 Stein B. E., 1993, MERGING SENSES Stricanne B, 1996, J NEUROPHYSIOL, V76, P2071 VIDAL PP, 1982, EXP BRAIN RES, V46, P448 Werner-Reiss U, 2003, CURR BIOL, V13, P554, DOI 10.1016/S0960-9822(03)00168-4 Zimmer U, 2004, EUR J NEUROSCI, V20, P3148, DOI 10.1111/j.1460-9568.2004.03766.x Zwiers MP, 2004, J NEUROSCI, V24, P4145, DOI 10.1523/JNEUROSCI.0199-04.2004 Zwiers MP, 2003, NAT NEUROSCI, V6, P175, DOI 10.1038/nn999 NR 42 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 99 EP 106 DI 10.1016/j.heares.2006.01.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400012 PM 16466875 ER PT J AU Anderson, SE Kilgard, MP Sloan, AM Rennaker, RL AF Anderson, SE Kilgard, MP Sloan, AM Rennaker, RL TI Response to broadband repetitive stimuli in auditory cortex of the unanesthetized rat SO HEARING RESEARCH LA English DT Article DE unanesthetized; multi-unit; temporal coding; chronic implant ID FREQUENCY; CAT; ORGANIZATION; MECHANISMS; AMPLITUDE; CLICKS; SOUND AB This study examines the ability of multi-unit clusters (MUCs) in layer IV/V of primary auditory cortex of the awake rat to respond to a series of broadband click trains. The data from 113 multi-unit clusters were analyzed for synchronous and nonsynchronized responses using several methods. Synchronous responses were measured using window analysis, circular statistics and spectral analysis. Nonsynchronous responses were measured during different time intervals during the click train (first 50 ms, 50-450 ins, and the entire click train). The results demonstrate that multi-unit clusters are capable of synchronizing to clicks at rates up to 166 Hz. The mean synchronization boundary (limiting rate) for the group was found to be 72 Hz. Mean peak response rate, mean response duration, and mean time-to-peak response decreased as the stimulus presentation rate (SPR) increased, resulting in a temporal sharpening of the population response. For fast SPRs (>50 Hz), 50%, of MUCs exhibited nonsynchronous responses in which the firing rate increased with SPR, although this activity was most prevalent during the first 50 ins of the response. Sustained increases in firing rate with SPR were seen in 8%, of he MUCs, while another 38% of MUCs exhibited sustained decreases during the click train. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Oklahoma, Dept Aerosp & Mech Engn, Norman, OK 73019 USA. Univ Oklahoma, Ctr Bioengn, Sarkeys Engn Ctr T335, Norman, OK 73019 USA. Univ Texas, Cognit & Neurosci Program, Sch Behav & Brain Sci, Richardson, TX 75083 USA. RP Rennaker, RL (reprint author), Univ Oklahoma, Dept Aerosp & Mech Engn, 865 Asp Ave Felgar Hall 210, Norman, OK 73019 USA. EM Rennaker@ou.edu RI Rennaker, Robert/K-9049-2013 OI Rennaker, Robert/0000-0003-1260-1973 CR Bandrowski AE, 2002, SYNAPSE, V44, P146, DOI 10.1002/syn.10058 De Ribaupierre F, 1972, Brain Res, V48, P205, DOI 10.1016/0006-8993(72)90179-5 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 GAESE BH, 1995, EUR J NEUROSCI, V7, P438, DOI 10.1111/j.1460-9568.1995.tb00340.x Gaese BH, 2003, EUR J NEUROSCI, V18, P2638, DOI 10.1046/j.1460-9568.2003.03007.x ISON JR, 1991, BEHAV NEUROSCI, V105, P33, DOI 10.1037//0735-7044.105.1.33 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Leong D, 2004, ACTA OTO-LARYNGOL, V124, P454, DOI 10.1080/0001648031000692 Liu WT, 2003, ARTIF ORGANS, V27, P986, DOI 10.1046/j.1525-1594.2003.07306.x Lu T, 2001, NAT NEUROSCI, V4, P1131, DOI 10.1038/nn737 Lu T, 2000, J NEUROPHYSIOL, V84, P236 Mardia K, 2000, DIRECTIONAL STAT MILLER GA, 1948, J ACOUST SOC AM, V20, P171, DOI 10.1121/1.1906360 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 Rennaker RL, 2005, J NEUROSCI METH, V142, P169, DOI [10.1016/j.jneumeth.2004.08.009, 10.1016/j.neumeth.2004.08.009] Rennaker RL, 2005, J NEUROSCI METH, V142, P97, DOI 10.1016/j.jneumeth.2004.07.018 RONKEN DA, 1970, J ACOUST SOC AM, V47, P1091, DOI 10.1121/1.1912010 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Schreiner C E, 1992, Curr Opin Neurobiol, V2, P516, DOI 10.1016/0959-4388(92)90190-V Schreiner C E, 1997, Acta Otolaryngol Suppl, V532, P54 STEINSCHNEIDER M, 1980, BRAIN RES, V198, P75, DOI 10.1016/0006-8993(80)90345-5 Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6 Wang XQ, 2003, SPEECH COMMUN, V41, P107, DOI 10.1016/S0167-6393(02)00097-3 Wehr M, 2005, NEURON, V47, P437, DOI 10.1016/j.neuron.2005.06.009 NR 26 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 107 EP 117 DI 10.1016/j.heares.2005.12.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400013 PM 16466874 ER PT J AU Harris, KC Bielefeld, E Hu, BH Henderson, D AF Harris, KC Bielefeld, E Hu, BH Henderson, D TI Increased resistance to free radical damage induced by low-level sound conditioning SO HEARING RESEARCH LA English DT Article DE conditioning; paraquat; chinchilla ID INDUCED HEARING-LOSS; SUPEROXIDE-DISMUTASE; TRAUMATIC EXPOSURE; THRESHOLD SHIFTS; ACOUSTIC TRAUMA; NOISE EXPOSURE; PROTECTION; CHINCHILLA; COCHLEA; HYDROETHIDINE AB Conditioning is the phenomenon where exposure to moderate-level acoustic stimuli can increase the ear's resistance to subsequent more intense sound exposures. In recent years, research has shown that conditioning increases the availability of antioxidant enzymes which presumably protects the ear from oxidative stress induced by a traumatic noise exposure [Jacono, A.A., Hu, B., Kopke, R.D., Henderson, D., Van De Water, T.R., Steinman, H.M., 1998. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla. Hear Res 117. 31-8]. The current Study was designed to assess whether the increase in endogenous antioxidants seen following conditioning could provide protection from oxidative stress induced by Paraquat, a potent generator of superoxide. Chinchillas were exposed to a conditioning noise, 500 Hz OBN at 95 dB for 6 h/day for 10 days, followed 5 days later with Paraquat application to the round window. Controls underwent the Paraquat application surgery, without prior conditioning. Evoked potential thresholds were determined prior to conditioning, at day 1, 5 and 10 during conditioning, at day 15 (5 days after conditioning), and at day 17, 19, 23, and 35 (1, 3, 7, and 20 days post-Paraquat). The conditioned animals showed reductions in permanent threshold shift and reduced inner hair cell loss relative to controls. These results reinforce the hypothesis that antioxidants are primary mediators of the conditioning effect. (C) 2006 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,POB 250550, Charleston, SC 29425 USA. EM harriskc@musc.edu RI Bielefeld, Eric/D-2015-2012 CR Benov L, 1998, FREE RADICAL BIO MED, V25, P826, DOI 10.1016/S0891-5849(98)00163-4 Bielefeld EC, 2005, HEARING RES, V207, P35, DOI 10.1016/j.heares.2005.03.025 Bindokas VP, 1996, J NEUROSCI, V16, P1324 CAMPO P, 1991, HEARING RES, V55, P195, DOI 10.1016/0378-5955(91)90104-H CANLON B, 1988, HEARING RES, V34, P197, DOI 10.1016/0378-5955(88)90107-4 Chan PH, 1998, J NEUROSCI, V18, P8292 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Halliwell B, 1999, FREE RADICALS BIOL D HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 Nicotera TM, 2004, AUDIOL NEURO-OTOL, V9, P353, DOI 10.1159/000081284 Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SUBRAMANIAM M, 1992, HEARING RES, V58, P57, DOI 10.1016/0378-5955(92)90008-B Wang Y, 2002, HEARING RES, V165, P96, DOI 10.1016/S0378-5955(02)00289-7 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yamasoba T, 1999, HEARING RES, V127, P31, DOI 10.1016/S0378-5955(98)00178-6 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 29 TC 10 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 118 EP 129 DI 10.1016/j.heares.2005.11.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400014 PM 16466871 ER PT J AU Loebach, JL Wickesberg, RE AF Loebach, JL Wickesberg, RE TI The representation of noise vocoded speech in the auditory nerve of the chinchilla: Physiological correlates of the perception of spectrally reduced speech SO HEARING RESEARCH LA English DT Article DE speech; auditory nerve; spectrally reduced speech; noise vocoded speech ID NORMAL-HEARING LISTENERS; COCHLEAR IMPLANT USERS; STEADY-STATE VOWELS; TEMPORAL CUES; CONSONANT RECOGNITION; DISCHARGE PATTERNS; SIGNAL PROCESSORS; ENVELOPE CUES; SINE-WAVE; CHANNELS AB This Study investigated the neural representation of naturally produced and noise vocoded speech signals in the auditory nerve of the chinchilla. The syllables /b(sic)/, /d(sic)/, /tu / and /p(sic)/ produced by male speakers were used to synthesize noise vocoded speech stimuli containing one, two, three and four bands of envelope modulated noise. The ensemble response of the auditory nerve, computed by pooling the PST histograms across many auditory nerve fibers, revealed temporal patterns in the responses to the natural tokens that uniquely identified the stop consonants. The responses to the 3- and 4-band noise vocoded tokens contained temporal patterns that were nearly identical to those observed for the natural tokens, while the responses to the 1- and 2-band tokens were significantly different (p < 0.0001). The ALSR, ALIR and autocorrelation of the pooled PST histograms represented the detail of the frequency spectrum for a naturally produced vowel, while the driven rate was unreliable. Each of these spectral analyses failed to reveal significant information about the noise vocoded vowels. These results Suggest that temporal patterns in the responses of the auditory nerve can provide the cues necessary for the recognition of noise vocoded stop consonants. (C) 2006 Elsevier B.V. All rights reserved. C1 Univ Illinois, Dept Psychol, Champaign, IL 61820 USA. Indiana Univ, Dept Psychol, Bloomington, IN 47405 USA. RP Wickesberg, RE (reprint author), Univ Illinois, Dept Psychol, 603 E Daniel St, Champaign, IL 61820 USA. EM jlloebac@indiana.edu; wickesbe@uiuc.edu CR Barker J, 1999, SPEECH COMMUN, V27, P159, DOI 10.1016/S0167-6393(98)00081-8 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CLAREY JC, 2004, HEARING RES, V90, P37 Denes P. B., 1993, SPEECH CHAIN Diehl RL, 2004, ANNU REV PSYCHOL, V55, P149, DOI 10.1146/annurev.psych.55.090902.142028 Dorman MF, 1997, J ACOUST SOC AM, V102, P2403, DOI 10.1121/1.419603 Dorman MF, 1998, J ACOUST SOC AM, V104, P3583, DOI 10.1121/1.423940 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1054 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 FRENCH NR, 1947, J ACOUST SOC AM, V19, P90, DOI 10.1121/1.1916407 Fu QJ, 2001, J ACOUST SOC AM, V109, P1166, DOI 10.1121/1.1344158 Fu QJ, 2004, JARO-J ASSOC RES OTO, V5, P253, DOI 10.1007/s10162-004-4046-1 GREENBERG S, 1999, P INT C SPOK LANG PR LOEBACH JL, 2005, THESIS U ILLINOIS UR Loizou PC, 1999, J ACOUST SOC AM, V106, P2097, DOI 10.1121/1.427954 NEAREY TM, 1989, J ACOUST SOC AM, V85, P2088, DOI 10.1121/1.397861 REMEZ RE, 1994, PSYCHOL REV, V101, P129, DOI 10.1037/0033-295X.101.1.129 REMEZ RE, 1981, SCIENCE, V212, P947, DOI 10.1126/science.7233191 ROSEN S, 1989, COCHLEAR IMPLANT ACQ, P3 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 Scott SK, 2000, BRAIN, V123, P2400, DOI 10.1093/brain/123.12.2400 Shannon RV, 1998, J ACOUST SOC AM, V104, P2467, DOI 10.1121/1.423774 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Stevens HE, 2005, HEARING RES, V205, P21, DOI 10.1016/j.heares.2005.02.008 Stevens HE, 2002, HEARING RES, V173, P119, DOI 10.1016/S0378-5955(02)00608-1 STEVENS HE, 1999, HEARING RES, V13, P47 Stevens K.N., 1998, ACOUSTIC PHONETICS TARTTER VC, 1989, J ACOUST SOC AM, V86, P1679 VANTASSELL DJ, 1992, J ACOUST SOC AM, V92, P1247, DOI 10.1121/1.403920 VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 Wilson BS, 1997, BRIT J AUDIOL, V31, P205 Xu L, 2005, J ACOUST SOC AM, V117, P3255, DOI 10.1121/.1.1886405 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 36 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2006 VL 213 IS 1-2 BP 130 EP 144 DI 10.1016/j.heares.2006.01.011 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 028QP UT WOS:000236503400015 PM 16497455 ER PT J AU Ma, WLD Hidaka, H May, BJ AF Ma, WLD Hidaka, H May, BJ TI Spontaneous activity in the inferior colliculus of CBA/J mice after manipulations that induce tinnitus SO HEARING RESEARCH LA English DT Article DE sound exposure; salicylate; hyperactivity; spontaneous activity; auditory nerve; dorsal cochlear nucleus; auditory cortex ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; PRIMARY AUDITORY-CORTEX; INDUCED HEARING-LOSS; PURE-TONE TRAUMA; C-FOS; INTENSE SOUND; ANIMAL-MODEL; BEHAVIORAL PARADIGM; RESPONSE PROPERTIES AB Several physiological studies have linked experimentally induced tinnitus to increases in the spontaneous activity of auditory neurons, These results have led to the proposal of hyperactivity models of tinnitus in which elevated neural activity in the absence of auditory stimulation is perceived as phantom sound. Such models are appealing in their simplicity but remain controversial because a generalized elevation of spontaneous rates may not be observed after treatments that induce tinnitus in humans and experimental animals. Our study addressed these issues by characterizing the effects of common methods of tinnitus induction on spontaneous activity in the central nucleus of the inferior colliculus (ICC). The ICC is an interesting structure in tinnitus research because its diverse inputs include putative generator sites in the dorsal cochlear nucleus, as well as brainstem sources that appear to remain normal after tinnitus induction. Groups of CBA/J mice were subjected to one of three induction methods: bilateral or unilateral sound exposure, and acute salicylate intoxication. Relative to normal baselines, bilaterally exposed mice showed increases in the spontaneous rates of neurons with tuning near the exposure frequency. When the sample was separated into physiologically defined response classes, exposure effects were strongest among neurons with broad excitatory bandwidths. By contrast, salicylate decreased the spontaneous rates of low-frequency neurons with transient sound-evoked activity. Our results suggest that the disordered processes of hearing that give rise to tinnitus do not involve a pervasive elevation of spontaneous activity or a single mode of induction. (c) 2005 Elsevier B.V. All rights reserved. C1 Johns Hopkins Univ, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. RP May, BJ (reprint author), Johns Hopkins Univ, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, 720 Rutland Ave, Baltimore, MD 21205 USA. EM bmay@jhu.edu CR Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2003, OTOLARYNG CLIN N AM, V36, P267, DOI 10.1016/S0030-6665(02)00171-8 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Brozoski TJ, 2005, HEARING RES, V206, P227, DOI 10.1016/j.heares.2004.12.013 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Davis KA, 2003, JARO, V4, P148, DOI 10.1007/s10162-002-2002-5 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 DOWBEN RM, 1953, SCIENCE, V118, P22, DOI 10.1126/science.118.3053.22 Eggermont JJ, 1998, HEARING RES, V117, P149, DOI 10.1016/S0378-5955(98)00008-2 Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Evans E F, 1981, Ciba Found Symp, V85, P108 GRAHAM JDP, 1948, Q J MED, V17, P153 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HEFFNER H, 1980, J ACOUST SOC AM, V68, P1584, DOI 10.1121/1.385213 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X IMIG TJ, 2005, ABS ASS RES OTOLARYN, V28, P959 JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 Kaltenbach JA, 2005, HEARING RES, V206, P200, DOI 10.1016/j.heares.2005.02.013 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 Komiya H, 2000, ACTA OTO-LARYNGOL, V120, P750 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Lobarinas E, 2004, HEARING RES, V190, P109, DOI 10.1016/S0378-5955(04)00019-X Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005 MARTIN WL, 1995, P 5 INT TINN SEM AM, P127 May BJ, 2002, HEARING RES, V171, P142, DOI 10.1016/S0378-5955(02)00495-1 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X Norena AJ, 2003, HEARING RES, V183, P137, DOI 10.1016/S0378-5955(03)00225-9 Norena AJ, 2003, J NEUROPHYSIOL, V90, P2387, DOI 10.1152/jn.00139.2003 Ochi K, 1996, HEARING RES, V95, P63, DOI 10.1016/0378-5955(96)00019-6 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 PROSEN CA, 2005, ABS ASS RES OTOLARYN, V28, P410 Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 Ruttiger L, 2003, HEARING RES, V180, P39, DOI 10.1016/S0378-5955(03)00075-3 SALVI RJ, 1978, EXP BRAIN RES, V32, P301 Seki S, 2003, HEARING RES, V180, P28, DOI 10.1016/S0378-5955(03)00074-1 SOKAL RR, 1909, BIOMETRY STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E Taberner AM, 2005, J NEUROPHYSIOL, V93, P557, DOI 10.1152/jn.00574.2004 WallhausserFranke E, 1997, NEUROREPORT, V8, P725, DOI 10.1097/00001756-199702100-00029 Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 NR 56 TC 65 Z9 67 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 9 EP 21 DI 10.1016/j.heares.2005.10.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000002 PM 16307852 ER PT J AU Trune, DR Kempton, JB Gross, ND AF Trune, DR Kempton, JB Gross, ND TI Mineralocorticoid receptor mediates glucocorticoid treatment effects in the autoimmune mouse ear SO HEARING RESEARCH LA English DT Article DE autoimmune hearing loss; spironolactone; prednisolone; aldosterone; mineralocorticoid; MRL/MpJ-Fas(lpr) autoimmune mice ID SENSORINEURAL HEARING-LOSS; MAMMALIAN INNER-EAR; STRIA VASCULARIS; ALDOSTERONE ANTAGONISTS; COCHLEAR FUNCTION; STEROID TREATMENT; NA+ CHANNELS; RAT COCHLEA; MICE; SPIRONOLACTONE AB The standard treatment for many hearing disorders is glucocorticoid therapy, although the cochlear mechanisms involved in steroid-responsive hearing loss are poorly understood. Cochlear dysfunction in autoimmune mice has recently been shown to be controlled with the mineralocorticoid aldosterone as effectively as with the glucocorticoid prednisolone. Because aldosterone regulates sodium, potassium, and other electrolyte homeostasis, this implied the restoration of hearing with the mineralocorticoid was due to its impact on cochlear ion transport, particularly in the stria vascularis. This also suggested glucocorticoids may be controlling hearing recovery in part through their binding to the mineralocorticoid receptor in addition to their glucocorticoid receptor-mediated anti-inflammatory and immunosuppressive functions. Therefore, the aim of the present study was to better delineate the role of the mineralocorticoid receptor in steroid control of hearing in the autoimmune mouse. Spironolactone, a mineralocorticoid receptor antagonist, was administered to MRL/MpJ-Fas(lpr) autoimmune mice in combination with either aldosterone or prednisolone to compare their hearing and systemic disease with mice that received either steroid alone. ABR thresholds showed either aldosterone or prednisolone alone preserved hearing in the mice, but spironolactone prevented both steroids from maintaining normal cochlear function. This suggested both steroids are preserving hearing through the mineralocorticoid receptor within the ear to regulate endolymph homeostasis. The spironolactone treatment did not block normal glucocorticoid receptor-mediated immune-suppression functions because mice receiving prednisolone, either with or without spironolactone, maintained normal body weights, hematocrits, and serum immune complexes. Thus, reducing systemic autoimmune disease was not sufficient to control hearing if mineralocorticoid receptor-mediated functions were blocked. It was concluded the inner ear mineralocorticoid receptor is a significant target of glucocorticoids and a factor that should be considered in therapeutic treatments for steroid-responsive hearing loss. (c) 2005 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97239 USA. RP Trune, DR (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Mail Code NRC04,3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM truned@ohsu.edu CR Abdallah JG, 2001, J AM SOC NEPHROL, V12, P1335 Alexiou C, 2001, ARCH OTOLARYNGOL, V127, P253 ALNEMRI ES, 1991, J BIOL CHEM, V266, P18072 ARRIZA JL, 1987, SCIENCE, V237, P268, DOI 10.1126/science.3037703 BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L BENOS DJ, 1995, J MEMBRANE BIOL, V143, P1 CLAIRE M, 1993, J MED CHEM, V36, P2404, DOI 10.1021/jm00068a018 CLORE JN, 1988, J CLIN ENDOCR METAB, V67, P824 COUETTE B, 1992, ENDOCRINOLOGY, V130, P430, DOI 10.1210/en.130.1.430 Falkenstein E, 2000, KIDNEY INT, V57, P1390, DOI 10.1046/j.1523-1755.2000.00980.x Funder JW, 1997, ANNU REV MED, V48, P231 FURUTA H, 1994, HEARING RES, V78, P175, DOI 10.1016/0378-5955(94)90023-X Garty H, 1997, PHYSIOL REV, V77, P359 GRANDIS JR, 1993, AM J OTOL, V14, P183 Gross ND, 2002, LARYNGOSCOPE, V112, P298, DOI 10.1097/00005537-200202000-00018 HAUSLER A, 1992, J STEROID BIOCHEM, V41, P785, DOI 10.1016/0960-0760(92)90425-I HORISBERGER JD, 1992, HYPERTENSION, V19, P221 HUNNEYBALL IM, 1986, AGENTS ACTIONS, V18, P384, DOI 10.1007/BF01965002 KAYLIE DM, 2002, ASS RES OT MIDW MTG KLEYMAN TR, 1989, J BIOL CHEM, V264, P11995 Lesouhaitier O, 2001, ENDOCRINOLOGY, V142, P4320, DOI 10.1210/en.142.10.4320 Lin DW, 1997, OTOLARYNG HEAD NECK, V117, P530, DOI 10.1016/S0194-5998(97)70026-3 LUZZANI F, 1984, BIOCHEM PHARMACOL, V33, P2277, DOI 10.1016/0006-2952(84)90667-1 MCINNES GT, 1982, BRIT J CLIN PHARMACO, V13, P331 Mitchell CR, 1999, AUDIOL NEURO-OTOL, V4, P80, DOI 10.1159/000013824 MOSKOWITZ D, 1984, LARYNGOSCOPE, V94, P664 MUJAIS SK, 1985, J CLIN INVEST, V76, P170, DOI 10.1172/JCI111942 MUNCK A, 1990, AM REV RESPIR DIS, V141, P2 Murphy E. D, 1981, IMMUNOLOGIC DEFECTS, VI, P143 Nadel D M, 1996, Ear Nose Throat J, V75, P502 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D PITOVSKI DZ, 1993, HEARING RES, V69, P10, DOI 10.1016/0378-5955(93)90088-I RAREY KE, 1991, LARYNGOSCOPE, V101, P1081 Ruckenstein MJ, 1999, OTOLARYNG HEAD NECK, V121, P452, DOI 10.1016/S0194-5998(99)70236-6 RUCKENSTEIN MJ, 1993, ACTA OTO-LARYNGOL, V113, P160, DOI 10.3109/00016489309135785 RUPPRECHT R, 1993, EUR J PHARM-MOLEC PH, V247, P145, DOI 10.1016/0922-4106(93)90072-H Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2 Schimmer BP, 1996, GOODMAN GILMANS PHAR, V9th, P1459 Smith PJ, 2001, J IMMUNOL, V167, P2502 Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0 Ten Cate Wouter-Jan F., 1994, American Journal of Physiology, V266, pE269 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Trune DR, 1997, OTOLARYNG HEAD NECK, V117, P504, DOI 10.1016/S0194-5998(97)70022-6 Trune DR, 1999, HEARING RES, V137, P160, DOI 10.1016/S0378-5955(99)00147-1 Trune DR, 2001, HEARING RES, V155, P9, DOI 10.1016/S0378-5955(01)00240-4 Trune DR, 1999, HEARING RES, V137, P167, DOI 10.1016/S0378-5955(99)00148-3 Trune DR, 1997, HEARING RES, V105, P57, DOI 10.1016/S0378-5955(96)00191-8 Trune DR, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P505 TRUNE DR, 1989, HEARING RES, V38, P57, DOI 10.1016/0378-5955(89)90128-7 VANDERKRAAN PM, 1993, ANN RHEUM DIS, V52, P734, DOI 10.1136/ard.52.10.734 WAMBACH G, 1983, BIOCHEM PHARMACOL, V32, P1479, DOI 10.1016/0006-2952(83)90469-0 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0 Weber PC, 2001, LARYNGOSCOPE, V111, P1156, DOI 10.1097/00005537-200107000-00006 WILSON WR, 1980, ARCH OTOLARYNGOL, V106, P772 Yao XF, 1996, ACTA OTO-LARYNGOL, V116, P493, DOI 10.3109/00016489609137879 ZHOU NN, 1994, INT J IMMUNOPHARMACO, V16, P845 Zhou ZH, 2001, AM J PHYSIOL-CELL PH, V281, pC1118 NR 58 TC 33 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 22 EP 32 DI 10.1016/j.heares.2005.10.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000003 PM 16307853 ER PT J AU Manley, GA AF Manley, GA TI Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; lizard; suppression tuning ID AUDITORY HAIR-CELLS; NERVE FIBER ACTIVITY; FROG RANA-ESCULENTA; BOBTAIL LIZARD; TOKAY GECKO; FREQUENCY FLUCTUATIONS; TEMPERATURE-DEPENDENCE; VARANUS-BENGALENSIS; ACOUSTIC EMISSIONS; MAMMALIAN COCHLEA AB Spontaneous otoacoustic emissions (SOAE) were measured in 10 lizard species from the families Iguanidae, Agamidae and Anguidae. The typical feature of these papillae is that the hair cells in the higher-frequency papillar regions that produce SOAE are not covered by a tectorial structure. The number of hair cells in the species used here was between 58 and 292 per ear. SOAE could be measured from all species, but some of their characteristics varied with papillar anatomy. Thus very small papillae produced fewer and smaller SOAE than larger papillae. (c) 2005 Elsevier B.V. All rights reserved. C1 Tech Univ Munich, Lehrstuhl Zool, D-85747 Garching, Germany. RP Manley, GA (reprint author), Tech Univ Munich, Lehrstuhl Zool, Lichtenbergstr 4, D-85747 Garching, Germany. EM geoffrey.manley@wzw.tum.de CR AUTHIER S, 1995, HEARING RES, V82, P1 Baker R. J., 1989, COCHLEAR MECHANISMS, P349 BIALEK W, 1984, PHYS LETT A, V104, P173, DOI 10.1016/0375-9601(84)90371-2 BRASS D, 1993, J ACOUST SOC AM, V93, P1502, DOI 10.1121/1.406808 Chan DK, 2005, NAT NEUROSCI, V8, P149, DOI 10.1038/nn1385 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 EATOCK RA, 1981, J COMP PHYSIOL, V142, P219 EATOCK RA, 1981, J COMP PHYSIOL, V142, P203 GALLO L, 1997, THESIS TU MUNCHEN GENOSSA TJ, 1989, J ACOUST SOC AM, V85, P35 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 HOLLEY M, 1991, BIOESSAYS, V13, P115, DOI 10.1002/bies.950130304 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Hudspeth AJ, 1997, CURR OPIN NEUROBIOL, V7, P480, DOI 10.1016/S0959-4388(97)80026-8 IWASA KH, 1996, COMM THEOR BIOL, V4, P93 Kennedy HJ, 2005, NATURE, V433, P880, DOI 10.1038/nature03367 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 Koppl C, 1995, ADV HEARING RES, P207 KOPPL C, 1994, HEARING RES, V72, P159, DOI 10.1016/0378-5955(94)90215-1 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Koppl C, 2004, J COMP NEUROL, V479, P149, DOI 10.1002/cne.20311 Koppl C, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P185, DOI 10.1142/9789812704931_0025 LIND O, 1992, ACTA OTO-LARYNGOL, P79 Long GR, 1996, HEARING RES, V98, P22, DOI 10.1016/0378-5955(96)00057-3 LONG GR, 1991, J ACOUST SOC AM, V89, P1200 Manley G. A., 1990, PERIPHERAL HEARING M Manley GA, 1998, CURR OPIN NEUROBIOL, V8, P468, DOI 10.1016/S0959-4388(98)80033-0 MANLEY GA, 1994, HEARING RES, V72, P171, DOI 10.1016/0378-5955(94)90216-X Manley GA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P480, DOI 10.1142/9789812704931_0066 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 MANLEY GA, 2006, IN PRESS ACTIVE PROC Manley GA, 2004, HEARING RES, V189, P41, DOI 10.1016/S0378-5955(03)00367-8 MANLEY GA, 1977, J COMP PHYSIOL, V118, P249 Manley GA, 2002, J NEUROBIOL, V53, P202, DOI 10.1002/neu.10115 Manley GA, 2004, J NEUROPHYSIOL, V92, P2685, DOI 10.1152/jn.00267.2004 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Manley GA, 1997, DIVERSITY AUDITORY M, P32 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 MANLEY GA, 2000, RECENT DEV AUDITORY, P499, DOI 10.1142/9789812793980_0070 MANLEY GA, 2004, EVOLUTION VERTEBRATE, P200 MANLEY GA, 1976, BRAIN RES, V102, P329, DOI 10.1016/0006-8993(76)90887-8 Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 MARTIN M, 1988, PSYCHOLOGIST, V1, P33 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102 MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 MULROY MJ, 1987, HEARING RES, V25, P11, DOI 10.1016/0378-5955(87)90075-X OBRIEN AJ, 1994, BRIT J AUDIOL, V28, P281, DOI 10.3109/03005369409086578 OHYAMA K, 1992, ASS RES OT ABSTR, V15, P150 OHYAMA K, 1991, HEARING RES, V56, P111, DOI 10.1016/0378-5955(91)90160-B PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Ricci AJ, 2000, J NEUROSCI, V20, P7131 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 TALMADGE CL, 1991, J ACOUST SOC AM, V89, P2391, DOI 10.1121/1.400958 Taschenberger G, 1997, HEARING RES, V110, P61, DOI 10.1016/S0378-5955(97)00070-1 TURNER RG, 1987, HEARING RES, V26, P287, DOI 10.1016/0378-5955(87)90064-5 VANDIJK P, 1994, J ACOUST SOC AM, V96, P163, DOI 10.1121/1.411438 VANDIJK P, 1987, J ACOUST SOC AM, V88, P17797 vanDijk P, 1996, HEARING RES, V101, P102 VANDIJK P, 1989, HEARING RES, V42, P273, DOI 10.1016/0378-5955(89)90151-2 VANDIJK P, 1990, J ACOUST SOC AM, V88, P1779, DOI 10.1121/1.400199 vanDijk P, 1996, J ACOUST SOC AM, V100, P2220, DOI 10.1121/1.417931 WEVER EG, 1978, REPTILE EAR WILSON JP, 1990, ADV AUDIOL, V7, P47 WILSON JP, 1986, AUDITORY FREQUENCY S, P39 WIT HP, 1985, HEARING RES, V18, P197, DOI 10.1016/0378-5955(85)90012-7 WIT HP, 1990, LECT NOTES BIOMATH, V87, P259 YATES GK, 1992, TRENDS NEUROSCI, V15, P57, DOI 10.1016/0166-2236(92)90027-6 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 72 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 33 EP 47 DI 10.1016/j.heares.2005.10.007 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000004 PM 16307854 ER PT J AU Furukawa, S Maki, K AF Furukawa, S Maki, K TI Sensitivity of the auditory middle latency response of the guinea pig to interaural level and time differences SO HEARING RESEARCH LA English DT Article DE middle latency response; interaural time difference; interaural level difference; time-intensity trading; guinea pig ID BINAURAL INTERACTION; SOUND LOCALIZATION; CORTEX; LATERALIZATION; COMPONENTS; ANESTHESIA; INTENSITY AB This study examines the extent to which the auditory middle latency response (MLR) of the guinea pig is sensitive to sound localization cues such as interaural level and time differences (ILD and ITD, respectively). The MLR was recorded with an epidural electrode placed over the auditory cortex of an anesthetized guinea pig. Click stimuli were presented monaurally or binaurally with various ILDs and ITDs. The MLR was much larger for contralateral stimulation than for ipsilateral stimulation, and its amplitude was intermediate for diotic stimulation. The MLR amplitude was sensitive to both ILD and ITD: it decreased as the ipsilateral stimulus increased in level or advanced in time relative to the contralateral stimulus. The steep slope of the amplitude-versus-ITD function fell within an ITD range of +/- 330 mu s, namely the guinea pig's physiological ITD range. The response reduction that resulted from increasing the relative level of the ipsilateral level could be cancelled out by advancing the contralateral onset time relative to the ipsilateral onset time. This parallels the "time-intensity trading" in sound lateralization exhibited in human psychophysics. The results imply that the binaural interaction in the guinea pig MLR reflects aspects of neural processes that are involved in sound localization. (c) 2005 Elsevier B.V. All rights reserved. C1 NTT Corp, Human & Informat Sci Lab, NTT Commun Sci Labs, Atsugi, Kanagawa 2430198, Japan. RP Furukawa, S (reprint author), NTT Corp, Human & Informat Sci Lab, NTT Commun Sci Labs, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa 2430198, Japan. EM shig@avg.brl.ntt.co.jp; maki@avg.brl.ntt.co.jp CR ABEL SM, 1983, J ACOUST SOC AM, V73, P955, DOI 10.1121/1.389020 Clarey J.C., 1992, MAMMALIAN AUDITORY P, P232 CROWTHER JA, 1990, HEARING RES, V43, P115, DOI 10.1016/0378-5955(90)90220-J DEATHERAGE BH, 1959, J ACOUST SOC AM, V31, P486, DOI 10.1121/1.1907740 Freyman RL, 1997, J ACOUST SOC AM, V101, P1649, DOI 10.1121/1.418149 Goksoy C, 2000, EXP BRAIN RES, V130, P410, DOI 10.1007/s002219900278 Goksoy C, 2000, TURK J MED SCI, V30, P433 Hosokawa Y, 1999, HEARING RES, V134, P123, DOI 10.1016/S0378-5955(99)00073-8 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R Kraus N, 1992, MAMMALIAN AUDITORY P, P335 LITTMAN T, 1992, ELECTROEN CLIN NEURO, V84, P362, DOI 10.1016/0168-5597(92)90089-T MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2 MCGEE TJ, 1983, AM J OTOLARYNG, V4, P116, DOI 10.1016/S0196-0709(83)80013-1 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 NORDBY K, 1982, J ACOUST SOC AM, V71, P689, DOI 10.1121/1.387545 OZDAMAR O, 1986, ELECTROEN CLIN NEURO, V63, P476, DOI 10.1016/0013-4694(86)90129-X PALMER AR, 1986, HEARING RES, V24, P1, DOI 10.1016/0378-5955(86)90002-X Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Sterbing SJ, 2003, J NEUROPHYSIOL, V90, P2648, DOI 10.1152/jn.00348.2003 TOBIAS JV, 1959, J ACOUST SOC AM, V31, P1959 NR 21 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 48 EP 57 DI 10.1016/j.heares.2005.10.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000005 PM 16324809 ER PT J AU Boettcher, FA Emery, M AF Boettcher, FA Emery, M TI Auditory evoked-potential correlates of decrement detection SO HEARING RESEARCH LA English DT Article DE decrement detection; intensity discrimination; auditory brainstem response; ABR; auditory evoked potentials; gap detection ID AGE-RELATED-CHANGES; HEARING-IMPAIRED LISTENERS; SHORT-TERM ADAPTATION; MONGOLIAN GERBIL; GAP DETECTION; FREQUENCY; NOISE; DURATION; YOUNG; DISCRIMINATION AB Decrement detection is a commonly used psychophysical technique in which a subject is required to detect partially filled gaps in an ongoing Sound. The paradigm provides information regarding both temporal resolution and intensity discrimination. The purpose of this project was to determine if an evoked-potential paradigm using decrements in an ongoing noise approximates psychophysical data. If so, the evoked-response paradigm would be useful in estimating decrement detection in laboratory animals, where training time for a psychophysical model of decrement detection might prove prohibitive. In this study, Mongolian gerbils aged 3-10 months were used as subjects. The stimulus was a broadband noise (low-pass filtered at 5 or 30 kHz, overall level of 70 dB SPL), interrupted for durations of 232 ms. Within each off period, a second, identically filtered noise at levels of 0-70 dB SPL was presented. In a manner qualitatively similar to previous human and animal psychophysical studies, the ABR threshold decreased as the duration of the decrement was increased. Latency and amplitudes changed as a function of decrement duration when the decrement depth was held constant, but minimal change as a function of decrement depth occurred when the decrement duration was held constant. The results suggest that ABR paradigm for decrement detection is a qualitative alternative to psychophysical techniques, but that amplitude and latency data may not provide more information on temporal and intensity coding than ABR measures of gap detection. (c) 2005 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. RP Boettcher, FA (reprint author), Med Univ S Carolina, Dept Otorhinolaryngol Head & Neck Surg, 39 Sabin St,POB 250150, Charleston, SC 29425 USA. EM fboettcher@usouthal.edu CR Boettcher FA, 1996, HEARING RES, V102, P167, DOI 10.1016/S0378-5955(96)90016-7 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 BOETTCHER FA, 1993, HEARING RES, V71, P146, DOI 10.1016/0378-5955(93)90030-5 BURKARD R, 1993, J ACOUST SOC AM, V94, P2441, DOI 10.1121/1.407465 BUUNEN TJF, 1979, J ACOUST SOC AM, V65, P534, DOI 10.1121/1.382312 EDDINS DA, 1992, J ACOUST SOC AM, V91, P1069, DOI 10.1121/1.402633 FITZGIBBONS PJ, 1994, J SPEECH HEAR RES, V37, P662 FORREST TG, 1987, J ACOUST SOC AM, V82, P1933, DOI 10.1121/1.395689 GORDONSALANT S, 1993, J SPEECH HEAR RES, V36, P1276 GRAF CJ, 1992, J ACOUST SOC AM, V91, P1062, DOI 10.1121/1.402632 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 IRWIN RJ, 1981, AUDIOLOGY, V20, P234 IRWIN RJ, 1982, J ACOUST SOC AM, V71, P967, DOI 10.1121/1.387578 JESTEADT W, 1977, J ACOUST SOC AM, V61, P167 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 Moore BCJ, 1997, J ACOUST SOC AM, V102, P2954, DOI 10.1121/1.420350 PETERS RW, 1995, J ACOUST SOC AM, V97, P3791, DOI 10.1121/1.412394 PLACK CJ, 1991, J ACOUST SOC AM, V90, P3069, DOI 10.1121/1.401781 RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836 RELKIN EM, 1991, HEARING RES, V55, P215, DOI 10.1016/0378-5955(91)90106-J RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SALVI RJ, 1986, BASIC APPL ASPECTS N, P179 SAUNDERS SS, 1991, J ACOUST SOC AM, V82, P1604 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 Snell KB, 1999, J ACOUST SOC AM, V106, P3571, DOI 10.1121/1.428210 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 NR 28 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 58 EP 64 DI 10.1016/j.heares.2005.10.011 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000006 PM 16403610 ER PT J AU Killan, EC Kapadia, S AF Killan, EC Kapadia, S TI Simultaneous suppression of tone burst-evoked otoacoustic emissions - Effect of level and presentation paradigm SO HEARING RESEARCH LA English DT Article DE transient-evoked otoacoustic emissions; suppression; tone bursts ID STIMULUS-FREQUENCY; COCHLEAR MECHANICS; 2-TONE SUPPRESSION; ACOUSTIC EMISSIONS; NORMAL-HEARING; CLICK; DISTORTION; MODEL; EARS; ORIGIN AB There is conflict in the literature over whether individual frequency components of a transient-evoked otoacoustic emission (TEOAE) are generated within relatively independent "channels" along the basilar membrane (BM), or whether each component may be generated by widespread areas of the BM. Two previous studies on TEOAE suppression are consistent with generation within largely independent channels, but with a degree of interaction between nearby channels. However, both these studies reported significant suppression only at high stimulus levels, at which the "nonlinear" presentation paradigm was used. The present study clarifies the separate influences of stimulus level and presentation paradigm on this type of suppression. TEOAEs were recorded using stimulus tone bursts at 1, 2 and 3 kHz and a complex stimulus consisting of a digital addition of the three tone bursts, over a range of stimulus levels and both "linear" and "nonlinear" presentation paradigms. Responses to the individual tone bursts were combined offline and compared with responses to the complex stimuli. Results clearly demonstrate that TEOAE suppression under these conditions is dependent upon stimulus level, and not upon presentation paradigm. It is further argued that the data support the "local" rather than "widespread" model of TEOAE generation, subject to nonlinear interactions between nearby generation channels. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Leeds, Sch Healthcare, Leeds LS2 9UT, W Yorkshire, England. Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. RP Killan, EC (reprint author), Univ Leeds, Sch Healthcare, Leeds LS2 9UT, W Yorkshire, England. EM e.killan@leeds.ac.uk CR Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564 AVAN P, 1995, J ACOUST SOC AM, V97, P1 BRASS D, 1993, J ACOUST SOC AM, V93, P920, DOI 10.1121/1.405453 Carvalho S, 2003, HEARING RES, V175, P215, DOI 10.1016/S0378-5955(02)00745-1 Cooper NP, 1996, AUDIT NEUROSCI, V3, P123 Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 Elberling C, 1985, Acta Otolaryngol Suppl, V421, P77 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 Kolston PJ, 2000, HEARING RES, V145, P25, DOI 10.1016/S0378-5955(00)00067-8 Konrad-Martin D, 2003, J ACOUST SOC AM, V114, P2021, DOI 10.1121/1.1596170 Konrad-Martin D, 2005, J ACOUST SOC AM, V117, P3799, DOI 10.1121/1.1904403 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 SUTTON GJ, 1985, ACUSTICA, V58, P57 TAVARTKILADZE GA, 1997, OTOACOUSTIC EMISSION, P110 Ueda H, 1999, J ACOUST SOC AM, V105, P306, DOI 10.1121/1.424551 Withnell RH, 2005, J ACOUST SOC AM, V117, P281, DOI 10.1121/1.1798352 Withnell R.H., 1998, J ACOUST SOC AM, V105, P782 XU L, 1994, HEARING RES, V74, P173 Yates GK, 1999, HEARING RES, V136, P49, DOI 10.1016/S0378-5955(99)00108-2 Yoshikawa H, 2000, HEARING RES, V148, P95, DOI 10.1016/S0378-5955(00)00144-1 NR 25 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 65 EP 73 DI 10.1016/j.heares.2005.10.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000007 PM 16324810 ER PT J AU Paasche, G Bogel, L Leinung, M Lenarz, T Stover, T AF Paasche, G Bogel, L Leinung, M Lenarz, T Stover, T TI Substance distribution in a cochlea model using different pump rates for cochlear implant drug delivery electrode prototypes SO HEARING RESEARCH LA English DT Article DE drug delivery; cochlea implant electrode array; multiple outlets; substance distribution ID HAIR CELL LOSS; ADENOVIRUS-MEDIATED OVEREXPRESSION; NEURONS IN-VITRO; INNER-EAR; NEUROTROPHIC FACTOR; TECHNICAL REPORT; HEARING-LOSS; OUTGROWTH; INFUSION; SURVIVAL AB Several studies using animals have shown the protective effects of neurotrophic factors (NF) on spiral ganglion cells (SGC). This is of particular importance since the number of SGCs is considered to be among the factors defining the efficacy of cochlear implants. A device for local inner ear treatment is therefore of great interest. As described previously, we modified a Contour (TM) cochlear implant electrode, to examine the inbuilt canal to be used for fluid release [Paasche, G., Gibson, P., Averbeck, T., Becker, H., Lenarz, T., Stover, T., 2003. Technical report: modification of a cochlear implant electrode for drug delivery to the inner ear. Otol. Neurotol. 24, 222-227]. In the present study, three different electrode prototypes with openings of the delivery channel at various locations along the electrode array were examined to determine distribution of dye in a cochlea model over time. We compared dye delivery with: (a) release of the dye at the tip, (b) release of the dye at the tip and the side of the electrode, and (c) release of the dye only at the side of the electrode (6 mm from the tip). A mechanical pump was used to drive the system at pump rates of 100, 10, and 1 mu l/h. Dye concentration changes along the length of the whole cochlea were investigated. Mean values for all experimental conditions show that the distribution along the array is fastest with two outlets whereas the distribution via a single outlet at the side of the electrode array is not considered to be sufficient. The established experimental setup provides the possibility of investigating prototypes of a fluid based drug delivery system for the treatment of inner ear pathologies in combination with electrical stimulation. (c) 2005 Elsevier B.V. All rights reserved. C1 Hannover Med Sch, Dept Otolaryngol, D-30625 Hannover, Germany. RP Paasche, G (reprint author), Hannover Med Sch, Dept Otolaryngol, OE 6500,Carl Neuberg Str 1, D-30625 Hannover, Germany. EM Paasche.Gerrit@MH-Hannover.de CR BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E DILLIER N, 1995, AUDIOLOGY, V34, P145 Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 Hakuba N, 2003, GENE THER, V10, P426, DOI 10.1038/sj.gt.3301917 IGARASHI M, 1986, ACTA OTO-LARYNGOL, V101, P161, DOI 10.3109/00016488609132823 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Lenarz T, 2000, ADV OTO-RHINO-LARYNG, V57, P347 Malgrange B, 1996, NEUROREPORT, V7, P2495, DOI 10.1097/00001756-199611040-00019 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 OHYAMA K, 1988, HEARING RES, V35, P119, DOI 10.1016/0378-5955(88)90111-6 Paasche G, 2003, OTOL NEUROTOL, V24, P222, DOI 10.1097/00129492-200303000-00016 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 Sousa JE, 2003, CIRCULATION, V107, P2274, DOI 10.1161/01.CIR.0000069330.41022.90 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 Thorne M, 1999, LARYNGOSCOPE, V109, P1661, DOI 10.1097/00005537-199910000-00021 Tykocinski M, 2000, AM J OTOL, V21, P205, DOI 10.1016/S0196-0709(00)80010-1 Vandali AE, 2001, J ACOUST SOC AM, V109, P2049, DOI 10.1121/1.1358300 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 NR 24 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 74 EP 82 DI 10.1016/j.heares.2005.10.013 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000008 PM 16337758 ER PT J AU Stuart, A Jones, SM Walker, LJ AF Stuart, A Jones, SM Walker, LJ TI Insights into elevated distortion product otoacoustic emissions in sickle cell disease: Comparisons of hydroxyurea-treated and non-treated young children SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emissions; sickle cell disease; hydroxyurea ID SENSORINEURAL HEARING-LOSS; INNER-EAR; CONTRALATERAL SUPPRESSION; COCHLEAR ISCHEMIA; AUDITORY FUNCTION; ADHESION MOLECULE-1; IMPAIRED SUBJECTS; ANEMIA PATIENTS; HUMAN LISTENERS; BLOOD-CELLS AB Distortion product otoacoustic emissions (DPOAEs) were examined in 15 normal-hearing African-American children between the ages of 6 and 14 years with homozygous sickle cell disease (SCD), who were on a regimen of hydroxyurea (HDU), a drug that reduces inflammatory processes and symptoms of SCD; a matched group of 15 African-American children with homozygous SCD not on HDU; and 15 African-American children with normal hemoglobin. DPOAEs were evoked by 13 primary tone pairs with f(2) frequencies ranging from 1000 to 4500 Hz. Increased DPOAE amplitudes, believed to be a precursor of eventual hearing loss, were evident in children with SCID who were not receiving HDU. Those taking HDU had DPOAE amplitudes similar to normal controls. These findings suggest that HDU, in addition to reducing symptoms of SCD, may play a role in inhibiting or preventing cochlear pathology and hearing loss in individuals with SCID. (c) 2005 Elsevier B.V. All rights reserved. C1 E Carolina Univ, Sch Allied Hlth Sci, Dept Commun Sci & Disorders, Greenville, NC 27858 USA. Missouri State Univ, Dept Commun Sci & Disorders, Springfield, MO USA. RP Stuart, A (reprint author), E Carolina Univ, Sch Allied Hlth Sci, Dept Commun Sci & Disorders, Belk Annex, Greenville, NC 27858 USA. EM stuarta@mail.ecu.edu CR ADAMS PF, 1992, VITAL HLTH STAT, V10, P184 AJULO SO, 1993, J LARYNGOL OTOL, V107, P790 *ANSI, 1999, PERM AMB NOIS LEV AU *ANSI, 1996, SPEC AUD ASHA, 1997, GUID AUD SCREEN ASHOOR A, 1985, TROP GEOGR MED, V37, P314 ATSINA KK, 1988, TROP GEOGR MED, V40, P205 Belcher JD, 2003, BLOOD, V101, P3953, DOI 10.1182/blood-2002-10-3313 Benkerrou M, 2002, BLOOD, V99, P2297, DOI 10.1182/blood.V99.7.2297 BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X BERLIN CI, 1993, HEARING RES, V65, P40, DOI 10.1016/0378-5955(93)90199-B Brown MD, 2001, PEDIATR PATHOL MOL M, V20, P47 Brun M, 2003, PHARMACOGENOMICS J, V3, P215, DOI 10.1038/sj.tpj.6500176 Cevette M J, 2000, J Am Acad Audiol, V11, P323 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 Chies JAB, 2001, MED HYPOTHESES, V57, P46, DOI 10.1054/mehy.2000.1310 Conran N, 2004, AM J HEMATOL, V76, P343, DOI 10.1002/ajh.20129 CRAWFORD MR, 1991, EAR HEARING, V12, P349, DOI 10.1097/00003446-199110000-00007 Downs CR, 2000, J COMMUN DISORD, V33, P111, DOI 10.1016/S0021-9924(99)00027-1 Drexl M, 2004, HEARING RES, V194, P135, DOI 10.1016/j.heares.2004.04.006 Elion JE, 2004, HEMATOL J S3, V5, P195 Forman-Franco B., 1982, OTOLARYNGOLOGY HEAD, V89, P850 FRIEDMAN EM, 1980, ANN OTO RHINOL LARYN, V89, P342 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Gentry B, 1997, PERCEPT MOTOR SKILL, V84, P434 Gladwin MT, 2002, BRIT J HAEMATOL, V116, P436, DOI 10.1046/j.1365-2141.2002.03274.x GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 GORGA MP, 1993, J ACOUST SOC AM, V93, P2050, DOI 10.1121/1.406691 Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003 Halsey C, 2003, BRIT J HAEMATOL, V120, P177, DOI 10.1046/j.1365-2141.2003.03849.x HAUPT H, 1993, EUR ARCH OTO-RHINO-L, V250, P396 Hillery CA, 2000, BRIT J HAEMATOL, V109, P322, DOI 10.1046/j.1365-2141.2000.02040.x Huang ZW, 2005, J NEUROPHYSIOL, V93, P2053, DOI 10.1152/jn.00959.2004 Huynh H., 1976, J EDUC STATIST, V1, P69, DOI DOI 10.2307/1164736 Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 Kakigi A, 1998, AUDIOL NEURO-OTOL, V3, P361, DOI 10.1159/000013806 Kaul DK, 2000, J CLIN INVEST, V106, P411, DOI 10.1172/JCI9225 Kemp DT, 2002, BRIT MED BULL, V63, P223, DOI 10.1093/bmb/63.1.223 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 KIMBERLEY BP, 1994, EAR HEARING, V15, P199, DOI 10.1097/00003446-199406000-00001 Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479 KOUSPAROU CA, 2000, J INT SOC TUMOUR TAR, V1, P55 KUJAWA SG, 1994, HEARING RES, V74, P122, DOI 10.1016/0378-5955(94)90181-3 LONSBURYMARTIN BL, 1993, EAR HEARING, V14, P11, DOI 10.1097/00003446-199302000-00003 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P15 MacDonald CB, 1999, INT J PEDIATR OTORHI, V47, P23, DOI 10.1016/S0165-5876(98)90152-5 Mom T, 1999, HEARING RES, V133, P40, DOI 10.1016/S0378-5955(99)00056-8 MORGENST.KM, 1969, LARYNGOSCOPE, V79, P2172, DOI 10.1288/00005537-196912000-00013 NICOL KMM, 1992, HEARING RES, V61, P117, DOI 10.1016/0378-5955(92)90042-L ODETOYINBO O, 1987, ANN OTO RHINOL LARYN, V96, P258 Okpala I, 2002, EUR J HAEMATOL, V69, P135, DOI 10.1034/j.1600-0609.2002.02775.x Onakoya P A, 2002, Afr J Med Med Sci, V31, P21 O'Rourke C, 2002, INT J AUDIOL, V41, P162, DOI 10.3109/14992020209077180 OWENS JJ, 1993, AM J OTOL, V14, P34 Piltcher O, 2000, AM J OTOLARYNG, V21, P75, DOI 10.1016/S0196-0709(00)85001-2 Prieve BA, 1997, J ACOUST SOC AM, V102, P2871, DOI 10.1121/1.420342 Raveh E, 1998, J OTOLARYNGOL, V27, P354 RYAN AF, 2002, ACTA OTO-LARYNGOL, V548, P38 Saleh AW, 1998, ACTA HAEMATOL-BASEL, V100, P26, DOI 10.1159/000040859 Saleh AW, 1999, ACTA HAEMATOL-BASEL, V102, P31, DOI 10.1159/000040964 Scheibe F, 1997, EUR ARCH OTO-RHINO-L, V254, P91, DOI 10.1007/BF01526187 Schweinfurth JM, 1997, LARYNGOSCOPE, V107, P1457, DOI 10.1097/00005537-199711000-00007 Schweinfurth JM, 2000, AM J OTOL, V21, P636 Shera CA, 2004, EAR HEARING, V25, P86, DOI 10.1097/01.AUD.0000121200.90211.83 Slepecky N. B., 1996, COCHLEA, P44 Stuart MJ, 2004, LANCET, V364, P1343, DOI 10.1016/S0140-6736(04)17192-4 Styles LA, 1997, BLOOD, V89, P2554 SUZUKI M, 1995, ANN OTO RHINOL LARYN, V104, P69 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V Telischi FF, 1999, LARYNGOSCOPE, V109, P186, DOI 10.1097/00005537-199902000-00003 TODD GB, 1973, ACTA OTO-LARYNGOL, V76, P268, DOI 10.3109/00016487309121507 Walker Letitia J, 2004, Am J Audiol, V13, P164, DOI 10.1044/1059-0889(2004/021) WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 Zhang C, 2000, ACTA OTO-LARYNGOL, V120, P607, DOI 10.1080/000164800750000414 ZOROWKA P, 1993, INT J PEDIATR OTORHI, V27, P245, DOI 10.1016/0165-5876(93)90230-Z NR 76 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 83 EP 89 DI 10.1016/j.heares.2005.10.014 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000009 PM 16364581 ER PT J AU Groh, D Pelanova, J Jilek, M Popelar, J Kabelka, Z Syka, J AF Groh, D Pelanova, J Jilek, M Popelar, J Kabelka, Z Syka, J TI Changes in otoacoustic emissions and high-frequency hearing thresholds in children and adolescents SO HEARING RESEARCH LA English DT Article DE children; adolescents; audiograms; otoacoustic emissions ID DISTORTION-PRODUCT; DEVELOPMENTAL-CHANGES; BASIC CHARACTERISTICS; AUDITORY THRESHOLD; INFANTS; AGE; ADULTS; SENSITIVITY; PRESBYCUSIS; SYSTEM AB With the aim of characterizing the loss of high frequency hearing sensitivity in children, hearing thresholds and otoacoustic emissions were measured in a group of 126 normal hearing children and adolescents aged from 6 to 25 years. The subjects were divided into four 5-year age groups. Hearing thresholds over a range of 125 Hz-12.5 kHz were similar in all age groups, the average hearing threshold at 16 kHz was significantly elevated in the oldest age group. The response values of transiently evoked otoacoustic emissions (TEOAEs) significantly declined with age; the decline was negatively correlated with the hearing loss at 16 kHz. Significantly larger TEOAE responses and average distortion-product otoacoustic emission (DPOAE) values at 6.3 kHz were present in the youngest group in comparison with the other three older groups. Spontaneous otoacoustic emissions (SOAEs) were present in 70.8% of the children (in either one or both ears) with the greatest prevalence in the 11-20-year-old subjects. In the 21-25-year-old group, the hearing loss at 16 kHz was significantly smaller in ears with SOAEs than in ears without SOAEs. The results demonstrate that the increase in the high frequency hearing threshold at 16 kHz, which starts at ages over 20 years, is correlated with a decrease in the TEOAE responses at middle frequencies. (c) 2005 Elsevier B.V. All rights reserved. C1 Acad Sci Czech Republ, Inst Expt Med, Dept Auditory Neurosci, Prague 14220 4, Czech Republic. Charles Univ, ENT Dept, Fac Med 2, Prague 15006 5, Czech Republic. Univ Hosp Motol, Prague 15006 5, Czech Republic. RP Syka, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Dept Auditory Neurosci, Videnska 1083, Prague 14220 4, Czech Republic. EM daniel.groh@lfmotol.cuni.cz; pelanova@biomed.cas.cz; jilek@biomed.cas.cz; jpopelar@biomed.cas.cz; zdenek.kabelka@lfmotol.cuni.cz; syka@biomed.cas.cz RI Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014 CR Arnold DJ, 1999, ARCH OTOLARYNGOL, V125, P215 Avan P, 1997, J ACOUST SOC AM, V101, P2771, DOI 10.1121/1.418564 Bertoli S, 1997, EAR HEARING, V18, P286, DOI 10.1097/00003446-199708000-00003 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BRIZZEE KR, 1980, NEUROBIOL AGING, V1, P45, DOI 10.1016/0197-4580(80)90023-8 BROOK L, 2001, SCAND AUDIOL S, V53, P37 BUREN M, 1992, British Journal of Audiology, V26, P23, DOI 10.3109/03005369209077868 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 COLLET L, 1993, EAR HEARING, V14, P141, DOI 10.1097/00003446-199304000-00009 COLLET L, 1993, BRAIN DEV-JPN, V15, P249, DOI 10.1016/0387-7604(93)90018-4 Dorn Patricia A., 1998, Journal of the Acoustical Society of America, V104, P964, DOI 10.1121/1.423339 el-Bez M, 1994, Ann Otolaryngol Chir Cervicofac, V111, P443 FAUSTI SA, 1981, J ACOUST SOC AM, V69, P1343, DOI 10.1121/1.385805 Hoth S, 1996, LARYNGO RHINO OTOL, V75, P709, DOI 10.1055/s-2007-997664 KARLZON RK, 1994, AM J OTOL, V15, P596 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kon K, 2000, BRAIN DEV-JPN, V22, P41, DOI 10.1016/S0387-7604(99)00114-X LePage EL, 1998, MED J AUSTRALIA, V169, P588 LONSBURYMARTIN BL, 1993, EAR HEARING, V14, P11, DOI 10.1097/00003446-199302000-00003 Mazelova J, 2003, EXP GERONTOL, V38, P87, DOI 10.1016/S0531-5565(02)00155-9 Mazelova J., 2001, NOISE INDUCED HEARIN, P365 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M MOULIN A, 1991, ACTA OTO-LARYNGOL, V111, P835, DOI 10.3109/00016489109138419 Murnane Owen D, 2003, J Am Acad Audiol, V14, P525, DOI 10.3766/jaaa.14.9.8 NORTON SJ, 1990, EAR HEARING, V11, P121, DOI 10.1097/00003446-199004000-00006 OSTERHAMMEL D, 1979, Scandinavian Audiology, V8, P73, DOI 10.3109/01050397909076304 Popelar J, 2003, HEARING RES, V186, P75, DOI 10.1016/S0378-5955(03)00329-0 PRIEVE BA, 1995, EAR HEARING, V16, P521 Prieve BA, 1997, J ACOUST SOC AM, V102, P2860, DOI 10.1121/1.420341 PRIEVE B A, 1992, Seminars in Hearing, V13, P37, DOI 10.1055/s-0028-1085140 Prieve BA, 1997, J ACOUST SOC AM, V102, P2871, DOI 10.1121/1.420342 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Reuter W, 1997, HNO, V45, P147, DOI 10.1007/s001060050104 Satoh Yasuo, 1998, Auris Nasus Larynx, V25, P121, DOI 10.1016/S0385-8146(97)10033-5 SCHECHTER MA, 1986, J ACOUST SOC AM, V79, P767, DOI 10.1121/1.393466 Schmuziger N, 2005, INT J AUDIOL, V44, P24, DOI 10.1080/14992020400022660 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SININGER YS, 1998, OTOACOUSTIC EMISSION, P105 SOUCEK S, 1990, AUDIOMETRIC ELECTROP, P28 SPEKTOR Z, 1991, LARYNGOSCOPE, V101, P965 STELMACHOWICZ PG, 1989, J ACOUST SOC AM, V86, P1384, DOI 10.1121/1.398698 STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351 STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 TREHUB SE, 1989, AUDIOLOGY, V28, P241 WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8 Wagner W, 1999, EUR ARCH OTO-RHINO-L, V256, P177, DOI 10.1007/s004050050136 NR 48 TC 11 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 90 EP 98 DI 10.1016/j.heares.2005.11.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000010 PM 16364580 ER PT J AU Severinsen, SA Kirkegaard, M Nyengaard, JR AF Severinsen, SA Kirkegaard, M Nyengaard, JR TI 2,3-Dihydroxybenzoic acid attenuates kanamycin-induced volume reduction in mouse utricular type I hair cells SO HEARING RESEARCH LA English DT Article DE inner ear; mice; stereology; utricular macula; volume; otoprotection ID VESTIBULAR SENSORY EPITHELIA; CHINCHILLA CRISTA-AMPULLARIS; INNER-EAR; IRON CHELATORS; AMINOGLYCOSIDE OTOTOXICITY; GENTAMICIN OTOTOXICITY; POSTNATAL-DEVELOPMENT; PATHOLOGICAL RESEARCH; GUINEA-PIGS; NUMBER AB The aminoglycoside kanamycin is a commonly used antibiotic, but unfortunately it is oto- and nephrotoxic in large doses. The negative effects are thought to be due to the formation of free radicals which is why strong antioxidants and iron chelators like 2,3-dihydroxybenzoic acid (DHB) are of great interest. This study estimates cellular quantitative changes in the utricular macula of mice following systemic treatment with kanamycin alone or in combination with DHB. The animals were injected with either saline, kanamycin or kanamycin + DHB for 15 days and perfusion fixed three weeks after last injection. Total volume of the utricle, as well as total number of hair and supporting cells, were estimated on light microscopic sections. Total volume and mean volume of hair cell types I and II and supporting cells were estimated on digital transmission electron micrographs. Total volume of the utricular macula, hair cell type I and supporting cells decreased significantly in animals injected with kanamycin but not in animals co-treated with DHB. Hair and supporting cell numbers remained unchanged in all three groups. In conclusion, the kanamycin-induced volume reduction of type I hair cells was attentuated by DHB. (c) 2005 Elsevier B.V. All rights reserved. C1 Aarhus Univ, Stereol & Electron Microscopy Res Lab, DK-8000 Aarhus C, Denmark. Aarhus Univ, MIND Ctr, Inst Clin Med, DK-8000 Aarhus, Denmark. Karolinska Univ Hosp, Ctr Hearing & Commun Res, Stockholm, Sweden. RP Severinsen, SA (reprint author), Aarhus Univ, Stereol & Electron Microscopy Res Lab, Bldg 1185, DK-8000 Aarhus C, Denmark. EM stig.severinsen@ki.au.dk CR COLLINS P W P, 1985, British Journal of Audiology, V19, P257, DOI 10.3109/03005368509078981 Cunningham LL, 2004, J NEUROBIOL, V60, P89, DOI 10.1002/neu.20006 Cunningham LL, 2002, J NEUROSCI, V22, P8532 Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Forge A, 1998, J COMP NEUROL, V397, P69 GUNDERSEN HJG, 1988, APMIS, V96, P379 GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229 Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3 GUNDERSEN HJG, 1988, APMIS, V96, P857 Heydt JL, 2004, HEARING RES, V192, P65, DOI 10.1016/j.heares.2004.01.006 ISHITSUKA K, 2005, ONCOGENE, P1 JANSON AM, 1993, NEUROSCIENCE, V57, P931, DOI 10.1016/0306-4522(93)90039-I JIANG H, 2005, CELL DEATH DIFFER, P1 Kim TS, 2005, HEARING RES, V205, P201, DOI 10.1016/j.heares.2005.03.017 Kirkegaard M, 2005, J COMP NEUROL, V492, P132, DOI 10.1002/cne.20736 KIRKEGAARD M, 2005, ANAL STEREOL, V24, P69 LINDEMAN HH, 1969, ACTA OTO-LARYNGOL, V67, P177, DOI 10.3109/00016486909125441 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 MCDOWELL B, 1986, ACTA OTO-LARYNGOL, V101, P242, DOI 10.3109/00016488609132833 Myrdal SE, 2005, HEARING RES, V204, P156, DOI 10.1016/j.heares.2005.02.002 Nakagawa T, 1999, BRAIN RES, V847, P357, DOI 10.1016/S0006-8993(99)02088-0 Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2 Nakashima T, 2000, ACTA OTO-LARYNGOL, V120, P904, DOI 10.1080/00016480050218627 Nyengaard JR, 1999, J AM SOC NEPHROL, V10, P1100 PETERSON CM, 1979, EXP HEMATOL, V7, P74 Priuska EM, 1998, INORG CHIM ACTA, V273, P85, DOI 10.1016/S0020-1693(97)05942-2 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Rusch A, 1998, J NEUROSCI, V18, P7487 Sha SH, 1999, LAB INVEST, V79, P807 Shimizu Y, 2005, NEUROSCI LETT, V380, P243, DOI 10.1016/j.neulet.2005.01.066 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 STEYGER PS, 2004, ARO MIDW M ABSTR, V27, P135 TANDRUP T, 1994, J NEUROCYTOL, V23, P242, DOI 10.1007/BF01275528 TANYERI H, 1995, HEARING RES, V89, P194, DOI 10.1016/0378-5955(95)00137-7 HUY PTB, 1988, ACTA OTO-LARYNGOL, V105, P511, DOI 10.3109/00016488809119511 Wang Z, 2003, BIOCHEM PHARMACOL, V65, P1767, DOI 10.1016/S0006-2952(03)00117-5 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Yamashita D, 2005, NEUROSCIENCE, V134, P633, DOI 10.1016/j.neuroscience.2005.04.015 Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 46 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 99 EP 108 DI 10.1016/j.heares.2005.10.016 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000011 PM 16377109 ER PT J AU El-Kady, MA Durrant, JD Tawfik, S Abdel-Ghany, S Moussa, AM AF El-Kady, MA Durrant, JD Tawfik, S Abdel-Ghany, S Moussa, AM TI Study of auditory function in patients with chronic obstructive pulmonary diseases SO HEARING RESEARCH LA English DT Article DE hypoxia; hypoxemia; chronic obstructive pulmonary disease; electrocochleography; auditory brain-stem response; otoacoustic emissions; audiometry ID EVOKED OTOACOUSTIC EMISSIONS; OUTER HAIR-CELLS; COCHLEAR-POTENTIALS; SUMMATING POTENTIALS; ACOUSTIC NEUROMAS; HYPOXIA; OXYGEN; RESPONSES; ANOXIA; INNER AB This study was designed to measure auditory function in patients with chronic obstructive pulmonary diseases (COPDs) who generally suffer from chronic hypoxemia. Control and COPD subject groups received a battery of tests to assess overall hearing sensitivity and peripheral (end-organ and eighth-nerve) and brain-stem auditory function, as well as blood-gas analysis. Results showed a statistically significant difference for all audiological measures between the control group and a COPD subgroup - the presumptive hypoxic subjects (partial oxygen tensions, PO2, < 75 mm Hg). Correlation analyses of results from all subjects (regardless Of PO2) also revealed significant covariance with PO2 for overall, RMS, amplitude of click-evoked otoacoustic emissions (RA), hearing threshold level, and auditory brain-stem response (ABR, I-V inter-peak latency). chi(2) or Fisher's exact tests were statistically significant for frequencies of cases classified according to a criterion PO2 of 70 mm Hg (putative critical O-2 for completely normal auditory function) and either hearing thresholds falling below or RA values above 1.5 standard deviations of the control-group means, respectively. However, chi(2) was not significant for a comparable criterion of ABR IN IPL. In general, clinically significant hearing loss was uncommon in COPD patients, and the observed effects represented relatively small changes in the auditory measures examined. Still, overall, changes were in the direction of poorer function, and these results suggest physiologically significant impact of chronic hypoxemia and the need for further study to evaluate thoroughly this medical condition as a potential risk factor for audio-vestibular dysfunction. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Pittsburgh, Dept Commun Sci & Disorders & Otolaryngol, Pittsburgh, PA 15260 USA. Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA. Ain Shams Univ, Dept Audiol, Cairo, Egypt. Sohag Univ Hosp, Dept Chest Dis, Sohag, Egypt. Sohag Univ Hosp, Dept Otolaryngol, Sohag, Egypt. RP Durrant, JD (reprint author), Univ Pittsburgh, Dept Commun Sci & Disorders & Otolaryngol, Forbes Tower 4033, Pittsburgh, PA 15260 USA. EM durrant@pitt.edu CR ATTIAS J, 1990, HEARING RES, V45, P247, DOI 10.1016/0378-5955(90)90124-8 BONFILS P, 1988, AM J OTOL, V9, P412 BROWN MC, 1983, HEARING RES, V9, P131, DOI 10.1016/0378-5955(83)90023-0 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BURKETT PR, 1976, AVIAT SPACE ENVIR MD, V47, P649 CARLILE S, 1992, ACTA OTO-LARYNGOL, V112, P939, DOI 10.3109/00016489209137494 CARLILE S, 1992, AVIAT SPACE ENV MED, P1093 DALLOS P, 1972, ACTA OTO-LARYNGOL, P1 DALLOS P, 1973, AUDITORY PERIPHERY B, P112 DALLOS P, 1973, AUDITORY PERIPHERY, P355 DAVIS H, 1957, PHYSIOL REV, V37, P1 DURRANT J D, 1986, Seminars in Hearing, V7, P289, DOI 10.1055/s-0028-1091465 Durrant JD, 1998, J ACOUST SOC AM, V104, P370, DOI 10.1121/1.423293 DURRANT JD, 1988, J ACOUST SOC AM, V62, pS87 FERRARI R, 1986, EUR HEART J, V7, P3 GAFNI M, 1976, ACTA OTO-LARYNGOL, V82, P354, DOI 10.3109/00016487609120919 GYSIN CS, 1999, EFFECT COCHLEAR HYPO Hansen S, 1988, Acta Otolaryngol Suppl, V449, P165 HENDRICKSMUNOZ KD, 1988, PEDIATRICS, V81, P650 JOHNSTON.BM, 1972, Q REV BIOPHYS, V5, P1 KEMP DT, 1990, EAR HEARING, V11, P93 KLOCKE RA, 1989, TXB PULMONARY DISEAS, P147 KONISHI T, 1979, ACTA OTO-LARYNGOL, V87, P506, DOI 10.3109/00016487909126459 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 LAWRENCE M, 1975, ANN OTO RHINOL LARYN, V84, P499 LUCERTINI M, 1993, AUDIOLOGY, V32, P356 McFarland RA, 1937, J COMP PSYCHOL, V23, P227, DOI 10.1037/h0056332 MELLEMGA.K, 1966, ACTA PHYSIOL SCAND, V67, P10, DOI 10.1111/j.1748-1716.1966.tb03281.x MILLS JA, 1985, EAR HEARING, V6, P139, DOI 10.1097/00003446-198505000-00003 MOSKI SS, 1981, CLIN NEUROPHYSIOL, V81, P477 NIEWOEHNER DE, 1989, TXB PULMONARY DIS, P913 PERLMAN HP, 1951, LARYNGOSCOPE, V69, P591 PRAZMA J, 1978, HEARING RES, V1, P3, DOI 10.1016/0378-5955(78)90003-5 REBILLARD G, 1992, HEARING RES, V62, P142, DOI 10.1016/0378-5955(92)90179-Q REBILLARD G, 1993, BRIT J AUDIOL, V27, P117, DOI 10.3109/03005369309077901 RUTH RA, 1988, AM J OTOL, V9, P310 Ruth R A, 1990, J Am Acad Audiol, V1, P134 RUTH RA, 1988, AM J OTOL, V9, P1 SCHUMACHER RE, 1990, EAR HEARING, V11, P359, DOI 10.1097/00003446-199010000-00006 SOHMER H, 1986, ELECTROEN CLIN NEURO, V64, P334, DOI 10.1016/0013-4694(86)90157-4 SOHMER H, 1989, HEARING RES, V40, P87, DOI 10.1016/0378-5955(89)90102-0 SOHMER H, 1982, SCAND AUDIOL, V26, P77 TELISCHI FF, 1995, LARYNGOSCOPE, V105, P675, DOI 10.1288/00005537-199507000-00002 NR 43 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 109 EP 116 DI 10.1016/j.heares.2005.05.018 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000012 PM 16412595 ER PT J AU Morawski, K Telischi, FF Niemczyk, K AF Morawski, K Telischi, FF Niemczyk, K TI A model of real time monitoring of the cochlear function during an induced local ischemia SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; cochlear blood flow; cochlear ischemia; cochlear reperfusion ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC NEUROMA SURGERY; OUTER HAIR-CELLS; AUDITORY-EVOKED POTENTIALS; LASER-LIGHT TRANSMISSION; 2 DISCRETE SOURCES; BLOOD-FLOW; GUINEA-PIG; PHYSIOLOGICAL VULNERABILITY; DISTORTION PRODUCTS AB The aim of this study was to investigate the utility of distortion product otoacoustic emissions (DPOAEs) in intraoperative monitoring (IM) of cochlear ischemic episodes in animals during internal auditory artery (IAA) compression. The IAA was exposed using the posterior fossa approach and then compressed for 3 and 5 min intervals to effect ischemia. DPOAE amplitudes and phases were measured at 4, 8, and 12 kHz geometric mean frequency (GMF). In each monitored ear, laser-Doppler cochlear blood flow (CBF) was measured. All IAA compressions resulted in rapid decrease of DPOAE amplitude and CBF, with simultaneous DPOAE phase increase. DPOAE phase changes were found to increase consistently within several seconds of IAA compression, while corresponding DPOAE amplitudes changed more slowly, with up to 30-40 s delays. Following IAA release, DPOAEs at 12 kHz GMF were characterized by longer delays in returning to baseline than those measured at lower frequencies. In some cases, CBF did not return to baseline. In this animal model, DPOAEs were found to be sensitive measures of cochlear function during transient cochlear ischemic episodes, suggesting the utility of DPOAE monitoring of auditory function during surgery of cerebello-pontine angle tumors. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Miami, Ear Inst, Dept Otolaryngol D48, Miami, FL 33101 USA. Med Univ Warsaw, Dept Otolaryngol, PL-02097 Warsaw, Poland. RP Telischi, FF (reprint author), Univ Miami, Ear Inst, Dept Otolaryngol D48, POB 016960, Miami, FL 33101 USA. EM ftelisch@med.miami.edu CR Albera R, 2003, ACTA OTO-LARYNGOL, V123, P812, DOI 10.1080/00016480310002230 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Battista RA, 2000, AM J OTOL, V21, P244, DOI 10.1016/S0196-0709(00)80017-4 BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 BOSHER SK, 1979, J PHYSIOL-LONDON, V293, P329 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 Colletti V, 1998, AM J OTOL, V19, P503 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 FISCHER C, 1989, NEUROMONITORING SURG, P191 Haapaniemi J, 2001, EUR ARCH OTO-RHINO-L, V258, P209, DOI 10.1007/s004050100341 HARA A, 1995, HEARING RES, V90, P228, DOI 10.1016/0378-5955(95)00166-3 Hatayama T, 1998, ACTA NEUROCHIR, V140, P681, DOI 10.1007/s007010050163 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KOMUNE S, 1993, ORL J OTO-RHINO-LARY, V55, P193 KONISHI T, 1961, J ACOUST SOC AM, V33, P349, DOI 10.1121/1.1908659 KUIJPERS W, 1970, PFLUG ARCH EUR J PHY, V320, P359, DOI 10.1007/BF00588214 KUROKI A, 1995, J NEUROSURG, V82, P933, DOI 10.3171/jns.1995.82.6.0933 LENARZ T, 1992, EUR ARCH OTO-RHINO-L, V249, P257, DOI 10.1007/BF00714488 Linden R. Dean, 1997, P601 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 Martin GK, 1999, HEARING RES, V136, P105, DOI 10.1016/S0378-5955(99)00119-7 Miller JM, 1994, AM J OTOL, V15, P305 MILLER JM, 1991, ANN OTO RHINOL LARYN, V100, P44 MILLER JM, 1983, HEARING RES, V11, P385, DOI 10.1016/0378-5955(83)90069-2 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P182 MOLLER AR, 1992, NEUROMONITORING OTOL, P199 Moller AR, 1996, AM J OTOL, V17, P452 Mom T, 2000, AM J OTOL, V21, P735 Mom T, 1997, BRAIN RES, V751, P20, DOI 10.1016/S0006-8993(96)01388-1 Mom T, 1999, HEARING RES, V133, P40, DOI 10.1016/S0378-5955(99)00056-8 Morawski K, 2003, OTOL NEUROTOL, V24, P918, DOI 10.1097/00129492-200311000-00017 MORAWSKI K, 2003, 18 BIENN S IERASG PU MORAWSKI K, 2004, 27 ANN MIDW RES M DA, V27, P333 Morawski K, 2004, OTOL NEUROTOL, V25, P818, DOI 10.1097/00129492-200409000-00028 Morawski K, 2003, LARYNGOSCOPE, V113, P1615, DOI 10.1097/00005537-200309000-00039 NADOL JB, 1992, LARYNGOSCOPE, V102, P1153, DOI 10.1288/00005537-199210000-00010 Nakashima T, 2004, ANN OTO RHINOL LARYN, V113, P426 Nakashima T, 1995, Nihon Jibiinkoka Gakkai Kaiho, V98, P1297 NAMYSLOWSKI G, 2001, SCAND AUDIOL S, V52, P121 Nelson EG, 2003, LARYNGOSCOPE, V113, P1672, DOI 10.1097/00005537-200310000-00006 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 PERLMAN H B, 1959, Laryngoscope, V69, P591 PRASHER DK, 1995, ACTA OTO-LARYNGOL, V115, P375, DOI 10.3109/00016489509139332 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x REBILLARD G, 1992, HEARING RES, V62, P142, DOI 10.1016/0378-5955(92)90179-Q Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 SAKAMOTO A, 1991, BRAIN RES, V554, P186, DOI 10.1016/0006-8993(91)90187-Z SCHEIBE F, 1990, EUR ARCH OTO-RHINO-L, V247, P20 SCHMIEDT RA, 1981, HEARING RES, V5, P295, DOI 10.1016/0378-5955(81)90053-8 Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 Selmani Z, 2001, Acta Otolaryngol Suppl, V545, P10 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004 Tabuchi K, 2002, HEARING RES, V173, P153, DOI 10.1016/S0378-5955(02)00349-0 Tabuchi K, 1998, HEARING RES, V126, P28, DOI 10.1016/S0378-5955(98)00142-7 Tabuchi K, 2001, HEARING RES, V153, P1, DOI 10.1016/S0378-5955(00)00247-1 Tabuchi K, 2001, HEARING RES, V160, P31, DOI 10.1016/S0378-5955(01)00315-X Telischi FF, 1999, LARYNGOSCOPE, V109, P186, DOI 10.1097/00005537-199902000-00003 Telischi FF, 1998, LARYNGOSCOPE, V108, P837, DOI 10.1097/00005537-199806000-00011 WAZEN JJ, 1994, LARYNGOSCOPE, V104, P446 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 WIDICK MP, 1994, OTOLARYNG HEAD NECK, V111, P407 WITZMANN A, 1989, NEUROMONITORING SURG, P219 Yavuz E, 2005, J NEUROSCI METH, V147, P55, DOI 10.1016/j.jneumeth.2005.03.004 NR 68 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 117 EP 127 DI 10.1016/j.heares.2005.05.019 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000013 PM 16403609 ER PT J AU Drayton, M Noben-Trauth, K AF Drayton, M Noben-Trauth, K TI Mapping quantitative trait loci for hearing loss in Black Swiss mice SO HEARING RESEARCH LA English DT Article DE outbred strains; hearing loss; quantitative trait loci; cadherin 23; protocadherin 15 ID INBRED STRAINS; GENETIC DISSECTION; COMPLEX TRAITS; AMES WALTZER; INNER-EAR; MOUSE; MUTATION; MODEL; IDENTIFICATION; IMPAIRMENT AB In common inbred mouse strains, hearing loss is a highly prevalent quantitative trait, which is mainly controlled by the Cdh23(753A) variant and alleles at numerous other strain-specific loci. Here, we investigated the genetic basis of hearing loss in non-inbred strains. Mice of Swiss Webster, CF-1, NIH Swiss, ICR, and Black Swiss strains exhibited hearing profiles characteristic of progressive, sensorineural hearing impairment. In particular, CF-1, Black Swiss, and NIH Swiss mice showed early-onset hearing impairment, ICR and Swiss Webster mice expressed a delayed-onset hearing loss, and NMRI mice had normal hearing. By quantitative trait locus (QTL) mapping, two significant QTLs were identified underlying hearing loss in Black Swiss mice: one QTL mapped to chromosome (chr) 10 (named ahl5, LOD 8.9, peak association 35-42 cM) and a second QTL localized to chr 18 (ahl6, LOD 3.8, 38-44 cM). Ahl5 and ahl6 account for 61% and 32% of the variation in the backcross, respectively. Cadherin 23 (Cdh23) and protocadherin 15 (Pedh15), mapping within the 95% confidence interval of ahl5, bear nucleotide polymorphisms in coding exons, but these appear to be unrelated to the hearing phenotype. Haplotype analyses across the Cdh23 locus demonstrated the phylogenetic relationship between Black Swiss and common inbred strains. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, Rockville, MD 20850 USA. RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Neurogenet Sect, Mol Biol Lab, NIH, 5 Res Court, Rockville, MD 20850 USA. EM nobentk@nidcd.nih.gov CR Alagramam KN, 2001, NAT GENET, V27, P99 Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0 Beck JA, 2000, NAT GENET, V24, P23, DOI 10.1038/71641 CHURCHILL GA, 1994, GENETICS, V138, P963 Darvasi A, 1998, NAT GENET, V18, P19, DOI 10.1038/1670 DIPALMA F, 2001, GENE, V23, P281 Di Palma F, 2001, NAT GENET, V27, P103 Flint J, 2005, NAT REV GENET, V6, P271, DOI 10.1038/nrg1576 HENRY KR, 1980, AUDIOLOGY, V19, P369 Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2002, GENOMICS, V80, P461, DOI [10.1006/geno.2002.6858, 10.1016/S0888-7543(02)96858-8] Johnson KR, 2005, GENOMICS, V85, P582, DOI 10.1016/j.ygeno.2005.02.006 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Johnson KR, 2001, NAT GENET, V27, P191, DOI 10.1038/84831 LANDER E, 1995, NAT GENET, V11, P241, DOI 10.1038/ng1195-241 Manly KF, 1999, MAMM GENOME, V10, P327, DOI 10.1007/s003359900997 Manly KF, 2001, MAMM GENOME, V12, P930, DOI 10.1007/s00335-001-1016-3 Misawa H, 2002, J NEUROSCI, V22, P10088 Morris KA, 2005, JARO-J ASSOC RES OTO, V6, P75, DOI 10.1007/s10162-004-5046-x Nemoto M, 2004, BIOCHEM BIOPH RES CO, V324, P1283, DOI 10.1016/j.bbrc.2004.09.186 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Shnerson A, 1981, Brain Res, V254, P77 Skradski SL, 2001, NEURON, V31, P537, DOI 10.1016/S0896-6273(01)00397-X Wang XS, 2005, NAT GENET, V37, P365, DOI 10.1038/ng1524 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Witmer PD, 2003, GENOME RES, V13, P485, DOI 10.1101/gr.717903 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 28 TC 25 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 128 EP 139 DI 10.1016/j.heares.2005.11.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000014 PM 16426780 ER PT J AU Farahbakhsh, NA Narins, PM AF Farahbakhsh, NA Narins, PM TI Slow motility in hair cells of the frog amphibian papilla: Ca2+-dependent shape changes SO HEARING RESEARCH LA English DT Article DE auditory hair cells; iso-volumetric contraction; osmotic shortening ID GUINEA-PIG COCHLEA; MOTOR PROTEIN; ACETYLCHOLINE; ELECTROMOTILITY; CALCIUM; PRESTIN; MECHANISMS; STIFFNESS; CURRENTS; LENGTH AB We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Los Angeles, Dept Physiol Sci, Los Angeles, CA 90095 USA. RP Farahbakhsh, NA (reprint author), Univ Calif Los Angeles, Dept Physiol Sci, 621 Charles E Young Dr S, Los Angeles, CA 90095 USA. EM farahbak@ucla.edu CR ART JJ, 1982, PROC R SOC SER B-BIO, V216, P377, DOI 10.1098/rspb.1982.0081 ASHMORE JF, 1995, ACTIVE HEARING, V65, P337 BERNARD C, 1986, J PHYSIOL-LONDON, V371, P17 Blanchet C, 1996, J NEUROSCI, V16, P2574 CECOLA RP, 1992, HEARING RES, V61, P65, DOI 10.1016/0378-5955(92)90037-N Chan E, 1997, ACTA PHYSIOL SCAND, V161, P533, DOI 10.1046/j.1365-201X.1997.00241.x Chertoff M. E., 1994, AM J PHYSIOL, V266, P467 Dallos P, 1997, J NEUROSCI, V17, P2212 Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1990, J NEUROSCI, V10, P1388 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EYBALIN M, 1993, PHYSIOL REV, V73, P309 FARAHBAKHSH NA, 2004, CALCIUM DEPENDENT CO, P1275 FARAHBAKHSH NA, 2005, CALCIUM CALMODULIN D, P612 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Frolenkov GI, 2000, J NEUROSCI, V20, P5940 Frolenkov GI, 1998, MOL BIOL CELL, V9, P1961 Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2 FUNG Y, 1981, BIOMECHANCS He DZZ, 2003, J NEUROSCI, V23, P9089 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 HOLLEY MC, 1992, J CELL SCI, V102, P569 Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Imai S, 1999, NEUROSCI LETT, V275, P121, DOI 10.1016/S0304-3940(99)00775-2 IWASA KH, 1992, J ACOUST SOC AM, V92, P3169, DOI 10.1121/1.404194 Kalinec F, 2000, J BIOL CHEM, V275, P28000 KARLSSON KK, 1990, NEUROSCI LETT, V116, P101, DOI 10.1016/0304-3940(90)90393-N KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H KROS CJ, 1996, COCHLEA, V8, P318 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 LIM DJ, 1998, KIDNEY INT, V65, P104 Manley GA, 2000, P NATL ACAD SCI USA, V97, P11736, DOI 10.1073/pnas.97.22.11736 OGATA Y, 1993, ORL J OTO-RHINO-LARY, V55, P135 OHNISHI S, 1992, AM J PHYSIOL, V263, pC1088 POU AM, 1991, HEARING RES, V52, P305, DOI 10.1016/0378-5955(91)90020-A Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5 REITER ER, 1995, J NEUROPHYSIOL, V73, P506 Santos-Sacchi J, 2001, HEARING RES, V159, P69, DOI 10.1016/S0378-5955(01)00321-5 SCHACHT J, 1995, ACTIVE HEARING, V65, P209 Simmons D. D., 1995, AUDIT NEUROSCI, V1, P183 SIMMONS DD, 1994, HEARING RES, V80, P71, DOI 10.1016/0378-5955(94)90010-8 SLEPECKY N, 1988, HEARING RES, V34, P119, DOI 10.1016/0378-5955(88)90099-8 Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153 Szonyi M, 2001, BRAIN RES, V922, P65, DOI 10.1016/S0006-8993(01)03150-X Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6 Tanigawa T, 1997, Nihon Jibiinkoka Gakkai Kaiho, V100, P264 TOLOMEO JA, 1995, J ACOUST SOC AM, V97, P3006, DOI 10.1121/1.411865 TSIEN RY, 1985, CELL CALCIUM, V6, P145, DOI 10.1016/0143-4160(85)90041-7 ULFENDAHL M, 1988, ARCH OTO-RHINO-LARYN, V245, P237, DOI 10.1007/BF00463935 Yamamoto T, 1997, NEUROSCI LETT, V236, P79, DOI 10.1016/S0304-3940(97)00749-0 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 58 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 140 EP 159 DI 10.1016/j.heares.2005.11.004 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000015 PM 16426781 ER PT J AU Cohen, LT Saunders, E Knight, MR Cowan, RSC AF Cohen, LT Saunders, E Knight, MR Cowan, RSC TI Psychophysical measures in patients fitted with Contour (TM) and straight Nucleus electrode arrays SO HEARING RESEARCH LA English DT Article DE cochlear implant; perimodiolar placement; radial distance; pitch estimation; loudness estimation; spread of neural excitation; forward masking ID COCHLEAR IMPLANT RECIPIENTS; NEURAL EXCITATION; SPATIAL SPREAD; MASKING; STIMULATION; POSITION AB The objective of this study was to compare the psychophysical performance of patients using the Nucleus Contour (TM) electrode array with that of patients using the straight banded-electrode array. In particular, we wished to consider how psychophysical parameters would differ for an electrode array positioned closer to the modiolus, and how this might influence both patient benefits and the design of speech processing strategies. Nine subjects participated in the study: four used the Nucleus straight array and five used the Nucleus Contour electrode array. Radiographic analyses found that the Contour array lay closer to the modiolus, was more deeply inserted and spanned a larger fractional length of the basilar membrane than the straight banded-electrode array. The results were analysed in terms of array type and of the position of the individual electrode band, both distance from the modiolus and longitudinal placement. Mean threshold was lower for the Contour array but maximum comfortable level was similar. Whereas threshold varied significantly with distance of electrode band from the modiolus, maximum comfortable level did not. Pitch varied fairly regularly with longitudinal position of the stimulated electrode, with the exception of one Contour subject. The forward masking profiles, using moderately loud maskers, were narrower for the Contour array, indicative of more localized neural excitation. (c) 2005 Elsevier B.V. All rights reserved. C1 Cooperat Res Ctr Cochlear Implant & Hearing Aid I, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Dynam Hearing, Richmond, Vic 3121, Australia. Cochlear Ltd, Melbourne, Vic 3002, Australia. RP Cohen, LT (reprint author), Cooperat Res Ctr Cochlear Implant & Hearing Aid I, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM ltcohen@unimelb.edu.au CR ARIYASU L, 1989, OTOLARYNG HEAD NECK, V100, P87 Balkany TJ, 2002, ACTA OTO-LARYNGOL, V122, P363, DOI 10.1080/00016480260000021 BUSBY PA, 1994, J ACOUST SOC AM, V95, P2658, DOI 10.1121/1.409835 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 Cohen L T, 1996, Audiol Neurootol, V1, P278 Cohen LT, 2004, INT J AUDIOL, V43, P346, DOI 10.1080/14992020400050044 COHEN LT, 1994, INT COCHL IMPL SPEEC, P60 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 COHEN LT, 2001, 2001 C IMPL AUD PROS COHEN LT, 2001, 2 INT S WORKSH OBJ M Cohen LT, 2005, INT J AUDIOL, V44, P559, DOI 10.1080/14992020500258743 Cohen LT, 1996, AM J OTOL, V17, P859 Cohen L T, 1996, Audiol Neurootol, V1, P265 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Cohen L.T., 2000, 5 EUR S PAED COCHL I Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HUGHES ML, 2003, ARO 26 MIDW RES M DA MARSH MA, 1993, AM J OTOL, V14, P386 MERZENICH MM, 1977, FUNCTIONAL ELECT STI, P321 Park KS, 2002, KOREAN J GENETIC, V24, P41 Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023 Saunders E, 2002, EAR HEARING, V23, p28S SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Stevens S. S., 1940, AM J PSYCHOL, V53, P329, DOI 10.2307/1417526 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VONBEKESY G, 1947, ACTA OTO-LARYNGOL, V35, P411 Xu J, 2000, AM J OTOL, V21, P49, DOI 10.1016/S0196-0709(00)80112-X NR 30 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 160 EP 175 DI 10.1016/j.heares.2005.11.005 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000016 PM 16403611 ER PT J AU Bleeck, S Sayles, M Ingham, NJ Winter, IM AF Bleeck, S Sayles, M Ingham, NJ Winter, IM TI The time course of recovery from suppression and facilitation from single units in the mammalian cochlear nucleus SO HEARING RESEARCH LA English DT Article DE adaptation; forward masking; auditory brainstem; onset unit; primary-like; chopper ID AUDITORY-NERVE FIBERS; TONE-BURST; NEURONS; RESPONSES; MASKING; ADAPTATION; CLASSIFICATION; REGULARITY; INTENSITY; INVITRO AB The responses to two identical, consecutive pure tone stimuli with varying inter-stimulus intervals (Delta ts) were measured for 89 neurons in the cochlear nucleus of the anaesthetised guinea pig. We observed two main effects; either a decrease (suppression) or an increase (facilitation) in response to the second tone followed by an exponential recovery. Response behaviour correlated with the unit type; primary-like, primary-like with notch and transient-chopper units showed a recovery from suppression that was very similar to that already reported in the auditory nerve. For chopper units the strength of the adaptation was correlated with the units regularity of spike discharge; sustained chopper (CS) units showed less suppression than transient choppers. Onset units showed complete suppression at short Delta ts. Pause/Build (PB) units responded with increased activity to the second tone. In contrast to previous studies in the cochlear nucleus the recovery from suppression or facilitation was well described by a single exponential function, enabling us to define a recovery time constant and a maximum suppression/facilitation. There appeared to be a hierarchy in the time constant of recovery with PB and CS units showing the longest recovery times and onset units showing the shortest. (c) 2006 Elsevier B.V. All rights reserved. C1 Physiol Lab, Ctr Neural Basis Hearing, Cambridge CB2 3EG, England. Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. RP Winter, IM (reprint author), Physiol Lab, Ctr Neural Basis Hearing, Downing St, Cambridge CB2 3EG, England. EM imw1001@cam.ac.uk RI Bleeck, Stefan/A-1178-2013 CR Adrian E., 1928, BASIS SENSATION BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BOETTCHER FA, 1990, HEARING RES, V48, P125, DOI 10.1016/0378-5955(90)90203-2 BROWN MC, 2002, J NEUROPHYSIOL, V86, P2381 DELGUTTE B, 1980, J ACOUST SOC AM, V68, P843, DOI 10.1121/1.384824 De Venecia RK, 2005, J COMP NEUROL, V487, P345, DOI 10.1002/cne.20550 EGGERMONT JJ, 1985, HEARING RES, V18, P57, DOI 10.1016/0378-5955(85)90110-8 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T LLOYD MEA, 2002, INT J AUDIOL, V41, P263 MANDAVA P, 1995, HEARING RES, V87, P114, DOI 10.1016/0378-5955(95)00084-H MANIS PB, 1989, J NEUROPHYSIOL, V61, P149 MANIS PB, 1990, J NEUROSCI, V10, P2338 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X PARHAM K, 1993, J ACOUST SOC AM, V94, P3227, DOI 10.1121/1.407228 RELKIN EM, 1988, J ACOUST SOC AM, V84, P584, DOI 10.1121/1.396836 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SHORE SE, 1995, HEARING RES, V82, P31 Shore SE, 1998, J ACOUST SOC AM, V104, P378, DOI 10.1121/1.423294 SMITH RL, 1983, ANN NY ACAD SCI, V405, P79, DOI 10.1111/j.1749-6632.1983.tb31621.x WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E WINTER IM, 1995, J NEUROPHYSIOL, V73, P141 YOUNG ED, 1988, J NEUROPHYSIOL, V60, P1 NR 25 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 176 EP 184 DI 10.1016/j.heares.2005.12.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000017 PM 16458460 ER PT J AU Sininger, YS Cone-Wesson, B AF Sininger, YS Cone-Wesson, B TI Lateral asymmetry in the ABR of neonates: Evidence and mechanisms SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; neonates; ear asymmetry; medial olivocochlear system ID BRAIN-STEM RESPONSE; SPONTANEOUS OTOACOUSTIC EMISSIONS; MEDIAL OLIVOCOCHLEAR SYSTEM; AUDITORY EVOKED-POTENTIALS; HEARING IMPAIRMENT; GENDER DIFFERENCES; SEX-DIFFERENCES; STIMULUS RATE; INFANTS; MASKING AB Lateralized processing of auditory stimuli occurs at the level of the auditory cortex but differences in function between the left and right sides are not clear at lower levels of the auditory system. The current Study is designed to (1) investigate asymmetric auditory function at the ear and brainstem in human infants and (2) investigate possible mechanisms for asymmetry at these levels. Study I evaluated auditory brainstem responses (ABRs) in response to high and low-level clicks presented to the right and left ears of neonates. Wave V was significantly larger in amplitude and waves III and V were shorter in latency when the ABR was generated in the right ear. Study 2 investigated two possible mechanisms of such asymmetry by (a) using contralateral white noise masking to activate the medial olivocochlear system and (b) increasing stimulus rate to reveal neural conduction and synaptic mechanisms. ABR wave V, evoked by clicks to the left ear, showed a greater reduction in amplitude with contralateral noise than the response evoked from the right ear. No systematic asymmetries in ABR latencies or amplitudes were found with increased stimulus rate. We conclude that (1) the click-evoked ABR in neonates demonstrates asymmetric auditory function with a small but significant right ear advantage and (2) asymmetric activation of the medial olivocochlear system, specifically greater contralateral suppression of ABR produced by the left ear, is a possible mechanism for asymmetry. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Ctr Hlth Sci 62132, Los Angeles, CA 90095 USA. Univ Arizona, Dept Speech Language & Hearing Sci, Tucson, AZ 85721 USA. RP Sininger, YS (reprint author), Univ Calif Los Angeles, David Geffen Sch Med, Div Head & Neck Surg, Ctr Hlth Sci 62132, Box 951624, Los Angeles, CA 90095 USA. EM ysininger@mednet.ucla.edu CR Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BOEZEMAN EHJF, 1983, ELECTROEN CLIN NEURO, V55, P710, DOI 10.1016/0013-4694(83)90281-X Burkard R, 1996, J ACOUST SOC AM, V100, P978, DOI 10.1121/1.416209 BURNS EM, 1991, PREVALENCE SPONTANEO, P66 CHIAPPA KH, 1979, ARCH NEUROL-CHICAGO, V36, P81 DON M, 1984, SCAND AUDIOL, V13, P219, DOI 10.3109/01050398409042130 DON M, 1993, J ACOUST SOC AM, V94, P2135, DOI 10.1121/1.407485 DONALDSON GS, 1990, ELECTROEN CLIN NEURO, V77, P458, DOI 10.1016/0168-5597(90)90006-Y Driscoll Carlie, 2002, J Am Acad Audiol, V13, P403 Eldredge L, 1996, EARLY HUM DEV, V45, P215, DOI 10.1016/0378-3782(96)01732-X FOLSOM RC, 1987, ACTA OTO-LARYNGOL, V103, P262, DOI 10.3109/00016488709107792 HATANAKA T, 1990, EAR HEARING, V11, P233, DOI 10.1097/00003446-199006000-00011 HUMES LE, 1982, J SPEECH HEAR RES, V25, P528 Ismail H, 2003, HEARING RES, V179, P97, DOI 10.1016/S0378-5955(03)00099-6 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KIMURA D, 1969, CAN J PSYCHOLOGY, V23, P445, DOI 10.1037/h0082830 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M Lasky RE, 1997, HEARING RES, V111, P165, DOI 10.1016/S0378-5955(97)00106-8 LEVINE RA, 1983, ELECTROEN CLIN NEURO, V55, P532, DOI 10.1016/0013-4694(83)90163-3 MCGLONE J, 1980, BEHAV BRAIN SCI, V3, P215 Moore Jean K, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P7 Moore JK, 1999, AUDIOL NEURO-OTOL, V4, P311, DOI 10.1159/000013855 Morlet T, 1999, HEARING RES, V134, P153, DOI 10.1016/S0378-5955(99)00078-7 Newmark M., 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P133 Norton SJ, 2000, EAR HEARING, V21, P348, DOI 10.1097/00003446-200010000-00003 OWEN GA, 1991, J ACOUST SOC AM, V89, P1760, DOI 10.1121/1.401010 Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 Reid A, 1983, Br J Audiol, V17, P155, DOI 10.3109/03005368309107880 ROSENHAMER H, 1983, SCAND AUDIOL, V12, P11, DOI 10.3109/01050398309076219 Sininger YS, 2004, SCIENCE, V305, P1581, DOI 10.1126/science.1100646 Sininger YS, 2000, EAR HEARING, V21, P383, DOI 10.1097/00003446-200010000-00006 SININGER YS, 1996, MIDW M ASS RES OT ST Sininger YS, 1998, HEARING RES, V126, P58, DOI 10.1016/S0378-5955(98)00152-X Sininger YS, 1997, HEARING RES, V104, P27, DOI 10.1016/S0378-5955(96)00178-5 SMITH DI, 1987, HEARING RES, V27, P157, DOI 10.1016/0378-5955(87)90016-5 SOLI S, 1994, HEARING INSTRUMENTS, V45, P12 STOCKARD JE, 1983, EAR HEARING, V4, P11, DOI 10.1097/00003446-198301000-00005 Thornton ARD, 2003, HEARING RES, V184, P123, DOI 10.1016/S0378-5955(03)00234-X Vohr BR, 2000, EAR HEARING, V21, P373, DOI 10.1097/00003446-200010000-00005 Zatorre RJ, 2001, ANN NY ACAD SCI, V930, P193 NR 41 TC 25 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 203 EP 211 DI 10.1016/j.heares.2005.12.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000019 PM 16439078 ER PT J AU Kurt, S Crook, JM Ohl, FW Scheich, H Schulze, H AF Kurt, S Crook, JM Ohl, FW Scheich, H Schulze, H TI Differential effects of iontophoretic in vivo application of the GABA(A)-antagonists bicuculline and gabazine in sensory cortex SO HEARING RESEARCH LA English DT Article DE primary auditory cortex; spectral tuning; temporal processing; intracortical inhibition; SR95531 ID PRIMARY AUDITORY-CORTEX; CAT VISUAL-CORTEX; FUNCTIONALLY CHARACTERIZED SITES; GERBIL MERIONES-UNGUICULATUS; RECEPTIVE-FIELDS; DIRECTION SELECTIVITY; RESPONSE PROPERTIES; MONGOLIAN GERBIL; COMPETITIVE ANTAGONIST; INHIBITORY MECHANISMS AB We have compared the effects of microiontophoretic application of the GABA(A)-receptor antagonists bicuculline (BIC) and gabazine (SR95531) on responses to pure tones and to sinusoidally amplitude-modulated (AM) tones in cells recorded extracellularly from primary auditory cortex (AI) of Mongolian gerbils. Besides similar effects in increasing spontaneous and stimulus-evoked activity and their duration, both drugs elicited differential effects on spectral tuning and synchronized responses to AM tones. In contrast to gabazine, iontophoresis of the less potent GABA(A)-antagonist BIC often resulted in substantial broadening of frequency tuning for pure tones and an elimination of synchronized responses to AM tones, particularly with high ejecting currents. BIC-induced effects which could not be replicated by application of gabazine were presumably due to the well-documented, non-GABAergic side-effects of BIC on calcium-dependent potassium channels. Our results thus provide strong evidence that GABA(A)-mediated inhibition in AI does not sharpen frequency tuning for pure tones, but rather contributes to the processing of fast temporal modulations of sound envelopes. They also demonstrate that BIC can have effects on neuronal response selectivity which are not due to blockade of GABAergic inhibition. The results have profound implications for microiontophoretic studies of the role of intracortical inhibition in sensory cortex. (c) 2006 Elsevier B.V. All rights reserved. C1 Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. Univ Newcastle Upon Tyne, Div Psychol, Sch Biol & Psychol, Newcastle Upon Tyne NE2 4HH, Tyne & Wear, England. RP Schulze, H (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. EM Holger.Schulze@IfN-Magdeburg.de RI Kurt, Simone/I-2927-2012 CR ALBUS K, 1988, EUR J NEUROSCI S1, V1, P355 Bormann J, 2000, TRENDS PHARMACOL SCI, V21, P16, DOI 10.1016/S0165-6147(99)01413-3 BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7 BOWERY NG, 1983, GABA RECEPTORS, P177 BOX GEP, 1954, ANN MATH STAT, V25, P290, DOI 10.1214/aoms/1177728786 CHAMBON JP, 1985, P NATL ACAD SCI USA, V82, P1832, DOI 10.1073/pnas.82.6.1832 Chebib M, 1999, CLIN EXP PHARMACOL P, V26, P937, DOI 10.1046/j.1440-1681.1999.03151.x CROOK JM, 1992, J NEUROSCI, V12, P1816 CROOK JM, 2002, VIRTUAL LESIONS EXAM, P3 Crook JM, 1998, EUR J NEUROSCI, V10, P2056, DOI 10.1046/j.1460-9568.1998.00218.x CURTIS DR, 1974, ERG PHYSIOL BIOL CH, V69, P97 DYKES RW, 1984, J NEUROPHYSIOL, V52, P1066 Egebjerg J, 2002, GLUTAMATE GABA RECEP Eysel UT, 1998, NEUROSCIENCE, V84, P25, DOI 10.1016/S0306-4522(97)00378-3 Ferster David, 1994, Current Opinion in Neurobiology, V4, P563, DOI 10.1016/0959-4388(94)90058-2 Foeller E, 2001, JARO, V2, P279 GOOD P., 2000, PERMUTATION TESTS PR Grothe B, 2000, CURR OPIN NEUROBIOL, V10, P467, DOI 10.1016/S0959-4388(00)00115-X Grothe B, 2000, PROG NEUROBIOL, V61, P581, DOI 10.1016/S0301-0082(99)00068-4 HAMANN M, 1988, BRAIN RES, V442, P287, DOI 10.1016/0006-8993(88)91514-4 HEAULME M, 1986, BRAIN RES, V384, P224, DOI 10.1016/0006-8993(86)91158-3 Heil P, 2004, CURR OPIN NEUROBIOL, V14, P461, DOI 10.1016/j.conb.2004.07.002 Hevers W, 1998, MOL NEUROBIOL, V18, P35, DOI 10.1007/BF02741459 HEYER EJ, 1981, NEUROLOGY, V31, P1381 HICKS TP, 1984, PROG NEUROBIOL, V22, P185 HUBEL DH, 1962, J PHYSIOL-LONDON, V160, P106 Johansson S, 2001, J PHYSIOL-LONDON, V532, P625, DOI 10.1111/j.1469-7793.2001.0625e.x Johnson SW, 1997, NEUROSCI LETT, V231, P13, DOI 10.1016/S0304-3940(97)00508-9 KRNJEVIC K, 1984, CEREB CORTEX, V2, P39 KURT S, 2005, ASS RES OT ABSTR, P345 KURT S, 2004, SOC NEUR ABSTR Li Xing Fang, 1996, Synapse (New York), V24, P115, DOI 10.1002/(SICI)1098-2396(199610)24:2<115::AID-SYN3>3.0.CO;2-I Mardia K. V., 1972, STAT DIRECTIONAL DAT Metherate R, 2005, HEARING RES, V206, P146, DOI 10.1016/j.heares.2005.01.014 METHERATE R, 1998, FRONT BIOSCI, V3, P494 MICHAUD JC, 1986, NEUROPHARMACOLOGY, V25, P1197, DOI 10.1016/0028-3908(86)90136-X MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673 Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079 OLSEN RW, 1976, BRAIN RES, V102, P283, DOI 10.1016/0006-8993(76)90883-0 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 Richter K, 1999, BRAIN RES, V831, P184, DOI 10.1016/S0006-8993(99)01440-7 SATO H, 1995, J NEUROPHYSIOL, V74, P1382 Schulze H, 1997, J COMP PHYSIOL A, V181, P573, DOI 10.1007/s003590050141 Schulze H, 1997, J COMP PHYSIOL A, V181, P651, DOI 10.1007/s003590050147 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 Schulze H, 2002, ACTA ACUST UNITED AC, V88, P399 SILLITO AM, 1975, J PHYSIOL-LONDON, V250, P305 Sillito A. M., 1984, CEREB CORTEX, P91 SILLITO AM, 1975, J PHYSIOL-LONDON, V250, P287 Thiele A, 2004, P NATL ACAD SCI USA, V101, P9810, DOI 10.1073/pnas.0307754101 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x VIDYASAGAR TR, 1986, NEUROSCIENCE, V17, P49, DOI 10.1016/0306-4522(86)90224-1 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 NR 58 TC 35 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 224 EP 235 DI 10.1016/j.heares.2005.12.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000021 PM 16442250 ER PT J AU Hahn, H Kammerer, B DiMauro, A Salt, AN Plontke, SK AF Hahn, H Kammerer, B DiMauro, A Salt, AN Plontke, SK TI Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration SO HEARING RESEARCH LA English DT Article DE round window membrane; permeability; pharmacokinetics; inner ear; microdialysis; perilymph; drug delivery; dexamethasone; steroid ID SENSORINEURAL HEARING-LOSS; GUINEA-PIG COCHLEA; INNER-EAR; INTRATYMPANIC DEXAMETHASONE; MENIERES-DISEASE; DRUG-DELIVERY; PHARMACOKINETICS; MEMBRANE; GENTAMICIN; PERILYMPH AB Before new drugs for the treatment of inner car disorders can be studied in controlled clinical trials, it is important that their pharmacokinetics be established in inner ear fluids. Microdialysis allows drug levels to be measured in perilymph without the volume disturbances and potential cerebrospinal fluid contamination associated with fluid sampling. The aims of this study were to show: (i) that despite low recovery rates from miniature dialysis probes, significant amounts of drug are removed from small fluid compartments, (ii) that dialysis sampling artifacts can be accounted for using computer simulations and (iii) that microdialysis allows quantification of the entry rates through the round window membrane (RWM) into scala tympani (ST). Initial experiments used microdialysis probes in small compartments in vitro containing sodium fluorescein. Stable concentrations were observed in large compartments (1000 mu l) but significant concentration declines were observed in smaller compartments (100, 10 and 5.6 mu l) comparable to the size of the inner ear. Computer simulations of these experiments closely approximated the experimental data. In in vivo experiments, sodium fluorescein 10 mg/ml and dexamethasone-dihydrogen-phosphate disodium salt 8 mg/ml were simultaneously applied to the RWM of guinea pigs. Perilymph concentration in the basal turn of ST was monitored using microdialysis. The fluorescein concentration reached after 200 min application (585 +/- 527 mu g/ml) was approximately twice that of dexamethasone phosphate (291 +/- 369 mu g/ml). Substantial variation in concentrations was found between animals by approximately a factor of 34 for fluorescein and at least 41 for dexamethasone phosphate. This is, to a large extent, thought to be the result of the RWM permeability varying in different animals. It was not caused by substance analysis variations, because two different analytic methods were used and the concentration ratio between the two substances remained nearly constant across the experiments and because differences were apparent for the repeated samples obtained in each animal. Interpretation of the results using computer simulations allowed RWM permeability to be quantified. It also demonstrated, however, that cochlear clearance values could not be reliably obtained with microdialysis because of the significant contribution of dialysis to clearance. The observed interanimal variation, e.g., in RWM permeability, is likely to be clinically relevant to the local application of drugs in patients. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tubingen, Dept Otorhinolaryngol Head & Neck Surg, Tubingen Hearing Res Ctr, D-72076 Tubingen, Germany. Univ Tubingen, Div Clin Pharmacol, Inst Pharmacol & Toxicol, D-72076 Tubingen, Germany. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Plontke, SK (reprint author), Univ Tubingen, Dept Otorhinolaryngol Head & Neck Surg, Tubingen Hearing Res Ctr, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM Stefan.Plontke@uni-tuebingen.de CR Bachmann G, 2001, HNO, V49, P538, DOI 10.1007/s001060170078 Cesarani Antonio, 2002, Int Tinnitus J, V8, P111 Chandrasekhar SS, 2000, OTOLARYNG HEAD NECK, V122, P521, DOI 10.1016/S0194-5998(00)70094-5 Chandrasekhar SS, 2001, OTOL NEUROTOL, V22, P18, DOI 10.1097/00129492-200101000-00005 Chelikh L, 2003, ACTA OTO-LARYNGOL, V123, P199, DOI 10.1080/00016480310001042 Chen ZQ, 2003, ACTA OTO-LARYNGOL, V123, P905, DOI 10.1080/00016480310000638 Chen ZQ, 2003, AUDIOL NEURO-OTOL, V8, P49, DOI 10.1159/000067893 COLES RRA, 1992, CLIN OTOLARYNGOL, V17, P240, DOI 10.1111/j.1365-2273.1992.tb01835.x de Lange ECM, 2000, ADV DRUG DELIVER REV, V45, P125, DOI 10.1016/S0169-409X(00)00107-1 Elmquist WF, 1997, PHARMACEUT RES, V14, P267, DOI 10.1023/A:1012081501464 Gianoli GJ, 2001, OTOLARYNG HEAD NECK, V125, P142, DOI 10.1067/mhn.2001.117162 Gouveris H, 2005, EUR ARCH OTO-RHINO-L, V262, P131, DOI 10.1007/s00405-004-0772-6 Goycoolea MV, 2001, ACTA OTO-LARYNGOL, V121, P437, DOI 10.1080/000164801300366552 Hibi T, 2001, ACTA OTO-LARYNGOL, V121, P336, DOI 10.1080/000164801300102699 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Ho Ho Guan-Min, 2004, Laryngoscope, V114, P1184 Hoffer ME, 2001, LARYNGOSCOPE, V111, P1343, DOI 10.1097/00005537-200108000-00007 Hoya N, 2001, NEUROSCI LETT, V311, P206, DOI 10.1016/S0304-3940(01)02165-6 Hunter BA, 2003, ACTA OTO-LARYNGOL, V123, P453, DOI 10.1080/00016480310000467 Itoh A, 1991, Acta Otolaryngol Suppl, V481, P617 Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007 Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011 Kroin JS, 2000, NEUROSURGERY, V46, P178 Lautermann J, 2005, EUR ARCH OTO-RHINO-L, V262, P587, DOI 10.1007/s00405-004-0876-z Lefebvre PP, 2002, ACTA OTO-LARYNGOL, V122, P698, DOI 10.1080/003655402/000028037 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 Matsuda K, 1998, BRAIN RES, V794, P343, DOI 10.1016/S0006-8993(98)00330-8 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 Plock N, 2005, EUR J PHARM SCI, V25, P1, DOI 10.1016/j.ejps.2005.01.017 Plontke S, 2005, ACTA OTO-LARYNGOL, V125, P830, DOI 10.1080/00016480510037898 Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 Sakata E, 1997, INT TINNITUS J, V3, P117 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 Salt AN, 2005, DRUG DISCOV TODAY, V10, P1299, DOI 10.1016/S1359-6446(05)03574-9 SALT AN, 2003, HEARING RES, V182, P23 Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 SCHEIBE F, 1984, ARCH OTO-RHINO-LARYN, V240, P43, DOI 10.1007/BF00464343 Sennaroglu L, 2001, OTOLARYNG HEAD NECK, V125, P537, DOI 10.1067/mhn2001.119485 Shea JJ, 1996, OTOLARYNG CLIN N AM, V29, P353 Shulman A, 2000, Int Tinnitus J, V6, P10 Silverstein H, 1998, AM J OTOL, V19, P196 Silverstein H, 1996, Ear Nose Throat J, V75, P468 TRUNE DR, 2006, IN PRESS MED OTOLOGY UNGERSTEDT U, 1991, J INTERN MED, V230, P365 NR 45 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 236 EP 244 DI 10.1016/j.heares.2005.12.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000022 PM 16442251 ER PT J AU Macias, S Mora, EC Coro, F Kossl, M AF Macias, S Mora, EC Coro, F Kossl, M TI Threshold minima and maxima in the behavioral audiograms of the bats Artibeus jamaicensis and Eptesicus fuscus are not produced by cochlear mechanics SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emission; FM bats; pinna; cochlear mechanics ID LEAF-NOSED BATS; DISTORTION-PRODUCT; CAROLLIA-PERSPICILLATA; PHYLLOSTOMUS-DISCOLOR; OTOACOUSTIC EMISSIONS; HEARING; ECHOLOCATION; SENSITIVITY; ADAPTATIONS; EARS AB Behavioral audiograins of Artibeus jamaicensis and Eptesicus fuscus are characterized by two threshold minima separated by a threshold maximum at 40 kHz, for A. jamaicensis, and 45 kHz, for E fuscus [Koay, G., Heffner, H.E., Heffner R.S., 1997. Audiogram of the big brown bat (Eptesicus fuscus). Hear. Res. 105, 202-210; Heffner, R.S., Koay, G., Heffner H.E., 2003. Hearing in American leaf-nosed bats. III: Artibeus jamaicensis. Hear. Res. 184, 113-122.]. To investigate whether these characteristics are due to cochlear properties, we recorded distortion product otoacooustic emissions (DPOAEs) and calculated DPOAE threshold curves. We found that in both species cochlear sensitivity, assessed by DPOAE recordings, does not show local threshold maxima. The DPOAE threshold curve calculated for A. jamaicensis reveals a broadly tuned minimum for frequencies between 20 and 50 kHz and the threshold curve of E fuscus shows a broad sensitive area for frequencies between 15 and 60 kHz. In none of the two species any pronounced threshold irregularities were found. The characteristic pattern of a threshold maximum followed by a minimum observed in behavioral studies seems to be shaped by transfer characteristics of the outer ear and/or neuronal processing in the ascending auditory pathway rather than by cochlear mechanics. (c) 2006 Elsevier B.V. All rights reserved. C1 Univ Havana, Dept Anim & Human Biol, Fac Biol, Havana 10400, Cuba. Univ Havana, Dept Basic Format, Fac Psychol, Havana 10600, Cuba. Univ Frankfurt, Inst Zool, D-60323 Frankfurt, Germany. RP Macias, S (reprint author), Univ Havana, Dept Anim & Human Biol, Fac Biol, Calle 25,455 Entre J&I, Havana 10400, Cuba. EM silvio@fbio.uh.cu CR Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 DALLAND JI, 1965, J AUD RES, V5, P95 Esser KH, 1996, J COMP PHYSIOL A, V178, P779 Faulstich M, 1996, HEARING RES, V94, P47, DOI 10.1016/0378-5955(95)00232-4 Firzlaff Uwe, 2003, Hearing Research, V185, P110, DOI 10.1016/S0378-5955(03)00281-8 Foeller E, 2000, J COMP PHYSIOL A, V186, P859, DOI 10.1007/s003590000139 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GRIFFIN DR, 1958, LISTENING DARK, P229 Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6 Koessl Manfred, 1997, Naturwissenschaften, V84, P9 KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2 Kossl M, 1999, J COMP PHYSIOL A, V185, P217, DOI 10.1007/s003590050381 MANLEY GA, 1993, J ACOUST SOC AM, V93, P2820, DOI 10.1121/1.405803 Mills DM, 2001, JARO-J ASSOC RES OTO, V2, P130, DOI 10.1007/s101620010059 Novick A., 1963, Journal of Mammalogy, V44, P44, DOI 10.2307/1377166 Schnitzler Hans-Ulrich, 1998, P183 Surlykke A, 2000, J ACOUST SOC AM, V108, P2419, DOI 10.1121/1.1315295 Wittekindt A, 2005, J COMP PHYSIOL A, V191, P31, DOI 10.1007/s00359-004-0564-x NR 23 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2006 VL 212 IS 1-2 BP 245 EP 250 DI 10.1016/j.heares.2005.12.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 022LT UT WOS:000236058000023 PM 16434158 ER PT J AU Weaver, KE Stevens, AA AF Weaver, KE Stevens, AA TI Auditory gap detection in the early blind SO HEARING RESEARCH LA English DT Article DE early blindness; auditory temporal discrimination; aging ID EARLY ACQUIRED BLINDNESS; YES-NO PROCEDURE; TEMPORAL GAPS; PSYCHOMETRIC FUNCTIONS; CONGENITALLY BLIND; SIGHTED SUBJECTS; HEARING-LOSS; NOISE; CORTEX; THRESHOLDS AB For blind individuals, audition provides critical information for interacting with the environment. Individuals blinded early in life (EB) typically show enhanced auditory abilities relative to sighted controls as measured by tasks requiring complex discrimination, attention and memory. In contrast, few deficits have been reported on tasks involving auditory sensory thresholds (e.g., Yates, J.T., Johnson, R.M., Starz, W.J., 1972. Loudness perception of the blind. Audiology 11(5), 368-376; Starlinger, I., Niemeyer, W., 1981. Do the blind hear better? Investigations on auditory processing in congenital or early acquired blindness. I. Peripheral functions. Audiology 20(6), 503-509). A study of gap detection stands at odds with this distinction [Muchnik, C., Efrati, M., Nemeth, E., Malin, M., Hildesheimer, M., 1991. Central auditory skills in blind and sighted subjects. Scand. Audiol. 20(1), 19-23]. In the current investigation we re-examined gap detection abilities in the EB using a single-interval, yes/no method. A group of younger sighted control individuals (SCy) was included in the analysis in addition to EB and sighted age matched control individuals (SCm) in order to examine the effect of age on gap detection performance. Estimates of gap detection thresholds for EB subjects were nearly identical to SCm subjects and slightly poorer relative to the SCy subjects. These results suggest some limits on the extent of auditory temporal advantages in the EB. (c) 2005 Elsevier B.V. All rights reserved. C1 Oregon Hlth & Sci Univ, Dept Behav Neurosci, Portland, OR 97239 USA. Oregon Hlth & Sci Univ, Dept Psychiat, Portland, OR 97239 USA. RP Stevens, AA (reprint author), Oregon Hlth & Sci Univ, Dept Behav Neurosci, 3181 SW Sam Jackson Pk Rd,CR139, Portland, OR 97239 USA. EM stevenal@ohsu.edu CR Amedi A, 2003, NAT NEUROSCI, V6, P758, DOI 10.1038/nn1072 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848 Buus S., 2002, GENETICS FUNCTION AU, P183 Buus S, 1985, TIME RESOLUTION AUDI, P159 FITZGIBBONS PJ, 1983, J ACOUST SOC AM, V74, P67, DOI 10.1121/1.389619 Florentine M, 2001, J Am Acad Audiol, V12, P113 Florentine M, 1999, J ACOUST SOC AM, V106, P3512, DOI 10.1121/1.428204 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 GOU Y, 2002, HEARING RES, V171, P158 Green DM, 1985, TIME RESOLUTION AUDI, P122 GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696 GREEN DM, 1989, J ACOUST SOC AM, V86, P961, DOI 10.1121/1.398731 GU X, 1994, J ACOUST SOC AM, V96, P93, DOI 10.1121/1.410378 He NJ, 1999, J ACOUST SOC AM, V106, P966, DOI 10.1121/1.427109 Heinrich A, 2004, NEUROREPORT, V15, P2051, DOI 10.1097/00001756-200409150-00011 Hugdahl K, 2004, COGNITIVE BRAIN RES, V19, P28, DOI 10.1016/j.cogbrainres.2003.10.015 IRWIN RJ, 1982, J ACOUST SOC AM, V71, P967, DOI 10.1121/1.387578 Kelly JB, 1996, BEHAV NEUROSCI, V110, P542 Kujala T, 1997, ACTA PSYCHOL, V96, P75, DOI 10.1016/S0001-6918(97)00007-3 Lessard N, 1998, NATURE, V395, P278 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 MUCHNIK C, 1985, Journal of Auditory Research, V25, P239 MUCHNIK C, 1991, SCAND AUDIOL, V20, P19, DOI 10.3109/01050399109070785 Neville HJ, 2001, CARN S COGN, P271 NIEMEYER W, 1981, AUDIOLOGY, V20, P510 Phillips DP, 1997, J ACOUST SOC AM, V101, P3694, DOI 10.1121/1.419376 Phillips D P, 1999, J Am Acad Audiol, V10, P343 PLOMP R, 1964, J ACOUST SOC AM, V36, P277, DOI 10.1121/1.1918946 RAUSCHECKER JP, 1995, TRENDS NEUROSCI, V18, P36, DOI 10.1016/0166-2236(95)93948-W Roberts RA, 2004, J SPEECH LANG HEAR R, V47, P965, DOI 10.1044/1092-4388(2004/071) Roder B, 2003, INT J PSYCHOPHYSIOL, V50, P27, DOI 10.1016/S0167-8760(03)00122-3 Roder B, 1999, NEUROSCI LETT, V264, P53, DOI 10.1016/S0304-3940(99)00182-2 Snell KB, 1997, J ACOUST SOC AM, V101, P2214, DOI 10.1121/1.418205 STARLINGER I, 1981, AUDIOLOGY, V20, P503 STEVENS AA, IN PRESS NEUROPSYCHO Werner LA, 2001, J SPEECH LANG HEAR R, V44, P737, DOI 10.1044/1092-4388(2001/058) YATES JT, 1972, AUDIOLOGY, V11, P368 ZHANG W, 1990, HEARING RES, V46, P181, DOI 10.1016/0378-5955(90)90001-6 NR 40 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 1 EP 6 DI 10.1016/j.heares.2005.08.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500001 PM 16256283 ER PT J AU Sellick, PM Robertson, D Patuzzi, R AF Sellick, PM Robertson, D Patuzzi, R TI The effect of BAPTA and 4AP in scala media on transduction and cochlear gain SO HEARING RESEARCH LA English DT Article DE cochlear amplifier; 4-amino-pyridine; BAPTA ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; MECHANICAL TRANSDUCTION; NEGATIVE FEEDBACK; MAMMALIAN COCHLEA; NERVE; CHANNELS; MODEL; 4-AMINOPYRIDINE; POTENTIALS AB We have injected by iontophoresis 4-amino-pyridine, a K+ channel blocker and BAPTA, (a Ca++ chelator), into scala media of the first three turns of the guinea pig cochlea. We measured the reduction in outer hair cell (OHC) receptor current, as indicated by cochlear microphonic measured in scala media evoked by a 207 Hz tone, and compared this with the elevation of the cochlear action potential (CAP) threshold. We found that in the basal turn, for frequencies between 12 and 21 kHz, CAP threshold was elevated by about 30 dB, while in the second turn, at the 3 kHz place, the maximum elevation was 15 dB. In the third turn, iontophoresis of 4AP and BAPTA reduced CM by similar amounts to that in the basal and second turn, but caused negligible elevation of CAP threshold. We conclude that the gain of the cochlear amplifier is maximal for basal turn frequencies, is halved at 3 kHz, and is reduced to close to one for frequencies below I kHz (no active gain). The effect of 4AP and BAPTA on neural threshold and the receptor current represented by CM may be explained by their action on OHC transduction without the involvement of IHCs. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Nedlands, WA 6009, Australia. RP Sellick, PM (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Discipline Physiol, Auditory Lab, Nedlands, WA 6009, Australia. EM psellick@cyllene.uwa.edu.au CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BROWNELL WE, 1984, SCANNING ELECTRON MI, V3, P1401 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X DALLOS P, 1985, J NEUROSCI, V5, P1591 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263 Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 Khanna SM, 2004, HEARING RES, V194, P97, DOI 10.1016/j.heares.2004.04.003 Kirk DL, 1998, AUDIOL NEURO-OTOL, V3, P21, DOI 10.1159/000013776 KIRSCH GE, 1993, J GEN PHYSIOL, V102, P797, DOI 10.1085/jgp.102.5.797 Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x Meyer J, 1998, J NEUROSCI, V18, P6748 NEELY ST, 1983, HEARING RES, V9, P123, DOI 10.1016/0378-5955(83)90022-9 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PICKLES JO, 1991, HEARING RES, V54, P153, DOI 10.1016/0378-5955(91)90116-Q RHODE WS, 1978, J ACOUST SOC AM, V64, P158, DOI 10.1121/1.381981 Robles L, 2001, PHYSIOL REV, V81, P1305 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 Schmiedt RA, 2002, J NEUROSCI, V22, P9643 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 STRELIOF.D, 1973, J ACOUST SOC AM, V54, P620, DOI 10.1121/1.1913642 Sumner CJ, 2003, J ACOUST SOC AM, V113, P3264, DOI 10.1121/1.1568946 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5 NR 29 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 7 EP 15 DI 10.1016/j.heares.2005.05.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500002 PM 16343830 ER PT J AU Hu, BH Henderson, D Nicotera, TM AF Hu, BH Henderson, D Nicotera, TM TI Extremely rapid induction of outer hair cell apoptosis in the chinchilla cochlea following exposure to impulse noise SO HEARING RESEARCH LA English DT Article DE apoptosis; cochlea; necrosis; impulse noise; outer hair cell; chinchilla ID GUINEA-PIG COCHLEA; NEURONAL APOPTOSIS; INTENSE NOISE; BRAIN-INJURY; HEARING-LOSS; CNS INJURY; DEATH; NECROSIS; MECHANISMS; GLUTAMATE AB We have reported the presence of OHC apoptosis and necrosis in the organ of Corti following exposure to intense noise. The current study was designed to investigate the rapidity and the initial pattern of outer hair cell (OHC) death induced by exposure to impulse noise. Chinchillas were exposed to 75 pairs of impulse noise at 155 dB peak sound pressure level presented over a time period of 75 s. At 5 or 30 min after the noise exposure, the cochleae were examined for morphological and biological indicators of apoptosis and necrosis. In the cochleae collected within 5 min after the 75-s noise exposure, there were clear signs of nuclear condensation and cell body shrinkage, suggesting the presence of OHC apoptosis. Apoptotic OHCs were further detected by positive staining of TUNEL and caspase-3 assays. In contrast to the rapid development of nuclear condensation, appearance of nuclear swelling, a necrotic phenotype, appeared at 30 min after the noise exposure. The results of the study demonstrate that induction of OHC apoptosis after the noise exposure is an extremely rapid process. (c) 2005 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Roswell Pk Canc Inst, Dept Mol & Cellular Biophys, Buffalo, NY 14263 USA. RP Hu, BH (reprint author), SUNY Buffalo, Dept Communicat Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM bhu@acsu.buffalo.edu; donaldhe@acsu.buffalo.edu; thomas.nicotera@roswellpark.org CR Ankarcrona M, 1998, PROG BRAIN RES, V116, P265, DOI 10.1016/S0079-6123(08)60442-2 Bittigau P, 2003, NEUROTOX RES, V5, P475 Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 DIETRICH WD, 1994, J NEUROTRAUM, V11, P289, DOI 10.1089/neu.1994.11.289 Dihne M, 2001, BRAIN RES, V902, P178, DOI 10.1016/S0006-8993(01)02378-2 Eguchi Y, 1997, CANCER RES, V57, P1835 FRISCH SM, 1994, J CELL BIOL, V124, P619, DOI 10.1083/jcb.124.4.619 Frisch SM, 2001, CURR OPIN CELL BIOL, V13, P555, DOI 10.1016/S0955-0674(00)00251-9 Frisch SM, 2000, METHOD ENZYMOL, V322, P472 Fruttiger M, 2002, INVEST OPHTH VIS SCI, V43, P522 Galan A, 2001, EUR J CELL BIOL, V80, P312, DOI 10.1078/0171-9335-00159 GORDON GB, 1963, EXP CELL RES, V31, P440, DOI 10.1016/0014-4827(63)90024-7 Gottlieb RA, 1999, ANN NY ACAD SCI, V874, P412, DOI 10.1111/j.1749-6632.1999.tb09255.x Grossmann J, 2002, APOPTOSIS, V7, P247, DOI 10.1023/A:1015312119693 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 Hausmann R, 2004, INT J LEGAL MED, V118, P32, DOI 10.1007/s00414-003-0413-4 Heatwole V M, 1999, Methods Mol Biol, V115, P141 HENDERSON D, 1986, J ACOUST SOC AM, V80, P569, DOI 10.1121/1.394052 HENSELMAN LW, 1994, HEARING RES, V78, P1, DOI 10.1016/0378-5955(94)90038-8 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Kaygusuz I, 2001, HEARING RES, V162, P43, DOI 10.1016/S0378-5955(01)00365-3 Keane RW, 2001, J CEREBR BLOOD F MET, V21, P1189 Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479 MAJNO G, 1995, AM J PATHOL, V146, P3 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 Nakazawa K, 2001, HEARING RES, V151, P133, DOI 10.1016/S0378-5955(00)00220-3 Nicotera Pierluigi, 1998, Toxicology Letters (Shannon), V102-103, P139, DOI 10.1016/S0378-4274(98)00298-7 Nicotera T., 2001, NOISE INDUCED HEARIN, P99 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Niu XZ, 2003, NEUROREPORT, V14, P1025, DOI 10.1097/01.wnr.0000070830.57864.32 Nuttall A.L., 1999, NOISE HEALTH, V2, P17 Pack AK, 1995, HEARING RES, V91, P119 Pohl D, 1999, P NATL ACAD SCI USA, V96, P2508, DOI 10.1073/pnas.96.5.2508 Porter AG, 1999, CELL DEATH DIFFER, V6, P99, DOI 10.1038/sj.cdd.4400476 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Simon HU, 2000, APOPTOSIS, V5, P415, DOI 10.1023/A:1009616228304 SPOENDLIN H, 1985, J OTOLARYNGOL, V14, P282 SUTTON RL, 1993, J NEUROTRAUM, V10, P135, DOI 10.1089/neu.1993.10.135 Wang J, 2002, NEUROSCIENCE, V111, P635 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ylikoski J, 2002, HEARING RES, V166, P33, DOI 10.1016/S0378-5955(01)00388-4 Zipfel GJ, 2000, J NEUROTRAUM, V17, P857, DOI 10.1089/neu.2000.17.857 NR 47 TC 50 Z9 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 16 EP 25 DI 10.1016/j.heares.2005.08.006 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500003 PM 16219436 ER PT J AU Choi, JY Son, EJ Kim, JL Lee, JH Park, HY Kim, SH Song, MH Yoon, JH AF Choi, JY Son, EJ Kim, JL Lee, JH Park, HY Kim, SH Song, MH Yoon, JH TI ENaC- and CFTR-dependent ion and fluid transport in human middle ear epithelial cells SO HEARING RESEARCH LA English DT Article DE ion channel; fluid transport; sodium; chloride ID AIRWAY SURFACE LIQUID; CYSTIC-FIBROSIS; SECRETORY DIFFERENTIATION; NA+ ABSORPTION; CL-SECRETION; CHANNELS; DISEASE; FAMILY; EXPRESSION; CHILDREN AB Ion channels, such as the epithelial sodium channel (ENaC), are essential for maintaining a fluid-free middle ear cavity by controlling periciliary fluid. Deviations from the normal volume or compositions of periciliary fluid are probably responsible for otitis media with effusion. To elucidate the physiologic roles of the ENaC and cystic fibrosis transmembrane conductance regulator (CFTR) in the middle ear mucosa, we compared the electrophysiological activity and protein expressions of ENaC and CFTR in normal human middle ear epithelial (NHMEE) cells with those in normal human nasal epithelial (NHNE) cells. We also evaluated the role of ENaC and CFTR in fluid transport by NHMEE cells. Short-circuit current (I-sc) was measured in cell monolayers by modified Ussing chambers. Immunoblotting was performed for ENaC and CFTR. In addition, transepithelial fluid transport was measured after loading 100 mu l of fluid onto the luminal cell surface. The amiloride-sensitive Isc in NHMEE cells was much larger than in NHNE cells, whereas the forskolin-induced Is, presumably mediated by CFTR, was significantly smaller in NHMEE cells. ENaC subunits alpha, beta, and gamma were all detected in NHMEE cells, and their expressions were stronger than those in NHNE cells. In comparison, CFTR was also detected in the middle ear mucosa, but at a lower expression level than in NHNE cells. NHMEE cells showed more amiloride-sensitive fluid absorption than NHNE cells. In contrast, fluid absorption was less sensitive to forskolin/IBMX in NHMEE cells than in NHNE cells, The ATP induced Cl- efflux and the amplitude of ATP-induced current in NHMEE cells was much larger than in NHNE cells. In the present study, we have demonstrated an enhanced amiloride-sensitive T, and fluid absorption in NHMEE cells, where the role of CFTR is limited. Our data also suggest that the ATP-induced Cl- channel could be an alternative Cl- channel to CFTR in NHMEE cells. (c) 2005 Elsevier B.V. All rights reserved. C1 Yonsei Univ, Coll Med, Dept Otorhinolaryngol, Seoul 120752, South Korea. Yonsei Univ, Coll Med, Airway Mucus Inst, Seoul 120752, South Korea. Gacheon Med Sch, Dept Otorhinolaryngol, Inchon, South Korea. RP Yoon, JH (reprint author), Yonsei Univ, Coll Med, Dept Otorhinolaryngol, 134 Shinchon Dong, Seoul 120752, South Korea. EM jhyoon@yumc.yonsei.ac.kr CR ALBAZZAZ FJ, 1986, CLIN CHEST MED, V7, P259 Bak-Pedersen K, 1979, Acta Otolaryngol Suppl, V360, P138 BOUCHER RC, 1994, AM J RESP CRIT CARE, V150, P271 Bucheimer RE, 2004, J PHYSIOL-LONDON, V555, P311, DOI 10.1113/jphysiol.2003.056697 CANESSA CM, 1994, NATURE, V367, P463, DOI 10.1038/367463a0 Chan LN, 2000, BIOCHEM BIOPH RES CO, V276, P40, DOI 10.1006/bbrc.2000.3426 Choi JY, 2002, ACTA OTO-LARYNGOL, V122, P270, DOI 10.1080/000164802753648141 Fuller CM, 2000, CLIN EXP PHARMACOL P, V27, P906, DOI 10.1046/j.1440-1681.2000.03359.x Fuller CM, 2001, PFLUG ARCH EUR J PHY, V443, pS107, DOI 10.1007/s004240100655 Garty H, 1997, PHYSIOL REV, V77, P359 HADDAD J, 1994, ARCH OTOLARYNGOL, V120, P491 HERMAN P, 1992, AM J PHYSIOL, V262, pF373 Kellenberger S, 2002, PHYSIOL REV, V82, P735, DOI 10.1152/physrev.00007.2002 Kerem E, 1999, NEW ENGL J MED, V341, P156, DOI 10.1056/NEJM199907153410304 Mall M, 2004, NAT MED, V10, P487, DOI 10.1038/nm1028 Mall M, 2003, PEDIATR RES, V53, P608, DOI 10.1203/01.PDR.0000057204.51420.DC Mandell DL, 2003, AM J PHYSIOL-CELL PH, V285, pC618, DOI 10.1152/ajpcell.00553.2002 Matsui H, 1998, CELL, V95, P1005, DOI 10.1016/S0092-8674(00)81724-9 Pilewski Joseph M., 1999, Physiological Reviews, V79, pS215 Portier F, 1999, AM J PHYSIOL-CELL PH, V276, pC312 Portier F, 2005, ACTA OTO-LARYNGOL, V125, P16, DOI 10.1080/00016480410015749 Schultz BD, 1999, PHYSL REV S, V79, P109 Tarran R, 2002, J GEN PHYSIOL, V120, P407, DOI 10.1085/jgp.20028599 TAYLOR B, 1974, ARCH DIS CHILD, V49, P133 TUNGLAND OP, 1990, J LARYNGOL OTOL, V104, P956, DOI 10.1017/S0022215100114471 WIDDICOMBE JH, 1995, RESP PHYSIOL, V99, P3, DOI 10.1016/0034-5687(94)00095-H Yoon JH, 2000, ANN OTO RHINOL LARYN, V109, P594 NR 27 TC 12 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 26 EP 32 DI 10.1016/j.heares.2005.08.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500004 PM 16226002 ER PT J AU Stickney, GS Loizou, PC Mishra, LN Assmann, PF Shannon, RV Opie, JM AF Stickney, GS Loizou, PC Mishra, LN Assmann, PF Shannon, RV Opie, JM TI Effects of electrode design and configuration on channel interactions SO HEARING RESEARCH LA English DT Article DE cochlear implants; channel interaction; speech perception ID ELECTRICALLY STIMULATED COCHLEA; ROTATIONALLY SYMMETRICAL MODEL; SPEECH RECOGNITION; AUDITORY-NERVE; NEURAL EXCITATION; IMPLANTS; PATTERNS; SELECTIVITY; THRESHOLDS; RECORDINGS AB A potential shortcoming of existing multichannel cochlear implants is electrical-field summation during simultaneous electrode stimulation. Electrical-field interactions can disrupt the stimulus waveform prior to neural activation. To test whether speech intelligibility can be degraded by electrical-field interaction, speech recognition performance and interaction were examined for three Clarion electrode arrays: the pre-curved, enhanced bipolar electrode array, the enhanced bipolar electrode with an electrode positioner, and the Hi-Focus electrode with a positioner. Channel interaction was measured by comparing stimulus detection thresholds for a probe signal in the presence of a sub-threshold perturbation signal as a function of the separation between the two simultaneously stimulated electrodes. Correct identification of vowels, consonants, and words in sentences was measured with two speech strategies: one which used simultaneous stimulation and another which used sequential stimulation. Speech recognition scores were correlated with measured electrical-field interaction for the strategy which used simultaneous stimulation but not the strategy which used sequential stimulation. Higher speech recognition scores with the simultaneous strategy were generally associated with lower levels of electrical-field interaction. Electrical-field interaction accounted for as much as 70% of the variance in speech recognition scores, suggesting that electrical-field interaction is a significant contributor to the variability found across patients who use simultaneous strategies. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Texas, Sch Human Dev, Richardson, TX 75083 USA. Univ Texas, Sch Behav & Brain Sci, Richardson, TX 75083 USA. Univ Texas, Dept Elect Engn, Richardson, TX 75083 USA. House Ear Res Inst, Dept Auditory Implants & Percept, Los Angeles, CA 90057 USA. Adv Bion Corp, Sylmar, CA 91342 USA. RP Stickney, GS (reprint author), Univ Calif Irvine, Dept Otolaryngol, 364 Med Surg 2, Irvine, CA 92697 USA. EM stickney@uci.edu CR BATTMER RD, 2000, 6 INT COCHL IMPL C M Boex C, 2003, J ACOUST SOC AM, V114, P2049, DOI 10.1121/1.1610451 Boex C, 1996, AM J OTOL, V17, P61 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 de Balthasar C, 2003, HEARING RES, V182, P77, DOI 10.1016/S0378-5955(03)00174-6 DUNN OJ, 1961, J AM STAT ASSOC, V56, P52, DOI 10.2307/2282330 Eddington D. K., 2001, 2001 C IMPL AUD PROS EDDINGTON D K, 1978, Annals of Otology Rhinology and Laryngology, V87, P5 Eddington D.K., 1994, SPEECH PROCESSORS AU Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HILLENBRAND J, 1995, J ACOUST SOC AM, V97, P3099, DOI 10.1121/1.411872 Kaplan D, 1999, RESAMPLING STATS MAT Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Liang DH, 1999, IEEE T BIO-MED ENG, V46, P35, DOI 10.1109/10.736751 LITHICUM FH, 1991, AM J OTOL, V12, P245 Loizou Philipos C., 2003, Ear and Hearing, V24, P12, DOI 10.1097/01.AUD.0000052900.42380.50 Miller CA, 2003, HEARING RES, V175, P200 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 Osberger MJ, 1999, ANN OTO RHINOL LARYN, V108, P74 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 Pfingst B E, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P127 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 RYAN AF, 1990, HEARING RES, V50, P57, DOI 10.1016/0378-5955(90)90033-L Schindler R. A., 1995, Annals of Otology Rhinology and Laryngology, V104, P269 SHANNON RV, 1983, HEARING RES, V12, P1, DOI 10.1016/0378-5955(83)90115-6 SHANNON RV, 1985, COCHLEAR IMPLANTS, P323 Shannon RV, 1999, J ACOUST SOC AM, V106, pL71, DOI 10.1121/1.428150 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 STUDEBAKER GA, 1985, J SPEECH HEAR RES, V28, P455 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 WHITE MW, 1984, ARCH OTOLARYNGOL, V110, P493 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 WYGONSKI JJ, 2001, 2001 C IMPL AUD PROS Zwolan T, 2001, OTOL NEUROTOL, V22, P844, DOI 10.1097/00129492-200111000-00022 NR 43 TC 33 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 33 EP 45 DI 10.1016/j.heares.2005.08.008 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500005 PM 16338109 ER PT J AU Hong, SH Park, SK Cho, YS Lee, HS Kim, KR Kim, MG Chung, WH AF Hong, SH Park, SK Cho, YS Lee, HS Kim, KR Kim, MG Chung, WH TI Gentamicin induced nitric oxide-related oxidative damages on vestibular afferents in the guinea pig SO HEARING RESEARCH LA English DT Article DE gentamicin; ototoxicity; NOS; peroxynitrite ID LIPOPOLYSACCHARIDE-INDUCED EXPRESSION; SYNTHASE INOS/NOS II; HAIR-CELLS; SENSORY CELLS; AMINOGLYCOSIDE ANTIBIOTICS; IN-VIVO; GLUTAMATE; COCHLEA; DEATH; EXPOSURE AB Gentamicin is a well-known ototoxic aminoglycoside. However, the mechanism underlying this ototoxicity remains unclear. One of the mechanisms which may be responsible for this ototoxicity is excitotoxic damage to hair cells. The overstimulation of the N-methyl-D-aspartate (NMDA) receptors increases the production of nitric oxide (NO), which induces oxidative stress on hair cells. In order to determine the mechanism underlying this excitotoxicity, we treated guinea pigs with gentamicin by placing gentamicin (0.5 mg) pellets into a round window niche. After the sacrifice of the animals, which occurred at 3, 7 and 14 days after the treatment, the numbers of hair cells in the animals were counted with a scanning electron microscope. We then performed immunostaining using neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS) and nitrotyrosine antibodies. The number of hair cells in the animals was found to decrease significantly after 7 days. nNOS and NOS expression levels were observed to have increased 3 days after treatment. Nitrotyrosine was expressed primarily at the calyceal afferents of the type 1 hair cells 3 days after treatment. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) staining revealed positive hair cells 3 days after treatment. Our results suggest that inner ear treatment with gentamicin may upregulate nNOS and iNOS to induce oxidative stress in the calyceal afferents of type I hair cells, via nitric oxide overproduction. (c) 2005 Elsevier B.V. All rights reserved. C1 Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Otolaryngol & Head & Neck Surg, Seoul 135710, South Korea. RP Chung, WH (reprint author), Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Otolaryngol & Head & Neck Surg, 50 Ilwon Dong, Seoul 135710, South Korea. EM whchung@smc.samsung.co.kr CR ANKARCRONA M, 1995, NEURON, V15, P961, DOI 10.1016/0896-6273(95)90186-8 Ayata C, 1997, J NEUROSCI, V17, P6908 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 Bittigau P, 1997, J CHILD NEUROL, V12, P471 Davies KJA, 2000, IUBMB LIFE, V50, P279, DOI 10.1080/15216540051081010 DEMEMES D, 1990, HEARING RES, V46, P261, DOI 10.1016/0378-5955(90)90007-C Devau G, 2000, HEARING RES, V140, P126, DOI 10.1016/S0378-5955(99)00194-X Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 Ernfors P, 1996, NAT MED, V2, P1313, DOI 10.1038/nm1296-1313 Fessenden JD, 1998, HEARING RES, V118, P168, DOI 10.1016/S0378-5955(98)00027-6 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X Glazner GW, 2000, J NEUROSCI, V20, P3641 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 Harvey SC, 1999, J PHARMACOL EXP THER, V291, P285 HENLEY CM, 1987, BRAIN RES BULL, V19, P695, DOI 10.1016/0361-9230(87)90056-6 Hess A, 1998, BRAIN RES, V813, P97, DOI 10.1016/S0006-8993(98)00997-4 Hess A, 1999, BRAIN RES, V830, P113, DOI 10.1016/S0006-8993(99)01433-X Hess A, 1998, NEUROSCI LETT, V251, P185, DOI 10.1016/S0304-3940(98)00532-1 Ishiyama G, 2002, BRAIN RES, V935, P16, DOI 10.1016/S0006-8993(02)02419-8 Kuhn DM, 2004, J NEUROCHEM, V89, P529, DOI 10.1111/j.1471-4159.2004.02346.x Li XQ, 2001, HEARING RES, V161, P29, DOI 10.1016/S0378-5955(01)00330-6 Lopez I, 1999, AM J OTOL, V20, P317 Lopez-Gonzalez MA, 1998, NEUROCHEM INT, V33, P55, DOI 10.1016/S0197-0186(05)80009-9 Masuko T, 1999, J PHARMACOL EXP THER, V290, P1026 Michel O, 2000, HEARING RES, V143, P23, DOI 10.1016/S0378-5955(00)00018-6 Miller JM, 2002, AUDIOL NEURO-OTOL, V7, P175, DOI 10.1159/000058306 Murphy MP, 1999, BBA-BIOENERGETICS, V1411, P401, DOI 10.1016/S0005-2728(99)00029-8 NAKANISHI S, 1992, SCIENCE, V258, P597, DOI 10.1126/science.1329206 Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32 Schulz JB, 1995, J NEUROSCI, V15, P8419 Shi XR, 2003, HEARING RES, V177, P43, DOI 10.1016/S0378-5955(02)00796-7 Smith PF, 2000, J VESTIBUL RES-EQUIL, V10, P1 SNYDER SH, 1992, SCI AM, V266, P68 Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P466 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P346 Takumida M, 1998, EUR ARCH OTO-RHINO-L, V255, P184, DOI 10.1007/s004050050040 Takumida M, 2000, HEARING RES, V140, P91, DOI 10.1016/S0378-5955(99)00188-4 Takumida M, 2002, ORL J OTO-RHINO-LARY, V64, P143, DOI 10.1159/000057794 Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 NR 40 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 46 EP 53 DI 10.1016/j.heares.2005.08.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500006 PM 16289993 ER PT J AU Guerin, A Jeannes, RL Bes, J Faucon, G Lorenzi, C AF Guerin, A Jeannes, RL Bes, J Faucon, G Lorenzi, C TI Evaluation of two computational models of amplitude modulation coding in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE amplitude modulation; cochlear nucleus; inferior colliculus; model ID COCHLEAR NUCLEUS; TEMPORAL ENVELOPE; AUDITORY-CORTEX; COMPUTER-MODEL; RESPONSES; SOUNDS; CAT; REPRESENTATION; MECHANISMS; NEURONS AB Two computational models replicating amplitude-modulation encoding in the inferior colliculus (IC) are presented and compared. Neurons in this nucleus are modeled as point neurons using Mc Gregor equations, and receive depolarizing currents from action potentials delivered by stellate cells (chopper units) in the cochlear nucleus (CN). Stellate cells are modeled using modified Hodgkin-Huxley equations and receive inputs from a peripheral auditory model. The CN models of the two proposed architectures are characterized by an important dispersion of cellular characteristics, and therefore by various cellular best modulation frequencies (BMFs) ranging from 60 to 300 Hz. In contrast with the previous model proposed by [M.J. Hewitt, R. Meddis, A computer model of amplitude-modulation sensitivity of single units in the inferior colliculus, J. Acoust. Soc. Am. 95 (1994) 2145], each IC cell model receives convergent input from stellate cells with various BMFs. This approach assumes therefore minimal constraints on the model architecture and cell characteristics. The two models differ in terms of the neuronal structure of the IC, composed of 1 or 2 layers of point neurons acting as coincidence detectors. Each model is evaluated using two metrics: mean firing rate and modulation gain. Rate and temporal modulation transfer functions (r-MTFs and t-MTFs, respectively) are simulated and compared with physiological data. Simulations reveal that (i) an important dispersion of BMFs in the CN cells providing input to IC cells yields plausible IC cells responses to AM stimuli, (ii) the 2-layer IC structure yields the best approximation of IC responses measured in vivo. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Rennes 1, INSERM, U642, Lab Traitement Signal & Image, F-35042 Rennes, France. Univ Paris 05, Inst Psychol, CNRS, UMR 8581,Lab Psychol Expt, F-75270 Paris 06, France. RP Jeannes, RL (reprint author), Univ Rennes 1, INSERM, U642, Lab Traitement Signal & Image, F-35042 Rennes, France. EM regine.le-bouquin-jeannes@univ-rennes1.fr RI Lorenzi, Christian/F-5310-2012 CR Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 Grimault N, 2002, J ACOUST SOC AM, V111, P1340, DOI 10.1121/1.1452740 GUERIN A, 2003, 25 ANN INT C IEEE EN, P2795 HEWITT MJ, 1995, J ACOUST SOC AM, V97, P2405, DOI 10.1121/1.411962 HEWITT MJ, 1994, J ACOUST SOC AM, V95, P2145, DOI 10.1121/1.408676 Joris PX, 2004, PHYSIOL REV, V84, P541, DOI 10.1152/physrev.00029.2003 Krishna BS, 2000, J NEUROPHYSIOL, V84, P255 LANGNER G, 1988, J NEUROPHYSIOL, V60, P1799 Liegeois-Chauvel C, 2004, CEREB CORTEX, V14, P731, DOI 10.1093/cercor/bhh033 LORENZI C, 1995, HEARING RES, V90, P219, DOI 10.1016/0378-5955(95)00169-9 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 MOLLER AR, 1986, HEARING RES, V24, P203, DOI 10.1016/0378-5955(86)90019-5 Nelson PC, 2004, J ACOUST SOC AM, V116, P2173, DOI 10.1121/1.1784442 PATTERSON RD, 1992, ADV BIOSCI, V83, P429 REES A, 1987, HEARING RES, V27, P129, DOI 10.1016/0378-5955(87)90014-1 Rhode WS, 1992, MAMMALIAN AUDITORY P, P94 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Smith ZM, 2002, NATURE, V416, P87, DOI 10.1038/416087a NR 23 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 54 EP 62 DI 10.1016/j.heares.2005.10.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500007 PM 16289669 ER PT J AU Sendowski, I Raffin, F Clarencon, D AF Sendowski, I Raffin, F Clarencon, D TI Spectrum of neural electrical activity in guinea pig cochlea: Effects of anaesthesia regimen, body temperature and ambient noise SO HEARING RESEARCH LA English DT Article DE anaesthesia; cochlea; guinea pig; spontaneous activity; 900 Hz peak ID KETAMINE-XYLAZINE ANESTHESIA; BRAIN-STEM RESPONSE; ROUND-WINDOW; INFERIOR COLLICULUS; SURGICAL-PROCEDURES; AVERAGE SPECTRUM; HYPERTHERMIA; TINNITUS; NERVE; PHARMACOLOGY AB Spectral analysis of electric noise recorded from the round window of the cochlea is thought to represent the summed spontaneous activity of the auditory nerve. It has been postulated that it could provide a possible tinnitus index. Because experimental conditions could change this neural activity, the effect of anaesthesia regimen, body temperature and ambient noise on the spectrum of spontaneous neural noise (SNN) were investigated in guinea pig cochlea. SNN was studied in awake guinea pigs and after anaesthesia with pentobarbital (P), xylazine/ketamine (XK) or xylazine/tiletamine-zolazepam (XTZ). Body temperature varied gradually from 33 to 41 degrees C under XK regimen. In awake animals, broadband noise was generated with intensity varying from 0 to 50 dB. The SNN consisted in a broad peak at approximately 900 Hz. With ambient broadband noise, it increased exponentially with the sound level with no shift in frequency. Soon after anaesthetic induction, the lowest frequencies were constantly decreased, and gradually the 900 Hz peak either increased moderately (P) or dropped steeply (XTZ) or remained unchanged (XK). Peak frequency increased linearly with body temperature whereas the amplitude reached a maximum at around 39.5 degrees C. In conclusion, these data indicate that experimental conditions such as anaesthesia, regimen, body temperature and ambient noise modify the spontaneous neural outflow of the cochlea and must be taken into account when studying SNN. (c) 2005 Elsevier B.V. All rights reserved. C1 CRSSA, Dept Radiobiol, F-38702 La Tronche, France. RP Sendowski, I (reprint author), CRSSA, Dept Radiobiol, 24 Ave Maquis Gresivaudan,BP 87, F-38702 La Tronche, France. EM lsendowski@crssa.net; Fraffin@crssa.net; Didierclarencon@crssa.net CR AHMED B, 1991, INT J HYPERTHER, V7, P93, DOI 10.3109/02656739109004980 Astl J, 1996, AUDIOLOGY, V35, P335 BIGELOW DJ, 1987, J BIOL CHEM, V262, P13449 Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 BROWN MC, 1983, HEARING RES, V10, P345, DOI 10.1016/0378-5955(83)90097-7 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 Buchanan KC, 1998, CONTEMP TOP LAB ANIM, V37, P58 Cazals Y, 1998, J NEUROPHYSIOL, V80, P2113 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 CROWTHER J, 1989, OTOLARYNG HEAD NECK, V101, P51 DALLOS P, 1973, AUDITORY PERIPHERY, P329 DAUBECHIES I, 1990, IEEE T INFORM THEORY, V36, P961, DOI 10.1109/18.57199 DESAUVAGE RC, 1996, HEARING RES, V10, P15 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z EYBALIN M, 1993, PHYSIOL REV, V73, P309 FerberViart C, 1995, HEARING RES, V91, P202, DOI 10.1016/0378-5955(95)00193-X FFRENCHMULLEN JMH, 1987, J PHARMACOL EXP THER, V243, P915 FONG TM, 1986, BIOCHEMISTRY-US, V25, P830, DOI 10.1021/bi00352a015 FRANSSEN H, 1994, MUSCLE NERVE, V17, P336, DOI 10.1002/mus.880170313 Friederich P, 1998, MOL BRAIN RES, V60, P301, DOI 10.1016/S0169-328X(98)00209-5 GOSSSAMPSON MA, 1991, LAB ANIM, V25, P360, DOI 10.1258/002367791780810074 GREENE SA, 1988, J VET PHARMACOL THER, V11, P295, DOI 10.1111/j.1365-2885.1988.tb00189.x GROSSMANN A, 1984, SIAM J MATH ANAL, V15, P723, DOI 10.1137/0515056 Guitton MJ, 2003, J NEUROSCI, V23, P3944 Henry KR, 2003, HEARING RES, V179, P88, DOI 10.1016/S0378-5955(03)00097-2 Hotz MA, 2000, BRIT J CLIN PHARMACO, V49, P72, DOI 10.1046/j.1365-2125.2000.00104.x Jacobson C, 2001, LAB ANIM-UK, V35, P271, DOI 10.1258/0023677011911598 JANSSEN R, 1992, NEUROSCI BIOBEHAV R, V16, P399, DOI 10.1016/S0149-7634(05)80209-X JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 KOHSHI K, 1990, J APPL PHYSIOL, V69, P1419 Lee H J, 1993, Electromyogr Clin Neurophysiol, V33, P125 Lei H, 2001, BRAIN RES, V913, P174, DOI 10.1016/S0006-8993(01)02786-X Lesage F, 2003, NEUROPHARMACOLOGY, V44, P1, DOI 10.1016/S0028-3908(02)00339-8 Martin W.H., 1995, MECH TINNITUS, P163 MARTIN WH, 1993, LARYNGOSCOPE, V103, P600 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 Morand N, 1998, HEARING RES, V121, P71, DOI 10.1016/S0378-5955(98)00068-9 Mulders WHAM, 2005, HEARING RES, V204, P147, DOI 10.1016/j.heares.2005.01.009 OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y Patuzzi RB, 2004, HEARING RES, V190, P87, DOI 10.1016/S0378-5955(03)00405-2 Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 Rudolph U, 2004, NAT REV NEUROSCI, V5, P709, DOI 10.1038/nrn1496 SCHREINER CE, 1987, P 3 INT TINN SEM HAR, P100 Searchfield GD, 2004, HEARING RES, V192, P23, DOI 10.1016/j.heares.2004.02.006 SHINITZKY M, 1984, BIOMEMBRANE, V12, P585 Sueta T, 2004, HEARING RES, V188, P117, DOI 10.1016/S0378-5955(03)00374-5 TAKAHASHI H, 1991, INT J HYPERTHER, V7, P613, DOI 10.3109/02656739109034973 Torterolo P, 2002, BRAIN RES, V935, P9, DOI 10.1016/S0006-8993(02)02235-7 VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X VIRET J, 1976, BIOCHIM BIOPHYS ACTA, V436, P811, DOI 10.1016/0005-2736(76)90408-9 VIRET J, 1990, MEMBRANE TRANSPORT I, P239 WELCH PD, 1967, IEEE T ACOUST SPEECH, VAU15, P70, DOI 10.1109/TAU.1967.1161901 NR 55 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 63 EP 73 DI 10.1016/j.heares.2005.10.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500008 PM 16310327 ER PT J AU Fullgrabe, C Berthommier, F Lorenzi, C AF Fullgrabe, C Berthommier, F Lorenzi, C TI Masking release for consonant features in temporally fluctuating background noise SO HEARING RESEARCH LA English DT Article DE speech perception; background noise; masking release; modulation masking; 1st-order modulation; 2nd-order modulation ID SPEECH-RECEPTION THRESHOLD; AMPLITUDE-MODULATED NOISE; NORMAL-HEARING LISTENERS; COCHLEAR IMPLANT USERS; FREQUENCY-SELECTIVITY; INTERRUPTED SPEECH; RECOGNITION; INTELLIGIBILITY; INTERFERENCE; MASKERS AB Consonant identification was measured for normal-hearing listeners using Vowel-Consonant-Vowel stimuli that were either unprocessed or spectrally degraded to force listeners to use temporal-envelope cues. Stimuli were embedded in a steady state or fluctuating noise masker and presented at a fixed signal-to-noise ratio. Fluctuations in the maskers were obtained by applying sinusoidal modulation to: (i) the amplitude of the noise (1st-order SAM masker) or (ii) the modulation depth of a 1st-order SAM noise (2nd-order SAM masker). The frequencies of the amplitude variation f(m) and the depth variation f(m)' were systematically varied. Consistent with previous studies, identification scores obtained with unprocessed speech were highest in an 8-Hz, 1st-order SAM masker. Reception of voicing and manner also peaked around f(m) = 8 Hz, while the reception of place of articulation was maximal at a higher frequency (f(m) = 32 Hz). When 2nd-order SAM maskers were used, identification scores and received information for each consonant feature were found to be independent of f(m)'. They decreased progressively with increasing carrier modulation frequency f(m) and ranged between those obtained with the steady state and the 1st-order SAM maskers. Finally, the results obtained with spectrally degraded speech were similar across all types of maskers, although an 8% improvement in the reception of voicing was observed for modulated maskers with fm < 64 Hz compared to the steady-state masker. These data provide additional evidence that listeners take advantage of temporal minima in fluctuating background noises, and suggest that: (i) minima of different durations are required for an optimal reception of the three consonant features and (ii) complex (i.e., 2nd-order) envelope fluctuations in background noise do not degrade speech identification by interfering with speech-envelope processing. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Paris 05, Inst Psychol, Expt Psychol Lab, CNRS,UMR 8581, F-92774 Boulogne, France. Inst Natl Polytech Grenoble, Inst Commun Parlee, CNRS, UPRESA 5009, F-38031 Grenoble, France. RP Fullgrabe, C (reprint author), Univ Cambridge, Dept Expt Psychol, Downing St, Cambridge CB2 3EB, England. EM c.fullgrabe@psychol.cam.ac.uk RI Imhof, Margarete/F-8471-2011; Lorenzi, Christian/F-5310-2012; Fullgrabe, Christian/I-6331-2012 CR Bacon SP, 1998, J SPEECH LANG HEAR R, V41, P549 BACON SP, 1989, J ACOUST SOC AM, V85, P2575, DOI 10.1121/1.397751 Bregman AS., 1990, AUDITORY SCENE ANAL Calliope, 1989, PAROLE SON TRAITEMEN Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P2670, DOI 10.1121/1.409836 Dubno JR, 2002, J ACOUST SOC AM, V111, P2897, DOI 10.1121/1.1480421 EISENBERG LS, 1995, J SPEECH HEAR RES, V38, P222 Ewert SD, 2002, J ACOUST SOC AM, V112, P2921, DOI 10.1121/1.1515735 Ewert SD, 2000, J ACOUST SOC AM, V108, P1181, DOI 10.1121/1.1288665 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 FESTEN JM, 1993, J ACOUST SOC AM, V94, P1295, DOI 10.1121/1.408156 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Fullgrabe C, 2003, J ACOUST SOC AM, V113, P49, DOI 10.1121/1.1523383 Fullgrabe C, 2005, J ACOUST SOC AM, V117, P2158, DOI 10.1121/1.1861892 GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346 HALL JW, 1988, J ACOUST SOC AM, V83, P677, DOI 10.1121/1.396163 HAZAN V, 1991, PERCEPT PSYCHOPHYS, V49, P187, DOI 10.3758/BF03205038 HOUTGAST T, 1989, J ACOUST SOC AM, V85, P1676, DOI 10.1121/1.397956 HOUTGAST T, 1985, J ACOUST SOC AM, V77, P1069, DOI 10.1121/1.392224 HOWARDJONES PA, 1993, ACUSTICA, V78, P258 HOWARDJONES PA, 1993, J ACOUST SOC AM, V93, P2915, DOI 10.1121/1.405811 Kwon BJ, 2001, J ACOUST SOC AM, V110, P1130, DOI 10.1121/1.1384909 Lorenzi C, 1999, HEARING RES, V136, P131, DOI 10.1016/S0378-5955(99)00117-3 Lorenzi C, 2001, J ACOUST SOC AM, V110, P2470, DOI 10.1121/1.1406160 Lorenzi C, 2001, J ACOUST SOC AM, V110, P1030, DOI 10.1121/1.1383295 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 Millman RE, 2002, J ACOUST SOC AM, V111, P2551, DOI 10.1121/1.1475341 Moore BCJ, 1999, J ACOUST SOC AM, V106, P908, DOI 10.1121/1.427106 Munson B, 2003, J ACOUST SOC AM, V113, P925, DOI 10.1121/1.1536630 Nelson PB, 2003, J ACOUST SOC AM, V113, P961, DOI 10.1121/1.1531983 Nelson PB, 2004, J ACOUST SOC AM, V115, P2286, DOI 10.1121/1.1703538 Peters RW, 1998, J ACOUST SOC AM, V103, P577, DOI 10.1121/1.421128 POWERS GL, 1973, J ACOUST SOC AM, V54, P661, DOI 10.1121/1.1913646 POWERS GL, 1977, J ACOUST SOC AM, V61, P195, DOI 10.1121/1.381255 Qin MK, 2003, J ACOUST SOC AM, V114, P446, DOI 10.1121/1.1579009 Sek A, 2003, J ACOUST SOC AM, V113, P2801, DOI 10.1121/1.1564020 Sek A, 2004, J ACOUST SOC AM, V116, P3031, DOI 10.1121/1.1795331 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Sheft S, 1997, J ACOUST SOC AM, V102, P1106, DOI 10.1121/1.419862 Shofner WP, 1996, J ACOUST SOC AM, V99, P3592, DOI 10.1121/1.414957 Summers V, 2004, J SPEECH LANG HEAR R, V47, P245, DOI 10.1044/1092-4388(2004/020) TAKAHASHI GA, 1992, J SPEECH HEAR RES, V35, P1410 Verhey JL, 2003, J ACOUST SOC AM, V114, P2135, DOI 10.1121/1.1612489 WARREN RM, 1970, SCIENCE, V167, P392, DOI 10.1126/science.167.3917.392 YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474 Zeng FG, 2005, P NATL ACAD SCI USA, V102, P2293, DOI 10.1073/pnas.0406460102 NR 49 TC 55 Z9 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 74 EP 84 DI 10.1016/j.heares.2005.09.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500009 PM 16289579 ER PT J AU Han, WJ Shi, XR Nuttall, AL AF Han, WJ Shi, XR Nuttall, AL TI AIF and endoG translocation in noise exposure induced hair cell death SO HEARING RESEARCH LA English DT Article DE noise exposure; apoptosis; apoptosis inducing factor; endonuclease G; caspase; mitochondria; guinea pig ID ENDONUCLEASE-G; INDUCED APOPTOSIS; ACTIVATION; MICE; MITOCHONDRIA; NECROSIS; PATHWAY; HEARING AB Activation of caspases is a key element in the apoptotic process. However, mitochondria also play an important role via the release of proapoptotic proteins. This study investigated the roles of mitochondria-related apoptosis inducing factor (AIF) and endonuclease G (endoG), mitochondrion-specific nucleases, as well as caspase-3, an important mediator of apoptosis, in noise exposure induced hair cell death. Guinea pigs were exposed for 4 h/day to broadband noise at 122 dB SPL for 2 days. After the noise exposure, the cochleae were examined for the activity of caspase-3 with carboxyfluorescein-labeled fluoromethyl ketone (FMK)-peptide inhibitors. The cochleae were further examined for AIF and endoG translocation from the mitochondria by. immunohistochemistry. Noise exposure triggered activation of caspase-3 in apoptotic hair cells. In the normal organ of Corti, AIF and endoG were co-localized to the mitochondria. After noise exposure, AIF translocated into the nuclei of apoptotic and necrotic hair cells. The translocation of endoG from mitochondria into the nucleus was also found in apoptotic OHCs. These findings indicate that mitochondria-released proapoptotic proteins, AIF and endoG, are important factors in a noise-induced hair cell death pathway. (c) 2005 Published by Elsevier B.V. C1 Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97290 USA. Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100853, Peoples R China. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth & Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Rd,NRC04, Portland, OR 97290 USA. EM nuttall@ohsu.edu CR Asakura T, 1999, BRIT J CANCER, V80, P711, DOI 10.1038/sj.bjc.6690414 Chen YR, 2000, INT J ONCOL, V16, P651 Chi SJ, 1999, ONCOGENE, V18, P2281, DOI 10.1038/sj.onc.1202538 COTE J, 1993, SCIENCE, V261, P765, DOI 10.1126/science.7688144 Dawson VL, 2004, J BIOENERG BIOMEMBR, V36, P287, DOI 10.1023/B:JOBB.0000041755.22613.8d Garrido C, 2004, CURR OPIN CELL BIOL, V16, P639, DOI 10.1016/j.ceb.2004.09.008 Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309 Hengartner MO, 2000, NATURE, V407, P770, DOI 10.1038/35037710 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Irvine RA, 2005, MOL CELL BIOL, V25, P294, DOI 10.1128/MCB.25.1.294-302.2005 Jaattela M, 2003, NAT IMMUNOL, V4, P416, DOI 10.1038/ni0503-416 Joza N, 2001, NATURE, V410, P549, DOI 10.1038/35069004 Leist M, 1997, J EXP MED, V185, P1481, DOI 10.1084/jem.185.8.1481 Li LY, 2001, NATURE, V412, P95, DOI 10.1038/35083620 LO AC, 1995, ARCH HISTOL CYTOL, V58, P139, DOI 10.1679/aohc.58.139 Lorenzo HK, 2004, FEBS LETT, V557, P14, DOI 10.1016/S0014-5793(03)01464-9 MAJNO G, 1995, AM J PATHOL, V146, P3 Miller D K, 1997, Semin Immunol, V9, P35, DOI 10.1006/smim.1996.0058 Nicholson DW, 1997, TRENDS BIOCHEM SCI, V22, P299, DOI 10.1016/S0968-0004(97)01085-2 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Pirvola U, 2000, J NEUROSCI, V20, P43 Prats E, 1997, DNA CELL BIOL, V16, P1111, DOI 10.1089/dna.1997.16.1111 Schafer P, 2004, J MOL BIOL, V338, P217, DOI 10.1016/j.jmb.2004.02.069 SHI XR, 2003, EXPT BIOL M SAN DIEG Sperandio S, 2000, P NATL ACAD SCI USA, V97, P14376, DOI 10.1073/pnas.97.26.14376 Strasser A, 2000, ANNU REV BIOCHEM, V69, P217, DOI 10.1146/annurev.biochem.69.1.217 Susin SA, 1999, NATURE, V397, P441 THOMPSON CB, 1995, SCIENCE, V267, P1456, DOI 10.1126/science.7878464 Widlak P, 2001, MOL CELL BIOCHEM, V218, P125, DOI 10.1023/A:1007231822086 Wu YF, 2004, NEUROSCI LETT, V364, P203, DOI 10.1016/j.neulet.2004.04.093 Yamashita D, 2004, NEUROREPORT, V15, P2719 Yang WP, 2004, HEARING RES, V196, P69, DOI 10.1016/j.heares.2004.04.015 Ye H, 2002, NAT STRUCT BIOL, V9, P680, DOI 10.1038/nsb836 Yu SW, 2002, SCIENCE, V297, P259, DOI 10.1126/science.1072221 Yuan J, 2003, NEURON, V40, P401, DOI 10.1016/S0896-6273(03)00601-9 Zhang JH, 2003, P NATL ACAD SCI USA, V100, P15782, DOI 10.1073/pnas.2636393100 NR 36 TC 25 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 85 EP 95 DI 10.1016/j.heares.2005.10.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500010 PM 16309861 ER PT J AU Phillips, DP Carmichael, ME Hall, SE AF Phillips, DP Carmichael, ME Hall, SE TI Interaction in the perceptual processing of interaural time and level differences SO HEARING RESEARCH LA English DT Article DE interaural level difference; interaural time difference; selective adaptation; auditory lateralization; opponent process model ID SUPERIOR OLIVARY COMPLEX; PRIMARY AUDITORY-CORTEX; LOW-FREQUENCY NEURONS; SOUND-LOCALIZATION; BINAURAL INTERACTION; INFERIOR COLLICULUS; CAT; SENSITIVITY; LOCATION; INTENSITY AB Phillips and Hall [Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level, Hear. Res., 202 (2005) 188-199.] recently described the frequency-specific, selective adaptation of perceptual channels for interaural differences in level (ILD) and time (ITD). Psychometric functions for laterality based on ITD or ILD were obtained before and after exposure to adaptor tones of two frequencies presented alternately and highly lateralized to opposite sides. Following adaptation, points of perceived centrality (PPCs) were displaced towards the sides of the adaptor tones, and in opposite directions for the two frequencies. That is, laterality judgements showed a shift away from the adapted side, particularly for test cue values near the middle of the range. These data were congruent with a two-channel, opponent-process model of sound laterality coding. The present study used the same general paradigm to explore the independence of perceptual ITD and ILD processing. Psychometric functions for laterality based on ITD or ILD were obtained for each of two frequencies concurrently, before and after exposure to adaptor tones lateralized using the complementary cue. Once again, PPCs derived from the psychometric functions were displaced towards the sides of the adaptor tones, consistent with an opponent-process account of sound laterality coding. The size of the adaptation effect was at least as great as that described in the earlier study. Thus, a quarter cycle ITD adapting stimulus effected a 3 dB shift in the mean ILD-based PPC, and a 12 dB ILD adapting stimulus effected a 100 mu s shift in the mean ITD-based PPC. These data offer new evidence concerning interaction in the processing of ITDs and ILDs. (c) 2005 Elsevier B.V. All rights reserved. C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, 1355 Oxford St, Halifax, NS B3H 4J1, Canada. EM dennis.phillips@dal.ca RI Phillips, Dennis/A-6496-2011 CR Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 Boehnke SE, 2005, PERCEPTION, V34, P371, DOI 10.1068/p5140 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a CAIRD D, 1983, EXP BRAIN RES, V52, P385 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HARI R, 1995, NEUROSCI LETT, V189, P29, DOI 10.1016/0304-3940(95)11443-Z Heffner H E, 1997, Acta Otolaryngol Suppl, V532, P22 Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 JORIS PX, 1995, J NEUROPHYSIOL, V73, P1043 Kashino M, 1998, J ACOUST SOC AM, V103, P3597, DOI 10.1121/1.423064 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 KUWADA S, 1983, J NEUROPHYSIOL, V50, P981 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MOISEFF A, 1983, J NEUROSCI, V3, P2553 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 Phillips DP, 2002, PERCEPTION, V31, P875, DOI 10.1068/p3293 Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 Phillips DP, 2001, J ACOUST SOC AM, V110, P1539, DOI 10.1121/1.1396329 Phillips DP, 2005, HEARING RES, V202, P188, DOI [10.1016/j.heares.2004.11.001, 10.1016/j.heres.2004.11.001] Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Shore DI, 1998, J ACOUST SOC AM, V103, P3730, DOI 10.1121/1.423093 Stecker GC, 2005, PLOS BIOL, V3, P520, DOI 10.1371/journal.pbio.0030078 TAKAHASHI T, 1984, J NEUROSCI, V4, P1781 TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163 Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1000 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 36 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 96 EP 102 DI 10.1016/j.heares.2005.10.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500011 PM 16309863 ER PT J AU Frisina, ST Mapes, F Kim, S Frisina, DR Frisina, RD AF Frisina, ST Mapes, F Kim, S Frisina, DR Frisina, RD TI Characterization of hearing loss in aged type II diabetics SO HEARING RESEARCH LA English DT Article DE presbycusis; age-related hearing loss; cochlea; auditory system; aging; geriatric; metabolic; insulin; type II diabetes ID PROTEIN-KINASE-C; GUINEA-PIG COCHLEA; NITRIC-OXIDE; INFERIOR COLLICULUS; INSULIN-RESISTANCE; ENDOTHELIAL-CELLS; IV COLLAGEN; IN-VIVO; NEURODEGENERATIVE DISORDERS; ADVANCED GLYCOSYLATION AB Presbycusis - age-related hearing loss - is the number one communicative disorder and a significant chronic medical condition of the aged. Little is known about how type II diabetes, another prevalent age-related medical condition, and presbyeusis interact. The present investigation aimed to comprehensively characterize the nature of hearing impairment in aged type II diabetics. Hearing tests measuring both peripheral (cochlea) and central (brainstem and cortex) auditory processing were utilized. The majority of differences between the hearing abilities of the aged diabetics and their age-matched controls were found in measures of inner ear function. For example, large differences were found in pure-tone audiograms, wideband noise and speech reception thresholds, and otoacoustic emissions. The greatest deficits tended to be at low frequencies. In addition, there was a strong tendency for diabetes to affect the right ear more than the left. One possible interpretation is that as one develops presbycusis, the right ear advantage is lost, and this decline is accelerated by diabetes. In contrast, auditory processing tests that measure both peripheral and central processing showed fewer declines between the elderly diabetics and the control group. Consequences of elevated blood sugar levels as possible underlying physiological mechanisms for the hearing loss are discussed. (c) 2005 Published by Elsevier B.V. C1 Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Anat & Neurobiol, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA. Daegu Fatima Hosp, Dept Otorhinolaryngol, Taegu 701600, South Korea. RP Frisina, RD (reprint author), Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. EM rdf@cq.ent.rochester.edu CR Amano S, 2001, BRIT J OPHTHALMOL, V85, P52, DOI 10.1136/bjo.85.1.52 Antcliff R J, 1999, Semin Ophthalmol, V14, P223, DOI 10.3109/08820539909069541 BJORBAEK C, 1995, DIABETES, V44, P90, DOI 10.2337/diabetes.44.1.90 Boue-Grabot E, 2000, J BIOL CHEM, V275, P10190, DOI 10.1074/jbc.275.14.10190 BoydWhite J, 1996, DIABETES, V45, P348, DOI 10.2337/diabetes.45.3.348 BROWNLEE M, 1999, ATLAS CLIN ENDOCRINO BROWNLEE M, 1988, NEW ENGL J MED, V318, P1315 BUCALA R, 1993, P NATL ACAD SCI USA, V90, P6434, DOI 10.1073/pnas.90.14.6434 CAMERON NE, 1991, AM J PHYSIOL, V261, pE1 Cameron N.F., 1997, DIABETES S2, V46, P31 CASPARY DM, 1990, J NEUROSCI, V10, P2363 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Cavaghan MK, 2000, J CLIN INVEST, V106, P329, DOI 10.1172/JCI10761 CHAPMAN T, 1999, J LARYNGOL OTOL, V113, P13 CHARONIS AS, 1992, DIABETES, V41, P49 Erdem T, 2003, EUR ARCH OTO-RHINO-L, V260, P62, DOI 10.1007/s00405-002-0519-1 FELDMAN EL, 2003, ELLENBERG RIFKINS DI, P185 Fong DS, 2003, DIABETES CARE, V26, P226, DOI 10.2337/diacare.26.1.226 Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina Robert D., 2001, Seminars in Hearing, V22, P213, DOI 10.1055/s-2001-15627 Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 Gosepath K, 2000, EUR ARCH OTO-RHINO-L, V257, P418, DOI 10.1007/s004050000261 GREENE DA, 1992, DIABETES CARE, V15, P1902, DOI 10.2337/diacare.15.12.1902 GREENE DA, 1993, DIABETES METAB REV, V9, P189 Gries A, 2003, CRIT CARE MED, V31, P1697, DOI 10.1097/01.CCM.0000063446.19696.D3 Groop LC, 1999, DIABETES OBES METAB, V1, pS1 HAITOGLOU CS, 1992, J BIOL CHEM, V267, P12404 Harrison DG, 1996, JPN CIRC J, V60, P815, DOI 10.1253/jcj.60.815 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 Jung KY, 1997, KOREAN J GENETIC, V19, P1 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 Kuboki K, 2000, CIRCULATION, V101, P676 Lee AYW, 1999, FASEB J, V13, P23 Levitt H. L., 1971, J ACOUST SOC AM, V49, P476 LISOWSKA G, 2001, SCAND AUDIOL S, V52, P199 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 Ma FC, 1998, J LARYNGOL OTOL, V112, P835 MALPAS S, 1989, NEW ZEAL MED J, V102, P434 MATSUMURA T, 2000, DIABETES MELLITUS FU, P983 Mattson MP, 2001, MECH AGEING DEV, V122, P757, DOI 10.1016/S0047-6374(01)00226-3 MCCANCE DR, 1993, J CLIN INVEST, V91, P2470, DOI 10.1172/JCI116482 Miller J M, 1998, Scand Audiol Suppl, V48, P53 MIZISIN AP, 2003, TXB DIABETIC NEUROPA, P86 NILSSON M, 1994, J ACOUST SOC AM, V95, P1085, DOI 10.1121/1.408469 NISHIZUKA Y, 1995, FASEB J, V9, P484 Oku H, 2001, INVEST OPHTH VIS SCI, V42, P1915 Ologe FE, 2005, INT J PEDIATR OTORHI, V69, P387, DOI 10.1016/j.ijporl.2004.11.009 Polonsky KS, 1996, NEW ENGL J MED, V334, P777 Prolla TA, 2001, TRENDS NEUROSCI, V24, pS21, DOI 10.1016/S0166-2236(00)01957-3 Ren TY, 1997, HEARING RES, V112, P87, DOI 10.1016/S0378-5955(97)00109-3 Sasso FC, 1999, METABOLISM, V48, P1346, DOI 10.1016/S0026-0495(99)90141-5 Sato Y, 1999, GLYCOBIOLOGY, V9, P655, DOI 10.1093/glycob/9.7.655 Satoh H, 1998, EUR ARCH OTO-RHINO-L, V255, P285, DOI 10.1007/s004050050060 Seidman MD, 1997, ARCH OTOLARYNGOL, V123, P1039 Shi XR, 2002, HEARING RES, V172, P73, DOI 10.1016/S0378-5955(02)00513-0 SHIBA T, 1993, AM J PHYSIOL, V265, pE783 Si JQ, 2002, HEARING RES, V171, P167, DOI 10.1016/S0378-5955(02)00497-5 SONGER TJ, 1997, INT TXB DIABETES MEL, V2, P1762 STEVENS MJ, 2000, DIABETES MELLITUS FU, P972 Stevens MJ, 1996, METABOLISM, V45, P865, DOI 10.1016/S0026-0495(96)90161-4 Stitt AW, 2000, DIABETES: CURRENT PERSPECTIVES, P67 Sweeney G, 1998, MOL CELL BIOCHEM, V182, P121, DOI 10.1023/A:1006805510749 SZWERGOLD BS, 1990, SCIENCE, V247, P451, DOI 10.1126/science.2300805 Tabuchi K, 2001, NEUROSCI LETT, V307, P29, DOI 10.1016/S0304-3940(01)01919-X Tadros SF, 2005, AUDIOL NEURO-OTOL, V10, P44, DOI 10.1159/000082307 TAY HL, 1995, CLIN OTOLARYNGOL, V20, P130, DOI 10.1111/j.1365-2273.1995.tb00029.x THIEME H, 1995, DIABETES, V44, P98, DOI 10.2337/diabetes.44.1.98 Tsuprun V, 2001, HEARING RES, V157, P65, DOI 10.1016/S0378-5955(01)00278-7 VAAQ A, 1995, J CLIN INVEST, V95, P690 VANE JR, 1990, NEW ENGL J MED, V323, P27 VAUGHAN DE, 2003, ELLENBERG RIFKINS DI, P175 VLASSARA H, 1995, MOL MED, V1, P447 Ways D K, 2000, Vitam Horm, V60, P149, DOI 10.1016/S0083-6729(00)60019-5 Williams B, 1997, DIABETES, V46, P1497, DOI 10.2337/diabetes.46.9.1497 WILLIAMSON JR, 1993, DIABETES, V42, P801, DOI 10.2337/diabetes.42.6.801 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 WILLOTT JF, 1987, J COMP NEUROL, V260, P472, DOI 10.1002/cne.902600312 Willott JF, 1998, HEARING RES, V119, P27, DOI 10.1016/S0378-5955(98)00029-X WILLOTT JF, 1985, J COMP NEUROL, V237, P545, DOI 10.1002/cne.902370410 WILLOTT JF, 1991, AGING AUDITORY SYSTE, P56 WILLOTT JF, 1995, HEARING RES, V88, P143, DOI 10.1016/0378-5955(95)00107-F WRIGHT CE, 1986, ANNU REV BIOCHEM, V55, P427, DOI 10.1146/annurev.bi.55.070186.002235 NR 85 TC 49 Z9 57 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 103 EP 113 DI 10.1016/j.heares.2005.09.002 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500012 PM 16309862 ER PT J AU Bortone, DS Mitchell, K Manis, PB AF Bortone, DS Mitchell, K Manis, PB TI Developmental time course of potassium channel expression in the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE auditory; ion channel; RT-PCR; mRNA; QPCR ID KV4.2 MESSENGER-RNA; DIFFERENTIAL EXPRESSION; BRAIN-STEM; ELECTRICAL-PROPERTIES; AUDITORY NEURONS; K+ CURRENT; CURRENTS; CELLS; MOUSE; MICE AB Voltage gated potassium channels play critical roles in determining the responses of auditory brainstem neurons to acoustic stimuli. In the present study, we examined the developmental expression of potassium channels in rat cochlear nucleus. Quantitative RT-PCR revealed that K(v)1.1, K(v)1.2 and K(v)3.1 showed a monotonic increase in mRNA levels from postnatal days 3-28 (P3-P28), after which mRNA level was relatively constant until P56. In contrast, K(v)4.2 mRNA levels were lower on average by a factor of 2 after P28 than before P28. Relative to K(v)1.1, K(v)3.1 and K(v)1.2 mRNA were more abundant before P10 and less abundant thereafter. To address the relationship between message and protein levels, we performed semi-quantitative Western blotting for K(v)1.2. The message for K(v)1.2 increased earlier in development than the protein levels. Immunocytochemistry revealed a broad expression of K(v)1.1 and K(v)1.2 in the VCN. Staining intensity increased from 7-28 days postnatal. K(v)1.2 immunostaining was less variable across cells than Kv1.1 staining. We conclude that maturation of potassium channel expression in the rat cochlear nucleus continues until at least 4 weeks postnatal. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ N Carolina, Dept Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Manis, PB (reprint author), Univ N Carolina, Dept Otolaryngol Head & Neck Surg, 1123 Bioinformat Bldg,CB 7070,130 Mason Farm Rd, Chapel Hill, NC 27599 USA. EM pmanis@med.unc.edu CR Bal R, 2001, J NEUROPHYSIOL, V86, P2299 Baro DJ, 1997, J NEUROSCI, V17, P6597 Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250 Fitzakerley JL, 2000, HEARING RES, V147, P31, DOI 10.1016/S0378-5955(00)00118-0 Forster B, 2004, MICROSC RES TECHNIQ, V65, P33, DOI 10.1002/jemt.20092 Friauf E, 1999, CELL TISSUE RES, V297, P187, DOI 10.1007/s004410051346 Gamkrelidze G, 2000, EXP BRAIN RES, V134, P398, DOI 10.1007/s002210000501 Gamkrelidze G, 1998, J NEUROSCI, V18, P1449 Gan L, 1996, J BIOL CHEM, V271, P5859 Glazebrook PA, 2002, J PHYSIOL-LONDON, V541, P467, DOI 10.1113/jphysiol.2001.018333 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 Hallows JL, 1998, J NEUROSCI, V18, P5682 Hattori S, 2003, J NEUROPHYSIOL, V90, P175, DOI 10.1152/jn.00990.2002 HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P535 Hopkins WF, 1998, J PHARMACOL EXP THER, V285, P1051 Jang GM, 2004, J BIOL CHEM, V279, P47419, DOI 10.1074/jbc.M405885200 Kanold PO, 1999, J NEUROSCI, V19, P2195 Limb CJ, 2000, JARO, V1, P103, DOI 10.1007/sl01620010032 Liss B, 2001, EMBO J, V20, P5715, DOI 10.1093/emboj/20.20.5715 Liu SQJ, 1998, J NEUROSCI, V18, P2881 Liu SQJ, 1998, J NEUROSCI, V18, P8758 MALETICSAVATIC M, 1995, J NEUROSCI, V15, P3840 MANIS P, 2002, ASS RES OT MIDW M ST, V25 MANIS PB, 1996, ADV SP HEAR A&B, V3, P213 MANIS PB, 1991, J NEUROSCI, V11, P2865 OERTEL D, 1983, J NEUROSCI, V3, P2043 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Pal B, 2005, HEARING RES, V199, P57, DOI 10.1016/j.heares.2004.07.020 PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756 Perney TM, 1997, J COMP NEUROL, V386, P178 Popratiloff A, 2003, J COMP NEUROL, V461, P466, DOI 10.1002/cne.10702 Rasband MN, 2004, J NEUROSCI RES, V76, P749, DOI 10.1002/jnr.20073 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3083, DOI 10.1152/jn.00126.2002 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3097, DOI 10.1152/jn.00127.2002 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002 Schwarz DWF, 1998, J OTOLARYNGOL, V27, P311 Serodio P, 1998, J NEUROPHYSIOL, V79, P1081 Tkatch T, 2000, J NEUROSCI, V20, P579 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004 Wang Y, 2005, J NEUROPHYSIOL, V94, P1814, DOI 10.1152/jn.00374.2005 WHITE JA, 1994, J NEUROPHYSIOL, V71, P1774 WU SH, 1987, HEARING RES, V30, P99 Wymore RS, 1996, J BIOL CHEM, V271, P15629 YOUNG E, 1998, SYNAPTIC ORG BRAIN NR 45 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2006 VL 211 IS 1-2 BP 114 EP 125 DI 10.1016/j.heares.2005.10.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 011KQ UT WOS:000235267500013 PM 16337757 ER PT J AU Li, JP Kania, R Lecain, E Ar, A Sauvaget, E Huy, PTB Herman, P AF Li, JP Kania, R Lecain, E Ar, A Sauvaget, E Huy, PTB Herman, P TI In vivo demonstration of the absorptive function of the middle ear epithelium SO HEARING RESEARCH LA English DT Article DE absorptive function; sodium flux; middle ear epithelium; in vivo ID ION-TRANSPORT; OTITIS-MEDIA; BIOELECTRIC PROPERTIES; SODIUM-TRANSPORT; CL-SECRETION; EXPRESSION; CLEARANCE; PRESSURE; CHANNELS; FLUID AB The present study investigated in vivo fluid and ion transport across the middle ear epithelium. The tympanic membrane of rats was punctured under general anesthesia. A capillary tube was fitted to the external auditory canal and the bulla filled with various solutions. Middle ear (ME) fluid volume variations were then measured at constant pressure. When saline was used, a linear decrease of fluid volume was apparent. Replacement of sodium with a non-permeable cation (N-methyl-D-glucamin) reduced the absorption rate from 0.065 +/- 0.008 to 0.019 +/- 0.003 mu l/min (P < 0.05, n = 6). Similarly, amiloride (10(-3) M), a sodium channel antagonist, reduced the absorption rate to 0.027 +/- 0.006 mu l/min (P < 0.05, n = 6). Net absorption was abolished when chloride was substituted with gluconate: -0.008 +/- 0.004 mu l/min (P < 0.02, n = 6), which might have been related (i) to the role of chloride as a diffusible anion through the paracellular pathway, or (ii) to the secretion of chloride through apical channels. However in this condition, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, a chloride channel blocker, did not affect the rate of fluid exchange -0.008 +/- 0.007 mu l/min (P = 0.75, n = 6). This model provides the first in vivo evidence for the absorptive function of the ME. Fluid introduced into the ME cavity disappears due to active transport through the mucosa. This process is sodium-dependent and can be hindered by high concentration of amiloride. The rate of absorption is high enough to allow total clearance of fluid from the cavity of the middle ear within 13 h. This process might play a role in the maintaining a fluid-free and gas-filled middle ear cavity. (c) 2005 Published by Elsevier B.V. C1 Hop Lariboisiere, Serv ORL, F-75475 Paris, France. Shanghai Med Univ, Ren Ji Hosp, Dept Otolaryngol Head & Neck Surg, Shanghai 200001, Peoples R China. APHP, Fac Lariboisiere St Louis, Lab Otol Expt, LNRS 7060,CNRS, Paris, France. Tel Aviv Univ, Fac Life Sci, Dept Zool, IL-69978 Tel Aviv, Israel. RP Herman, P (reprint author), Hop Lariboisiere, Serv ORL, 2 Rue Ambroise Pare, F-75475 Paris, France. EM philippe.herman@lrb.ap-hop-paris.fr CR DESERRES LM, 1991, ARCH OTOLARYNGOL, V117, P416 Furukawa M, 1998, ACTA PHYSIOL SCAND, V163, P103, DOI 10.1046/j.1365-201x.1998.00330.x Furukawa M, 1999, HEARING RES, V132, P109, DOI 10.1016/S0378-5955(99)00042-8 Furukawa M, 1997, AM J PHYSIOL-CELL PH, V272, pC827 Hergils L, 1998, ACTA OTO-LARYNGOL, V118, P697 Herman P, 1997, AM J PHYSIOL-CELL PH, V272, pC184 HERMAN P, 1993, J CELL PHYSIOL, V154, P615, DOI 10.1002/jcp.1041540321 HERMAN P, 1992, AM J PHYSIOL, V262, pF373 Hofmann T, 1998, AM J RESP CRIT CARE, V157, P1844 Kania R, 2004, ACTA OTO-LARYNGOL, V124, P408, DOI 10.1080/00016480310000683 Li HS, 2002, ACTA OTO-LARYNGOL, V122, P488, DOI 10.1080/00016480260092273 Li HS, 2003, ACTA OTO-LARYNGOL, V123, P575, DOI 10.1080/00016480310002465 Lin JZ, 2002, INT J PEDIATR OTORHI, V65, P203, DOI 10.1016/S0165-5876(02)00130-1 Mandell DL, 2003, AM J PHYSIOL-CELL PH, V285, pC618, DOI 10.1152/ajpcell.00553.2002 Matalon S, 2002, J APPL PHYSIOL, V93, P1852, DOI 10.1152/japplphysiol.01241.2001 Morineau O, 2001, ACTA OTO-LARYNGOL, V121, P371 Portier F, 1999, AM J PHYSIOL-CELL PH, V276, pC312 Priner R, 2003, AUDIOL NEURO-OTOL, V8, P100, DOI 10.1159/000068997 Priner R, 2003, HEARING RES, V175, P133, DOI 10.1016/S0378-5955(02)00718-9 ROBERTS DG, 1995, ARCH PEDIAT ADOL MED, V149, P873 SCHWIEBERT EM, 1994, AM J PHYSIOL, V266, pC1464 Sehgal A, 1996, AM J RESP CELL MOL, V15, P122 Takeuchi K, 1991, Acta Otolaryngol Suppl, V483, P17 Tan CT, 1997, ACTA OTO-LARYNGOL, V117, P284, DOI 10.3109/00016489709117788 Tideholm B, 1998, ACTA OTO-LARYNGOL, V118, P369, DOI 10.1080/00016489850183458 YEN PT, 1993, ACTA OTO-LARYNGOL, V113, P358, DOI 10.3109/00016489309135825 NR 26 TC 11 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2005.04.011 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500001 PM 16256284 ER PT J AU Takahashi, H Nakao, M Kaga, K AF Takahashi, H Nakao, M Kaga, K TI Interfield differences in intensity and frequency representation of evoked potentials in rat auditory cortex SO HEARING RESEARCH LA English DT Article DE auditory cortex; functional organization; auditory evoked potential; surface microelectrode array; rat ID POSTERIOR FIELD; SOUND INTENSITY; DISTRIBUTED REPRESENTATION; AMPLITUDE-MODULATION; INFERIOR COLLICULUS; FUNCTIONAL-ANATOMY; MAMMALIAN COCHLEA; CEREBRAL-CORTEX; STRIATE CORTEX; SINGLE NEURONS AB Existing studies have demonstrated interfield differences in functional organizations and neuronal responsive properties at a single neuron level in the auditory cortex, suggesting complicated encoding of sound frequency and intensity. The objective of present work is, by characterizing cortical auditory evoked potentials (AEPs), to bridge neural characteristics between a single neuron and field levels and to identify the interfield differences in the auditory cortex specifically in terms of spatial representation, which will be useful in guiding future unit studies. The AEP mapping found that each of auditory fields, which could be identified by a different tonotopic representation, showed interfield differences in an intensity-dependent spatial change, amplitude, latency, and amplitude-SPL (sound pressure level) function. These results also showed that many aspects of cortical representation were based on the cochlear properties, yet some were inconsistent. The intensity-dependent shift of activation in AI paralleled the tonotopic axis, which was similar to the place code in cochlea, while the shift in AAF and VAF did not parallel. Nevertheless, the amplitude-SPL function suggested that an underlying mechanism of all these shifts can be a compressive nonlinearity to CF tone, which is possibly formed in the cochlea and still preserved in the cortex. These results suggest that each field modifies the representation to handle a different aspect of sound information, which can be better analyzed than the cochlear representation. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tokyo, Grad Sch Engn, Dept Engn Synth, Bunkyo Ku, Tokyo 1138656, Japan. Univ Tokyo, Grad Sch Informat Sci & Technol, Dept Mechanoinformat, Bunkyo Ku, Tokyo 1138656, Japan. Univ Tokyo, Grad Sch Med, Dept Otolaryngol & Head & Neck Surg, Bunkyo Ku, Tokyo 1138656, Japan. RP Takahashi, H (reprint author), Univ Tokyo, Grad Sch Engn, Dept Engn Synth, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan. EM hiro@hnl.u-tokyo.ac.jp CR AZIZI SA, 1985, EXP BRAIN RES, V59, P36 BARTH DS, 1990, J NEUROPHYSIOL, V64, P1527 BARTH DS, 1991, BRAIN RES, V565, P109, DOI 10.1016/0006-8993(91)91741-I Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y Covey E, 1996, J NEUROSCI, V16, P3009 DI S, 1992, J NEUROPHYSIOL, V68, P425 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 EGGARMONT JJ, 1996, AUDIT NEUROSCI, V2, P79 Frien A, 2000, EUR J NEUROSCI, V12, P1466, DOI 10.1046/j.1460-9568.2000.00026.x Gray CM, 1995, J NEUROSCI METH, V63, P43, DOI 10.1016/0165-0270(95)00085-2 Heil P, 1998, CEREB CORTEX, V8, P125, DOI 10.1093/cercor/8.2.125 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Heil P, 2003, P NATL ACAD SCI USA, V100, P6151, DOI 10.1073/pnas.1030017100 Heil P, 1997, J NEUROPHYSIOL, V77, P2626 Heil P, 1997, J NEUROPHYSIOL, V77, P2642 HORIKAWA J, 1988, P JPN ACAD B-PHYS, V64, P260, DOI 10.2183/pjab.64.260 Kaas JH, 1999, CURR OPIN NEUROBIOL, V9, P164, DOI 10.1016/S0959-4388(99)80022-1 KAGA K, 1980, ELECTROEN CLIN NEURO, V50, P254, DOI 10.1016/0013-4694(80)90153-4 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 KREIG WJS, 1946, J COMP NEUROL, V84, P221 KREIG WJS, 1946, J COMP NEUROL, V84, P277 Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5 Ohl FW, 2000, J NEUROPHYSIOL, V83, P3123 PATTERSON HA, 1976, ANTROGRADE DEGENERAT PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 PHILLIPS DP, 1982, BRAIN RES, V248, P237, DOI 10.1016/0006-8993(82)90581-9 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 Robles L, 2001, PHYSIOL REV, V81, P1305 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 Shi CJ, 1997, J COMP NEUROL, V382, P153 STEINSCHNEIDER M, 1992, ELECTROEN CLIN NEURO, V84, P196, DOI 10.1016/0168-5597(92)90026-8 SUGA N, 1982, J NEUROPHYSIOL, V47, P225 Takahashi H, 2004, NEUROREPORT, V15, P2061, DOI 10.1097/00001756-200409150-00013 Takahashi H, 2004, NEUROREPORT, V15, P1565, DOI 10.1097/01.wnr.0000134848.63755.5c Takahashi H, 2005, NEUROREPORT, V16, P137, DOI 10.1097/00001756-200502080-00013 Takahashi H, 2003, IEEE T BIO-MED ENG, V50, P510, DOI 10.1109/TBME.2003.809483 TANIGUCHI I, 1993, NEUROSCI LETT, V151, P178, DOI 10.1016/0304-3940(93)90015-D TUNTURI AR, 1952, AM J PHYSIOL, V168, P712 Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3 Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 Zilles K., 1985, CORTEX RAT STEREOTAX NR 50 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 9 EP 23 DI 10.1016/j.heares.2005.05.014 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500002 PM 16213681 ER PT J AU Zeftawi, MS AF Zeftawi, MS TI MMN to natural Arabic CV syllables: 2-cross language study SO HEARING RESEARCH LA English DT Article DE MMN; Arabic; phonetic; speech processing ID MISMATCH NEGATIVITY MMN; HUMAN AUDITORY-CORTEX; SPEECH SOUNDS; HUMAN BRAIN; COGNITIVE NEUROSCIENCE; MEMORY TRACES; REPRESENTATION; PERCEPTION; POTENTIALS; PLASTICITY AB Mismatch negativity response parameters; latency, amplitude, and duration - to natural Arabic and natural English CV syllables - were obtained from normal-hearing adult Egyptians, in two experiments. In the first experiment, MMN was obtained in response to English CV syllable paradigms (Ba-Wa) and (Ga-Da) differing in formant duration and start of third formant, respectively. In the second experiment, MMN response for Arabic paradigm (Baa-Waa), English paradigm (Ba-Wa), and for Arabic-English paradigm (Waa-Wa) was obtained. Results revealed that the three levels of speech representation; acoustic, phonetic and phonologic could be probed preattentatively by MMN. The acoustic properties of speech signal are processed earlier than the phonetic and phonologic properties. (c) 2005 Elsevier B.V. All rights reserved. C1 Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt. RP Zeftawi, MS (reprint author), Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt. EM m.samir@medscape.com CR Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Binder JR, 1997, J NEUROSCI, V17, P353 Dehaene-Lambertz G, 2000, J COGNITIVE NEUROSCI, V12, P635, DOI 10.1162/089892900562390 Dehaene-Lambertz G, 1998, NEUROREPORT, V9, P1885, DOI 10.1097/00001756-199806010-00040 DehaeneLambertz G, 1997, NEUROREPORT, V8, P919, DOI 10.1097/00001756-199703030-00021 Gage N, 1998, BRAIN RES, V814, P236, DOI 10.1016/S0006-8993(98)01058-0 Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027 Khattab G., 2000, LEEDS WORKING PAPERS, V8, P95 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KRAUS N, 1994, AM J AUDIOL, V94, P39 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 Lutkenhoner B, 2001, AUDIOL NEURO-OTOL, V6, P263, DOI 10.1159/000046132 MAISTE AC, 1995, EAR HEARING, V16, P68, DOI 10.1097/00003446-199502000-00006 Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271 Menning H, 2002, LEARN MEMORY, V9, P253, DOI 10.1101/lm.49402 Moller A.R., 2000, HEARING ITS PHYSL PA Musiek FE, 2000, AUDIOLOGY DIAGNOSIS, P45 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1995, EAR HEARING, V16, P6 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X Naatanen R, 2001, PSYCHOPHYSIOLOGY, V38, P1, DOI 10.1017/S0048577201000208 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 Paavilainen P, 2001, NEUROSCI LETT, V301, P179, DOI 10.1016/S0304-3940(01)01635-4 Phillips C, 2001, COGNITIVE SCI, V25, P711, DOI 10.1016/S0364-0213(01)00049-0 Phillips C., 1995, MIT WORKING PAPERS L, V26, P125 Phillips C, 2000, J COGNITIVE NEUROSCI, V12, P1038, DOI 10.1162/08989290051137567 PHILLIPS C, 1997, MPEG STUDIES VOWEL P Pulvermuller F, 2001, NEUROIMAGE, V14, P607, DOI 10.1006/nimg.2001.0864 Rivera-Gaxiola M, 2000, BEHAV BRAIN RES, V112, P1, DOI 10.1016/S0166-4328(00)00218-7 Rivera-Gaxiola M, 2000, BEHAV BRAIN RES, V111, P13, DOI 10.1016/S0166-4328(00)00139-X SALVI R, 2000, AUDIOLOGY DIAGNOSIS, P19 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 SHARMA A, 1993, ELECTROEN CLIN NEURO, V88, P64, DOI 10.1016/0168-5597(93)90029-O Shtyrov Y, 2002, NEUROREPORT, V13, P521, DOI 10.1097/00001756-200203250-00033 Steinschneider M, 1999, J NEUROPHYSIOL, V82, P2346 Tiitinen H, 1999, COGNITIVE BRAIN RES, V8, P355, DOI 10.1016/S0926-6410(99)00028-2 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 Tremblay KL, 2002, J SPEECH LANG HEAR R, V45, P564, DOI 10.1044/1092-4388(2002/045) Winkler I, 1999, COGNITIVE BRAIN RES, V7, P357, DOI 10.1016/S0926-6410(98)00039-1 Zeftawi MS, 2004, HEARING RES, V198, P69, DOI 10.1016/j.heares.2004.07.003 ZHANG Y, 2000, 12 INT C BIOM ESP FI NR 43 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 24 EP 29 DI 10.1016/j.heares.2005.06.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500003 PM 16055287 ER PT J AU Lyzenga, J Carlyon, RP Moore, BCJ AF Lyzenga, J Carlyon, RP Moore, BCJ TI Dynamic aspects of the continuity illusion: Perception of level and of the depth, rate, and phase of modulation SO HEARING RESEARCH LA English DT Article DE modulation rate; modulation depth; modulation phase; continuity illusion ID FREQUENCY-MODULATION; AMPLITUDE-MODULATION; PERCEIVED CONTINUITY; DISCRIMINATION; TONES; CARRIERS; PITCH; COHERENCE; SOUNDS; GLIDES AB The perception of modulation of a tone interrupted by a noise burst was investigated. The tone and its modulation were perceived as continuing through the noise. In experiment 1, subjects rated the similarity of an uninterrupted tone and a tone interrupted by noise, in terms of the perceived level and modulation depth of the sinusoidal carrier. The values of these parameters in the central portion of the uninterrupted tone were systematically varied. Both amplitude and frequency modulation (AM and FM) were used. The results indicated that the perceived level and modulation depth of the carrier did not change greatly during the noise burst. When the modulation rate differed before and after the noise burst, the modulation-rate transition was perceived to occur near the end of the noise burst for the FM stimuli. Hence, for these stimuli, the continuity illusion appears to be dominated by the portion of the tone before, rather than after, the interruption. Results for the AM stimuli showed a non-significant trend in the same direction. Experiment 2 used forced-choice tasks to evaluate the ability to detect a change in the ongoing phase of AM and FM following interruption by a noise burst. The results confirmed earlier findings for FM tones, and extended them to AM tones, showing that listeners lost track of the phase of the modulation, even though the modulation was perceived as continuous. (c) 2005 Elsevier B.V. All rights reserved. C1 MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England. Univ Cambridge, Dept Expt Psychol, Cambridge CB3 3EB, England. RP Lyzenga, J (reprint author), Vrije Univ Amsterdam, Med Ctr, Dept ENT Audiol, Boelelaan 1117, NL-1081 HV Amsterdam, Netherlands. EM j.lyzenga@vume.nl RI Carlyon, Robert/A-5387-2010; Moore, Brian/I-5541-2012 CR Bregman AS., 1990, AUDITORY SCENE ANAL CARLYON RP, 1991, J ACOUST SOC AM, V89, P329, DOI 10.1121/1.400468 CARLYON RP, 2004, J ACOUST SOC AM, V166, P3629 CARLYON RP, 1994, J ACOUST SOC AM, V95, P949, DOI 10.1121/1.410012 CARLYON RP, 1994, J ACOUST SOC AM, V95, P968, DOI 10.1121/1.410013 Carlyon RP, 2005, AUDITORY SIGNAL PROCESSINGP: PHYSIOLOGY, PSYCHOACOUSTICS, AND MODELS, P185 CIOCCA V, 1987, PERCEPT PSYCHOPHYS, V42, P476, DOI 10.3758/BF03209755 Creelman C. D., 1991, DETECTION THEORY USE Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 FANTINI DA, 2002, 25 MIDW RES M ASS RE Furukawa S, 1996, J ACOUST SOC AM, V100, P2299, DOI 10.1121/1.417939 Furukawa S, 1997, J ACOUST SOC AM, V101, P1632, DOI 10.1121/1.418147 Gockel H, 2001, J ACOUST SOC AM, V109, P701, DOI 10.1121/1.1342073 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 KLUENDER KR, 1992, PERCEPT PSYCHOPHYS, V51, P231, DOI 10.3758/BF03212249 LEE JM, 1994, J ACOUST SOC AM, V96, P2140, DOI 10.1121/1.410156 Lemanska J., 2002, Archives of Acoustics, V27 Lyzenga J, 2005, J ACOUST SOC AM, V117, P1314, DOI 10.1121/1.1856251 Lyzenga J, 2004, J ACOUST SOC AM, V116, P491, DOI 10.1121/1.1756616 MILLER GA, 1950, J ACOUST SOC AM, V22, P167, DOI 10.1121/1.1906584 MOORE BCJ, 1983, J ACOUST SOC AM, V74, P750, DOI 10.1121/1.389861 Plack CJ, 2000, J ACOUST SOC AM, V108, P1162, DOI 10.1121/1.1287022 PLOMP R, 1982, PSYCHOACOUSTICS MUSI SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 Sek A, 2000, J ACOUST SOC AM, V107, P1598, DOI 10.1121/1.428444 STRICKLAND EA, 1989, J ACOUST SOC AM, V86, P2160, DOI 10.1121/1.398476 THURLOW W, 1957, AM J PSYCHOL, V70, P653, DOI 10.2307/1419466 WARREN RM, 1988, J ACOUST SOC AM, V84, P1338, DOI 10.1121/1.396632 WARREN RM, 1972, SCIENCE, V176, P1149, DOI 10.1126/science.176.4039.1149 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 NR 30 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 30 EP 41 DI 10.1016/j.heares.2005.07.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500004 PM 16125887 ER PT J AU Simpson, A McDermott, HJ Dowell, RC AF Simpson, A McDermott, HJ Dowell, RC TI Benefits of audibility for listeners with severe high-frequency hearing loss SO HEARING RESEARCH LA English DT Article DE high-frequency hearing impairment; hearing aids; cochlear dead regions ID ARTICULATION INDEX PREDICTIONS; COCHLEAR DEAD REGIONS; IMPAIRED LISTENERS; PERCEPTION; SPEECH; MODEL AB A consonant identification test was carried out with 10 hearing-impaired listeners under various low-pass filter conditions. Subjects were also tested for cochlear dead regions with the TEN test. All subjects had moderate-to-severe high-frequency hearing losses. Consonant recognition was tested under conditions in which the speech signals were highly audible to subjects for frequencies up to the low-pass filter cut-off. Extensive dead regions were found for one subject with the TEN test. The remaining subjects may have had dead regions above 3 kHz, because of the severity of their hearing losses, but these could not be demonstrated with the TEN test. Average consonant scores for the subject group improved significantly (p < 0.05) with increasing audibility of high-frequency components of the speech signal. There were no cases of speech perception being reduced with increasing bandwidth. Nine of the subjects showed improvements in scores with increasing audibility, whereas the remaining subject showed little change in scores. For this subject, speech perception results were consistent with the TEN test findings. In general, the results suggest that listeners with severe high-frequency losses are often able to make some use of high-frequency speech cues if these cues can be made audible. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Cooperat Res Ctr Cochelar Implant & Hearing Aid I, Melbourne, Vic 3002, Australia. Univ Melbourne, Bion Ear Inst, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Simpson, A (reprint author), Univ Melbourne, Cooperat Res Ctr Cochelar Implant & Hearing Aid I, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM asimpson@bionicear.org CR Baer T, 2002, J ACOUST SOC AM, V112, P1133, DOI 10.1121/1.1498853 BENTLER RA, 1989, EAR HEARING, V10, P58, DOI 10.1097/00003446-198902000-00010 Byrne D, 2001, J Am Acad Audiol, V12, P37 BYRNE D, 1994, J ACOUST SOC AM, V96, P2108, DOI 10.1121/1.410152 CARHART R, 1959, J SPEECH HEAR DISORD, V24, P330 DUBNO JR, 1982, J SPEECH HEAR RES, V25, P141 DYBALA PD, 2002, J ACOUST SOC AM, V112, P2356 FLETCHER H, 1950, J ACOUST SOC AM, V22, P89, DOI 10.1121/1.1906605 Fletcher H., 1953, SPEECH HEARING COMMU Hogan CA, 1998, J ACOUST SOC AM, V104, P432, DOI 10.1121/1.423247 MARKHAM D, 2002, UCL WORK PROGR, V14, P1 MILLER G, 1955, J ACOUST SOC AM, V27, P623 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102 Moore BCJ, 1998, BRIT J AUDIOL, V32, P317, DOI 10.3109/03005364000000083 Moore BCJ, 2002, J ACOUST SOC AM, V111, P2549, DOI 10.1121/1.1476923 MOORE BCJ, 2000, DIAGNOSIS DEAD REGIO Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 Murray N., 1986, Australian Journal of Audiology, V8 *NAT AC LAB, 2000, SPEECH NOIS HEAR AID Rankovic CM, 2002, J ACOUST SOC AM, V111, P2545, DOI 10.1121/1.1476922 RANKOVIC CM, 1991, J SPEECH HEAR RES, V34, P391 Simpson A, 2005, INT J AUDIOL, V44, P281, DOI 10.1080/14992020500060636 Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905 Stelmachowicz PG, 2001, J ACOUST SOC AM, V110, P2183, DOI 10.1121/1.1400757 THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888 VICKERS DA, 2001, BRIT J AUDIOL, V35, P148 NR 27 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 42 EP 52 DI 10.1016/j.heares.2005.07.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500005 PM 16137848 ER PT J AU Songer, JE Rosowski, JJ AF Songer, JE Rosowski, JJ TI The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla SO HEARING RESEARCH LA English DT Article DE superior canal dehiscence; third-window hypothesis; auditory mechanisms ID HEARING-LOSS; MECHANISMS; EARPHONES; VERTIGO; MODEL AB A superior semicircular canal dehiscence (SCD) is a break or hole in the bony wall of the superior semicircular canal. Patients with SCD syndrome present with a variety of symptoms: some with vestibular symptoms, others with auditory symptoms (including low-frequency conductive hearing loss) and yet others with both. We are interested in whether or not mechanically altering the superior canal by introducing a dehiscence is sufficient to cause the low-frequency conductive hearing loss associated with SCD syndrome. We evaluated the effect of a surgically introduced dehiscence on auditory responses to air-conducted (AC) stimuli in 11 chinchilla ears. Cochlear potential (CP) was recorded at the round-window before and after a dehiscence was introduced. In each ear, a decrease in CP in response to low frequency (<2 kHz) sound stimuli was observed after the introduction of the dehiscence. The dehiscence was then patched with cyanoacrylate glue leading to a reversal of the dehiscence-induced changes in CP. The reversible decrease in auditory sensitivity observed in chinchilla is consistent with the elevated AC thresholds observed in patients with SCD. According to the 'third-window' hypothesis the SCD shunts sound-induced stapes velocity away from the cochlea, resulting in decreased auditory sensitivity to AC sounds. The data collected in this study are consistent with predictions of this hypothesis. (c) 2005 Elsevier B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. Harvard Univ, MIT, Cambridge, MA 02138 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. RP Songer, JE (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA. EM jocelyns@mit.edu; John_Rosowski@meei.harvard.edu CR Brantberg K, 2001, ACTA OTO-LARYNGOL, V121, P68 Carey JP, 2004, OTOL NEUROTOL, V25, P345, DOI 10.1097/00129492-200405000-00024 Carey JP, 2000, ARCH OTOLARYNGOL, V126, P137 Cremer PD, 2000, NEUROLOGY, V55, P1833 DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 Hirvonen TP, 2001, ARCH OTOLARYNGOL, V127, P1331 KIM D, 1980, SOC NEUR ABSTR, V6, P41 Mikulec AA, 2004, OTOL NEUROTOL, V25, P121, DOI 10.1097/00129492-200403000-00007 Minor LB, 2000, AM J OTOL, V21, P9 Minor LB, 1998, ARCH OTOLARYNGOL, V124, P249 Minor LB, 2003, OTOL NEUROTOL, V24, P270, DOI 10.1097/00129492-200303000-00023 RAVICZ M, 2001, 24 MIDW M ASS RES OT, P62 RAVIRAJAN CT, 1992, LUPUS, V1, P157, DOI 10.1177/096120339200100307 ROSOWSKI J, 1994, SPRINGER HDB AUDITOR, P172 Rosowski JJ, 2004, OTOL NEUROTOL, V25, P323, DOI 10.1097/00129492-200405000-00021 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Sohmer H, 2004, HEARING RES, V187, P105, DOI 10.1016/S0378-5955(03)00335-6 Songer JE, 2004, PROCEEDINGS OF THE 3RD SYMPOSIUM ON MIDDLE EAR MECHANICS IN RESEARCH AND OTOLOGY, P234 VONBEKESY G, 1982, EXPT HEARING Voss SE, 2000, J ACOUST SOC AM, V107, P1548, DOI 10.1121/1.428440 Voss SE, 2000, EAR HEARING, V21, P265, DOI 10.1097/00003446-200008000-00001 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 22 TC 34 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 53 EP 62 DI 10.1016/j.heares.2005.07.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500006 PM 16150562 ER PT J AU Brimijoin, WO O'Neill, WE AF Brimijoin, WO O'Neill, WE TI On the prediction of sweep rate and directional selectivity for FM sounds from two-tone interactions in the inferior colliculus SO HEARING RESEARCH LA English DT Article DE auditory midbrain; frequency modulation; spectrotemporal receptive field; mustached bat; neural delay lines; FM models; temporal processing ID PRIMARY AUDITORY-CORTEX; FREQUENCY-MODULATED STIMULI; COMBINATION-SENSITIVE NEURONS; MEDIAL GENICULATE-BODY; ECHO-LOCATING BATS; MOUSTACHED BAT; SPECTRAL INTEGRATION; RESPONSE PROPERTIES; COCHLEAR NUCLEUS; SINGLE UNITS AB Two-tone stimuli have traditionally been used to reveal regions of inhibition in auditory spectral receptive fields, particularly for neurons with low spontaneous rates. These techniques reveal how different frequencies excite or suppress the response to an excitatory frequency of a cell, but have often been assessed at a fixed masker-probe time interval. We used a variation of this methodology to determine whether two-tone spectrotemporal interactions can account for rate-dependent directional selectivity for frequency modulations (FM) in the mustached bat inferior colliculus (IC). First, we quantified the response to upward and downward sweeping, linear, fixed-bandwidth FM tones centered at a unit's characteristic frequency (CF) at 6 sweep durations ranging from 2 to 64 ins. Then, to examine how responses to instantaneous frequencies contained within the sweeps might interact in time, we varied the frequency and relative onset of a brief (4 ms) "conditioner" tone paired with a fixed 4-ms CF probe tone. We constructed "conditioned response areas" (CRA) depicting regions of suppression and facilitation of the probe tone caused by the conditioning tone. We classified the CRAs as predominantly excitatory (40.9%), inhibitory (22.7%), or mixed (36.4%). To generate FM response predictions, the CRAs were multiplied with spectrograms of the same sweeps used to assess response to FM. The predictions of FM rate and directionality were accurate by our criteria in approximately 20% of units. Conversely, the CRAs from the remaining units failed to predict FM responses as accurately, suggesting that most IC units respond differently to FM sweeps than they do to tone-pairs matched to the instantaneous frequencies contained in those sweeps. The implications of these results for models of FM directionality are discussed. (c) 2005 Elsevier B.V. All rights reserved. C1 Ctr Navigat & Commun Sci, Rochester, NY 14642 USA. Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. RP O'Neill, WE (reprint author), Ctr Navigat & Commun Sci, 601 Elmwood Ave, Rochester, NY 14642 USA. EM william_oneill@urmc.rochester.edu CR BODENHAMER RD, 1979, BRAIN RES, V171, P530, DOI 10.1016/0006-8993(79)91057-6 Brand A, 2000, J NEUROPHYSIOL, V84, P1790 BRITT R, 1976, J NEUROPHYSIOL, V39, P179 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brosch M, 1999, J NEUROPHYSIOL, V82, P1542 Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155 CASSEDAY JH, 1992, J COMP NEUROL, V319, P34, DOI 10.1002/cne.903190106 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Covey E, 1996, J NEUROSCI, V16, P3009 DAVIS KA, 1995, J NEUROSCI METH, V57, P107, DOI 10.1016/0165-0270(94)00146-8 EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 ERULKAR SD, 1968, J NEUROPHYSIOL, V31, P537 Faure PA, 2003, J NEUROSCI, V23, P3052 FUZESSERY ZM, 1994, J NEUROPHYSIOL, V72, P1061 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Gordon M, 2000, J COMP NEUROL, V426, P165, DOI 10.1002/1096-9861(20001016)426:2<165::AID-CNE1>3.0.CO;2-I Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 HEIL P, 1992, J COMP PHYSIOL A, V171, P583 Heil P, 1998, J NEUROPHYSIOL, V79, P3041 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W Heil P, 1997, Acta Otolaryngol Suppl, V532, P99 KANWAL JS, 1994, J ACOUST SOC AM, V96, P1229, DOI 10.1121/1.410273 KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513 Leroy SA, 2000, J NEUROSCI, V20, P8533 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 MITTMANN DH, 1995, HEARING RES, V90, P185, DOI 10.1016/0378-5955(95)00164-X Nuding SC, 1999, HEARING RES, V131, P89, DOI 10.1016/S0378-5955(99)00023-4 OLSEN JF, 1991, J NEUROPHYSIOL, V65, P1254 ONEILL WE, 1985, J COMP PHYSIOL A, V157, P797, DOI 10.1007/BF01350077 O'Neill WE, 2002, J NEUROPHYSIOL, V88, P172, DOI 10.1152/jn.00966.2001 ONEILL WE, 2003, ASS RES OTOLARYNGOLO, P26 POON PWF, 1992, EXP BRAIN RES, V91, P94 Rall W., 1964, NEURAL THEORY MODELI, P73 RUFF PI, 1987, BIOL CYBERN, V57, P147, DOI 10.1007/BF00364147 SCHULLER G, 1986, J NEUROSCI METH, V18, P339, DOI 10.1016/0165-0270(86)90022-1 SEGEV I, 1992, TRENDS NEUROSCI, V15, P414, DOI 10.1016/0166-2236(92)90003-Q Segev I, 1998, TRENDS NEUROSCI, V21, P453, DOI 10.1016/S0166-2236(98)01327-7 SHANNONHARTMAN S, 1992, HEARING RES, V61, P179, DOI 10.1016/0378-5955(92)90049-S SUGA N, 1965, J PHYSIOL-LONDON, V179, P26 Suga N., 1973, BASIC MECH HEARING, P675 SUGA N, 1965, J PHYSIOL-LONDON, V181, P671 SUGA N, 1974, J EXP BIOL, V61, P379 SUGA N, 1973, J ACOUST SOC AM, V54, P174, DOI 10.1121/1.1913561 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Tian B, 1998, J NEUROPHYSIOL, V79, P2629 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 46 TC 15 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 63 EP 79 DI 10.1016/j.heares.2005.07.005 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500007 PM 16263230 ER PT J AU Gazzaz, B Weil, D Rais, L Akhyat, O Azeddoug, H Nadifi, S AF Gazzaz, B Weil, D Rais, L Akhyat, O Azeddoug, H Nadifi, S TI Autosomal recessive and sporadic deafness in Morocco: High frequency of the 35delG GJB2 mutation and absence of the 342-kb GJB6 variant SO HEARING RESEARCH LA English DT Article DE deafness; ARNSHL; sporadic; GJB2 and GJB6; Morocco ID CONNEXIN 26 GENE; SENSORINEURAL HEARING-LOSS; PRELINGUAL DEAFNESS; CARRIER FREQUENCY; POPULATION; PREVALENCE; IMPAIRMENT; FORM AB Deafness is a heterogeneous disorder showing different pattern of inheritance and involving a multitude of different genes. Mutations in the gene, GJB2 Gap junction type 1), encoding the gap junction protein connexin-26 on chromosome 13q11 may be responsible for up 50% of autosomal recessive nonsyndromic hearing loss cases (ARNSHL), and for 15-30% of sporadic cases. However, a large proportion (10-42%) of patients with GJB2 has only one GJB2 mutant allele. Recent reports have suggested that a 342-kb deletion truncating the GJB6 gene (encoding connexin-30), was associated with ARNSHL through either homozygous deletion of Cx30, or digenic inheritance of a Cx30 deletion and a Cx26 mutation in trans. Because mutations in Connexin-26 (Cx26) play an important role in ARNSHL and that distribution pattern of GJB2 variants differs considerably among ethnic groups, our objective was to find out the significance of Cx26 mutations in Moroccan families who had hereditary and sporadic deafness. One hundred and sixteen families with congenital deafness (including 38 multiplex families, and 78 families with sporadic cases) were included. Results show that the prevalence of the 35delG mutation is 31.58% in the family cases and 20.51% in the sporadic cases. Further screening for other GJB2 variants demonstrated the absence of other mutations; none of these families had mutations in exon 1 of GJB2 or the 342-kb deletion of GJB6. Thus, screening of the 35delG in the GJB2 gene should facilitate routinely used diagnostic for genetic counselling in Morocco. (c) 2005 Elsevier B.V. All rights reserved. C1 Fac Med & Pharm, Med Genet Lab, Casablanca, Morocco. Fac Sci Ain Chock, Mol Biol Lab, Casablanca, Morocco. CHU Ibnou Rochd, Dept Ophthalmol, Casablanca, Morocco. Inst Pasteur, Unite Genet Deficits Sensoriels, Paris, France. Fac Sci Ibn Zohr, Mol Biol Lab, Agadir, Morocco. RP Nadifi, S (reprint author), Fac Med & Pharm, Med Genet Lab, Casablanca, Morocco. EM s.nadifi@caramail.com CR Antoniadi T, 2000, HUM MUTAT, V16, P7, DOI 10.1002/1098-1004(200007)16:1<7::AID-HUMU2>3.0.CO;2-A Baris I, 2001, CLIN GENET, V60, P452, DOI 10.1034/j.1399-0004.2001.600608.x Ben Arab S, 2000, CLIN GENET, V57, P439, DOI 10.1034/j.1399-0004.2000.570607.x Brobby GW, 1998, NEW ENGL J MED, V338, P548, DOI 10.1056/NEJM199802193380813 CALVO J, 2002, CONNEXINES DEAFNESS Cohen E.S., 1999, AM J MED GENET, V89, P130 Cohen M.M., 1995, HEREDITARY HEARING L, P9 del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1 Fuse Y, 1999, NEUROREPORT, V10, P1853, DOI 10.1097/00001756-199906230-00010 Gabriel H, 2001, Hum Mutat, V17, P521, DOI 10.1002/humu.1138 Gasmelseed Nagla M A, 2004, Hum Mutat, V23, P206, DOI 10.1002/humu.9216 Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406 GUILFORD P, 1994, NAT GENET, V6, P24, DOI 10.1038/ng0194-24 Hamelmann C, 2001, Hum Mutat, V18, P84, DOI 10.1002/humu.1156 Kenneson A, 2002, GENET MED, V4, P258, DOI 10.1097/01.GIM.0000020750.60733.CA Lench NJ, 1998, J MED GENET, V35, P151, DOI 10.1136/jmg.35.2.151 Liu GP, 2000, INT J SYST SCI, V31, P63, DOI 10.1080/002077200291460 Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945 Loffler J, 2001, EUR J HUM GENET, V9, P226, DOI 10.1038/sj.ejhg.5200607 Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103 Mueller RF, 1999, INT J PEDIATR OTORHI, V50, P3, DOI 10.1016/S0165-5876(99)00242-6 Murgia A, 1999, J MED GENET, V36, P829 Mustapha M, 2001, J Med Genet, V38, pE36, DOI 10.1136/jmg.38.10.e36 NADOL JB, 1993, NEW ENGL J MED, V329, P1092, DOI 10.1056/NEJM199310073291507 Pampanos A, 2002, INT J PEDIATR OTORHI, V65, P101, DOI 10.1016/S0165-5876(02)00177-5 Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023 Prasad S, 2000, HUM MUTAT, V16, P502 RABIONET R, 2002, CONNEXINES DEAFNESS RAYMOND M, 1995, J HERED, V86, P248 Rothrock CR, 2003, HUM GENET, V113, P18, DOI 10.1007/s00439-003-0944-2 RUAZIDIN S, 2000, NAT GENET, V26, P431 Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009 Storm K, 1999, HUM MUTAT, V14, P263, DOI 10.1002/(SICI)1098-1004(1999)14:3<263::AID-HUMU10>3.0.CO;2-X TEKIN M, 2000, HUM GENET, V106, P399 Van Camp G, 2003, HEREDITARY HEARING L Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273 NR 38 TC 21 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 80 EP 84 DI 10.1016/j.heares.2005.08.001 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500008 PM 16243461 ER PT J AU Braun, M Chaloupka, V AF Braun, M Chaloupka, V TI Carbamazepine induced pitch shift and octave space representation SO HEARING RESEARCH LA English DT Article DE carbamazepine; medial geniculate nucleus; inferior colliculus; octave mapping; fundamental frequeney fo; pitch ID MEDIAL GENICULATE-BODY; CELLS IN-VITRO; ABSOLUTE-PITCH; INFERIOR COLLICULUS; LAMINAR STRUCTURE; ACTION-POTENTIALS; PERCEPTION; IDENTIFICATION; TRIMIPRAMINE; INHIBITION AB Octave-circular pitch perception, the repetition of pitch scale qualities when surpassing the octave interval, has been observed in behavioral data from humans and monkeys, but the underlying anatomy and physiology is still unknown. Here we analyze octave circularity in a concert pianist with absolute pitch, both under medication with the neurotropic drug carbamazepine (CBZ) and without medication. Analysis of 4619 responses in a pitch identification task revealed an internal tone-scale representation, based on the norm-tone scale re A4 = 440 Hz, with an octave-circular pattern of strongly and weakly represented tones. CBZ caused a global down-shift of pitch (ca. 1 semitone at 500 Hz), but no down-shift of the octave-circular pattern of tone characteristics. This pattern was similar in the six tested octave ranges (32.7-2093 Hz), both under the control and the CBZ condition. Pattern repetition always occurred at octave intervals and did not reflect the stretched octaves of piano tuning. The results indicate that CBZ influences pitch detection peripheral of an octave-circular pitch representation. Thus they support previous evidence for pitch detection in the auditory midbrain and for octave-circular pitch mapping in the auditory thalamus. (c) 2005 Elsevier B.V. All rights reserved. C1 Neurosci Music, S-67195 Klassbol, Sweden. Univ Washington, Dept Phys, Seattle, WA 98195 USA. Univ Washington, Sch Music, Seattle, WA 98195 USA. RP Braun, M (reprint author), Neurosci Music, Gansbyn 14, S-67195 Klassbol, Sweden. EM nombraun@telia.com CR BEAUCHAMP G, 1992, NEUROPHARMACOLOGY, V31, P229, DOI 10.1016/0028-3908(92)90172-L Braun M, 2000, HEARING RES, V145, P130, DOI 10.1016/S0378-5955(00)00083-6 Braun M., 2001, ACOUST RES LETT, V2, P85, DOI 10.1121/1.1376728 Braun M, 1999, HEARING RES, V129, P71, DOI 10.1016/S0378-5955(98)00223-8 Braun M., 2002, Acoustics Research Letters Online, V3, DOI 10.1121/1.1472336 Cetas JS, 2003, J COMP NEUROL, V458, P307, DOI 10.1002/cne.10595 Cetas JS, 2002, J COMP NEUROL, V445, P78, DOI 10.1002/cne.10164 Cetas JS, 2001, HEARING RES, V155, P113, DOI 10.1016/S0378-5955(01)00257-X CHALOUPKA V, 1994, J ACOUST SOC AM, V96, P145, DOI 10.1121/1.411437 CHALOUPKA V, 1992, J ACOUST SOC AM, V91, P2436, DOI 10.1121/1.403148 DEMANY L, 1991, J ACOUST SOC AM, V90, P3019, DOI 10.1121/1.401776 DEMANY L, 1988, J ACOUST SOC AM, V83, P687, DOI 10.1121/1.396164 DEMANY L, 1990, J ACOUST SOC AM, V88, P2126, DOI 10.1121/1.400109 Fujimoto A, 2004, J CLIN NEUROSCI, V11, P69, DOI 10.1016/S0967-5868(03)00068-7 GALAZYUK AV, 2001, J NEUROSCI, V21, P1 HIROSE G, 1990, ELECTROEN CLIN NEURO, V75, P543, DOI 10.1016/0013-4694(90)90140-F IMIG TJ, 1985, J NEUROPHYSIOL, V53, P309 JAPARIDZE G, 1993, EPILEPSIA, V34, P1105, DOI 10.1111/j.1528-1157.1993.tb02141.x Koerner C, 2003, PHARMACOPSYCHIATRY, V36, P241 Konno S, 2003, INTERNAL MED, V42, P880, DOI 10.2169/internalmedicine.42.880 Kuo CC, 1997, MOL PHARMACOL, V51, P1077 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 LANGNER G, 1998, PSYCHOPHYSICAL PHYSL, P277 Langosch JM, 1998, EUR NEUROPSYCHOPHARM, V8, P209, DOI 10.1016/S0924-977X(97)00070-9 LATTARD J, 1993, J ACOUST SOC AM, V94, P46, DOI 10.1121/1.407059 LAVOIE PA, 1994, J PSYCHIATR NEUROSCI, V19, P208 Macdonald RL, 1995, EPILEPSIA, V36, P2 MARTIN DW, 1961, J ACOUST SOC AM, V33, P582, DOI 10.1121/1.1908730 MCLEAN MJ, 1986, J PHARMACOL EXP THER, V238, P727 MIYAZAKI K, 1988, PERCEPT PSYCHOPHYS, V44, P501, DOI 10.3758/BF03207484 MIYAZAKI K, 1989, MUSIC PERCEPT, V7, P1 MIYAZAKI K, 1990, MUSIC PERCEPT, V8, P177 MOREL A, 1980, THESIS U LAUSANNE ZU, P1 MOREST DK, 1965, J ANAT, V99, P143 Rees A, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P239, DOI 10.1007/978-1-4419-8712-9_22 SCHIRRMACHER K, 1993, NEUROPSYCHOBIOLOGY, V27, P176, DOI 10.1159/000118976 Schirrmacher K, 1995, EUR NEUROPSYCHOPHARM, V5, P501, DOI 10.1016/0924-977X(95)00043-O SCHWARZ DWF, 1993, ACTA OTO-LARYNGOL, V113, P266, DOI 10.3109/00016489309135807 SIMPSON J, 1994, MUSIC PERCEPT, V12, P267 Soler F, 2000, J BIOENERG BIOMEMBR, V32, P133, DOI 10.1023/A:1005519312463 Ulrich ML, 2003, J PSYCHIATR NEUROSCI, V28, P115 Walden J, 1992, Eur Neuropsychopharmacol, V2, P455, DOI 10.1016/0924-977X(92)90009-W Wright AA, 2000, J EXP PSYCHOL GEN, V129, P291, DOI 10.1037//0096-3445.129.3.291 Yang YC, 2002, MOL PHARMACOL, V62, P1228, DOI 10.1124/mol.62.5.1228 Yoshikawa H, 2003, BRAIN DEV-JPN, V25, P127, DOI 10.1016/S0387-7604(02)00155-9 NR 45 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 85 EP 92 DI 10.1016/j.heares.2005.05.015 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500009 PM 16181754 ER PT J AU Shwinska-Kowalska, M Rzadzinska, A Rajkowska, E Malczyk, M AF Shwinska-Kowalska, M Rzadzinska, A Rajkowska, E Malczyk, M TI Expression of bFGF and NGF and their receptors in chick's auditory organ following overexposure to noise SO HEARING RESEARCH LA English DT Article DE mRNA; hair cells; regeneration; immunohistochemistry; polyclonal antibody anti-CRF; polyclonal anti-tyrosine kinase antibody ID FIBROBLAST-GROWTH-FACTOR; HAIR CELL REGENERATION; AVIAN INNER-EAR; ACOUSTIC TRAUMA; NEUROTROPHIC FACTOR; MESSENGER-RNAS; IN-VITRO; POTENTIAL ROLE; RAT COCHLEA; BASIC FGF AB Growth factors are known to activate signaling cascades for DNA replication; they participate in the regulation of cell differentiation and are required as positive signals for cell survival. Thus, many of them may be regarded as potential candidates stimulating regeneration processes in the inner ear. We analyzed the expression of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) and their receptor (bFGFR and NGFR)-like immunoreactivity in chick basilar papillae, along with bFGF and NGF mRNA expression. The evaluation was made 1 and 5 days after exposure to wide-band noise with two increasing levels of acoustic energy. For both factors, the immunoreactivity was shown predominantly in the middle part of basilar papilla, in noise-exposed, but not control birds. It was localized in the cytoplasm of hair cells, nuclei of supporting cells and cytoplasm of ganglion cells. Strong immunoreactivity of bFGFR and NGFR was found both in control and noise-exposed animals, with the cell localization similar to that of growth factors. The increase in mRNA expression for bFGF and NGF was found in noise-exposed animals only after lower exposure to noise, on day 5 after exposure (p < 0.01). A lack of increased expression after higher exposure could be excused by larger damage of hair cells followed by the increase of mRNA for beta-actin to which the results were referred. The results suggest bFGF and NGF involvement in postinjury regeneration of the basilar papilla. (c) 2005 Elsevier B.V. All rights reserved. C1 Nofer Inst Environm Med, Dept Phys Hazards, PL-91348 Lodz, Poland. RP Shwinska-Kowalska, M (reprint author), Nofer Inst Environm Med, Dept Phys Hazards, Teresy St 8, PL-91348 Lodz, Poland. EM marsliw@imp.lodz.pl RI Pawelczyk, Malgorzata/C-9853-2011 CR Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 ADLER HJ, 1995, J NEUROCYTOL, V24, P111, DOI 10.1007/BF01181554 Alvarez IS, 1998, DEV BIOL, V199, P42, DOI 10.1006/dbio.1998.8903 AVILA MA, 1993, DEV BIOL, V159, P266, DOI 10.1006/dbio.1993.1239 Bartlett SE, 1997, NEUROSCI LETT, V227, P87, DOI 10.1016/S0304-3940(97)00318-2 BERND P, 1994, INT J DEV NEUROSCI, V12, P709, DOI 10.1016/0736-5748(94)90051-5 Bernd P, 1999, DEV BRAIN RES, V116, P205, DOI 10.1016/S0165-3806(99)00082-6 BRINDLE NPJ, 1993, CARDIOVASC RES, V27, P1162, DOI 10.1093/cvr/27.7.1162 Chardin S, 1997, INT J DEV NEUROSCI, V15, P497, DOI 10.1016/S0736-5748(96)00106-2 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 Cristobal R, 2002, MOL BRAIN RES, V102, P83, DOI 10.1016/S0169-328X(02)00202-4 Dai CF, 2004, HEARING RES, V187, P1, DOI 10.1016/S0378-5955(03)00277-6 DEHAMER MK, 1994, NEURON, V13, P1083, DOI 10.1016/0896-6273(94)90047-7 Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7 ESCANDON E, 1990, DEV BIOL, V142, P293, DOI 10.1016/0012-1606(90)90350-R GENSBURGER C, 1987, FEBS LETT, V217, P1, DOI 10.1016/0014-5793(87)81230-9 GHOSH A, 1995, SCIENCE, V268, P239, DOI 10.1126/science.7716515 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 GOMEZPINILLA F, 1992, J NEUROSCI, V12, P345 HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H HASHINO E, 1992, P SENDAI S, V2, P63 HOLLEY CM, 2003, INT J PEDIATR OTORHI, V67, pS1 Kajikawa H, 1997, J NEUROCYTOL, V26, P501, DOI 10.1023/A:1018585508713 Kanzaki S, 2002, AUDIOL NEURO-OTOL, V7, P161, DOI 10.1159/000058303 KIMURA N, 1999, ACTA OTOLARYNGOL, V119, P12, DOI 10.1080/00016489950181125 Lee KH, 1996, HEARING RES, V94, P1, DOI 10.1016/0378-5955(95)00220-0 LEFEBVRE PP, 1991, BRAIN RES, V567, P306, DOI 10.1016/0006-8993(91)90809-A LUO L, 1993, HEARING RES, V69, P182 Pickles JO, 1997, DEV NEUROSCI-BASEL, V19, P476, DOI 10.1159/000111245 QUIAN X, 1997, NEURON, V18, P81 RAPHAEL Y, 1992, J NEUROCYTOL, V21, P663, DOI 10.1007/BF01191727 ROBERSON DW, 1995, P ARO ROBERSON DW, 1996, AUDIT NEUROSCI SCHMIDT MF, 1993, DEV BIOL, V158, P228, DOI 10.1006/dbio.1993.1181 Sekiya T, 2003, NEUROSURGERY, V52, P900, DOI 10.1227/01.NEU.0000053509.98561.16 Sliwinska-Kowalska M, 2000, HEARING RES, V148, P197, DOI 10.1016/S0378-5955(00)00154-4 Sukhov RR, 1997, J COMP NEUROL, V383, P123, DOI 10.1002/(SICI)1096-9861(19970630)383:2<123::AID-CNE1>3.0.CO;2-2 UNEMOTO M, 1995, CELL TISSUE RES, V281, P435 WILLIAMS EJ, 1994, DEV BIOL, P1029 Wu DK, 1996, J NEUROSCI, V16, P6454 Yamaguchi N, 2001, Lancet Oncol, V2, P88, DOI 10.1016/S1470-2045(00)00225-4 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C Yokoyama Y, 1997, J NEUROCHEM, V68, P2212 Zhai SQ, 2002, ACTA OTO-LARYNGOL, V122, P370, DOI 10.1080/00016480260000030 Zhai SQ, 2004, ACTA OTO-LARYNGOL, V124, P124, DOI 10.1080/00016480310015939 ZUNIGA A, 1993, DEV BIOL, V157, P110, DOI 10.1006/dbio.1993.1116 NR 47 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 93 EP 103 DI 10.1016/j.heares.2005.08.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500010 ER PT J AU Getzmann, S AF Getzmann, S TI Shifting the onset of a moving sound source: A Frohlich effect in spatial hearing SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 8th Tubinger Perception Conference CY FEB, 2005 CL Tubingen, GERMANY DE spatial hearing; acoustic target; motion perception; Frohlich effect; attention ID AUDIBLE MOVEMENT ANGLE; HORIZONTAL PLANE; LOCALIZATION; ATTENTION; STIMULI; REPULSION; POSITION; AZIMUTH; CONTEXT; SPACE AB When observers are presented with a visual target in motion, they typically remember its onset position to be displaced in the direction of motion. The present study investigated a similar effect in the auditory modality. In a dark anechoic environment, an auditory target (short noise pulses) appeared randomly at a peripheral or a central azimuthal position and moved from left to right or from right to left along the frontal horizontal plane. Relative judgments were made to determine the onset position of motion: Employing a two-alternative forced-choice task, listeners compared the onset position of the target to a 2-s visual reference stimulus presented at the left or right of the auditory onset position. In comparison with stationary targets, the onset positions of moving targets were localized as displaced in the direction of motion. The most prominent displacement occurred when the visual reference stimulus was presented after the auditory motion. With the reference stimulus presented before the auditory motion, the displacement was significantly reduced. Moreover, the displacement was stronger with peripheral than with central onset positions. These findings suggest the existence of a potential analogue of the Frohlich effect in the auditory modality. An auditory spatial attention mechanism is proposed that may have given rise to the observed pattern of results. (c) 2005 Elsevier B.V. All rights reserved. C1 Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany. RP Getzmann, S (reprint author), Ruhr Univ Bochum, Fac Psychol, D-44780 Bochum, Germany. EM Stephan.Getzmann@ruhr-uni-bochum.de CR BALDO MVC, 1995, NATURE, V378, P565, DOI 10.1038/378565a0 Blauert J., 1997, SPATIAL HEARING PSYC Braasch J, 2002, ACTA ACUST UNITED AC, V88, P942 Breitmeyer BG, 2000, PERCEPT PSYCHOPHYS, V62, P1572, DOI 10.3758/BF03212157 Bridgeman B, 1997, PSYCHOL RES-PSYCH FO, V60, P238, DOI 10.1007/BF00419408 CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443 Cox D. R., 1970, ANAL BINARY DATA Frohlich F. W., 1923, Z SINNESPHYSIOL, V54, P58 Kerzel D, 2004, VISION RES, V44, P577, DOI 10.1016/j.visres.2003.10.011 Kerzel D, 2002, EXP BRAIN RES, V145, P340, DOI 10.1007/s00221-002-1126-5 Kirschfeld K, 1999, VISION RES, V39, P3702, DOI 10.1016/S0042-6989(99)00089-9 Lewald J, 2000, BEHAV BRAIN RES, V108, P105, DOI 10.1016/S0166-4328(99)00141-2 Lewald J, 1998, J ACOUST SOC AM, V104, P1586, DOI 10.1121/1.424371 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 MONDOR TA, 1995, J EXP PSYCHOL HUMAN, V21, P387, DOI 10.1037//0096-1523.21.2.387 Musseler J, 2004, VISION RES, V44, P2201, DOI 10.1016/j.visres.2004.04.007 Musseler J, 2002, VIS COGN, V9, P120, DOI 10.1080/13506280143000359 Musseler J, 1998, PERCEPT PSYCHOPHYS, V60, P683, DOI 10.3758/BF03206055 PERROTT DR, 1977, J ACOUST SOC AM, V62, P1463, DOI 10.1121/1.381675 RADEAU M, 1994, CAH PSYCHOL COGN, V13, P3 Sach AJ, 2000, J EXP PSYCHOL HUMAN, V26, P717, DOI 10.1037/0096-1523.26.2.717 Scharf B., 1998, ATTENTION, P75 Sheth BR, 2001, VISION RES, V41, P329, DOI 10.1016/S0042-6989(00)00230-3 Sheth BR, 2000, PERCEPTION, V29, P1279, DOI 10.1068/p3114 SPENCE CJ, 1994, J EXP PSYCHOL HUMAN, V20, P555, DOI 10.1037//0096-1523.20.3.555 STRYBEL TZ, 1992, HUM FACTORS, V34, P267 Teder-Salejarvi WA, 1999, COGNITIVE BRAIN RES, V8, P213, DOI 10.1016/S0926-6410(99)00023-3 Thornton IM, 2002, SPATIAL VISION, V15, P219, DOI 10.1163/15685680252875183 Welch RB, 1986, HDB PERCEPTION HUMAN, V1, P1 Whitney D, 2002, VIS COGN, V9, P139, DOI 10.1080/13506280143000368 NR 30 TC 6 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 104 EP 111 DI 10.1016/j.heares.2005.08.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500011 PM 16213116 ER PT J AU Otto, KJ Rousche, PJ Kipke, DR AF Otto, KJ Rousche, PJ Kipke, DR TI Microstimulation in auditory cortex provides a substrate for detailed behaviors SO HEARING RESEARCH LA English DT Article DE microelectrode; cortical microstimulation; auditory cortex; rat; behavior; discrimination; auditory prosthesis ID HUMAN OCCIPITAL CORTEX; VISUAL AREA MT; INTRACORTICAL MICROSTIMULATION; CORTICAL MICROSTIMULATION; ELECTRICAL-STIMULATION; EYE-MOVEMENTS; PROSTHESIS; PERFORMANCE; DIRECTION; RAT AB Sensory cortical prostheses have potential to aid people suffering from blindness, deafness and other sensory deficits. However, research to date has shown that sensation thresholds via epicortical stimulation are surprisingly large. These thresholds result in potentially deleterious electrical currents, as well as large activation volumes. Large activation volumes putatively limit the corresponding number of independent stimulation channels in a neural prosthesis. In this study, penetrating stimulation of the auditory cortex was tested for its ability to transmit salient information to behaving rat subjects. Here, we show that subjects that were previously trained to discriminate natural stimuli immediately discriminated different microstimulation cues more accurately and with shorter response latencies than the natural stimuli. Additionally, the cortical microstimulation resulted in a generalization gradient across locations within the cortex. The results demonstrate the efficacy of using closely spaced cortical microstimulation to efficiently transmit highly salient and discriminable information to a behaving subject. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Otolaryngol, Ann Arbor, MI 48109 USA. Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA. RP Kipke, DR (reprint author), Univ Michigan, Dept Biomed Engn, 1107 Gerstacker,2200 Bonisteel Blvd, Ann Arbor, MI 48109 USA. EM kjotto@umich.edu; dkipke@umich.edu CR BAK M, 1990, MED BIOL ENG COMPUT, V28, P257, DOI 10.1007/BF02442682 BARTLETT JR, 1980, ACTA NEUROBIOL EXP, V40, P713 BRINDLEY GS, 1968, J PHYSIOL-LONDON, V196, P479 Carmena J.M., 2003, PLOS BIOL, V1, P1, DOI DOI 10.1371/J0URNAL.PBI0.0000042 CELEBRINI S, 1995, J NEUROPHYSIOL, V73, P437 Creelman C. D., 1991, DETECTION THEORY USE DOBELLE WH, 1973, ANN OTO RHINOL LARYN, V82, P445 DOBELLE WH, 1974, J PHYSIOL-LONDON, V243, P553 Gage Gregory J, 2005, J Neural Eng, V2, P52, DOI 10.1088/1741-2560/2/2/006 GREEN DM, 1966, SIGNAL DETECTION THE Groh JM, 1997, J NEUROSCI, V17, P4312 Maynard EM, 1997, ELECTROEN CLIN NEURO, V102, P228, DOI 10.1016/S0013-4694(96)95176-0 Moore T, 2001, P NATL ACAD SCI USA, V98, P1273, DOI 10.1073/pnas.021549498 Normann RA, 1999, VISION RES, V39, P2577, DOI 10.1016/S0042-6989(99)00040-1 Nunez P. L., 1981, ELECT FIELDS BRAIN N Otto Kevin J, 2005, J Neural Eng, V2, P42, DOI 10.1088/1741-2560/2/2/005 Penfield W., 1950, CEREBRAL CORTEX MAN Romo R, 1998, NATURE, V392, P387, DOI 10.1038/32891 Rousche P J, 1999, IEEE Trans Rehabil Eng, V7, P56, DOI 10.1109/86.750552 Rousche PJ, 2003, HEARING RES, V179, P62, DOI 10.1016/S0378-5955(03)00081-9 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 SALZMAN CD, 1992, J NEUROSCI, V12, P2331 SALZMAN CD, 1990, NATURE, V346, P174, DOI 10.1038/346174a0 Scheich H, 2002, AUDIOL NEURO-OTOL, V7, P191, DOI 10.1159/000058309 Schmidt EM, 1996, BRAIN, V119, P507, DOI 10.1093/brain/119.2.507 Serruya MD, 2002, NATURE, V416, P141, DOI 10.1038/416141a Skinner B. F., 1938, BEHAV ORGANISMS EXPT STONEY SD, 1968, J NEUROPHYSIOL, V31, P659 Talwar SK, 2002, NATURE, V417, P37, DOI 10.1038/417037a Taylor DM, 2002, SCIENCE, V296, P1829, DOI 10.1126/science.1070291 Troyk P, 2003, ARTIF ORGANS, V27, P1005, DOI 10.1046/j.1525-1594.2003.07308.x Williams JC, 1999, BRAIN RES PROTOC, V4, P303, DOI 10.1016/S1385-299X(99)00034-3 WISE KD, 1975, IEEE T BIO-MED ENG, VBM22, P212, DOI 10.1109/TBME.1975.324562 NR 33 TC 39 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2005 VL 210 IS 1-2 BP 112 EP 117 DI 10.1016/j.heares.2005.08.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 991EQ UT WOS:000233795500012 PM 16209915 ER PT J AU Kong, WJ Guo, CK Zhang, S Hao, J Wang, YJ Li, ZW AF Kong, WJ Guo, CK Zhang, S Hao, J Wang, YJ Li, ZW TI The properties of ACh-induced BK currents in guinea pig type II vestibular hair cells SO HEARING RESEARCH LA English DT Article DE ACh receptor; type II vestibular hair cells; large conductance; Ca2+-activated K+ currents ID NICOTINIC ACETYLCHOLINE-RECEPTOR; ACTIVATED POTASSIUM CHANNELS; ION-DEPENDENT CONDUCTANCES; CA2+-ACTIVATED K+ CHANNELS; CHAT-LIKE IMMUNOREACTIVITY; HIGH-CALCIUM PERMEABILITY; PROTEIN-KINASE-A; CHOLINERGIC-RECEPTOR; SYNAPTIC-TRANSMISSION; MAMMALIAN COCHLEA AB Molecular biological studies have demonstrated that both muscarinic receptor subtypes and nicotinic receptor subunits were located in mammalian vestibular sensorineural epithelium. However, the functional roles are Still unclear, with the exception of the well-known (alpha 9-containing nicotinic ACh receptor (alpha 9nAChR). In this study, the properties of acetylcholine (ACh)-induced currents were investigated by whole-cell patch clamp technique in isolated type It vestibular hair cells (VHCs II) of guinea pig. VHCs II displayed a sustained, non-inactivating current when extracellular application of ACh. ACh-induced currents restored gradually and it took about 60 s to get a complete recovery. ACh-induced current was not affected by extracellular Na+, but strongly affected by extracellular K+ and Ca2+. Depletion of the intracellular Ca2+ stores by intracellular application of inositol 1,4,5-trisphosphate (IP3) or blocking of the release of intracellular Ca2+ stores by intracellular application of heparin failed to inhibit this current. ACh-induced currents were inhibited by nifedipine, Cd2+, tetraethyl ammonium (TEA), charybdotoxin (CTX), iberiotoxin (IBTX), atropine and d-tubocurarine (DTC), respectively, but not by apamin. In conclusion, ACh stimulates a large conductance, Ca2+-activated K+ Current (BK) in guinea pig VHCs 11 by activation of the influx of Ca2+ ions, which is mediated by an ACh receptor that could not be defined to be the odd-number muscarinic receptor. (c) 2005 Elsevier BY. All rights reserved. C1 Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China. Huazhong Univ Sci & Technol, Tongji Med Coll, Dept Neurobiol, Wuhan, Peoples R China. RP Kong, WJ (reprint author), Huazhong Univ Sci & Technol, Dept Otolaryngol, Union Hosp Tongji Med Coll, Wuhan 430022, Hubei, Peoples R China. EM wjkong889@yahoo.com CR Anderson AD, 1997, BRAIN RES, V778, P409, DOI 10.1016/S0006-8993(97)01121-9 Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x Armstrong CE, 1998, J NEUROSCI, V18, P2962 ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49 ASCHER P, 1979, J PHYSIOL-LONDON, V295, P139 BANKS BEC, 1979, NATURE, V282, P415, DOI 10.1038/282415a0 Blanchet C, 2001, BRAIN RES, V915, P11, DOI 10.1016/S0006-8993(01)02806-2 Blanchet C, 1996, J NEUROSCI, V16, P2574 BRAYDEN JE, 1992, SCIENCE, V256, P532, DOI 10.1126/science.1373909 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELDER CC, 1995, FASEB J, V9, P619 FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4 FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039 FUCHS PA, 1992, J NEUROSCI, V12, P800 GALVEZ A, 1990, J BIOL CHEM, V263, P11075 GHOSH TK, 1988, J BIOL CHEM, V263, P11075 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8 GUIRAMAND J, 1990, BIOCHEM PHARMACOL, V39, P1913, DOI 10.1016/0006-2952(90)90609-O GUO CK, 2000, CHIN J OTORHINOLARYN, V37, P307 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 Hiel H, 1996, BRAIN RES, V738, P347, DOI 10.1016/S0006-8993(96)01046-3 Holt JC, 2001, HEARING RES, V152, P25, DOI 10.1016/S0378-5955(00)00225-2 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 Hu HZ, 1997, NEUROSCIENCE, V77, P535, DOI 10.1016/S0306-4522(96)00451-4 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 Ishiyama A, 1997, AM J OTOL, V18, P648 Jagger DJ, 1999, PFLUG ARCH EUR J PHY, V437, P409, DOI 10.1007/s004240050795 Jagger DJ, 1999, NEUROSCI LETT, V263, P145, DOI 10.1016/S0304-3940(99)00128-7 Jagger DJ, 2000, J PHYSIOL-LONDON, V527, P49, DOI 10.1111/j.1469-7793.2000.t01-1-00049.x KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 Katz E, 2000, HEARING RES, V141, P117, DOI 10.1016/S0378-5955(99)00214-2 KIMITSUKI T, 1994, ACTA OTO-LARYNGOL, V114, P144, DOI 10.3109/00016489409126033 Kong WJ, 1998, HEARING RES, V119, P96, DOI 10.1016/S0378-5955(98)00033-1 KONG WJ, 1994, HEARING RES, V75, P191, DOI 10.1016/0378-5955(94)90070-1 Kong WJ, 2002, HEARING RES, V167, P136, DOI 10.1016/S0378-5955(02)00382-9 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 LIN X, 1995, HEARING RES, V88, P36, DOI 10.1016/0378-5955(95)00096-M LOPEZ I, 1988, NEUROSCIENCE, V25, P13 MCMANUS OB, 1991, J BIOENERG BIOMEMBR, V23, P537, DOI 10.1007/BF00785810 Nenov AP, 1996, HEARING RES, V101, P149, DOI 10.1016/S0378-5955(96)00143-8 OHOEI H, 1985, J PHYSL, V359, P169 Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x RUDY B, 1988, NEUROSCIENCE, V25, P729, DOI 10.1016/0306-4522(88)90033-4 SHIGEMOTO T, 1990, J PHYSIOL-LONDON, V420, P127 SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669 Sridhar TS, 1997, J NEUROSCI, V17, P428 SRIDHAR TS, 1995, J NEUROSCI, V15, P3667 TANABE T, 1987, NATURE, V328, P313, DOI 10.1038/328313a0 Verbitsky M, 2000, NEUROPHARMACOLOGY, V39, P2515, DOI 10.1016/S0028-3908(00)00124-6 VERNINO S, 1992, NEURON, V8, P127, DOI 10.1016/0896-6273(92)90114-S Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 Wackym PA, 1996, CELL BIOL INT, V20, P187, DOI 10.1006/cbir.1996.0023 YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4 NR 59 TC 14 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2005.06.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900001 PM 16005587 ER PT J AU Tadros, SF Frisina, ST Mapes, F Frisina, DR Frisina, RD AF Tadros, SF Frisina, ST Mapes, F Frisina, DR Frisina, RD TI Higher serum aldosterone correlates with lower hearing thresholds: A possible protective hormone against presbycusis SO HEARING RESEARCH LA English DT Article DE aldosterone; hormone; mineralocorticoids; adrenal; age; hearing loss; presbycusis; HINT; otoacoustic emissions; stria vascularis ID CORTICAL COLLECTING DUCT; NA+-K+-ATPASE; MESSENGER-RNA EXPRESSION; QUIET-AGED GERBILS; STRIA VASCULARIS; ION-TRANSPORT; INNER-EAR; TRANSEPITHELIAL VOLTAGE; INDUCED HYPERTENSION; EPITHELIAL-CELLS AB Aldosterone hormone is a mineralocorticoid secreted by adrenal gland cortex and controls serum sodium (Na+) and potassium (K+) levels. Alclosterone has a stimulatory effect on expression of sodium-potassium ATPase (Na, K-ATPase) and sodium-potassium-chloride cotransporter (NKCC) in cell membranes. In the present investigation, the relation between serum aldosterone levels and age-related hearing loss (presbycusis) and the correlation between these levels versus the degree of presbycusis in humans were examined. Serum aldosterone concentrations were compared between normal hearing and presbycusic groups. Pure-tone audiometry, transient evoked otoacoustic emissions (TEOAE), hearing in noise test (HINT) and gap detection were tested for each subject and compared to the serum aldosterone levels. A highly significant difference between groups in serum aldosterone concentrations was found (p = 0.0003, t = 3.95, df = 45). Highly significant correlations between pure-tone thresholds in both right and left ears, and HINT scores versus serum aldosterone levels were also discovered. On the contrary, no significant correlations were seen in the case of TEOAEs and gap detection. We conclude that aldosterone hormone may have a protective effect on hearing in old age. This effect is more peripheral than central, appearing to affect inner hair cells more than outer hair cells. (c) 2005 Elsevier B.V. All rights reserved. C1 Rochester Inst Technol, Int Ctr Hearing & Speech Res, Natl Tech Inst Deaf, Rochester, NY 14623 USA. Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA. RP Frisina, RD (reprint author), Rochester Inst Technol, Int Ctr Hearing & Speech Res, Natl Tech Inst Deaf, 52 Lomb Mem Dr, Rochester, NY 14623 USA. EM rdf@q.ent.rochester.edu CR Azuma H, 2002, ACTA OTO-LARYNGOL, V122, P816, DOI 10.1080/003655402/000028051 BELMIN J, 1994, DRUG AGING, V5, P391 BHUTADA A, 1991, J BIOL CHEM, V266, P10859 Bonvalet J P, 1998, Kidney Int Suppl, V65, pS49 BORG E, 1987, HEARING RES, V30, P111, DOI 10.1016/0378-5955(87)90128-6 CITRON L, 1956, BRIT MED BULL, V12, P101 CRANE MG, 1976, J LAB CLIN MED, V87, P947 CROUCH JD, 1999, J HISTOCHEM CYTOCHEM, V45, P773 Dallos P., 1996, COCHLEA, P1 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Derfoul A, 1998, J BIOL CHEM, V273, P20702, DOI 10.1074/jbc.273.33.20702 Dixon MJ, 1999, HUM MOL GENET, V8, P1579, DOI 10.1093/hmg/8.8.1579 Dorup I, 1997, J ENDOCRINOL, V152, P49, DOI 10.1677/joe.0.1520049 BAUER JH, 1993, DRUG AGING, V3, P238, DOI 10.2165/00002512-199303030-00005 FARMAN N, 1994, AM J PHYSIOL, V266, pC423 FULLER PJ, 1990, ENDOCRINOLOGY, V127, P32 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 Grillo C, 1997, BRAIN RES, V767, P120, DOI 10.1016/S0006-8993(97)00541-6 Gross ND, 2002, LARYNGOSCOPE, V112, P298, DOI 10.1097/00005537-200202000-00018 HALLENGREN B, 1992, AGING-CLIN EXP RES, V4, P341 HASS M, 1994, AM J PHYSIOL, V267, pC869 HAYHURST RA, 1988, AM J PHYSIOL, V254, pF689 HEGSTAD R, 1983, AM J MED, V74, P442, DOI 10.1016/0002-9343(83)90971-3 Itani OA, 2002, AM J PHYSIOL-ENDOC M, V283, pE971, DOI 10.1152/ajpendo.00021.2002 Jiang GR, 2003, HYPERTENSION, V41, P1131, DOI 10.1161/01.HYP.0000066128.04083.CA JONES AW, 1975, CIRC RES, V37, P333 Jones NS, 2000, CLIN OTOLARYNGOL, V25, P511, DOI 10.1046/j.1365-2273.2000.00408.x Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 KORNEL L, 1981, CLIN BIOCHEM, V14, P282, DOI 10.1016/S0009-9120(81)91012-2 Li Sui, 2003, J Huazhong Univ Sci Technolog Med Sci, V23, P306 MARCHANT HJ, 1987, P NIPR S POLAR BIOL, V0001 MARCUS DC, 1986, NEUROBIOLOGY HEARING, P123 MARCUS DC, 1993, HEARING RES, V69, P124, DOI 10.1016/0378-5955(93)90100-F MARCUS DC, 1994, HEARING RES, V73, P101, DOI 10.1016/0378-5955(94)90287-9 Marcus DC, 1999, HEARING RES, V134, P48, DOI 10.1016/S0378-5955(99)00074-X Muller OG, 2003, J AM SOC NEPHROL, V14, P1107, DOI 10.1097/01.ASN.0000061777.67332.77 Naray-Fejes-Toth A, 2000, KIDNEY INT, V57, P1290, DOI 10.1046/j.1523-1755.2000.00964.x Oberleithner H, 2000, CELL PHYSIOL BIOCHEM, V10, P429, DOI 10.1159/000016379 OGUCHI A, 1993, AM J PHYSIOL, V265, pH1167 ONEIL RG, 1990, SEMIN NEPHROL, V10, P365 Pace AJ, 2001, HEARING RES, V156, P17, DOI 10.1016/S0378-5955(01)00263-5 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D Ramirez-Gil JF, 1998, CARDIOVASC RES, V38, P451, DOI 10.1016/S0008-6363(98)00007-8 Ravecca F, 1998, Acta Otorhinolaryngol Ital, V18, P42 RYAN A F, 1991, Molecular and Cellular Neuroscience, V2, P179, DOI 10.1016/1044-7431(91)90011-C Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 SALT AN, 1986, NEUROBIOLOGY HEARING, P109 SALT AN, 1988, PHYSL EAR, P341 Schafer C, 2002, P NATL ACAD SCI USA, V99, P7154, DOI 10.1073/pnas.092140799 SCMIEDT RA, 1996, HEARING RES, V102, P125 SELLICK PM, 1972, PFLUGERS ARCH, V36, P21 SELLICK PM, 1972, PFLUGERS ARCH, V36, P28 SHAHEDI M, 1993, AM J PHYSIOL, V264, pF1021 Shigaev A, 2000, AM J PHYSIOL-RENAL, V278, pF613 SMITH CA, 1954, LARYNGOSCOPE, V64, P141 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 STERKERS O, 1988, PHYSIOL REV, V68, P1083 SWEADNER KJ, 1989, BIOCHIM BIOPHYS ACTA, V988, P185, DOI 10.1016/0304-4157(89)90019-1 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P Therien AG, 2000, AM J PHYSIOL-CELL PH, V279, pC541 Trune DR, 2000, LARYNGOSCOPE, V110, P1902, DOI 10.1097/00005537-200011000-00025 TSUNODA K, 1986, J CLIN ENDOCR METAB, V62, P384 VERREY F, 1987, J CELL BIOL, V104, P1231, DOI 10.1083/jcb.104.5.1231 WADA J, 1979, ARCH OTO-RHINO-LARYN, V225, P79, DOI 10.1007/BF00455206 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 WATTS AG, 1991, P NATL ACAD SCI USA, V88, P7425, DOI 10.1073/pnas.88.16.7425 Weber PC, 2001, LARYNGOSCOPE, V111, P1156, DOI 10.1097/00005537-200107000-00006 WEIDMANN P, 1975, KIDNEY INT, V8, P325, DOI 10.1038/ki.1975.120 WELLING PA, 1993, J BIOL CHEM, V268, P23469 WIENER H, 1993, J MEMBRANE BIOL, V133, P203 Williams JS, 2003, J CLIN ENDOCR METAB, V88, P2364, DOI 10.1210/jc.2003-030490 Zakharieva S, 1982, Vutr Boles, V21, P70 NR 74 TC 14 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 10 EP 18 DI 10.1016/j.heares.2005.05.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900002 PM 16039078 ER PT J AU Hofman, R Segenhout, JM Albers, FWJ Wit, HP AF Hofman, R Segenhout, JM Albers, FWJ Wit, HP TI The relationship of the round window membrane to the cochlear aqueduct shown in three-dimensional imaging SO HEARING RESEARCH LA English DT Article DE round window membrane; cochlear aqueduct; OPFOS; perilymph; flow resistance ID GUINEA-PIG; RECONSTRUCTION; ANATOMY AB The round window membrane and cochlear aqueduct complex in the guinea pig are reconstructed with 3D-imaging, using orthogonal plane fluorescence optical sectioning (OPFOS). The 3D-images show that the periotic duct and the aqueduct are connected to a pouch-like extension of the round window. The function of this may be regulation of aqueduct flow resistance under the influence of a pressure difference between inner ear fluid and middle ear. (c) 2005 Published by Elsevier B.V. C1 Univ Groningen Hosp, Dept Otolaryngol, NL-9700 RB Groningen, Netherlands. RP Hofman, R (reprint author), Univ Groningen Hosp, Dept Otolaryngol, POB 30001, NL-9700 RB Groningen, Netherlands. EM r.hofman@azg.kno.nl CR COTUNGA DFA, 1761, THESIS DUCKERT L, 1974, ORL J OTORHINOLARYNG, V78, P21 Duverney Joseph-Guichard, 1683, TRAITE ORGANE OUIE FEYEN RA, 2004, JARO-J ASSOC RES OTO, V5, P404 Ghiz AF, 2001, HEARING RES, V162, P105, DOI 10.1016/S0378-5955(01)00375-6 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 LAURENSTHALEN EO, 2004, THESIS U GRONINGEN NISHIMURA S, 1981, ORL J OTO-RHINO-LARY, V43, P79 Palva T, 1969, ACTA OTO-LARYNGOL, V246, P1 Spalteholz W, 1914, UEBER DURCHSICHTIGMA Thalen E, 2002, EUR ARCH OTO-RHINO-L, V259, P174, DOI 10.1007/s00405-001-0431-0 TORIYA R, 1991, ACTA OTO-LARYNGOL, V111, P699, DOI 10.3109/00016489109138402 TORIYA R, 1991, ACTA OTO-LARYNGOL, V111, P917, DOI 10.3109/00016489109138430 VOIE AH, 1993, J MICROSC-OXFORD, V170, P229 Voie AH, 1995, COMPUT MED IMAG GRAP, V19, P377, DOI 10.1016/0895-6111(95)00034-8 Voie AH, 2003, HEARING RES, V181, P144, DOI 10.1016/S0378-5955(03)00167-9 Voie AH, 2002, HEARING RES, V171, P119, DOI 10.1016/S0378-5955(02)00493-8 Wit HP, 2003, HEARING RES, V175, P190, DOI 10.1016/S0378-5955(02)00738-4 NR 18 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 19 EP 23 DI 10.1016/j.heares.2005.06.004 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900003 PM 16039079 ER PT J AU Choi, JY Shin, JH Kim, JL Jung, SH Son, EJ Song, MH Kim, SH Yoon, JH AF Choi, JY Shin, JH Kim, JL Jung, SH Son, EJ Song, MH Kim, SH Yoon, JH TI P2Y(2) agonist induces mucin secretion via Ca2+- and inositol 1,4,5-triphosphate-dependent pathway in human middle ear epithelial cells SO HEARING RESEARCH LA English DT Article DE mucin; caffeine; signaling transduction; IP3; Ca2+ ID PROTEIN-KINASE-C; PANCREATIC ACINAR-CELLS; ION-TRANSPORT; RELEASE; CALCIUM; CA2+; ACTIVATION; EXPRESSION; RECEPTOR; ATP AB Purinergic agonists regulate mucin secretion in the airway epithelial cells. This study examined the effects of the apical application of purinergic agonists on Ca2+ influx ([CU2+](i)), and mucin secretion along with their underlying signaling pathway in normal human middle ear epithelial (NHMEE) cells. The apical membrane of NHMEE cells were stimulated with various purinergic agonists, including UTP, and the [Ca2+](i) was measured using a miniature Ussing double perfusion chamber. P2Y(2) receptor in NHMEE cells was also localized by immunohistochemistry. UTP-induced mucin secretion was quantified by an immunoblotting assay. The order of the purinergic agonist potency with respect to [Ca2+](i) determined in this study was ATP = UTP > 2-MeSATP > UDP > adenosine which is consistent with that obtained from P2Y(2) receptor activation. The P2Y(2) receptor is expressed in the apical membrane of monolayered cultured NHMEE cells. Apical UTP-induced [Ca2+]i was inhibited by 2-aminoethoxydiphenyl borate (2-APB) but not by ryanodine. UTP-induced mucin secretion was inhibited by a Ca2+ chelating agent, BAPTA-AM, and was stimulated by ionomycin. UTP-induced mucin secretion was also Suppressed by U73122 and 2-APB, while Calphostin C suppressed it to a small extent and PD98059 was ineffective. Caffeine also inhibited the UTP-induced [Ca2+](i) and mucin secretion. These results suggest that the P2Y(2) receptor is expressed in NHMEE cells, and plays a major role in modulating the [Ca2+](i) from the IP3-sensitive intracellular Ca2+ store. UTP-induced mucin secretion in NHMEE cells is strongly dependent on Ca2+- and IP3. (c) 2005 Elsevier B.V. All rights reserved. C1 Yonsei Univ, Coll Med, Dept Otorhinolaryngol, Seoul 120752, South Korea. Yonsei Univ, Coll Med, Brain Korea 21 Project Med Sci, Seoul, South Korea. Yonsei Univ, Coll Med, Airway Mucus Inst, Seoul, South Korea. Yonsei Univ, Dept Otorhinolaryngol, Wonju Coll Med, Wonju, South Korea. RP Yoon, JH (reprint author), Yonsei Univ, Coll Med, Dept Otorhinolaryngol, 134 Shinchon Dong, Seoul 120752, South Korea. EM jhyoon@yumc.yonsei.ac.kr CR ABDULLAH LH, 1997, AM J PHYSIOL, V273, P201 ALESSANDRA R, 2000, EUR ARCH OTO-RHINO-L, V257, P300 Chen Y, 2001, AM J RESP CELL MOL, V25, P409 Choi JY, 2003, ACTA OTO-LARYNGOL, V123, P1080, DOI 10.1080/00016480310002528 Choi JY, 2003, ACTA OTO-LARYNGOL, V123, P362, DOI 10.1080/0036554021000028091 Choi JY, 2002, ACTA OTO-LARYNGOL, V122, P270, DOI 10.1080/000164802753648141 Dartt DA, 2000, EXP EYE RES, V71, P619, DOI 10.1006/exer.2000.0915 DORMER RL, 1984, BIOCHEM BIOPH RES CO, V119, P876, DOI 10.1016/0006-291X(84)90855-6 DrayCharier N, 1997, GASTROENTEROLOGY, V112, P978, DOI 10.1053/gast.1997.v112.pm9041261 EHRLICH BE, 1994, TRENDS PHARMACOL SCI, V15, P145, DOI 10.1016/0165-6147(94)90074-4 FRUKAWA M, 1997, AM J PHYSIOL, V272, P827 Kemp PA, 2004, AM J RESP CELL MOL, V31, P446, DOI 10.1165/rcmb.2003-0211OC Kim KC, 1996, EUR RESPIR J, V9, P542, DOI 10.1183/09031936.96.09030542 King BF, 1998, TRENDS PHARMACOL SCI, V19, P506, DOI 10.1016/S0165-6147(98)01271-1 KNIGHT DE, 1989, TRENDS NEUROSCI, V12, P451, DOI 10.1016/0166-2236(89)90095-7 Ko KH, 1997, AM J RESP CELL MOL, V16, P194 Ko WH, 1999, J MEMBRANE BIOL, V170, P205, DOI 10.1007/s002329900550 Lazarowski ER, 1997, P NATL ACAD SCI USA, V94, P2599, DOI 10.1073/pnas.94.6.2599 Lee SJ, 1998, EXP CELL RES, V242, P328, DOI 10.1006/excr.1998.4070 LIU CM, 1978, J BIOL CHEM, V253, P5892 MEISSNER G, 1986, J BIOL CHEM, V261, P6300 OSIPCHUK YV, 1990, EMBO J, V9, P697 Ralevic V, 1998, PHARMACOL REV, V50, P413 Scott CE, 1998, AM J PHYSIOL-CELL PH, V275, pC285 von Kugelgen I, 2000, N-S ARCH PHARMACOL, V362, P310, DOI 10.1007/s002100000310 Wu J, 2000, MOL PHARMACOL, V58, P1368 Yang CM, 2000, AM J PHYSIOL-LUNG C, V279, pL235 Yen PT, 1997, ORL J OTO-RHINO-LARY, V59, P170 Yoon JH, 2000, ANN OTO RHINOL LARYN, V109, P594 NR 29 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 24 EP 31 DI 10.1016/j.heares.2005.05.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900004 PM 16139976 ER PT J AU Mortensen, MV Madsen, S Gjedde, A AF Mortensen, MV Madsen, S Gjedde, A TI Cortical responses to promontorial stimulation in postlingual deafness SO HEARING RESEARCH LA English DT Article DE cochlear implant; PET; promontorial test; temporal processing ID POSITRON-EMISSION-TOMOGRAPHY; COCHLEAR ELECTRICAL-STIMULATION; AUDITORY-CORTEX; TEMPORAL RESOLUTION; HUMAN BRAIN; SPEECH RECOGNITION; IMPLANT PATIENTS; FUNCTIONAL MRI; NORMAL-HEARING; PERCEPTION AB dElectrical stimulation with a transtympanic electrode on the promontory of the middle ear allows the tasks of gap detection and temporal difference limen (TDL) to be carried out by both normally hearing and deaf subjects. Previous neuroirnaging of normally hearing subjects revealed a region in the right posterior temporal lobe that is crucial to duration discrimination. The present study tested the hypothesis that postlingually deaf subjects recruit this area when they make subtle temporal discriminations. Fourteen postlingually deaf adult cochlear implant candidates were stimulated in the ear chosen for implantation. Altered cerebral activity was recorded with positron emission tomography as incremental 15-O-labelled water uptake. On stimulation with tone bursts, we found bilateral activity close to the primary auditory cortex in all subjects. However, subjects performing well on the TDL task demonstrated right-lateralized fronto-temporal and left-lateralized temporal activity in the respective TDL and gap-detection tasks, while subjects who failed to detect duration differences of less than 200 ms in the TDL discrimination task only had frontal and occipital rather than temporal lobe activation. We conclude that the ability to involve the right posterior temporal region is important to duration discrimination. This ability can be evaluated pre-operatively. (c) 2005 Elsevier B.V. All rights reserved. C1 Aarhus Univ Hosp, PET Ctr, DK-8000 Aarhus, Denmark. Aarhus Univ Hosp, ENT Dept, DK-8000 Aarhus, Denmark. Univ Aarhus, Ctr Functionally Integrat Neurosci, Aarhus, Denmark. RP Mortensen, MV (reprint author), Aarhus Univ Hosp, PET Ctr, 44 Norrebrogade, DK-8000 Aarhus, Denmark. EM malene@pet.auh.dk RI Bonefeld, Birgit/B-7936-2010 CR Ackermann H, 1999, BRAIN LANG, V67, P228, DOI 10.1006/brln.1999.2056 Belin P, 2002, NEUROPSYCHOLOGIA, V40, P1956, DOI 10.1016/S0028-3932(02)00062-3 Belin P, 1998, J COGNITIVE NEUROSCI, V10, P536, DOI 10.1162/089892998562834 Belin P, 1998, J NEUROSCI, V18, P6388 Best CT, 1999, PSYCHOL SCI, V10, P65, DOI 10.1111/1467-9280.00108 Binder JR, 2000, CEREB CORTEX, V10, P512, DOI 10.1093/cercor/10.5.512 Binder JR, 1997, J NEUROSCI, V17, P353 Binder JR, 1999, J COGNITIVE NEUROSCI, V11, P80, DOI 10.1162/089892999563265 BLACK FO, 1987, ANN OTO RHINOL LARYN, V96, P96 BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 Bower JM, 1997, PROG BRAIN RES, V114, P463 CAZALS Y, 1991, ANN OTO RHINOL LARYN, V100, P893 Devlin JT, 2003, J NEUROSCI, V23, P11516 Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X Giraud AL, 2000, BRAIN, V123, P1391, DOI 10.1093/brain/123.7.1391 Gjedde A, 1999, BRAIN, V122, P2013, DOI 10.1093/brain/122.11.2013 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019 Hall DA, 2002, CEREB CORTEX, V12, P140, DOI 10.1093/cercor/12.2.140 Harrington DL, 2004, BRAIN, V127, P561, DOI 10.1093/brain/awh065 Ivry Richard B, 2004, Brain, V127, pE14, DOI 10.1093/brain/awh226 Johnsrude IS, 2002, AUDIOL NEURO-OTOL, V7, P251, DOI 10.1159/000064446 LADEFOGED P, 2000, VOWELS CONSONANTS IN MAZZIOTTA JC, 1982, NEUROLOGY, V32, P921 Mesulam MM, 1998, BRAIN, V121, P1013, DOI 10.1093/brain/121.6.1013 Moller AR, 1999, ACTA OTO-LARYNGOL, V119, P424, DOI 10.1080/00016489950180946 Mortensen MV, 2005, HEARING RES, V205, P94, DOI 10.1016/j.heares.2005.03.007 MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493 Nicholls MER, 1998, J CLIN EXP NEUROPSYC, V20, P445, DOI 10.1076/jcen.20.4.445.1474 Nicholls MER, 1999, NEUROPSY NEUROPSY BE, V12, P11 PARDO JV, 1991, NATURE, V349, P61, DOI 10.1038/349061a0 Pedersen CB, 2000, AUDIOLOGY, V39, P30 Pouthas V, 2000, HUM BRAIN MAPP, V10, P49, DOI 10.1002/(SICI)1097-0193(200006)10:2<49::AID-HBM10>3.0.CO;2-8 Rao SM, 2001, NAT NEUROSCI, V4, P317, DOI 10.1038/85191 Rivier F, 1997, NEUROIMAGE, V6, P288, DOI 10.1006/nimg.1997.0304 ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9 Ross B, 2004, J ACOUST SOC AM, V115, P2193, DOI 10.1121/1.1694996 Schmidt AM, 2003, AM J NEURORADIOL, V24, P201 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 Shulman GL, 1997, J COGNITIVE NEUROSCI, V9, P648, DOI 10.1162/jocn.1997.9.5.648 SILVERSTEIN H, 1994, AM J OTOL, V15, P101 SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 Snell KB, 2002, J ACOUST SOC AM, V112, P720, DOI 10.1121/1.1487841 Springer JA, 1999, BRAIN, V122, P2033, DOI 10.1093/brain/122.11.2033 Stoesz MR, 2003, INT J PSYCHOPHYSIOL, V50, P41, DOI 10.1016/S0167-8760(03)00123-5 TRUY E, 1995, HEARING RES, V86, P34, DOI 10.1016/0378-5955(95)00052-6 van Dijk JE, 1999, AUDIOLOGY, V38, P109 Vollmer M, 1999, J NEUROPHYSIOL, V82, P2883 WALTZMAN SB, 1990, OTOLARYNG HEAD NECK, V103, P102 Werner LA, 2001, J SPEECH LANG HEAR R, V44, P737, DOI 10.1044/1092-4388(2001/058) Wong D, 2002, HEARING RES, V166, P9, DOI 10.1016/S0378-5955(02)00311-8 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 WORSLEY KJ, 1992, J CEREBR BLOOD F MET, V12, P900 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 NR 56 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 32 EP 41 DI 10.1016/j.heares.2005.05.011 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900005 PM 16098697 ER PT J AU Kuypers, LC Dirckx, JJJ Decraemer, WF Timmermans, JP AF Kuypers, LC Dirckx, JJJ Decraemer, WF Timmermans, JP TI Thickness of the gerbil tympanic membrane measured with confocal microscopy SO HEARING RESEARCH LA English DT Article DE eardrum; pars tensa; pars flaccida; modeling middle ear; confocal fluorescence microscopy ID EXPERIMENTAL OTITIS-MEDIA; MIDDLE-EAR DEVELOPMENT; MONGOLIAN GERBIL; PARS FLACCIDA; STATIC PRESSURE; EXPERIMENTAL CHOLESTEATOMA; DISPLACEMENT PATTERNS; ANNULUS FIBROSUS; SMOOTH-MUSCLE; EFFUSION AB Thickness data for the gerbil tympanic membrane, an extremely thin biological membrane, are presented. Thickness measurements were performed on fresh material using fluorescence images taken perpendicular through the membrane with a commercial confocal microscope. Thickness varies strongly across the membrane. Similar thickness distributions in all samples (pars tensa n = 11; pars flaccida n = 3) were observed. The pars tensa has a rather constant thickness of about 7 mu m in the central region curving as a horse shoe upwards around the manubrium. In the most superior parts of the pars tensa thickness becomes gradually twice as large. Thickness increases also steeply from the central region towards the edges (about 35 mu m near the annulus and 20 mu m near the manubrium). A pronounced, local thickening of about 30 mu m is present close to the edge and extends as a ring along the entire annular periphery of the pars tensa. Overall, the pars flaccida is thicker than the pars tensa and has a rugged surface. Its central region has a mean thickness of about 24 mu m with a mean variation of about 4 mu m. The average thickness in the inferior region is slightly larger than in the superior region. The pars flaccida thickens steeply, up to about 80 mu m, near the edges. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Antwerp, Dept Phys, Lab Biomed Phys, B-2020 Antwerp, Belgium. Univ Antwerp, Dept Biomed Sci, Cell Biol & Histol Lab, B-2020 Antwerp, Belgium. RP Kuypers, LC (reprint author), Univ Antwerp, Dept Phys, Lab Biomed Phys, Campus Middelheim,Groenenborgerlaan 171, B-2020 Antwerp, Belgium. EM Liesbeth.Kuypers@ua.ac.be CR COHEN YE, 1993, AM J OTOLARYNG, V14, P191, DOI 10.1016/0196-0709(93)90029-7 COHEN YE, 1992, HEARING RES, V62, P187, DOI 10.1016/0378-5955(92)90185-P Dirckx JJJ, 1998, HEARING RES, V118, P35, DOI 10.1016/S0378-5955(98)00025-2 Dirckx JJJ, 1997, HEARING RES, V111, P153, DOI 10.1016/S0378-5955(97)00108-1 Dirckx JJJ, 2001, HEARING RES, V157, P124, DOI 10.1016/S0378-5955(01)00290-8 Fulghum R S, 1991, Ann Otol Rhinol Laryngol Suppl, V154, P23 Fulghum RS, 1996, ANN OTO RHINOL LARYN, V105, P234 FUNNELL WRJ, 2000, ASS RES OTOLARYNGOL, P4746 FUNNELL WRJ, 1999, ASS RES OTOLARYNGOL, P799 Henson MM, 2005, HEARING RES, V200, P29, DOI 10.1016/j.heares.2004.09.004 HENSON OW, 1999, ASS RES OTOLARYNGOL, P304 Kim HJ, 2002, OTOL NEUROTOL, V23, P840, DOI 10.1097/00129492-200211000-00005 Kuypers LC, 2005, J MICROSC-OXFORD, V218, P68, DOI 10.1111/j.1365-2818.2005.01457.x KUYPERS LC, 2005, IN PRESS JARO, V6 Larsson C, 2003, OTOL NEUROTOL, V24, P358, DOI 10.1097/00129492-200305000-00002 Larsson C, 2001, OTOL NEUROTOL, V22, P558, DOI 10.1097/00129492-200107000-00025 Larsson C, 1999, AM J OTOL, V20, P309 Lee CY, 2001, HEARING RES, V153, P146, DOI 10.1016/S0378-5955(00)00269-0 LIENING DA, 1995, OTOLARYNG HEAD NECK, V112, P303, DOI 10.1016/S0194-5998(95)70253-9 Lim D J, 1968, Acta Otolaryngol, V66, P181, DOI 10.3109/00016486809126286 Nemechek AJ, 1997, OTOLARYNG HEAD NECK, V117, P475 Overstreet EH, 2002, J ACOUST SOC AM, V111, P261, DOI 10.1121/1.1420382 Ravicz ME, 1997, J ACOUST SOC AM, V101, P2135, DOI 10.1121/1.418275 RAVIRAJAN CT, 1992, LUPUS, V1, P157, DOI 10.1177/096120339200100307 Rosowski JJ, 2002, HEARING RES, V174, P183, DOI 10.1016/S0378-5955(02)00655-X Rosowski JJ, 1999, AUDIOL NEURO-OTOL, V4, P129, DOI 10.1159/000013831 Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 VONUNGE M, 1995, HEARING RES, V82, P184, DOI 10.1016/0378-5955(94)00017-K von Unge M, 2003, INT J PEDIATR OTORHI, V67, P215, DOI 10.1016/S0165-5876(02)00371-3 VONUNGE M, 1991, AM J OTOL, V12, P407 vonUnge M, 1997, HEARING RES, V106, P123, DOI 10.1016/S0378-5955(97)00008-7 VONUNGE M, 1994, AM J OTOL, V15, P663 von Unge M, 1999, HEARING RES, V128, P1, DOI 10.1016/S0378-5955(98)00183-X VONUNGE M, 1993, HEARING RES, V70, P229, DOI 10.1016/0378-5955(93)90161-S Yang XM, 2002, HEARING RES, V164, P105, DOI 10.1016/S0378-5955(01)00416-6 NR 35 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 42 EP 52 DI 10.1016/j.heares.2005.06.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900006 PM 16054789 ER PT J AU Fujimura, T Suzuki, H Shimizu, T Tokui, N Kitamura, T Udaka, T Doi, Y AF Fujimura, T Suzuki, H Shimizu, T Tokui, N Kitamura, T Udaka, T Doi, Y TI Pathological alterations of strial capillaries in dominant white spotting W/W-v mice SO HEARING RESEARCH LA English DT Article DE dominant white spotting mouse; strial capillaries; intermediate cells; basement membrane; IgG deposition; permeability ID INNER-EAR; W-LOCUS; PROTO-ONCOGENE; VASCULARIS; MOUSE; MELANOCYTES; ABNORMALITIES; PIGMENTATION; MECHANISMS; DEAFNESS AB Dominant white spotting W/W-v and W-v/W-v mice are well-known mutants that lack strial intermediate cells in their cochlea and manifest hereditary sensorineural hearing loss. We recently reported marked thickening of and lgG deposition on the basement membrane of strial capillaries in W/W-v mutant mice, similar to observations made in aged animals and in animals with autoimmune sensorineural hearing loss. The present study aimed to clarify the age-dependent changes in these pathological findings of strial capillaries in the W/W-v mice. Male WBB6FI +/+ and dominant white spotting W/W-v mutant mice were sacrificed by transcardiac perfusion with paraformaldehyde solution. The cochlear ducts were isolated and Subjected to light- and electron-microscopy, immunohistochemistry, immuno-electron microscopy. Alternatively, lanthanum chloride tracer examination in the isolated cochlear ducts was performed in order to compare the permeability of the strial capillaries between +/+ and W/W-v mice. In the W/W-v mice, thickening of and IgG deposition on the basement membrane of strial capillaries were observed as early as I week after birth and became more noticeable with age. Deposited IgG was preferentially localized to the thickened basement membrane and was also observed in partially the intercellular space between adjacent of endothelial cells. In addition, pinocytotic vesicles both in the apical and basal lesions of such cells also showed IgG deposition. Lanthanum chloride was retained along apical plasma membrane of the endothelial cells in the +/+ mice but penetrated through the enclothelial layer in the W/W-v mice. These results indicate that active transport via pinocytotic vesicles as well as increased permeability of strial capillaries in the W/W-v mice occur in the early stage after birth, resulting in the morphological alterations in the strial capillaries of these mice. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Occupat & Environm Hlth, Sch Med, Dept Otorhinolaryngol, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan. Univ Occupat & Environm Hlth, Sch Med, Dept Anat, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan. RP Suzuki, H (reprint author), Univ Occupat & Environm Hlth, Sch Med, Dept Otorhinolaryngol, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan. EM suzuhyde@med.uoeh-u.ac.jp CR BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 CABLE J, 1995, MECH DEVELOP, V50, P139, DOI 10.1016/0925-4773(94)00331-G CHABOT B, 1988, NATURE, V335, P88, DOI 10.1038/335088a0 DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019 DEOL MS, 1970, J EMBRYOL EXP MORPH, V23, P773 Fujimura T, 1999, HEARING RES, V128, P135, DOI 10.1016/S0378-5955(98)00206-8 GEISSLER EN, 1988, CELL, V55, P185, DOI 10.1016/0092-8674(88)90020-7 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 LIU XZ, 1995, AM J MED GENET, V55, P95, DOI 10.1002/ajmg.1320550123 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 Nariuchi H, 1994, Acta Otolaryngol Suppl, V514, P127 Sakaguchi N, 1997, HEARING RES, V109, P83, DOI 10.1016/S0378-5955(97)00048-8 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHROTT A, 1987, ACTA OTO-LARYNGOL, V103, P451 Silvers WK, 1979, COAT COLORS MICE MOD SONE M, 1995, HEARING RES, V83, P26, DOI 10.1016/0378-5955(94)00189-W Spritz RA, 1998, AM J MED GENET, V75, P101, DOI 10.1002/(SICI)1096-8628(19980106)75:1<101::AID-AJMG20>3.0.CO;2-P STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1989, DEVELOPMENT, V107, P453 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Wangemann P., 1996, COCHLEA, P130 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 NR 25 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 53 EP 59 DI 10.1016/j.heares.2005.05.013 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900007 PM 16054310 ER PT J AU Varghese, GI Zhu, XX Frisina, RD AF Varghese, GI Zhu, XX Frisina, RD TI Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice SO HEARING RESEARCH LA English DT Article DE medial olivocochlear system; contralateral suppression; distortion product otoacoustic emissions; age-related hearing loss; CBA/CaJ mice; presbycusis; outer hair cells; efferent system; pure tone ID COCHLEAR MICROMECHANICAL PROPERTIES; EFFERENT OLIVOCOCHLEAR NEURONS; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; INFERIOR COLLICULUS; ACOUSTIC STIMULATION; CALBINDIN D-28K; HUMAN LISTENERS; GUINEA-PIG; CBA MOUSE AB One role of the medial olivocochlear (MOC) auditory efferent system is to suppress cochlear outer hair cell (OHC) responses when presented with a contralateral sound. Using distortion product otoacoustic emissions (DPOAEs), the effects of active changes in OHC responses due to the MOC as a function of age can be observed when contralateral stimulation with a pure tone is applied. Previous studies have shown that there are age-related declines of the MOC when broad band noise is presented to the contralateral ear. In this study, we measured age-related changes in CBA/CaJ mice by comparing DPOAE generation with and without a contralateral pure tone at three different frequencies (12, 22, and 37 kHz). Young (n = 16), middle (n = 10) and old-aged (17 = 10) CBA mice were tested. DPOAE-grams were obtained using L1 = 65 and L2 = 50 dB SPL, F1/F2 = 1.25, using eight points per octave covering a frequency range from 5.6-44.8 kHz. The pure tone was presented contralaterally at 55 dB SPL. DPOAE-grams and ABR levels indicated age-related hearing loss in the old mice. In addition, there was an overall change in DPOAEs in the middle-aged and old groups relative to the young. Pure tone stimulation was not as effective as a suppressor compared to broadband noise. An increase in pure tone frequency from 12 to 22 kHz induced greater suppression of DPOAEs, but the 37 kHz was least effective. These results indicate that as the mouse ages, there are significant changes in the efficiency of the suppression mechanism as elicited by contralateral narrowband stimuli. These findings reinforce the idea that age-related changes in the MOC or the operating points of OHCs play a role in the progression of presbycusis-age-related hearing loss in mammals. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Rochester, Sch Med & Dent, Dept Otolaryngol, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA. Rochester Inst Technol, Int Ctr Hearing Speech Res, Natl Tech Inst Deaf, Rochester, NY 14623 USA. RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Dept Otolaryngol, 601 Elmwood Ave, Rochester, NY 14642 USA. EM rdf@q.ent.rochester.edu CR CASTOR X, 1994, HEARING RES, V77, P1, DOI 10.1016/0378-5955(94)90248-8 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 FRISINA RD, 2001, FUNCTIONAL NEUROBIOL, P565 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 Frisina RD, 1997, J ACOUST SOC AM, V101, P2741, DOI 10.1121/1.418562 Giraud AL, 1997, NEUROREPORT, V8, P1779 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Jacobson M, 2003, LARYNGOSCOPE, V113, P1707, DOI 10.1097/00005537-200310000-00009 Kim SH, 2002, AUDIOL NEURO-OTOL, V7, P348, DOI 10.1159/000066159 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 LIBERMAN MC, 1989, HEARING RES, V38, P47, DOI 10.1016/0378-5955(89)90127-5 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286 Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903 Maison SF, 2003, J COMP NEUROL, V455, P406, DOI 10.1002/cne.10490 Manley GA, 1999, HEARING RES, V138, P1, DOI 10.1016/S0378-5955(99)00126-4 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K Mulders WHAM, 2005, EXP BRAIN RES, V160, P235, DOI 10.1007/s00221-004-2003-1 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 PUEL JL, 1990, J ACOUST SOC AM, V99, P3572 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Walton JP, 1998, J NEUROSCI, V18, P2764 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 Zettel ML, 2001, HEARING RES, V158, P131, DOI 10.1016/S0378-5955(01)00305-7 Zettel ML, 2003, HEARING RES, V183, P57, DOI 10.1016/S0378-5955(03)00216-8 Zettel ML, 1997, J COMP NEUROL, V386, P92, DOI 10.1002/(SICI)1096-9861(19970915)386:1<92::AID-CNE9>3.0.CO;2-8 NR 37 TC 24 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 60 EP 67 DI 10.1016/j.heares.2005.06.006 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900008 PM 16061336 ER PT J AU Avan, P Bonfils, P AF Avan, P Bonfils, P TI Distortion-product otoacoustic emission spectra and high-resolution audiometry in noise-induced hearing loss SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; audiometry; noise-induced hearing loss; sensory cell loss ID AUDITORY BRAIN-STEM; GUINEA-PIG; FREQUENCY SPECIFICITY; BASILAR-MEMBRANE; ACOUSTIC TRAUMA; CELL LOSS; LEVEL; COCHLEA; RESPONSES; DAMAGE AB dDistortion product otoacoustic emissions (DPOAE) elicited by 60dB SPL pure tones at A and f2 were collected at 2f1-f2, in 1/10th octave steps, in a sample of 36 ears from 27 patients with noise-induced hearing loss (NIHL). They were analyzed in the frequency domain against the outcome of high-resolution pure-tone audiometry, performed with the help of a Bekesy sweep-frequency automatic audiometer. The characteristics of DPOAE level plots as a function of frequency (the so-called DP-grams), relative to the DPOAE levels of a control age-matched group, were compared to their alleged counterparts on the audiograms, i.e., the lower and upper frequency boundaries of the interval with hearing loss. Ears with NIHL split into two subgroups, one (n = 25) with a notch in the DP-gram such that its lower boundary matched the lower limit of the audiometric notch (linear regression with a slope of 0.91, r(2) = 0.644, p < 0.001). Likewise, when it existed, its upper boundary matched its upper counterpart on the audiogram (linear regression with a slope of 0.96, r(2) = 0.89, P < 0.001). In this respect, DP-grams performed better than transient-evoked OAE spectra, which exhibited poor correlations with audiogram patterns. The second subgroup (n = 11) exhibited normal DPOAEs at all frequencies despite audionnetric losses similar to those of the first subgroup. In all cases, DPOAE levels were poor predictors of the degree of hearing losses. It is hypothesized that NIHL in the second subgroup involves inner hair cells or auditory neurons, instead of outer hair cells in the first subgroup. Provided NIHL affected outer hair cells, DP-grams provided a comparatively accurate predictor of the spectral extent of hearing loss. (c) 2005 Elsevier B.V. All rights reserved. C1 Sch Med, Lab Sensory Biophys, F-63000 Clermont Ferrand, France. UPRESA, CNRS, ENT Dept, European Hosp Georges Pompidou, F-7060 Paris, France. RP Avan, P (reprint author), Sch Med, Lab Sensory Biophys, POB 38, F-63000 Clermont Ferrand, France. EM paul.avan@u-clermont1.fr CR Allen J. B, 1990, USER MANUAL CUBDIS D ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281 Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285 Avan P, 1998, EUR J NEUROSCI, V10, P1764, DOI 10.1046/j.1460-9568.1998.00188.x AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866 AVAN P, 1993, AUDIOLOGY, V32, P12 BORG E, 1989, J ACOUST SOC AM, V86, P1776, DOI 10.1121/1.398609 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 Carvalho S, 2004, J ACOUST SOC AM, V116, P1639, DOI 10.1121/1.1777873 Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3 Dorn PA, 1999, EAR HEARING, V20, P149, DOI 10.1097/00003446-199904000-00006 Gorga MP, 2003, J ACOUST SOC AM, V113, P3275, DOI 10.1121/1.1570433 Gorga MP, 1996, J ACOUST SOC AM, V100, P968, DOI 10.1121/1.416208 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Kemp D. T., 2002, OTOACOUSTIC EMISSION, P1 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KIM DO, 1980, J ACOUST SOC AM, V67, P1704, DOI 10.1121/1.384297 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 Lonsbury-Martin Brenda L., 2001, Seminars in Hearing, V22, P377, DOI 10.1055/s-2001-19111 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MARTIN GK, 1990, ANN OTO RHINOL LARYN, V99, P30 Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 Mills DM, 2003, J ACOUST SOC AM, V113, P914, DOI 10.1121/1.1535942 Moore BCJ, 2004, EAR HEARING, V25, P98, DOI 10.1097/01.AUD.0000120359.49711.D7 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Ren TY, 2002, P NATL ACAD SCI USA, V99, P17101, DOI 10.1073/pnas.262663699 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X NR 30 TC 11 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 68 EP 75 DI 10.1016/j.heares.2005.06.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900009 PM 16112827 ER PT J AU Keithley, EM Canto, C Zheng, QY Wang, XB Fischel-Ghodsian, N Johnson, KR AF Keithley, EM Canto, C Zheng, QY Wang, XB Fischel-Ghodsian, N Johnson, KR TI Cu/Zn superoxide dismutase and age-related hearing loss SO HEARING RESEARCH LA English DT Article DE presbycusis; aging; cochlea; mice; hearing; mitochondria ID HAIR-CELLS; TRANSGENIC MICE; INBRED STRAINS; C57BL/6J MICE; MN-SOD; COCHLEA; MOUSE; OVEREXPRESSION; DEGENERATION; LOCALIZATION AB Mice, in which the genetics can be manipulated and the life span is relatively short, enable evaluation of the effects of specific gene expression on cochlear degeneration over time. Antioxidant enzymes such as Cu/Zn superoxide dismutase (SOD I) protect cells from toxic, reactive oxygen species and may be involved in age-related degeneration. The effects of SODI deletion and over-expression on the cochlea were examined in Sodl-null mice, Sodl transgenic mice and in age- and genetics-matched controls. Auditory brainstern responses (ABR) were measured and cochleae were histologically examined. The absence of SOD] resulted in hearing loss at an earlier age than in wildtype or heterozygous mice. The cochleae of the null mice had severe spiral ganglion cell degeneration at 7-9 months of age. The stria vascularis in the aged, null mice was thinner than in the heterozygous or wildtype mice. Over-expression of SODI did not protect against hearing loss except at 24 months of age. In conclusion, SOD] seems important for survival of cochlear neurons and the stria vascularis, however even half the amount is sufficient and an over abundance does not provide much protection from age-related hearing loss. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, La Jolla, CA 92093 USA. Vet Affairs Med Ctr, La Jolla, CA 92161 USA. Jackson Lab, Bar Harbor, ME 04609 USA. Steven Spielberg Pediat Res Ctr, Inst Med Genet, Ahmanson Dept Pediat, Cedars Sinai Res Inst, Los Angeles, CA 90048 USA. Univ Calif Los Angeles, Sch Med, Los Angeles, CA 90048 USA. Xian Jiaotong Univ, Sch Med, Xian, Peoples R China. RP Keithley, EM (reprint author), Univ Calif San Diego, Div Otolaryngol Head & Neck Surg, 9500 Gilman Dr, La Jolla, CA 92093 USA. EM ekeithley@ucsd.edu RI Zheng, Qing/C-1731-2012 CR Ames BN, 2004, J ALZHEIMERS DIS, V6, P117 Coling DE, 2003, FREE RADICAL BIO MED, V34, P873, DOI 10.1016/S0891-5849(02)01439-9 Dazert S, 1996, HEARING RES, V100, P101, DOI 10.1016/0378-5955(96)00100-1 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 ENGSTROM B, 1972, AUDIOLOGY, V11, P6 ENGSTROM H, 1977, ACTA OTO-LARYNGOL, V83, P65, DOI 10.3109/00016487709128814 Engström H, 1967, J Laryngol Otol, V81, P687, DOI 10.1017/S0022215100067657 EPSTEIN CJ, 1987, P NATL ACAD SCI USA, V84, P8044, DOI 10.1073/pnas.84.22.8044 Francis HW, 2004, BRAIN RES, V1016, P182, DOI 10.1016/j.brainres.2004.05.016 HENRY KR, 1980, AUDIOLOGY, V19, P369 Huang TT, 2000, J GERONTOL A-BIOL, V55, pB5 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Kawamoto K, 2004, MOL THER, V9, P173, DOI 10.1016/j.ymthe.2003.11.020 Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 KEITHLEY EM, 1979, J COMP NEUROL, V188, P429, DOI 10.1002/cne.901880306 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Koay G, 2002, HEARING RES, V171, P111, DOI 10.1016/S0378-5955(02)00492-6 Matzuk MM, 1998, ENDOCRINOLOGY, V139, P4008, DOI 10.1210/en.139.9.4008 McFadden SL, 2001, AUDIOLOGY, V40, P313 McFadden SL, 1999, NEUROBIOL AGING, V20, P1, DOI 10.1016/S0197-4580(99)00018-4 McFadden SL, 1999, J COMP NEUROL, V413, P101 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 PRZEDBORSKI S, 1992, J NEUROCHEM, V58, P1760, DOI 10.1111/j.1471-4159.1992.tb10051.x Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x Rarey KE, 1996, ACTA OTO-LARYNGOL, V116, P833, DOI 10.3109/00016489609137935 Reaume AG, 1996, NAT GENET, V13, P43, DOI 10.1038/ng0596-43 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 Salvi RJ, 2000, NOISE HEALTH, V2, P9 SCHEFFLER IE, 1999, MITOCHONDRIA, P235 Schwartz PJ, 1998, BRAIN RES, V789, P32, DOI 10.1016/S0006-8993(97)01469-8 Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818 Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 SPOENDLIN H, 1981, ACTA OTO-LARYNGOL, V91, P451, DOI 10.3109/00016488109138527 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 Sugar J O, 1972, Acta Otolaryngol Suppl, V301, P61 WILLOTT JF, 1986, J NEUROPHYSIOL, V57, P391 Yao XF, 1996, HEARING RES, V96, P199, DOI 10.1016/0378-5955(96)00050-0 YLIKOSKI J, 1978, ARCH OTOLARYNGOL, V104, P84 Zhang XX, 2002, CHINESE MED J-PEKING, V115, P1390 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 45 TC 49 Z9 55 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 76 EP 85 DI 10.1016/j.heares.2005.06.009 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900010 PM 16055286 ER PT J AU Uemaetomari, I Tabuchi, K Hoshino, T Hara, A AF Uemaetomari, I Tabuchi, K Hoshino, T Hara, A TI Protective effect of calcineurin inhibitors on acoustic injury of the cochlea SO HEARING RESEARCH LA English DT Article DE acoustic injury; cochlea; calcineurin; cyclosporine A; FK506; rapamycin ID CYCLOSPORINE-A; ISCHEMIA; NOISE; FK-506; CELLS AB This study examined the effect of immunosuppressants, cyclosporin A. FK506 and rapamycin on functional recovery of the cochlea after acoustic overexposure,. in guinea pigs and mice. Thirty guinea pigs were exposed to a 2kHz pure tone at 120dB SPL for 10min. The compound action potential threshold shift induced by acoustic overexposure was examined. Twenty-five mice were exposed to a 4kHz pure tone at 128dB SPL for 4h. Auditory brainstem response was used to examine the hearing threshold shift. In both the guinea pig and mouse experiments, cyclosporin A and FK506, intraperitonally given just before acoustic overexposure, significantly decreased the hearing threshold shift one or two weeks after acoustic overexposure. However, neither rapamycin nor the FK506 and rapamycin combined treatment groups showed improvement of the threshold shift. The present findings suggest that these two calcineurin inhibitors have a protective effect against acoustic injury of the cochlea, whereas the non-calcineurin inhibitor, rapamycin, not only has no effect against acoustic injury, but rather blocked the effect of FK506. This indicated a possible role of calcineurin against acoustic injury. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, Tsukuba, Ibaraki 3058575, Japan. RP Hara, A (reprint author), Univ Tsukuba, Inst Clin Med, Dept Otolaryngol, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan. EM haraakir@md.tsukuba.ac.jp CR Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 DUMONT FJ, 1990, J IMMUNOL, V144, P1418 FRUMAN DA, 1992, P NATL ACAD SCI USA, V89, P3686, DOI 10.1073/pnas.89.9.3686 HALESTRAP AP, 1990, BIOCHEM J, V268, P153 Lautermilch NJ, 2000, J NEUROSCI, V20, P315 Minami SB, 2004, J NEUROSCI RES, V78, P383, DOI 10.1002/jnr.20267 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 SHARKEY J, 1994, NATURE, V371, P336, DOI 10.1038/371336a0 SPINGER JE, 2000, J NEUROSCI, V20, P7246 Tabuchi K, 2003, HEARING RES, V180, P51, DOI 10.1016/S0378-5955(03)00078-9 Uchino H, 1995, ACTA PHYSIOL SCAND, V155, P469, DOI 10.1111/j.1748-1716.1995.tb09999.x Wang HG, 1999, SCIENCE, V284, P339, DOI 10.1126/science.284.5412.339 Wang J, 2002, NEUROSCIENCE, V111, P635 Zajic G, 2001, HEARING RES, V159, P125, DOI 10.1016/S0378-5955(01)00319-7 NR 14 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 86 EP 90 DI 10.1016/j.heares.2005.06.010 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900011 PM 16084678 ER PT J AU Wangemann, P Wonneberger, K AF Wangemann, P Wonneberger, K TI Neurogenic regulation of cochlear blood flow occurs along the basilar artery, the anterior inferior cerebellar artery and at branch points of the spiral modiolar artery SO HEARING RESEARCH LA English DT Article DE sympathetic nervous system; electric field stimulation; cochlear blood flow ID GUINEA-PIG; IN-VITRO; INNERVATION; VASOCONSTRICTION; VASODILATATION; RABBIT AB The cochlea receives its main blood supply from the basilar artery via the anterior inferior cerebellar artery and the spiral modiolar artery. Morphologic studies have shown sympathetic innervation along the spiral rnodiolar artery of the gerbil and the guinea pig and functional studies in the isolated in vitro superfused spiral modiolar artery of the gerbil have demonstrated norepinephrine-induced vasoconstrictions via alpha(1A)-adrenergic receptors. It is Current unclear whether the sympathetic innervation is physiologically relevant. Stimulation of sympathetic ganglia in guinea pigs has been shown to alter cochlear blood flow in situ. Whether these changes originated from local or more systemic changes in the vascular diameter remained uncertain. The goal of the present study was to demonstrate the presence or absence of neurogenic changes in the diameter of the isolated in vitro superfused spiral modiolar artery, anterior inferior cerebellar artery and basilar artery from the gerbil and the guinea pig. Vascular diameter was monitored by videomicroscopy. Electric field stimulation Was used to elicit neurotransmitter release. A reversible inhibitory effect of 10(-6) M tetrodotoxin was taken as criterion to discriminate between neurogenic and myogenic changes in vascular diameter. Mesentery arteries of comparable diameter, which are known to respond with a neurogenic vasoconstriction to electric field stimulation, served as controls. Basilar artery, anterior inferior cerebellar artery, spiral modiolar artery and mesentery arteries constricted in response to electric field stimulation. No dilations were observed. Myogenic and neurogenic vasoconstrictions were observed in all vessels. These observations suggest that the sympathetic innervation of the basilar artery, the anterior inferior cerebellar artery and branch points of the spiral modiolar artery is involved in a physiologically relevant control of the vascular diameter in the gerbil and the guinea pig. (c) 2005 Elsevier B.V. All rights reserved. C1 Kansas State Univ, Cell Physiol Lab, Anat & Physiol Dept, Manhattan, KS 66506 USA. Univ Regensburg, HNO Klin, D-8400 Regensburg, Germany. RP Wangemann, P (reprint author), Kansas State Univ, Cell Physiol Lab, Anat & Physiol Dept, 205 Coles Hall, Manhattan, KS 66506 USA. EM wange@vet.ksu.edu RI Wangemann, Philine/N-2826-2013 CR Brau ME, 1998, EUR J ANAESTH, V15, P80 BRECHTELSBAUER PB, 1990, OTOLARYNG HEAD NECK, V103, P566 CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F Figueroa XF, 2003, CIRC RES, V92, P793, DOI 10.1161/01.RES.0000065918.90271.9A Gruber DD, 1998, HEARING RES, V119, P113, DOI 10.1016/S0378-5955(98)00036-7 HALLIN RG, 1974, ACTA PHYSIOL SCAND, V92, P303, DOI 10.1111/j.1748-1716.1974.tb05749.x HELLSTRAND P, 1985, REGUL PEPTIDES, V12, P309, DOI 10.1016/0167-0115(85)90174-0 HERZOG M, 2001, ASS RES OTOLARYNGOL, V24, P28 LA M, 1993, CLIN EXP PHARMACOL P, V20, P355, DOI 10.1111/j.1440-1681.1993.tb01704.x LAURIKAINEN EA, 1993, HEARING RES, V64, P199, DOI 10.1016/0378-5955(93)90006-M LAURIKAINEN EA, 1994, J PHYSIOL-LONDON, V480, P563 Lyon MJ, 2000, HEARING RES, V141, P189, DOI 10.1016/S0378-5955(00)00004-6 Qiu JH, 2001, HEARING RES, V155, P152, DOI 10.1016/S0378-5955(01)00231-3 REN TY, 1993, ANN OTO RHINOL LARYN, V102, P378 Spoendlin H, 1981, Adv Otorhinolaryngol, V27, P1 Vass Z, 2004, NEUROSCIENCE, V124, P919, DOI 10.1016/j.neuroscience.2003.12.030 Wangemann P, 1998, HEARING RES, V115, P113, DOI 10.1016/S0378-5955(97)00184-6 NR 17 TC 8 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 91 EP 96 DI 10.1016/j.heares.2005.06.011 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900012 PM 16054311 ER PT J AU Philibert, B Laudanski, J Edeline, JM AF Philibert, B Laudanski, J Edeline, JM TI Auditory thalamus responses to guinea-pig vocalizations: A comparison between rat and guinea-pig SO HEARING RESEARCH LA English DT Article DE medial geniculate body; neuronal selectivity; natural and time-reversed calls; single unit ID SPECIES-SPECIFIC VOCALIZATIONS; SQUIRREL-MONKEY; CORTEX NEURONS; REPRESENTATION; STIMULI; CELLS; FOREBRAIN; MARMOSET; SONG AB Although neuronal responses to species-specific vocalizations have long been described, very few between-species comparisons have been made. In a previous study, a differential representation of species-specific vocalizations was found in the auditory cortex (ACx): marmoset ACx neurons responded more, and more selectively, to marmoset calls than did cat ACx neurons [Wang, X., Kadia, S.C., 2001. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 86, 2616-2620]. The present study analyzed responses of guinea-pig and rat auditory thalamus neurons to four well-defined guinea-pig vocalizations. Neurons of guinea-pigs (n = 96) and rats (n = 87) displayed similar response strength to guinea-pig vocalizations, and did not exhibit a preference for the natural over the time-reversed version of the calls in both species. This difference with the study by Wang and Kadia might suggest that, in mammals, the selectivity for the natural version of species-specific vocalizations is prominent only at the cortical level. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Paris 11, CNRS, UMR 8620, NAMC, F-91405 Orsay, France. RP Edeline, JM (reprint author), Univ Paris 11, CNRS, UMR 8620, NAMC, Batiment 446, F-91405 Orsay, France. EM jean-marc.edeline@ibaic.u-psud.fr CR ALLON N, 1985, BRAIN RES, V360, P75, DOI 10.1016/0006-8993(85)91222-3 BERRYMAN JC, 1976, Z TIERPSYCHOL, V41, P80 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 DErchia AM, 1996, NATURE, V381, P597, DOI 10.1038/381597a0 Doupe AJ, 1997, J NEUROSCI, V17, P1147 Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019 Gehr DD, 2000, HEARING RES, V150, P27, DOI 10.1016/S0378-5955(00)00170-2 GLASS I, 1979, EXP BRAIN RES, V34, P489 GLASS I, 1983, HEARING RES, V9, P27, DOI 10.1016/0378-5955(83)90131-4 Harper L. V., 1976, BIOL GUINEA PIG, P31 HURLEY LM, 2005, J COMP PHYSL A Lee T, 2004, J NEUROSCI, V24, P3242, DOI 10.1523/JNEUROSCI.5382-03.2004 MANLEY JA, 1978, EXP BRAIN RES, V32, P171 Manunta Y, 2004, J NEUROPHYSIOL, V92, P1445, DOI 10.1152/jn.00079.2004 Manunta Y, 1997, EUR J NEUROSCI, V9, P833, DOI 10.1111/j.1460-9568.1997.tb01433.x Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003 NEWMAN JD, 1974, BRAIN RES, V78, P125, DOI 10.1016/0006-8993(74)90358-8 Pelleg-Toiba R., 1991, Journal of Basic and Clinical Physiology and Pharmacology, V2, P257 Prather JF, 2004, CURR OPIN NEUROBIOL, V14, P496, DOI 10.1016/j.conb.2004.06.004 Rotman Y, 2001, HEARING RES, V152, P110, DOI 10.1016/S0378-5955(00)00243-4 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616 NR 24 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 97 EP 103 DI 10.1016/j.heares.2005.07.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900013 PM 16139975 ER PT J AU Brumwell, CL Hossain, WA Morest, DK Wolf, B AF Brumwell, CL Hossain, WA Morest, DK Wolf, B TI Biotinidase reveals the morphogenetic sequence in cochlea and cochlear nucleus of mice SO HEARING RESEARCH LA English DT Article DE auditory system; hearing loss; immunohistochernistry; light microscopy; syndromic deafness; development; vestibular ganglion ID IN-SITU HYBRIDIZATION; HEARING-LOSS; INNER-EAR; INNERVATION; DEFICIENCY; LOCALIZATION; MIGRATION; MOUSE; CELLS; DIFFERENTIATION AB Hearing loss affects children with biotinidase deficiency, an inherited metabolic disorder in the recycling of biotin. The deficit appears shortly after birth during development of the auditory system. Using a mouse model, we sought to discover where and when biotinidase is expressed in the normal development of the cochlea and cochlear nucleus. In the process, we reconstructed the normal morphogenetic sequences of the constituent cells. Immunolabeling for biotinidase was localized to neurons and other cells of the adult and immature mouse, including the embryonic precursors of these regions dating from the stage of the otocyst. Its distribution was compared to the particular morphological changes occurring at each developmental stage. Biotinidase was localized in cells and their processes at the critical stages in their proliferation, migration, structural differentiation, and innervation, covering the entire span of their development. The prevalence of immunostaining peaked in the adult animal, including hair cells and ganglion cells of the cochlea and neurons of the cochlear nucleus. The findings suggest that biotinidase plays a role in the normal development of the auditory system. Besides the pattern of localization of biotinidase, this study provides the first systematic account of each developmental stage in a mammalian auditory system. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Farmington, CT 06030 USA. Univ Connecticut, Ctr Hlth, Dept Pediat, Farmington, CT 06030 USA. Univ Connecticut, Ctr Hlth, Dept Genet & Dev Biol, Farmington, CT 06030 USA. Connecticut Childrens Med Ctr, Hartford, CT USA. RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, 263 Farmington Ave, Farmington, CT 06030 USA. EM kentmorest@neuron.uchc.edu CR ANGULO A, 1990, J ANAT, V168, P241 BOOK KJ, 1990, J COMP NEUROL, V297, P55, DOI 10.1002/cne.902970105 BRUMWELL C, 2005, ARO ABSTR, V28, P289 Farinas I, 2001, J NEUROSCI, V21, P6170 Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098 HART PS, 1992, AM J HUM GENET, V50, P126 Heard G.S., 1989, FASEB J, V3, P124 Heller AJ, 2002, HEARING RES, V173, P62, DOI 10.1016/S0378-5955(02)00609-3 HEMOND SG, 1991, DEV BRAIN RES, V61, P87, DOI 10.1016/0165-3806(91)90117-2 Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L Ivanova A, 1998, DEV NEUROSCI-BASEL, V20, P495, DOI 10.1159/000017350 Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6 KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110 Kim WY, 2001, DEVELOPMENT, V128, P417 Larsell O, 1944, ARCHIV OTOLARYNGOL, V40, P233 Liu M, 2000, GENE DEV, V14, P2839, DOI 10.1101/gad.840500 MARTIN MR, 1981, J COMP NEUROL, V197, P169, DOI 10.1002/cne.901970113 McKenzie E, 2004, DEV DYNAM, V229, P802, DOI 10.1002/dvdy.10500 Montcouquiol M, 2003, J NEUROSCI, V23, P9469 Morest DK, 2004, J NEUROSCI RES, V78, P455, DOI 10.1002/jnr.20283 PIERCE ET, 1967, PROG BRAIN RES, V40, P53 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 RUEDA J, 1987, ACTA OTO-LARYNGOL, V104, P417, DOI 10.3109/00016488709128269 RYBAK LP, 1991, ANN OTO RHINOL LARYN, V100, P294 Schimmang T, 2003, DEVELOPMENT, V130, P4741, DOI 10.1242/dev.00676 Sher A E, 1971, Acta Otolaryngol Suppl, V285, P1 SIMMONNEAU L, 2003, J COMP NEUROL, V459, P113 Simmons DD, 1998, MOL BRAIN RES, V56, P287, DOI 10.1016/S0169-328X(98)00056-4 Stanley CM, 2004, MOL GENET METAB, V81, P300, DOI 10.1016/j.ymgme.2003.12.006 Stanley JS, 2001, EUR J BIOCHEM, V268, P5424, DOI 10.1046/j.0014-2956.2001.02481.x Trettel J, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P279, DOI 10.1201/9781420038736.ch19 WHITEHEAD MC, 1985, NEUROSCIENCE, V14, P255, DOI 10.1016/0306-4522(85)90177-0 Whitlon DS, 2001, BRAIN RES PROTOC, V6, P159, DOI 10.1016/S1385-299X(00)00048-9 Willard Frank H., 1995, V2, P205, DOI 10.1016/B978-155938625-8/50010-7 Wolf B, 2002, J PEDIATR-US, V140, P242, DOI 10.1067/mpd.2002.121938 Wolf B, 2001, METABOLIC MOL BASES, P3935 WOLFSON M, 1985, CONFLICT MANAG PEACE, V8, P1 NR 39 TC 3 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2005 VL 209 IS 1-2 BP 104 EP 121 DI 10.1016/j.heares.2005.06.013 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 987JT UT WOS:000233514900014 PM 16107307 ER PT J AU Matsumoto, N Kalinec, F AF Matsumoto, N Kalinec, F TI Prestin-dependent and prestin-independent motility of guinea pig outer hair cells SO HEARING RESEARCH LA English DT Article DE guinea pig; outer hair cells; OHCs motility; patch-clamp; video microscopy ID INDUCED SLOW MOTILITY; MOTOR PROTEIN; MEMBRANE CAPACITANCE; COCHLEAR AMPLIFIER; FORCE GENERATION; ELECTROMOTILITY; MECHANISM; VOLTAGE; CALCIUM; ACETYLCHOLINE AB The motile response of isolated guinea pig outer hair cells (OHCs) was investigated using a combination of whole-cell patch clamp recording and continuous video image analysis. OHC's length, width, and area were measured from video images and the cell volume estimated from these values. Morphological data was then correlated with electrophysiological recordings of whole-cell current, membrane potential and voltage-dependent non-linear capacitance. Electromotility was evoked either by manipulating the membrane potential under voltage-clamp conditions or by exposing OHCs to high K+ solutions. Other motile responses were investigated in voltage-clamp experiments at constant holding potential, or exposing OHCs to solutions that did not affect the membrane potential. We found that electrical stimulation evoked voltage-dependent changes in OHC's length, width and area but not in cell volume regardless of the time course of stimulation. Moreover, changes in cell area were always associated with both voltage-dependent motility and non-linear capacitance, suggesting prestin dependency. In contrast, voltage-independent motile responses at constant membrane potential, which are presumed to be prestin-in dependent, were associated with changes in cell length, width and volume without significant changes in area. Area measurements, then, become a tool to investigate the simultaneous occurrence of both prestin-dependent and prestin-independent OHC motilities, and for evaluating the individual contribution of each mechanism to the total cell movement. (c) 2005 Elsevier B.V. All rights reserved. C1 House Ear Res Inst, Gonda Dept Cell & Mol Biol, Sect Cell Struct & Funct, Los Angeles, CA 90057 USA. RP Kalinec, F (reprint author), House Ear Res Inst, Gonda Dept Cell & Mol Biol, Sect Cell Struct & Funct, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM fkalinec@hei.org CR Adachi M, 2000, J ACOUST SOC AM, V108, P2299, DOI 10.1121/1.1314396 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ASHMORE JF, 1986, NATURE, V322, P368, DOI 10.1038/322368a0 Belyantseva IA, 2000, J NEUROSCI, V20, P8996 Brownell WE, 2001, ANNU REV BIOMED ENG, V3, P169, DOI 10.1146/annurev.bioeng.3.1.169 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Chertoff M. E., 1994, AM J PHYSIOL, V266, P467 Cohen J., 1988, STAT POWER ANAL BEHA, V2nd Dallos P, 1997, J NEUROSCI, V17, P2212 DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1992, AM J OTOL, V13, P108 Farkas Z, 2003, ACTA OTO-LARYNGOL, V123, P160, DOI 10.1080/0036554021000028127 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 Frolenkov GI, 2003, CELL CALCIUM, V33, P185, DOI 10.1016/S0143-4160(02)00228-2 HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549 Hallworth R, 1997, HEARING RES, V114, P204, DOI 10.1016/S0378-5955(97)00167-6 Iwasa KH, 1997, BIOPHYS J, V73, P546 IWASA KH, 1993, BIOPHYS J, V65, P492 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Kalinec F, 2000, J BIOL CHEM, V275, P28000 Lim D J, 1998, Kidney Int Suppl, V65, pS104 Lohi H, 2000, GENOMICS, V70, P102, DOI 10.1006/geno.2000.6355 Mayhew TM, 1996, J ANAT, V188, P1 MAYHEW TM, 1992, J NEUROCYTOL, V21, P313, DOI 10.1007/BF01191700 Nobili R, 1998, TRENDS NEUROSCI, V21, P159, DOI 10.1016/S0166-2236(97)01192-2 Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Puschner B, 1997, HEARING RES, V110, P251, DOI 10.1016/S0378-5955(97)00086-5 Raphael RM, 2000, BIOPHYS J, V78, P2844 Robles L, 2001, PHYSIOL REV, V81, P1305 Santos-Sacchi J, 2003, CURR OPIN NEUROBIOL, V13, P459, DOI 10.1016/S0959-4388(03)00100-4 Santos-Sacchi J, 2002, PFLUG ARCH EUR J PHY, V444, P99, DOI 10.1007/s00424-002-0804-2 Szonyi M, 2001, BRAIN RES, V922, P65, DOI 10.1016/S0006-8993(01)03150-X ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 38 TC 10 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 1 EP 13 DI 10.1016/j.heares.2005.03.030 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900001 PM 16000248 ER PT J AU Harris, KC Hu, BH Hangauer, D Henderson, D AF Harris, KC Hu, BH Hangauer, D Henderson, D TI Prevention of noise-induced hearing loss with Src-PTK inhibitors SO HEARING RESEARCH LA English DT Article DE noise trauma; cochlea; Src-PTK ID N-TERMINAL KINASE; PP60(C-SRC) TYROSINE KINASE; ATP COMPETITIVE INHIBITORS; MESSENGER-RNA EXPRESSION; FOCAL ADHESION KINASE; HAIR CELL-DEATH; INDUCED APOPTOSIS; OXIDASE ACTIVITY; NAD(P)H OXIDASE; MOUSE COCHLEA AB Studies from our lab show that noise exposure initiates cell death by multiple pathways [Nicotera, T.M., Hu, B.H., Henderson, D., 2003. The caspase pathway in noise-induced apoptosis of the chinchilla cochlea. J. Assoc. Res. Otolaryngol. 4, 466-477] therefore, protection against noise may be most effective with a multifaceted approach. The Src protein tyrosine kinase (PTK) signaling cascade may be involved in both metabolic and mechanically induced initiation of apoptosis in sensory cells of the cochlea. The current study compares three Src-PTK inhibitors, KX1-004, KX1-005 and KX1-174 as potential protective drugs for NIHL. Chinchillas were used as subjects. A 30 mu l drop of one of the Src inhibitors was placed on the round window membrane of the anesthetized chinchilla; the vehicle (DMSO and buffered saline) alone was placed on the other ear. After the drug application, the middle ear was sutured and the subjects were exposed to noise. Hearing was measured before and several times after the noise exposure and treatment using evoked responses. At 20 days post-exposure, the animals were anesthetized their cochleae extracted and cochleograms were constructed. All three Src inhibitors provided protection from a 4 h, 4 kHz octave band noise at 106 dB. The most effective drug, KX1-004 was further evaluated by repeating the exposure with different doses, as well as, substituting an impulse noise exposure. For all conditions, the results suggest a role for Src-PTK activation in noise-induced hearing loss (NIHL), and that therapeutic intervention with a Src-PTK inhibitor may offer a novel approach in the treatment of NIHL. (c) 2005 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, Charleston, SC 29425 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Chem, Buffalo, NY 14214 USA. RP Harris, KC (reprint author), Med Univ S Carolina, Dept Otolaryngol Head & Neck Surg, 135 Rutledge Ave,POB 250550, Charleston, SC 29425 USA. EM harriskc@musc.edu CR Ahmad M, 2003, HEARING RES, V175, P82, DOI 10.1016/S0378-5955(02)00713-X Almeida EAC, 2000, J CELL BIOL, V149, P741, DOI 10.1083/jcb.149.3.741 Bachelder RE, 2001, J BIOL CHEM, V276, P34702, DOI 10.1074/jbc.M102806200 Bachelder RE, 1999, J CELL BIOL, V147, P1063, DOI 10.1083/jcb.147.5.1063 Bachelder RE, 1999, J BIOL CHEM, V274, P20733, DOI 10.1074/jbc.274.29.20733 CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2 De Keulenaer GW, 1998, CIRC RES, V82, P1094 DERIJARD B, 1994, CELL, V76, P1025, DOI 10.1016/0092-8674(94)90380-8 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Frisch SM, 1996, J CELL BIOL, V135, P1377, DOI 10.1083/jcb.135.5.1377 Frisch SM, 2001, CURR OPIN CELL BIOL, V13, P555, DOI 10.1016/S0955-0674(00)00251-9 Fukui T, 1997, CIRC RES, V80, P45 Giancotti FG, 1999, SCIENCE, V285, P1028, DOI 10.1126/science.285.5430.1028 Griendling KK, 2000, REGUL PEPTIDES, V91, P21, DOI 10.1016/S0167-0115(00)00136-1 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 Henderson D., 1999, NOISE HEALTH, V2, P53 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 HU B, 2004, ASS RES OT MIDW M DA Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Ilic D, 1998, J CELL BIOL, V143, P547 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x KYRIAKIS JM, 1994, NATURE, V369, P156, DOI 10.1038/369156a0 Marsilje TH, 2000, BIOORG MED CHEM LETT, V10, P477, DOI 10.1016/S0960-894X(00)00039-1 Milkiewicz KL, 2000, BIOORG MED CHEM LETT, V10, P483, DOI 10.1016/S0960-894X(00)00040-8 Mollnau H, 2002, CIRC RES, V90, pE58, DOI 10.1161/01.RES.0000012569.55432.02 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Pagano PJ, 1998, HYPERTENSION, V32, P331 Pirvola U, 2000, J NEUROSCI, V20, P43 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RAFF MC, 1992, NATURE, V356, P397, DOI 10.1038/356397a0 RYAN CME, 1982, BEHAV ANAL LETT, V2, P213 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SALVI RJ, 1982, AM J OTOLARYNG, V3, P408, DOI 10.1016/S0196-0709(82)80018-5 Seshiah PN, 2002, CIRC RES, V91, P406, DOI 10.1161/01.RES.0000033523.08033.16 UshioFukai M, 1996, J BIOL CHEM, V271, P23317 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X NR 41 TC 33 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 14 EP 25 DI 10.1016/j.heares.2005.04.009 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900002 PM 15950415 ER PT J AU Nizami, L AF Nizami, L TI Dynamic range relations for auditory primary afferents SO HEARING RESEARCH LA English DT Article DE dynamic range; cat; intensity-difference limen; Signal Detection Theory ID RATE-INTENSITY FUNCTIONS; DORSAL COCHLEAR NUCLEUS; CROSSED-OLIVOCOCHLEAR-BUNDLE; NERVE-FIBER RESPONSES; RATE-LEVEL FUNCTIONS; DISCHARGE PATTERNS; INFERIOR COLLICULUS; TONE BURSTS; GUINEA-PIG; PURE-TONES AB Dynamic range is one of four attributes typically assigned to the plot of firing rate vs. stimulus level of an auditory primary afferent. Dynamic range is generally understood to be the contiguous range of sound-pressure-level over which the neuron can indicate some small level change. Typically, however, dynamic range has been quantified as the width in decibels between the endpoints of the rate-level plot, which is not a measure of sensitivity to level change. A sensitivity measure is provided here by first deriving an equation for the intensity-difference limen (DL) in terms of attributes of the rate-level curve. The result is a generally U-shaped curve of DL vs. level. Any given criterion DL corresponds to a horizontal line cutting the DL curve at two points, with the separation in decibels between those points providing a dynamic range for that DL criterion. Plotting the dynamic ranges vs. the respective DLs yields a dynamic range curve. These were made for 62 afferents from the cat. The dynamic ranges of sloping-saturating rate-level plots do not exceed those for sigmoidal plots until the DL criterion reaches 50 dB, supporting the conclusion of Palmer and Evans [Cochlear fibre rate-intensity functions: no evidence for basilar membrane nonlinearities, Hearing Research 2 (1980) 319-326] that sloping saturation is not a reflection of cochlear nonlinearity. (c) 2005 Elsevier B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Ctr Hearing Res, Omaha, NE 68131 USA. RP Nizami, L (reprint author), 1312 Grayson Pl, Decatur, GA 30030 USA. EM nizamii2@aol.com CR AITKIN L, 1991, J NEUROPHYSIOL, V65, P383 BRITT R, 1976, J NEUROPHYSIOL, V39, P162 BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1138 COSTALUPES JA, 1983, HEARING RES, V9, P43, DOI 10.1016/0378-5955(83)90133-8 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 Delgutte B, 1987, PSYCHOPHYSICS SPEECH, P333 ELLIOTT DN, 1960, J ACOUST SOC AM, V32, P380, DOI 10.1121/1.1908071 EVANS EF, 1980, EXP BRAIN RES, V40, P115 Evans E F, 1982, Br J Audiol, V16, P101, DOI 10.3109/03005368209081454 Gdowski GT, 1997, HEARING RES, V105, P85, DOI 10.1016/S0378-5955(96)00196-7 GEISLER CD, 1985, J ACOUST SOC AM, V77, P1102, DOI 10.1121/1.392228 GERKEN GM, 1977, J ACOUST SOC AM, V61, P602, DOI 10.1121/1.381306 GIBSON DJ, 1985, J NEUROPHYSIOL, V53, P940 GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728 GREEN DM, 1966, SIGNAL DETECTION THE GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 HELLMAN WS, 1990, J ACOUST SOC AM, V87, P1255, DOI 10.1121/1.398801 Imaizumi K, 2001, J ACOUST SOC AM, V109, P1247, DOI 10.1121/1.1348004 Imig TJ, 2000, J NEUROPHYSIOL, V83, P907 Jackson BS, 1998, HEARING RES, V126, P75, DOI 10.1016/S0378-5955(98)00151-8 Javel E, 2000, J ACOUST SOC AM, V107, P908, DOI 10.1121/1.428269 Kryter KD, 1943, AM J PSYCHOL, V56, P501, DOI 10.2307/1417352 LIBERMAN MC, 1988, HEARING RES, V34, P179, DOI 10.1016/0378-5955(88)90105-0 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1984, HEARING RES, V16, P75, DOI 10.1016/0378-5955(84)90026-1 LOWEN SB, 1996, COMPUTATIONAL NEUROS, P447 Miller J. D., 1963, ACTA OTO-LARYNGOL, V176, P1 NEFF WD, 1955, J ACOUST SOC AM, V27, P480, DOI 10.1121/1.1907941 Nizami L, 2003, HEARING RES, V175, P14, DOI 10.1016/S0378-5955(02)00706-2 Nizami L., 1998, Society for Neuroscience Abstracts, V24, P901 NIZAMI L, 1999, THESIS U TORONTO TOR NIZAMI L, 2003, ABS ARO, V26, P47 Nizami L, 1997, MATH BIOSCI, V141, P1, DOI 10.1016/S0025-5564(96)00153-8 Nizami L, 2002, HEARING RES, V167, P13, DOI 10.1016/S0378-5955(02)00293-9 OLDFIELD BP, 1984, J COMP PHYSIOL, V155, P689, DOI 10.1007/BF00610855 PALMER AR, 1980, HEARING RES, V2, P319, DOI 10.1016/0378-5955(80)90065-9 PALMER AR, 1987, BRIT MED BULL, V43, P838 PALMER AR, 1982, HEARING RES, V7, P305, DOI 10.1016/0378-5955(82)90042-9 PALMER AR, 1979, HEARING MECHANISMS S, P19 Pang XD, 1997, J ACOUST SOC AM, V102, P3564, DOI 10.1121/1.420147 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 REES A, 1988, J ACOUST SOC AM, V83, P1488, DOI 10.1121/1.395904 RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 SCHAFER A, 1986, MOD PHYS LETT A, V1, P1, DOI 10.1142/S0217732386000026 SCHALK TB, 1980, J ACOUST SOC AM, V67, P903, DOI 10.1121/1.383970 SMITH RL, 1980, BRAIN RES, V184, P499, DOI 10.1016/0006-8993(80)90817-3 Stabler SE, 1996, J NEUROPHYSIOL, V76, P1667 TEICH MC, 1985, J ACOUST SOC AM, V77, P1110, DOI 10.1121/1.392176 TSUCHITANI C, 1977, J NEUROPHYSIOL, V40, P296 Viemeister N., 1988, AUDITORY FUNCTION NE, P213 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WOOLF NK, 1985, DEV BRAIN RES, V17, P131, DOI 10.1016/0165-3806(85)90138-5 Yates GK, 2000, J ACOUST SOC AM, V107, P2143, DOI 10.1121/1.428496 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530 ZWISLOCK.JJ, 1973, KYBERNETIK, V12, P169, DOI 10.1007/BF00289170 NR 61 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 26 EP 46 DI 10.1016/j.heares.2005.05.002 PG 21 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900003 PM 16005586 ER PT J AU Gifford, RH Bacon, SP AF Gifford, RH Bacon, SP TI The effect of a steep high-frequency hearing loss on growth-of-masking functions in simultaneous masking for f(m) < f(s) SO HEARING RESEARCH LA English DT Article DE growth of masking; GOM; Equivalent Rectangular Band width, ERB; signal frequency, f(s); masker frequency, f(m) ID LEVEL-DEPENDENT SHIFTS; BASILAR-MEMBRANE; CHINCHILLA COCHLEA; BEHAVIORAL MEASUREMENT; VIBRATION PATTERN; TUNING CURVES; MECHANICS; MASKERS; TONES; NONLINEARITIES AB In normal-hearing subjects, the slope of the growth-of-masking (GOM) function obtained in simultaneous masking when the masker frequency (f(m)) is much less than the signal frequency (f(s)) often changes from a value near 2.0 to a value near 1.0 at high levels. The purpose of the present study was to evaluate whether this change in slope reflects a basal shift in the peak of the signal's basilar-membrane vibration pattern. To discourage the use of basally shifted peak excitation, GOM functions were obtained in seven subjects with a precipitously sloping high-frequency hearing loss. The signal was located at the normal-hearing edge of the loss, and the masker was located 3 equivalent rectangular bandwidths below f(s). In addition, GOM functions for an fs of 2000 Hz were obtained in four subjects with normal hearing, either "in quiet"' or in the presence of a restrictor tone with a frequency of 2400 or 2600 Hz and a level of 90 dB SPL. Overall, the results generally are not consistent with the change in slope at high levels being due to a basal shift in the peak of the signal's basilar-membrane vibration pattern. Instead, the results are consistent with a decrease in compression at high input levels at the place corresponding to f(s). (c) 2005 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA. RP Gifford, RH (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, POB 870102, Tempe, AZ 85287 USA. EM Rene.Gifford@asu.edu CR American National Standards Institute (ANSI), 1996, S361996 ANSI BACON SP, 1985, J ACOUST SOC AM, V78, P1220, DOI 10.1121/1.392890 Bacon SP, 1999, J ACOUST SOC AM, V106, P341, DOI 10.1121/1.427060 Chatterjee M, 1997, HEARING RES, V111, P65, DOI 10.1016/S0378-5955(97)00089-0 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 de Boer E, 2000, J ACOUST SOC AM, V107, P1487, DOI 10.1121/1.428435 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T Gregan MJ, 1998, J ACOUST SOC AM, V103, P1012, DOI 10.1121/1.421247 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Moore BCJ, 2002, HEARING RES, V163, P101, DOI 10.1016/S0378-5955(01)00390-2 Moore BCJ, 1996, J ACOUST SOC AM, V99, P3669, DOI 10.1121/1.414964 Moore BCJ, 2003, HEARING RES, V175, P66, DOI 10.1016/S0378-5955(02)00711-6 MUNSON WA, 1950, J ACOUST SOC AM, V22, P177, DOI 10.1121/1.1906586 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 NELSON DA, 1984, J ACOUST SOC AM, V75, P1570, DOI 10.1121/1.390866 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Robles L, 2001, PHYSIOL REV, V81, P1305 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SCHONE P, 1977, ACUSTICA, V37, P37 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 VANDERHEIJDEN M, 1995, J ACOUST SOC AM, V97, P1800, DOI 10.1121/1.412056 ZWICKER E, 1976, ACUSTICA, V34, P138 ZWICKER E, 1979, BIOL CYBERN, V35, P243, DOI 10.1007/BF00344207 NR 27 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 47 EP 53 DI 10.1016/j.heares.2005.05.001 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900004 PM 16039077 ER PT J AU Guo, YK Zhang, CX Du, XP Nair, U Yoo, TJ AF Guo, YK Zhang, CX Du, XP Nair, U Yoo, TJ TI Morphological and functional alterations of the cochlea in apolipoprotein E gene deficient mice SO HEARING RESEARCH LA English DT Article DE apolipoprotein E; hyperlipidemia; atherosclerosis; endothelial dysfunction; hearing loss; mouse ID SENSORINEURAL HEARING-LOSS; E-KNOCKOUT MICE; SPIRAL MODIOLAR ARTERY; ENDOTHELIAL DYSFUNCTION; AUDITORY FUNCTION; NITRIC-OXIDE; EXPERIMENTAL HYPERCHOLESTEROLEMIA; ATHEROSCLEROTIC LESIONS; HYPERLIPIDEMIC MICE; NOISE EXPOSURE AB The relationship between hyperlipidemia and sensorineural hearing loss remains obscure. In this study, we elucidate for the first time the cochlear morphological and auditory alterations and their relationships with hyperlipidemia, atherosclerosis, and endothelial dysfunction in apolipoprotem-E knockout (ApoE-KO) mice. Ten-week-old ApoE-KO mice were fed either atherosclerotic diet (1.25% cholesterol) or normal diet. Wild type mice (C57BL/6J) served as normal controls. Fourteen weeks later, marked hyperlipidemia, atherosclerosis, endothelial dysfunction, and hearing impairment, especially in the high frequencies, had developed in ApoE-KO mice as compared with C57BL/6J mice (P < 0.001). A high positive correlation between hearing loss and the extent of atherosclerosis and plasma total cholesterol levels was found. Hearing loss, especially at high frequencies, was detected in all ApoE-KO mice. Hair cell loss mainly at the base turn, thickening of vascular intima, and lumen stenosis of the spiral modiolar artery (SMA) in cochlea were also found; these histological changes were exacerbated by the atherosclerotic diet. Furthermore, endothelial nitric oxide synthase (eNOS) in aortic wall and cochlea was distinctly reduced in ApoE-KO mice. These results demonstrate that hyperlipidemia and atherosclerosis can induce alterations in cochlear morphology and function. The stenosis of SMA, which may cause cochlear ischemia and hypoxia, endothelial dysfunction, and low eNOS activity, may contribute to hearing loss. (c) 2005 Elsevier B.V. All rights reserved. C1 Vet Adm Med Ctr, Coll Med, Dept Med, Div Allergy Immunol, Memphis, TN 38104 USA. Vet Adm Med Ctr, Coll Med, Dept Mol Sci, Div Allergy Immunol, Memphis, TN 38104 USA. Vet Adm Med Ctr, Coll Med, Dept Otolaryngol, Div Allergy Immunol, Memphis, TN 38104 USA. Vet Adm Med Ctr, Coll Med, Inst Neurosci, Memphis, TN 38104 USA. Cent S Univ, Xiangya Hosp 2, Dept Otolaryngol, Changsha 410011, Peoples R China. Cent S Univ, Xiangya Hosp 2, Inst Hearing Res, Changsha 410011, Peoples R China. Univ Tennessee, Coll Med, Vasc Biol Ctr Excellence, Memphis, TN 38163 USA. RP Yoo, TJ (reprint author), Vet Adm Med Ctr, Coll Med, Dept Med, Div Allergy Immunol, Memphis, TN 38104 USA. EM tyoo@utmem.edu CR ANDERSON TJ, 1995, AM J CARDIOL, V75, pB71, DOI 10.1016/0002-9149(95)80017-M AXELSSON A, 1985, ACTA OTO-LARYNGOL, V100, P379, DOI 10.3109/00016488509126561 Bonthu S, 1997, ARTERIOSCL THROM VAS, V17, P2333 Breslow JL, 1996, SCIENCE, V272, P685, DOI 10.1126/science.272.5262.685 d'Uscio LV, 2001, STROKE, V32, P2658, DOI 10.1161/hs1101.097393 d'Uscio LV, 2002, CARDIOVASC RES, V53, P487, DOI 10.1016/S0008-6363(01)00469-2 Faraci FM, 1998, AM J PHYSIOL-HEART C, V274, pH564 GATES GA, 1993, ARCH OTOLARYNGOL, V119, P156 Getz GS, 2000, ARTERIOSCL THROM VAS, V20, P2503 GRATTON MA, 1992, HEARING RES, V61, P97, DOI 10.1016/0378-5955(92)90040-T Hartley CJ, 2000, AM J PHYSIOL-HEART C, V279, pH2326 Jiang ZG, 2004, HEARING RES, V189, P92, DOI 10.1016/S0378-5955(03)00398-8 Jones NS, 1999, CLIN OTOLARYNGOL, V24, P531, DOI 10.1046/j.1365-2273.1999.00310.x Jones NS, 2001, CLIN OTOLARYNGOL, V26, P189, DOI 10.1046/j.1365-2273.2000.00409.x Jones NS, 1999, CLIN OTOLARYNGOL, V24, P449, DOI 10.1046/j.1365-2273.1999.00294.x Jones NS, 2000, CLIN OTOLARYNGOL, V25, P511, DOI 10.1046/j.1365-2273.2000.00408.x Kauser K, 2000, AM J PHYSIOL-HEART C, V278, pH1679 Kojima Y, 2001, ANN OTO RHINOL LARYN, V110, P105 Lamping KG, 1999, AM J PHYSIOL-REG I, V276, pR1023 MASLIAH E, 1995, EXP NEUROL, V136, P107, DOI 10.1006/exnr.1995.1088 MORIZONO T, 1978, ANN OTO RHINOL LARYN, V87, P804 MORIZONO T, 1982, OTOLARYNG HEAD NECK, V90, P814 Nakashima T, 2003, BRAIN RES REV, V43, P17, DOI 10.1016/S0165-0173(03)00189-9 NAKASHIMA Y, 1994, ARTERIOSCLER THROMB, V14, P133 Niebauer J, 1999, AM J PHYSIOL-HEART C, V276, pH1346 Oemar BS, 1998, CIRCULATION, V97, P2494 Oitzl MS, 1997, BRAIN RES, V752, P189, DOI 10.1016/S0006-8993(96)01448-5 PAIGEN B, 1987, ATHEROSCLEROSIS, V68, P231, DOI 10.1016/0021-9150(87)90202-4 PIEDRAHITA JA, 1992, P NATL ACAD SCI USA, V89, P4471, DOI 10.1073/pnas.89.10.4471 PILLSBURY HC, 1986, LARYNGOSCOPE, V96, P1112 PLUMP AS, 1992, CELL, V71, P343, DOI 10.1016/0092-8674(92)90362-G Pulec JL, 1997, ENT-EAR NOSE THROAT, V76, P725 Pulec J L, 1997, Ear Nose Throat J, V76, P716 RAY J, 1991, J OTOLARYNGOL, V20, P336 ROSEN S, 1965, ARCHIV OTOLARYNGOL, V82, P236 ROSEN S, 1970, ACTA OTO-LARYNGOL, V70, P242 ROSEN S, 1964, Trans Am Acad Ophthalmol Otolaryngol, V68, P433 Rosenfeld ME, 2000, ARTERIOSCL THROM VAS, V20, P2587 Satar B, 2001, OTOL NEUROTOL, V22, P786, DOI 10.1097/00129492-200111000-00012 SELLKE FW, 1990, CIRCULATION, V81, P1586 Seo HS, 1997, ARTERIOSCL THROM VAS, V17, P3593 SIKORA MA, 1986, ACTA OTO-LARYNGOL, V102, P372, DOI 10.3109/00016488609119420 SPENCER JT, 1973, LARYNGOSCOPE, V83, P639, DOI 10.1288/00005537-197305000-00002 STROME M, 1988, LARYNGOSCOPE, V98, P165 Suzuki K, 2000, LARYNGOSCOPE, V110, P1736, DOI 10.1097/00005537-200010000-00033 TAMI TA, 1985, OTOLARYNG HEAD NECK, V93, P235 Tsuji S, 2002, HEARING RES, V166, P72, DOI 10.1016/S0378-5955(02)00299-X Wangemann P, 2002, ADV OTO-RHINO-LARYNG, V59, P51 Wangemann P, 1998, HEARING RES, V115, P113, DOI 10.1016/S0378-5955(97)00184-6 YAMAMOTO H, 1988, J CLIN INVEST, V81, P1752, DOI 10.1172/JCI113516 Yang RH, 1999, ARTERIOSCL THROM VAS, V19, P2762 ZEIHER AM, 1991, CIRCULATION, V83, P391 Zhang CX, 2003, AM J PHYSIOL-HEART C, V285, pH2563, DOI 10.1152/ajpheart.00435.2003 ZHANG SH, 1992, SCIENCE, V258, P468, DOI 10.1126/science.1411543 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 55 TC 30 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 54 EP 67 DI 10.1016/j.heares.2005.05.010 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900005 PM 16051453 ER PT J AU Parazzini, M Bell, S Thuroczy, G Molnar, F Tognola, G Lutman, ME Ravazzani, P AF Parazzini, M Bell, S Thuroczy, G Molnar, F Tognola, G Lutman, ME Ravazzani, P TI Influence on the mechanisms of generation of distortion product otoacoustic emissions of mobile phone exposure SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emissions; DPOAE generation mechanism; mobile phone ID ELECTROMAGNETIC-FIELDS; DPOAE; HEARING; WAVE AB Mobile phones have become very commonly used throughout the world within a short period of time. Although there is no clear evidence to show harmful physiological effects of electromagnetic fields (EMF) at the levels used by mobile phones, there is widespread public concern that there may be potential for harm. Because mobile phones are usually held close to the ear, it is appropriate to study effects on hearing. In this study, the outer hair cell function of 15 subjects was assessed by DPOAE recording before and after a controlled EMF exposure. To increase the sensitivity of DPOAE recording to identify even small changes in hearing function, an inverse fast Fourier transform (IFFT) analysis and time-domain windowing was applied to separate the two generation mechanisms of DPOAE, the so-called place-fixed and wave-fixed mechanisms, in order to verify if EMF can affects the two DPOAE emission mechanisms. Statistical analysis of the data showed that 10 min of EMF exposure at the maximum power (2 W at 900 MHz or 1 W at 1800 MHz) does not induce any changes in either DPOAE generation mechanism. (c) 2005 Elsevier B.V. All rights reserved. C1 CNR, ISIB, Ist Ingn Biomed, I-20133 Milan, Italy. Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England. Natl Res Inst Radiobiol & Radiohyg, Dept Non Ionizing Radiat, Budapest, Hungary. RP Parazzini, M (reprint author), CNR, ISIB, Ist Ingn Biomed, Piazza Leonardo Vinci 32, I-20133 Milan, Italy. EM marta.parazzini@polimi.it RI Parazzini, Marta/J-8175-2014; Tognola, Gabriella/B-9025-2015; Ravazzani, Paolo/B-9139-2015 OI Parazzini, Marta/0000-0001-9008-7530; Ravazzani, Paolo/0000-0003-0282-3329 CR Arai N, 2003, CLIN NEUROPHYSIOL, V114, P1390, DOI 10.1016/S1388-2457(03)00124-X BELL SL, 2004, 2 IASTED INT C BIOM, P519 *CENELEC EN, 2002, 50361 CENELEC EN *EU, 1999, OFFICIAL J EUROPEA L, V199 GALLONI P, IN PRESS BIOELECTROM GRISANTI G, 1998, MICROWAVE S DIGEST I, V2, P771 Hamblin DL, 2004, CLIN NEUROPHYSIOL, V115, P171, DOI 10.1016/S1388-2457(03)00313-4 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 Kellenyi L., 1999, Neurobiology (Budapest), V7, P79 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 Kizilay A, 2003, AURIS NASUS LARYNX, V30, P239, DOI 10.1016/S0385-8146(03)00054-3 Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351 Knight RD, 1999, J ACOUST SOC AM, V106, P1420, DOI 10.1121/1.427145 Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197 Mallat S., 1998, WAVELET TOUR SIGNAL Marino C, 2000, RADIAT ENVIRON BIOPH, V39, P131, DOI 10.1007/s004110000049 Ozturan O, 2002, ACTA OTO-LARYNGOL, V122, P289, DOI 10.1080/000164802753648178 Papoulis A., 1962, FOURIER INTEGRAL ITS Parazzini M, 2005, HEARING RES, V205, P44, DOI 10.1016/j.heares.2005.02.010 RAZAZZANI P, 2005, 28 ARO MIDW M NEW OR SHERA CA, 1993, J ACOUST SOC AM, V93, P3333, DOI 10.1121/1.405717 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 23 TC 29 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 68 EP 78 DI 10.1016/j.heares.2005.04.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900006 PM 16054312 ER PT J AU Ton, C Parng, C AF Ton, C Parng, C TI The use of zebrafish for assessing ototoxic and otoprotective agents SO HEARING RESEARCH LA English DT Article DE ototoxicity; otoprotection; aminoglycoside; cisplatin; antioxidant; hair cells; zebrafish ID CISPLATIN-INDUCED OTOTOXICITY; HAIR CELL-DEATH; INDUCED LIPID-PEROXIDATION; ROUND WINDOW APPLICATION; LATERAL-LINE SYSTEM; INDUCED APOPTOSIS; D-METHIONINE; DANIO-RERIO; AMINOGLYCOSIDE-OTOTOXICITY; INDIVIDUAL SENSITIVITY AB Zebrafish and other fish exhibit hair cells in the lateral-fine neurornasts which Lire structurally and functionally similar to mammalian inner ear hair cells. To facilitate drug screening for ototoxic or otoprotective agents, we report a straightforward, quantitative in vivo assay to determine potential ototoxicity of drug candidates and to screen otoprotective agents in zebrafish larva. In this study, a fluorescent vital dye, DASPEI (2-(4-(dimetliylamino)styryl)-N-ethylpyridinium iodide), was used to stain zebrafish hair cells in vivo and morphometric analysis was performed to quantify fluorescence intensity and convert images to numerical endpoints. Various therapeutics, including gentamicin, cisplatin, vinblastine sulfate, quinine, and neomycin, which cause ototoxicity in humans, also resulted in hair cell loss in zebrafish. In addition, protection against cisplatin-induced ototoxicity was observed in zebrafish larva co-treated with cisplatin and different antioxidants including, ghutathione (GSH), allopurinol (ALO), N-acetyl L-cysteine (L-NAC), 2-oxothiazolidine-4-carboxylate (OTC) and D-methionine (D-MET). Our data indicate that results of ototoxicity and otoprotection in zebrafish correlated with results in humans, supporting use of zebrafish for preliminary drug screening. (c) 2005 Elsevier B.V. All rights reserved. C1 Phylonix Pharmaceut Inc, Cambridge, MA 02139 USA. RP Parng, C (reprint author), Phylonix Pharmaceut Inc, 100 Inman St, Cambridge, MA 02139 USA. EM chuenlei@phylonix.com CR Alexandre D, 1999, P NATL ACAD SCI USA, V96, P7558, DOI 10.1073/pnas.96.13.7558 ANDERSON ME, 1990, FASEB J, V4, P3251 ARSLAN E, 1999, ANN NY ACAD SCI, V28, P1 AUGUSTIN AJ, 1994, INVEST OPHTH VIS SCI, V35, P3897 BALAK KJ, 1990, J NEUROSCI, V10, P2502 BEREITERHAHN J, 1976, BIOCHIM BIOPHYS ACTA, V423, P1, DOI 10.1016/0005-2728(76)90096-7 Bermingham-McDonogh O, 2003, CURR OPIN NEUROBIOL, V13, P119, DOI 10.1016/S0959-4388(03)00018-7 Bohm S, 1999, ONCOLOGY-BASEL, V57, P115, DOI 10.1159/000012017 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 Campbell Kathleen, 2003, J Am Acad Audiol, V14, P121, DOI 10.3766/jaaa.14.3.2 CAMPBELL KC, 1996, HEARING RES, V120, P90 Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144 CHITNIS AB, 1990, J NEUROSCI, V10, P1892 Choe WT, 2004, OTOL NEUROTOL, V25, P910, DOI 10.1097/00129492-200411000-00009 COLLEY JC, 1989, TOXICOLOGY, V54, P219, DOI 10.1016/0300-483X(89)90047-4 Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023 CORWIN JT, 1985, J COMP NEUROL, V239, P445, DOI 10.1002/cne.902390410 CORWIN JT, 1991, ANNU REV NEUROSCI, V14, P301, DOI 10.1146/annurev.neuro.14.1.301 Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Erdinc M, 2000, EXP TOXICOL PATHOL, V52, P329 Fawcett JP, 1996, EXP NEPHROL, V4, P248 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 FRITZSCH B, 1988, ACTA BIOL HUNG, V39, P305 GANDARA DR, 1989, ANTICANCER RES, V9, P1121 Gompel N, 2001, MECH DEVELOP, V105, P69, DOI 10.1016/S0925-4773(01)00382-3 Gompel N, 2001, DEVELOPMENT, V128, P387 HANNEMANN J, 1988, TOXICOLOGY, V51, P119 Harris JA, 2003, JARO, V4, P219, DOI 10.1007/s10162-002-3022-x HENTSCHEL DM, 2004, AM J PHYSIOL-RENAL, V288, pF923 Higgs DM, 2002, JARO, V3, P174, DOI 10.1007/s101620020035 Higgs DM, 2003, J ACOUST SOC AM, V113, P1145, DOI 10.1121/1.1536185 Holley MC, 2002, BRIT MED BULL, V63, P157, DOI 10.1093/bmb/63.1.157 Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 HUDSPETH AJ, 1989, NATURE, V341, P379 Ikegami R, 1997, ZYGOTE, V5, P329 Inohara N, 2000, CELL DEATH DIFFER, V7, P509, DOI 10.1038/sj.cdd.4400679 Jarboe JK, 1999, HEARING RES, V132, P43, DOI 10.1016/S0378-5955(99)00031-3 Jorgensen J.M., 1989, EVOLUTION OCTAVOLATE KIMMEL CB, 1995, DEV DYNAM, V203, P253 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x KORNBLUM HI, 1990, J COMP NEUROL, V301, P162, DOI 10.1002/cne.903010203 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 Lautermann J, 2004, LARYNGO RHINO OTOL, V83, P317, DOI 10.1055/s-2004-814280 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 Lynch ED, 2005, HEARING RES, V201, P81, DOI 10.1016/j.heares.2004.08.002 Matsui Jonathan Isamu, 2004, Curr Opin Otolaryngol Head Neck Surg, V12, P418, DOI 10.1097/01.moo.0000136873.56878.56 Mattsson JL, 2000, TOXICOL PATHOL, V28, P137, DOI 10.1177/019262330002800117 McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0 MILLER JM, 2002, AUDIOL NEURO-OTOL, V7, P157 Moens CB, 1999, METHODS CELL BIOL, V59, P253 Moss PE, 1999, ANN PHARMACOTHER, V33, P423, DOI 10.1345/aph.18288 Murakami SL, 2003, HEARING RES, V186, P47, DOI 10.1016/S0378-5955(03)00259-4 NAKANO S, 1989, JPN J PHARMACOL, V50, P87, DOI 10.1254/jjp.50.87 Nishida I, 1996, ORL J OTO-RHINO-LARY, V58, P68 Parng C, 2002, ASSAY DRUG DEV TECHN, V1, P41, DOI 10.1089/154065802761001293 Peters U, 2000, ANTI-CANCER DRUG, V11, P639, DOI 10.1097/00001813-200009000-00007 Peters U, 2003, ANTICANCER RES, V23, P1249 Petrioli R, 1996, CANCER, V77, P344, DOI 10.1002/(SICI)1097-0142(19960115)77:2<344::AID-CNCR18>3.0.CO;2-1 Pichon F, 2004, EVOL DEV, V6, P187, DOI 10.1111/j.1525-142X.2004.04024.x PLAXE S, 1994, GYNECOL ONCOL, V55, P82, DOI 10.1006/gyno.1994.1252 POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 Raible DW, 2000, J COMP NEUROL, V421, P189, DOI 10.1002/(SICI)1096-9861(20000529)421:2<189::AID-CNE5>3.0.CO;2-K Raphael Y, 2002, BRIT MED BULL, V63, P25, DOI 10.1093/bmb/63.1.25 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 RAVI R, 1991, PHARMACOLOGIST, V33, P127 Ray DE, 1997, CLIN EXP PHARMACOL P, V24, P857, DOI 10.1111/j.1440-1681.1997.tb02704.x Rybak LP, 1999, TOXICOL SCI, V47, P195, DOI 10.1093/toxsci/47.2.195 Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004 Rybak LP, 2000, AM J OTOL, V21, P513 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Schweyer S, 2004, INT J ONCOL, V25, P1671 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Stone JS, 1996, J NEUROSCI, V16, P6157 Tange Rinze A., 1997, Auris Nasus Larynx, V24, P131, DOI 10.1016/S0385-8146(96)00031-4 Thomas Dickey D, 2004, Hear Res, V193, P25, DOI 10.1016/j.heares.2004.02.007 TROOST TAW, 1998, IATROGENIC NEUROLOGY WALKER EM, 1990, CLIN LAB MED, V10, P323 Walshe P, 2003, CLIN OTOLARYNGOL, V28, P5, DOI 10.1046/j.1365-2273.2003.00658.x Wang J, 2004, CANCER RES, V64, P9217, DOI 10.1158/0008-5472.CAN-04-1581 Webb JF, 1997, BRAIN BEHAV EVOLUT, V50, P139, DOI 10.1159/000113328 Westerfield M., 1993, ZEBRAFISH BOOK GUIDE Williams JA, 2000, HEARING RES, V143, P171, DOI 10.1016/S0378-5955(00)00039-3 Wimmer C, 2004, OTOL NEUROTOL, V25, P33, DOI 10.1097/00129492-200401000-00007 Wu YJ, 2005, J PHARMACOL EXP THER, V312, P424, DOI 10.1124/jpet.104.075119 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 88 TC 94 Z9 106 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 79 EP 88 DI 10.1016/j.heares.2005.05.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900007 PM 16014323 ER PT J AU Meinke, DK Stagner, BB Martin, GK Lonsbury-Martin, BL AF Meinke, DK Stagner, BB Martin, GK Lonsbury-Martin, BL TI Human efferent adaptation of DPOAEs in the L-1,L-2 space SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; DPOAE; adaptation; efferent ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION PRODUCTS; AUDITORY-NERVE FIBERS; COCHLEAR MICROMECHANICAL PROPERTIES; OLIVOCOCHLEAR-BUNDLE STIMULATION; CONTRALATERAL SOUND STIMULATION; OUTER HAIR-CELLS; BROAD-BAND NOISE; ELECTRICAL-STIMULATION; VISUAL-ATTENTION AB The adaptive properties of distortion product otoacoustic emissions (DPOAEs) at 2f(1) -f(2) were investigated in 12 ears of normally hearing adults aged 18-30 years using long-lasting 1-s primary-tone on-times. In this manner, DPOAE adaptation at a single f(2) of 1.55 kHz (f(2)/f(1) = 1.21) was evaluated as a function of the levels of the primary tones in a matrix of L-1,L-2 settings, which varied from 45 to 80 dB SPL, in 5-dB steps. DPOAEs were elicited under both monaural and binaural stimulus-presentation conditions. Adaptation was defined as the difference in DPOAE levels between the initial 92-ms baseline measure using a standard protocol and one obtained during the final 92 ms of the prolonged 1-s primary-tones. These differences were averaged across subjects to create contour plots of mean adaptation in the L-1,L-2 space. The 2f(1) -f(2) DPOAE revealed consistent regions of suppression (<=-0.5 dB difference) or enhancement (>= +0.5 dB difference) with respect to baseline measures within the L-1,L-2 matrix for both acoustic-stimulation conditions. Specifically, 2f(1) - f(2) DPOAE suppressions of 1-2 dB occurred for both monaural and binaural presentations, typically at level combinations in which L-1 > L-2 In contrast, larger 2f(1) - f(2) DPOAE enhancements of 3-4 dB occurred for only the binaural condition, at primary-tone level combinations where L-1 < L-2. Although adaptation activity was also evaluated for the DPOAEs at f(2) - f(1), 2f(2) - f(1), and 3f(1) - 2f(2), these emissions were either immeasurable (e.g., f(2) - f(1)) or only present in a subset of subjects over a narrow range of primary-tone frequencies and levels that did not support a systematic analysis. In summary, the 2f(1) - f(2) results suggest that a potentially important area for adaptation measures exists in the L-1,L-2 space, when L-1 is lower than L-2. This combination of primary-tone levels can lead to large DPOAE adaptation effects that may be related to a notch in the DPOAE response/growth or input/output (I/O) function. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Colorado, Dept Speech Language & Hearing Sci, Boulder, CO 80309 USA. Jerry L Pettis Mem Vet Adm Med Ctr, Res Serv 151, Loma Linda, CA 92357 USA. Loma Linda Univ, Dept Surg, Div Otolaryngol Head & Neck Surg, Loma Linda, CA 92350 USA. RP Meinke, DK (reprint author), Univ No Colorado, Dept Commun Disorders, Campus Box 140, Greeley, CO 80639 USA. EM deanna.meinke@unco.edu CR AGRAMA MT, 1998, ABST ASS RES OTOLARY, V21, P152 Bassim MK, 2003, HEARING RES, V182, P140, DOI 10.1016/S0378-5955(03)00190-4 BERLIN CI, 1995, HEARING RES, V87, P96, DOI 10.1016/0378-5955(95)00082-F BERLIN CI, 1994, OTOLARYNG HEAD NECK, V110, P3, DOI 10.1016/S0194-5998(94)70788-X BERLIN CI, 1993, HEARING RES, V71, P1, DOI 10.1016/0378-5955(93)90015-S BROWN SE, 1990, ABSTR ASS RES OT, V13, P230 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CHERYCROZE S, 1993, HEARING RES, V68, P53, DOI 10.1016/0378-5955(93)90064-8 COLLET L, 1990, ADV AUDIOL, V7, P164 COSTALUPES JA, 1984, J NEUROPHYSIOL, V51, P1326 DAVIS H, 1983, HEARING RES, V9, P164 Di Girolamo S, 2001, HEARING RES, V162, P80, DOI 10.1016/S0378-5955(01)00370-7 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 FROEHLICH P, 1993, PHYSIOL BEHAV, V53, P679, DOI 10.1016/0031-9384(93)90173-D GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 GIFFORD ML, 1983, J ACOUST SOC AM, V74, P115, DOI 10.1121/1.389728 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Kawase T, 1995, HEARING RES, V91, P1, DOI 10.1016/0378-5955(95)00145-X KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 KIRK DL, 1993, HEARING RES, V67, P20, DOI 10.1016/0378-5955(93)90228-S KUJAWA SG, 1995, HEARING RES, V85, P142, DOI 10.1016/0378-5955(95)00041-2 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Lisowska G, 2002, ACTA OTO-LARYNGOL, V122, P613, DOI 10.1080/000164802320396286 LITTMAN TA, 1992, J ACOUST SOC AM, V92, P1945, DOI 10.1121/1.405242 LUEBKE AE, 2002, JARO-J ASSOC RES OTO, V1, P16 Lukashkin AN, 2002, J ACOUST SOC AM, V112, P1561, DOI 10.1121/1.1502903 Maison S, 1997, HEARING RES, V113, P89, DOI 10.1016/S0378-5955(97)00136-6 Maison SF, 2000, J NEUROSCI, V20, P4701 Martin GK, 2003, HEARING RES, V177, P111, DOI 10.1016/S0378-5955(03)00028-5 Martin GK, 1999, HEARING RES, V136, P105, DOI 10.1016/S0378-5955(99)00119-7 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K OATMAN LC, 1971, EXP NEUROL, V32, P341, DOI 10.1016/0014-4886(71)90003-3 OATMAN LC, 1976, EXP NEUROL, V51, P41, DOI 10.1016/0014-4886(76)90052-2 OATMAN LC, 1977, EXP NEUROL, V57, P200, DOI 10.1016/0014-4886(77)90057-7 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 Rajan R, 1992, NOISE INDUCED HEARIN, P429 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 RELKIN EM, 2002, ASS RES OTOLARYNGOL RELKIN EM, 2001, ASS RES OTOLARYNGOL SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SIEGEL JH, 1982, J NEUROPHYSIOL, V47, P303 SUBRAMANIAM M, 1993, HEARING RES, V65, P234, DOI 10.1016/0378-5955(93)90216-N SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr W. B., 1986, NEUROBIOLOGY HEARING, P333 WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WHITEHEAD ML, 1995, J ACOUST SOC AM, V97, P2346, DOI 10.1121/1.411959 WILLIAMS DM, 1995, J ACOUST SOC AM, V97, P130 Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X NR 59 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 89 EP 100 DI 10.1016/j.heares.2005.05.004 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900008 PM 16019174 ER PT J AU Morand-Villeneuve, N Veuillet, E Perrot, X Lemoine, P Gagnieu, MC Sebert, P Durrant, JD Collet, L AF Morand-Villeneuve, N Veuillet, E Perrot, X Lemoine, P Gagnieu, MC Sebert, P Durrant, JD Collet, L TI Lateralization of the effects of the benzodiazepine drug oxazepam on medial olivocochlear system activity in humans SO HEARING RESEARCH LA English DT Article DE benzodiazepines; descending auditory pathways; medial olivocochlear efferent bundle; left-right asymmetry; evoked otoacoustic emissions ID COCHLEAR MICROMECHANICAL PROPERTIES; EVOKED OTOACOUSTIC EMISSIONS; SUPERIOR OLIVARY COMPLEX; STEM AUDITORY NUCLEI; PIG BRAIN-STEM; INFERIOR COLLICULUS; GUINEA-PIG; CORTICOFUGAL MODULATION; GABA-IMMUNOREACTIVITY; RECEPTOR SUBTYPES AB Benzodiazepines (Bzd) are known to interact with GABAergic inhibitory neurotransmission. Previous research on their effect on human auditory efferent pathways-through evoked otoacoustic emissions Suppression by contralateral acoustic stimulation (CAS)-indicated a decrease in medial olivocochlear (MOC) efferent system inhibitory activity, after oral intake of oxazepam - representative of the Bzd drug class. To date, this pharmacological effect was only assessed in the right ear. Since a leftward asymmetry of Bzd receptors localization in human auditory cortex has been described recently.. we explored in this study the hypothesis of an asymmetrical action of Bzd on MOC efferent functioning. The results revealed a significant difference of Bzd effect probing the right ear versus the left ear, with CAS-induced suppression being less effective in the right than left ear after oxazepam intake. This finding raises the question of possible neurochernical left-right asymmetry in the descending auditory pathways. The potential localization of this asymmetry is discussed. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, Hop Edouard Herriot, CNRS UMR 5020, Lab Neurosci & Syst Sensoriels, F-69366 Lyon 07, France. Unite Clin Psychiat Biol, Bron, France. Hop Edouard Herriot, Pharmacol Lab, Lyon, France. Pharm CHS Vinatier, Bron, France. Univ Pittsburgh, Dept Commun Sci & Disorders, Pittsburgh, PA 15260 USA. Univ Pittsburgh, Dept Otolaryngol, Pittsburgh, PA 15260 USA. RP Veuillet, E (reprint author), Univ Lyon 1, Hop Edouard Herriot, CNRS UMR 5020, Lab Neurosci & Syst Sensoriels, 50 Av Tony Garnier,3 Pl Arsonval,Pavil U, F-69366 Lyon 07, France. EM evelyne.veuillet@chu-lyon.fr CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 BARBACCIA ML, 1988, ANNU REV PHARMACOL, V28, P451 BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 BUNO W, 1978, EXP NEUROL, V59, P62, DOI 10.1016/0014-4886(78)90201-7 BURT DR, 1991, FASEB J, V5, P2916 CAICEDO A, 1993, J COMP NEUROL, V328, P377, DOI 10.1002/cne.903280305 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 CHOI DW, 1977, NATURE, V269, P342, DOI 10.1038/269342a0 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1992, AUDIOLOGY, V31, P1 DALLOS P, 1972, SCIENCE, V177, P356, DOI 10.1126/science.177.4046.356 DELB W, 1994, LARYNGO RHINO OTOL, V73, P315, DOI 10.1055/s-2007-997138 Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6 DUPONT J, 1990, NEUROSCI LETT, V111, P263, DOI 10.1016/0304-3940(90)90272-B EYBALIN M, 1993, PHYSIOL REV, V73, P309 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 GLICK SD, 1982, BRAIN RES, V234, P53, DOI 10.1016/0006-8993(82)90472-3 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 HELFERT RH, 1989, BRAIN RES, V501, P268 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 Hotz MA, 2000, BRIT J CLIN PHARMACO, V49, P72, DOI 10.1046/j.1365-2125.2000.00104.x HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JUIZ JM, 1994, BRAIN RES, V639, P193, DOI 10.1016/0006-8993(94)91730-2 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Khalfa S, 1998, EUR J NEUROSCI, V10, P2731, DOI 10.1046/j.1460-9568.1998.00286.x Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 MACDONALD RL, 1978, SCIENCE, V200, P775, DOI 10.1126/science.205953 Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109 MERIC C, 1993, ACTA OTO-LARYNGOL, V113, P471, DOI 10.3109/00016489309135848 MERIC C, 1992, INT J PSYCHOPHYSIOL, V12, P233, DOI 10.1016/0167-8760(92)90061-F Morand N, 1998, HEARING RES, V121, P71, DOI 10.1016/S0378-5955(98)00068-9 Morand N, 2001, ACTA OTO-LARYNGOL, V121, P293 Mugnaini E, 1985, HDB CHEM NEUROANAT 1, V4, P436 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 Popelar J, 2002, HEARING RES, V170, P116, DOI 10.1016/S0378-5955(02)00397-0 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 RASMUSSEN GL, 1946, J COMP NEUROL, V84, P141, DOI 10.1002/cne.900840204 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 ROSSOR M, 1980, J NEUROCHEM, V35, P743, DOI 10.1111/j.1471-4159.1980.tb03716.x Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3 SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807 SUNEJA SK, 1995, J NEUROCHEM, V64, P147 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weedman DL, 1996, J COMP NEUROL, V371, P311 WENTHOLD RJ, 1986, BRAIN RES, V380, P7, DOI 10.1016/0006-8993(86)91423-X Winer JA, 1998, J COMP NEUROL, V400, P147 WINER JA, 1986, NEUROSCIENCE, V19, P771, DOI 10.1016/0306-4522(86)90298-8 Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Yu YQ, 2004, J NEUROSCI, V24, P3060, DOI 10.1523/JNEUROSCI.4897-03.2004 Zhang YF, 1997, NATURE, V387, P900 NR 67 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 101 EP 106 DI 10.1016/j.heares.2005.05.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900009 PM 15993014 ER PT J AU Okamoto, Y Nakagawa, S Fujimoto, K Tonoike, M AF Okamoto, Y Nakagawa, S Fujimoto, K Tonoike, M TI Intelligibility of bone-conducted ultrasonic speech SO HEARING RESEARCH LA English DT Article DE ultrasonic hearing; bone conduction; speech intelligibility; familiarity; confusion matrix ID AUDITORY-CORTEX; PERCEPTION; HEARING AB Ultrasound can be perceived through bone conduction by the profoundly deaf as well as by normal-hearing subjects. Moreover, speech signals modulated onto ultrasound can be detected through bone conduction. This study explored how well listeners can understand ultrasonic speech and the confusion patterns to evaluate and improve bone-conducted ultrasonic hearing. The intelligibility of Japanese words classified by familiarity and Japanese monosyllables with bone-conducted ultrasound was investigated. Results showed that the intelligibility of familiar words was higher than that of unfamiliar words. Further, the results of a monosyllable intelligibility test with bone-conducted ultrasound and those of a test with air-conducted sound showed a similar pattern of speech recognition with regard to the errors made. The relationship between speech intelligibility and sound level showed that the increase in the intelligibility of bone-conducted ultrasonic speech did not exceed the increase in the intelligibility of air-conducted speech as the sound level rose. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. Kumamoto Univ, Grad Sch Sci & Technol, Kumamoto 8608555, Japan. RP Okamoto, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan. EM yos-okamoto@aist.go.jp CR ABRAMOVICH SJ, 1978, J LARYNGOL OTOL, V92, P861, DOI 10.1017/S0022215100086230 AMANO S, 1995, PERCEPT PSYCHOPHYS, V57, P598, DOI 10.3758/BF03213265 BELLUCCI RICHARD J., 1962, ANN OTOL RHINOL AND LARYNGOL, V71, P719 CORSO JF, 1963, J ACOUST SOC AM, V35, P1738, DOI 10.1121/1.1918804 DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379 DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548 DOBIE RA, 1992, SCIENCE, V255, P1584, DOI 10.1126/science.1549785 Fujimoto K, 2005, HEARING RES, V204, P210, DOI 10.1016/j.heares.2005.02.004 GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053 HAEFF AV, 1963, SCIENCE, P139 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030 Kennedy E, 1998, J ACOUST SOC AM, V103, P1098, DOI 10.1121/1.423108 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 MILLER GA, 1955, J ACOUST SOC AM, V27, P338, DOI 10.1121/1.1907526 NAKAGAWA S, 2003, J ACOUST SOC JPN, V59, P464 Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9 PETERSON GE, 1952, J ACOUST SOC AM, V24, P175, DOI 10.1121/1.1906875 PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0 Sakamoto S., 1998, Journal of the Acoustical Society of Japan, V54 Simpson A M, 1990, Acta Otolaryngol Suppl, V469, P101 NR 21 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 107 EP 113 DI 10.1016/j.heares.2005.05.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900010 PM 16019175 ER PT J AU Rzadzinska, AK Derr, A Kachar, B Noben-Trauth, K AF Rzadzinska, AK Derr, A Kachar, B Noben-Trauth, K TI Sustained cadherin 23 expression in young and adult cochlea of normal and hearing-impaired mice SO HEARING RESEARCH LA English DT Article DE age-related hearing loss; waltzer; cochlea; stereocilia; cadherin 23 ID MOUSE MODEL; INBRED STRAINS; FUNCTIONAL AGE; WALTZER MICE; STEREOCILIA; CDH23; MUTATIONS; CELLS; PRESBYCUSIS; PATHOLOGY AB Cadherin 23 encodes a single-pass transmembrane protein with 27 extracellular cadherin-domains and localizes to stereocilia where it functions as an inter-stereocilia link. Cadherin 23-deficient mice show congenital deafness in combination with circling behavior as a result of organizational defects in the stereocilia hair bundle, common inbred mouse strains carrying the hypornorphic Cdh23(753A) allele are highly susceptible to sensorineural hearing loss. Here, we show that an antibody (N1086) directed against the intracellular carboxyterminus reacts specifically with cadherin 23 and detects with high sensitivity the isoform devoid of the peptide encoded by exon 68 (CDH23 Delta 68). Cochlea, vestibule.. eye, brain and testis produce the CDH23 Delta 68 isoform in abundance and form moieties with different molecular weight due to variations in glycosylation content. In the cochlea, CDH23 Delta 68 expression is highest at postnatal day 1 (P1) and P7; expression is down regulated through P14 and P21 and persists at a low steady-state level throughout adulthood (P160). Furthermore, CDH23 Delta 68 expression levels in young and adult cochlea are similar among normal and hearing deficient strains (C3HeB/FeJ, C57BL/6J and BUB/BnJ). Finally, by immunofluorescence using an antibody (Pb240) specific for ecto-domain 14, we show that cadherin 23 localizes to stereocilia during hair bundle development in late gestation and early postnatal days. Cadherin 23-specific labeling becomes weaker as the hair bundle matures but faint labeling concentrated near the top of stereocilia is still detectable at P35. No labeling of cochlea stereocilia was observed with N1086. In conclusion, our data describe a cadherin 23-specific antibody with high affinity to the CDH23 Delta 68 isoform, reveal a dynamic cochlea expression and localization profile and show sustained cadherin 23 levels in adult cochlea of normal and hearing-impaired mice. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Inst Deafness & Other Commun Disorders, Sect Struct Cell Biol, Lab Cellular Biol, NIH, Rockville, MD 20855 USA. Natl Inst Deafness & Other Commun Disorders, Mol Biol Lab, Neurogenet Sect, Rockville, MD 20855 USA. RP Noben-Trauth, K (reprint author), Natl Inst Deafness & Other Commun Disorders, Sect Struct Cell Biol, Lab Cellular Biol, NIH, Rockville, MD 20855 USA. EM nobentk@nidcd.nih.gov CR Boeda B, 2002, EMBO J, V21, P6689, DOI 10.1093/emboj/cdf689 DEOL MS, 1956, PROC R SOC SER B-BIO, V145, P206, DOI 10.1098/rspb.1956.0028 Di Palma F, 2001, GENE, V281, P31, DOI 10.1016/S0378-1119(01)00761-2 Di Palma F, 2001, NAT GENET, V27, P103 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Francis HW, 2003, HEARING RES, V183, P29, DOI 10.1016/S0378-5955(03)00212-0 HENRY KR, 1980, AUDIOLOGY, V19, P369 Hequembourg S, 2001, JARO, V2, P118 Holme RH, 2002, HEARING RES, V169, P13, DOI 10.1016/S0378-5955(02)00334-9 Johnson EW, 1997, J BACK MUSCULOSKELET, V8, P3, DOI 10.3233/BMR-1997-8102 Johnson KR, 2005, GENOMICS, V85, P582, DOI 10.1016/j.ygeno.2005.02.006 Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Lagziel A, 2005, DEV BIOL, V280, P295, DOI 10.1016/j.ydbio.2005.01.015 Michel V, 2005, DEV BIOL, V280, P281, DOI 10.1016/j.ydbio.2005.01.014 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224 Prosen CA, 2003, HEARING RES, V183, P44, DOI 10.1016/S0378-5955(03)00211-9 Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055 Schwartz IR, 2002, HEARING RES, V171, P1, DOI 10.1016/S0378-5955(01)00396-3 Shnerson A, 1981, Brain Res, V254, P65 Shnerson A, 1981, Brain Res, V254, P77 Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 Siemens J, 2002, P NATL ACAD SCI USA, V99, P14946, DOI 10.1073/pnas.232579599 Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484 WILLIAMS MT, 1996, EARTH ISL J, V11, P2 Willott JF, 1998, HEARING RES, V115, P162, DOI 10.1016/S0378-5955(97)00189-5 Wilson SM, 2001, GENOMICS, V74, P228, DOI 10.1006/geno.2001.6554 Yonezawa S, 1996, ACTA OTO-LARYNGOL, V116, P409, DOI 10.3109/00016489609137865 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 29 TC 28 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2005 VL 208 IS 1-2 BP 114 EP 121 DI 10.1016/j.heares.2005.05.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 977TA UT WOS:000232824900011 PM 16005171 ER PT J AU Winer, JA AF Winer, JA TI Decoding the auditory corticofugal systems SO HEARING RESEARCH LA English DT Article DE auditory thalamus; inferior colliculus; corticofugal; corticothalamic; corticocollicular; corticopontine ID MEDIAL GENICULATE-BODY; SUPERIOR OLIVARY COMPLEX; COCHLEAR NUCLEUS; FUNCTIONAL ARCHITECTURE; CORTICAL PROJECTIONS; INFERIOR COLLICULUS; RESPONSE PROPERTIES; GUINEA-PIGS; LAYER V; CORTEX AB The status of the organization of the auditory corticofugal systems is summarized. These are among the largest pathways in the brain, with descending connections to auditory and non-auditory thalamic, midbrain, and medullary regions. Auditory corticofugal influence thus reaches sites immediately presynaptic to the cortex, sites remote from the cortex, as in perolivary regions that may have a centrifugal role, and to the cochlear nucleus, which could influence early central events in hearing. Other targets include the striatum (possible premotor functions), the amygdala and central gray (prospective limbic and motivational roles), and the pontine nuclei (for precerebellar control). The size, specificity, laminar origins, and morphologic diversity of auditory corticofugal axons is consonant with an interpretation of multiple roles in parallel descending systems. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA. RP Winer, JA (reprint author), Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Room 289 Life Sci Addit, Berkeley, CA 94720 USA. EM jaw@berkeley.edu CR BAJO VM, 1993, J COMP NEUROL, V334, P241, DOI 10.1002/cne.903340207 BAJO VM, 1995, HEARING RES, V83, P161, DOI 10.1016/0378-5955(94)00199-Z Beneyto M, 2001, BRAIN RES BULL, V54, P485, DOI 10.1016/S0361-9230(00)00454-8 BRODAL P, 1972, ARCH ITAL BIOL, V110, P119 COLWELL SA, 1975, BRAIN RES, V92, P443, DOI 10.1016/0006-8993(75)90328-5 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x Crabtree JW, 1998, J COMP NEUROL, V390, P167 CRICK F, 1984, P NATL ACAD SCI-BIOL, V81, P4586, DOI 10.1073/pnas.81.14.4586 DEIS RP, 1984, EXP BRAIN RES, V55, P177 Deschenes M, 1998, BRAIN RES REV, V28, P286, DOI 10.1016/S0165-0173(98)00017-4 DIAMOND IT, 1969, BRAIN RES, V15, P305, DOI 10.1016/0006-8993(69)90160-7 DIAMOND ME, 1992, J COMP NEUROL, V319, P66, DOI 10.1002/cne.903190108 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6 Driver J, 1998, CURR OPIN NEUROBIOL, V8, P245, DOI 10.1016/S0959-4388(98)80147-5 DYKES RW, 1983, BRAIN RES REV, V6, P47, DOI 10.1016/0165-0173(83)90004-8 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 FRIGYESI T, 1972, CORTICOTHALAMIC PROJ Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626 HUBEL DH, 1977, PROC R SOC SER B-BIO, V198, P1, DOI 10.1098/rspb.1977.0085 JANE JA, 1965, J COMP NEUROL, V125, P165, DOI 10.1002/cne.901250203 Jerison H. J., 1973, EVOLUTION BRAIN INTE King AJ, 1997, CURR BIOL, V7, pR85, DOI 10.1016/S0960-9822(06)00043-1 Lee CC, 2004, CEREB CORTEX, V14, P441, DOI 10.1093/cercor/bhh006 LEE CC, 2005, IN PRESS CEREB CORTE Lee CC, 2004, NEUROSCIENCE, V128, P871, DOI 10.1016/j.neuroscience.2004.06.062 LUETHKE LE, 1989, J COMP NEUROL, V285, P487, DOI 10.1002/cne.902850406 Lund JS, 1994, CEREB CORTEX, P37 Ma XF, 2001, J NEUROPHYSIOL, V85, P1078 MARTIN KAC, 1994, CEREB CORTEX, V4, P1, DOI 10.1093/cercor/4.1.1 MOREST DK, 1975, J COMP NEUROL, V162, P157, DOI 10.1002/cne.901620202 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Murphy PC, 1999, SCIENCE, V286, P1552, DOI 10.1126/science.286.5444.1552 Prieto JJ, 1999, J COMP NEUROL, V404, P332, DOI 10.1002/(SICI)1096-9861(19990215)404:3<332::AID-CNE5>3.0.CO;2-R Przybyszewski AW, 1998, CURR BIOL, V8, pR135, DOI 10.1016/S0960-9822(98)70080-6 Read HL, 2002, CURR OPIN NEUROBIOL, V12, P433, DOI 10.1016/S0959-4388(02)00342-2 REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X ROMANSKI LM, 1993, CEREB CORTEX, V3, P515, DOI 10.1093/cercor/3.6.515 Ryugo DK, 2003, EXP BRAIN RES, V153, P477, DOI 10.1007/s00221-003-1605-3 Saldana E, 2005, INFERIOR COLLICULUS, P155, DOI 10.1007/0-387-27083-3_5 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003 SCHREINER CE, 1995, CURR OPIN NEUROBIOL, V5, P489, DOI 10.1016/0959-4388(95)80010-7 SCHULLER G, 1991, EUR J NEUROSCI, V3, P648, DOI 10.1111/j.1460-9568.1991.tb00851.x Steriade M, 2000, NEUROSCIENCE, V101, P243, DOI 10.1016/S0306-4522(00)00353-5 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9 Treisman A, 1996, CURR OPIN NEUROBIOL, V6, P171, DOI 10.1016/S0959-4388(96)80070-5 Ulinski P.S, 1983, DORSAL VENTRICULAR R VILLA AEP, 1991, EXP BRAIN RES, V86, P506 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weinberg RJ, 1997, BRAIN RES BULL, V44, P113, DOI 10.1016/S0361-9230(97)00095-6 Winer JA, 2005, INFERIOR COLLICULUS, P231, DOI 10.1007/0-387-27083-3_8 Winer JA, 2005, TRENDS NEUROSCI, V28, P255, DOI 10.1016/j.tins.2005.03.009 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2005, INFERIOR COLLICULUS, P1, DOI 10.1007/0-387-27083-3_1 Winer J.A., 1992, Springer Handbook of Auditory Research, V1, P222 Winer JA, 2001, J COMP NEUROL, V430, P27 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 Winer JA, 1996, P NATL ACAD SCI USA, V93, P3083, DOI 10.1073/pnas.93.7.3083 WINER JA, 1987, J COMP NEUROL, V257, P282, DOI 10.1002/cne.902570212 Winer JA, 1999, J COMP NEUROL, V413, P181 WITTER MP, 1986, J COMP NEUROL, V252, P1, DOI 10.1002/cne.902520102 WONG D, 1981, BRAIN RES, V230, P362, DOI 10.1016/0006-8993(81)90416-9 Yeomans JS, 1996, BRAIN RES REV, V21, P301 NR 65 TC 37 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2005.06.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100001 PM 16091301 ER PT J AU Cousillas, H Leppelsack, HJ Leppelsack, E Richard, JP Mathelier, M Hausberger, M AF Cousillas, H Leppelsack, HJ Leppelsack, E Richard, JP Mathelier, M Hausberger, M TI Functional organization of the forebrain auditory centres of the European starling: A study based on natural sounds SO HEARING RESEARCH LA English DT Article DE field L; neuronal selectivity; categorization; backward correlation; mapping; starling ID MALE ZEBRA FINCHES; FIELD-L-COMPLEX; WHITE-CROWNED SPARROW; STURNUS-VULGARIS; CORTEX ANALOG; TAENOPYGIA-GUTTATA; RECEPTIVE-FIELDS; SONG SYSTEM; NEURONS; NEOSTRIATUM AB The field L complex is thought to be the highest auditory centre and the input in the song vocal nuclei. Different anatomical and functional subdivisions have been described in field L. Auditory neurons of field L are well activated by natural sounds and especially by species-specific sounds. A complex sound coding appears to exist in field L. However, until now, the spatial organization of the different functional subdivisions has been described only using artificial sounds. Here, we investigated the spatial distribution of neuronal responses in field L to species-specific songs. Starlings seemed to be a very appropriate species for this investigation, both because of their complex vocal behaviour that implies different levels of categorization and their neuronal responses towards complex song elements. Multi-unit recordings were performed in wild starlings that were awake. The method of backward correlation was used to visualize the functional organization and we represented the neuronal responses as both activity maps and correlation maps. The use of natural sounds allowed us to define several functional sub-areas with different neuronal processing. These results show that field L is involved in a more complex task than simple frequency processing. (c) 2005 Published by Elsevier B.V. C1 Univ Rennes 1, CNRS, UMR 6552, F-35042 Rennes, France. Tech Univ Munich, Inst Zool, D-85747 Garching, Germany. RP Cousillas, H (reprint author), Univ Rennes 1, CNRS, UMR 6552, 263 Ave Gen Leclerc, F-35042 Rennes, France. EM hugo.cousillas@univ-rennes1.fr CR BONKE D, 1979, J COMP PHYSIOL, V132, P243 Capsius B, 1999, HEARING RES, V136, P91, DOI 10.1016/S0378-5955(99)00112-4 Capsius B, 1996, HEARING RES, V96, P59, DOI 10.1016/0378-5955(96)00038-X Cohen YE, 1998, J NEUROPHYSIOL, V79, P879 COHEN YE, 1995, J NEUROSCI, V15, P5139 Cousillas H, 2004, EUR J NEUROSCI, V19, P3343, DOI 10.1111/j.1460-9568.2004.03376.x DOUPE AJ, 1991, P NATL ACAD SCI USA, V88, P11339, DOI 10.1073/pnas.88.24.11339 FORTUNE ES, 1992, J COMP NEUROL, V325, P388, DOI 10.1002/cne.903250306 FORTUNE ES, 1995, J COMP NEUROL, V360, P413, DOI 10.1002/cne.903600305 Gehr DD, 1999, NEUROREPORT, V10, P375, DOI 10.1097/00001756-199902050-00030 Gehr DD, 2000, DEV BRAIN RES, V125, P153, DOI 10.1016/S0165-3806(00)00131-0 George I, 2004, BEHAV NEUROSCI, V118, P597, DOI 10.1037/0735-7044.118.3.597 Grace JA, 2003, J NEUROPHYSIOL, V89, P472, DOI 10.1152/jn.00088.2002 HALL WS, 1994, BRAIN BEHAV EVOLUT, V44, P133, DOI 10.1159/000113585 Hausberger M, 2000, BEHAV BRAIN RES, V114, P89, DOI 10.1016/S0166-4328(00)00191-1 Hausberger M., 1996, BEHAV PROCESS, V35, P83 Hausberger Martine, 1997, P128, DOI 10.1017/CBO9780511758843.008 Hausberger M., 1993, Etologia, V3, P171 HEIL P, 1992, J COMP PHYSIOL A, V171, P583 HEIL P, 1991, BRAIN RES, V539, P110, DOI 10.1016/0006-8993(91)90692-O KATZ LC, 1981, BRAIN RES, V221, P192, DOI 10.1016/0006-8993(81)91073-8 LEPPELSACK EH, 1992, THESIS TU MUNCHEN LEPPELSACK HJ, 1976, J COMP PHYSIOL, V107, P263 LEPPELSA.HJ, 1974, J COMP PHYSIOL, V88, P271, DOI 10.1007/BF00697959 Lim Dukhwan, 1997, Auris Nasus Larynx, V24, P227, DOI 10.1016/S0385-8146(97)00014-X MARGOLIASH D, 1983, J NEUROSCI, V3, P1039 MARGOLIASH D, 1986, J NEUROSCI, V6, P1643 Mori K., 1992, Society for Neuroscience Abstracts, V18, P527 Rauschecker JP, 1998, CURR OPIN NEUROBIOL, V8, P516, DOI 10.1016/S0959-4388(98)80040-8 RICHARD JP, 1991, BIOACOUSTICS, V3, P45, DOI DOI 10.1080/09524622.1991.9753156 RICHARD JP, 1995, J NEUROSCI METH, V61, P99, DOI 10.1016/0165-0270(95)00029-T SAINI KD, 1981, J COMP NEUROL, V98, P209 Schreiner CE, 1998, AUDIOL NEURO-OTOL, V3, P104, DOI 10.1159/000013785 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 Theunissen FE, 2000, J NEUROSCI, V20, P2315 UNO H, 1991, J COMP PHYSIOL A, V169, P231, DOI 10.1007/BF00215870 Vates GE, 1996, J COMP NEUROL, V366, P613, DOI 10.1002/(SICI)1096-9861(19960318)366:4<613::AID-CNE5>3.0.CO;2-7 NR 38 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 10 EP 21 DI 10.1016/j.heares.2005.01.008 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100002 PM 15996840 ER PT J AU Furness, DN Katori, Y Mahendrasingam, S Hackney, CM AF Furness, DN Katori, Y Mahendrasingam, S Hackney, CM TI Differential distribution of beta- and gamma-actin in guinea-pig cochlear sensory and supporting cells SO HEARING RESEARCH LA English DT Article DE isoactins; actin filaments; auditory system; hair cells; stereocilia ID OUTER HAIR-CELLS; INNER-EAR; IMMUNOFLUORESCENT LOCALIZATION; MOLECULAR TREADMILL; CHINCHILLA COCHLEA; CROSS-LINKS; F-ACTIN; ORGAN; STEREOCILIA; ISOFORMS AB Sensory and supporting cells of the mammalian organ of Corti have cytoskeletons containing beta- and gamma-actin isoforms which have been described as having differing intracellular distributions in chick cochlear hair cells. Here, we have used post-embedding immunogold labelling for beta- and gamma-actin to investigate semiquantitatively how they are distributed in the guinea-pig cochlea and to compare different frequency locations. Amounts of beta-actin decrease and gamma-actin increase in the order, outer pillar cells, inner pillar cells, Deiters' cells and hair cells. There is also more beta-actin and less gamma-actin in outer pillar cells in higher than lower frequency regions. In hair cells, beta-actin is present in the cuticular plate but is more concentrated in the stereocilia, especially in the rootlets and towards the periphery of their shafts; labelling densities for gamma-actin differ less between these locations and it is the predominant isoform of the hair-cell lateral wall. Alignments of immunogold particles suggest beta-actin and gamma-actin form homomeric filaments. These data confirm differential distribution of these actin isoforms in the mammalian cochlea and reveal systematic differences between sensory and supporting cells. Increased expression of beta-actin in outer pillar cells towards the cochlear base may contribute to the greater stiffness of this region. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Keele, Sch Life Sci, MacKay Inst Commun & Neurosci, Keele ST5 5BG, Staffs, England. Tohoku Univ, Grad Sch Med, Dept Otolaryngol Head & Neck Surg, Sendai, Miyagi 9808574, Japan. Univ Wisconsin, Dept Anat, Madison, WI 53706 USA. RP Furness, DN (reprint author), Univ Keele, Sch Life Sci, MacKay Inst Commun & Neurosci, Keele ST5 5BG, Staffs, England. EM coa14@keele.ac.uk CR Allen PG, 1996, BIOCHEMISTRY-US, V35, P14062, DOI 10.1021/bi961326g Bannister L H, 1988, Prog Brain Res, V74, P213 CARLISLE L, 1988, HEARING RES, V33, P201, DOI 10.1016/0378-5955(88)90033-0 Daudet N, 2002, CELL MOTIL CYTOSKEL, V53, P326, DOI 10.1002/cm.10092 Dehmelt L, 2004, J NEUROBIOL, V58, P18, DOI 10.1002/neu.10284 DRENCKHAHN D, 1991, J CELL BIOL, V112, P641, DOI 10.1083/jcb.112.4.641 Dumont RA, 2002, JARO, V3, P375, DOI 10.1007/s101620020049 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 ERBA HP, 1988, MOL CELL BIOL, V8, P1775 FLOCK A, 1981, J NEUROCYTOL, V10, P133, DOI 10.1007/BF01181749 FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 FLOCK A, 1986, ARCH OTO-RHINO-LARYN, V243, P83, DOI 10.1007/BF00453755 Frolenkov GI, 2004, NAT REV GENET, V5, P489, DOI 10.1038/nrg1377 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 Garcia JA, 1998, J NEUROSCI, V18, P8637 GIMONA M, 1994, CELL MOTIL CYTOSKEL, V27, P108, DOI 10.1002/cm.970270203 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 HENDERSON CG, 1995, J CELL SCI, V108, P37 Herman IM, 1993, CURR OPIN CELL BIOL, V5, P48, DOI 10.1016/S0955-0674(05)80007-9 HIROKAWA N, 1982, J CELL BIOL, V95, P249, DOI 10.1083/jcb.95.1.249 Hofer D, 1997, J CELL SCI, V110, P765 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693 Khaitlina SY, 2001, INT REV CYTOL, V202, P35, DOI 10.1016/S0074-7696(01)02003-4 KIKUCHI T, 1991, ACTA OTO-LARYNGOL, V111, P286, DOI 10.3109/00016489109137389 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Loomis PA, 2003, J CELL BIOL, V163, P1045, DOI 10.1083/jcb.200309093 Mahendrasingam S, 1998, HEARING RES, V126, P151, DOI 10.1016/S0378-5955(98)00164-6 Matsubara A, 1996, J NEUROSCI, V16, P4457 Micheva KD, 1998, EUR J NEUROSCI, V10, P3785, DOI 10.1046/j.1460-9568.1998.00391.x NAKAZAWA K, 1995, HEARING RES, V89, P121, DOI 10.1016/0378-5955(95)00129-8 OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 OSHIMA T, 1992, BRAIN RES, V590, P53, DOI 10.1016/0006-8993(92)91081-O OTEY CA, 1987, J CELL BIOCHEM, V34, P113, DOI 10.1002/jcb.240340205 Pataky F, 2004, P NATL ACAD SCI USA, V101, P2601, DOI 10.1073/pnas.0308620100 Prassler J, 1997, MOL BIOL CELL, V8, P83 Robles L, 2001, PHYSIOL REV, V81, P1305 Rzadzinska AK, 2004, J CELL BIOL, V164, P887, DOI 10.1083/jcb.200310055 SATO N, 1992, J CELL SCI, V103, P131 Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a SHERTERLINE P, 1998, ACTIN PROTEIN PROFIL SKALLI O, 1987, DIFFERENTIATION, V33, P232, DOI 10.1111/j.1432-0436.1987.tb01562.x SLEPECKY N, 1985, HEARING RES, V20, P245, DOI 10.1016/0378-5955(85)90029-2 SLEPECKY N, 1986, CELL TISSUE RES, V245, P229 SLEPECKY N, 1983, HEARING RES, V10, P359, DOI 10.1016/0378-5955(83)90098-9 SLEPECKY N, 1982, CELL TISSUE RES, V224, P15, DOI 10.1007/BF00217262 SLEPECKY NB, 1992, HEARING RES, V57, P201, DOI 10.1016/0378-5955(92)90152-D SLEPECKY NB, 1994, HEARING RES, V73, P16, DOI 10.1016/0378-5955(94)90278-X TILNEY LG, 1980, J CELL BIOL, V86, P244, DOI 10.1083/jcb.86.1.244 Tolomeo JA, 1997, DIVERSITY AUDITORY M, P556 Tolomeo JA, 1997, BIOPHYS J, V73, P2241 VANDEKERCKHOVE J, 1981, EUR J BIOCHEM, V113, P595, DOI 10.1111/j.1432-1033.1981.tb05104.x VANDEKERCKHOVE J, 1978, J MOL BIOL, V126, P783, DOI 10.1016/0022-2836(78)90020-7 WIJK E, 2003, J MED GENET, V40, P879 YAO XB, 1995, MOL BIOL CELL, V6, P541 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zhu M, 2003, AM J HUM GENET, V73, P1082, DOI 10.1086/379286 ZINE EA, 1993, NEUROREPORT, V4, P1350, DOI 10.1097/00001756-199309150-00016 NR 62 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 22 EP 34 DI 10.1016/j.heares.2005.05.006 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100003 PM 16024192 ER PT J AU Bielefeld, EC Hu, BH Harris, KC Henderson, D AF Bielefeld, EC Hu, BH Harris, KC Henderson, D TI Damage and threshold shift resulting from cochlear exposure to Paraquat-generated superoxide SO HEARING RESEARCH LA English DT Article DE Paraquat; superoxide; NADPH oxidase; cochlea ID INDUCED HEARING-LOSS; OXYGEN SPECIES GENERATION; CISPLATIN OTOTOXICITY; FREE-RADICALS; D-METHIONINE; HAIR-CELLS; INNER-EAR; GENTAMICIN EXPOSURE; NOISE EXPOSURE; GUINEA-PIG AB Superoxide has been implicated as a contributing factor to cochlear pathology from a number of sources, including noise and ototoxic drugs. The effects of NADPH oxidase-dependent superoxide on the cochlea were investigated in the current study using paraquat (PQ). PQ is a toxic herbicide that causes tissue damage by generating superoxide through reduction of molecular oxygen in a reaction catalyzed by NADPH oxidase. The current study examined the effects of round window PQ administration on inferior colliculus (IC) evoked potential thresholds (EVP) and hair cell damage. Using implanted IC electrodes, chinchillas were tested for IC EVP thresholds before and after PQ exposure. Ears were exposed to PQ at one of four concentrations: 10, 5, 3 mM, and vehicle control. Thresholds were increased in a dose-dependent manner, and peaked between one and seven days post-exposure. Thresholds then showed a small amount of recovery before reaching PTS by Day 22. Outer and inner hair cell losses were consistent with PTS. The similarities between PQ ototoxicity and noise-induced hearing loss suggest the possibility of similar biochemical pathways involving superoxide. (c) 2005 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Bielefeld, EC (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM ecb2@buffalo.edu RI Bielefeld, Eric/D-2015-2012 CR BOHEIM K, 1985, ARCH OTO-RHINO-LARYN, V242, P1, DOI 10.1007/BF00464398 BUS JS, 1984, ENVIRON HEALTH PERSP, V55, P37, DOI 10.2307/3429690 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6 Dehne N, 2001, TOXICOL APPL PHARM, V174, P27, DOI 10.1006/taap.2001.9171 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Halliwell B, 1999, FREE RADICALS BIOL D HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 Heyworth PG, 1992, BIOL OXIDANTS GENERA, P43 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Husain K, 2001, HEARING RES, V159, P14, DOI 10.1016/S0378-5955(01)00306-9 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Kopke RD, 2000, HEARING RES, V149, P138, DOI 10.1016/S0378-5955(00)00176-3 Kopke RD, 2002, LARYNGOSCOPE, V112, P1515, DOI 10.1097/00005537-200209000-00001 Kopke RD, 1997, AM J OTOL, V18, P559 Laurell G, 2002, HEARING RES, V173, P198, DOI 10.1016/S0378-5955(02)00613-5 Lockwood DS, 2000, AUDIOL NEURO-OTOL, V5, P263, DOI 10.1159/000013890 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 NICOTERA TM, 2002, 25 ANN MIDW M ASS RE Nicotera TM, 2004, AUDIOL NEURO-OTOL, V9, P353, DOI 10.1159/000081284 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 Puel JL, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P36 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Rybak LP, 2000, AM J OTOL, V21, P513 Salt AN, 2001, HEARING RES, V154, P88, DOI 10.1016/S0378-5955(01)00223-4 SAUNDERS JC, 1986, HEARING RES, V23, P233, DOI 10.1016/0378-5955(86)90112-7 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sha SH, 2001, AUDIOL NEURO-OTOL, V6, P117, DOI 10.1159/000046818 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 SNYDER DL, 1994, LAB ANIMAL, V23, P42 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Suntres ZE, 2002, TOXICOLOGY, V180, P65, DOI 10.1016/S0300-483X(02)00382-7 Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643 THALMANN R, 1975, OTOLARYNG CLIN N AM, V8, P313 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamasoba T, 1999, BRAIN RES, V815, P317, DOI 10.1016/S0006-8993(98)01100-7 NR 50 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 35 EP 42 DI 10.1016/j.heares.2005.03.025 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100004 PM 15935579 ER PT J AU Dalamon, V Beheran, A Diamante, F Pallares, N Diamante, V Elgoyhen, AB AF Dalamon, V Beheran, A Diamante, F Pallares, N Diamante, V Elgoyhen, AB TI Prevalence of GJB2 mutations and the del(GJB6-D13S1830) in Argentinean non-syndromic deaf patients SO HEARING RESEARCH LA English DT Article DE deafness; GJB2; GJB6; c.35delG mutation; delGJB6-D13S1830; connexin 26; connexin 30 ID CONNEXIN 26 GENE; GAP-JUNCTION CHANNELS; HEARING-LOSS; SENSORINEURAL DEAFNESS; RECESSIVE DEAFNESS; DFNB1; EXPRESSION; FREQUENCY; CHILDREN AB Genetically caused congenital deafness is a common trait affecting 1 in 2000 children and it is predominantly inherited in an autosomal recessive fashion. Several mutations in the GJB2 gene and a deletion of 342 kb in GJB6 (delGJB6-D13S1830) have been identified worldwide in patients with hearing impairment. The aim of this study was to determine the prevalence of these mutations in Argentina. Non-syndromic 46 probands (17 familial and 29 sporadic cases) were genetically evaluated. Mutations in GJB2 and/or delGJB6-D13S1830 were found in 19 patients, accounting for 41.3% of the sample. Of the 46 patients investigated in this study, 12 (26.1%) were diagnosed to carry sequence variations in both alleles; all but one, were considered causative for hearing impairment in those patients. In 7 out of 46 patients (15.2%) only one mutant allele was detected. of their 38 chromosomes, 71% resulted with mutations in the GJB2 gene and 11% in GJB6. The most frequent mutation in GJB2 (24%) was c.35delG(11% homozygous and 13% heterozygous and compound heterozygous). In addition, 11 sequence variations different from c.35delG, were identified in the coding region of the GJB2 gene: T8M, V27I, M34T, E47X, R75W, W77R, 182M, L90P, E129K, V1531, M163V. The delGJB6-D13S1830 mutation was found in 4 patients (9%), 3 of them associated with GJB2 mutations, resulting in compound heterozygous for the DFNB1 locus. The present study demonstrates that mutations in the GJB2 gene and the delGJB6-D13S1830 are prevalent in the Argentinean population. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, RA-1428 Buenos Aires, DF, Argentina. Ctr Implantes Cocleares Prof Dr Vicente Diamante, RA-1028 Buenos Aires, DF, Argentina. RP Dalamon, V (reprint author), Univ Buenos Aires, Consejo Nacl Invest Cient & Tecn, Inst Invest Ingn Genet & Biol Mol, Vuelta Obligado 2490, RA-1428 Buenos Aires, DF, Argentina. EM dalamon@dna.uba.ar CR Bayazit YA, 2003, INT J PEDIATR OTORHI, V67, P1331, DOI 10.1016/j.ijporl.2003.08.003 Bruzzone R, 2003, FEBS LETT, V533, P79, DOI 10.1016/S0014-5793(02)03755-9 Cryns K, 2004, AUDIOL NEURO-OTOL, V9, P2, DOI 10.1159/000074183 del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205 DELCASTILLO IV, 2000, NEW ENGL J MED, V346, P243 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406 Green GE, 1999, JAMA-J AM MED ASSOC, V281, P2211, DOI 10.1001/jama.281.23.2211 Griffith AJ, 2000, AM J HUM GENET, V67, P745, DOI 10.1086/303045 Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kenna MA, 2001, ARCH OTOLARYNGOL, V127, P1037 Kiang DT, 1997, GENE, V199, P165, DOI 10.1016/S0378-1119(97)00365-X Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001 Kupka Susan, 2002, Hum Mutat, V20, P77, DOI 10.1002/humu.9044 Lee MJ, 1998, MOL CELLS, V8, P295 Marlin S, 2001, ARCH OTOLARYNGOL, V127, P927 Martin PEM, 1999, HUM MOL GENET, V8, P2369, DOI 10.1093/hmg/8.13.2369 Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Oshima A, 2003, J BIOL CHEM, V278, P1807, DOI 10.1074/jbc.M207713200 Prasad S, 2000, HUM MUTAT, V16, P502 Rabionet R, 2000, HUM GENET, V106, P40, DOI 10.1007/s004390051007 Richard G, 1998, HUM GENET, V103, P393, DOI 10.1007/s004390050839 Roux Anne-Françoise, 2004, BMC Med Genet, V5, P5, DOI 10.1186/1471-2350-5-5 Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8 Skerrett IM, 2004, FASEB J, V18, P860, DOI 10.1096/fj.03-0763fje Thonnissen E, 2002, HUM GENET, V111, P190, DOI 10.1007/s00439-002-0750-2 Venail F, 2004, LARYNGOSCOPE, V114, P566, DOI 10.1097/00005537-200403000-00033 Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273 Wu BL, 2002, GENET MED, V4, P279, DOI 10.1097/01.GIM.0000020823.93575.C2 Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605 ZOLL B, 2002, HUM MUTAT, V21, P98 NR 34 TC 25 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 43 EP 49 DI 10.1016/j.heares.2005.04.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100005 PM 15964725 ER PT J AU Happich, M von Lengerke, T AF Happich, M von Lengerke, T TI Valuing the health state 'tinnitus': Differences between patients and the general public SO HEARING RESEARCH LA English DT Article DE tinnitus valuation; patients; general public; standard gamble; time trade-off ID VISUAL ANALOG SCALES; QUALITY-OF-LIFE; PROSPECT-THEORY; STANDARD-GAMBLE; PREFERENCES; UTILITIES; VALUES; RISK; CARE; MULTICENTER AB Objective: In recent years, prioritisation in health care has gained increasing attention. However, rankings of interventions might depend on whom valuations of health states are elicited from. This paper's objective is to compare tinnitus. valuations by patients and the general public. Methods: Groups of 210 patients and 210 adults not (currently) affected were interviewed to elicit valuations using visual analogue scale (VAS), time trade-off (TTO) and standard gamble (SG). MANOVA is used to test for group differences, controlling for sex and age. Results: For all elicitation methods, valuations significantly differ in that patients report higher values than the general public respondents. Most notably, on the visual analogue scale which varies between 0 ('worst imaginable health') and 1 ('best imaginable health'), patients elicit a mean score of 0.54, and the general public 0.34 (those with former tinnitus experience) and 0.35 (without experience), respectively (F(2,377) = 55.67, p < 0.001). That is, patients valuate tinnitus as less severe than unaffected people. Conclusion: As for other health states, tinnitus valuations differ depending on whether values of patients or the general public are elicited. These differences should be taken into account in health care evaluation and planning. (c) 2005 Elsevier B.V. All rights reserved. C1 GSF, Natl Res Ctr Environm & Hlth, Inst Hlth Econ & Hlth Care Management, D-85758 Neuherberg, Germany. Hannover Med Sch, D-30625 Hannover, Germany. RP Happich, M (reprint author), GSF, Natl Res Ctr Environm & Hlth, Inst Hlth Econ & Hlth Care Management, POB 1129, D-85758 Neuherberg, Germany. EM michael.happich@gsf.de CR Ahmad N, 2004, DRUG AGING, V21, P297, DOI 10.2165/00002512-200421050-00002 Arrow K., 1963, SOCIAL CHOICE INDIVI BIRCH S, 1994, HEALTH POLICY, V28, P133, DOI 10.1016/0168-8510(94)90031-0 Bleichrodt H, 2002, HEALTH ECON, V11, P447, DOI 10.1002/hec.688 BOMBARDIER C, 1986, AM J MED, V81, P565, DOI 10.1016/0002-9343(86)90539-5 BOYD NF, 1990, MED DECIS MAKING, V10, P58, DOI 10.1177/0272989X9001000109 CHRISTENSENSZALANSKI JJJ, 1984, MED DECIS MAKING, V4, P47, DOI 10.1177/0272989X8400400108 Cookson R, 2000, BRIT MED J, V321, P954, DOI 10.1136/bmj.321.7266.954 Cunningham SJ, 2000, EUR J ORTHODONT, V22, P335, DOI 10.1093/ejo/22.3.335 Dolan P, 1999, MED DECIS MAKING, V19, P482, DOI 10.1177/0272989X9901900416 Drummond M, 1997, METHODS EC EVALUATIO, V2nd DRUMMOND M, 1995, HEALTH POLICY, V31, P231, DOI 10.1016/0168-8510(94)00719-U Erlandsson SI, 2001, NOISE HEALTH, V3, P39 FELDMANN H, 1998, TINNITUS GRUNDLAGEN GOEBEL G, 1995, OTO RHINO LARYN NOVA, V5, P178 GOEBEL G, 1994, HNO, V42, P166 Gold MR, 1996, COST EFFECTIVENESS H Green C, 2000, PHARMACOECONOMICS, V17, P151, DOI 10.2165/00019053-200017020-00004 HADORN DC, 1991, SOC SCI MED, V32, P773, DOI 10.1016/0277-9536(91)90303-T Happich M, 2002, Eur J Health Econ, V3, P40, DOI 10.1007/s10198-001-0089-y JAKES SC, 1986, AUDIOLOGY, V25, P92 Jansen SJT, 2001, MED DECIS MAKING, V21, P295, DOI 10.1177/02729890122062596 Jansen SJT, 2000, MED DECIS MAKING, V20, P62, DOI 10.1177/0272989X0002000108 KAHNEMAN D, 1979, ECONOMETRICA, V47, P263, DOI 10.2307/1914185 KAPLAN RM, 1995, UTILITY ASSESSMENT E KAPLAN RM, 1993, J ROY SOC MED, V86, P277 Krabbe PFM, 1996, MED DECIS MAKING, V16, P120, DOI 10.1177/0272989X9601600204 LENARZ T, 1992, AUDIOL AKUST, V6, P184 Lenert LA, 1999, MED CARE, V37, P479, DOI 10.1097/00005650-199905000-00007 Levine G., 1991, GUIDE SPSS ANAL VARI LLEWELLYNTHOMAS HA, 1992, MED DECIS MAKING, V12, P115, DOI 10.1177/0272989X9201200204 LLEWELLYNTHOMAS HA, 1993, MED CARE, V31, P1002, DOI 10.1097/00005650-199311000-00003 Meikle M, 1984, J Laryngol Otol Suppl, V9, P17 NORD E, 1992, SOC SCI MED, V34, P559, DOI 10.1016/0277-9536(92)90211-8 OCONNOR AMC, 1987, J CHRON DIS, V40, P811, DOI 10.1016/0021-9681(87)90133-0 Penner M. J., 1996, INT TINNITUS J, V2, P3 PLISKIN JS, 1980, OPER RES, V28, P206, DOI 10.1287/opre.28.1.206 Postulart D, 2000, MED DECIS MAKING, V20, P186, DOI 10.1177/0272989X0002000204 Rawls J, 1971, THEORY JUSTICE Robinson A, 2001, MED DECIS MAKING, V21, P17 SACKETT DL, 1978, J CHRON DIS, V31, P697, DOI 10.1016/0021-9681(78)90072-3 Torrance G W, 1972, Health Serv Res, V7, P118 Torrance GW, 2001, MED DECIS MAKING, V21, P329, DOI 10.1177/02729890122062622 TORRANCE GW, 1986, J HEALTH ECON, V5, P1, DOI 10.1016/0167-6296(86)90020-2 Treadwell JR, 1999, MED DECIS MAKING, V19, P344, DOI 10.1177/0272989X9901900313 Unterrainer J, 2001, Int Tinnitus J, V7, P109 VERHOEF LCG, 1994, MED DECIS MAKING, V14, P194, DOI 10.1177/0272989X9401400213 von Neumann J., 1947, THEORY GAMES EC BEHA Wilson C, 2002, INT J AUDIOL, V41, P216, DOI 10.3109/14992020209078334 NR 49 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 50 EP 58 DI 10.1016/j.heares.2005.04.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100006 PM 15919164 ER PT J AU Jeong, HJ Hong, SH Park, RK Shin, T An, NH Kim, HM AF Jeong, HJ Hong, SH Park, RK Shin, T An, NH Kim, HM TI Hypoxia-induced IL-6 production is associated with activation, of MAP kinase, HIF-1, and NF-kappa B on HEI-OC1 cells SO HEARING RESEARCH LA English DT Article DE cochlear auditory cells; hypoxia; IL-6; MAPK; HIF-1 alpha; NF-kappa B ID INDUCIBLE FACTOR-I; ENDOTHELIAL GROWTH-FACTOR; OXYGEN-SENSING MECHANISMS; NECROSIS-FACTOR-ALPHA; DNA-BINDING ACTIVITY; NITRIC-OXIDE; INNER-EAR; MESSENGER-RNA; SIGNAL-TRANSDUCTION; GENE-TRANSCRIPTION AB In the present study, we investigated the signal transduction pathways of expression of IL-6 in the desferrioxamine (DFX)-stimulated cochlear auditory cell line, HEI-OC1 cells. DFX increased the expression of HIF-1 alpha and NF-kappa B in HEI-OC1 cells. DFX significantly increased the production of IL-6 (P < 0.05) and expression of IL-6 mRNA but did not affect TNF-alpha production. DFX also induced the activation of mitogen-activated protein kinase (MAPK) including p38, ER K, and JNK on HEI-OC1. Increased IL-6 by DFX was significantly inhibited by p38 inhibitor, SB203580 (about 72% inhibition, P = 0.027) but not ERK inhibitor, PD98059 or JNK inhibitor, SP600125. SB203580 inhibited the expression of IL-6 mRNA. Increased IL-6 production was partially inhibited by treatment of iron (HIF-1 inhibitor) or pyrriolidine-dithiocarbamate (PDTC, NF-kappa B inhibitor). DFX also induced IL-6 production and HIF-1 alpha expression in the inner ear. We demonstrated the regulatory effects of MAPK, HIF-1 alpha, and NF-kappa B on DFX-induced IL-6 production in a HEI-OC1 for the first time. In conclusion, these data indicate that regulation of inflammatory cytokine IL-6 by DFX, through mimicking hypoxic conditions, might explain its beneficial effect in the treatment of hypoxia-induced inner ear diseases. (c) 2005 Elsevier B.V. All rights reserved. C1 Kyung Hee Univ, Coll Oriental Med, Seoul 130701, South Korea. Wonkwang Univ, Coll Pharm, VestibuloCochlear Res Ctr, Iksan 570749, Jeonbuk, South Korea. Wonkwang Univ, Dept Microbiol & Immunol, VestibuloCochlear Res Ctr, Iksan 570749, Jeonbuk, South Korea. Cheju Natl Univ, Inst Life Sci, Dept Vet Med, Cheju 690756, South Korea. RP Kim, HM (reprint author), Kyung Hee Univ, Coll Oriental Med, 1 Hoegi Dong, Seoul 130701, South Korea. EM hmkim@khu.ac.kr CR Alfranca A, 2002, MOL CELL BIOL, V22, P12, DOI 10.1128/MCB.22.1.12-22.2002 Ankoma-Sey V, 2000, HEPATOLOGY, V31, P141, DOI 10.1002/hep.510310122 Benyo DF, 2001, J CLIN ENDOCR METAB, V86, P2505, DOI 10.1210/jc.86.6.2505 Bernaudin M, 2000, GLIA, V30, P271, DOI 10.1002/(SICI)1098-1136(200005)30:3<271::AID-GLIA6>3.0.CO;2-H Charlier N, 2002, MOL BRAIN RES, V104, P21, DOI 10.1016/S0169-328X(02)00198-5 Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Duyndam MCA, 2003, J BIOL CHEM, V278, P6885, DOI 10.1074/jbc.M206320200 Fiorini E, 2000, Dev Immunol, V7, P195, DOI 10.1155/2000/48239 Galien R, 1996, MOL ENDOCRINOL, V10, P713, DOI 10.1210/me.10.6.713 GOLDBERG MA, 1994, J BIOL CHEM, V269, P4355 Gross J, 2003, HEARING RES, V183, P73, DOI 10.1016/S0378-5955(03)00222-3 HELFMAN T, 1993, AM J MED SCI, V306, P37, DOI 10.1097/00000441-199307000-00010 Hess A, 2002, BRAIN RES, V956, P236, DOI 10.1016/S0006-8993(02)03545-X JELKMANN W, 1992, PHYSIOL REV, V72, P449 Jeong HJ, 2003, BIOCHEM BIOPH RES CO, V306, P805, DOI 10.1016/S0006-291X(03)01073-8 Jeong HJ, 2002, CELL SIGNAL, V14, P633, DOI 10.1016/S0898-6568(02)00005-0 Jung TTK, 2003, OTOL NEUROTOL, V24, P682, DOI 10.1097/00129492-200307000-00025 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Khan TA, 2004, J THORAC CARDIOV SUR, V127, P806, DOI 10.1016/j.jtcvs.2003.04.001 Kumar S, 1997, BIOCHEM BIOPH RES CO, V235, P533, DOI 10.1006/bbrc.1997.6849 Lewis TS, 1998, ADV CANCER RES, V74, P49, DOI 10.1016/S0065-230X(08)60765-4 Li ZJ, 1996, BIOCHEM BIOPH RES CO, V228, P334, DOI 10.1006/bbrc.1996.1662 Liu LX, 2002, BIOCHEM BIOPH RES CO, V291, P908, DOI 10.1006/bbrc.2002.6551 Ludwig S, 1998, J BIOL CHEM, V273, P1917, DOI 10.1074/jbc.273.4.1917 MINAMI M, 1991, BIOCHEM BIOPH RES CO, V176, P593, DOI 10.1016/S0006-291X(05)80225-6 Mottet D, 2003, J CELL PHYSIOL, V194, P30, DOI 10.1002/jcp.10176 Pirvola U, 2000, J NEUROSCI, V20, P43 RAO A, 1994, IMMUNOL TODAY, V15, P274, DOI 10.1016/0167-5699(94)90007-8 Sandau KB, 2001, J BIOL CHEM, V276, P39805, DOI 10.1074/jbc.M107689200 Sandau KB, 2001, BLOOD, V97, P1009, DOI 10.1182/blood.V97.4.1009 Satoh H, 2002, LARYNGOSCOPE, V112, P1627, DOI 10.1097/00005537-200209000-00019 Satoh H, 2003, JARO, V4, P139, DOI 10.1007/s10162-002-3025-7 SCHRECK R, 1992, J EXP MED, V175, P1181, DOI 10.1084/jem.175.5.1181 Semenza GL, 1997, KIDNEY INT, V51, P553, DOI 10.1038/ki.1997.77 SEMENZA GL, 1994, J BIOL CHEM, V269, P23757 Semenza GL, 2001, TRENDS MOL MED, V7, P345, DOI 10.1016/S1471-4914(01)02090-1 Shemirani B, 2002, ORAL ONCOL, V38, P251, DOI 10.1016/S1368-8375(01)00052-5 Simakajornboon N, 2001, Brain Res Dev Brain Res, V127, P175 Smouha EE, 2003, LARYNGOSCOPE, V113, P1439, DOI 10.1097/00005537-200309000-00003 Stanimirovic D, 2001, J NEUROIMMUNOL, V119, P365, DOI 10.1016/S0165-5728(01)00402-7 Tabuchi K, 1999, ACTA OTO-LARYNGOL, V119, P179 WANG GL, 1995, J BIOL CHEM, V270, P1230 WANG GL, 1993, BLOOD, V82, P3610 WANG GL, 1993, J BIOL CHEM, V268, P21513 Wang XB, 2003, OTOL NEUROTOL, V24, P52, DOI 10.1097/00129492-200301000-00012 Wanner RM, 2000, BLOOD, V96, P1558 Yamashita K, 2001, J BIOL CHEM, V276, P12645, DOI 10.1074/jbc.M011344200 Zhong H, 2001, BIOCHEM BIOPH RES CO, V284, P352, DOI 10.1006/bbrc.2001.4981 NR 50 TC 26 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 59 EP 67 DI 10.1016/j.heares.2005.04.003 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100007 PM 15913932 ER PT J AU Borko, R Batta, TJ Sziklai, I AF Borko, R Batta, TJ Sziklai, I TI Slow motility, electromotility and lateral wall stiffness in the isolated outer hair cells SO HEARING RESEARCH LA English DT Article DE protein phosphorylation; cytoskeleton; ocadaic acid; inner ear protective mechanism; protein phosphatase; cochlear amplifier ID COCHLEAR AMPLIFIER; GUINEA-PIG; PROTEIN-KINASE; MOTOR PROTEIN; RHO-KINASE; PHOSPHORYLATION; ACETYLCHOLINE; PHOSPHATASE; PRESTIN; ACTIN AB Slow motile length changes of isolated, apical turn outer hair cells (OHCs) (n = 36) were induced by perfusion of saline (flow rate: 0.6 mu l/min) as a mechanical challenge or by perfusion of 12.5 mM KC1 solution for 90 s as a chemical and mechanical challenge with and without ocadaic acid (OA), a serine/threonine protein phosphatase inhibitor. Electromotility was evoked by square pulses from +/- 35 mV to +/- 240 mV during the slow shortening and recovery period (n = 36). Stiffness of the lateral wall was measured by the micropipette aspiration technique (n = 20). Saline perfusion caused a reversible shortening of 774 +/- 87 nm (n = 9) as well as K+ of 1465 +/- 159 nm (n = 9). Slow shortening increased lateral wall stiffness (1.25 +/- 0.02 to 1.52 +/- 0.03 nN/mu m) (n = 5-5). Simultaneously, electromotility magnitude decreased (n = 9). Ocadaic acid blocked slow shortening, increased lateral wall stiffness, and decreased the magnitude of electromotility. Mechanical or mechanical + chemical stimulation of ocadaic acid treated OHCs do not further change stiffness or electromotility. Isolated OHCs respond with slow shortening and consutive cell stiffness increase to mechanical insult. This phenomenon seems operating with calcium-, and phosphorylation-dependent modifications of the cytoskeletal proteins. The subsequent electromotility gain decrease suggests a slow OHC shortening driven regulation of the cochlear amplifier with simultaneous safety control of the auditory periphery against overstimulation. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Debrecen, ORL Clin, Hlth Sci Ctr, H-4012 Debrecen, Hungary. RP Sziklai, I (reprint author), Univ Debrecen, ORL Clin, Hlth Sci Ctr, Nagyerderi Krt 98, H-4012 Debrecen, Hungary. EM isziklai@jaguar.unideb.hu CR AMBERG GC, 2001, AM J PHYSIOL-CELL PH, V281, P2020 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Batta TJ, 2003, PFLUG ARCH EUR J PHY, V447, P328, DOI 10.1007/s00424-003-1186-9 BORKO R, IN PRESS ACTA OTOLAR BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CLARK BA, 1990, PFLUG ARCH EUR J PHY, V415, P490, DOI 10.1007/BF00373629 Dallos P, 1997, J NEUROSCI, V17, P2212 Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 Dallos P, 2000, JARO-J ASSOC RES OTO, V1, P283, DOI 10.1007/s101620010048 Dallos P, 2003, JARO, V4, P416, DOI 10.1007/s0162-002-3049-z Davare MA, 2000, J BIOL CHEM, V275, P39710, DOI 10.1074/jbc.M005462200 DING JP, 1991, HEARING RES, V56, P19, DOI 10.1016/0378-5955(91)90149-4 DULON D, 1988, HEARING RES, V32, P123, DOI 10.1016/0378-5955(88)90084-6 DULON D, 1992, AM J OTOL, V13, P108 EVANS BN, 1991, HEARING RES, V52, P288, DOI 10.1016/0378-5955(91)90019-6 Farkas Z, 2003, ACTA OTO-LARYNGOL, V123, P160, DOI 10.1080/0036554021000028127 Fernandez JJ, 2002, CURR MED CHEM, V9, P229 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 GUMMER AW, 2003, BIOPHYSICS COCHLEA, P587 He DZZ, 2003, J NEUROSCI, V23, P9089 HOLLEY MC, 1990, J CELL SCI, V96, P283 HOLLEY MC, 1992, J CELL SCI, V102, P569 Inada H, 1999, J BIOL CHEM, V274, P34932, DOI 10.1074/jbc.274.49.34932 Kalinec F, 2000, J BIOL CHEM, V275, P28000 Kimura K, 1998, J BIOL CHEM, V273, P5542, DOI 10.1074/jbc.273.10.5542 Kohler B, 2002, PLANT J, V32, P185, DOI 10.1046/j.1365-313X.2002.01414.x Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Meyer J, 1998, J NEUROSCI, V18, P6748 Minamino M, 1998, BRAIN RES, V781, P275, DOI 10.1016/S0006-8993(97)01255-9 Oghalai JS, 1998, J NEUROSCI, V18, P48 SLEPECKY N, 1989, CELL TISSUE RES, V257, P69 Sziklai I, 2004, EUR ARCH OTO-RHINO-L, V261, P517, DOI 10.1007/s00405-004-0745-9 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153 Szonyi M, 1999, HEARING RES, V137, P29, DOI 10.1016/S0378-5955(99)00127-6 TOLOMEO JA, 1995, J ACOUST SOC AM, V97, P3006, DOI 10.1121/1.411865 Ulfendahl M, 1998, PFLUG ARCH EUR J PHY, V436, P9, DOI 10.1007/s004240050598 ZENNER HP, 1988, ACTA OTO-LARYNGOL, V105, P39, DOI 10.3109/00016488809119443 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zhang M, 2003, J BIOL CHEM, V278, P35644, DOI 10.1074/jbc.M301668200 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 ZWISLOCKI JJ, 2002, AUDITORY SOUND TRANS, P212 NR 43 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 68 EP 75 DI 10.1016/j.heares.2005.04.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100008 PM 15950414 ER PT J AU Withnell, RH Dhar, S Thomsen, A AF Withnell, RH Dhar, S Thomsen, A TI A comparison of OAEs arising from different generation mechanisms in guinea pig SO HEARING RESEARCH LA English DT Article DE otoacoustic emission; guinea pig; traveling wave; signal onset delay ID PRODUCT OTOACOUSTIC EMISSIONS; BASILAR-MEMBRANE NONLINEARITY; STIMULUS-FREQUENCY; FINE-STRUCTURE; TRAVELING WAVES; MODEL; PHASE; COCHLEA; ORIGIN; DPOAE AB Otoacoustic emissions provide unambiguous evidence that the cochlea supports energy propagation both towards, and away from, the stapes. The standard wave model for energy transport and cochlear mechanical amplification provides for compressional and inertial waves to transport this energy, the compressional wave through the fluids and the inertial wave along the basilar membrane via fluid coupling. It is generally accepted that energy propagation away from the stapes is dominated by a traveling wave mechanism along the basilar membrane. The mechanism by which energy is predominantly transported back to the stapes remains controversial. Here, we compared signal onset delay measurements and rise/steady-state/fall times for SFOAEs and 2f(1) - f(2) OAEs (f(2)/f(1) = 1.2) obtained using a pulsed-tone paradigm in guinea pig. Comparison of 2f(1) - f(2) OAE signal onset delay for the OAE arising from the f(2) region with SFOAE signal onset delay (matched to the f(2) stimulus frequency) based on signal onset occurring at 10% of the peak signal amplitude was suggestive of a bi-directional traveling wave mechanism. However, significant variability in signal onset delay and signal rise, steady-state duration, and fall times for both the 2f(1) - f(2) OAE and SFOAE was found, qualifying this interpretation. Such variability requires explanation, awaiting further studies. (c) 2005 Elsevier B.V. All rights reserved. C1 Indiana Univ, Dept Speech & Hearing Sci, Bloomington, IN 47405 USA. RP Withnell, RH (reprint author), Indiana Univ, Dept Speech & Hearing Sci, 200 S Jordan Ave, Bloomington, IN 47405 USA. EM rwithnel@indiana.edu; s-dhar@northwestern.edu; athomsen@indiana.edu RI Dhar, Sumitrajit/B-6319-2009 CR Bekesy G, 1960, EXPT HEARING Bell A, 2004, J ACOUST SOC AM, V116, P1016, DOI [10.1121/1.1766053, 10.1121/01.1766053] Goodman SS, 2003, HEARING RES, V183, P7, DOI 10.1016/S0378-5955(03)00193-X Heitmann J, 1998, J ACOUST SOC AM, V103, P1527, DOI 10.1121/1.421290 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1990, EAR HEARING, V11, P93 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 Konrad-Martin D, 2003, J ACOUST SOC AM, V114, P2021, DOI 10.1121/1.1596170 LIGHTHILL J, 1991, J VIB ACOUST, V113, P1 Ren TY, 2004, NAT NEUROSCI, V7, P333, DOI 10.1038/nn1216 Schneider S, 2003, J ACOUST SOC AM, V113, P3285, DOI 10.1121/1.1568753 Shera CA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P439, DOI 10.1142/9789812704931_0062 Shera CA, 2003, J ACOUST SOC AM, V113, P2762, DOI 10.1121/1.1557211 Shera CA, 2000, J ACOUST SOC AM, V108, P2933, DOI 10.1121/1.1323234 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 SOUTER M, 1995, HEARING RES, V90, P1, DOI 10.1016/0378-5955(95)00124-9 Talmadge CL, 1999, J ACOUST SOC AM, V105, P275, DOI 10.1121/1.424584 Talmadge CL, 2000, J ACOUST SOC AM, V108, P2911, DOI 10.1121/1.1321012 Tubis A, 2000, J ACOUST SOC AM, V108, P1772, DOI 10.1121/1.1310666 Whitehead ML, 1996, J ACOUST SOC AM, V100, P1663, DOI 10.1121/1.416065 WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 Withnell RH, 1998, HEARING RES, V123, P87, DOI 10.1016/S0378-5955(98)00100-2 YATES GK, 1995, HEARING YATES GK, 1998, STRUCTURE INFORMATIO, V5 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P986, DOI 10.1121/1.1907231 NR 29 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 76 EP 86 DI 10.1016/j.heares.2005.04.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100009 PM 15935577 ER PT J AU Templin, T Simmons, AM AF Templin, T Simmons, AM TI Cellular and spatial changes in the anuran superior olive across metamorphosis SO HEARING RESEARCH LA English DT Article DE stereology; cell counting; auditory; brainstem; Rana; tadpole ID NEUROGLIAL CELLS OLIGODENDROCYTES; BULLFROG RANA-CATESBEIANA; SPINAL-CORD; BRAIN-STEM; SEX-DIFFERENTIATION; ELECTRON-MICROSCOPY; AUDITORY NUCLEI; GERM-CELLS; NUMBER; FROG AB In many vertebrate species, the superior olive in the auditory brainstem plays an essential role in sound source localization. Little is known, however, about the structural and functional changes in this nucleus during development when alterations in head size and shape as well as in inner ear projections are expected to affect the perception of binaural cues. Using stereological techniques, we investigated the changes in several cellular and spatial features of the bullfrog superior olive across metamorphosis, the time period during which the animal transforms from a totally aquatic larva to a semiterrestrial adult. The total number of cells shows a strongly linear increase from hatchling through late larval stages. The number of neurons decreases during metamorphic climax stages, and recovers to pre-metamorphic climax levels in the early post-metamorphic froglet stage. The number of glial cells increases during the early larval period, and remains relatively stable, with no systematic variation, from late larval to froglet stages. The volume of the superior olive increases rapidly in early larval stages, followed by a much-attenuated rate of growth between late larval and froglet stages. These morphological changes may provide a substrate for the functional restructuring of the bullfrog superior olive, shortly before the switch from aquatic to mostly atmospheric hearing. (c) 2005 Elsevier B.V. All rights reserved. C1 Brown Univ, Dept Psychol, Providence, RI 02912 USA. Brown Univ, Dept Neurosci, Providence, RI 02912 USA. RP Simmons, AM (reprint author), Brown Univ, Dept Psychol, Providence, RI 02912 USA. EM andrea_simmons@brown.edu CR Andersen BB, 1999, J MICROSC-OXFORD, V196, P69 Bendsen E, 2003, HUM REPROD, V18, P13, DOI 10.1093/humrep/deg057 Boatright-Horowitz SS, 1997, P NATL ACAD SCI USA, V94, P14877, DOI 10.1073/pnas.94.26.14877 CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D CHETVERUKHIN VK, 1993, CELL TISSUE RES, V271, P341, DOI 10.1007/BF00318621 Chvatal A, 2001, NEUROSCI RES, V40, P23, DOI 10.1016/S0168-0102(01)00211-5 CONOVER WJ, 1981, AM STAT, V35, P124, DOI 10.2307/2683975 DIFIORE MSH, 1981, ATLAS HUMAN HISTOLOG Dorph-Petersen KA, 2001, J MICROSC-OXFORD, V204, P232, DOI 10.1046/j.1365-2818.2001.00958.x Duffell SJ, 2000, TOXICOL PATHOL, V28, P157, DOI 10.1177/019262330002800120 Eckery DC, 2002, BIOL REPROD, V66, P346, DOI 10.1095/biolreprod66.2.346 FENG AS, 1978, J NEUROPHYSIOL, V41, P43 FRITZSCH B, 1984, J COMP NEUROL, V229, P451, DOI 10.1002/cne.902290312 FUZESSERY ZM, 1983, J COMP PHYSIOL, V150, P107 Gosner K. L., 1960, Herpetologica, V16, P183 GUNDERSEN HJG, 1987, J MICROSC-OXFORD, V147, P229 Gundersen HJG, 1999, J MICROSC-OXFORD, V193, P199, DOI 10.1046/j.1365-2818.1999.00457.x GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3 HANKER JS, 1977, HISTOCHEM J, V9, P789, DOI 10.1007/BF01003075 HETHERINGTON TE, 1987, ZOOMORPHOLOGY, V106, P289, DOI 10.1007/BF00312003 HOROWITZ SS, 2004, 7 C INT SOC NEUR PRO Horowitz SS, 2001, HEARING RES, V154, P12, DOI 10.1016/S0378-5955(00)00266-5 Howard CV, 1998, UNBIASED STEREOLOGY Hughes A., 1976, P856 Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E JACOBY J, 1984, BRAIN RES, V292, P378, DOI 10.1016/0006-8993(84)90774-1 Kulesza RJ, 2002, HEARING RES, V168, P12, DOI 10.1016/S0378-5955(02)00374-X Kumaresan V, 1998, BRAIN BEHAV EVOLUT, V52, P111, DOI 10.1159/000006556 Lannoo MJ, 1999, TADPOLES, P149 Larsell O, 1934, J COMP NEUROL, V60, P473, DOI 10.1002/cne.900600306 Lewandowski Thomas A, 2003, Brain Res Dev Brain Res, V141, P117 McCormick C.A., 1999, COMP HEARING FISH AM, P155 McDiarmid RW, 1999, TADPOLES, P7 *MICROBRIGHTFIELD, 2000, STER INV 2000 NIEUWENHUYS R, 1976, FROG NEUROBIOLOGY, P811 OPDAM P, 1976, J COMP NEUROL, V165, P307, DOI 10.1002/cne.901650304 RUBINSON K, 1968, BRAIN BEHAV EVOLUT, V1, P529, DOI 10.1159/000125524 Samuelsen GB, 2003, CEREB CORTEX, V13, P115, DOI 10.1093/cercor/13.2.115 SASAKI H, 1977, J COMP NEUROL, V176, P101, DOI 10.1002/cne.901760107 Scheaffer R. L., 1996, ELEMENTARY SURVEY SA Schmitz C, 2000, J CHEM NEUROANAT, V20, P93, DOI 10.1016/S0891-0618(00)00066-1 Schmitz C, 2005, NEUROSCIENCE, V130, P813, DOI 10.1016/j.neuroscience.2004.08.050 BOATRIGHTHOROWITZ SS, 1995, J COMP PHYSIOL A, V177, P577 Simmons AM, 2002, BRAIN BEHAV EVOLUT, V60, P189, DOI 10.1159/000066701 STENSAAS LJ, 1968, Z ZELLFORSCH MIK ANA, V86, P184, DOI 10.1007/BF00348524 STENSAAS LJ, 1968, Z ZELLFORSCH MIK ANA, V84, P473 Swingle WW, 1926, J MORPHOL PHYSIOL, V41, P441, DOI 10.1002/jmor.1050410207 TELFORD IR, 1995, INTRO FUNCTIONAL HIS URAY NJ, 1977, J COMP NEUROL, V176, P559, DOI 10.1002/cne.901760407 Wadhwa S, 1997, J BIOSCIENCE, V22, P407, DOI 10.1007/BF02703187 WALKER SF, 1980, BRIT J PSYCHOL, V71, P329 West MJ, 1999, TRENDS NEUROSCI, V22, P51, DOI 10.1016/S0166-2236(98)01362-9 NR 52 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 87 EP 98 DI 10.1016/j.heares.2005.04.006 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100010 PM 15950413 ER PT J AU Harte, JM Elliott, SJ Kapadia, S Lutman, ME AF Harte, JM Elliott, SJ Kapadia, S Lutman, ME TI Dynamic nonlinear cochlear model predictions of click-evoked otoacoustic emission suppression SO HEARING RESEARCH LA English DT Article DE cochlear mechanical nonlinearities; dynamic nonlinear model; nonlinear interaction; otoacoustic emissions; suppression; click response ID WIENER-KERNEL ANALYSIS; RELAXATION DYNAMICS; EXTERNAL TONES; TEMPORAL INTERACTIONS; SINGLE-TONE; INNER-EAR; NOISE; INTENSITY; FEEDBACK; HEARING AB A comprehensive set of results from 2-click suppression experiments on otoacoustic emissions (OAEs) have been presented by Kapadia and Lutman [Kapadia, S., Lutman, M.E., 2000a. Nonlinear temporal interactions in click-evoked otoacoustic emissions. 1. Assumed model and polarity-symmetry. Hear. Res. 146, 89-100]. They found that the degree of suppression of an OAE evoked by a test click varied systematically with the timing and the level of a suppressor click, being greatest for suppressor clicks occurring some time before the test click, particularly at lower levels of suppression. Kapadia and Lutman also showed that although the general shape of the graph of suppression against suppressor click timing could be predicted by a static power law model, this did not predict the asymmetry with respect to the timing of the suppressor click. A generalised automatic gain control (AGC) is presented as a simple example of a dynamic nonlinear system. Its steady state nonlinear behaviour, as quantified by its level curve, and its dynamic behaviour, as quantified by its transient response, can be independently set by the feedback gain law and detector time constant, respectively. The previously reported suppression results, with the asymmetry in the timing, are found to be predicted better by such an AGC having a level curve with a slope of about 0.5 dB/dB, and a detector time constant of about twice the period at the characteristic frequency. Although this gives adequate predictions for high suppression levels, it under predicts the suppression and the asymmetry for lower levels. Further research is required to establish whether simple peripheral feedback models can explain OAE suppression of this type. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. RP Harte, JM (reprint author), Univ Southampton, Inst Sound & Vibrat Res, Southampton SO17 1BJ, Hants, England. EM jmh@isvr.soton.ac.uk CR DEBOER E, 1978, J ACOUST SOC AM, V63, P115, DOI 10.1121/1.381704 ELLIOTT SJ, 2003, 913 U SOUTH I SOUND GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GRANDORI F, 1993, BRIT J AUDIOL, V27, P97, DOI 10.3109/03005369309077898 HARTE JM, 2004, THESIS U SOUTHAMPTON KANIS LJ, 1993, J ACOUST SOC AM, V94, P3199, DOI 10.1121/1.407225 Kapadia S, 2000, HEARING RES, V146, P89, DOI 10.1016/S0378-5955(00)00102-7 Kapadia S, 2000, HEARING RES, V146, P101, DOI 10.1016/S0378-5955(00)00103-9 Keefe DH, 1998, J ACOUST SOC AM, V103, P3489, DOI 10.1121/1.423057 Keefe DH, 1998, J ACOUST SOC AM, V103, P3499, DOI 10.1121/1.423058 KEMP DT, 1980, HEARING RES, V2, P213, DOI 10.1016/0378-5955(80)90059-3 Kevanishvili Z, 1996, SCAND AUDIOL, V25, P161, DOI 10.3109/01050399609047999 LINAGRANADE G, 1995, HEARING RES, V87, P55, DOI 10.1016/0378-5955(95)00078-I Lopez-Poveda EA, 2001, J ACOUST SOC AM, V110, P3107, DOI 10.1121/1.1416197 LYON RF, 1990, P MECH BIOPH HEAR C, P395 LYON RF, 1988, IEEE T ACOUST SPEECH, V36, P1119, DOI 10.1109/29.1639 MCFADDEN D, 1983, J ACOUST SOC AM, V74, P1185, DOI 10.1121/1.390042 Meddis R, 2001, J ACOUST SOC AM, V109, P2852, DOI 10.1121/1.1370357 Murphy WJ, 1996, J ACOUST SOC AM, V100, P3979, DOI 10.1121/1.417217 MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3702, DOI 10.1121/1.412387 MURPHY WJ, 1995, J ACOUST SOC AM, V97, P3711, DOI 10.1121/1.412388 PFEIFFER R R, 1970, Journal of the Acoustical Society of America, V48, P1373, DOI 10.1121/1.1912294 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775 TAVARTKILADZE GA, 1994, BRIT J AUDIOL, V28, P193, DOI 10.3109/03005369409086568 vanDijk P, 1997, HEARING RES, V114, P229, DOI 10.1016/S0378-5955(97)00168-8 van Dijk P, 1997, BRIT J AUDIOL, V31, P473, DOI 10.3109/03005364000000041 VANDIJK P, 1994, J ACOUST SOC AM, V95, P904, DOI 10.1121/1.410009 WILSON JP, 1980, HEARING RES, V2, P233, DOI 10.1016/0378-5955(80)90060-X YATES GK, 1990, HEARING RES, V50, P145, DOI 10.1016/0378-5955(90)90041-M ZWICKER E, 1986, J ACOUST SOC AM, V80, P154, DOI 10.1121/1.394176 ZWICKER E, 1979, BIOL CYBERN, V35, P243, DOI 10.1007/BF00344207 ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 33 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 99 EP 109 DI 10.1016/j.heares.2005.04.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100011 PM 15935578 ER PT J AU Rivkin, AZ Palacios, SD Pak, K Bennett, T Ryan, AF AF Rivkin, AZ Palacios, SD Pak, K Bennett, T Ryan, AF TI The role of Fas-mediated apoptosis in otitis media: Observations in the lpr/lpr mouse SO HEARING RESEARCH LA English DT Article DE otitis media; middle ear; Fas; Fas ligand; apoptosis ID LIGAND-INDUCED APOPTOSIS; TUMOR-NECROSIS-FACTOR; MIDDLE-EAR MUCOSA; EXPRESSION; LANGUAGE; EFFUSION; ANTIGEN; SPEECH AB Apoptosis, or programmed cell death, is a critical regulatory mechanism involved in the function, homeostasis and stimulus response of many organ systems. In the middle ear, apoptosis could participate in mucosal remodeling or leukocyte clearance during otitis media (OM). Fas is a death receptor that can contribute to apoptosis in a variety of cell types. To assess the role of Fas signaling in OM, we probed for expression of Fas and Fas ligand (FasL) by polymerase chain reaction (PCR) during bacterial OM in the rat. In addition, we assessed the response of the middle ear to endotoxin, an inflammatory bacterial product that has been used as a model for otitis media in the mouse, in normal and Fas deficient mice. We saw evidence of increased expression of Fas and Fas ligand during bacterial OM. Moreover, the intensity of the mucosal response to endotoxin was significantly greater and the resolution of the response was prolonged in Fas deficient mice. Prolonged resolution of mucosal hyperplasia may reflect reduced apoptosis of the hyperplastic mucosal cells. Elucidation of the pathways that regulate the mucosal hyperplastic response during otitis media brings us closer to manipulating them in the interest of reducing the chronic complications of this disease. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif San Diego, Sch Med, Div Otolaryngol, Dept Surg, La Jolla, CA 92093 USA. VA Med Ctr, La Jolla, CA 92093 USA. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Div Otolaryngol, Dept Surg, 9500 Gilman Dr 0666,Fir Bldg,Room 106, La Jolla, CA 92093 USA. EM aryan@ucsd.edu CR ALLAN DJ, 1992, J PATHOL, V167, P25, DOI 10.1002/path.1711670106 BERNSTEIN JM, 1991, OTOLARYNG CLIN N AM, V24, P845 Bluestone CD, 1996, PEDIAT OTOLARYNGOLOG, P388 DeMaria TF, 1997, LARYNGOSCOPE, V107, P369, DOI 10.1097/00005537-199703000-00017 GRIFFITH TS, 1995, SCIENCE, V270, P1189, DOI 10.1126/science.270.5239.1189 HERMANSSON A, 1988, AM J OTOLARYNG, V9, P97, DOI 10.1016/S0196-0709(88)80013-9 HOPWOOD D, 1976, J PATHOL, V119, P159 Kenna MA, 1998, HEAD NECK SURG OTOLA, P1297 KIMURA K, 1994, BIOCHEM BIOPH RES CO, V198, P666, DOI 10.1006/bbrc.1994.1097 Li JH, 1998, J IMMUNOL, V161, P3943 LIM DJ, 1971, ANN OTO RHINOL LARYN, V80, P838 LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P36 Nagata S, 1999, ANNU REV GENET, V33, P29, DOI 10.1146/annurev.genet.33.1.29 Palacios SD, 2002, J INFECT DIS, V186, P1761, DOI 10.1086/345798 SUDA T, 1993, CELL, V75, P1169, DOI 10.1016/0092-8674(93)90326-L TEELE DW, 1990, J INFECT DIS, V162, P685 TEELE DW, 1984, PEDIATRICS, V74, P282 Wagner S, 1997, GASTROENTEROLOGY, V113, P1836, DOI 10.1016/S0016-5085(97)70003-9 WATANABEFUKUNAGA R, 1992, NATURE, V356, P314, DOI 10.1038/356314a0 Yeh WC, 1999, IMMUNOL REV, V169, P283, DOI 10.1111/j.1600-065X.1999.tb01323.x ZAJICEK G, 1991, CELL PROLIFERAT, V24, P375, DOI 10.1111/j.1365-2184.1991.tb01166.x NR 21 TC 9 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2005 VL 207 IS 1-2 BP 110 EP 116 DI 10.1016/j.heares.2005.04.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 970OS UT WOS:000232320100012 PM 15978756 ER PT J AU Schofield, BR Coomes, DL AF Schofield, BR Coomes, DL TI Projections from auditory cortex contact cells in the cochlear nucleus that project to the inferior colliculus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE auditory system; descending pathways; efferent ID SUPERIOR OLIVARY COMPLEX; GUINEA-PIG; CORTICOFUGAL MODULATION; RAT; DORSAL; SYSTEM; CAT; PATHWAYS; PATTERNS; MIDBRAIN AB Anterograde and retrograde tracing techniques were combined to determine whether auditory cortical axons contact cells in the cochlear nucleus that project to the inferior colliculus. FluoroRuby or fluorescein dextran was injected into auditory cortex to label cortical axons by anterograde transport. Different fluorescent tracers (Fast Blue, FluoroGold, FluoroRuby or fluorescein dextran) were injected into one or both inferior colliculi to label cells in the cochlear nucleus. After 12-15 days, the brain was processed for fluorescence microscopy and the cochlear nuclei were examined for apparent contacts between cortical axons and retrogradely labeled cochlear nucleus cells. The results suggest that axons from the ipsilateral or contralateral cortex contact fusiform and giant cells in the dorsal cochlear nucleus and multipolar cells in the ventral cochlear nucleus that project directly to the inferior colliculus. The contacts occur on cell bodies and dendrites. The target cells in the cochlear nucleus include cells that project ipsilaterally, contra-laterally or bilaterally to the inferior colliculus. The results suggest that auditory cortex is in a position to exert direct effects on the monaural pathways that ascend from the cochlear nucleus. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Louisville, Dept Anat Sci & Neurobiol, Louisville, KY 40202 USA. RP Schofield, BR (reprint author), Univ Louisville, Dept Anat Sci & Neurobiol, 500 S Preston St, Louisville, KY 40202 USA. EM brscho0l@gwise.louisville.edu CR Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Casseday JH, 2002, SPR HDB AUD, V15, P238 Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x Doucet JR, 2003, EXP BRAIN RES, V153, P461, DOI 10.1007/s00221-003-1604-4 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 Helfert RH, 1997, CENTRAL AUDITORY SYS, P193 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2 Jen PHS, 2002, HEARING RES, V168, P196, DOI 10.1016/S0378-5955(02)00358-1 Kudo M., 1987, AUDITORY PATHWAY STR, P171 Oertel D, 2004, TRENDS NEUROSCI, V27, P104, DOI 10.1016/j.tins.2003.12.001 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Pollak GD, 1989, NEURAL BASIS ECHOLOC Popelar J, 2003, PHYSIOL RES, V52, P615 RAPISARDA C, 1990, SOMATOSENS MOT RES, V7, P289 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 Schofield BR, 2005, HEARING RES, V199, P89, DOI 10.1016/j.heares.2004.08.003 SCHOFIELD BR, 1992, J COMP NEUROL, V317, P438, DOI 10.1002/cne.903170409 Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9 Schofield BR, 1999, J COMP NEUROL, V409, P210, DOI 10.1002/(SICI)1096-9861(19990628)409:2<210::AID-CNE3>3.0.CO;2-A Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weedman DL, 1996, J COMP NEUROL, V371, P311 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 Wolff A, 1997, NEUROSCI LETT, V221, P125, DOI 10.1016/S0304-3940(96)13305-X Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x NR 36 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 3 EP 11 DI 10.1016/j.heares.2005.03.005 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100002 PM 16080994 ER PT J AU Cant, NB Benson, CG AF Cant, NB Benson, CG TI An atlas of the inferior colliculus of the gerbil in three dimensions SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE auditory system; brain atlas; gerbil; inferior colliculus; neuroanatomy ID DORSAL COCHLEAR NUCLEUS; CYTOCHROME-OXIDASE HISTOCHEMISTRY; SUPERIOR OLIVARY NUCLEUS; SINGLE-UNIT RESPONSES; AUDITORY-SYSTEM; DESCENDING PROJECTIONS; ASCENDING PROJECTIONS; EFFERENT PROJECTIONS; CAT; RAT AB An atlas of the inferior colliculus of the gerbil is presented in three dimensions. Sections were cut in the transverse (coronal), horizontal or saggital planes and fit to a common cartesian coordinate grid. The sections used for the atlas were reacted for cytochrome oxidase activity, a functional marker that can be used to distinguish different areas in the brainstem. The atlas can be used for representation, comparison and correlation of neuro anatomical, neurophysiological, neurochemical and other data that can be spatially mapped in the inferior colliculus. (c) 2005 Elsevier B.V. All rights reserved. C1 Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA. RP Cant, NB (reprint author), Duke Univ, Med Ctr, Dept Neurobiol, POB 3209, Durham, NC 27710 USA. EM nellcant@neuro.duke.edu CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 ADAMS JC, 1980, NEUROSCI LETT, V19, P1, DOI 10.1016/0304-3940(80)90246-3 AITKIN L, 1985, HEARING RES, V17, P87, DOI 10.1016/0378-5955(85)90134-0 AITKIN LM, 1984, NEUROSCI LETT, V44, P259, DOI 10.1016/0304-3940(84)90032-6 BRUCKNER S, 1995, HEARING RES, V86, P1, DOI 10.1016/0378-5955(95)00048-9 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P704 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Casseday JH, 2002, SPR HDB AUD, V15, P238 Casseday JH, 1996, BRAIN BEHAV EVOLUT, V47, P311, DOI 10.1159/000113249 Chernock ML, 2004, HEARING RES, V188, P12, DOI 10.1016/S0378-5955(03)00340-X COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 Davis KA, 2002, J NEUROPHYSIOL, V87, P1824, DOI 10.1152/jn.00769.2001 Davis KA, 1999, J NEUROPHYSIOL, V82, P164 Ehret G., 1997, CENTRAL AUDITORY SYS, P259 FAYELUND H, 1985, ANAT EMBRYOL, V171, P1, DOI 10.1007/BF00319050 GONZALEZLIMA F, 1994, NEUROSCIENCE, V63, P559, DOI 10.1016/0306-4522(94)90550-9 HENKEL CK, 1983, J COMP NEUROL, V221, P416, DOI 10.1002/cne.902210405 HEVNER RF, 1995, NEUROSCIENCE, V65, P313, DOI 10.1016/0306-4522(94)00514-6 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302 Irvine D.R.F., 1986, Progress in Sensory Physiology, V7, P1 KIANG NYS, 1975, J COMP NEUROL, V162, P221, DOI 10.1002/cne.901620205 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 Loftus WC, 2004, J COMP NEUROL, V472, P330, DOI 10.1002/cne.20070 MAFFI CL, 1987, HEARING RES, V26, P211, DOI 10.1016/0378-5955(87)90113-4 MOREST DK, 1984, J COMP NEUROL, V222, P209, DOI 10.1002/cne.902220206 OLIVER DL, 1984, J COMP NEUROL, V224, P155, DOI 10.1002/cne.902240202 Oliver DL, 2000, MICROSC RES TECHNIQ, V51, P355, DOI 10.1002/1097-0029(20001115)51:4<355::AID-JEMT5>3.0.CO;2-J Oliver DL, 1997, J COMP NEUROL, V382, P215, DOI 10.1002/(SICI)1096-9861(19970602)382:2<215::AID-CNE6>3.0.CO;2-6 OLIVER DL, 1987, J COMP NEUROL, V264, P24, DOI 10.1002/cne.902640104 Poremba A, 1998, EUR J NEUROSCI, V10, P3035, DOI 10.1046/j.1460-9568.1998.00304.x Ramachandran R, 1999, J NEUROPHYSIOL, V82, P152 ROSS LS, 1989, J NEUROSCI, V9, P2819 ROTH GL, 1978, J COMP NEUROL, V182, P661, DOI 10.1002/cne.901820407 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SALDANA E, 1992, J COMP NEUROL, V319, P417, DOI 10.1002/cne.903190308 SCHOFIELD BR, 1991, J COMP NEUROL, V314, P645, DOI 10.1002/cne.903140403 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 SHNEIDERMAN A, 1987, J COMP NEUROL, V266, P519, DOI 10.1002/cne.902660406 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 Swanson LW, 1992, BRAIN MAPS STRUCTURE Tucci DL, 2001, JARO-J ASSOC RES OTO, V3, P89 WONGRILEY M, 1979, BRAIN RES, V171, P11, DOI 10.1016/0006-8993(79)90728-5 WONGRILEY MTT, 1989, TRENDS NEUROSCI, V12, P94, DOI 10.1016/0166-2236(89)90165-3 Wong-Riley Margaret T.T., 1994, Cerebral Cortex, V10, P141 Young E.D., 2004, SYNAPTIC ORG BRAIN, P125 NR 47 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 12 EP 27 DI 10.1016/j.heares.2005.02.014 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100003 PM 16080995 ER PT J AU Tong, L Altschuler, RA Holt, AG AF Tong, L Altschuler, RA Holt, AG TI Tyrosine hydroxylase in rat auditory midbrain: Distribution and changes following deafness SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE hearing; deafness; dopamine; cochlear ablation; Sprague Dawley rats ID MONOAMINE NEURON SYSTEMS; INFERIOR COLLICULUS; BRAIN-STEM; COCHLEAR NUCLEUS; PLASTICITY; PROJECTIONS; IMMUNOREACTIVITY; LOCALIZATION; INHIBITION; RECEPTORS AB Tyrosine hydroxylase (TH), a key enzyme in the catecholaminergic pathway, allows for the differentiation of dopaminergic neurons. We previously showed decreases in TH gene expression in the rat inferior colliculus (IC) 3 and 21 days following deafness. In the present study, we characterized the normal distribution of TH as well as changes following deafness (bilateral cochlear ablation) in the IC and nuclei of the lateral lemniscus. Immunostaining was compared in three groups of rats: normal hearing (n = 8), 21 day deaf (n = 5) and 90 days following deafening (n = 5). Many TH immunoreactive fibers and puncta were identified in the IC and nuclei of the lateral lemniscus of normal hearing animals and labeling was most dense in the external cortex of the IC. We also identified immunolabeling for fibers and puncta for another catecholaminergic enzyme, dopamine beta hydroxylase (DBH), but not phenylethanolamine-N-methyltranferase (PNMT). Neurons immunopositive for TH but not DBH or PNMT were observed in the dorsal cortex and dorsal horn of the central nucleus of the IC and ventral and intermediate lemniscus. In the central nucleus of the IC and dorsal lateral lemniscus many lightly labeled TH neurons were also DBH positive. Although the number of immunopositive cells in the IC and lemniscus declined 3 weeks and 3 months after deafening, the decline was not significant at three weeks in the VNLL nor after three months in the dorsal cortex. Immunolabeling for TH decreased significantly in IC and lemniscus 3 weeks and 3 months following deafening. These results suggest a role for dopaminergic neurons and fibers in deafness-related plasticity. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. RP Holt, AG (reprint author), Univ Michigan, Dept Otolaryngol Head & Neck Surg, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM avrilhol@umich.edu CR ALTMAN JA, 1976, EXP BRAIN RES, V26, P285 Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038 Behrend O, 2002, J NEUROPHYSIOL, V87, P2915, DOI 10.1152/jn.01018.2002 Behrens EG, 2002, BRAIN RES, V955, P34, DOI 10.1016/S0006-8993(02)03351-6 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 Brandao ML, 2003, EUR J PHARMACOL, V463, P225, DOI 10.1016/S0014-2999(03)01284-6 CICERO TJ, 1972, J NEUROCHEM, V19, P2241, DOI 10.1111/j.1471-4159.1972.tb05136.x DRUGA R, 1984, NEUROSCI LETT, V45, P247, DOI 10.1016/0304-3940(84)90234-9 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P243, DOI 10.1201/9781420038736.ch18 Gabriele ML, 2000, J NEUROSCI, V20, P6939 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E HALASZ N, 1977, BRAIN RES, V126, P455, DOI 10.1016/0006-8993(77)90597-2 HOKFELT T, 1976, MED BIOL, V54, P427 HOKFELT T, 1977, MED BIOL, V55, P21 HOLT AG, 2004, ASS RES OT 27 ANN MI, P309 Illing RB, 2001, AUDIOL NEURO-OTOL, V6, P319, DOI 10.1159/000046844 Jaeger C B, 1983, Brain Res, V313, P128 Ji WQ, 2001, J NEUROPHYSIOL, V86, P211 KLEPPER A, 1991, BRAIN RES, V557, P190, DOI 10.1016/0006-8993(91)90134-H LEDOUX JE, 1987, J COMP NEUROL, V264, P123, DOI 10.1002/cne.902640110 MOLLER AR, 2005, ANATOMICAL PHYSL BAS, P1 Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6 Mossop JE, 2000, HEARING RES, V147, P183, DOI 10.1016/S0378-5955(00)00054-X Niu X, 2004, NEUROSCIENCE, V125, P725, DOI 10.1016/j.neuroscience.2004.02.023 Niu XZ, 2002, HEARING RES, V174, P124, DOI 10.1016/S0378-5955(02)00646-9 RAZA A, 1994, HEARING RES, V77, P221, DOI 10.1016/0378-5955(94)90270-4 Reuss S, 1999, CELL TISSUE RES, V297, P13, DOI 10.1007/s004410051329 ROGER M, 1989, J COMP NEUROL, V287, P339, DOI 10.1002/cne.902870306 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x Ryu JR, 2000, BRAIN RES BULL, V53, P777, DOI 10.1016/S0361-9230(00)00373-7 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6 THOMPSON GC, 1994, OTOLARYNG HEAD NECK, V110, P93, DOI 10.1016/S0194-5998(94)70797-9 TOKUNAGA A, 1984, J HIRNFORSCH, V25, P461 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U VINCENT SR, 1988, J COMP NEUROL, V268, P584, DOI 10.1002/cne.902680408 Webster DB, 1992, MAMMALIAN AUDITORY P Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X Wynne B, 1997, J CHEM NEUROANAT, V12, P259, DOI 10.1016/S0891-0618(97)00219-6 Wynne B, 1996, Audiol Neurootol, V1, P54 Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 NR 44 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 28 EP 41 DI 10.1016/j.heares.2005.03.006 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100004 PM 16080996 ER PT J AU Cramer, KS AF Cramer, KS TI Eph proteins and the assembly of auditory circuits SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE auditory pathways; auditory nerve; axon guidance; Eph receptor; ephrin ID MEDIAL SUPERIOR OLIVE; INTERAURAL TIME DIFFERENCES; RECEPTOR TYROSINE KINASES; CHICK BRAIN-STEM; MOUSE INNER-EAR; COCHLEAR GANGLION; TRANSMEMBRANE LIGANDS; RETINOTECTAL SYSTEM; HIPPOCAMPAL AXONS; TRAPEZOID BODY AB Many kinds of information are carried in the acoustic signal that reaches auditory receptor cells in the cochlea. The analysis of this information is possible in large part because of the neuronal architecture of the auditory system. The mechanisms that establish the precise circuitry that underlies auditory processing have not yet been identified. The Eph receptor tyrosine kinases and their ligands are proteins that regulate axon guidance and have been shown to contribute to the establishment of topographic projections in several areas of the nervous system. Several studies have begun to investigate whether these proteins are involved in the formation of auditory system connections. Studies of gene expression show that Eph proteins are extensively expressed in structures of the inner ear as well as in neurons in the peripheral and central components of the auditory system. Functional studies have demonstrated that Eph signaling influences the assembly of auditory pathways. These studies suggest that Eph protein signaling has a significant role in the formation of auditory circuitry. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. RP Cramer, KS (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, 2205 McGaugh Hall, Irvine, CA 92697 USA. EM cramerk@uci.edu CR Bianchi LM, 1998, HEARING RES, V117, P161, DOI 10.1016/S0378-5955(98)00010-0 Bianchi LM, 2002, EUR J NEUROSCI, V16, P1499, DOI 10.1046/j.1460-9568.2002.02248.x Bianchi LM, 2002, J HISTOCHEM CYTOCHEM, V50, P1641 Braisted JE, 1997, DEV BIOL, V191, P14, DOI 10.1006/dbio.1997.8706 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Brors D, 2003, J COMP NEUROL, V462, P90, DOI 10.1002/cne.10707 Bruckner K, 1997, SCIENCE, V275, P1640, DOI 10.1126/science.275.5306.1640 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CANT NB, 1992, HEARING RES, V58, P26, DOI 10.1016/0378-5955(92)90005-8 CANT NB, 1992, COCHLEAR NUCL NEURON CARR CE, 1990, J NEUROSCI, V10, P3227 CHENG HJ, 1995, CELL, V82, P371, DOI 10.1016/0092-8674(95)90426-3 Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5 Cowan CA, 2001, NATURE, V413, P174, DOI 10.1038/35093123 Cramer KS, 2004, DEV BIOL, V269, P26, DOI 10.1016/j.ydbio.2004.01.002 CRAMER KS, 2002, SOC NEUR ABSTR Cramer KS, 2002, J COMP NEUROL, V452, P51, DOI 10.1002/cne.10399 Cramer KS, 2000, J COMP NEUROL, V426, P270 Cramer KS, 2000, DEV BIOL, V224, P138, DOI 10.1006/dbio.2000.9779 Cutforth T, 2003, CELL, V114, P311, DOI 10.1016/S0092-8674(03)00568-3 Davy A, 1999, GENE DEV, V13, P3125, DOI 10.1101/gad.13.23.3125 Dufour A, 2003, NEURON, V39, P453, DOI 10.1016/S0896-6273(03)00440-9 Eberhart J, 2004, J NEUROSCI, V24, P1070, DOI 10.1523/JNEUROSCI.4719-03.2004 ELLIS J, 1995, MECH DEVELOP, V52, P319, DOI 10.1016/0925-4773(95)00411-S Feldheim DA, 2004, J NEUROSCI, V24, P2542, DOI 10.1523/JNEUROSCI.0239-03.2004 Feldheim DA, 1998, NEURON, V21, P1303, DOI 10.1016/S0896-6273(00)80650-9 Feldheim DA, 2000, NEURON, V25, P563, DOI 10.1016/S0896-6273(00)81060-0 Flanagan JG, 1998, ANNU REV NEUROSCI, V21, P309, DOI 10.1146/annurev.neuro.21.1.309 Friauf E, 1999, CELL TISSUE RES, V297, P187, DOI 10.1007/s004410051346 Gale NW, 1996, NEURON, V17, P9, DOI 10.1016/S0896-6273(00)80276-7 Gao PP, 1999, P NATL ACAD SCI USA, V96, P4073, DOI 10.1073/pnas.96.7.4073 Gao PP, 1996, P NATL ACAD SCI USA, V93, P11161, DOI 10.1073/pnas.93.20.11161 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 GROTHE B, 1993, J NEUROPHYSIOL, V69, P1192 Grothe B, 2003, NAT REV NEUROSCI, V4, P540, DOI 10.1038/nrn1136 Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2 Hansen MJ, 2004, NEURON, V42, P717, DOI 10.1016/j.neuron.2004.05.009 Helmbacher F, 2000, DEVELOPMENT, V127, P3313 HENKEMEYER M, 1994, ONCOGENE, V9, P1001 Himanen JP, 2004, NAT NEUROSCI, V7, P501, DOI 10.1038/nn1237 Hindges R, 2002, NEURON, V35, P475, DOI 10.1016/S0896-6273(02)00799-7 Holash JA, 1997, DEV BIOL, V182, P256, DOI 10.1006/dbio.1996.8496 Holland SJ, 1996, NATURE, V383, P722, DOI 10.1038/383722a0 Hornberger MR, 1999, NEURON, V22, P731, DOI 10.1016/S0896-6273(00)80732-1 Howard MA, 2003, HEARING RES, V178, P118, DOI 10.1016/S0378-5955(03)00068-6 Huai JS, 2001, J BIOL CHEM, V276, P6689, DOI 10.1074/jbc.M008127200 Janis LS, 1999, J NEUROSCI, V19, P4962 Kalo MS, 2001, J BIOL CHEM, V276, P38940, DOI 10.1074/jbc.M105815200 Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F Kim WY, 2001, DEVELOPMENT, V128, P417 Knoll B, 2002, TRENDS NEUROSCI, V25, P145, DOI 10.1016/S0166-2236(00)02093-2 Krull CE, 2004, DEV DYNAM, V229, P433, DOI 10.1002/dvdy.10473 Kubke MF, 2000, HEARING RES, V147, P1, DOI 10.1016/S0378-5955(00)00116-7 Kullander K, 2002, NAT REV MOL CELL BIO, V3, P475, DOI 10.1038/nrm856 Kury P, 2000, MOL CELL NEUROSCI, V15, P123, DOI 10.1006/mcne.1999.0812 KUWABARA N, 1992, J COMP NEUROL, V324, P522, DOI 10.1002/cne.903240406 Lawoko-Kerali G, 2004, MECH DEVELOP, V121, P287, DOI 10.1016/j.mod.2003.12.006 Leake PA, 2002, J COMP NEUROL, V448, P6, DOI 10.1002/cne.10176 Lee AM, 1996, DNA CELL BIOL, V15, P817, DOI 10.1089/dna.1996.15.817 Lyckman AW, 2001, J NEUROSCI, V21, P7684 Mann F, 2002, NEURON, V35, P461, DOI 10.1016/S0896-6273(02)00786-9 Mellitzer G, 1999, NATURE, V400, P77 Menzel P, 2001, DEV BIOL, V230, P74, DOI 10.1006/dbio.2000.0109 Molea D, 2003, J COMP NEUROL, V466, P577, DOI 10.1002/cne.10896 O'Leary DDM, 1999, CELL, V96, P255 OVERHOLT EM, 1992, J NEUROSCI, V12, P1698 Person AL, 2004, J NEUROBIOL, V60, P28, DOI 10.1002/neu.10330 Pickles JO, 2002, J COMP NEUROL, V449, P207, DOI 10.1002/cne.10231 Pickles JO, 2003, HEARING RES, V178, P44, DOI 10.1016/S0378-5955(03)00029-7 Prakash N, 2000, J NEUROSCI, V20, P5841 Rogers A, 1999, HEALTH CARE ANAL, V7, P225, DOI 10.1023/A:1009409111428 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Rubel EW, 2002, J COMP NEUROL, V448, P1, DOI 10.1002/cne.10255 SANES DH, 1988, J NEUROSCI, V8, P682 Siddiqui SA, 2005, J COMP NEUROL, V482, P309, DOI 10.1002/cne.20396 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x Vanderhaeghen P, 2000, NAT NEUROSCI, V3, P358 van Heumen WRA, 2000, HEARING RES, V139, P42, DOI 10.1016/S0378-5955(99)00158-6 Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2 Yin Y, 2004, NEUROSCI RES, V48, P285, DOI 10.1016/j.neures.2003.11.009 YOUNG SR, 1983, J NEUROSCI, V3, P1373 Yue Y, 2002, P NATL ACAD SCI USA, V99, P10777, DOI 10.1073/pnas.162354599 Zhang JH, 1996, J NEUROSCI, V16, P7182 NR 83 TC 38 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 42 EP 51 DI 10.1016/j.heares.2004.11.024 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100005 PM 16080997 ER PT J AU Fritzsch, B Pauley, S Matel, V Katz, DM Xiang, MQ Tessarollo, L AF Fritzsch, B Pauley, S Matel, V Katz, DM Xiang, MQ Tessarollo, L TI Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE ear sensory neurons; vestibular neurons; spiral ganglia; pathfinding; neurotropins ID BACTERIAL ARTIFICIAL CHROMOSOME; HAIR-CELLS; NEUROTROPHIC FACTOR; SYSTEM DEVELOPMENT; STATOACOUSTIC NEURONS; POSTNATAL REFINEMENT; FATE DETERMINATION; AUDITORY-SYSTEM; NERVOUS-SYSTEM; HEARING-LOSS AB We review the in vivo evidence for afferent fiber guidance to the inner ear sensory epithelia and the central nuclei of termination. Specifically, we highlight our current molecular understanding for the role of hair cells and sensory epithelia in guiding afferents, how disruption of certain signals can alter fiber pathways, even in the presence of normal hair cells, and what role neurotrophins play in fiber guidance of sensory neurons to hair cells. The data suggest that the neurotrophin BDNF is the most important molecule known for inner ear afferent fiber guidance to hair cells in vivo. This suggestion is based on experiments on Ntf3 transgenic mice expressing BDNF under Ntf3 promoter that show deviations of fiber growth in the ear to areas that express BDNF but have no hair cells. However, fiber growth can occur in the absence of BDNF as demonstrated by double mutants for BDNF and Bax. We directly tested the significance of hair cells or sensory epithelia for fiber guidance in mutants that lose hair cells (Pou4f3) or do not form a posterior crista (Fgf10). While these data emphasize the role played by BDNF, normally released from hair cells, there is some limited capacity for directed growth even in the absence of hair cells, BDNF, or sensory epithelia. This directed growth may rely on semaphorins or other matrix proteins because targeted ablation of the sema3 docking site on the sema receptor Npn1 results in targeting errors of fibers even in the presence of hair cells and BDNF. Overall, our data support the notion that targeting of the afferent processes in the ear is molecularly distinct from targeting processes in the central nuclei. This conclusion is derived from data that show no recognizable central projection deviation, even if fibers are massively rerouted in the periphery, as in Ntf3(tgBDNF) mice in which vestibular fibers project to the cochlea. (c) 2005 Elsevier B.V. All rights reserved. C1 Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA. RP Fritzsch, B (reprint author), Creighton Univ, Dept Biomed Sci, Omaha, NE 68178 USA. EM fritzsch@creighton.edu CR Agerman K, 2003, DEVELOPMENT, V130, P1479, DOI 10.1242/dev.00378 Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247 Bianchi LM, 1996, DEVELOPMENT, V122, P1965 Bianchi LM, 1999, ANAT REC, V254, P127 BIANCHI LM, 1991, DEV BRAIN RES, V64, P167, DOI 10.1016/0165-3806(91)90221-4 Brumwell CL, 2000, EXP NEUROL, V162, P121, DOI 10.1006/exnr.2000.7317 CARNEY PR, 1983, J COMP NEUROL, V215, P359, DOI 10.1002/cne.902150402 Chen P, 2002, DEVELOPMENT, V129, P2495 Cloutier JF, 2002, NEURON, V33, P877, DOI 10.1016/S0896-6273(02)00635-9 Coppola V, 2001, DEVELOPMENT, V128, P4315 Cowan CA, 2000, NEURON, V26, P417, DOI 10.1016/S0896-6273(00)81174-5 Cutforth T, 2003, CELL, V114, P311, DOI 10.1016/S0092-8674(03)00568-3 Echteler SM, 2000, J COMP NEUROL, V425, P436 Eddison M, 2000, P NATL ACAD SCI USA, V97, P11692, DOI 10.1073/pnas.97.22.11692 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 Farinas I, 2001, J NEUROSCI, V21, P6170 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Fekete DM, 1998, J NEUROSCI, V18, P7811 Feldheim DA, 2004, J NEUROSCI, V24, P2542, DOI 10.1523/JNEUROSCI.0239-03.2004 Fritzsch B, 2003, ZOOLOGY, V106, P243 Fritzsch B, 2002, J NEUROBIOL, V53, P143, DOI 10.1002/neu.10098 Fritzsch B., 1995, AUDIT NEUROSCI, V1, P401 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 Fritzsch B, 2001, DEV GENES EVOL, V211, P388, DOI 10.1007/s004270100166 Fritzsch B, 1997, TRENDS NEUROSCI, V20, P159, DOI 10.1016/S0166-2236(96)01007-7 Fritzsch B, 2003, BRAIN RES BULL, V60, P423, DOI 10.1016/S0361-9230(03)00048-0 Fritzsch B, 1997, J NEUROSCI, V17, P6213 FRITZSCH B, 2005, IN PRESS DEV DYN Gu CH, 2003, DEV CELL, V5, P45, DOI 10.1016/S1534-5807(03)00169-2 HATAKEYAMA J, 2004, DEVELOPMENT Hellard D, 2004, DEV BIOL, V275, P34, DOI 10.1016/j.ydbio.2004.07.021 HEMOND SG, 1991, DEV BRAIN RES, V61, P87, DOI 10.1016/0165-3806(91)90117-2 Hertzano R, 2004, HUM MOL GENET, V13, P2143, DOI 10.1093/hmg/ddh218 Hood L, 2004, SCIENCE, V306, P640, DOI 10.1126/science.1104635 Huang EJ, 2001, DEVELOPMENT, V128, P2421 Kim WY, 2001, DEVELOPMENT, V128, P417 Leake PA, 2002, J COMP NEUROL, V448, P6, DOI 10.1002/cne.10176 Li SG, 2002, DEVELOPMENT, V129, P3523 Liebl DJ, 1997, J NEUROSCI, V17, P9113 Liu M, 2000, GENE DEV, V14, P2839, DOI 10.1101/gad.840500 Ma QF, 1998, NEURON, V20, P469, DOI 10.1016/S0896-6273(00)80988-5 Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017 Maklad A, 2003, BRAIN RES BULL, V60, P497, DOI 10.1016/S0361-9230(03)00054-6 Maklad Adel, 2003, Brain Res Dev Brain Res, V140, P223 McLaughlin T, 2003, CURR OPIN NEUROBIOL, V13, P57, DOI 10.1016/S0959-4388(03)00014-X Miyazaki N, 1999, NEUROSCI LETT, V261, P127, DOI 10.1016/S0304-3940(98)00988-4 Mombaerts P, 1996, CELL, V87, P675, DOI 10.1016/S0092-8674(00)81387-2 Murakami Y, 2001, DEV DYNAM, V220, P246, DOI 10.1002/1097-0177(20010301)220:3<246::AID-DVDY1112>3.0.CO;2-2 Ohyama T, 2004, GENESIS, V38, P195, DOI 10.1002/gene.20017 O'Leary DDM, 1999, CURR OPIN NEUROBIOL, V9, P65, DOI 10.1016/S0959-4388(99)80008-7 Pasterkamp RJ, 2001, BRAIN RES REV, V35, P36, DOI 10.1016/S0165-0173(00)00050-3 Pauley S, 2003, DEV DYNAM, V227, P203, DOI 10.1002/dvdy.10297 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Pirvola U, 2002, NEURON, V35, P671, DOI 10.1016/S0896-6273(02)00824-3 Qian Y, 2001, GENE DEV, V15, P2533, DOI 10.1101/gad.921501 Raft S, 2004, DEVELOPMENT, V131, P1801, DOI 10.1242/dev.01067 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 SilosSantiago I, 1997, EUR J NEUROSCI, V9, P2045, DOI 10.1111/j.1460-9568.1997.tb01372.x Sobkowicz HM, 1992, DEV AUDITORY VESTIBU, V2, P59 Stankovic KM, 2003, HEARING RES, V185, P97, DOI 10.1016/S0378-5955(03)00298-3 Tessarollo L, 2004, J NEUROSCI, V24, P2575, DOI 10.1523/JNEUROSCI.5514-03.2004 Tian Y, 2004, DEV DYNAM, V231, P199, DOI 10.1002/dvdy.20106 Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950 Wallis D, 2003, DEVELOPMENT, V130, P221, DOI 10.1242/dev.00190 Wright TJ, 2003, DEVELOPMENT, V130, P3379, DOI 10.1242/dev/00555 Wright TJ, 2003, CURR TOP DEV BIOL, V57, P225, DOI 10.1016/S0070-2153(03)57008-9 Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445 Xiang MQ, 1998, DEVELOPMENT, V125, P3935 Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2 Zine A, 2001, J NEUROSCI, V21, P4712 Zou DJ, 2004, SCIENCE, V304, P1976, DOI 10.1126/science.1093468 NR 73 TC 35 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 52 EP 63 DI 10.1016/j.heares.2004.11.025 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100006 PM 16080998 ER PT J AU Godfrey, DA Godfrey, MA Ding, DL Chen, KJ Salvi, RJ AF Godfrey, DA Godfrey, MA Ding, DL Chen, KJ Salvi, RJ TI Amino acid concentrations in chinchilla cochlear nucleus at different times after carboplatin treatment SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE auditory; ototoxicity; aspartate; glutamate; gamma-aminobutyrate; glycine ID HAIR CELL LOSS; AUDITORY-NERVE LESION; ASPARTIC-ACID; GLUTAMIC-ACID; BRAIN-STEM; INNER; DEGENERATION; OTOTOXICITY; MAGNITUDE; CHILDREN AB Amino acid concentrations were measured in the cochlear nucleus for a group of 20 chinchillas: four each of control and 4, 8, 29, and 85 days after treatment with the ototoxic anti-tumor drug carboplatin (100mg/kg, i.p.). The treated chinchillas showed various extents of inner hair cell loss, generally more complete at longer survival times, but little loss of outer hair cells. Aspartate concentration in rostral anteroventral cochlear nucleus (AVCN) showed a decline to 28% less than the control value at 29 and 85 days after treatment, whereas glutamate concentration showed little change through 29 days, then dropped by 22% at 85 days after treatment. In caudal posteroventral cochlear nucleus (PVCN), the aspartate concentration decreased by 32% at 29 days, in animals with significant inner hair cell loss, and 48% at 85 days after treatment, while the glutamate concentration showed no decrease through 29 days and 40% decrease at 85 days. The concentration of gamma-aminobutyrate (GABA) was about 18% lower than control in caudal PVCN at all survival times. Significant correlations were found between the proportion of inner hair cells remaining and glutamate and aspartate concentrations in PVCN and AVCN, but not GABA or other amino acids. (c) 2005 Elsevier B.V. All rights reserved. C1 Med Coll Ohio, Dept Surg, Div Otolaryngol, Toledo, OH 43614 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Godfrey, DA (reprint author), Med Coll Ohio, Dept Surg, Div Otolaryngol, 3065 Arlington Ave, Toledo, OH 43614 USA. EM dgodfrey@mco.edu CR Bartus RT, 2000, J PHARMACOL EXP THER, V293, P903 BONOMI P, 1991, SEMIN ONCOL, V18, P2 Ding D, 2001, AUDITORY PSYCHOBIOLO, P189 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Ding DL, 2002, JARO, V3, P68, DOI 10.1007/s101620020004 Freilich RJ, 1996, MED PEDIATR ONCOL, V26, P95 GODFREY DA, 1976, J HISTOCHEM CYTOCHEM, V24, P679 GODFREY DA, 2004, ASS RES OT ABSTR, V188 Godfrey DA, 2000, HEARING RES, V150, P189, DOI 10.1016/S0378-5955(00)00199-4 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X Humason GL, 1972, ANIMAL TISSUE TECHNI Li YZ, 2002, HEARING RES, V165, P19, DOI 10.1016/S0378-5955(01)00389-6 Lorente de No R, 1981, PRIMARY ACOUSTIC NUC Lowry OH, 1972, FLEXIBLE SYSTEM ENZY MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 May BJ, 2004, ARCH OTOLARYNGOL, V130, P1411, DOI 10.1001/archotol.130.12.1411 MCKEAGE MJ, 1995, DRUG SAFETY, V13, P228 Morest DK, 1998, MICROSC RES TECHNIQ, V41, P205 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MOREST DK, 1990, J COMP NEUROL, V300, P230, DOI 10.1002/cne.903000207 OSEN KK, 1970, ARCH ITAL BIOL, V108, P21 Pagano M, 1993, PRINCIPLES BIOSTATIS Qiu CX, 2000, HEARING RES, V139, P153, DOI 10.1016/S0378-5955(99)00171-9 Ross CD, 1995, NEUROCHEM RES, V20, P1483, DOI 10.1007/BF00970598 SNEDECOR GW, 1940, STAT METHODS Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 WAKE M, 1993, J LARYNGOL OTOL, V107, P397 WAKE M, 1994, LARYNGOSCOPE, V104, P488 WENTHOLD RJ, 1978, BRAIN RES, V143, P544, DOI 10.1016/0006-8993(78)90365-7 WENTHOLD RJ, 1993, NATO ADV SCI INST SE, V239, P179 WENTHOLD RJ, 1977, BRAIN RES, V138, P111, DOI 10.1016/0006-8993(77)90787-9 WONGRILEY MTT, 1986, J COMP NEUROL, V245, P41, DOI 10.1002/cne.902450104 NR 35 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 64 EP 73 DI 10.1016/j.heares.2005.03.004 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100007 PM 16080999 ER PT J AU Morley, BJ AF Morley, BJ TI Nicotinic cholinergic intercellular communication: Implications for the developing auditory system SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE developing auditory brainstem; nicotinic acetylcholine receptors; calcium permeability; gene expression; nicotine; language development ID CENTRAL-NERVOUS-SYSTEM; ACETYLCHOLINE-RECEPTOR SUBUNIT; ALPHA-BUNGAROTOXIN BINDING; SUPERIOR OLIVARY COMPLEX; IN-SITU HYBRIDIZATION; EXCITATORY SYNAPTIC-TRANSMISSION; ACETYLTRANSFERASE MESSENGER-RNA; ALTERNATIVE SPLICE VARIANT; VENTRAL COCHLEAR NUCLEUS; RAT SENSORY CORTEX AB In this paper, research on the temporal and spatial distribution of cholinergic-related molecules in the lower auditory brainstem, with an emphasis on nicotinic acetylcholine receptors (nAChRs), is reviewed. The possible functions of acetylcholine (ACh) in driving selective auditory neurons before the onset of hearing, inducing glutamate receptor gene expression, synaptogenesis, differentiation, and cell survival are discussed. Experiments conducted in other neuronal and non-neuronal systems are drawn on extensively to discuss putative functions of ACh and nAChRs. Data from other systems may provide insight into the functions of ACh and nAC-hRs in auditory processing. The mismatch of presynaptic and postsynaptic markers and novel endogenous agonists of nAChRs are discussed in the context of non-classical interneuronal communication. The molecular mechanism that may underlie the many functions of ACh and its agonists is the regulation of intracellular calcium through nAChRs. The possible reorganization that may take place in the auditory system by the exposure to nicotine during critical developmental periods is also briefly considered. (c) 2005 Elsevier B.V. All rights reserved. C1 Boys Town Natl Res Hosp, Neurochem Lab, Omaha, NE 68131 USA. RP Morley, BJ (reprint author), Boys Town Natl Res Hosp, Neurochem Lab, 555 N 30th St, Omaha, NE 68131 USA. EM morley@boystown.org CR Adams CE, 2002, DEV BRAIN RES, V139, P175, DOI 10.1016/S0165-3806(02)00547-3 Adams JC, 1997, AUDIT NEUROSCI, V3, P335 AGNATI LF, 1995, NEUROSCIENCE, V69, P711, DOI 10.1016/0306-4522(95)00308-6 Ahuja TK, 2000, HEARING RES, V149, P33, DOI 10.1016/S0378-5955(00)00159-3 Albuquerque EX, 2000, BEHAV BRAIN RES, V113, P131, DOI 10.1016/S0166-4328(00)00208-4 Alkondon M, 1997, EUR J NEUROSCI, V9, P2734, DOI 10.1111/j.1460-9568.1997.tb01702.x Alkondon M, 2001, J NEUROPHYSIOL, V86, P3043 ALTSCHULER RA, 1985, BRAIN RES, V338, P1, DOI 10.1016/0006-8993(85)90242-2 Aramakis VB, 2000, J NEUROSCI, V20, P6106 Aramakis VB, 1998, J NEUROSCI, V18, P8485 ARIMATSU Y, 1981, J COMP NEUROL, V198, P603, DOI 10.1002/cne.901980405 Arredondo J, 2002, J CELL BIOL, V159, P325, DOI 10.1083/jcb.200206096 Arroyo-Jimenez MD, 1999, J NEUROSCI, V19, P6475 Arvidsson U, 1997, J COMP NEUROL, V378, P454 Atluri P, 2001, DEV BIOL, V240, P143, DOI 10.1006/dbio.2001.0453 Bansal A, 2000, J NEUROSCI, V20, P7672 BENJANIN S, 1994, J BIOL CHEM, V269, P21944 Bennett-Clarke CA, 1999, SOMATOSENS MOT RES, V16, P269 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 Berg DK, 2002, J NEUROBIOL, V53, P512, DOI 10.1002/neu.10116 Berger F, 1998, J NEUROSCI, V18, P6871 BERSE B, 1995, J BIOL CHEM, V270, P22101 Bigbee JW, 2000, BRAIN RES, V861, P354, DOI 10.1016/S0006-8993(00)02046-1 Bina KG, 1998, J COMP NEUROL, V397, P1 BONDY CA, 1991, J NEUROSCI, V11, P3442 Brandon EP, 2004, J NEUROSCI, V24, P5459, DOI 10.1523/JNEUROSCI.1106-04.2004 Brimijoin S, 1996, NEUROSCIENCE, V71, P555, DOI 10.1016/0306-4522(95)00457-2 BROIDE RS, 1995, NEUROSCIENCE, V67, P83, DOI 10.1016/0306-4522(94)00623-D BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 BRUGGE JF, 1984, J ACOUST SOC AM, V75, P1548, DOI 10.1121/1.390826 Brumwell CL, 2002, J NEUROSCI, V22, P8101 Bruses JL, 2001, J NEUROSCI, V21, P504 Catone C, 2003, J NEUROSCI RES, V72, P46, DOI 10.1002/jnr.10550 CHAN CC, 1993, CORNEA, V12, P451, DOI 10.1097/00003226-199309000-00013 Chang KT, 1999, J NEUROSCI, V19, P3701 Chernyavsky AI, 2004, J CELL SCI, V117, P5665, DOI 10.1242/jcs.01492 Clark JD, 1985, AFR ARCHAEOL REV, V3, P3, DOI DOI 10.1007/BF01117453 Coleman BA, 1996, J BIOL CHEM, V271, P4410 Conroy WG, 2000, NEUROPHARMACOLOGY, V39, P2699, DOI 10.1016/S0028-3908(00)00132-5 Contant C, 1996, NEUROSCIENCE, V71, P937, DOI 10.1016/0306-4522(95)00507-2 Cooper ST, 1997, J NEUROCHEM, V68, P2140 Coronas V, 2000, NEUROSCIENCE, V98, P213, DOI 10.1016/S0306-4522(00)00143-3 COUTURIER S, 1990, NEURON, V5, P847, DOI 10.1016/0896-6273(90)90344-F Dani JA, 2004, BIOORG MED CHEM LETT, V14, P1837, DOI 10.1016/j.bmcl.2003.07.036 Day T, 2004, EXP BRAIN RES, V155, P500, DOI 10.1007/s00221-003-1757-1 DELTORO ED, 1994, J COMP NEUROL, V349, P325, DOI 10.1002/cne.903490302 Descarries L, 1998, J PHYSIOL-PARIS, V92, P215, DOI 10.1016/S0928-4257(98)80013-2 Descarries L, 1997, PROG NEUROBIOL, V53, P603, DOI 10.1016/S0301-0082(97)00050-6 Devillers-Thiery A, 2003, BIOL CELL, V95, P373, DOI 10.1016/S0248-4900(03)00084-4 Dineley KT, 2000, J BIOL CHEM, V275, P13974, DOI 10.1074/jbc.275.18.13974 Dmitrieva NA, 2003, J COMP NEUROL, V456, P167, DOI 10.1002/cne.10520 Downes GB, 2004, DEV BIOL, V270, P232, DOI 10.1016/j.ydbio.2004.02.027 Drescher DG, 2004, NEUROSCIENCE, V127, P737, DOI 10.1016/j.neuroscience.2004.05.037 ECKENSTEIN F, 1983, J NEUROSCI, V3, P2286 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Ene FA, 2003, J NEUROPHYSIOL, V90, P2581, DOI 10.1152/jn.00238.2003 FARLEY GR, 1983, HEARING RES, V11, P73, DOI 10.1016/0378-5955(83)90046-1 FENG G, 1998, J NEUROSCI, V19, P4166 Ferguson SM, 2003, J NEUROSCI, V23, P9697 Ferguson SM, 2004, P NATL ACAD SCI USA, V101, P8762, DOI 10.1073/pnas.0401667101 Ferragamo MJ, 2002, J NEUROPHYSIOL, V87, P2262, DOI 10.1152/jn.00587.2001 Francis N, 2002, J BIOL CHEM, V277, P6511, DOI 10.1074/jbc.M105616200 FREEDMAN R, 1993, J NEUROSCI, V13, P1965 Fried PA, 1997, NEUROTOXICOL TERATOL, V19, P171, DOI 10.1016/S0892-0362(97)00015-9 Fried PA, 2003, NEUROTOXICOL TERATOL, V25, P427, DOI 10.1016/S0892-0362(03)00029-1 FUCHS JL, 1989, BRAIN RES, V501, P223, DOI 10.1016/0006-8993(89)90640-9 Fucile S, 2004, NEUROSCIENCE, V127, P53, DOI 10.1016/j.neuroscience.2004.04.017 Fucile S, 2004, CELL CALCIUM, V35, P1, DOI 10.1016/j.ceca.2003.08.006 Fujino K, 2001, J NEUROSCI, V21, P7372 Gabriele ML, 2000, J COMP NEUROL, V416, P368, DOI 10.1002/(SICI)1096-9861(20000117)416:3<368::AID-CNE8>3.0.CO;2-C GEULA C, 1993, DEV BRAIN RES, V76, P23, DOI 10.1016/0165-3806(93)90119-U GODFREY DA, 1987, HEARING RES, V28, P237, DOI 10.1016/0378-5955(87)90052-9 GODFREY DA, 1984, HEARING RES, V14, P93, DOI 10.1016/0378-5955(84)90072-8 Grando S A, 1997, J Investig Dermatol Symp Proc, V2, P41 Greenfield SA, 2004, J NEUROCHEM, V90, P325, DOI 10.1111/j.1471-4159.2004.02494.x Grisaru D, 1999, EUR J BIOCHEM, V264, P672, DOI 10.1046/j.1432-1327.1999.00693.x Hafidi A, 1999, INT J DEV NEUROSCI, V17, P285, DOI 10.1016/S0736-5748(99)00043-X Hanson MG, 2003, J NEUROSCI, V23, P587 HAPPE HK, 2004, MOL BRAIN RES, V153, P29 Happe HK, 1998, J COMP NEUROL, V397, P163, DOI 10.1002/(SICI)1096-9861(19980727)397:2<163::AID-CNE2>3.0.CO;2-Z HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114 Hiel H, 1996, BRAIN RES, V738, P347, DOI 10.1016/S0006-8993(96)01046-3 HILL JA, 1993, J NEUROSCI, V13, P1551 Hohmann CF, 1998, PERSPECT DEV NEUROBI, V5, P401 Horvath M, 2000, J COMP NEUROL, V422, P95 Horvath M, 1997, J COMP NEUROL, V382, P104, DOI 10.1002/(SICI)1096-9861(19970526)382:1<104::AID-CNE7>3.0.CO;2-5 Hsieh CY, 2002, DEV BRAIN RES, V133, P19, DOI 10.1016/S0165-3806(01)00314-5 HUNT SP, 1978, BRAIN RES, V142, P152, DOI 10.1016/0006-8993(78)90185-3 Ichikawa T, 1997, J CHEM NEUROANAT, V13, P23, DOI 10.1016/S0891-0618(97)00021-5 Ji D, 2001, NEURON, V31, P131, DOI 10.1016/S0896-6273(01)00332-4 Jones AK, 2004, BIOESSAYS, V26, P39, DOI 10.1002/bies.10377 Jones TA, 2001, J NEUROSCI, V21, P8129 KAMIYA HO, 1982, BRAIN RES BULL, V8, P431, DOI 10.1016/0361-9230(82)90078-8 Kanayama H, 2003, NEUROSCIENCE, V118, P243, DOI 10.1016/S0306-4522(02)00868-0 KANDLER K, 1995, EUR J NEUROSCI, V7, P1773, DOI 10.1111/j.1460-9568.1995.tb00697.x KANDLER K, 1995, J NEUROSCI, V15, P6890 KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 KATER SB, 1991, J NEUROSCI, V11, P891 Kawashima K, 2004, FRONT BIOSCI, V9, P2063, DOI 10.2741/1390 Kim G, 2003, NAT NEUROSCI, V6, P282, DOI 10.1038/nn1015 Koenigsberger C, 1997, J NEUROCHEM, V69, P1389 KOTAK VC, 1995, J NEUROPHYSIOL, V74, P1611 Kotak VC, 1998, J NEUROSCI, V18, P4646 Kotak VC, 1996, J NEUROSCI, V16, P1836 KRISTT DA, 1983, NEUROSCIENCE, V10, P923, DOI 10.1016/0306-4522(83)90230-0 KRISTT DA, 1981, ANAT EMBRYOL, V163, P31, DOI 10.1007/BF00315768 KUES WA, 1995, EUR J NEUROSCI, V7, P1376, DOI 10.1111/j.1460-9568.1995.tb01129.x Kullmann PHM, 2001, DEV BRAIN RES, V131, P143, DOI 10.1016/S0165-3806(01)00271-1 Lansdell SJ, 2004, J NEUROCHEM, V90, P479, DOI 10.1111/j.1471-4159.2004.02499.x LAUTERBORN JC, 1993, MOL BRAIN RES, V17, P59, DOI 10.1016/0169-328X(93)90073-X LENOVERE N, 1995, J MOL EVOL, V40, P155 Lester RAJ, 2004, BIOORG MED CHEM LETT, V14, P1897, DOI 10.1016/j.bmcl.2004.02.081 Levy RB, 2002, J NEUROSCI, V22, P5001 LIPPE WR, 1994, J NEUROSCI, V14, P1486 LIPTON SA, 1989, TRENDS NEUROSCI, V12, P265, DOI 10.1016/0166-2236(89)90026-X Liu Y, 2001, J NEUROSCI, V21, P5660 Lohmann C, 1998, J NEUROBIOL, V34, P97, DOI 10.1002/(SICI)1097-4695(19980205)34:2<97::AID-NEU1>3.0.CO;2-6 Lukas RJ, 1999, PHARMACOL REV, V51, P397 MacDermott AB, 1999, ANNU REV NEUROSCI, V22, P443, DOI 10.1146/annurev.neuro.22.1.443 Maggi L, 2003, P NATL ACAD SCI USA, V100, P2059, DOI 10.1073/pnas.0437947100 Marchi M, 2002, J NEUROCHEM, V80, P1071, DOI 10.1046/j.0022-3042.2002.00805.x Marks MJ, 1996, MOL BRAIN RES, V39, P207, DOI 10.1016/0169-328X(96)00027-7 MCGEHEE DS, 1995, SCIENCE, V269, P1692, DOI 10.1126/science.7569895 Mechawar N, 2002, J COMP NEUROL, V443, P250, DOI 10.1002/cne.10114 MEISTER M, 1991, SCIENCE, V252, P939, DOI 10.1126/science.2035024 Mesulam MM, 2002, NEUROSCIENCE, V110, P627, DOI 10.1016/S0306-4522(01)00613-3 Misgeld T, 2002, NEURON, V36, P635, DOI 10.1016/S0896-6273(02)01020-6 MISHINA M, 1986, NATURE, V321, P406, DOI 10.1038/321406a0 Moore JK, 1999, AUDIOL NEURO-OTOL, V4, P311, DOI 10.1159/000013855 Morley BJ, 2002, DEV BRAIN RES, V139, P87, DOI 10.1016/S0165-3806(02)00514-X Morley BJ, 2004, JARO-J ASSOC RES OTO, V5, P391, DOI 10.1007/s10162-004-5015-4 Morley BJ, 1998, MOL BRAIN RES, V53, P78, DOI 10.1016/S0169-328X(97)00272-6 Morley BJ, 1998, MOL BRAIN RES, V54, P170, DOI 10.1016/S0169-328X(97)00355-0 Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6 Morley BJ, 1997, MOL BRAIN RES, V48, P407, DOI 10.1016/S0169-328X(97)00159-9 Mukherjee RS, 2004, MOL BRAIN RES, V129, P54, DOI 10.1016/j.molbrainres.2004.06.014 MULLE C, 1992, NEURON, V8, P135, DOI 10.1016/0896-6273(92)90115-T Nagavarapu U, 2001, J BIOL CHEM, V276, P16749, DOI 10.1074/jbc.M009712200 Nicke A, 2004, FEBS LETT, V575, P52, DOI 10.1016/j.febslet.2004.08.035 Obel C, 1998, PAEDIATR PERINAT EP, V12, P37 O'Donovan MJ, 1999, CURR OPIN NEUROBIOL, V9, P94, DOI 10.1016/S0959-4388(99)80012-9 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 Oertel D, 2001, AUDIOL NEURO-OTOL, V6, P161, DOI 10.1159/000046825 Ogawa H, 2003, LIFE SCI, V72, P2127, DOI 10.1016/S0024-3205(03)00072-9 Olivera S, 2003, MOL CELL NEUROSCI, V23, P96, DOI 10.1016/S1044-7431(03)00021-6 Olivera S, 2003, INT J DEV NEUROSCI, V21, P49, DOI 10.1016/S0736-5748(02)00083-7 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 Papke RL, 2002, BRIT J PHARMACOL, V137, P49, DOI 10.1038/sj.bjp.0704833 Pfeil U, 2004, HISTOCHEM CELL BIOL, V122, P121, DOI 10.1007/s00418-004-0687-8 Pugh PC, 2000, MOL CELL NEUROSCI, V15, P113, DOI 10.1006/mcne.1999.0810 Raji-Kubba J, 2002, J CHEM NEUROANAT, V24, P75, DOI 10.1016/S0891-0618(02)00022-4 Rakhilin S, 1999, J CELL BIOL, V146, P203 Reeves DC, 2002, MOL MEMBR BIOL, V19, P11, DOI 10.1080/09687680110110048 ROBERTSON RT, 1991, DEV BRAIN RES, V58, P81, DOI 10.1016/0165-3806(91)90240-J Role LW, 1996, NEURON, V16, P1077, DOI 10.1016/S0896-6273(00)80134-8 Rosenberg MM, 2002, J NEUROBIOL, V53, P542, DOI 10.1002/neu.10112 Roth AL, 2003, J COMP NEUROL, V465, P195, DOI 10.1002/cne.10856 RUIZGOMEZ A, 1990, BIOCHEMISTRY-US, V29, P7033, DOI 10.1021/bi00482a012 RYAN AF, 1990, J COMP NEUROL, V300, P572, DOI 10.1002/cne.903000410 Saragoza PA, 2003, MOL BRAIN RES, V117, P15, DOI 10.1016/S0169-328X(03)00261-4 SARGENT PB, 1993, ANNU REV NEUROSCI, V16, P403, DOI 10.1146/annurev.ne.16.030193.002155 Schafer MKH, 1998, NEUROSCIENCE, V84, P331, DOI 10.1016/S0306-4522(97)00516-2 SEGUELA P, 1993, J NEUROSCI, V13, P596 Severance EG, 2004, MOL PHARMACOL, V66, P420, DOI 10.1124/mol.104.000059 Sgard F, 2002, MOL PHARMACOL, V61, P150, DOI 10.1124/mol.61.1.150 SHAPIRA M, 1994, P NATL ACAD SCI USA, V91, P9072, DOI 10.1073/pnas.91.19.9072 Shatz CJ, 1996, P NATL ACAD SCI USA, V93, P602, DOI 10.1073/pnas.93.2.602 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SHERRIFF FE, 1994, BRAIN RES, V636, P119, DOI 10.1016/0006-8993(94)90185-6 Shoop RD, 2000, J NEUROSCI, V20, P4021 Shoop RD, 1999, J NEUROSCI, V19, P692 Shoop RD, 2002, J NEUROSCI, V22, P748 Simmons DD, 1998, MOL BRAIN RES, V56, P287, DOI 10.1016/S0169-328X(98)00056-4 SIMON JR, 1976, J NEUROCHEM, V27, P93, DOI 10.1111/j.1471-4159.1976.tb01549.x SIMON JR, 1976, J NEUROCHEM, V26, P909, DOI 10.1111/j.1471-4159.1976.tb06472.x Single S, 2002, J NEUROPHYSIOL, V87, P1616, DOI 10.1152/jn.00215.2001 Smith AJ, 2000, J PHYSIOL-LONDON, V529, P681, DOI 10.1111/j.1469-7793.2000.00681.x Soreq H, 2001, NAT REV NEUROSCI, V2, P294, DOI 10.1038/35067589 Sudhof TC, 2004, ANNU REV NEUROSCI, V27, P509, DOI 10.1146/annurev.neuro.26.041002.131412 Svedberg MM, 2002, J MOL NEUROSCI, V18, P211, DOI 10.1385/JMN:18:3:211 Temburni MK, 2000, J PHYSIOL-LONDON, V525, P21, DOI 10.1111/j.1469-7793.2000.00021.x Tooyama I, 2000, J CHEM NEUROANAT, V17, P217, DOI 10.1016/S0891-0618(99)00043-5 Torrao AS, 2003, DEV BRAIN RES, V143, P115, DOI 10.1016/S0165-3806(03)00109-3 Tsuneki H, 2003, J PHYSIOL-LONDON, V547, P169, DOI 10.1113/jphysiol.2002.036368 Umbriaco D, 1995, HIPPOCAMPUS, V5, P605, DOI 10.1002/hipo.450050611 USDIN TB, 1995, TRENDS NEUROSCI, V18, P218, DOI 10.1016/0166-2236(95)93906-E Uteshev VV, 2003, J NEUROPHYSIOL, V89, P1797, DOI 10.1152/jn.00943.2002 VACA K, 1988, BRAIN RES REV, V13, P261, DOI 10.1016/0165-0173(88)90009-4 Valor LM, 2002, BIOCHEMISTRY-US, V41, P7931, DOI 10.1021/bi025831r VETTER DE, 1993, NATO ADV SCI INST SE, V239, P279 Vinson PN, 1997, J NEUROSCI METH, V73, P61, DOI 10.1016/S0165-0270(96)02213-3 Vizi ES, 2004, NEUROCHEM INT, V45, P443, DOI 10.1016/j.neuint.2003.11.016 Vizi ES, 2000, PHARMACOL REV, V52, P63 VOLICELLIDALEY LA, 2003, MOL PHARMACOL, V64, P1309 Wang H, 2003, NATURE, V421, P384, DOI 10.1038/nature01339 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 WARR WB, 1992, ANATOMY MAMMALIAN AU, P410 Weihe E, 1996, P NATL ACAD SCI USA, V93, P3547, DOI 10.1073/pnas.93.8.3547 Wessler I, 1998, PHARMACOL THERAPEUT, V77, P59, DOI 10.1016/S0163-7258(97)00085-5 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 Williams BM, 1998, NAT NEUROSCI, V1, P557 WinzerSerhan UH, 1997, J COMP NEUROL, V386, P540, DOI 10.1002/(SICI)1096-9861(19971006)386:4<540::AID-CNE2>3.0.CO;2-2 WONG ROL, 1995, NATURE, V374, P716, DOI 10.1038/374716a0 Wonnacott S, 1997, TRENDS NEUROSCI, V20, P92, DOI 10.1016/S0166-2236(96)10073-4 WU DH, 1994, J NEUROCHEM, V62, P1653 Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3 Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L Yao WP, 1997, NEUROSCI LETT, V229, P21, DOI 10.1016/S0304-3940(97)00400-X Yao WP, 1999, J HISTOCHEM CYTOCHEM, V47, P83 YAO WP, 1995, HEARING RES, V89, P76, DOI 10.1016/0378-5955(95)00123-7 Yasuhara O, 2003, J NEUROSCI, V23, P2872 Zbarsky V, 2004, NEUROBIOL DIS, V16, P283, DOI 10.1016/j.nbd.2004.02.009 ZHENG JQ, 1994, NATURE, V368, P140, DOI 10.1038/368140a0 Zhou XD, 2004, J NEUROSCI, V24, P4340, DOI 10.1523/JNEUROSCI.0055-04.2004 NR 215 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 74 EP 88 DI 10.1016/j.heares.2005.02.012 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100008 PM 16081000 ER PT J AU Kamke, MR Brown, M Irvine, DRF AF Kamke, MR Brown, M Irvine, DRF TI Origin and immunolesioning of cholinergic basal forebrain innervation of cat primary auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE AI; acetylcholine; immunohistochemistry; immunotoxin; retrograde ID RECEPTIVE-FIELD PLASTICITY; TONE-EVOKED RESPONSES; 192 IGG-SAPORIN; NUCLEUS BASALIS; HORSERADISH-PEROXIDASE; RETROGRADE TRANSPORT; INTRAPARENCHYMAL INFUSIONS; TONOTOPIC ORGANIZATION; CORTICAL PROJECTIONS; MUSCARINIC AGONISTS AB Numerous studies have implicated the cholinergic basal forebrain (cBF) in the modulation of auditory cortical responses. This study aimed to accurately define the sources of cBF input to primary auditory cortex (AI) and to assess the efficacy of a cholinergic immunotoxin in cat. Three anaesthetized cats received multiple injections of horseradish-peroxidase conjugated wheatgerm-agglutin into physiologically identified AI. Following one to two days survival, tetramethylbenzidine histochemistry revealed the greatest number of retrogradely labeled cells in ipsilateral putamen, globus pallidus and internal capsule, and smaller numbers in more medial nuclei of the basal forebrain (BF). Concurrent choline acetyltransferase immunohistochemistry showed that almost 80% of the retrogradely labeled cells in BE were cholinergic, with the vast majority or these cells arising from the more lateral BE nuclei identified above. In the second part of the study, unilateral intraparenchymal injections of the cholinergic immunotoxin ME20.4-SAP were made into the putamen/globus pallidus nuclei of six cats. Immuno- and histochemistry revealed a massive reduction in the number of cholinergic cells in and around the targeted area, and a corresponding reduction in the density of cholinergic fibers in auditory cortex. These results are discussed in terms of their implications for investigations of the role of the cBF in cortical plasticity. (c) 2005 Elsevier B.V. All rights reserved. C1 Monash Univ, Fac Med Nursing & Hlth Sci, Dept Psychol, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia. RP Kamke, MR (reprint author), Monash Univ, Fac Med Nursing & Hlth Sci, Dept Psychol, Sch Psychol Psychiat & Psychol Med, Clayton, Vic 3800, Australia. EM Marc.Kamke@med.monash.edu.au RI Irvine, Dexter/F-7474-2011; Kamke, Marc/J-4059-2014 OI Kamke, Marc/0000-0003-0248-9682 CR ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Baskerville KA, 1997, NEUROSCIENCE, V80, P1159, DOI 10.1016/S0306-4522(97)00064-X Beach TG, 2000, NEUROSCI LETT, V283, P9, DOI 10.1016/S0304-3940(00)00916-2 BEAR MF, 1985, J COMP NEUROL, V234, P411, DOI 10.1002/cne.902340402 Berman A.L., 1982, THALAMUS BASAL TELEN Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467 BUTCHER LL, 1983, HDB CHEM NEUROANATOM, V1, P1 Conner JM, 2003, NEURON, V38, P819, DOI 10.1016/S0896-6273(03)00288-5 DELIMA AD, 1986, J COMP NEUROL, V250, P324, DOI 10.1002/cne.902500306 Dimyan MA, 1999, BEHAV NEUROSCI, V113, P691, DOI 10.1037/0735-7044.113.4.691 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 Ferreira G, 2001, NEUROSCIENCE, V106, P103, DOI 10.1016/S0306-4522(01)00265-2 Fine A, 1997, NEUROSCIENCE, V81, P331, DOI 10.1016/S0306-4522(97)00208-X FISHER RS, 1988, J COMP NEUROL, V272, P489, DOI 10.1002/cne.902720404 Gorbachevskaya A I, 1981, Neurosci Behav Physiol, V11, P520, DOI 10.1007/BF01182809 Gritti I, 1998, NEUROSCIENCE, V85, P149, DOI 10.1016/S0306-4522(97)00573-3 HARS B, 1993, NEUROSCIENCE, V56, P61, DOI 10.1016/0306-4522(93)90562-T IRLE E, 1984, BRAIN RES BULL, V12, P493, DOI 10.1016/0361-9230(84)90165-5 JAYARAMAN A, 1980, BRAIN RES, V195, P29, DOI 10.1016/0006-8993(80)90863-X Kamke MR, 2003, J COMP NEUROL, V459, P355, DOI 10.1002/cne.10586 KAMKE MR, 2004, P AUST NEUR SOC, V15, P92 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 KIMURA H, 1981, J COMP NEUROL, V200, P151, DOI 10.1002/cne.902000202 Lai YY, 1999, J COMP NEUROL, V408, P419, DOI 10.1002/(SICI)1096-9861(19990607)408:3<419::AID-CNE8>3.0.CO;2-4 Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001 McGaughy J, 2000, BEHAV BRAIN RES, V115, P251, DOI 10.1016/S0166-4328(00)00262-X MCKENNA TM, 1988, SYNAPSE, V2, P54, DOI 10.1002/syn.890020109 MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105 Mesulam M., 1982, TRACING NEURAL CONNE MESULAM MM, 1986, BRAIN RES, V367, P301, DOI 10.1016/0006-8993(86)91607-0 MESULAM MM, 1978, J HISTOCHEM CYTOCHEM, V26, P106 MESULAM MM, 1983, NEUROSCIENCE, V10, P1185, DOI 10.1016/0306-4522(83)90108-2 METHERATE R, 1991, BRAIN RES, V559, P163, DOI 10.1016/0006-8993(91)90301-B METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204 METHERATE R, 1989, BRAIN RES, V480, P372, DOI 10.1016/0006-8993(89)90210-2 Miasnikov AA, 2001, NEUROREPORT, V12, P1537, DOI 10.1097/00001756-200105250-00047 Oda Y, 1999, PATHOL INT, V49, P921, DOI 10.1046/j.1440-1827.1999.00977.x OLESHKO NN, 1993, NEUROSCIENCE, V57, P683, DOI 10.1016/0306-4522(93)90015-8 PARENT A, 1981, BRAIN RES, V230, P356, DOI 10.1016/0006-8993(81)90415-7 Pizzo DP, 1999, J NEUROSCI METH, V91, P9, DOI 10.1016/S0165-0270(99)00057-6 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Rasmusson DD, 2000, BEHAV BRAIN RES, V115, P205, DOI 10.1016/S0166-4328(00)00259-X REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 ROUILLER EM, 1989, HEARING RES, V40, P233, DOI 10.1016/0378-5955(89)90164-0 RYE DB, 1984, J HISTOCHEM CYTOCHEM, V32, P1145 Sarter M, 2000, J NEUROSCI METH, V96, P169, DOI 10.1016/S0165-0270(99)00196-X Sarter M, 1997, BRAIN RES REV, V23, P28, DOI 10.1016/S0165-0173(96)00009-4 STERIADE M, 1987, BRAIN RES, V408, P372, DOI 10.1016/0006-8993(87)90408-2 TAGO H, 1986, J HISTOCHEM CYTOCHEM, V34, P1431 Tremere LA, 2000, NEUROREPORT, V11, P2177, DOI 10.1097/00001756-200007140-00023 WAHLE P, 1984, NEUROSCI LETT, V44, P223, DOI 10.1016/0304-3940(84)90026-0 Wiley RG, 2000, J NEUROSCI METH, V103, P73, DOI 10.1016/S0165-0270(00)00297-1 Zhu XO, 1998, CEREB CORTEX, V8, P63, DOI 10.1093/cercor/8.1.63 NR 56 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 89 EP 106 DI 10.1016/j.heares.2004.12.014 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100009 PM 16081001 ER PT J AU Vale, C Caminos, E Martinez-Galan, JR Juiz, JM AF Vale, C Caminos, E Martinez-Galan, JR Juiz, JM TI Expression and developmental regulation of the K(+)-Cl(-) cotransporter KCC2 in the cochlear nucleus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE GABA; glycine; inhibition; chloride transport; development; auditory; brain stem ID INHIBITORY SYNAPTIC-TRANSMISSION; NEURONAL-SPECIFIC ISOFORM; DORSAL HORN NEURONS; BRAIN-STEM; RAT-BRAIN; INTRACELLULAR CHLORIDE; INFERIOR COLLICULUS; HIPPOCAMPAL-NEURONS; EXCITATORY ACTIONS; PYRAMIDAL NEURONS AB KCC2 is a neuron-specific Cl(-) transporter whose role in adult central neurons is to maintain low intracellular Cl(-) concentrations and, therefore, generate an inward-directed electrochemical gradient for Cl(-) needed for the hyperpolarizing responses to the inhibitory amino acids GABA and glycine. We report that the KCC2 protein is intensely expressed in CN neurons and preferentially associated with plasma membrane domains, consistent with GABA and glycinergic-mediated inhibition in this auditory nucleus. Postnatal KCC2 expression and distribution patterns are similar in developing and adult CN neurons and do not match the time course of GABergic or glycinergic synaptogenesis. Therefore, in the CN, neither KCC2 protein upregulation nor progressive integration in the plasma membrane seem to be involved in KCC2 developmental regulation. Considering that GABA and glycine are depolarizing during early postnatal development, it is conceivable that KCC2 is in place but inactive during early postnatal development in the CN and becomes active as inhibitory synaptogenesis proceeds. This notion is supported by the finding that the phosphorylation state of KCC2 differs from developing to adult CN, with the phosphorylated form predominating in the latter. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Castilla La Mancha, Sch Med, Albacete 02005, Spain. Univ Castilla La Mancha, Ctr Reg Invest Biomed, Albacete 02005, Spain. RP Juiz, JM (reprint author), Univ Castilla La Mancha, Sch Med, Campus Albacete, Albacete 02005, Spain. EM JoseManuel.Juiz@uclm.es RI Vale, Carmen/L-5287-2014; Caminos, Elena/F-2612-2015 OI Vale, Carmen/0000-0002-9842-6223; Caminos, Elena/0000-0003-1538-2366 CR Alvarez-Leefmans F. J., 2001, CELL PHYSL SOURCEBOO, P301, DOI 10.1016/B978-012656976-6/50112-8 Balakrishnan V, 2003, J NEUROSCI, V23, P4134 BenAri Y, 1997, TRENDS NEUROSCI, V20, P523, DOI 10.1016/S0166-2236(97)01147-8 Ben-Ari Y, 2002, NAT REV NEUROSCI, V3, P728, DOI 10.1038/nrn920 BLAESSE P, 2004, 3 S MOL MECH CENTR A, P24 BORMANN J, 1987, J PHYSIOL-LONDON, V385, P243 Campos ML, 2001, NEUROSCIENCE, V102, P625, DOI 10.1016/S0306-4522(00)00525-X CASPARY DM, 1993, NATO ADV SCI INST SE, V239, P239 Chen G, 1996, J PHYSIOL-LONDON, V494, P451 CHERUBINI E, 1990, INT J DEV NEUROSCI, V8, P481, DOI 10.1016/0736-5748(90)90080-L CHERUBINI E, 1991, TRENDS NEUROSCI, V14, P515, DOI 10.1016/0166-2236(91)90003-D DeFazio RA, 2000, J NEUROSCI, V20, P8069 DELPIRE E, 1994, J BIOL CHEM, V269, P25677 Delpire E, 2002, ANNU REV PHYSIOL, V64, P803, DOI 10.1146/annurev.physiol.64.081501.155847 ECCLES JC, 1966, ANN NY ACAD SCI, V137, P473, DOI 10.1111/j.1749-6632.1966.tb50176.x EHRLICH I, 1999, J PHYSIOL-LONDON, V520, P131 Gulyas AI, 2001, EUR J NEUROSCI, V13, P2205, DOI 10.1046/j.0953-816x.2001.01600.x HIRSCH JA, 1988, J PHYSIOL-LONDON, V396, P549 Huang B, 1996, VISUAL NEUROSCI, V13, P441 Hubner CA, 2001, NEURON, V30, P515, DOI 10.1016/S0896-6273(01)00297-5 Jarolimek W, 1999, J NEUROSCI, V19, P4695 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G Kaila K, 1997, J NEUROSCI, V17, P7662 Kakazu Y, 1999, J NEUROSCI, V19, P2843 KANDLER K, 1995, J NEUROSCI, V15, P6804 Kelsch W, 2001, J NEUROSCI, V21, P8339 KRNJEVIC K, 1974, PHYSIOL REV, V54, P418 Kullmann PHM, 2002, EUR J NEUROSCI, V15, P1093, DOI 10.1046/j.1460-9568.2002.01946.x LoTurco JJ, 1995, NEURON, V15, P1287, DOI 10.1016/0896-6273(95)90008-X Lu J, 1999, J NEUROBIOL, V39, P558, DOI 10.1002/(SICI)1097-4695(19990615)39:4<558::AID-NEU9>3.0.CO;2-5 LUHMANN HJ, 1991, J NEUROPHYSIOL, V65, P247 Owens DF, 1996, J NEUROSCI, V16, P6414 Payne JA, 1997, AM J PHYSIOL-CELL PH, V273, pC1516 Payne JA, 1996, J BIOL CHEM, V271, P16245 Payne JA, 2003, TRENDS NEUROSCI, V26, P199, DOI 10.1016/S0166-2236(03)00068-7 REICHLING DB, 1994, J PHYSIOL-LONDON, V476, P411 Rivera C, 1999, NATURE, V397, P251 Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249 Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011 Singer JH, 1998, J NEUROPHYSIOL, V80, P2608 Stein V, 2004, J COMP NEUROL, V468, P57, DOI 10.1002/cne.10983 Strange K, 2000, AM J PHYSIOL-CELL PH, V279, P860 THOMPSON SM, 1989, J NEUROPHYSIOL, V61, P501 Vale C, 2000, J NEUROSCI, V20, P1912 Vale C, 2004, EUR J NEUROSCI, V20, P2133, DOI 10.1111/j.1460-9568.2004.03679.x Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x Vale C, 2003, J NEUROSCI, V23, P7516 WANG J, 1994, EUR J NEUROSCI, V6, P1275, DOI 10.1111/j.1460-9568.1994.tb00317.x Wenthold RJ, 1991, NEUROBIOLOGY HEARING, P121 Williams JR, 1999, J BIOL CHEM, V274, P12656, DOI 10.1074/jbc.274.18.12656 WU SH, 1986, J NEUROSCI, V6, P2691 WU WI, 1992, J NEUROSCI, V12, P3935 YUSTE R, 1991, NEURON, V6, P333, DOI 10.1016/0896-6273(91)90243-S NR 53 TC 24 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 107 EP 115 DI 10.1016/j.heares.2005.03.012 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100010 PM 16081002 ER PT J AU Brew, HM Forsythe, ID AF Brew, HM Forsythe, ID TI Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE potassium; channel; capacitance; MNTB; tonotopic ID LATERAL SUPERIOR OLIVE; STEM AUDITORY NUCLEI; ANTEROVENTRAL COCHLEAR NUCLEUS; MOUSE-BRAIN SLICE; K+ CHANNELS; DIFFERENTIAL EXPRESSION; PRINCIPAL CELLS; HAIR-CELLS; NEURONS; TIME AB Many central auditory nuclei preserve the tonotopic organization of their afferent inputs, generating a frequency "map" across the nucleus. In the medial nucleus of the trapezoid body (MNTB) the most medial neurons receive inputs corresponding to the highest frequency sounds and the most lateral neurons have the lowest characteristic frequencies. Whole-cell patch recording from MNTB principal neurons in rat brainstem slices demonstrates a corresponding tonotopic organization of voltage-gated outward potassium currents. Medial MNTB neurons had larger total outward K+ current amplitudes than lateral neurons and similar medial to-lateral gradients were observed for two K+ current subtypes distinguished by their low and high voltage activation thresholds. In contrast, a third K+ conductance with an intermediate voltage threshold and slower kinetics showed an inverse gradient (being smallest in medial NINTB). The orthogonal axes of NINTB did not exhibit potassium current gradients (dorsal-to-ventral, or rostral-to-caudal). The input resistance was unchanged across the MNTB, but a slow capacitative component was enhanced in lateral neurons. These data demonstrate that the intrinsic properties of rat MNTB neurons are tuned across the tonotopic axis so as to promote shorter action potentials, faster firing and therefore greater accuracy in transmission of auditory information in the high characteristic frequency regions. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Leicester, Dept Cell Physiol & Pharmacol, Leicester LE1 9HN, Leics, England. Univ Washington, Dept Otolaryngol Head & Neck Surg, Virginia Merill Bloedel Hearing Res Ctr, Seattle, WA 98195 USA. RP Brew, HM (reprint author), Univ Leicester, Dept Cell Physiol & Pharmacol, POB 138, Leicester LE1 9HN, Leics, England. EM hbrew@u.washington.edu; idf@le.ac.uk CR Adamson CL, 2002, J COMP NEUROL, V447, P331, DOI 10.1002/cne.10244 Akhtar S, 2002, J BIOL CHEM, V277, P16376, DOI 10.1074/jbc.M109698200 ALTMAN J, 1980, J COMP NEUROL, V194, P877, DOI 10.1002/cne.901940410 BANKS MI, 1992, J NEUROSCI, V12, P2819 Barnes-Davies M, 2004, EUR J NEUROSCI, V19, P325, DOI 10.1111/j.1460-9568.2003.03133.x BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Brew HM, 1995, J NEUROSCI, V15, P8011 BREW HM, 1996, J PHYSL, V495, P57 BREW HM, 1994, BRIT J AUDIOL, V29, P51 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 CARR CE, 1993, ANNU REV NEUROSCI, V16, P223, DOI 10.1146/annurev.ne.16.030193.001255 CARR CE, 1993, J COMP NEUROL, V334, P337, DOI 10.1002/cne.903340302 CRAWFORD AC, 1981, J PHYSIOL-LONDON, V312, P377 CROWLEY DE, 1966, J COMP PHYSIOL PSYCH, V62, P427, DOI 10.1037/h0023953 DEBIASI M, 1993, BIOPHYS J, V65, P1235 Dodson PD, 2002, J NEUROSCI, V22, P6953 FORSYTHE ID, 1993, P ROY SOC B-BIOL SCI, V251, P151, DOI 10.1098/rspb.1993.0022 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x Fukui I, 2004, J NEUROSCI, V24, P7514, DOI 10.1523/JNEUROSCI.0566-04.2004 Gentet LJ, 2000, BIOPHYS J, V79, P314 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Hamill OP, 1991, CEREB CORTEX, V1, P48, DOI 10.1093/cercor/1.1.48 HOPKINS WF, 1994, PFLUG ARCH EUR J PHY, V428, P382, DOI 10.1007/BF00724522 JORIS PX, 1994, J NEUROPHYSIOL, V71, P1037 Joris PX, 1998, J NEUROPHYSIOL, V79, P253 KANDLER K, 1995, EUR J NEUROSCI, V7, P1773, DOI 10.1111/j.1460-9568.1995.tb00697.x KUWABARA N, 1991, J COMP NEUROL, V314, P707, DOI 10.1002/cne.903140406 Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279 LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211 LLANO I, 1991, J PHYSIOL-LONDON, V434, P183 Lohmann C, 1996, J COMP NEUROL, V367, P90, DOI 10.1002/(SICI)1096-9861(19960325)367:1<90::AID-CNE7>3.0.CO;2-E Magistretti J, 1996, TRENDS NEUROSCI, V19, P530, DOI 10.1016/S0166-2236(96)40004-2 MANIS PB, 1991, J NEUROSCI, V11, P2865 MOREST D. KENT, 1968, BRAIN RES, V9, P288, DOI 10.1016/0006-8993(68)90235-7 MOREST D K, 1968, Zeitschrift fuer Anatomie und Entwicklungsgeschichte, V127, P201, DOI 10.1007/BF00526129 OERTEL D, 1983, J NEUROSCI, V3, P2043 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Pantelias AA, 2001, HEARING RES, V156, P81, DOI 10.1016/S0378-5955(01)00269-6 Parameshwaran S, 2001, J NEUROSCI, V21, P485 Parameshwaran-Iyer S, 2003, J NEUROBIOL, V55, P165, DOI 10.1002/neu.10198 PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756 Puel J L, 1987, Brain Res, V465, P179 Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135 Rubsamen R., 1998, DEV AUDITORY SYSTEM, P193 SMITH DJ, 1979, J COMP NEUROL, V186, P213, DOI 10.1002/cne.901860207 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SOMMER I, 1993, EXP BRAIN RES, V95, P223 STANSFELD C, 1988, NEUROSCI LETT, V93, P49, DOI 10.1016/0304-3940(88)90011-0 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 UZIEL A, 1981, AUDIOLOGY, V20, P89 Wada T., 1923, American Anatomical Memoir, Vno. 10, P1 WANG H, 1993, NATURE, V365, P75, DOI 10.1038/365075a0 WANG H, 1994, J NEUROSCI, V14, P4588 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x WEISER M, 1994, J NEUROSCI, V14, P949 Wigmore MA, 2000, J PHYSIOL-LONDON, V527, P493, DOI 10.1111/j.1469-7793.2000.t01-1-00493.x WU SH, 1992, J NEUROPHYSIOL, V68, P1151 WU SH, 1993, HEARING RES, V68, P189 WU SH, 1991, J NEUROPHYSIOL, V65, P230 NR 61 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 116 EP 132 DI 10.1016/j.heares.2004.12.012 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100011 PM 16081003 ER PT J AU Kaczmarek, LK Bhattacharjee, A Desai, R Gan, L Song, P von Hehn, CAA Whim, MD Yang, B AF Kaczmarek, LK Bhattacharjee, A Desai, R Gan, L Song, P von Hehn, CAA Whim, MD Yang, B TI Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY ID CENTRAL-NERVOUS-SYSTEM; FREQUENCY FIRING NEURONS; AUDITORY NEURONS; TRAPEZOID BODY; MEDIAL NUCLEUS; K+ CHANNEL; COCHLEAR NUCLEUS; OUTWARD CURRENTS; DIFFERENTIAL EXPRESSION; BRAIN-STEM AB The firing patterns of neurons in central auditory pathways encode specific features of sound stimuli, such as frequency, intensity and localization in space. The generation of the appropriate pattern depends, to a major extent, on the properties of the voltage-dependent potassium channels in these neurons. The mammalian auditory pathways that compute the direction of a sound source are located in the brainstem and include the connection from bushy cells in the anteroventral cochlear nucleus (AVCN) to the principal neurons of the medial nucleus of the trapezoid body (MNTB). To preserve the fidelity of timing of action potentials that is required for Sound localization, these neurons express several types of potassium channels, including the Kv3 and Kv1 families of voltage-dependent channels and the Slick and Slack sodium-dependent channels. These channels determine the pattern of action potentials and the amount of neurotransmitter released during repeated stimulation. The amplitude of currents carried by one of these channels, the Kv3.1b channel, is regulated in the short term by protein phosphorylation, and in the long term, by changes in gene expression, such that the intrinsic excitability of the neurons is constantly being regulated by the ambient auditory environment. (c) 2005 Elsevier B.V. All rights reserved. C1 Yale Univ, Sch Med, Dept Pharmacol, New Haven, CT 06520 USA. Univ Calif San Francisco, Dept Neurol, Gladstone Inst Neurol Dis, San Francisco, CA 94158 USA. Penn State Univ, Dept Biol, State Coll, PA 16802 USA. RP Kaczmarek, LK (reprint author), Yale Univ, Sch Med, Dept Pharmacol, 333 Cedar St, New Haven, CT 06520 USA. EM leonard.kaczmarck@yale.edu CR BANKS MI, 1992, J NEUROSCI, V12, P2819 Bhattacharjee A, 2002, J COMP NEUROL, V454, P241, DOI 10.1002/cne.10439 Bhattacharjee A, 2003, J NEUROSCI, V23, P11681 Bhattacharjee Arin, 2005, J Comp Neurol, V484, P80, DOI 10.1002/cne.20462 Borst JGG, 1995, J PHYSIOL-LONDON, V489, P825 Borst JGG, 1996, NATURE, V383, P431, DOI 10.1038/383431a0 Brand A, 2002, NATURE, V417, P543, DOI 10.1038/417543a Brew HM, 1995, J NEUROSCI, V15, P8011 Brew HM, 2003, J PHYSIOL-LONDON, V548, P1, DOI 10.1113/jphysiol.2002.035568 BROWNELL WE, 1975, BRAIN RES, V94, P413, DOI 10.1016/0006-8993(75)90226-7 CRITZ SD, 1993, J NEUROCHEM, V60, P1175, DOI 10.1111/j.1471-4159.1993.tb03273.x DESAI R, 2003, SOC NEUR ABSTR CD RO Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250 Dodson PD, 2004, TRENDS NEUROSCI, V27, P210, DOI 10.1016/j.tins.2004.02.012 Dodson PD, 2002, J NEUROSCI, V22, P6953 FORSYTHE ID, 1994, J PHYSIOL-LONDON, V479, P381 Gan L, 1999, J NEUROCHEM, V73, P1350, DOI 10.1046/j.1471-4159.1999.0731350.x Gan L, 1998, J NEUROBIOL, V37, P69, DOI 10.1002/(SICI)1097-4695(199810)37:1<69::AID-NEU6>3.0.CO;2-6 Gan L, 1996, J BIOL CHEM, V271, P5859 Goldstein SAN, 2001, NAT REV NEUROSCI, V2, P175, DOI 10.1038/35058574 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 Ho CS, 1997, P NATL ACAD SCI USA, V94, P1533, DOI 10.1073/pnas.94.4.1533 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 Ishikawa T, 2003, J NEUROSCI, V23, P10445 ITO Y, 1992, P ROY SOC B-BIOL SCI, V248, P95, DOI 10.1098/rspb.1992.0047 Joiner WJ, 1998, NAT NEUROSCI, V1, P462, DOI 10.1038/2176 Jonas EA, 1996, CURR OPIN NEUROBIOL, V6, P318, DOI 10.1016/S0959-4388(96)80114-0 JONAS EA, 1999, NEUROTRANSMISSION NE, P83 KANEMASA T, 1995, J NEUROPHYSIOL, V74, P207 Kanold PO, 1999, J NEUROSCI, V19, P2195 KETCHUM KA, 1995, NATURE, V376, P690, DOI 10.1038/376690a0 KONISHI M, 1989, AUDITORY FUNCTION Kopp-Scheinpflug C, 2003, J NEUROSCI, V23, P9199 Kopp-Scheinpflug C, 2003, JARO, V4, P1, DOI 10.1007/s10162-002-2010-5 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 Lesage F, 1997, FEBS LETT, V402, P28, DOI 10.1016/S0014-5793(96)01491-3 Lesage F, 1996, EMBO J, V15, P1004 LI W, 2001, J COMP NEUROL, V437, P106 Liu SQJ, 1998, J NEUROSCI, V18, P2881 Liu SQJ, 1998, J NEUROSCI, V18, P8758 LUNEAU CJ, 1991, P NATL ACAD SCI USA, V88, P3932, DOI 10.1073/pnas.88.9.3932 Macica CM, 2003, J NEUROSCI, V23, P1133 Macica CM, 2001, J NEUROSCI, V21, P1160 MANIS PB, 1991, J NEUROSCI, V11, P2865 Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x Mo ZL, 1997, J NEUROPHYSIOL, V77, P1294 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Oertel D, 1991, Curr Opin Neurobiol, V1, P221, DOI 10.1016/0959-4388(91)90082-I Patel AJ, 2001, TRENDS NEUROSCI, V24, P339, DOI 10.1016/S0166-2236(00)01810-5 PERNEY TM, 1992, J NEUROPHYSIOL, V68, P756 Perney TM, 1997, J COMP NEUROL, V386, P178 Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824 Rudy B, 1999, ANN NY ACAD SCI, V868, P304, DOI 10.1111/j.1749-6632.1999.tb11295.x SANTOS-SACCHI J, 1993, J NEUROSCI, V13, P3599 Smith PH, 1998, J NEUROPHYSIOL, V79, P3127 SONG P, 2004, SOC NEUR ABSTR SUN H, 2004, SOC NEUR ABSTR Taschenberger H, 2002, NEURON, V36, P1127, DOI 10.1016/S0896-6273(02)01137-6 Taschenberger H, 2000, J NEUROSCI, V20, P9162 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 von Hehn CAA, 2004, J NEUROSCI, V24, P1936, DOI 10.1523/JNEUROSCI.4554-03.2004 Wang LY, 1998, NATURE, V394, P384, DOI 10.1038/28645 Wang LY, 1998, P NATL ACAD SCI USA, V95, P1882, DOI 10.1073/pnas.95.4.1882 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x WARCHOL ME, 1990, J COMP PHYSIOL A, V166, P721 WEISER M, 1995, J NEUROSCI, V15, P4298 WEISER M, 1994, J NEUROSCI, V14, P949 Whim MD, 1998, J NEUROSCI, V18, P9171 WU SH, 1993, HEARING RES, V68, P189 YANG B, 2004, SOC NEUR ABSTR Yuan A, 2003, NEURON, V37, P765, DOI 10.1016/S0896-6273(03)00096-5 NR 72 TC 40 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 133 EP 145 DI 10.1016/j.heares.2004.11.023 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100012 PM 16081004 ER PT J AU Metherate, R Kaur, S Kawai, H Lazar, R Liang, K Rose, HJ AF Metherate, R Kaur, S Kawai, H Lazar, R Liang, K Rose, HJ TI Spectral integration in auditory cortex: Mechanisms and modulation SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE thalamocortical; intracortical; acetylcholine; receptive field; intracellular; synapse ID FREQUENCY RECEPTIVE-FIELDS; CAT VISUAL-CORTEX; THALAMOCORTICAL SYNAPTIC TRANSMISSION; COCHLEAR NUCLEUS NEURONS; VOLTAGE-CLAMP ANALYSIS; GUINEA-PIG; IN-VIVO; RESPONSE PROPERTIES; SINGLE NEURONS; CHOLINERGIC MODULATION AB Auditory cortex contributes to the processing and perception of spectro temporally complex stimuli. However, the mechanisms by which this is accomplished are not well understood. In this review, we examine evidence that single cortical neurons receive input covering much of the audible spectrum. We then propose an anatomical framework by which spectral information converges on single neurons in primary auditory cortex, via a combination of thalamocortical and intracortical "horizontal" pathways. By its nature, the framework confers sensitivity to specific, spectrotemporally complex stimuli. Finally, to address how spectral integration can be regulated, we show how one neuromodulator, acetylcholine, could act within the hypothesized framework to alter integration in single neurons. The results of these studies promote a cellular understanding of information processing in auditory cortex. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Calif Irvine, Dept Neurobiol & Behav, Irvine, CA 92697 USA. RP Metherate, R (reprint author), Univ Calif Irvine, Dept Neurobiol & Behav, 2205 McGaugh Hall, Irvine, CA 92697 USA. EM rmethera@uci.edu CR ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106 Bakin JS, 1996, CEREB CORTEX, V6, P120, DOI 10.1093/cercor/6.2.120 Bringuier V, 1999, SCIENCE, V283, P695, DOI 10.1126/science.283.5402.695 BRUGGE JF, 1969, J NEUROPHYSIOL, V32, P1005 Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x Buonomano DV, 1998, J NEUROPHYSIOL, V80, P1765 CALFORD MB, 1983, HEARING RES, V11, P395, DOI 10.1016/0378-5955(83)90070-9 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 Clark JD, 1985, AFR ARCHAEOL REV, V3, P3, DOI DOI 10.1007/BF01117453 CLARKE PBS, 1984, BRAIN RES, V323, P390, DOI 10.1016/0006-8993(84)90320-2 CLARKE PBS, 2003, PROG BRAIN RES, V145, P253 COX CL, 1992, BRAIN RES BULL, V28, P401, DOI 10.1016/0361-9230(92)90039-Z COX CL, 1994, SYNAPSE, V16, P123, DOI 10.1002/syn.890160206 Cruikshank SJ, 2002, J NEUROPHYSIOL, V87, P361 Dancause N, 2001, BRAIN RES, V910, P67, DOI 10.1016/S0006-8993(01)02630-0 Debarbieux F, 1998, J NEUROPHYSIOL, V79, P2911 DYKES RW, 1984, J NEUROPHYSIOL, V52, P1066 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0 Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P79 Elhilali M, 2004, J NEUROSCI, V24, P1159, DOI 10.1523/JNEUROSCI.3825-03.2004 EVANS EF, 1972, J PHYSIOL-LONDON, V226, P263 Foeller E, 2001, JARO, V2, P279 Fox K, 2003, J NEUROSCI, V23, P8380 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Galvan VV, 2001, JARO, V2, P199 Gil Z, 1997, NEURON, V19, P679, DOI 10.1016/S0896-6273(00)80380-3 Gilbert CD, 1998, PHYSIOL REV, V78, P467 Gioanni Y, 1999, EUR J NEUROSCI, V11, P18, DOI 10.1046/j.1460-9568.1999.00403.x HajDahmane S, 1996, J NEUROSCI, V16, P3848 HALLIWELL JV, 1982, BRAIN RES, V250, P71, DOI 10.1016/0006-8993(82)90954-4 Harrington IA, 2001, NEUROREPORT, V12, P1217, DOI 10.1097/00001756-200105080-00032 Hasselmo ME, 1999, TRENDS COGN SCI, V3, P351, DOI 10.1016/S1364-6613(99)01365-0 HASSELMO ME, 1995, BEHAV BRAIN RES, V67, P1, DOI 10.1016/0166-4328(94)00113-T HASSELMO ME, 1992, J NEUROPHYSIOL, V67, P1222 HEIL P, 1992, J COMP PHYSIOL A, V171, P583 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 Hess A, 1996, NEUROREPORT, V7, P2643, DOI 10.1097/00001756-199611040-00047 HICKS TP, 1986, EXP BRAIN RES, V63, P248 HIND JE, 1963, J NEUROPHYSIOL, V26, P321 Horikawa J, 1996, J PHYSIOL-LONDON, V497, P629 HOUNSGAARD J, 1978, EXP NEUROL, V62, P787, DOI 10.1016/0014-4886(78)90284-4 Hsieh CY, 2000, BRAIN RES, V880, P51, DOI 10.1016/S0006-8993(00)02766-9 IMIG TJ, 1984, J COMP NEUROL, V227, P511, DOI 10.1002/cne.902270405 Johnston D, 1996, ANNU REV NEUROSCI, V19, P165 Kaur S, 2004, J NEUROPHYSIOL, V91, P2551, DOI 10.1152/jn.01121.2003 Kawashima M, 2004, INT J ACAROL, V30, P9 KELLY JB, 1971, J NEUROPHYSIOL, V34, P802 Kiang NY-s, 1965, DISCHARGE PATTERNS S Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kimura A, 2003, NEUROSCIENCE, V117, P1003, DOI 10.1016/S0306-4522(02)00949-1 KITZES LM, 1978, J NEUROPHYSIOL, V41, P1165 KRNJEVIC K, 1971, J PHYSIOL-LONDON, V215, P247 KURT S, 2004, SOC NEUR ABSTR, V30 LANGNER G, 1987, HEARING RES, V31, P197, DOI 10.1016/0378-5955(87)90127-4 Lavine N, 1997, J COMP NEUROL, V380, P175, DOI 10.1002/(SICI)1096-9861(19970407)380:2<175::AID-CNE3>3.0.CO;2-0 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 LEE SM, 1994, J NEUROPHYSIOL, V71, P1716 Li CX, 1996, NEUROREPORT, V7, P2261, DOI 10.1097/00001756-199610020-00003 LIANG K, 2003, SOC NEUR ABSTR, V29 LONDON ED, 1985, NEUROSCI LETT, V53, P179, DOI 10.1016/0304-3940(85)90182-X MADISON DV, 1987, J NEUROSCI, V7, P733 Malhotra S, 2004, J NEUROPHYSIOL, V92, P1625, DOI 10.1152/jn.01205.2003 MATSUBARA JA, 1988, J COMP NEUROL, V268, P38, DOI 10.1002/cne.902680105 MCCORMICK DA, 1986, J PHYSIOL-LONDON, V375, P169 MCKENNA TM, 1988, SYNAPSE, V2, P54, DOI 10.1002/syn.890020109 MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105 Mendelson JR, 1997, J COMP PHYSIOL A, V181, P615, DOI 10.1007/s003590050145 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 METHERATE R, 1990, SYNAPSE, V6, P364, DOI 10.1002/syn.890060409 METHERATE R, 1994, J PHYSIOL-LONDON, V481, P331 Metherate R, 2004, LEARN MEMORY, V11, P50, DOI 10.1101/lm.69904 METHERATE R, 1993, J NEUROSCI, V13, P5312 Metherate R, 1999, DEV BRAIN RES, V115, P131, DOI 10.1016/S0165-3806(99)00058-9 METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206 METHERATE R, 1992, J NEUROSCI, V12, P4701 METHERATE R, 1988, J NEUROPHYSIOL, V59, P1231 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 Miller LM, 2001, J NEUROSCI, V21, P8136 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6 MULLER CM, 1988, J NEUROPHYSIOL, V59, P1673 Nelken I, 2000, EUR J NEUROSCI, V12, P549, DOI 10.1046/j.1460-9568.2000.00935.x Norena A, 2002, HEARING RES, V166, P202, DOI 10.1016/S0378-5955(02)00329-5 Oertel D, 1999, ANNU REV PHYSIOL, V61, P497, DOI 10.1146/annurev.physiol.61.1.497 Ohl FW, 2000, J PHYSIOLOGY-PARIS, V94, P549, DOI 10.1016/S0928-4257(00)01091-3 Ohl FW, 1999, LEARN MEMORY, V6, P347 Ojima H, 1991, CEREB CORTEX, V1, P80, DOI 10.1093/cercor/1.1.80 Ojima H, 2002, CEREB CORTEX, V12, P1079, DOI 10.1093/cercor/12.10.1079 PALOMBI PS, 1992, J NEUROPHYSIOL, V67, P738 PARKINSON D, 1988, EXP BRAIN RES, V73, P553, DOI 10.1007/BF00406614 PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443 PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 Phillips Dennis P., 1998, Seminars in Hearing, V19, P319, DOI 10.1055/s-0028-1082980 PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U Phillips Dennis P., 1992, Cerebral Cortex, V2, P425, DOI 10.1093/cercor/2.5.425 PRUSKY GT, 1987, BRAIN RES, V412, P131, DOI 10.1016/0006-8993(87)91447-8 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RIBAUPIE.FD, 1972, BRAIN RES, V48, P185 Roberts B, 2003, ELECTRON BUS, V29, P15 Robles L, 2001, PHYSIOL REV, V81, P1305 Role LW, 1996, NEURON, V16, P1077, DOI 10.1016/S0896-6273(00)80134-8 ROMANSKI LM, 1993, CEREB CORTEX, V3, P499, DOI 10.1093/cercor/3.6.499 ROSE HJ, 2004, SOC NEUR ABSTR, V30 ROSE HJ, 2003, ABSTR ASS RES OT, V26, P314 SAHIN M, 1992, BRAIN RES, V579, P135, DOI 10.1016/0006-8993(92)90752-U SANES DH, 1985, J NEUROSCI, V5, P1152 Sarter M, 2001, BRAIN RES REV, V35, P146, DOI 10.1016/S0165-0173(01)00044-3 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Schulze H, 1999, J COMP PHYSIOL A, V185, P493, DOI 10.1007/s003590050410 SEGAL M, 1989, SYNAPSE, V4, P305, DOI 10.1002/syn.890040406 SEGAL M, 1982, BRAIN RES, V246, P77, DOI 10.1016/0006-8993(82)90144-5 SILLITO AM, 1975, J PHYSIOL-LONDON, V250, P305 SILLITO AM, 1993, PROG BRAIN RES, V98, P371 SILLITO AM, 1983, BRAIN RES, V289, P143, DOI 10.1016/0006-8993(83)90015-X Smith AL, 2004, EUR J NEUROSCI, V19, P3059, DOI 10.1111/j.1460-9568.2004.03379.x SMITS E, 1991, J NEUROPHYSIOL, V66, P688 Sutter ML, 2003, J NEUROPHYSIOL, V90, P2629, DOI 10.1152/jn.00722.2002 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Tian B, 2004, J NEUROPHYSIOL, V92, P2993, DOI 10.1152/jn.00472.2003 Trussell LO, 1999, ANNU REV PHYSIOL, V61, P477, DOI 10.1146/annurev.physiol.61.1.477 VALENTINO RJ, 1981, J NEUROSCI, V1, P784 Velenovsky DS, 2003, J NEUROSCI, V23, P308 VOLKOV IO, 1991, NEUROSCIENCE, V43, P307, DOI 10.1016/0306-4522(91)90295-Y WALLACE MN, 1991, EXP BRAIN RES, V86, P527 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 Wetzel W, 1998, NEUROSCI LETT, V252, P115, DOI 10.1016/S0304-3940(98)00561-8 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 Winer JA, 1999, HEARING RES, V130, P42, DOI 10.1016/S0378-5955(98)00217-2 Zhang LI, 2003, NATURE, V424, P201, DOI 10.1038/nature01796 NR 135 TC 55 Z9 56 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 146 EP 158 DI 10.1016/j.heares.2005.01.014 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100013 PM 16081005 ER PT J AU Fritz, J Elhilali, M Shamma, S AF Fritz, J Elhilali, M Shamma, S TI Active listening: Task-dependent plasticity of spectrotemporal receptive fields in primary auditory cortex SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE auditory; cortex; plasticity; attention; adaptive; behavior ID PRIMARY VISUAL-CORTEX; PUPILLARY CONDITIONED-RESPONSE; PRIMARY SOMATOSENSORY CORTEX; SINGLE-UNIT RESPONSES; WAKING GUINEA-PIG; PHYSIOLOGICAL PLASTICITY; TEMPORAL PLASTICITY; NUCLEUS BASALIS; REPRESENTATIONAL PLASTICITY; CORTICAL REORGANIZATION AB Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectroternporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Maryland, Ctr Auditory & Acoust Res, College Pk, MD 20742 USA. RP Fritz, J (reprint author), Univ Maryland, Ctr Auditory & Acoust Res, College Pk, MD 20742 USA. EM ripple@isr.umd.edu RI Elhilali, Mounya/A-3396-2010; Shamma, Shihab/F-9852-2012 OI Elhilali, Mounya/0000-0003-2597-738X; CR Ahissar E, 1998, NEUROPHARMACOLOGY, V37, P633, DOI 10.1016/S0028-3908(98)00068-9 Bakin JS, 1996, BEHAV NEUROSCI, V110, P905 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A Bao SW, 2004, NAT NEUROSCI, V7, P974, DOI 10.1038/nn1293 BARBAS H, 2005, CEREBRAL CORTEX 0105 Beitel RE, 2003, P NATL ACAD SCI USA, V100, P11070, DOI 10.1073/pnas.1334187100 Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467 Blake DT, 2002, P NATL ACAD SCI USA, V99, P10114, DOI 10.1073/pnas.092278099 Bouret S, 2004, EUR J NEUROSCI, V20, P791, DOI 10.1111/j.1460-9568.2004.03526.x Boynton GM, 2004, NAT NEUROSCI, V7, P8, DOI 10.1038/nn0104-8 BROSCH M, AUDITORY CORTEX SYNT Butefisch CM, 2000, P NATL ACAD SCI USA, V97, P3661, DOI 10.1073/pnas.050350297 Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2 CONNER JM, 2003, NEURON, V38, P818 Crist RE, 2001, NAT NEUROSCI, V4, P519 Cruikshank SJ, 1996, BRAIN RES REV, V22, P191, DOI 10.1016/S0165-0173(96)00015-X DAS A, 1995, NATURE, V375, P780, DOI 10.1038/375780a0 Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 DIAMOND DM, 1986, BRAIN RES, V372, P357, DOI 10.1016/0006-8993(86)91144-3 DIAMOND DM, 1984, BEHAV NEUROSCI, V98, P189, DOI 10.1037/0735-7044.98.2.189 Dimyan MA, 1999, BEHAV NEUROSCI, V113, P691, DOI 10.1037/0735-7044.113.4.691 Dinse HR, 2003, SCIENCE, V301, P91, DOI 10.1126/science.1085423 Dorris M. C., 2000, J NEUROSCI, V20, P1 DUQUE A, 2003, SOC NEUR M NEW ORL Durif C, 2003, EXP BRAIN RES, V153, P614, DOI 10.1007/s00221-003-1613-3 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P82, DOI 10.1037//0735-7044.107.1.82 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 Edeline JM, 2003, EXP BRAIN RES, V153, P554, DOI 10.1007/s00221-003-1608-0 Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x Edeline JM, 1999, PROG NEUROBIOL, V57, P165 ELHILALI M, 2005, ASS RES OT ARO M NEW Escabi MA, 2003, BIOL CYBERN, V89, P350, DOI 10.1007/S00422-003-0440-8 Finnerty GT, 1999, NATURE, V400, P367 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 FRITZ JB, 2004, AUDITORY CORTEX SYNT FRITZ JB, 2004, UNPUB DIFFERENTIAL R FRITZ JB, 2005, ASS RES OT ARO M NEW FRITZ JB, 2003, SOC NEUR M NEW ORL FRITZ JB, 2004, SOC NEUR M SAN DIEG Fu KMG, 2003, J NEUROSCI, V23, P7510 Fuster J, 1995, MEMORY CEREBRAL CORT Galvan VV, 2001, JARO, V2, P199 Galvan VV, 2002, NEUROBIOL LEARN MEM, V77, P78, DOI 10.1006/nlme.2001.4044 Gandolfo F, 2000, P NATL ACAD SCI USA, V97, P2259, DOI 10.1073/pnas.040567097 Ghose GM, 2004, CURR OPIN NEUROBIOL, V14, P513, DOI 10.1016/j.conb.2004.07.003 GONZALEZLIMA F, 1986, BEHAV BRAIN RES, V20, P281, DOI 10.1016/0166-4328(86)90228-7 Gu Q, 2002, NEUROSCIENCE, V111, P815, DOI 10.1016/S0306-4522(02)00026-X Handel S, 1989, LISTENING INTRO PERC Harris JA, 2002, J NEUROSCI, V22, P8720 Heffner H. E., 1995, METHODS COMP PSYCHOA, P79 Huntley GW, 1997, CEREB CORTEX, V7, P143, DOI 10.1093/cercor/7.2.143 Hurley LM, 2004, CURR OPIN NEUROBIOL, V14, P488, DOI 10.1016/j.conb.2004.06.007 Iriki A, 1996, NEUROREPORT, V7, P2325 IRVINE D, 2004, AUDITORY CORTEX SYNT Ito M, 1999, NEURON, V22, P593, DOI 10.1016/S0896-6273(00)80713-8 IWAMURA Y, 2000, SOMATOSENSORY PROCES Jäncke L, 2001, Brain Res Cogn Brain Res, V12, P479 KILGARD M, 2002, P NATL ACAD SCI USA, V19, P2309 Kilgard MP, 2001, AUDIOL NEURO-OTOL, V6, P196, DOI 10.1159/000046832 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 2002, BIOL CYBERN, V87, P333, DOI 10.1007/s00422-002-0352-z Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 Kisley MA, 2001, EUR J NEUROSCI, V13, P1993, DOI 10.1046/j.0953-816x.2001.01568.x Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 KOWALSKI N, 1995, J NEUROPHYSIOL, V73, P1513 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3524 Lafuente V., 2003, NAT NEUROSCI, V6, P792 Laubach M, 2000, NATURE, V405, P567, DOI 10.1038/35014604 Leopold DA, 1999, TRENDS COGN SCI, V3, P254, DOI 10.1016/S1364-6613(99)01332-7 LI CSR, 2001, NEURON, V30, P592 Ma XF, 2003, J NEUROPHYSIOL, V89, P90, DOI 10.1152/jn.00968.2001 MANUNTA Y, 2004, J NEUROPHYSIOLO 0414 Maravita A, 2004, TRENDS COGN SCI, V8, P79, DOI 10.1016/j.tics.2003.12.008 Mazer JA, 2003, NEURON, V40, P1241, DOI 10.1016/S0896-6273(03)00764-5 McAdams CJ, 1999, J NEUROSCI, V19, P431 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 Miller EK, 2001, ANNU REV NEUROSCI, V24, P167, DOI 10.1146/annurev.neuro.24.1.167 Miller EK, 2002, PHILOS T ROY SOC B, V357, P1123, DOI 10.1098/rstb.2002.1099 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 MOTTER BC, 1993, J NEUROPHYSIOL, V70, P909 MOUNTCASTLE VB, 1995, CEREB CORTEX, V5, P377, DOI 10.1093/cercor/5.5.377 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 Ozaki I, 2004, CLIN NEUROPHYSIOL, V115, P1592, DOI 10.1016/j.clinph.2004.02.011 Petkov CI, 2004, NAT NEUROSCI, V7, P658, DOI 10.1038/nn1256 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Reynolds JH, 2004, ANNU REV NEUROSCI, V27, P611, DOI 10.1146/annurev.neuro.26.041002.131039 Reynolds JH, 2000, NEURON, V26, P703, DOI 10.1016/j.neuron.2009.01.002 Rioult-Pedotti MS, 2000, SCIENCE, V290, P533, DOI 10.1126/science.290.5491.533 Rioult-Pedotti MS, 1998, NAT NEUROSCI, V1, P230, DOI 10.1038/678 Roelfsema PR, 1998, NATURE, V395, P376, DOI 10.1038/26475 Romo R, 2001, ANNU REV NEUROSCI, V24, P107, DOI 10.1146/annurev.neuro.24.1.107 Romo R, 2003, NAT REV NEUROSCI, V4, P203, DOI 10.1038/nrn1058 Schaefer M, 2004, NEUROREPORT, V15, P1293, DOI 10.1097/01.wnr.0000129573.36301.db Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Sun W, 2005, NEUROSCI LETT, V374, P63, DOI 10.1016/j.neulet.2004.10.032 Tan AYY, 2004, J NEUROPHYSIOL, V92, P630, DOI 10.1152/jn.01020.2003 Treue S, 2001, TRENDS NEUROSCI, V24, P295, DOI 10.1016/S0166-2236(00)01814-2 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Ulanovsky N, 2004, J NEUROSCI, V24, P10440, DOI 10.1523/JNEUROSCI.1905-04.2004 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 WEINBERGER NM, 2003, SPRINGER HDB AUDITOR Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 Weinberger NM, 2004, NAT REV NEUROSCI, V5, P279, DOI 10.1038/nrn1366 WEINBERGER NM, 2001, MODEL SYSTEMS NEUROB WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 WEINBERGER NM, 1984, BEHAV NEUROSCI, V98, P171, DOI 10.1037/0735-7044.98.2.171 Xiao ZJ, 2002, P NATL ACAD SCI USA, V99, P15743, DOI 10.1073/pnas.242606699 Yang TM, 2004, J NEUROSCI, V24, P1617, DOI 10.1523/JNEUROSCI.4442-03.2004 YIN PB, 2001, ABSTR SOC NEUR M SAN YIN PB, 2005, UNPUB CONTEXT RELATE NR 117 TC 98 Z9 99 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 159 EP 176 DI 10.1016/j.heares.2005.01.015 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100014 PM 16081006 ER PT J AU Syka, J Suta, D Popelar, J AF Syka, J Suta, D Popelar, J TI Responses to species-specific vocalizations in the auditory cortex of awake and anesthetized guinea pigs SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE anesthesia; ketamine; vocalization; guinea pig; auditory cortex; multiple-unit activity ID SINGLE-UNIT ACTIVITY; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; NEURONS; ANESTHESIA; CAT; THALAMUS; KETAMINE; SLEEP; STATE AB Species-specific vocalizations represent an important acoustical signal that must be decoded in the auditory system of the listener. We were interested in examining to what extent anesthesia may change the process of signal decoding in neurons of the auditory cortex in the guinea pig. With this aim, the multiple-unit activity, either spontaneous or acoustically evoked, was recorded in the auditory cortex of guinea pigs, at first in the awake state and then after the injection of anesthetics (33 mg/kg ketamine with 6.6 mg/kg xylazine). Acoustical stimuli, presented in free-field conditions, consisted of four typical guinea pig calls (purr, chatter, chirp and whistle), a time-reversed version of the whistle and a broad-band noise burst. The administration of anesthesia typically resulted in a decrease in the level of spontaneous activity and in changes in the strength of the neuronal response to acoustical stimuli. The effect of anesthesia was mostly, but not exclusively, suppressive. Diversity in the effects of anesthesia led in some recordings to an enhanced response to one call accompanied by a suppressed response to another call. The temporal pattern of the response to vocalizations was changed in some cases under anesthesia, which may indicate a change in the synaptic input of the recorded neurons. In summary, our results suggest that anesthesia must be considered as an important factor when investigating the processing of complex sounds such as species-specific vocalizations in the auditory cortex. (c) 2005 Elsevier B.V. All rights reserved. C1 Acad Sci Czech Republ, Inst Expt Med, Prague 14220, Czech Republic. Charles Univ, Fac Med 3, Prague, Czech Republic. RP Syka, J (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, Prague 14220, Czech Republic. EM syka@biomed.cas.cz RI Popelar, Jiri/H-2558-2014; Syka, Josef/H-3103-2014; Suta, Daniel/H-2577-2014 CR Anderson MJ, 2004, HEARING RES, V188, P29, DOI 10.1016/S0378-5955(03)00348-4 Astl J, 1996, AUDIOLOGY, V35, P335 BOCK GR, 1974, BRAIN RES, V76, P150, DOI 10.1016/0006-8993(74)90521-6 Cotillon-Williams N, 2003, J NEUROPHYSIOL, V89, P1968, DOI 10.1152/jn.00728.2002 Edeline JM, 2001, EUR J NEUROSCI, V14, P1865, DOI 10.1046/j.0953-816x.2001.01821.x ELHILALI M, 2002, ASS RES OT ABST, V162, P42 ERULKAR SD, 1956, B JOHNS HOPKINS HOSP, V99, P55 EVANS EF, 1973, EXP BRAIN RES, V17, P402 EVANS EF, 1964, J PHYSIOL-LONDON, V171, P476 FRANKS NP, 1994, NATURE, V367, P607, DOI 10.1038/367607a0 Gaese BH, 2001, J NEUROPHYSIOL, V86, P1062 Gaese BH, 2003, EUR J NEUROSCI, V18, P2638, DOI 10.1046/j.1460-9568.2003.03007.x GERSTEIN GL, 1964, EXP NEUROL, V10, P1, DOI 10.1016/0014-4886(64)90083-4 Harper L. V., 1976, BIOL GUINEA PIG, P31 HUBEL DH, 1959, SCIENCE, V129, P1279, DOI 10.1126/science.129.3358.1279 KANWAL JS, 2002, ECHOLOCATION BATS DO KATSUKI Y, 1959, P IMP JAPAN ACAD, V36, P435 Kisley MA, 1999, J NEUROSCI, V19, P10451 KUWADA S, 1989, J NEUROPHYSIOL, V61, P269 Massaux A, 2004, J NEUROPHYSIOL, V91, P2117, DOI 10.1152/jn.00970.2003 PATEL IM, 1990, ANESTH ANALG, V70, P635 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 Syka J, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P431, DOI 10.1007/978-1-4419-8712-9_39 THOMAS LB, 1952, ELECTROEN CLIN NEURO, V4, P376 THOMSON AM, 1985, NATURE, V313, P479, DOI 10.1038/313479a0 Torterolo P, 2002, BRAIN RES, V935, P9, DOI 10.1016/S0006-8993(02)02235-7 Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843 WILLOW M, 1983, INT REV NEUROBIOL, V24, P15, DOI 10.1016/S0074-7742(08)60219-6 ZURITA P, 1994, NEUROSCI RES, V19, P303, DOI 10.1016/0168-0102(94)90043-4 NR 29 TC 32 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 177 EP 184 DI 10.1016/j.heares.2005.01.013 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100015 PM 16081007 ER PT J AU Illing, RB Kraus, KS Meidinger, MA AF Illing, RB Kraus, KS Meidinger, MA TI Reconnecting neuronal networks in the auditory brainstem following unilateral deafening SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE superior olivary complex; synaptic remodeling; cochlear lesion; plasticity; adult CNS; regeneration ID VENTRAL COCHLEAR NUCLEUS; EXPERIENCE-DEPENDENT PLASTICITY; MESSENGER-RNA EXPRESSION; SUPERIOR OLIVARY COMPLEX; EAR OSSICLE REMOVAL; ADULT-RAT; PROTEIN GAP-43; VISUAL-CORTEX; OLIVOCOCHLEAR NEURONS; SYNAPTIC PLASTICITY AB When we disturbed the auditory input of the adult rat by cochleotomy or noise trauma on one side, several substantial anatomical, cellular, and molecular changes took place in the auditory brainstem. We found that: (1) cochleotomy or severe noise trauma both lead to a considerable increase of immunoreactivity of the growth-associated protein GAP-43 in the ventral cochlear nucleus (VCN) of the affected side; (2) the expression of GAP-43 in VCN is restricted to presynaptic endings and short fiber segments; (3) axon collaterals of the cholinergic medial olivocochlear (MOC) neurons are the path along which GAP-43 reaches VCN; (4) partial cochlear lesions induce the emergence of GAP-43 positive presynaptic endings only in regions tonotopically corresponding to the extent of the lesion; (5) judging from the presence of immature fibers and growth cones in VCN on the deafened side, at least part of the GAP-43 positive presynaptic endings appear to be newly formed neuronal contacts following axonal sprouting while others may be modified pre-existing contacts; and (6) GAP-43 positive synapses are formed only on specific postsynaptic profiles, i.e., glutamatergic, glycinergic and calretinin containing cell bodies, but not GABAergic cell bodies. We conclude that unilateral deafening, be it partial or total, induces complex patterns of reconnecting neurons in the adult auditory brainstem, and we evaluate the possibility that the deafness-induced chain of events is optimized to remedy the loss of a bilaterally balanced activity in the auditory brainstem. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, D-79106 Freiburg, Germany. RP Illing, RB (reprint author), Univ Freiburg, Dept Otorhinolaryngol, Neurobiol Res Lab, Hugstetter Str 55, D-79106 Freiburg, Germany. EM robert.illing@uniklinik-freiburg.de CR AIGNER L, 1995, CELL, V83, P269, DOI 10.1016/0092-8674(95)90168-X Babalian AL, 2002, NEUROREPORT, V13, P555, DOI 10.1097/00001756-200203250-00038 BAEKELANDT V, 1994, EUR J NEUROSCI, V6, P754, DOI 10.1111/j.1460-9568.1994.tb00987.x Baekelandt V, 1996, NEUROSCI LETT, V208, P113, DOI 10.1016/0304-3940(96)12558-1 Baimoukhametova DV, 2004, J NEUROSCI, V24, P5162, DOI 10.1523/JNEUROSCI.4979-03.2004 Baskerville KA, 1997, NEUROSCIENCE, V80, P1159, DOI 10.1016/S0306-4522(97)00064-X Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5 Benowitz LI, 1997, TRENDS NEUROSCI, V20, P84, DOI 10.1016/S0166-2236(96)10072-2 BENOWITZ LI, 1987, TRENDS NEUROSCI, V10, P527, DOI 10.1016/0166-2236(87)90135-4 BENOWITZ LI, 1988, J NEUROSCI, V8, P339 BENOWITZ LI, 1991, PROG BRAIN RES, V89, P69, DOI 10.1016/S0079-6123(08)61716-1 Bledsoe SC, 1995, NEUROREPORT, V7, P225, DOI 10.1097/00001756-199512000-00054 BOETTCHER FA, 1993, J ACOUST SOC AM, V94, P123 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 Calford MB, 2002, NEUROSCIENCE, V111, P709, DOI 10.1016/S0306-4522(02)00022-2 Calford MB, 2003, J NEUROSCI, V23, P6434 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 Colgin LL, 2003, P NATL ACAD SCI USA, V100, P2872, DOI 10.1073/pnas.0530289100 DARIANSMITH C, 1994, NATURE, V368, P737, DOI 10.1038/368737a0 DEGRAAN PNE, 1985, NEUROSCI LETT, V61, P235, DOI 10.1016/0304-3940(85)90470-7 DUNNMEYNELL AA, 1992, J COMP NEUROL, V315, P160, DOI 10.1002/cne.903150204 Feig SL, 2004, J COMP NEUROL, V468, P96, DOI 10.1002/cne.10969 Florentine M, 1976, J Am Audiol Soc, V1, P243 FRIAUF E, 1995, BEHAV BRAIN RES, V66, P217, DOI 10.1016/0166-4328(94)00147-8 GISPEN WH, 1991, MOL NEUROBIOL, V5, P61, DOI 10.1007/BF02935540 Goda Y, 2003, NEURON, V40, P243, DOI 10.1016/S0896-6273(03)00608-1 GODFREY DA, 1983, HEARING RES, V11, P133, DOI 10.1016/0378-5955(83)90076-X Hafidi A, 1999, J NEUROBIOL, V41, P267 Horvath M, 2000, J COMP NEUROL, V422, P95 Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W Illing RB, 2002, EXP NEUROL, V175, P226, DOI 10.1006/exnr.2002.7895 ILLING RB, 1995, NEUROSCI LETT, V194, P9, DOI 10.1016/0304-3940(95)11706-3 Illing RB, 2001, AUDIOL NEURO-OTOL, V6, P319, DOI 10.1159/000046844 Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E Ito J, 1998, NEUROREPORT, V9, P3815, DOI 10.1097/00001756-199812010-00009 KAAS JH, 1990, SCIENCE, V248, P229, DOI 10.1126/science.2326637 Kim JN, 1997, HEARING RES, V103, P169, DOI 10.1016/S0378-5955(96)00173-6 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 KNYIHARCSILLIK E, 1992, J NEUROSCI RES, V32, P93, DOI 10.1002/jnr.490320112 Kraus KS, 2004, J COMP NEUROL, V475, P374, DOI 10.1002/cne.2080 MAHALIK TJ, 1992, DEV BRAIN RES, V67, P75, DOI 10.1016/0165-3806(92)90027-T MARTY A, 1995, CURR OPIN NEUROBIOL, V5, P335, DOI 10.1016/0959-4388(95)80046-8 MCINTOSH H, 1990, BRAIN RES, V518, P324, DOI 10.1016/0006-8993(90)90991-J Meiri KF, 1998, J NEUROSCI, V18, P10429 MERZENICH MM, 1984, J COMP NEUROL, V224, P591, DOI 10.1002/cne.902240408 Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Moore D R, 1993, J Am Acad Audiol, V4, P277 Morley BJ, 2000, HEARING RES, V147, P104, DOI 10.1016/S0378-5955(00)00124-6 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G MOWER GD, 1993, MOL BRAIN RES, V20, P254, DOI 10.1016/0169-328X(93)90048-T Ohara S, 1995, BRAIN RES, V705, P325, DOI 10.1016/0006-8993(95)01164-1 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Pesavento E, 2002, EUR J NEUROSCI, V15, P1030, DOI 10.1046/j.1460-9568.2002.01937.x PFALZ REINHARD K. J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1472, DOI 10.1121/1.1918372 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Russell FA, 2002, HEARING RES, V173, P43, DOI 10.1016/S0378-5955(02)00606-8 Saint Marie RL, 1999, J COMP NEUROL, V404, P258, DOI 10.1002/(SICI)1096-9861(19990208)404:2<258::AID-CNE9>3.0.CO;2-U Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1 SCHAECHTER JD, 1993, J NEUROSCI, V13, P4361 Schmitt AB, 1999, NEUROBIOL DIS, V6, P122, DOI 10.1006/nbdi.1998.0231 Schwab ME, 1996, INT J DEV NEUROSCI, V14, P379, DOI 10.1016/S0736-5748(96)00024-X SHEA TB, 1991, J NEUROSCI, V11, P1685 SHORE SE, 1992, HEARING RES, V62, P16, DOI 10.1016/0378-5955(92)90199-W SKENE JHP, 1989, ANNU REV NEUROSCI, V12, P127, DOI 10.1146/annurev.neuro.12.1.127 SKENE JHP, 1981, J NEUROSCI, V1, P419 STRITTMATTER SM, 1995, CELL, V80, P445, DOI 10.1016/0092-8674(95)90495-6 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644 Thiel CM, 2002, NEURON, V35, P567, DOI 10.1016/S0896-6273(02)00801-2 Vale C, 2002, EUR J NEUROSCI, V16, P2394, DOI 10.1046/j.1460-9568.2002.02302.x VERHAAGEN J, 1994, MOL BRAIN RES, V26, P26, DOI 10.1016/0169-328X(94)90070-1 VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 Watroba L, 2001, EUR J NEUROSCI, V14, P1021, DOI 10.1046/j.0953-816x.2001.01720.x WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X WIDMER F, 1993, J CELL BIOL, V120, P503, DOI 10.1083/jcb.120.2.503 Woodin MA, 2003, NEURON, V39, P807, DOI 10.1016/S0896-6273(03)00507-5 YAMADA KM, 1971, J CELL BIOL, V49, P614, DOI 10.1083/jcb.49.3.614 YANKNER BA, 1990, MOL BRAIN RES, V7, P39, DOI 10.1016/0169-328X(90)90071-K Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3 Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L Yao WP, 1996, AUDIT NEUROSCI, V2, P241 Zepeda A, 2004, J NEUROSCI, V24, P1812, DOI 10.1523/JNEUROSCI.3213-03.2004 NR 85 TC 30 Z9 30 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 185 EP 199 DI 10.1016/j.heares.2005.01.016 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100016 PM 16081008 ER PT J AU Kaltenbach, JA Zhang, JS Finlayson, P AF Kaltenbach, JA Zhang, JS Finlayson, P TI Tinnitus as a plastic phenomenon and its possible neural underpinnings in the dorsal cochlear nucleus SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE tinnitus; plasticity; dorsal cochlear nucleus; tinnitus mechanisms; neural correlates of tinnitus; tinnitus generation; tinnitus modulation; deafferentation; mechanisms ID GAZE-EVOKED TINNITUS; AUDITORY BRAIN-STEM; HAIR-CELL LOSS; PARALLEL FIBER STIMULATION; LOCUS COERULEUS NEURONS; SHORT-TERM POTENTIATION; CONDUCTIVE HEARING-LOSS; INTENSE SOUND EXPOSURE; EAR OSSICLE REMOVAL; PROTEIN-KINASE-A AB Tinnitus displays many features suggestive of plastic changes in the nervous system. These can be categorized based oil the types of manipulations that induce them. We have categorized the various forms of plasticity that characterize tinnitus and searched for their neural underpinnings in the dorsal cochlear nucleus (DCN). This structure has been implicated as a possible site for the generation of tinnitus-producing signals owing to its tendency to become hyperactive following exposure to tinnitus inducing agents such as intense sound and cisplatin. In this paper, we review the many forms of plasticity that have been uncovered in anatomical, physiological and neurochemical Studies of the DCN. Some of these plastic changes have been observed as consequences of peripheral injury or as fluctuations in the behavior and chemical activities of DCN neurons, while others can be induced by stimulation of auditory or even non-auditory structures. We show that many parallels can be drawn between the various forms of plasticity displayed by tinnitus and the various forms of neural plasticity which have been defined in the DCN. These parallels lend further support to the hypothesis that the DCN is an important site for the generation and modulation of tinnitus-producing signals. (c) 2005 Elsevier B.V. All rights reserved. C1 Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA. RP Kaltenbach, JA (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol, 5E-UHC, Detroit, MI 48201 USA. EM jkalten@med.wayne.edu CR ALBERTI PW, 1987, J OTOLARYNGOL, V16, P34 ATHERLEY GR, 1968, J ACOUST SOC AM, V44, P1503, DOI 10.1121/1.1911288 AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983 Backoff PM, 1997, HEARING RES, V110, P155, DOI 10.1016/S0378-5955(97)00081-6 BACSIK RD, 1973, J COMP NEUROL, V147, P281, DOI 10.1002/cne.901470209 Barrs DM, 1984, J LARYNGOL OTOL S, V9, P287 Bauer CA, 2001, JARO, V2, P54 Bauer CA, 2003, OTOLARYNG CLIN N AM, V36, P267, DOI 10.1016/S0030-6665(02)00171-8 Benson TE, 2004, JARO-J ASSOC RES OTO, V5, P111, DOI 10.1007/s10162-003-4012-3 BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9 Bernhardt O, 2004, J ORAL REHABIL, V31, P311, DOI 10.1046/j.1365-2842.2003.01249.x Biggs NDW, 2002, CLIN OTOLARYNGOL, V27, P338, DOI 10.1046/j.1365-2273.2002.00591.x Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Bilak MM, 1996, NEUROSCIENCE, V75, P1075, DOI 10.1016/0306-4522(96)00197-2 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1835 BROWN MC, 1990, HEARING RES, V49, P105, DOI 10.1016/0378-5955(90)90098-A BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 BURNS EM, 1984, AUDIOLOGY, V23, P426 CACACE AT, 1994, AUDIOLOGY, V33, P291 Cacace AT, 2003, HEARING RES, V175, P112, DOI 10.1016/S0378-5955(02)00717-7 Caspary DM, 1999, NEUROSCIENCE, V93, P307, DOI 10.1016/S0306-4522(99)00121-9 CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 Chang H, 2002, HEARING RES, V164, P59, DOI 10.1016/S0378-5955(01)00410-5 CHERYCROZE S, 1994, BRIT J AUDIOL, V28, P13, DOI 10.3109/03005369409077909 CHUNG DY, 1984, AUDIOLOGY, V23, P441 Coad ML, 2001, OTOL NEUROTOL, V22, P650, DOI 10.1097/00129492-200109000-00016 Coles R. R. A., 1995, MECH TINNITUS, P11 COLES R, 1988, NEW YORK TIMES BK R, P1 Cook RD, 2002, HEARING RES, V164, P127, DOI 10.1016/S0378-5955(01)00424-5 CURTIS AW, 1980, OTOLARYNG HEAD NECK, V88, P361 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Dandy W, 1941, SURG GYNECOL OBSTET, V72, P421 Davis KA, 1996, J NEUROPHYSIOL, V76, P3012 Eggermont JJ, 2004, TRENDS NEUROSCI, V27, P676, DOI 10.1016/j.tins.2004.08.010 Eggermont JJ, 2003, AURIS NASUS LARYNX S, V30, P7, DOI 10.1016/S0385-8146(02)00122-0 El-Kashlan HK, 2004, HEARING RES, V189, P25, DOI 10.1016/S0378-5955(03)00393-9 FELDMANN H, 1971, AUDIOLOGY, V10, P138 FOOTE SL, 1980, P NATL ACAD SCI-BIOL, V77, P3033, DOI 10.1073/pnas.77.5.3033 Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 Fujino K, 2003, P NATL ACAD SCI USA, V100, P265, DOI 10.1073/pnas.0135345100 Furue H, 2004, NEUROSCI RES, V48, P361, DOI 10.1016/j.neures.2003.12.005 Garcia MM, 2000, HEARING RES, V147, P113, DOI 10.1016/S0378-5955(00)00125-8 Gardner G., 1984, J LARYNGOL OTOL S9, V9, P311 GEORGE RN, 1989, J SPEECH HEAR RES, V32, P366 Giraud AL, 1999, NEUROREPORT, V10, P1, DOI 10.1097/00001756-199901180-00001 Godfrey DA, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P139, DOI 10.1007/978-1-4419-8712-9_13 GODFREY DA, 1990, HEARING RES, V49, P259, DOI 10.1016/0378-5955(90)90108-2 Goldstein B A, 2001, Int Tinnitus J, V7, P122 GOODWIN PE, 1980, ACTA OTO-LARYNGOL, V90, P353, DOI 10.3109/00016488009131736 GRAHAM JT, 1962, ARCHIV OTOLARYNGOL, V75, P162 Hancock KE, 1997, BIOL CYBERN, V76, P419, DOI 10.1007/s004220050355 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961 Hazell JW, 1992, P 4 INT TINN SEM BOR, P245 HAZELL JWP, 1990, J OTOLARYNGOL, V19, P6 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X Henry J A, 2000, J Am Acad Audiol, V11, P138 House J W, 1981, Ciba Found Symp, V85, P204 Hurd LB, 1999, SYNAPSE, V33, P83 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Jagger DJ, 2003, J PHYSIOL-LONDON, V552, P525, DOI 10.1113/jphysiol.2003.052589 Jannetta P J, 1986, Clin Neurosurg, V33, P645 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 JASTREBOFF PJ, 1994, HEARING RES, V80, P216, DOI 10.1016/0378-5955(94)90113-9 Jastreboff PJ, 2003, OTOLARYNG CLIN N AM, V36, P321, DOI 10.1016/S0030-6665(02)00172-X Ji Ru-Rong, 2004, Current Drug Targets - Inflammation and Allergy, V3, P299, DOI 10.2174/1568010043343804 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1992, HEARING RES, V60, P205, DOI 10.1016/0378-5955(92)90022-F KALTENBACH JA, 1996, P 5 INT TINN SEM AM, P34 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Kaltenbach JA, 1998, HEARING RES, V124, P78, DOI 10.1016/S0378-5955(98)00119-1 KALTENBACH JA, 2001, NOISE INDUCED HEARIN, P153 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Kaltenbach JA, 1996, AUDIT NEUROSCI, V3, P57 Kanold PO, 2001, J NEUROSCI, V21, P7848 Kim JJ, 2004, J NEUROSCI RES, V77, P817, DOI 10.1002/jnr.20212 Kim JJ, 2004, J NEUROSCI RES, V77, P829, DOI 10.1002/jnr.20211 Kim SC, 1997, J ENDOUROL, V11, P103, DOI 10.1089/end.1997.11.103 Kimura A, 2000, J NEUROPHYSIOL, V84, P1894 Kowalska Sylwia, 2001, Medycyna Pracy, V52, P305 KROMER LF, 1980, ANAT EMBRYOL, V158, P227, DOI 10.1007/BF00315908 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Levine RA, 2003, EXP BRAIN RES, V153, P643, DOI 10.1007/s00221-003-1747-3 LIBERMAN MC, 1984, HEARING RES, V16, P43, DOI 10.1016/0378-5955(84)90024-8 Linke R, 2000, LARYNGO RHINO OTOL, V79, P517 Liu B, 1996, Zhonghua Er Bi Yan Hou Ke Za Zhi, V31, P231 Lockwood AH, 2001, NEUROLOGY, V56, P472 Lockwood AH, 1998, NEUROLOGY, V50, P114 LOEB M, 1967, J ACOUST SOC AM, V43, P453 LONSBURYMARTIN BL, 1981, J NEUROPHYSIOL, V46, P563 LONSBURYMARTIN BL, 2004, TINNITUS THEORY MANA, P69 Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005 MAN A, 1981, AUDIOLOGY, V20, P70 MANIS PB, 1989, J NEUROPHYSIOL, V61, P149 Manis PB, 1996, J NEUROPHYSIOL, V76, P1639 MCKEE GJ, 1992, AUDIOLOGY, V31, P313 MCSHANE DP, 1988, CLIN OTOLARYNGOL, V13, P323, DOI 10.1111/j.1365-2273.1988.tb00760.x Meikle M., 1987, P 3 INT TINN SEM MUN, P175 Meikle M. B., 1991, TINNITUS DIAGNOSIS T, P416 Meikle M. B., 1995, MECH TINNITUS, P181 Melamed SB, 2000, AUDIOLOGY, V39, P24 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T MILLS RP, 1984, INT J PEDIATR OTORHI, V7, P21, DOI 10.1016/S0165-5876(84)80050-6 MITCHELL C, 1996, P 5 INT TINN SEM AM, P180 Mitchell C R, 1993, J Am Acad Audiol, V4, P139 Moller A R, 2000, J Am Acad Audiol, V11, P115 Moller AR, 2001, NEUROL RES, V23, P565, DOI 10.1179/016164101101199009 MOLLER AR, 1992, LARYNGOSCOPE, V102, P187 MOLLER MB, 1993, LARYNGOSCOPE, V103, P421 Moore J.K., 1988, AUDITORY PATHWAY STR, P123 MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOREST DK, 1983, HEARING RES, V9, P145, DOI 10.1016/0378-5955(83)90024-2 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MORGAN DH, 1992, CRANIO, V10, P124 Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 Nicolas-Puel Cécile, 2002, Int Tinnitus J, V8, P37 NODAR RH, 1965, HEAD NECK SURG, V82, P28 Norena A, 2002, AUDIOL NEURO-OTOL, V7, P358, DOI 10.1159/000066156 NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011 Ochi K, 2003, LARYNGOSCOPE, V113, P427, DOI 10.1097/00005537-200303000-00007 OLIVER DL, 1983, J NEUROSCI, V3, P455 Onishi Ektor Tsuneo, 2004, Int Tinnitus J, V10, P13 PALOMBI PS, 1994, HEARING RES, V75, P175, DOI 10.1016/0378-5955(94)90068-X PENNER MJ, 1992, J SPEECH HEAR RES, V35, P694 PENNER MJ, 1994, EAR HEARING, V15, P416, DOI 10.1097/00003446-199412000-00002 Penner M.J., 1995, INT TINNITUS J, V1, P79 PENNER MJ, 1983, J SPEECH HEAR RES, V26, P263 Petralia RS, 2000, HEARING RES, V147, P59, DOI 10.1016/S0378-5955(00)00120-9 Petralia RS, 1996, J COMP NEUROL, V372, P356 Pośpiech Lucyna, 2003, Otolaryngol Pol, V57, P905 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 RAMACHANDRAN VS, 1998, PHANTOMS BRAIN PROBI, P328 Robertson D, 1999, HEARING RES, V136, P151, DOI 10.1016/S0378-5955(99)00120-3 RUBINSTEIN B, 1990, Journal of Craniomandibular Disorders, V4, P186 Rubinstein B, 1993, Swed Dent J Suppl, V95, P1 Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Salvi RJ, 2000, NOISE HEALTH, V2, P9 Salvi R J, 1999, Scand Audiol Suppl, V51, P1 Satar Bülent, 2003, Kulak Burun Bogaz Ihtis Derg, V10, P177 Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1 SCHOFIELD BR, 2005, HEARING RES, P89 Schuknecht HF, 1993, PATHOLOGY EAR, P672 SHEA JJ, 1975, OTOLARYNG CLIN N AM, V8, P263 Sheldrake J. B., 1992, P 4 INT TINN SEM, P395 Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M SHORE SE, 2004, ARO ABS, P410 SHORE SE, 2004, TINNITUS THEORY MANA, P125 SILVERSTEIN H, 1976, LARYNGOSCOPE, V86, P1777 SOUSSI T, 1994, ACTA OTO-LARYNGOL, V114, P135, DOI 10.3109/00016489409126031 SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004 Sułkowski W, 1999, Int J Occup Med Environ Health, V12, P177 Suneja SK, 2002, BRAIN RES, V957, P366, DOI 10.1016/S0006-8993(02)03679-X Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Temmel AFP, 1999, WIEN KLIN WOCHENSCHR, V111, P891 TERRAHE K, 1985, LARYNG RHINOL OTOL V, V64, P292, DOI 10.1055/s-2007-1008141 Terry A M, 1983, Br J Audiol, V17, P245, DOI 10.3109/03005368309081485 THOMAS RJ, 1995, J AM GERIATR SOC, V43, P1279 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8 Turrigiano GG, 1999, TRENDS NEUROSCI, V22, P221, DOI 10.1016/S0166-2236(98)01341-1 TYLER RS, 1983, J SPEECH HEAR RES, V26, P59 TYLER RS, 1984, J SPEECH HEAR RES, V27, P466 Tzounopoulos T, 2004, NAT NEUROSCI, V7, P719, DOI 10.1038/nn1272 WAGNER PG, 1991, RESP PHYSIOL, V83, P129, DOI 10.1016/0034-5687(91)90098-4 WALL M, 1987, NEUROLOGY, V37, P1034 Waller HJ, 1996, HEARING RES, V98, P169, DOI 10.1016/0378-5955(96)00090-1 Wallhausser-Franke E, 2003, EXP BRAIN RES, V153, P649, DOI 10.1007/s00221-003-1614-2 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 Weedman DL, 1996, J COMP NEUROL, V371, P311 WEINBERG RJ, 1987, NEUROSCIENCE, V20, P209, DOI 10.1016/0306-4522(87)90013-3 WEISS AD, 1984, J LARYNGOL OTOL S, V9, P82 Whittaker C K, 1982, Am J Otol, V4, P188 Willott JF, 1997, J COMP NEUROL, V385, P405 WILSON RH, 1971, J ACOUST SOC AM, V49, P1254, DOI 10.1121/1.1912488 WILSON TD, 1975, CLIN N AM, V8, P259 Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L Wright E, 1997, INT TINNITUS J, V3, P55 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 Zacharek MA, 2002, HEARING RES, V172, P137, DOI 10.1016/S0378-5955(02)00575-0 Zhang J, 2003, J NEUROSCI RES, V74, P81, DOI 10.1002/jnr.10731 Zhang J, 2004, J NEUROSCI RES, V75, P361, DOI 10.1002/jnr.10850 Zhang JS, 1998, NEUROSCI LETT, V250, P197, DOI 10.1016/S0304-3940(98)00482-0 Zhang JS, 2003, EXP BRAIN RES, V153, P655, DOI 10.1007/s00221-003-1612-4 Zhou JX, 2004, J NEUROSCI RES, V78, P901, DOI 10.1002/jnr.20343 NR 195 TC 92 Z9 99 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 200 EP 226 DI 10.1016/j.heares.2005.02.013 PG 27 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100017 PM 16081009 ER PT J AU Brozoski, TJ Bauer, CA AF Brozoski, TJ Bauer, CA TI The effect of dorsal cochlear nucleus ablation on tinnitus in rats SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 3rd Symposium on Molecular Mechanisms in Central Auditory Function, Plasticity and Disorder CY JUN 25-27, 2004 CL Jackson Hole, WY DE tinnitus; dorsal cochlear nucleus; ablation; animal model ID CENTRAL NEUROPLASTICITY; PATHOLOGICAL PAIN; LIMBIC SYSTEM; PLASTICITY; HEARING; MODEL; CAT AB A growing body of evidence implies that the dorsal cochlear nucleus (DCN) plays an important role in tinnitus. To test the hypothesis that the rostral Output of the DCN is necessary for the experience of chronic tinnitus, the dorsal DCN and the dorsal acoustic stria of rats with psychophysical evidence of tinnitus was ablated. If the DCN plays a necessary role in the generation of chronic tinnitus, ablating the DCN should decrease the evidence of tinnitus in subjects previously shown to have tinnitus. Contrary to prediction, bilateral dorsal DCN ablation did not significantly (n = 11, p = 0.707) affect the psychophysical evidence of tinnitus, and ipsilateral dorsal DCN ablation appeared to increase the evidence of tinnitus (n = 9, p = 0.018) compared to pre-ablation performance. It was concluded that the DCN does not act as a simple feed-forward source of chronic tinnitus. Alternative hypotheses were considered, among them that elevated DCN activity following acoustic trauma triggers persistent pathological changes distributed across more than one level of the auditory system. In addition to serving as a trigger, the DCN may also modify the experience of tinnitus, since the evidence of tinnitus was enhanced by ipsilateral DCN ablation. (c) 2005 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62794 USA. RP Brozoski, TJ (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol Head & Neck Surg, Springfield, IL 62794 USA. EM tbrozoski@siLimed.edu CR BAUER CA, 1999, BEHAV EVIDENCE CHRON Bauer CA, 1999, OTOLARYNG HEAD NECK, V121, P457, DOI 10.1016/S0194-5998(99)70237-8 Bauer CA, 2001, JARO, V2, P54 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O CODERRE TJ, 1993, PAIN, V52, P259, DOI 10.1016/0304-3959(93)90161-H ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Lockwood AH, 1998, NEUROLOGY, V50, P114 Mahlke C, 2004, HEARING RES, V195, P17, DOI 10.1016/j.heares.2004.03.005 MASTERTON RB, 1994, HEARING RES, V73, P209, DOI 10.1016/0378-5955(94)90237-2 Melzack R, 2001, ANN NY ACAD SCI, V933, P157 Moller A R, 2000, J Am Acad Audiol, V11, P115 Moller AR, 1997, AM J OTOL, V18, P577 Nelken I, 1996, J Basic Clin Physiol Pharmacol, V7, P199 OERTEL D, 1989, J COMP NEUROL, V283, P228, DOI 10.1002/cne.902830206 OSEN KK, 1969, ACTA OTO-LARYNGOL, V67, P352, DOI 10.3109/00016486909125462 Potashner SJ, 2000, HEARING RES, V147, P125, DOI 10.1016/S0378-5955(00)00126-X SHORE SE, 2004, 3 S MOL MECH CENTR A Sindhusake D, 2003, INT J AUDIOL, V42, P289, DOI 10.3109/14992020309078348 Wu CL, 2002, ANESTHESIOLOGY, V96, P841, DOI 10.1097/00000542-200204000-00010 YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 NR 24 TC 51 Z9 54 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2005 VL 206 IS 1-2 SI SI BP 227 EP 236 DI 10.1016/j.heares.2004.12.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 957EJ UT WOS:000231352100018 PM 16081010 ER PT J AU Gomide, VC de Francisco, AC Chadi, G AF Gomide, VC de Francisco, AC Chadi, G TI Localization of neurotensin immunoreactivity in neurons and organ of corti of rat cochlea SO HEARING RESEARCH LA English DT Article DE neurotensin; auditory; inner ear; neurotransmitter ID FIBROBLAST-GROWTH-FACTOR; TOPOGRAPHICAL DISTRIBUTION; REACTIVE ASTROCYTES; SUBSTANCE-P; GUINEA-PIG; RECEPTORS; BRAIN; PEPTIDES; NUCLEUS; SYSTEM AB The distribution of neurotensin-containing cell bodies and fibers has been observed in the central and peripheral nervous system, including sensory ganglia, but no description has been found in the peripheral auditory system. Here, we investigated the presence of neurotensin immunoreactivity in the cochlea of the adult Wistar rat. Strong neurotensin immunoreactivity was detected in the cytoplasm of the inner hair cells (IHC) and Deiters' cells of the organ of Corti. Outer hair cells (OHC) show weak immunoreaction. Neurotensin immunoreactivity was also found in the neurons and fibers of the spiral ganglia. Quantitative microdensitometric image analysis of the neurotensin immunoreactivity showed a strong immunoreaction in the hair cells of organ of Corti and a moderate to strong labeling in the spiral ganglion neurons. A series of double immunolabeling experiments demonstrated a strong neurotensin immunoreactivity in the parvalbumin immunoreactive IHC and also in the calbindin immunoreactive Deiters' cells. Weak neurotensin immunoreactivity was seen in the calbindin positive OHC. Neurofilament and parvalbumin immunoreactive neurons and fibers in the spiral ganglia showed neurotensin immunoreactivity. Calbindin immunoreactivity was not detected in the spiral ganglion neurons, which are labeled by neurotensin immunoreactivity. The presence of neurotensin in the cochlea may be related to its modulation of neurotransmission in the peripheral auditory pathway. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Lab Neuroregenerat, BR-05508900 Sao Paulo, Brazil. RP Chadi, G (reprint author), Univ Sao Paulo, Inst Biomed Sci, Dept Anat, Lab Neuroregenerat, Av Prof Lineu Prestes,2415, BR-05508900 Sao Paulo, Brazil. EM gerchadi@usp.br CR ALTSCHULER RA, 1986, AM J OTOLARYNG, V7, P100, DOI 10.1016/S0196-0709(86)80038-2 ATOJI Y, 1995, J COMP NEUROL, V353, P67, DOI 10.1002/cne.903530108 Cerutti SM, 2000, CELL BIOL INT, V24, P35, DOI 10.1006/cbir.1999.0451 CHADI G, 1993, EXP BRAIN RES, V97, P145 CHADI G, 1993, NEUROSCI LETT, V160, P171, DOI 10.1016/0304-3940(93)90406-B DESPRES G, 1991, NEUROREPORT, V2, P639, DOI 10.1097/00001756-199111000-00001 Dufourny L, 1998, J NEUROENDOCRINOL, V10, P165, DOI 10.1046/j.1365-2826.1998.00190.x FEX J, 1986, HEARING RES, V22, P249, DOI 10.1016/0378-5955(86)90102-4 Gomide VC, 1999, BRAIN RES, V835, P162, DOI 10.1016/S0006-8993(99)01557-7 Hermans E, 1998, PHARMACOL THERAPEUT, V79, P89, DOI 10.1016/S0163-7258(98)00009-6 HSU SM, 1981, J HISTOCHEM CYTOCHEM, V29, P577 JENNES L, 1982, J COMP NEUROL, V210, P211, DOI 10.1002/cne.902100302 JOHNSON GD, 1981, J IMMUNOL METHODS, V43, P349, DOI 10.1016/0022-1759(81)90183-6 Jolas T, 1997, PROG NEUROBIOL, V52, P455, DOI 10.1016/S0301-0082(97)00025-7 KALIVAS PW, 1982, J COMP NEUROL, V210, P225, DOI 10.1002/cne.902100303 KESSLER JP, 1989, J HISTOCHEM CYTOCHEM, V29, P577 KITABGI P, 1985, Reviews in Clinical and Basic Pharmacology, V5, P397 Li AH, 2001, J NEUROPHYSIOL, V85, P1479 OSBAHR AJ, 1981, J PHARMACOL EXP THER, V217, P645 ROSTENE W, 1992, ANN NY ACAD SCI, V668, P217, DOI 10.1111/j.1749-6632.1992.tb27352.x Rostene WH, 1997, FRONT NEUROENDOCRIN, V18, P115, DOI 10.1006/frne.1996.0146 ROWE W, 1992, ANN NY ACAD SCI, V668, P365, DOI 10.1111/j.1749-6632.1992.tb27378.x Samsam M, 2002, REV NEUROLOGIA, V34, P724 STAPELFELDT WH, 1989, J PHYSIOL-LONDON, V411, P325 Tyler-McMahon BM, 2000, REGUL PEPTIDES, V93, P125, DOI 10.1016/S0167-0115(00)00183-X UHL GR, 1979, BRAIN RES, V167, P77, DOI 10.1016/0006-8993(79)90264-6 Vincent JP, 1999, TRENDS PHARMACOL SCI, V20, P302, DOI 10.1016/S0165-6147(99)01357-7 Vincent JP, 1995, CELL MOL NEUROBIOL, V15, P501, DOI 10.1007/BF02071313 YLIKOSKI J, 1985, ACTA OTO-LARYNGOL, V99, P353, DOI 10.3109/00016488509108923 Zamboni L, 1967, J CELL BIOL, V35, P148 ZHANG X, 1993, NEUROSCIENCE, V57, P365, DOI 10.1016/0306-4522(93)90069-R ZHANG X, 1995, J NEUROSCI, V15, P2733 Zhao CQ, 1998, CHINESE MED J-PEKING, V111, P644 NR 33 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 1 EP 6 DI 10.1016/j.heares.2005.02.011 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400001 PM 15953510 ER PT J AU Fay, RR AF Fay, RR TI Perception of pitch by goldfish SO HEARING RESEARCH LA English DT Article DE fish; harmonic complex; periodicity pitch; residue pitch ID AUDITORY STREAM SEGREGATION; CARASSIUS-AURATUS; ACOUSTIC RESPONSE; NERVE-FIBERS; SOUND; HEARING; SIGNALS; MODELS; NOISE; FISH AB Classical conditioning and stimulus generalization methods have revealed much about the sense of hearing in non-human animals, and are now used here to investigate how goldfish perceive a variety of complex sounds, including multi-harmonic complexes and rippled noise (RN). In several experiments, animals were conditioned to respond to one type of complex sound, and were then tested for generalization to other sounds differing along one or more acoustic dimensions from the conditioning sounds. Overall, generalization occurred only to the extent that the conditioning and test sounds were essentially similar in spectral range and, in most cases, waveform periodicity. For example, goldfish showed inverted V-shaped generalization gradients to harmonic complexes varying in fundamental frequency after conditioning to complexes having a fundamental frequency of 100 Hz. In several cases, similar gradients were observed whether the fundamental frequency component was present or absent in conditioning and testing complexes, indicating that goldfish, like other vertebrate listeners, do not "miss the fundamental" when it is missing. This generalization pattern tended to disappear when harmonic complexes were used that had random phase relations among the components, or slight mistuning of all components. In a few cases, patterns of generalization were determined by as yet unidentified acoustic features. Goldfish did not generalize to RN or harmonic complexes after conditioning to tones, and vice versa, in spite of the three signal types having fundamental frequency components and periodicity in common. Moreover, goldfish did not generalize robustly to infinitely iterated rippled noise after conditioning to harmonic complexes with a prominent periodic envelope, and vice versa, in spite of the two signal types having similar spectra and pitches as judged by human listeners. These and other results suggest that the pitch of harmonic complexes is prominent in goldfish generalization behavior and that this pitch-like dimension arises primarily from the signal's periodicity. The perceptions of single tones, RNs, and harmonic complexes having the sane fundamental frequency are fundamentally different. It is concluded that the different perceptions of these signals arise in part from differences in periodic envelope prominence and spectral envelope, and possibly in the stochastic versus deterministic natures of their respective waveforms. (c) 2005 Elsevier B.V. All rights reserved. C1 Loyola Univ, Parmly Hearing Inst, Chicago, IL 60626 USA. Loyola Univ, Dept Psychol, Chicago, IL 60626 USA. RP Fay, RR (reprint author), Loyola Univ, Parmly Hearing Inst, 6525 N Sheridan Rd, Chicago, IL 60626 USA. EM rfay@luc.edu CR BRANTLY RK, 1994, ETHOLOGY, V96, P132 Crawford JD, 1997, J COMP PHYSIOL A, V180, P439, DOI 10.1007/s003590050061 CYNX J, 1986, J COMP PSYCHOL, V100, P356 DECHEVEIGNE A, 2005, PITCH NEURAL MODELIN Fay R. R., 1997, DIVERSITY AUDITORY M, P69 FAY RR, 1992, HEARING RES, V59, P101, DOI 10.1016/0378-5955(92)90107-X FAY RR, 1972, J ACOUST SOC AM, V52, P660, DOI 10.1121/1.1913155 FAY RR, 1970, J EXP ANAL BEHAV, V14, P353, DOI 10.1901/jeab.1970.14-353 FAY R, 1969, J AUD RES, V9, P112 FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X Fay RR, 1998, HEARING RES, V120, P17, DOI 10.1016/S0378-5955(98)00048-3 FAY RR, 1978, J ACOUST SOC AM, V63, P136, DOI 10.1121/1.381705 FAY RR, 1994, HEARING RES, V76, P158, DOI 10.1016/0378-5955(94)90097-3 FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8 FAY RR, 1986, J ACOUST SOC AM, V79, P1883, DOI 10.1121/1.393196 Fay RR, 2000, HEARING RES, V149, P1, DOI 10.1016/S0378-5955(00)00168-4 Fay RR, 2000, JARO, V1, P120, DOI 10.1007/s101620010015 Fay RR, 1996, AUDIT NEUROSCI, V2, P377 Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6 Guttman N, 1963, PSYCHOL STUDY SCI, V5 Hartmann W. M., 1998, SIGNALS SOUND SENSAT Hartmann W. M., 1988, AUDITORY FUNCTION, P623 HEFFNER H, 1976, J ACOUST SOC AM, V59, P915, DOI 10.1121/1.380951 LU Z, 1993, J COMP PHYSIOL A, V173, P33 MCCORMICK CA, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P323 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1409, DOI 10.1121/1.410285 PATTERSON RD, 1994, J ACOUST SOC AM, V96, P1419, DOI 10.1121/1.410286 SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 Schouten J. F., 1970, FREQUENCY ANAL PERIO, P41 Shofner W. P., 1995, AUDIT NEUROSCI, V1, P127 Terhardt E., 1970, FREQUENCY ANAL PERIO, P278 TOMLINSON RWW, 1988, J ACOUST SOC AM, V84, P560, DOI 10.1121/1.396833 Von Frisch K, 1936, BIOL REV CAMB PHILOS, V11, P210 YOST WA, 1978, J ACOUST SOC AM, V63, P1166, DOI 10.1121/1.381824 Yost WA, 1996, J ACOUST SOC AM, V100, P511, DOI 10.1121/1.415873 NR 35 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 7 EP 20 DI 10.1016/j.heares.2005.02.006 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400002 PM 15953511 ER PT J AU Stevens, HE Wickesberg, RE AF Stevens, HE Wickesberg, RE TI Auditory nerve representation of naturally-produced vowels with variable acoustics SO HEARING RESEARCH LA English DT Article ID TEMPORAL DISCHARGE PATTERNS; STEADY-STATE VOWELS; PIG COCHLEAR-NERVE; STOP CONSONANTS; COMPLEX TONES; FIBERS; RESPONSES; SPEECH; SOUNDS; SYLLABLES AB This investigation compared the encoding of naturally-produced, whispered and normally-voiced vowels by auditory nerve fibers. Speech syllables containing the vowels /o/ and /ae/ were produced by two female speakers and presented at three intensities to ketamine-anesthetized chinchillas. Six different representations of the spectral components in the vowels in the responses of the auditory nerve fibers were evaluated. For both normal and whispered vowels over a 30 dB range, the formant peaks in the vowel were best displayed using rate-place representations. The spectral detail in the vowel was revealed by average localized synchronized rates (ALSR) and autocorrelations of individual peristimulus time histograms. The average localized interval rates (ALIR), autocorrelations of ensemble responses, and autocorrelations of individual spike trains demonstrated poor representations of vowel spectra, although the frequency components of normally-voiced vowels had better representations than those of whispered vowels. These analyses suggest that rate-based and synchronization-based measures yields two very different pieces of information, but only a normalized rate-based measure consistently identified the formants of both the whispered and normally-voiced vowels. (c) 2005 Published by Elsevier B.V. C1 Univ Illinois, Dept Psychol, Champaign, IL 61820 USA. Univ Illinois, Neurosci Program, Urbana, IL 61801 USA. RP Wickesberg, RE (reprint author), Univ Illinois, Dept Psychol, Champaign, IL 61820 USA. EM hesteven@uiuc.edu; wickesbe@uiuc.edu CR BREGMAN AS, 1985, PERCEPT PSYCHOPHYS, V37, P483, DOI 10.3758/BF03202881 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 Denes P. B., 1993, SPEECH CHAIN DENG L, 1987, J ACOUST SOC AM, V82, P1977, DOI 10.1121/1.395642 Hillenbrand JM, 2003, J ACOUST SOC AM, V113, P1044, DOI 10.1121/1.1513647 KALLAIL KJ, 1984, J PHONETICS, V12, P175 KALLAIL KJ, 1985, J PHONETICS, V13, P11 Kewley-Port D, 1998, J ACOUST SOC AM, V103, P1654, DOI 10.1121/1.421264 MCADAMS S, 1989, J ACOUST SOC AM, V86, P2148, DOI 10.1121/1.398475 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 Olive J. P., 1993, ACOUSTICS AM ENGLISH PALMER AR, 1986, J ACOUST SOC AM, V79, P100, DOI 10.1121/1.393633 PALMER AR, 1990, J ACOUST SOC AM, V88, P1412, DOI 10.1121/1.400329 Pickett J. M., 1980, SOUNDS SPEECH COMMUN Recio A, 2002, J ACOUST SOC AM, V111, P2213, DOI 10.1121/1.1468878 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1980, J ACOUST SOC AM, V68, P858, DOI 10.1121/1.384825 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SINEX DG, 1983, J ACOUST SOC AM, V79, P1896 Stevens HE, 1999, HEARING RES, V131, P47, DOI 10.1016/S0378-5955(99)00014-3 TARTTER VC, 1989, J ACOUST SOC AM, V86, P1678, DOI 10.1121/1.398598 TARTTER VC, 1991, PERCEPT PSYCHOPHYS, V49, P365, DOI 10.3758/BF03205994 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 27 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 21 EP 34 DI 10.1016/j.heares.2005.02.008 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400003 PM 15953512 ER PT J AU Bobbin, RP Salt, AN AF Bobbin, RP Salt, AN TI ATP-gamma-S shifts the operating point of outer hair cell transduction towards scala tympani SO HEARING RESEARCH LA English DT Article DE ATP receptor; ATP-gamma-S; operating point; cochlear microphonic; basilar membrane mechanics ID GUINEA-PIG COCHLEA; LOW-FREQUENCY TONES; MECHANOELECTRICAL TRANSDUCTION; PHARMACOLOGICAL EVIDENCE; PURINERGIC RECEPTORS; SUPPORTING CELLS; ADAPTATION; MOVEMENT; CALCIUM; SENSITIVITY AB ATP receptor agonists and antagonists alter cochlear mechanics as measured by changes in distortion product otoacoustic emissions (DPOAE). Some of the effects on DPOAEs are consistent with the hypothesis that ATP affects mechano-electrical transduction and the operating point of the outer hair cells (OHCs). This hypothesis was tested by monitoring the effect of ATP-gamma-S on the operating point of the OHCs. Guinea pigs anesthetized with urethane and with sectioned middle ear muscles were used. The cochlear microphonic (CM) was recorded differentially (scala vestibuli referenced to scala tympani) across the basal turn before and after perfusion (20 min) of the perilymph compartment with artificial perilymph (AP) and ATP-gamma-S dissolved in AP. The operating point was derived from the cochlear microphonics (CM) recorded in response low frequency (200 Hz) tones at high level (106, 112 and 118 dB SPL). The analysis procedure used a Boltzmann function to simulate the CM waveform and the Boltzmann parameters were adjusted to best-fit the calculated waveform to the CM. Compared to the initial perfusion with AP, ATP-gamma-S (333 mu M) enhanced peak clipping of the positive peak of the CM (that occurs during organ of Corti displacements towards scala tympani), which was in keeping with ATP-induced displacement of the transducer towards scala tympani. CM waveform analysis quantified the degree of displacement and showed that the changes were consistent with the stimulus being centered on a different region of the transducer curve. The change of operating point meant that the stimulus was applied to a region of the transducer curve where there was greater saturation of the output on excursions towards scala tympani and less saturation towards scala vestibuli. A significant degree of recovery of the operating point was observed after washing with AP. Dose response curves generated by perfusing ATP-gamma-S (333 mu M) in a cumulative manner yielded an EC50 of 19.8 mu M. The ATP antagonist PPADS (0.1 mM) failed to block the effect of ATP-gamma-S on operating point, suggesting the response was due to activation of metabotropic and not ionotropic ATP receptors. Multiple perfusions of AP had no significant effect (118 and 112 dB) or moved the operating point slightly (106 dB) in the direction opposite of ATP-gamma-S. Results are consistent with an ATP-gamma-S induced transducer change comparable to a static movement of the organ of Corti or reticular lamina towards scala tympani. (c) 2005 Elsevier B.V. All rights reserved. C1 Louisiana State Univ, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, New Orleans, LA 70112 USA. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, 533 Bolivar St,5th Floor, New Orleans, LA 70112 USA. EM rbobbi@lsuhsc.edu CR ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 ASSAD JA, 1989, P NATL ACAD SCI USA, V86, P2918, DOI 10.1073/pnas.86.8.2918 Bian L, 1998, J ACOUST SOC AM, V104, P2261, DOI 10.1121/1.423739 Bobbin RP, 2001, NEUROREPORT, V12, P2923, DOI 10.1097/00001756-200109170-00034 BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 2000, GENETICS HEARING LOS, P87 BOBBIN RP, 2001, HAIR CELLS MICROMECH, P129 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1994, BIOCHEM BIOPH RES CO, V201, P1263, DOI 10.1006/bbrc.1994.1841 Flock A, 1999, J NEUROSCI, V19, P4498 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 Kemp DT, 1998, OTOACOUSTIC EMISSION, P1 Kirk DL, 1997, HEARING RES, V112, P69, DOI 10.1016/S0378-5955(97)00104-4 Kirk DL, 1997, HEARING RES, V112, P49, DOI 10.1016/S0378-5955(97)00105-6 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 Lagostena L, 2001, J PHYSIOL-LONDON, V531, P693, DOI 10.1111/j.1469-7793.2001.0693h.x Le Prell CG, 2001, PHYSL EAR, P575 MILLS DM, 1998, OTOACOUSTIC EMISSION, P85 Parker BS, 2003, CANCER BIOL THER, V2, P14 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 PATUZZI R, 1990, HEARING RES, V45, P15, DOI 10.1016/0378-5955(90)90179-S PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Ricci AJ, 1998, J PHYSIOL-LONDON, V506, P159, DOI 10.1111/j.1469-7793.1998.159bx.x Salt AN, 2004, JARO-J ASSOC RES OTO, V5, P203, DOI 10.1007/s10162-003-4032-z Sirjani DB, 2004, J ACOUST SOC AM, V115, P1219, DOI 10.1121/1.1647479 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Slepecky N. B., 1996, COCHLEA, P44 Sueta T, 2003, HEARING RES, V183, P97, DOI 10.1016/S0378-5955(03)00221-1 VALAJKOVIC SM, 1996, HEARING RES, V99, P31 Wu YC, 1999, J NEUROPHYSIOL, V82, P2171 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 36 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 35 EP 43 DI 10.1016/j.heares.2005.02.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400004 PM 15953513 ER PT J AU Parazzini, M Hall, AJ Lutman, ME Kapadia, S AF Parazzini, M Hall, AJ Lutman, ME Kapadia, S TI Effect of aspirin on phase gradient of 2F1-F2 distortion product otoacoustic emissions SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emissions; aspirin; phase gradient ID ACOUSTIC EMISSIONS; GUINEA-PIG; HUMAN EAR; SALICYLATE; MECHANISMS; DPOAE; MICROSTRUCTURE AB It is well known that aspirin consumption temporarily reduces overall otoacoustic emission (OAE) amplitude in humans. However, little is known about changes in the separate components of distortion product otoacoustic emissions (DPOAE), which may be distinguished by examining phase gradients. The effects of aspirin on the phase gradient of the DPOAE 2F1-F2 obtained with fixed frequency ratio sweeps were studied longitudinally in a group of twelve subjects in whom a temporary hearing loss was induced by aspirin consumption. DPOAE were recorded daily for two days pre-aspirin consumption, during the three days of aspirin consumption and two days afterwards. DP-grams were recorded over a restricted frequency range centered on 2, 3, 4 and 6 kHz with the following stimulus levels: L1/L2 of 60/50-80/70 in 10-dB steps. The effects of aspirin on the phase gradients varied between the subjects and across frequency: the general trend was that the phase gradient became steeper across successive sessions for the higher frequencies, while no significant effect was found at the lower frequencies. These results suggest that aspirin may have more persistent effects on cochlear function than are disclosed by measurements of hearing threshold level or DPOAE amplitude. Particularly, DPOAE phase gradient appears to be increased by aspirin consumption and has not recovered two days after cessation of aspirin intake, despite almost complete recovery of DPOAE amplitude and hearing threshold levels. These findings may suggest differential effects on the distortion and reflection mechanisms considered to underlie DPOAE generation. (c) 2005 Elsevier B.V. All rights reserved. C1 CNR, Ist Ingn Biomed ISIB, I-20133 Milan, Italy. Univ Southampton, Inst Sound & Vibrat Res, Southampton SO9 5NH, Hants, England. RP Parazzini, M (reprint author), CNR, Ist Ingn Biomed ISIB, Piazza Leonardo Vinci 32, I-20133 Milan, Italy. EM marta.parazzini@polimi.it RI Parazzini, Marta/J-8175-2014 OI Parazzini, Marta/0000-0001-9008-7530 CR Beveridge HA, 1996, HEARING RES, V99, P110, DOI 10.1016/S0378-5955(96)00091-3 BROWN AM, 1993, J ACOUST SOC AM, V93, P3298, DOI 10.1121/1.405714 CARLYON RP, 1993, HEARING RES, V66, P233, DOI 10.1016/0378-5955(93)90143-O Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 Janssen T, 2000, J ACOUST SOC AM, V107, P1790, DOI 10.1121/1.428578 Kalluri R, 2001, J ACOUST SOC AM, V109, P622, DOI 10.1121/1.1334597 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Knight RD, 2000, J ACOUST SOC AM, V107, P457, DOI 10.1121/1.428351 Knight RD, 1999, J ACOUST SOC AM, V106, P1420, DOI 10.1121/1.427145 Knight RD, 2001, J ACOUST SOC AM, V109, P1513, DOI 10.1121/1.1354197 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 LONG GR, 1991, J ACOUST SOC AM, V89, P1201, DOI 10.1121/1.400651 LONG GR, 1988, HEARING RES, V36, P125, DOI 10.1016/0378-5955(88)90055-X MCCOY MJ, 1990, ASHA MONOGR, P37 MCFADDEN D, 1984, J ACOUST SOC AM, V76, P443, DOI 10.1121/1.391585 RUSSELL IJ, 1995, AUDIT NEUROSCI, V1, P309 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 Shera CA, 1999, J ACOUST SOC AM, V105, P782, DOI 10.1121/1.426948 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E TUNSTALL MJ, 1994, BRIT J AUDIOL, V27, P332 WIER CC, 1988, J ACOUST SOC AM, V84, P230, DOI 10.1121/1.396970 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 NR 27 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 44 EP 52 DI 10.1016/j.heares.2005.02.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400005 PM 15953514 ER PT J AU Junius, D Dau, T AF Junius, D Dau, T TI Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; frequency following response; cochlear traveling wave; stimulus rate; neural adaptation ID SHORT-TERM ADAPTATION; HIGH CLICK RATE; RISE-FALL TIME; EVOKED-RESPONSE; NERVE FIBERS; INTERSTIMULUS-INTERVAL; FREQUENCY SPECIFICITY; MASKING FUNCTIONS; HEARING-LOSS; TONE-BURSTS AB The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz exhibited the same amplitude as that to the chirp presented in the traditional single-stimulus;paradigm at a rate of 13 Hz. For a corresponding experiment with bandlimited chirps of 4 ms duration, where the within-train rate was 250 Hz, a clear reduction of the response amplitude was observed. This nonlinearity in terms of temporal processing most likely reflects effects of short-term adaptation. Overall, the results of the present study further demonstrate the importance of cochlear processing for the formation of brainstem potentials. The data may provide constraints on future models of peripheral processing in the human auditory system. The findings might also be useful for the development of effective stimulation paradigms in clinical applications. (c) 2005 Elsevier B.V. All rights reserved. C1 Carl Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. Tech Univ Denmark, Ctr Appl Hearing Res, DK-2800 Lyngby, Denmark. RP Dau, T (reprint author), Carl Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. EM tda@oersted.dtu.dk CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477 AREHOLE S, 1987, HEARING RES, V30, P23, DOI 10.1016/0378-5955(87)90179-1 AREHOLE S, 1989, AUDIOLOGY, V28, P92 BEKESY, 1990, EXPT HEARING BURKARD R, 1983, J ACOUST SOC AM, V74, P1214, DOI 10.1121/1.390025 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 Dau T, 2003, J ACOUST SOC AM, V113, P936, DOI 10.1121/1.1534833 DEBOER E, 1980, PHYS REP, V62, P87, DOI 10.1016/0370-1573(80)90100-3 DEBRUYNE F, 1982, ORL J OTO-RHINO-LARY, V44, P36 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 Fobel O, 2004, J ACOUST SOC AM, V116, P2213, DOI 10.1121/1.1787523 GORGA MP, 1981, J ACOUST SOC AM, V70, P1310, DOI 10.1121/1.387145 GORGA MP, 1989, EAR HEARING, V10, P217, DOI 10.1097/00003446-198908000-00002 Granzow M., 2001, Zeitschrift fur Audiologie, V40 HARKINS SW, 1979, INT J NEUROSCI, V10, P7 HECOX K, 1976, J ACOUST SOC AM, V60, P1187, DOI 10.1121/1.381194 JACOBSON JT, 1980, J OTOLARYNGOL, V9, P493 JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517 JIANG ZD, 1991, AUDIOLOGY, V30, P173 KALTENBACH JA, 1993, HEARING RES, V67, P35, DOI 10.1016/0378-5955(93)90229-T KIANG NYS, 1975, NERVOUS SYSTEM, V3, P81 Kiang NY-s, 1965, DISCHARGE PATTERNS S KODERA K, 1977, Scandinavian Audiology, V6, P205, DOI 10.3109/01050397709043122 KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186 LASKY RE, 1991, DEV PSYCHOBIOL, V24, P51, DOI 10.1002/dev.420240105 Polyakov A, 2003, CLIN NEUROPHYSIOL, V114, P366, DOI 10.1016/S1388-2457(02)00372-3 PRATT H, 1976, ARCH OTO-RHINO-LARYN, V212, P85, DOI 10.1007/BF00454268 Pratt H, 2004, HEARING RES, V193, P83, DOI 10.1016/j.heares.2004.03.004 Riedel H., 2001, Zeitschrift fur Audiologie, V40 Rupp A, 2002, HEARING RES, V174, P19, DOI 10.1016/S0378-5955(02)00614-7 SCOTT ML, 1978, INT J NEUROSCI, V8, P147, DOI 10.3109/00207457809150392 SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0 VanCampen LE, 1997, HEARING RES, V103, P35, DOI 10.1016/S0378-5955(96)00161-X WALTON JP, 1995, HEARING RES, V88, P19, DOI 10.1016/0378-5955(95)00093-J Wegner O, 2002, J ACOUST SOC AM, V111, P1318, DOI 10.1121/1.1433805 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 WESTERMAN LA, 1985, HEARING RES, V17, P197, DOI 10.1016/0378-5955(85)90022-X WESTERMAN LA, 1987, J ACOUST SOC AM, V81, P680, DOI 10.1121/1.394836 NR 41 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 53 EP 67 DI 10.1016/j.heares.2005.03.001 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400006 PM 15953515 ER PT J AU de Groot, JCMJ Hendriksen, EGJ Smoorenburg, GF AF de Groot, JCMJ Hendriksen, EGJ Smoorenburg, GF TI Reduced expression of sialoglycoconjugates in the outer hair cell glycocalyx after systemic aminoglycoside administration SO HEARING RESEARCH LA English DT Article DE cochlea; outer hair cells; glycocalyx sialoglycoconjugates; aminoglycoside ototoxicity; gentamicin; neomycin ID PIG INNER-EAR; ENDOPLASMIC-RETICULUM STRESS; WHEAT-GERM-AGGLUTININ; GUINEA-PIG; IN-VITRO; GENTAMICIN OTOTOXICITY; COCHLEAR CULTURES; HYDROPIC COCHLEAS; DRUG OTOTOXICITY; LECTIN-BINDING AB In this study we investigated the effect of systemic aminoglycoside administration on the expression of sialoglycoconjugates in the outer hair cell (OHC) glycocalyx of the adult guinea pig. Sialoglycoconjugates were visualized by means of ultrastructural lectin cytochemistry, using Lunax flavus agglutinin (LFA) and wheat germ agglutinin (WGA) as probes. Labelling densities were determined for the apical membranes (including the stereocilia and stereociliary cross-links) and basolateral membranes of OHCs in the respective (basal, middle and apical) cochlear turns from animals that had been treated with gentamicin or neomycin for 5 or 15 consecutive days. Our results indicate that: (1) sialoglycoconjugate expression in the OHC glycocalyx demonstrates an intracochlear gradient decreasing towards the apical turn; (2) OHCs demonstrate a polarity in sialoglycoconjugate expression, in that the basolateral membranes contain more sialoglycoconjugates per surface area than the apical membranes; (3) aminoglycoside administration results in reduced expression of sialoglycoconjugates in the OHC glycocalyx; in this respect, basal-turn OHCs are more susceptible than those in the middle and apical turns; (4) reduction in sialoglycoconjugate expression after aminoglycoside administration is more prominent in the basolateral membranes; and (5) the difference in ototoxic potencies between gentamicin and neomycin is not reflected at the level of sialoglycoconjugate expression. The present data support our earlier hypothesis that aminoglycosides, already at an early phase of intoxication, interfere with the function of the endoplasmic reticulum and/or the Golgi apparatus, implying that these organelles play a crucial role in the initial phase of aminoglycoside-induced OHC degeneration. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Ctr Med, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP de Groot, JCMJ (reprint author), Univ Utrecht, Ctr Med, Dept Otorhinolaryngol, Hearing Res Labs, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. EM J.C.M.J.deGroot@kmb.azu.nl CR ARAN JM, 1995, HEARING RES, V82, P179, DOI 10.1016/0378-5955(94)00175-P Bertolaso L, 2003, AUDIOL NEURO-OTOL, V8, P38, DOI 10.1159/000067890 Bertolaso L, 2001, AUDIOLOGY, V40, P327 Bobbin RP, 2003, HEARING RES, V184, P51, DOI 10.1016/S0378-5955(03)00230-2 Bodmer D, 2003, LARYNGOSCOPE, V113, P452, DOI 10.1097/00005537-200303000-00012 DAMJANOV I, 1987, LAB INVEST, V57, P5 DEGROOT JCMJ, 1994, IMMUNOBIOLOGY IN OTORHINOLARYNGOLOGY, P313 DEGROOT JCMJ, 1991, ACTA OTO-LARYNGOL, V111, P273, DOI 10.3109/00016489109137387 DEGROOT JCMJ, 1990, HEARING RES, V50, P35, DOI 10.1016/0378-5955(90)90031-J DEGROOT JCMJ, 1988, HEARING RES, V35, P39, DOI 10.1016/0378-5955(88)90038-X Dehne N, 2002, HEARING RES, V169, P47, DOI 10.1016/S0378-5955(02)00338-6 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 DULON D, 1993, CR ACAD SCI III-VIE, V316, P682 FIKES JD, 1994, TOXICOL PATHOL, V22, P15 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357 GARETZ SL, 1996, HDB AUDITORY RES, V7, P116 GILLOYZAGA P, 1988, HEARING RES, V34, P149, DOI 10.1016/0378-5955(88)90102-5 GOVAERTS PJ, 1990, TOXICOL LETT, V52, P227, DOI 10.1016/0378-4274(90)90033-I GRIFFITHS G, 1984, J ULTRA MOL STRUCT R, V89, P65, DOI 10.1016/S0022-5320(84)80024-6 Griffiths G., 1993, FINE STRUCTURE IMMUN, P371 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HIEL H, 1992, ACTA OTO-LARYNGOL, V112, P272 HIEL H, 1993, AUDIOLOGY, V32, P78 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Imamura S, 2003, JARO, V4, P196, DOI 10.1007/s10162-002-2037-7 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Katori Y, 1996, J ELECTRON MICROSC, V45, P207 Kaufman RJ, 1999, GENE DEV, V13, P1211, DOI 10.1101/gad.13.10.1211 KOSSL M, 1990, HEARING RES, V44, P217, DOI 10.1016/0378-5955(90)90082-Z Leathem AJ, 1986, IMMUNOCYTOCHEMISTRY, P167 LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0 MCDOWELL B, 1989, HEARING RES, V40, P221, DOI 10.1016/0378-5955(89)90163-9 PLINKERT PK, 1992, EUR ARCH OTO-RHINO-L, V249, P67 POSTMA DS, 1978, HISTOCHEM J, V10, P53, DOI 10.1007/BF01003414 Rao RV, 2001, J BIOL CHEM, V276, P33869, DOI 10.1074/jbc.M102225200 Rao RV, 2002, J BIOL CHEM, V277, P21836, DOI 10.1074/jbc.M202726200 Riché G., 1989, Cahiers de la Recherche-Développement, P57 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E ROTH J, 1993, HISTOCHEM J, V25, P687 RUEDA J, 1991, 14 MIDW M ASS RES OT, P15 RYBAK LP, 1986, ANNU REV PHARMACOL, V26, P79 Sandoval RM, 2004, AM J PHYSIOL-RENAL, V286, pF617, DOI 10.1152/ajprenal.00130.2003 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 SIMONS K, 1985, ANNU REV CELL BIOL, V1, P243 Stein MP, 2002, TRENDS CELL BIOL, V12, P374, DOI 10.1016/S0962-8924(02)02331-0 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 Sundin DP, 2001, J AM SOC NEPHROL, V12, P114 TACHIBANA M, 1990, EUR ARCH OTO-RHINO-L, V247, P240 TACHIBANA M, 1987, HEARING RES, V27, P239, DOI 10.1016/0378-5955(87)90005-0 TAKUMIDA M, 1989, ACTA OTO-LARYNGOL, V107, P39, DOI 10.3109/00016488909127477 TAKUMIDA M, 1989, J LARYNGOL OTOL, V103, P133 TAKUMIDA M, 1989, ARCH OTO-RHINO-LARYN, V246, P26, DOI 10.1007/BF00454130 Takumida M, 1988, Acta Otolaryngol Suppl, V458, P84 Takumida M, 1999, ORL J OTO-RHINO-LARY, V61, P63, DOI 10.1159/000027643 TAKUMIDA M, 1989, J LARYNGOL OTOL, V103, P357, DOI 10.1017/S0022215100108953 THORNE PR, 1987, HEARING RES, V30, P253, DOI 10.1016/0378-5955(87)90141-9 TOKUYASU KT, 1989, HISTOCHEM J, V21, P163, DOI 10.1007/BF01007491 VANBENTHEM PPG, 1992, ACTA OTO-LARYNGOL, V112, P976, DOI 10.3109/00016489209137498 VANBENTHEM PPG, 1993, EUR ARCH OTO-RHINO-L, V250, P73 Ylikoski J, 2002, HEARING RES, V163, P71, DOI 10.1016/S0378-5955(01)00380-X Zhang J, 1991, Zhonghua Er Bi Yan Hou Ke Za Zhi, V26, P3 NR 63 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 68 EP 82 DI 10.1016/j.heares.2005.03.002 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400007 PM 15953516 ER PT J AU Khan, AM Whiten, DM Nadol, JB Eddington, DK AF Khan, AM Whiten, DM Nadol, JB Eddington, DK TI Histopathology of human cochlear implants: Correlation of psychophysical and anatomical measures SO HEARING RESEARCH LA English DT Article DE cochlear implantation; spiral ganglion cells; psychophysics ID SENSORINEURAL HEARING-LOSS; SPIRAL GANGLION-CELLS; SPEECH-RECOGNITION; ELECTRODE DISCRIMINATION; TEMPORAL BONES; COST-UTILITY; PLACE-PITCH; PERCEPTION; PATIENT; RECONSTRUCTION AB The cadavaric temporal bones of five subjects who underwent cochlear implantation during life (2 Nucleus and 3 Ineraid) were analyzed using two-dimensional (2D) reconstruction of serial sections to determine the number of surviving spiral ganglion cells (SGCs) in the region of each electrode of the implanted arrays. The last psychophysical threshold and maximum-comfortable sensation level treasured for each electrode were compared to their respective SGC count to determine the across-electrode psychophysical variance accounted for by the SGC counts. Significant correlations between psychophysical measures and SGC counts were found in only two of the five subjects: one Nucleus implantee (e.g., r=-0.71; p < 0.001 for threshold vs. count) and one Ineraid implantee (e.g., r=-0.86; p < 0.05 for threshold vs. count). A three-dimensional (3D) model of the implanted cochlea was formulated using the temporal-bone anatomy of the Nucleus subject for whom the 2D analysis did not result in significant correlations between counts and psychophysical measures. Predictions of the threshold vs. electrode profile were closer to the measured profile for the 3D model than for the 2D analysis. These results lead us to hypothesize that 3D techniques will be required to asses the impact of peripheral anatomy on the benefit patients derive from cochlear implantation. (c) 2005 Elsevier B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, Boston, MA 02114 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02114 USA. MIT, Div Hlth Sci & Technol, Speech & Hearing Biosci & Technol Program, Cambridge, MA 02369 USA. MIT, Elect Res Lab, Cambridge, MA 02369 USA. RP Eddington, DK (reprint author), Massachusetts Eye & Ear Infirm, Cochlear Implant Res Lab, 243 Charles St, Boston, MA 02114 USA. EM dke@cirl.meei.harvard.edu CR Anderson Ilona, 2002, Ear Nose Throat J, V81, P229 Blamey P, 1996, Audiol Neurootol, V1, P293 BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 CAZALS Y, 1994, J ACOUST SOC AM, V96, P2048, DOI 10.1121/1.410146 Clark G M, 1988, Acta Otolaryngol Suppl, V448, P1 COLLINS LM, 1994, J ACOUST SOC AM, V96, P2731, DOI 10.1121/1.411279 Collins LM, 1997, J ACOUST SOC AM, V101, P440, DOI 10.1121/1.417989 Dawson PW, 2000, EAR HEARING, V21, P597, DOI 10.1097/00003446-200012000-00007 Donaldson GS, 2000, J ACOUST SOC AM, V107, P1645, DOI 10.1121/1.428449 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 FAYAD J, 1991, ANN OTO RHINOL LARYN, V100, P807 Francis HW, 2002, LARYNGOSCOPE, V112, P1482, DOI 10.1097/00005537-200208000-00028 FRIJNS JHM, 1995, COCHLEAR IMPLANTS MO Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Guild SR, 1921, ANAT REC, V22, P141 Hanekom JJ, 1998, J ACOUST SOC AM, V104, P2372, DOI 10.1121/1.423772 Henry BA, 2003, J ACOUST SOC AM, V113, P2861, DOI 10.1121/1.1561900 Henry BA, 2000, J ACOUST SOC AM, V108, P1269, DOI 10.1121/1.1287711 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 JOHNSSON LG, 1982, ANN OTO RHINOL LARYN, V91, P74 JOHNSSON LG, 1979, LARYNGOSCOPE, V89, P759 Kawano A, 1998, ACTA OTO-LARYNGOL, V118, P313 KNUTSON JF, 1991, ANN OTO RHINOL LARYN, V100, P817 LINTHICUM FH, 1991, AM J OTOL, V12, P245 LINTHICUM FH, 1983, ANN OTO RHINOL LARYN, V92, P610 MARSH MA, 1992, AM J OTOL, V13, P241 MARSH MA, 1993, AM J OTOL, V14, P386 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 NADOL JB, 1994, LARYNGOSCOPE, V104, P299 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 NADOL JB, 1988, AM J OTOLARYNG, V9, P47, DOI 10.1016/S0196-0709(88)80007-3 NELSON DA, 1995, J ACOUST SOC AM, V98, P1987, DOI 10.1121/1.413317 Neter J., 1978, APPL STAT OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695 Osberger MJ, 2000, ADV OTO-RHINO-LARYNG, V57, P421 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 Park KS, 2002, KOREAN J GENETIC, V24, P41 Schuknecht HF, 1993, PATHOLOGY EAR SHANNON RV, 1993, COCHLEAR IMPLANTS AU, P357 Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 SKINNER MW, 1995, J SPEECH HEAR RES, V38, P677 SMMERFIELD AQ, 1997, AM J OTOL, V18, pS166 Summerfield AQ, 2002, ARCH OTOLARYNGOL, V128, P1255 TERR LI, 1989, LARYNGOSCOPE, V99, P1171 Throckmorton CS, 1999, J ACOUST SOC AM, V105, P861, DOI 10.1121/1.426275 WHITEN DM, 2003, THRESHOLD PREDICTION Wyatt JR, 1996, LARYNGOSCOPE, V106, P816, DOI 10.1097/00005537-199607000-00006 ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 Zwolan TA, 1997, J ACOUST SOC AM, V102, P3673, DOI 10.1121/1.420401 NR 50 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 83 EP 93 DI 10.1016/j.heares.2005.03.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400008 PM 15953517 ER PT J AU Mortensen, MV Madsen, S Gjedde, A AF Mortensen, MV Madsen, S Gjedde, A TI Use of time differences in normal hearing - cortical processing of promontorial stimuli SO HEARING RESEARCH LA English DT Article DE PET; duration discrimination; promontory; stimulation; temporal analysis; speech perception; somatosensory cortex ID POSITRON EMISSION TOMOGRAPHY; AUDITORY BRAIN-STEM; ELECTRICAL-STIMULATION; DURATION DISCRIMINATION; SPEECH RECOGNITION; COCHLEAR IMPLANTS; FRONTAL-CORTEX; ROUND WINDOW; ACTIVATION; MEMORY AB To test the hypothesis that ability to discriminate small duration differences is positively correlated with activity in the right temporal lobe, we used positron emission tomography in six normally hearing subjects, stimulated via the promontory in a procedure that mimics the auditory nerve stimulation with a cochlear implant. Stimulus consisted of electrical bursts, and tasks included gap detection and temporal difference limen (TDL). TDL is a measure of discriminatory processing of sound duration in cochlear implant candidates, demonstrated to predict outcome. Good speech perception after cochlear implantation is associated with activity in right temporal areas. Although perceived variably by the subjects, the stimulus itself activated bilateral secondary somatosensory cortex, suggesting differential stimulation of multiple sensory modalities. Only TDL raised blood flow in both posterior middle temporal gyri (MTG) and the right prefrontal cortex. As the right posterior MTG is known to be active during duration discrimination of different modalities and in the perception of words containing manipulated phonemes, we conclude that recruitment of this part of the right hemisphere is important to the comprehension of speech containing mostly temporal cues. The study shows that stimulus-induced activation reflects the goal of the task rather than the nature of the stimulus. (c) 2005 Elsevier B.V. All rights reserved. C1 Aarhus Univ Hosp, PET Ctr, DK-8000 Aarhus, Denmark. Aarhus Univ Hosp, Dept ENT, DK-8000 Aarhus, Denmark. Aarhus Univ, Ctr Funct Integrat Neurosci, Aarhus, Denmark. RP Mortensen, MV (reprint author), Aarhus Univ Hosp, PET Ctr, 44 Norrebrogade, DK-8000 Aarhus, Denmark. EM malene@pet.auh.dk CR Belin P, 2002, NEUROPSYCHOLOGIA, V40, P1956, DOI 10.1016/S0028-3932(02)00062-3 Belin P, 1998, J COGNITIVE NEUROSCI, V10, P536, DOI 10.1162/089892998562834 Binder JR, 2004, NAT NEUROSCI, V7, P295, DOI 10.1038/nn1198 Binder JR, 1997, J NEUROSCI, V17, P353 BLACK FO, 1987, ANN OTO RHINOL LARYN, V96, P96 BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 BRUNIA CHM, 1988, ELECTROEN CLIN NEURO, V69, P234, DOI 10.1016/0013-4694(88)90132-0 Buchel C, 1998, NATURE, V394, P274, DOI 10.1038/28389 BURIAN K, 1986, OTOLARYNG CLIN N AM, V19, P313 Cohen JD, 1997, NATURE, V386, P604, DOI 10.1038/386604a0 COHEN NL, 1993, NEW ENGL J MED, V328, P233, DOI 10.1056/NEJM199301283280403 Eddins David A., 1995, P207, DOI 10.1016/B978-012505626-7/50008-X Fischer B, 2004, DYSLEXIA, V10, P105, DOI 10.1002/dys.268 Friston KJ, 1997, TRENDS COGN SCI, V1, P21, DOI 10.1016/S1364-6613(97)01001-2 FRITZE W, 1984, ARCH OTO-RHINO-LARYN, V239, P263, DOI 10.1007/BF00464253 GANTZ BJ, 1993, ADV OTO-RHINO-LARYNG, V48, P153 GANTZ BJ, 1988, LARYNGOSCOPE, V98, P1100 GIBBON J, 1984, ANN NY ACAD SCI, V423, P52, DOI 10.1111/j.1749-6632.1984.tb23417.x GIBSON WPR, 1987, ANN OTO RHINOL LARYN, V96, P92 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 Griffiths TD, 1998, NAT NEUROSCI, V1, P422, DOI 10.1038/1637 Griffiths TD, 2000, NEUROREPORT, V11, P919, DOI 10.1097/00001756-200004070-00004 Griffiths TD, 1999, NEUROREPORT, V10, P3825, DOI 10.1097/00001756-199912160-00019 HOUSE WF, 1974, LARYNGOSCOPE, V84, P2163, DOI 10.1288/00005537-197412000-00007 ITOH K, 1987, BRAIN RES, V400, P145, DOI 10.1016/0006-8993(87)90662-7 KNAUTH M, 1994, HEARING RES, V74, P247, DOI 10.1016/0378-5955(94)90193-7 KRISTOFFERSON AB, 1984, ANN NY ACAD SCI, V423, P3, DOI 10.1111/j.1749-6632.1984.tb23413.x LADEFOGED P, 2000, VOWELS CONSONANTS IN Lamme VAF, 2000, TRENDS NEUROSCI, V23, P571, DOI 10.1016/S0166-2236(00)01657-X LUXFORD WM, 1989, AM J OTOL, V10, P95 Lyxell B, 2003, INT J AUDIOL, V42, pS86 Maguire EA, 1997, J NEUROSCI, V17, P7103 MCINTOSH AR, 1994, J NEUROSCI, V14, P655 MESULAM MM, 1986, ANN NEUROL, V19, P320, DOI 10.1002/ana.410190403 Mesulam MM, 1998, BRAIN, V121, P1013, DOI 10.1093/brain/121.6.1013 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 Moller A.R., 2003, SENSORY SYSTEMS ANAT Moller A.R., 2000, HEARING ITS PHYSL PA MORTENSEN MV, UNPUB DIFFERENTIAL L MUCHNIK C, 1994, SCAND AUDIOL, V23, P105, DOI 10.3109/01050399409047493 PARDO JV, 1991, NATURE, V349, P61, DOI 10.1038/349061a0 Pedersen CB, 2000, AUDIOLOGY, V39, P30 Penfield W., 1950, CEREBRAL CORTEX MAN Penhune VB, 1998, J COGNITIVE NEUROSCI, V10, P752, DOI 10.1162/089892998563149 PETRIDES M, 1993, P NATL ACAD SCI USA, V90, P878, DOI 10.1073/pnas.90.3.878 PICHORAFULLER MK, 1995, J ACOUST SOC AM, V97, P593, DOI 10.1121/1.412282 Rao SM, 2001, NAT NEUROSCI, V4, P317, DOI 10.1038/85191 ROBIN DA, 1990, BRAIN LANG, V39, P539, DOI 10.1016/0093-934X(90)90161-9 ROLAND PE, 1993, BRAIN ACTIVITY, P365 ROLAND PE, 1993, BRAIN ACTIVATION, P141 Ruben J, 2001, CEREB CORTEX, V11, P463, DOI 10.1093/cercor/11.5.463 Scao Y L, 1993, Am J Otol, V14, P70 Schmidt AM, 2003, AM J NEURORADIOL, V24, P201 SEECK M, 1995, ANN NEUROL, V37, P538, DOI 10.1002/ana.410370417 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SHIPP DB, 1991, ANN OTO RHINOL LARYN, V100, P889 Shore SE, 2003, NEUROSCIENCE, V119, P1085, DOI 10.1016/S0306-4522(03)00207-0 Shore SE, 2000, J COMP NEUROL, V419, P271, DOI 10.1002/(SICI)1096-9861(20000410)419:3<271::AID-CNE1>3.0.CO;2-M SILVERSTEIN H, 1994, AM J OTOL, V15, P101 Smith EE, 1999, SCIENCE, V283, P1657, DOI 10.1126/science.283.5408.1657 SMITH L, 1983, ANN OTO RHINOL LARYN, V92, P19 TALBOT JD, 1991, SCIENCE, V251, P1355, DOI 10.1126/science.2003220 Truy E, 1999, INT J PEDIATR OTORHI, V47, P131, DOI 10.1016/S0165-5876(98)00131-1 TRUY E, 1995, HEARING RES, V86, P34, DOI 10.1016/0378-5955(95)00052-6 van Dijk JE, 1999, AUDIOLOGY, V38, P109 Vass Z, 1997, NEUROSCIENCE, V79, P605, DOI 10.1016/S0306-4522(96)00641-0 Videbech P, 2001, PSYCHOL MED, V31, P1147 WALTZMAN SB, 1990, OTOLARYNG HEAD NECK, V103, P102 Werner LA, 2001, J SPEECH LANG HEAR R, V44, P737, DOI 10.1044/1092-4388(2001/058) WILSON FAW, 1993, SCIENCE, V260, P1955, DOI 10.1126/science.8316836 Worsley J. J., 1992, J CEREBRAL BLOOD FLO, V12, P900 Zatorre RJ, 2002, TRENDS COGN SCI, V6, P37, DOI 10.1016/S1364-6613(00)01816-7 Zatorre RJ, 2001, CEREB CORTEX, V11, P946, DOI 10.1093/cercor/11.10.946 NR 73 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 94 EP 101 DI 10.1016/j.heares.2005.03.007 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400009 PM 15953518 ER PT J AU Cheng, PW Liu, SH Hsu, CJ Lin-Shiau, SY AF Cheng, PW Liu, SH Hsu, CJ Lin-Shiau, SY TI Correlation of increased activities of Na+, K+-ATPase and Ca2+-ATPase with the reversal of cisplatin ototoxicity induced by D-methionine in guinea pigs SO HEARING RESEARCH LA English DT Article DE auditory brainstem response; Ca2+-ATPase; cisplatin; D-methionine; Na+; K+-ATPase; ototoxicity ID TEMPORAL BONE HISTOPATHOLOGY; INNER-EAR; LATERAL WALL; ANTIOXIDANT SYSTEM; STRIA VASCULARIS; COCHLEAR DUCT; MARGINAL CELLS; CIS-PLATINUM; CA++-ATPASE; LOCALIZATION AB Na+, K+-ATPase and Ca2+-ATPase in the cochlear lateral wall play an important role in maintaining ionic homeostasis and physiologic function of the cochlea. The present study was designed to test whether the changes of Na+, K+-ATPase and Ca2+-ATPase activities of the cochlear lateral wall and the brainstem of guinea pigs after receiving cisplatin for seven consecutive days were correlated with the altered auditory brainstem responses (ABR). Furthermore, whether a chemoprotective agent, D-methionine reversed the increased ABR threshold induced by cisplatin accompanied with the increased ATPase activities was also evaluated. The results obtained showed that cisplatin exposure caused not only a significant increase of threshold but also altered various absolute wave and interwave latencies of ABR. In addition, cisplatin significantly decreased the Na+, K+-ATPase and Ca2+-ATPase activities in the cochlear lateral wall with a good dose-response relationship. Regression analysis indicated that an increase of ABR threshold was well correlated with a decrease of both Na+, K+-ATPase and Ca2+-ATPase activities in the cochlear lateral wall. A chemoprotectant, D-methionine indeed reversed both abnormalities of ABR and ATPase activities in a well correlation function. The selectivity of these observed changes induced by cisplatin and D-methionine was revealed by the findings that cisplatin-treated guinea pigs had normal III-V interwave latency of ABR and no reduction of Na+, K+-ATPase and Ca2+-ATPase specific activities in the brainstem, which is in accordance with the nonpenetrable cisplatin across the blood brain barrier. Taken all together, the present findings suggest that biochemical damage and ionic disturbance may contribute to cisplatin-induced ototoxicity to some extent, which can be reversed by D-methionine. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ, Coll Med, Inst Toxicol, Taipei 10764, Taiwan. Natl Taiwan Univ, Coll Med, Inst Pharmacol, Taipei 10764, Taiwan. Far Eastern Mem Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Taiwan Univ, Coll Med, Dept Otolaryngol, Taipei 10764, Taiwan. RP Lin-Shiau, SY (reprint author), Natl Taiwan Univ, Coll Med, Inst Toxicol, Taipei 10764, Taiwan. EM syl@ha.mc.ntu.edu.tw CR Agrup C, 1999, ACTA OTO-LARYNGOL, V119, P437 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 BOSHER SK, 1980, ACTA OTO-LARYNGOL, V90, P219, DOI 10.3109/00016488009131718 Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cheng PW, 2001, OTOLARYNG HEAD NECK, V125, P411, DOI 10.1067/mhn.2001.117408 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CLERICI WJ, 1995, HEARING RES, V84, P30, DOI 10.1016/0378-5955(95)00010-2 Curtis LM, 1997, ACTA OTO-LARYNGOL, V117, P553, DOI 10.3109/00016489709113436 De Lauretis A, 1999, SCAND AUDIOL, V28, P139 Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 GUO YC, 1994, J LARYNGOL OTOL, V108, P310 HINOJOSA R, 1995, AM J OTOL, V16, P731 Hoistad DL, 1998, OTOLARYNG HEAD NECK, V118, P825, DOI 10.1016/S0194-5998(98)70276-1 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 IWANO T, 1989, J HISTOCHEM CYTOCHEM, V37, P353 KERR TP, 1982, AM J OTOLARYNG, V3, P332, DOI 10.1016/S0196-0709(82)80006-9 Kopke RD, 1997, AM J OTOL, V18, P559 LANZETTA PA, 1979, ANAL BIOCHEM, V100, P95, DOI 10.1016/0003-2697(79)90115-5 Lee JE, 2004, ORL J OTO-RHINO-LARY, V66, P111, DOI 10.1159/000079329 MEES K, 1983, ACTA OTO-LARYNGOL, V95, P277, DOI 10.3109/00016488309130944 Nario K, 1998, ACTA OTO-LARYNGOL, V118, P198 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 ROSENBERG B, 1985, CANCER, V55, P2303, DOI 10.1002/1097-0142(19850515)55:10<2303::AID-CNCR2820551002>3.0.CO;2-L Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Sie KCY, 1997, OTOLARYNG HEAD NECK, V116, P585, DOI 10.1016/S0194-5998(97)70232-8 STRAUSS M, 1983, LARYNGOSCOPE, V93, P1554, DOI 10.1288/00005537-198312000-00007 VANBENTHEM PPG, 1994, HEARING RES, V77, P9, DOI 10.1016/0378-5955(94)90249-6 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 WEATHERLY RA, 1991, LARYNGOSCOPE, V101, P917 WRIGHT CG, 1982, LARYNGOSCOPE, V92, P1408 YOSHIHARA T, 1987, ARCH OTO-RHINO-LARYN, V243, P395, DOI 10.1007/BF00464650 YOSHIHARA T, 1987, ACTA OTO-LARYNGOL, V103, P161, DOI 10.3109/00016488709107779 NR 39 TC 28 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 102 EP 109 DI 10.1016/j.heares.2005.03.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400010 PM 15953519 ER PT J AU Bobbin, RP Bledsoe, SC AF Bobbin, RP Bledsoe, SC TI Asphyxia and depolarization increase adenosine levels in perilymph SO HEARING RESEARCH LA English DT Article DE ATP; cochlea; neurotransmitter; release ID GUINEA-PIG COCHLEA; CENTRAL-NERVOUS-SYSTEM; ELECTRICAL-STIMULATION; HIPPOCAMPAL SLICES; CHINCHILLA COCHLEA; SKELETAL-MUSCLE; INDUCED RELEASE; VAS-DEFERENS; RAT COCHLEA; RECEPTOR AB Extracellular adenosine has been suggested as a modulator of cochlear function. To date the release of adenosine into the extracellular spaces of the cochlea has not been demonstrated. Therefore, experiments were designed to examine whether adenosine release into perilymph could be detected in response to depolarization by high potassium concentrations or in response to asphyxia. For this purpose, the perilymph compartment of guinea pigs was perfused with an artificial perilymph and the effluent assayed for ATP, ADP, AMP and adenosine. Results indicate that potassium induced a slight, significant increase and asphyxia induced a very large, significant increase in adenosine levels in perilymph effluent. No changes in the levels of the other compounds were measured. It is concluded that depolarization and asphyxia can induce the release of adenosine into perilymph. (c) 2005 Elsevier B.V. All rights reserved. C1 Louisiana State Univ, Hlth Sci Ctr, Sch Med, Kresge Hearing Res Lab,Dept Otolaryngol, New Orleans, LA 70112 USA. Univ Michigan, Sch Med, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Bobbin, RP (reprint author), Louisiana State Univ, Hlth Sci Ctr, Sch Med, Kresge Hearing Res Lab,Dept Otolaryngol, 533 Bolivar St,5th Floor, New Orleans, LA 70112 USA. EM rbobbi@lsuhsc.edu CR BOBBIN RP, 1990, HEARING RES, V46, P83, DOI 10.1016/0378-5955(90)90141-B BOBBIN RP, 2001, HAIR CELLS MICROMECH, P129 Brooke RE, 2004, J NEUROSCI, V24, P127, DOI 10.1523/JNEUROSCI.4591-03.2004 BRYANT GM, 1987, HEARING RES, V30, P231, DOI 10.1016/0378-5955(87)90139-0 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Dunwiddie TV, 2001, ANNU REV NEUROSCI, V24, P31, DOI 10.1146/annurev.neuro.24.1.31 Ford MS, 1997, HEARING RES, V105, P130, DOI 10.1016/S0378-5955(96)00204-3 Housley GD, 1999, J NEUROSCI, V19, P8377 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 Latini S, 2001, J NEUROCHEM, V79, P463, DOI 10.1046/j.1471-4159.2001.00607.x LATINI S, 1995, NEUROCHEM INT, V27, P239, DOI 10.1016/0197-0186(95)00042-7 Le Prell CG, 2001, PHYSL EAR, P575 LEVITT B, 1984, ANAL BIOCHEM, V137, P93, DOI 10.1016/0003-2697(84)90352-X LLOYD HGE, 1993, NEUROCHEM INT, V23, P173, DOI 10.1016/0197-0186(93)90095-M Marshall JM, 2002, CLIN EXP PHARMACOL P, V29, P843, DOI 10.1046/j.1440-1681.2002.03734.x Marshall JM, 2001, ADV EXP MED BIOL, V502, P349 MCKENZIE JE, 1982, AM J PHYSIOL, V242, pH24 MEGHJI P, 1989, J NEUROCHEM, V53, P1852, DOI 10.1111/j.1471-4159.1989.tb09252.x MIHAYLOVATODOROVA, 2002, J PHARMACOL EXP THER, V302, P992 MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 Olah Mark E, 2003, Mol Interv, V3, P370, DOI 10.1124/mi.3.7.370 Parker BS, 2003, CANCER BIOL THER, V2, P14 Parker MS, 1998, HEARING RES, V121, P62, DOI 10.1016/S0378-5955(98)00065-3 PEDATA F, 1991, N-S ARCH PHARMACOL, V344, P538 Ramkumar V, 2004, HEARING RES, V188, P47, DOI 10.1016/S0378-5955(03)00344-7 RAMKUMAR V, 1994, AM J PHYSIOL, V267, pC731 Stone TW, 2002, ADV EXP MED BIOL, V513, P249 Todorov LD, 1996, J PHYSIOL-LONDON, V496, P731 Vlajkovic SM, 2002, J HISTOCHEM CYTOCHEM, V50, P1435 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 Vlajkovic SM, 2002, HEARING RES, V170, P127, DOI 10.1016/S0378-5955(02)00460-4 Whitworth CA, 2004, BIOCHEM PHARMACOL, V67, P1801, DOI 10.1016/j.bcp.2004.01.010 NR 34 TC 3 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 110 EP 114 DI 10.1016/j.heares.2005.03.009 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400011 PM 15953520 ER PT J AU Lu, W Xu, J Shepherd, RK AF Lu, W Xu, J Shepherd, RK TI Cochlear implantation in rats: A new surgical approach SO HEARING RESEARCH LA English DT Article DE cochlear histopathology; cochlear implant; electrically evoked auditory brainstem response; stapedial artery ID CHRONIC ELECTRICAL-STIMULATION; PERSISTENT STAPEDIAL ARTERY; SENSORINEURAL HEARING-LOSS; TYMPANI ELECTRODE ARRAY; AUDITORY BRAIN-STEM; MIDDLE-EAR; INFERIOR COLLICULUS; ANIMAL-MODEL; GUINEA-PIG; NERVE AB The laboratory rat has been used extensively in auditory research but has had limited use in cochlear implant related research due mainly to the surgically restricted access to the scala tympani. We have developed a new surgical method for cochlear implantation in rats. The key to this protocol was cauterizing the stapedial artery (SA) and making a small cochleostomy near the round window in order to enlarge the surgical access to the scala tympani. Five normal hearing Hooded Wistar rats were used to investigate the effect of cauterizing the SA on hearing and auditory nerve survival. Results showed that cauterizing the SA was surgically feasible, afforded excellent exposure of the round window niche for cochleostomy, and did not adversely affect acoustic thresholds measured electrophysiologically. Moreover, there was no difference in spiral ganglion cell densities for any cochlear turn when compared with the contralateral control ears. Three deafened rats were subsequently implanted with a scala tympani electrode array using this new surgical approach. Electrically evoked auditory brainstem responses using bipolar stimulation, and subsequent cochlear histopathology demonstrated that cochlear implantation using a custom-made rat electrode array was safe and effective. The surgical approach presented in this paper presents a safe and effective procedure for acute or chronic cochlear implantation in the rat model. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Bion Ear Inst, Melbourne, Vic 3002, Australia. Zhengzhou Univ, Dept Otolaryngol, Affiliated Hosp 1, Zhengzhou 450052, Peoples R China. RP Shepherd, RK (reprint author), Univ Melbourne, Royal Victorian Eye & Ear Hosp, Dept Otolaryngol, 32 Gisborne St, Melbourne, Vic 3002, Australia. EM rshepherd@bionicear.org RI Shepherd, Robert/I-6276-2012 CR ALBIIN N, 1985, ANAT REC, V212, P17, DOI 10.1002/ar.1092120103 ALBIIN N, 1983, ACTA ANAT, V115, P134 Araujo MF, 2002, ARCH OTOLARYNGOL, V128, P456 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 GOVAERTS PJ, 1993, ANN OTO RHINOL LARYN, V102, P724 Hardie NA, 1999, HEARING RES, V128, P147, DOI 10.1016/S0378-5955(98)00209-3 HEBEL R, 1986, ANATOMY EMBRYOLOGY L, P102 HELLSTROM S, 1982, ACTA ANAT, V112, P346 Hellstrom SOM, 1998, OTOLARYNG HEAD NECK, V119, P556 Hessel H, 1997, AM J OTOL, V18, pS21 Hsu WC, 2001, J COMP NEUROL, V438, P226, DOI 10.1002/cne.1311 Judkins RF, 1997, OTOLARYNG HEAD NECK, V117, P438, DOI 10.1016/S0194-5998(97)70011-1 Kadner A, 2000, AUDIOL NEURO-OTOL, V5, P23, DOI 10.1159/000013862 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 MCGUINNESS SL, 2005, IN PRESS OTOL NEUROT Miller AL, 2000, HEARING RES, V144, P175, DOI 10.1016/S0378-5955(00)00066-6 MILLER CA, 1993, HEARING RES, V69, P35, DOI 10.1016/0378-5955(93)90091-E MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 Nagase S, 2000, HEARING RES, V147, P242, DOI 10.1016/S0378-5955(00)00134-9 Paolini AG, 1998, BRAIN RES BULL, V46, P317, DOI 10.1016/S0361-9230(98)00017-3 PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 PFINGST BE, 1979, ANN OTO RHINOL LARYN, V88, P613 PFINGST BE, 1995, HEARING RES, V85, P76, DOI 10.1016/0378-5955(95)00037-5 Pinilla M, 2001, OTOLARYNG HEAD NECK, V124, P515, DOI 10.1067/mhn.2001.115370 Praetorius M, 2001, AUDIOL NEURO-OTOL, V6, P250, DOI 10.1159/000046130 RYAN AF, 1990, HEARING RES, V50, P57, DOI 10.1016/0378-5955(90)90033-L SHEPHERD R, 2005, IN PRESS J COMP NEUR Shepherd RK, 2002, HEARING RES, V172, P92, DOI 10.1016/S0378-5955(02)00517-8 SHEPHERD RK, 1995, AM J OTOL, V16, P186 Shepherd RK, 2004, EUR J NEUROSCI, V20, P3131, DOI 10.1111/j.1460-9568.2004.03809.x SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 SOHMER H, 1992, HEARING RES, V61, P189, DOI 10.1016/0378-5955(92)90050-W STEEL KP, 1984, HEARING RES, V15, P59, DOI 10.1016/0378-5955(84)90225-9 Vischer M, 1997, AM J OTOL, V18, pS27 Wu HC, 2003, EUR J NEUROSCI, V17, P2540, DOI 10.1046/j.1460-9568.2003.02691.x Xu J, 1997, HEARING RES, V105, P1, DOI 10.1016/S0378-5955(96)00193-1 Yamamoto H, 2003, HEARING RES, V186, P69, DOI 10.1016/S0378-5955(03)00310-1 NR 38 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 115 EP 122 DI 10.1016/j.heares.2005.03.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400012 PM 15953521 ER PT J AU Barrenas, ML Bratthall, A Dahlgren, J AF Barrenas, ML Bratthall, A Dahlgren, J TI The association between short stature and sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE hearing; stature; hypertension; phenotype; genotype; thrifty ID GROWTH-FACTOR-I; THRIFTY PHENOTYPE HYPOTHESIS; PERSONAL CASSETTE PLAYERS; RISK-FACTORS; BLOOD-PRESSURE; PRESCHOOL-CHILDREN; PRENATAL EXPOSURE; ABDOMINAL OBESITY; NOISE EXPOSURE; BIRTH-WEIGHT AB In order to test the Thrifty Phenotype Hypothesis on hearing, data from two cross-sectional studies on hearing were re-evaluated. The data sets comprised 500 18-year-old conscripts, and 483 noise-exposed male employees. Sensorineural hearing loss (SNHL) was over-represented among conscripts with a short stature (odds ratio = 2.2) or hearing loss in the family (odds ration = 4.2), but not among noise-exposed conscripts (odds ratio = 0.9-1.3). Among noise-exposed short employees, hypertension and age exhibited a negative impact on high frequency hearing thresholds, while among tall employees hypertension had no effect on hearing and the influence of age was less pronounced (p < 0.01 for body height; p < 0.02 for age, hypertension and the interaction between body height and hypertension; p < 0.05 for the interaction between body height and age). This suggests that mechanisms linked to fetal programming and growth retardation and/or insulin-like growth factor 1 levels during fetal life, such as a delayed cell cycle during the time window when the cochlea develops, may cause SNHL in adulthood. (c) 2005 Elsevier B.V. All rights reserved. C1 Gothenburg Univ, Inst Hlth Women & Children, Dept Pediat, GP GRC, S-41685 Gothenburg, Sweden. RP Barrenas, ML (reprint author), Gothenburg Univ, Inst Hlth Women & Children, Dept Pediat, GP GRC, S-41685 Gothenburg, Sweden. EM marie-louise.barrenas@vgregion.se CR Aitkin M., 1990, STAT MODELLING GLIM AXELSSON A, 1981, SCAND AUDIOL, V10, P91, DOI 10.3109/01050398109076167 AXELSSON A, 1985, ACTA OTO-LARYNGOL, V100, P379, DOI 10.3109/00016488509126561 AXELSSON A, 1987, SCAND AUDIOL, V16, P137, DOI 10.3109/01050398709042168 AXELSSON A, 1994, SCAND AUDIOL, V23, P129, DOI 10.3109/01050399409047497 AXELSSON A, 1981, AM IND HYG ASSOC J, V42, P229, DOI 10.1080/15298668191419631 BARKER DJP, 1995, EUR J CLIN INVEST, V25, P457, DOI 10.1111/j.1365-2362.1995.tb01730.x Barker DJP, 2004, PHILOS T ROY SOC B, V359, P1359, DOI 10.1098/rstb.2004.1518 BARR B, 1973, AUDIOLOGY, V12, P426 Barrenas ML, 2000, HEARING RES, V144, P21, DOI 10.1016/S0378-5955(00)00040-X Bonapace G, 2003, J MED GENET, V40, P913, DOI 10.1136/jmg.40.12.913 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 CARTER N, 1984, Australian Journal of Audiology, V6, P45 Costa O A, 1988, Scand Audiol Suppl, V30, P25 Darin N, 1997, DEV MED CHILD NEUROL, V39, P797 Das VK, 1996, ARCH DIS CHILD, V74, P8 Eriksson JG, 2002, DIABETOLOGIA, V45, P342, DOI 10.1007/s00125-001-0757-6 Eriksson JG, 2000, STROKE, V31, P869 Fall CHD, 1998, DIABETIC MED, V15, P220, DOI 10.1002/(SICI)1096-9136(199803)15:3<220::AID-DIA544>3.3.CO;2-F Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037 Fortnum HM, 2001, BRIT MED J, V323, P536, DOI 10.1136/bmj.323.7312.536 FUORTES LJ, 1995, AM J IND MED, V28, P275, DOI 10.1002/ajim.4700280211 Garcia A M, 1993, Schriftenr Ver Wasser Boden Lufthyg, V88, P212 Gluckman P D, 1996, Acta Paediatr Suppl, V417, P3 Green J, 2002, PEDIATRICS, V109, P987, DOI 10.1542/peds.109.5.987 Hales CN, 1997, DIABETIC MED, V14, P189 HALES CN, 1992, DIABETOLOGIA, V35, P595, DOI 10.1007/BF00400248 Job A, 2000, REV EPIDEMIOL SANTE, V48, P227 KLOCKHOFF I, 1986, SCAND AUDIOL, V15, P217, DOI 10.3109/01050398609042146 KLOCKHOFF I, 1982, SCAND AUDIOL, V11, P257, DOI 10.3109/01050398209087476 LASSARRE C, 1991, PEDIATR RES, V29, P219, DOI 10.1203/00006450-199103000-00001 Leon DA, 1998, BRIT MED J, V317, P241 LINDEMAN HE, 1987, AUDIOLOGY, V26, P65 LIPSCOMB D M, 1972, Audiology (London), V11, P231 Lopuhaa CE, 2000, THORAX, V55, P555, DOI 10.1136/thorax.55.7.555 MARIN P, 1993, INT J OBESITY, V17, P83 MeyerBisch C, 1996, AUDIOLOGY, V35, P121 Nafstad P, 2002, PEDIATRICS, V110, DOI 10.1542/peds.110.3.e30 Niskar AS, 2001, PEDIATRICS, V108, P40, DOI 10.1542/peds.108.1.40 Olsen J, 2001, EPIDEMIOLOGY, V12, P235, DOI 10.1097/00001648-200103000-00017 Olsen J, 2000, EPIDEMIOL REV, V22, P76 PYYKKO I, 1989, BRIT J IND MED, V46, P439 PYYKKO I, 1987, INT ARCH OCC ENV HEA, V59, P439, DOI 10.1007/BF00377838 RICHARDSON K, 1977, DEV MED CHILD NEUROL, V9, P797 Roseboom TJ, 2001, J HYPERTENS, V19, P29, DOI 10.1097/00004872-200101000-00004 Roseboom TJ, 2000, AM J CLIN NUTR, V72, P1101 Rosmond R, 1998, INT J OBESITY, V22, P1184 RYTZNER B, 1981, SCAND AUDIOL, V10, P213, DOI 10.3109/01050398109076183 Sayer AA, 1998, AGE AGEING, V27, P579, DOI 10.1093/ageing/27.5.579 SCHMIDT JM, 1994, AUDIOLOGY, V33, P185 SEHLIN P, 1990, SCAND AUDIOL, V19, P193, DOI 10.3109/01050399009070772 Sichieri R, 2000, PUBLIC HEALTH NUTR, V3, P77, DOI 10.1017/S1368980000000094 Stenberg AE, 2001, HEARING RES, V157, P87, DOI 10.1016/S0378-5955(01)00280-5 Sutton GJ, 1997, BRIT J AUDIOL, V31, P39, DOI 10.3109/03005364000000007 TALBOTT EO, 1990, J OCCUP ENVIRON MED, V32, P690 TARTER SK, 1990, J OCCUP ENVIRON MED, V32, P685 THIRINGER K, 1984, DEV MED CHILD NEUROL, V26, P799 Tuvemo T, 1999, HORM RES, V52, P186, DOI 10.1159/000023459 Van Naarden K, 1999, PEDIATRICS, V104, P905, DOI 10.1542/peds.104.4.905 Varela-Nieto I, 2004, HEARING RES, V196, P19, DOI 10.1016/j.heares.2003.12.022 WEBER HJ, 1967, J SPEECH HEAR DISORD, V32, P343 WONG TW, 1990, PUBLIC HEALTH, V104, P327, DOI 10.1016/S0033-3506(05)80524-4 Woods K A, 1997, Acta Paediatr Suppl, V423, P39 NR 63 TC 12 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 123 EP 130 DI 10.1016/j.heares.2005.03.019 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400013 PM 15953522 ER PT J AU Philibert, B Collet, L Vesson, JF Veuillet, E AF Philibert, B Collet, L Vesson, JF Veuillet, E TI The auditory acclimatization effect in sensorineural hearing-impaired listeners: Evidence for functional plasticity SO HEARING RESEARCH LA English DT Article DE auditory acclimatization; hearing aid; asymmetry; auditory brainstem response; rehabilitation ID FREQUENCY DISCRIMINATION; INTENSITY DISCRIMINATION; CORTICAL REORGANIZATION; LOUDNESS PERCEPTION; PRESENTATION LEVEL; COCHLEAR DAMAGE; ORGAN DAMAGE; AID USE; CORTEX; BRAIN AB The present study provides new data on perceptual and physiological modifications associated with hearing aid (HA) fitting. Eight sensorineural hearing-impaired (SNHI) listeners participated. They had symmetrical hearing loss and were being fitted with binaural HAs for the first time. Perceptual performances were measured four times during auditory rehabilitation, using an intensity discrimination task and a loudness-scaling task. Pure tones of two different frequencies were used, one well amplified by HAs and the other weakly amplified. Two intensity levels were also tested, one rated 'soft' by SNHI listeners and the other 'loud'. Auditory brainstem responses (ABRs) to click stimulation were recorded. All measures were performed without HA. Results were consistent with the auditory acclimatization effect: most modifications induced by HA fitting were found at loud intensity levels and at high frequency, i.e., for acoustic information that was newly available to the listener. While both ears had similar hearing loss and aided gains, some differences between ears appeared in both perceptual tasks and in ABRs. In the right ear, a shortening of wave V latency paralleled perceptual modifications. The present results suggest that HA-fitting induces functional plasticity at the peripheral level of the auditory system. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, Hospices Civils Lyon, CNRS, GDR 2213,UMR 5020,Lab Neurosci & Syst Sensoriels, F-69366 Lyon, France. RP Philibert, B (reprint author), Univ Paris 11, Lab Neurobiol Apprentissage Mem & Commun, CNRS, UMR 8620, Batiment 446, F-91405 Orsay, France. EM benedicte.philibert@ibaic.u-psud.fr CR Arlinger S., 1996, EAR HEAR S, V17, p87S AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 Bilecen D, 2000, NEUROLOGY, V54, P765 Brown M, 2004, CEREB CORTEX, V14, P952, DOI 10.1093/cercor/bhh056 COX LC, 1980, HEAR INSTRUM, V31, P12 Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 Florence SL, 2001, EUR J NEUROSCI, V13, P1755, DOI 10.1046/j.0953-816x.2001.01555.x Fowler EP, 1936, ARCHIV OTOLARYNGOL, V24, P731 Gatehouse S., 1996, PSYCHOACOUSTICS SPEE, P319 GATEHOUSE S, 1989, J ACOUST SOC AM, V86, P2103, DOI 10.1121/1.398469 Giraux P, 2001, NAT NEUROSCI, V4, P691, DOI 10.1038/89472 GREEN DM, 1995, J ACOUST SOC AM, V97, P3749, DOI 10.1121/1.412390 GREEN DM, 1993, J ACOUST SOC AM, V93, P2096, DOI 10.1121/1.406696 GU X, 1994, J ACOUST SOC AM, V96, P93, DOI 10.1121/1.410378 Hagermann B, 1999, SCAND AUDIOL, V28, P102, DOI 10.1080/010503999424833 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 He NJ, 1998, J ACOUST SOC AM, V103, P553, DOI 10.1121/1.421127 HECOX K, 1975, J ACOUST SOC AM, V57, pS63, DOI 10.1121/1.1995348 Hugdahl K, 2000, ACTA PSYCHOL, V105, P211, DOI 10.1016/S0001-6918(00)00062-7 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JOANETTE Y, 1994, NEUROPSYCHOLOGIE HUM, P342 Job A, 1998, HEARING RES, V122, P119, DOI 10.1016/S0378-5955(98)00104-X Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MCGILL WJ, 1968, J ACOUST SOC AM, V44, P576, DOI 10.1121/1.1911123 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 MERZENICH MM, 1990, COLD SH Q B, V55, P873 MONRADKROHN G, 1993, 3 ELEMENT SPEECH PRO Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 Munro KJ, 2003, J ACOUST SOC AM, V114, P484, DOI 10.1121/1.1577556 Norena AJ, 2005, J NEUROSCI, V25, P699, DOI 10.1523/JNEUROSCI.2226-04.2005 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Olsen SO, 1999, AUDIOLOGY, V38, P202 Palmer CV, 1998, J ACOUST SOC AM, V103, P1705, DOI 10.1121/1.421050 Philibert B, 2003, ACTA OTO-LARYNGOL, V123, P172, DOI 10.1080/00016480310001033 Philibert B, 1998, NEUROSCI LETT, V253, P99, DOI 10.1016/S0304-3940(98)00615-6 Philibert B, 2002, HEARING RES, V165, P142, DOI 10.1016/S0378-5955(02)00296-4 PIRILA T, 1991, ACTA OTOLARYNGOL, P111 PONTON CW, 1996, EAR HEARING, pS78 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RECANZONE GH, 1993, J NEUROSCI, V13, P87 ROBINSON K, 1995, J ACOUST SOC AM, V97, P1183, DOI 10.1121/1.412230 Robinson K, 1996, J ACOUST SOC AM, V99, P1255, DOI 10.1121/1.414637 ROWE MJ, 1981, EAR HEARING, V2, P41, DOI 10.1097/00003446-198101000-00008 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 SCHWABER MK, 1993, AM J OTOL, V14, P252 Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257 Steinberg JC, 1937, J ACOUST SOC AM, V9, P11, DOI 10.1121/1.1915905 STOCKARD JJ, 1977, NEUROLOGY, V27, P316 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 Thai-Van H, 2003, BRAIN, V126, P2235, DOI 10.1093/brain/awg228 Wang Y, 2003, J COGNITIVE NEUROSCI, V15, P1019, DOI 10.1162/089892903770007407 Weinberger NM, 1998, AUDIOL NEURO-OTOL, V3, P145, DOI 10.1159/000013787 Williams D, 1996, TRENDS PHARMACOL SCI, V17, P66 WILLIAMSON BP, 1993, NLGI SPOKESMAN, V57, P329 NR 59 TC 25 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 131 EP 142 DI 10.1016/j.heares.2005.03.013 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400014 PM 15953523 ER PT J AU Briaire, JJ Frijns, JHM AF Briaire, JJ Frijns, JHM TI Unraveling the electrically evoked compound action potential SO HEARING RESEARCH LA English DT Article DE cochlear implant; electrical volume conduction; auditory nerve; CAP ID MYELINATED NERVE-FIBERS; ROTATIONALLY SYMMETRICAL MODEL; HUMAN COCHLEAR NEURON; STIMULATED COCHLEA; SPEECH-PERCEPTION; VOLUME CONDUCTION; PROSTHESIS DESIGN; IMPLANT; RESPONSES; ELECTROCOCHLEOGRAPHY AB With the advent of eCAP recording tools such as NRT and NRI for cochlear implants, neural monitoring has become widely used to ascertain the integrity of the neural/electrode interface as well as for assisting in the setting of program levels. The basic concepts of eCAP recordings are deduced from the acoustical equivalent of the electrocochleogram. There are, however, indications that under electrical stimulation some of these do not hold, like the unitary response concept (i.e., the principle that every fiber produces the same contribution to the eCAP). Computer modeling has proven to be a valuable tool for gaining insight into the functioning of electrical stimulation. In this study the extension of a three-dimensional human cochlea, incorporating back-measuring capabilities, is described. Using this new model, the contribution of single fiber action potentials (SFAPs) to the measured eCAP is investigated. The model predicts that contrary to common belief - the compound action potential as measured by the cochlear implant system does not necessarily reflect the propagated action potential along the auditory nerve. (c) 2005 Elsevier B.V. All rights reserved. C1 Leiden Univ, Ctr Med, ENT Dept, NL-2300 RC Leiden, Netherlands. RP Briaire, JJ (reprint author), Leiden Univ, Ctr Med, ENT Dept, POB 9600, NL-2300 RC Leiden, Netherlands. EM J.J.Briaire@LUMC.nl RI Briaire, Jeroen/A-7972-2008; Frijns, Johan/H-6249-2011 OI Briaire, Jeroen/0000-0003-4302-817X; CR ABBAS PJ, 2000, COCHLEAR IMPLANTS, P117 Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 Briaire JJ, 2000, SIMULAT PRACT THEORY, V8, P57, DOI 10.1016/S0928-4869(00)00007-0 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Firszt JB, 2003, EAR HEARING, V24, P184, DOI 10.1097/01.AUD.0000061230.58992.9A Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 FRIJNS JHM, 1996, IEEE 18 ANN INT C EN, V17, P2 Frijns JHM, 2000, SIMULAT PRACT THEORY, V8, P75, DOI 10.1016/S0928-4869(00)00008-2 FRIJNS JHM, 1994, MED BIOL ENG COMPUT, V32, P391, DOI 10.1007/BF02524690 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q FRIJNS JHM, 1999, 1999 C IMPL AUD PROS FRIJNS JHM, 1994, IEEE T BIO-MED ENG, V41, P556, DOI 10.1109/10.293243 Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 GOLDSTEIN MH, 1958, J ACOUST SOC AM, V30, P107, DOI 10.1121/1.1909497 HALTER JA, 1991, J THEOR BIOL, V148, P345, DOI 10.1016/S0022-5193(05)80242-5 Hanekom T, 2001, EAR HEARING, V22, P300, DOI 10.1097/00003446-200108000-00005 HODGKIN AL, 1952, J PHYSIOL-LONDON, V117, P500 HOUBEN V, 2000, 5 EUR S PEAD COCHL I, P41 Klop WMC, 2004, ACTA OTO-LARYNGOL, V124, P137, DOI 10.1080/00016480310016901 Miller CA, 2004, HEARING RES, V198, P75, DOI 10.1016/j.heares.2004.07.005 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 2000, EAR HEARING, V21, P280, DOI 10.1097/00003446-200008000-00003 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 Rattay F, 2001, HEARING RES, V153, P64, DOI 10.1016/S0378-5955(00)00257-4 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 Schoonhoven R, 1996, EAR HEARING, V17, P266, DOI 10.1097/00003446-199606000-00009 SCHOONHOVEN R, 1991, CRIT REV BIOMED ENG, V19, P47 Schoonhoven R, 1999, AUDIOLOGY, V38, P141 SCHWARZ JR, 1987, PFLUG ARCH EUR J PHY, V409, P569, DOI 10.1007/BF00584655 Seyle K, 2002, EAR HEARING, V23, p72S, DOI 10.1097/00003446-200202001-00009 Smoorenburg GF, 2002, AUDIOL NEURO-OTOL, V7, P335, DOI 10.1159/000066154 VERSNEL H, 1992, HEARING RES, V59, P157, DOI 10.1016/0378-5955(92)90112-Z Wesselink W. A., 1999, Medical and Biological Engineering and Computing, V37, P228, DOI 10.1007/BF02513291 NR 36 TC 34 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 143 EP 156 DI 10.1016/j.heares.2005.03.020 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400015 PM 15953524 ER PT J AU Damaschke, J Riedel, H Kollmeier, B AF Damaschke, J Riedel, H Kollmeier, B TI Neural correlates of the precedence effect in auditory evoked potentials SO HEARING RESEARCH LA English DT Article DE precedence effect; auditory evoked potential; discrimination; mismatch negativity ID HUMAN BRAIN-STEM; INFERIOR COLLICULUS; SIMULATED ECHOES; MAXIMUM LENGTH; CLICK-PAIRS; RESPONSES; LOCALIZATION; SUPPRESSION; CAT; INHIBITION AB The precedence effect in subjective localization tasks reflects the dominance of directional information of a direct sound (lead) over the information provided by one or several reflections (lags) for short delays. By collecting data of both psych oacoustical measurements and auditory evoked potentials the current study aims at neurophysiological correlates for the precedence effect in humans. In order to investigate whether the stimulus features or the perception of the stimulus is reflected on the ascending stages of the human auditory pathway, auditory brainstem responses (ABRs) as well as cortical auditory evoked potentials (CAEPs) using double click-pairs were recorded. Potentials were related to the results of the psychoacoustical data. ABRs to double click-pairs with lead-lag delays from 0 to 20 ms and interaural time differences (ITDs) in the lag click of 0 and 300 mu s show an emerging second wave V for lead-lag delays larger than 2 ms. The amplitudes of the first and second wave V are the same for a lead-lag delay of about 5 ms. For the lag-ITD stimuli the latency of the second wave V was prolonged by approximately ITD/2 compared to the stimuli without lag-ITD. As the amplitudes of the second wave V were not decreased for a lead-lag delay around 5 ms as could be expected from psychoacoustical measurements of the precedence effect, ABRs reflect stimulus features rather than the perceptive qualities of the stimulus. The mismatch negativity (MMN) component of the CAEP for double click-pairs was determined using a diotic standard and a deviant with an ITD of 800 mu s in the lag click. The comparison between the MMN components and the psychoacoustical data shows that the MMN is related to the perception of the stimulus, i.e., to the precedence effect. Generally, the findings of the present study suggest that the precedence effect is not a result of a poor sensitivity of the peripheral bottom-up processing. Rather, the precedence effect seems to be reflected by the MMN, i.e., cognitive processes on higher stages of the auditory pathway. (c) 2005 Elsevier B.V. All rights reserved. C1 Carl Von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. RP Damaschke, J (reprint author), Carl Von Ossietzky Univ Oldenburg, D-26111 Oldenburg, Germany. EM joerg.damaschke@uni-oldenburg.de CR Blauert J., 1997, SPATIAL HEARING PSYC BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 BURKARD R, 1991, J ACOUST SOC AM, V90, P1398, DOI 10.1121/1.401931 CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802 CORNELISSE LE, 1987, NEUROPSYCHOLOGIA, V25, P449, DOI 10.1016/0028-3932(87)90033-9 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339 HEY M, 2001, THESIS U OLDENBURG HOCHSTER ME, 1981, NEUROPSYCHOLOGIA, V19, P49, DOI 10.1016/0028-3932(81)90043-9 JEFFRESS LA, 1948, J COMP PHYSIOL PSYCH, V41, P35, DOI 10.1037/h0061495 Keller CH, 1996, J COMP PHYSIOL A, V178, P499 LANG AH, 1990, PSYCHOPHYSIOLOGICAL, V1, P294 Liebenthal E, 1999, J ACOUST SOC AM, V106, P291, DOI 10.1121/1.427057 Liebenthal Einat, 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P181 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1285 Litovsky RY, 2002, HEARING RES, V165, P177, DOI 10.1016/S0378-5955(02)00304-0 Litovsky RY, 1998, J ACOUST SOC AM, V103, P3139, DOI 10.1121/1.423072 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223 Litovsky RY, 2002, J NEUROPHYSIOL, V87, P976, DOI 10.1152/jn.00568.2001 LITOVSKY RY, 2001, PHYSL PSYCHOPHYSICAL MOLLER AR, 1994, ELECTROEN CLIN NEURO, V92, P215, DOI 10.1016/0168-5597(94)90065-5 MOLLER AR, 1982, ELECTROEN CLIN NEURO, V53, P612, DOI 10.1016/0013-4694(82)90137-7 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Parham K, 1996, J NEUROPHYSIOL, V76, P17 Riedel H., 2001, Zeitschrift fur Audiologie, V40 Riedel H, 2002, HEARING RES, V163, P12, DOI 10.1016/S0378-5955(01)00362-8 SABERI K, 1990, J ACOUST SOC AM, V87, P1732, DOI 10.1121/1.399422 SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1 Schroger E, 1996, HEARING RES, V96, P191, DOI 10.1016/0378-5955(96)00066-4 Tollin DJ, 2003, J NEUROPHYSIOL, V90, P2149, DOI 10.1152/jn.00381.2003 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 Wickesberg RE, 1996, J ACOUST SOC AM, V100, P1691, DOI 10.1121/1.416067 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 YIN TCT, 1994, J NEUROSCI, V14, P5170 Zurek P M, 1980, J Acoust Soc Am, V67, P953 NR 39 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 157 EP 171 DI 10.1016/j.heares.2005.03.014 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400016 PM 15953525 ER PT J AU Lopez-Poveda, EA Plack, CJ Meddis, R Blanco, JL AF Lopez-Poveda, EA Plack, CJ Meddis, R Blanco, JL TI Cochlear compression in listeners with moderate sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE basilar membrane; cochlear compression; recovery from forward masking; hearing loss; inner hair cell; outer hair cell ID BASILAR-MEMBRANE NONLINEARITY; GUINEA-PIG COCHLEA; PERIPHERAL COMPRESSION; CHINCHILLA COCHLEA; MOSSBAUER TECHNIQUE; RESPONSES; INNER; FREQUENCIES; MECHANICS; REGION AB Psychophysical estimates of basilar membrane (BM) responses suggest that normal-hearing (NH) listeners exhibit constant compression for tones at the characteristic frequency (CF) across the CF range from 250 to 8000 Hz. The frequency region over which compression occurs is broadest for low CFs. This study investigates the extent that these results differ for three hearing-impaired (HI) listeners with sensorineural hearing loss. Temporal masking curves (TMCs) were measured over a wide range of probe (500-8000 Hz) and masker frequencies (0.5-1.2 times the probe frequency). From these, estimated BM response functions were derived and compared with corresponding functions for NH listeners. Compressive responses for tones both at and below CF occur for the three HI ears across the CF range tested. The maximum amount of compression was uncorrelated with absolute threshold. It was close to normal for two of the three HI ears, but was either slightly (at CFs <= 1000 Hz) or considerably (at CFs >= 4000 Hz) reduced for the third ear. Results are interpreted in terms of the relative damage to inner and outer hair cells affecting each of the HI ears. Alternative interpretations for the results are also discussed, some of which cast doubts on the assumptions of the TMC-based method and other behavioral methods for estimating human BM compression. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Salamanca, Inst Neurociencias Castilla & Leon, Salamanca 37007, Spain. Univ Essex, Dept Psychol, Colchester CO4 3SQ, Essex, England. Oticon Espana SA, Alcobendas 28108, Madrid, Spain. Soniotica SL, Albacete 02003, Spain. RP Lopez-Poveda, EA (reprint author), Univ Salamanca, Inst Neurociencias Castilla & Leon, Ave Alfonso X El Sabio S-N, Salamanca 37007, Spain. EM ealopezpoveda@usal.es CR Bacon Sid P., 2004, VVolume 17, P107 Cheatham MA, 2001, J ACOUST SOC AM, V110, P2034, DOI 10.1121/1.1397357 DRGA V, 2003, 26 ANN MIDW RES M AS Heinz MG, 2004, J NEUROPHYSIOL, V91, P784, DOI 10.1152/jn.00776.2003 Levitt H, 1971, J ACOUST SOC AM, V49, P466 LIBERMAN MC, 1986, BASIC APPL ASPECTS N, P163 Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 Nelson DA, 2004, J ACOUST SOC AM, V115, P2221, DOI 10.1121/1.1689341 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 Oxenham Andrew J., 2004, VVolume 17, P62 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Oxenham AJ, 2004, J ACOUST SOC AM, V116, P2248, DOI 10.1121/1.1786852 Patuzzi R., 1996, COCHLEA, P186 PATUZZI R, 1983, J ACOUST SOC AM, V74, P1734, DOI 10.1121/1.390282 Plack CJ, 2004, J ACOUST SOC AM, V115, P1684, DOI 10.1121/1.1675812 Plack CJ, 2000, J ACOUST SOC AM, V107, P501, DOI 10.1121/1.428318 Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 Robles L, 2001, PHYSIOL REV, V81, P1305 ROSENGARD PS, 2003, 26 ANN MIDW RES M AS Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670 Williams EJ, 2005, HEARING RES, V201, P44, DOI 10.1016/j.heares.2004.10.006 NR 29 TC 31 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 172 EP 183 DI 10.1016/j.heares.2005.03.015 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400017 PM 15953526 ER PT J AU Green, KMJ Julyan, PJ Hastings, DL Ramsden, RT AF Green, KMJ Julyan, PJ Hastings, DL Ramsden, RT TI Auditory cortical activation and speech perception in cochlear implant users: Effects of implant experience and duration of deafness SO HEARING RESEARCH LA English DT Article DE auditory cortex; cochlear implantation; cortical activation; positron emission tomography; speech perception performance ID POSITRON-EMISSION-TOMOGRAPHY; SOUND STIMULATION; FUNCTIONAL-ACTIVITY; PET; CORTEX; BRAIN; PERFORMANCE; PREDICTORS; RESPONSES; LANGUAGE AB This study aimed to investigate the relationship between outcome following cochlear implantation and auditory cortical activation. It also studied the effects of length of implant use and duration of deafness on the auditory cortical activations. Cortical activity resulting from auditory stimulation was measured using [F-18]FDG positron emission tomography. In a group of 18 experienced adult cochlear implant users, we found a positive correlation between speech perception and activations in both the primary and association auditory cortices. This correlation was present in a subgroup of experienced implant users but absent in a group of new implant users with similar speech perception abilities. There was a significant negative correlation between duration of deafness and auditory cortical activation. This study gives insights into the relationship between implant speech perception and auditory cortical activation and the influence of duration of preceding deafness and implant experience. (c) 2005 Elsevier B.V. All rights reserved. C1 Manchester Royal Infirm, Dept Otolaryngol, Manchester, Lancs, England. Christie Hosp, NW Med Phys, Manchester, Lancs, England. Christie Hosp, Manchester PET Ctr, Manchester, Lancs, England. RP Green, KMJ (reprint author), Manchester Royal Infirm, Dept Otolaryngol, Manchester, Lancs, England. EM kmjgreen@rcsed.ac.uk CR ALAVI A, 1981, SEMIN NUCL MED, V11, P24, DOI 10.1016/S0001-2998(81)80050-5 Albu S., 1997, Acta Oto-Rhino-Laryngologica Belgica, V51, P11 Belin P, 2000, NATURE, V403, P309, DOI 10.1038/35002078 Blamey P, 1996, Audiol Neurootol, V1, P293 BLARNEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 DEGUINE O, 1993, ADV OTO-RHINO-LARYNG, V48, P142 Frost JA, 1999, BRAIN, V122, P199, DOI 10.1093/brain/122.2.199 Fujiki Nobuya, 1999, Auris Nasus Larynx, V26, P229, DOI 10.1016/S0385-8146(99)00009-7 Fujiki N, 1998, ACTA OTO-LARYNGOL, V118, P797, DOI 10.1080/00016489850182468 Fujiki N, 2000, ADV OTO-RHINO-LARYNG, V57, P32 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 Gibson WPR, 2000, ADV OTO-RHINO-LARYNG, V57, P250 Giraud AL, 2001, AUDIOL NEURO-OTOL, V6, P381, DOI 10.1159/000046847 Grafton S T, 2000, Adv Neurol, V83, P87 GREENBERG JH, 1981, SCIENCE, V212, P678, DOI 10.1126/science.6971492 HERZOG H, 1991, J COMPUT ASSIST TOMO, V15, P369, DOI 10.1097/00004728-199105000-00005 Hirano S, 1997, EXP BRAIN RES, V113, P75, DOI 10.1007/BF02454143 Honjo I, 2000, ADV OTO-RHINO-LARYNG, V57, P42 HOWARD D, 1992, BRAIN, V115, P1769, DOI 10.1093/brain/115.6.1769 ITO J, 1993, ADV OTO-RHINO-LARYNG, V48, P29 Jancke L, 2002, HEARING RES, V170, P166, DOI 10.1016/S0378-5955(02)00488-4 Jancke L, 2002, NEUROIMAGE, V15, P733, DOI 10.1006/nimg.2001.1027 Kim CS, 1997, ADV OTO-RHINO-LARYNG, V52, P24 Makhdoum MJA, 1997, J LARYNGOL OTOL, V111, P1008 Mawman DJ, 2004, CLIN OTOLARYNGOL, V29, P331, DOI 10.1111/j.1365-2273.2004.00839.x Naito Y, 2000, HEARING RES, V143, P139, DOI 10.1016/S0378-5955(00)00035-6 Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426 NAITO Y, 1995, COGNITIVE BRAIN RES, V2, P207, DOI 10.1016/0926-6410(95)90009-8 Okazawa H, 1996, BRAIN, V119, P1297, DOI 10.1093/brain/119.4.1297 PHELPS ME, 1979, ANN NEUROL, V6, P371, DOI 10.1002/ana.410060502 Rorden C, 2000, BEHAV NEUROL, V12, P191 ITO J, 1993, ANN OTO RHINOL LARYN, V102, P797 Salvi RJ, 2002, HEARING RES, V170, P96, DOI 10.1016/S0378-5955(02)00386-6 SHEA JJ, 1990, LARYNGOSCOPE, V100, P223 Suarez H, 1999, ACTA OTO-LARYNGOL, V119, P239 Summerfield A Q, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P105 Suzuki M, 2002, HEARING RES, V163, P37, DOI 10.1016/S0378-5955(01)00367-7 Talairach J., 1988, COPLANAR STEREOTAXIC van Dijk JE, 1999, AUDIOLOGY, V38, P109 Waltzman S B, 1995, Ann Otol Rhinol Laryngol Suppl, V165, P15 Wilson BS, 2003, ANNU REV BIOMED ENG, V5, P207, DOI 10.1146/annurev.bioeng.5.040202.121645 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 NR 42 TC 38 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 184 EP 192 DI 10.1016/j.heares.2005.03.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400018 PM 15953527 ER PT J AU Choi, CH Oghalai, JS AF Choi, CH Oghalai, JS TI Predicting the effect of post-implant cochlear fibrosis on residual hearing SO HEARING RESEARCH LA English DT Article DE cochlear implant; intracochlear scarring; residual hearing; passive cochlear model; damping ID IMPLANT PERFORMANCE; ELECTRODE ARRAY; DEAFENED ADULTS; HAIR-CELLS; MODEL; TRANSDUCTION; RECOGNITION AB Intracochlear scarring is a well-described sequela of cochlear implantation. We developed a mathematical model of passive cochlear mechanics to predict the impact that this might have upon residual acoustical hearing after implantation. The cochlea was modeled using lumped impedance terms for scala vestibuli (SV), scala tympani (ST), and the cochlear partition (Cl?). The damping of ST and CP was increased in the basal one half of the cochlea to simulate the effect of scar tissue. We found that increasing the damping of the ST predominantly reduced basilar membrane vibrations in the apex of the cochlea while increasing the damping of the CP predominantly reduced basilar membrane vibrations in the base of the cochlea. As long as intracochlear scarring continues to occur with cochlear implantation, there will be limitations on hearing preservation. Newer surgical techniques and electrode technologies that do not result in as much scar tissue formation will permit improved hearing preservation. (c) 2005 Elsevier B.V. All rights reserved. C1 Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, Houston, TX 77030 USA. RP Oghalai, JS (reprint author), Baylor Coll Med, Bobby R Alford Dept Otolaryngol Head & Neck Surg, 1 Baylor Plaza,NA 102, Houston, TX 77030 USA. EM cchoi@bcm.tmc.edu; jso@bcm.tmc.edu CR Alexiades G, 2001, LARYNGOSCOPE, V111, P1608, DOI 10.1097/00005537-200109000-00022 ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 Araki S, 2000, OTOLARYNG HEAD NECK, V122, P425, DOI 10.1016/S0194-5998(00)70060-X Bekesy G., 1960, EXPT HEARING BOGGESS WJ, 1989, LARYNGOSCOPE, V99, P1002 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CHOI CH, 2004, 27 ANN MIDW RES M AS, V27, P346 Clark G M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P22 DEBOER E, 1996, COCHLEA, V8, P258 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 Gomaa NA, 2003, EAR HEARING, V24, P539, DOI 10.1097/01.AUD.0000100208.26628.2D Hodges A, 1997, AM J OTOL, V18, P179 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 Ketten D R, 1998, Ann Otol Rhinol Laryngol Suppl, V175, P1 Miyamoto RT, 1997, AM J OTOL, V18, P60 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 NEELY ST, 1993, J ACOUST SOC AM, V94, P137, DOI 10.1121/1.407091 Richter B, 2002, J LARYNGOL OTOL, V116, P507 RIZER FM, 1988, OTOLARYNG HEAD NECK, V98, P203 Rubinstein JT, 1999, AM J OTOL, V20, P445 Skarzynski H, 2002, ORL J OTO-RHINO-LARY, V64, P247, DOI 10.1159/000064134 Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 Wenzel GI, 2004, LASER SURG MED, V35, P174, DOI 10.1002/lsm.20091 NR 24 TC 27 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 193 EP 200 DI 10.1016/j.heares.2005.03.018 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400019 PM 15953528 ER PT J AU Kim, TS Nakagawa, T Kitajiri, S Endo, T Takebayashi, S Iguchi, F Kita, T Tamura, T Ito, J AF Kim, TS Nakagawa, T Kitajiri, S Endo, T Takebayashi, S Iguchi, F Kita, T Tamura, T Ito, J TI Disruption and restoration of cell-cell junctions in mouse vestibular epithelia following aminoglycoside treatment SO HEARING RESEARCH LA English DT Article DE inner ear; adherens junction; tight junction; aminoglycoside ototoxicity; E-cadherin ID EAR SENSORY EPITHELIA; MAMMALIAN INNER-EAR; E-CADHERIN; BETA-CATENIN; HAIR-CELLS; REGENERATIVE PROLIFERATION; ADHESION MOLECULE; 2 MODES; ORGAN; GENTAMICIN AB The intracellular junction complexes, which consist of tight junctions (TJ), adherens junctions (AJ), and desmosomes, mediate cell-cell adhesion in epithelial cells. E-cadherin, which is a major component of AJ, plays a role not only in the maintenance of cell-cell junctions, but also in repressing cell proliferation. In this study, we examined changes of E-cadherin expression in mouse vestibular epithelia following local application of neomycin using immunohistochemistry and western blotting, and morphology of cell-cell junctions by transmission electron microscopy (TEM). Immunohistochemistry and western blotting revealed down-expression of E-cadherin and its consecutive recovery. TEM demonstrated temporal disruption of cell-cell junctions. Morphology of cell-cell junctions was more rapidly restored than recovery of E-cadherin expression. Transient disruption of cell-cell junctions and down-expression of E-cadherin is a rational response for the deletion of dying hair cells, and may be associated with a limited capacity for cell proliferations in mammalian vestibular epithelia following their rapid restoration. (c) 2005 Elsevier B.V. All rights reserved. C1 Kyoto Univ, Grad Sch med, Dept Otolaryngol Head & Neck Surg, Sakyo Ku, Kyoto 6068507, Japan. Kyoto Univ, Dept Cell Biol, Grad Sch Med, Sakyo Ku, Kyoto 6068507, Japan. Kyoto Univ, Grad Sch Med, Horizontal Med Res Org, Sakyo Ku, Kyoto, Japan. Japan Sci & Technol Corp, Solut Oriented Res Sci & Technol, Sakyo Ku, Kyoto 6068507, Japan. RP Nakagawa, T (reprint author), Kyoto Univ, Grad Sch med, Dept Otolaryngol Head & Neck Surg, Sakyo Ku, 54 Shogoin, Kyoto 6068507, Japan. EM kim@ent.kuhp.kyoto-u.ac.jp; tnakagawa@ent.kuhp.kyoto-u.ac.jp CR BIRCHMEIER W, 1994, BBA-REV CANCER, V1198, P11, DOI 10.1016/0304-419X(94)90003-5 Ciruna B, 2001, DEV CELL, V1, P37, DOI 10.1016/S1534-5807(01)00017-X Conacci-Sorrell M, 2003, J CELL BIOL, V163, P847, DOI 10.1083/jcb.200308162 Cunningham LL, 2002, J NEUROSCI, V22, P8532 DECHESNE CJ, 1994, J COMP NEUROL, V346, P517, DOI 10.1002/cne.903460405 Desai SS, 2005, J NEUROPHYSIOL, V93, P251, DOI 10.1152/jm.00746.2003 ENGSTROM H, 1961, Acta Otolaryngol Suppl, V163, P30 FARQUHAR MG, 1963, J CELL BIOL, V17, P375, DOI 10.1083/jcb.17.2.375 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Forge A, 2000, HEARING RES, V139, P97, DOI 10.1016/S0378-5955(99)00177-X GUMBINER B, 1988, J CELL BIOL, V107, P1575, DOI 10.1083/jcb.107.4.1575 Hackett L, 2002, EXP CELL RES, V278, P19, DOI 10.1006/excr.2002.5574 HEASMAN J, 1994, CELL, V79, P791, DOI 10.1016/0092-8674(94)90069-8 Hirose K, 2004, J COMP NEUROL, V470, P164, DOI 10.1002/cne.11046 Kelley MW, 2003, CURR TOP DEV BIOL, V57, P321, DOI 10.1016/S0070-2153(03)57011-9 KIM TS, 2004, ACTA OTO-LARYNGOL, V551, P22 Kim TS, 2002, NEUROSCI LETT, V329, P173, DOI 10.1016/S0304-3940(02)00657-2 Lee J. E., 2004, ACTA OTO-LARYNGOL, V551, P69 Leonova EV, 1997, HEARING RES, V113, P14, DOI 10.1016/S0378-5955(97)00130-5 Li L., 1995, AUDIT NEUROSCI, V1, P111 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 MEITELES LZ, 1994, HEARING RES, V79, P26, DOI 10.1016/0378-5955(94)90124-4 Nakagawa T, 2003, HEARING RES, V176, P122, DOI 10.1016/S0378-5955(02)00768-2 Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303 Nelson WJ, 2004, SCIENCE, V303, P1483, DOI 10.1126/science.1094291 OESTERLE EC, 2003, J COMP NEUROL, V18, P177 Ogata Y, 1999, HEARING RES, V133, P53, DOI 10.1016/S0378-5955(99)00057-X RAPHAEL Y, 1991, CELL MOTIL CYTOSKEL, V18, P215, DOI 10.1002/cm.970180307 Sanson B, 1996, NATURE, V383, P627, DOI 10.1038/383627a0 Simonneau L, 2003, J COMP NEUROL, V459, P113, DOI 10.1002/cne.10604 Steyger PS, 1997, INT J DEV NEUROSCI, V15, P417, DOI 10.1016/S0736-5748(96)00101-3 TAKEBAYASHI S, 2004, BETA CATENIN DISTRIB TAKEICHI M, 1991, SCIENCE, V251, P1451, DOI 10.1126/science.2006419 Tsukita Shoichiro, 1992, Current Opinion in Cell Biology, V4, P834, DOI 10.1016/0955-0674(92)90108-O Vleminckx K, 1999, BIOESSAYS, V21, P211, DOI 10.1002/(SICI)1521-1878(199903)21:3<211::AID-BIES5>3.0.CO;2-P WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Whitlon DS, 1999, J NEUROCYTOL, V28, P955, DOI 10.1023/A:1007038609456 WHITLON DS, 1993, J NEUROCYTOL, V22, P1030, DOI 10.1007/BF01235747 YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152 Zheng JL, 1997, J NEUROSCI, V17, P8270 Zheng JL, 1999, J NEUROCYTOL, V28, P901, DOI 10.1023/A:1007078307638 Zheng JL, 1999, J NEUROSCI, V19, P2161 NR 43 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 201 EP 209 DI 10.1016/j.heares.2005.03.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400020 PM 15953529 ER PT J AU Carlyon, RP van Wieringen, A Deeks, JM Long, CJ Lyzenga, J Wouters, J AF Carlyon, RP van Wieringen, A Deeks, JM Long, CJ Lyzenga, J Wouters, J TI Effect of inter-phase gap on the sensitivity of cochlear implant users to electrical stimulation SO HEARING RESEARCH LA English DT Article DE cochlear implant; thresholds; inter-phase gap ID PSYCHOPHYSICAL DETECTION THRESHOLDS; ACROSS-SPECIES COMPARISONS; AUDITORY-NERVE; BALANCED STIMULI; INNER-EAR; SINGLE; DURATION; PERCEPTION; RESPONSES; MODEL AB Human behavioral thresholds for trains of biphasic pulses applied to a single channel of Nucleus CI24 and LAURA cochlear implants were measured as a function of inter-phase gap (IPG). Experiment 1 used bipolar stimulation, a 100-pps pulse rate, and a 400-ms stimulus duration. In one condition, the two phases of each pulse had opposite polarity. Thresholds continued to drop by 910 dB as IPG was increased from near zero to the longest value tested (2900 mu s for CI24, 4900 mu s for LAURA). This time course is much longer than reported for single-cell recordings from animals. In a second condition, the two phases of each pulse had the same polarity, which alternated from pulse to pulse. Thresholds were independent of IPG, and similar to those in condition 1 at IPG=4900 mu s. Experiment 2 used monopolar stimulation. One condition was similar to condition 1 of experiment 1, and thresholds also dropped up to the longest IPG studied (2900 mu s). This also happened when the pulse rate was reduced to 20 pps, and when only a single pulse was presented on each trial. Keeping IPG constant at 8 mu s and adding an extra biphasic pulse x ms into each period produced thresholds that were roughly independent of x, indicating that the effect of IPG in the other conditions was not due to a release from refractoriness at sites central to the auditory nerve. Experiment 3 measured thresholds at three IPGs, which were less than, equal to, and more than one half of the interval between successive pulses. Thresholds were lowest at the intermediate IPG. The results of all experiments could be fit by a linear model consisting of a lowpass filter based on the function relating threshold to the frequency of sinusoidal electrical stimulation. The data and model have implications for reducing the power consumption of cochlear implants. (c) 2005 Elsevier B.V. All rights reserved. C1 MRC, Cognit & Brain Sci Unit, Cambridge CB2 2EF, England. Katholieke Univ Leuven, Lab Exp ORL, B-3000 Louvain, Belgium. RP Carlyon, RP (reprint author), MRC, Cognit & Brain Sci Unit, 15 Chaucer Rd, Cambridge CB2 2EF, England. EM bob.carlyon@mrc-cbu.cam.ac.uk RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015 CR GLASS I, 1983, HEARING RES, V12, P223, DOI 10.1016/0378-5955(83)90108-9 KIANG NYS, 1972, ANN OTO RHINOL LARYN, V81, P714 Laneau J, 2005, J NEUROSCI METH, V142, P131, DOI 10.1016/j.jneumeth.2004.08.015 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 McKay CM, 2003, HEARING RES, V181, P94, DOI 10.1016/S0378-5955(03)00177-1 McKay CM, 1998, J ACOUST SOC AM, V104, P1061, DOI 10.1121/1.423316 Miller AL, 1999, HEARING RES, V134, P89, DOI 10.1016/S0378-5955(99)00072-6 Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 Rattay F, 2001, HEARING RES, V153, P43, DOI 10.1016/S0378-5955(00)00256-2 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 SHANNON RV, 1993, COCHLEAR IMPLANTS AU, P357 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 Shepherd RK, 1999, ACTA OTO-LARYNGOL, V119, P674, DOI 10.1080/00016489950180621 SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421 SMITH DW, 1995, J ACOUST SOC AM, V98, P211, DOI 10.1121/1.413755 SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 SWANSON B, 1994, INT COCHL IMPL SPEEC TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 van Wieringen A, 2005, HEARING RES, V200, P73, DOI 10.1016/j.heares.2004.08.006 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 NR 27 TC 25 Z9 26 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 210 EP 224 DI 10.1016/j.heares.2005.03.021 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400021 PM 15953530 ER PT J AU Spicer, SS Schulte, BA AF Spicer, SS Schulte, BA TI Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells SO HEARING RESEARCH LA English DT Article DE ultrastructure; stria vascularis; aging; mitochondria; oxidation; deafness ID AGE-RELATED-CHANGES; SENSORINEURAL HEARING-LOSS; SPIRAL LIGAMENT PATHOLOGY; AUDITORY-NERVE FIBERS; MOUSE INNER-EAR; COCHLEAR DEGENERATION; INTERMEDIATE CELLS; GERBIL COCHLEA; ION-TRANSPORT; VASCULARIS AB Strial atrophy underlying age-related hearing loss was investigated by ultrastructural comparisons in young and senescent gerbils. In young animals strial marginal cells (MCs) projected primary processes which gave rise to and were connected by numerous ultrathin secondary processes. In 30-36-month-old gerbils, the MC secondary processes degenerated into lamellar or amorphous profiles as the first manifestation of strial atrophy. Some short primary processes shorn of projecting and connecting secondaries coalesced to form mitochondria-filled lobules. Strial involution appeared to progress with transformation of the degenerating processes and lobules into permanent residues of laminated amorphous substance. A second apparently unique form of degeneration was observed in which areas filled with homogeneous granular material replaced the processes that comprise the basal half of the normal MC. An abrupt line of transition separated this structureless degradation product below from the viable upper half of the MC. The terminally involuted stria consisted of MC bodies lining scala media, along with vestigial remnants of MC processes, nearby normal appearing intermediate cells (ICs) and unaltered basal cells. The only age-related change in ICs involved incorporation of melanosomes into very large, matrix-filled lysosomes. A profile of one MC in apparent necrosis provided evidence for an infrequent occurrence of MC death. These data support a progression of pathologic changes beginning with the demise of MC secondary processes and ending with ablation of secondary and primary processes. The initial injury apparently occurs as a result of oxidative self-damage to mitochondria in the MCs primary processes, leading to insufficient ATP for the Na, K-ATPase of the secondary processes. The reduced ATP level may cause cytotoxic alteration of the cytosolic Na+/K+ ratio first in MC secondary processes and later in the primaries, with consequent degeneration of these structures. (c) 2005 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Spicer, SS (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,suite 309,Box 250908, Charleston, SC 29425 USA. EM schulteb@musc.edu CR Beckman KB, 1998, PHYSIOL REV, V78, P547 BORGERS M, 1993, CARDIOVASC PATHOL, V2, P237, DOI 10.1016/1054-8807(93)90030-6 CABLE J, 1991, PIGM CELL RES, V4, P87, DOI 10.1111/j.1600-0749.1991.tb00320.x CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 Gratton M A, 1996, Hear Res, V102, P181, DOI 10.1016/S0378-5955(96)90017-9 GRATTON MA, 1995, HEARING RES, V82, P44 Hequembourg S, 2001, JARO, V2, P118 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P364 KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KEITHLEY EM, 1992, HEARING RES, V59, P171, DOI 10.1016/0378-5955(92)90113-2 Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4 MARCUS DC, 2002, AM J PHYSIOL-CELL PH, V282, P403 MILLS JH, 2003, OTORHINOLARYNGOLOGY, pCH21 Mills J.H., 2001, NOISE INDUCED HEARIN, P497 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NADOL JB, 1980, AGING COMMUNICATION, P63 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 PAULER M, 1988, LARYNGOSCOPE, V98, P754 Sakaguchi N, 1997, HEARING RES, V105, P44, DOI 10.1016/S0378-5955(96)00180-3 SALT AN, 1987, LARYNGOSCOPE, V97, P984 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 Schmiedt R.A, 1993, SENSORY RES MULTIMOD SCHMIEDT RA, 1990, HEARING RES, V45, P221, DOI 10.1016/0378-5955(90)90122-6 Schmiedt RA, 1992, NOISE INDUCED HEARIN, P246 SCHUKNECHT HF, 1993, ANN OTO RHINOL LARYN, V102, P1 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 SCHUKNECHT HF, 1964, ARCHIV OTOLARYNGOL, V80, P369 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 SCHULTE BA, 1992, HEARING RES, V61, P35, DOI 10.1016/0378-5955(92)90034-K Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 Spicer SS, 2003, ANAT REC PART A, V271A, P342, DOI 10.1002/ar.a.10041 Spicer SS, 1997, HEARING RES, V111, P93, DOI 10.1016/S0378-5955(97)00097-X Spicer SS, 2002, HEARING RES, V172, P172, DOI 10.1016/S0378-5955(02)00581-6 Spicer SS, 2005, HEARING RES, V200, P87, DOI 10.1016/j.heares.2004.09.006 TAKAHASH.T, 1971, ANN OTO RHINOL LARYN, V80, P721 Takeuchi S, 2000, BIOPHYS J, V79, P2572 TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Thomopoulos GN, 1997, HEARING RES, V111, P31, DOI 10.1016/S0378-5955(97)00080-4 Ueda N, 1998, LARYNGOSCOPE, V108, P580, DOI 10.1097/00005537-199804000-00022 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Wu T, 2003, JARO, V4, P353, DOI 10.1007/s10162-002-3026-6 NR 43 TC 31 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 225 EP 240 DI 10.1016/j.heares.2005.03.022 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400022 PM 15953531 ER PT J AU van Ruijven, MWM de Groot, JCMJ Klis, SFL Smoorenburg, GF AF van Ruijven, MWM de Groot, JCMJ Klis, SFL Smoorenburg, GF TI The cochlear targets of cisplatin: An electrophysiological and morphological time-sequence study SO HEARING RESEARCH LA English DT Article DE cisplatin ototoxicity; guinea pig; cochlea; spiral ganglion; organ of Corti; histology; electrocochlcography ID ALBINO GUINEA-PIG; INDUCED HEARING-LOSS; STRIA VASCULARIS; SPIRAL GANGLION; CIS-DIAMMINEDICHLOROPLATINUM; INDUCED OTOTOXICITY; ACTH((4-9)) ANALOG; RECOVERY; RAT; PROTECTS AB Cisplatin ototoxicity has at least three major targets in the cochlea: the stria vascularis, the organ of Corti, and the spiral ganglion. This study aims to differentiate between these three targets. In particular, we address the question of whether the effects at the level of the organ of Corti and spiral ganglion are mutually dependent or whether they develop in parallel. This question was approached by studying the ototoxic effects while they develop electrophysiologically and comparing these to earlier presented histological data [Van Ruijven et al., 2004. Hear. Res. 197, 44-54]. Guinea pigs were treated with intraperitoneal injections of cisplatin at a dose of 2 mg/kg/day for either 4, 6, or 8 consecutive days. This time sequence has not revealed any evidence of one ototoxic process triggering another. Therefore, we have to stay with the conclusion of Van Ruijven et al. (2004) that both processes run in parallel. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Hearing Res Labs, Dept Otorhinolaryngol, NL-3508 GA Utrecht, Netherlands. RP van Ruijven, MWM (reprint author), Univ Utrecht, Med Ctr, Hearing Res Labs, Dept Otorhinolaryngol, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. EM m.vanruijven@kmb.azu.nl CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7 Cardinaal RM, 2004, ACTA OTO-LARYNGOL, V124, P144, DOI 10.1080/00016480310015164 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 DEOLIVEIRA JAA, 1989, AUDIOVESTIBULAR TOXI, V2, P181 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 GAIBAIZADEH R, 1997, ACTA OTOLARYNGOL STO, V117, P232 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515 HAMERS FPT, 1994, EUR ARCH OTO-RHINO-L, V251, P23 HAMERS FPT, 1997, NEUROPROTECTION CNS, P513 Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4 Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 KOMUNE S, 1995, ANN OTO RHINOL LARYN, V104, P149 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 O'Leary SJ, 2002, ANTICANCER RES, V22, P1525 O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHWEITZER VG, 1993, LARYNGOSCOPE S59, V103 Sie KCY, 1997, OTOLARYNG HEAD NECK, V116, P585, DOI 10.1016/S0194-5998(97)70232-8 Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x ZHENG JL, 1995, J NEUROSCI, V15, P5079 NR 40 TC 46 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 241 EP 248 DI 10.1016/j.heares.2005.03.023 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400023 PM 15953532 ER PT J AU Jedrzejczak, WW Blinowska, KJ Konopka, W AF Jedrzejczak, WW Blinowska, KJ Konopka, W TI Time-frequency analysis of transiently evoked otoacoustic emissions of subjects exposed to noise SO HEARING RESEARCH LA English DT Article DE transiently evoked otoacoustic emissions; noise exposure; time-frequency distribution; adaptive approximations ID NORMAL-HEARING; NORMAL EARS; CLICK AB Transiently evoked otoacoustic emissions (TEOAE) were measured from 124 ears from two subject groups: healthy subjects (62 ears), and workers (62 ears) exposed to noise of jet engines. The recordings were analyzed using the method of adaptive approximations based on a matching pursuit (MP) algorithm. The method allows for description of the signal components in terms of their amplitude, frequency, latency, and time-span (or duration). The purpose of this work was to determine the repeatability and usefulness of these parameters in studies of hearing impairment of populations exposed to potentially harmful noise. Good distinction between the two datasets was achieved in all investigated frequency bands when amplitude was used as a discrimination parameter. Also latency was affected in frequency bands starting at 2000 Hz, while the time-span parameter associated with the duration of the waveform was less influenced by noise. (c) 2005 Elsevier B.V. All rights reserved. C1 Warsaw Univ, Inst Phys Expt, Dept Biomed Phys, PL-00681 Warsaw, Poland. Med Univ Lodz, Dept Otolaryngol, PL-90549 Lodz, Poland. RP Blinowska, KJ (reprint author), Warsaw Univ, Inst Phys Expt, Dept Biomed Phys, Ul Hoza 69, PL-00681 Warsaw, Poland. EM katarzyna.blinowska@fuw.edu.pl RI Konopka, Wieslaw/P-2401-2014 CR Jedrzejczak WW, 2004, J ACOUST SOC AM, V115, P2148, DOI 10.1121/1.1690077 Lucertini M, 2002, J ACOUST SOC AM, V111, P928 Moleti A, 2002, HEARING RES, V174, P290, DOI 10.1016/S0378-5955(02)00703-7 NORTON SJ, 1987, J ACOUST SOC AM, V81, P1860, DOI 10.1121/1.394750 Prieve BA, 1996, J ACOUST SOC AM, V99, P3077, DOI 10.1121/1.414794 PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Sisto R, 2002, J ACOUST SOC AM, V111, P297, DOI 10.1121/1.1428547 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 NR 10 TC 34 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 249 EP 255 DI 10.1016/j.heares.2005.03.024 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400024 PM 15953533 ER PT J AU Soeta, Y Nakagawa, S Tonoike, M AF Soeta, Y Nakagawa, S Tonoike, M TI Auditory evoked magnetic fields in relation to iterated rippled noise SO HEARING RESEARCH LA English DT Article DE magnetoencephalography; auditory evoked response; Nlm; iterated rippled noise; autocorrelation function ID PITCH STRENGTH; TONOTOPIC ORGANIZATION; COMPLEX SOUNDS; HUMAN BRAIN; CORTEX; REPRESENTATION; MAGNETOENCEPHALOGRAPHY; SENSITIVITY; RECORDINGS; PERIPHERY AB Auditory evoked magnetic fields in relation to iterated rippled noise (IRN) were examined by magnetoencephalography (MEG). IRN was used as the sound stimulus to control the peak amplitude of the autocorrelation function of the sound. The IRN was produced by a delay-and-add algorithm applied to bandpass noise that was filtered using fourth-order Butterworth filters between 4002200 Hz. All sound signals had the same sound pressure level. The stimulus duration was 0.5 s, with rise and fall ramps of 10 ms. Ten normal-hearing subjects took part in the study. Auditory evoked fields were recorded using a 122 channel whole-head magnetometer in a magnetically shielded room. The results showed that the peak amplitude of N1m, which was found above the left and right temporal lobes around 100 ms after the stimulus onset, increased with increase in the number of iterations of the IRN. The latency and estimated equivalent current dipole (ECD) locations of N1m did not show any systematic variation as a function of the number of iterations. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. RP Soeta, Y (reprint author), Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp CR Ando Y., 1998, ARCHITECTURAL ACOUST Ando Y, 1999, COMPUTATIONAL ACOUST, P63 BILSEN FA, 1966, ACUSTICA, V17, P295 Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 ELBERLING C, 1982, ACTA NEUROL SCAND, V65, P553 FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 GRIFFITHS TD, 1998, NAT NEUROSCI, V1, P421 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60 KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163 Krumbholz K, 2003, CEREB CORTEX, V13, P765, DOI 10.1093/cercor/13.7.765 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 PATTERSON RD, 1995, J ACOUST SOC AM, V98, P1890, DOI 10.1121/1.414456 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 Sato S, 2002, J SOUND VIB, V250, P47, DOI 10.1006/jsvi.2001.3888 Seither-Preisler A, 2004, EUR J NEUROSCI, V19, P3073, DOI 10.1111/j.1460-9568.2004.03423.x Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 Soeta Y, 2005, HEARING RES, V202, P47, DOI 10.1016/j.heares.2004.09.012 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 YOST WA, 1979, J ACOUST SOC AM, V66, P400, DOI 10.1121/1.382942 Yost WA, 1996, J ACOUST SOC AM, V99, P1066, DOI 10.1121/1.414593 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 NR 30 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 256 EP 261 DI 10.1016/j.heares.2005.03.026 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400025 PM 15953534 ER PT J AU Iida, K Tsumoto, K Ikeda, K Kumagai, I Kobayashi, T Wada, H AF Iida, K Tsumoto, K Ikeda, K Kumagai, I Kobayashi, T Wada, H TI Construction of an expression system for the motor protein prestin in Chinese hamster ovary cells SO HEARING RESEARCH LA English DT Article DE outer hair cell; prestin; Chinese hamster ovary cell; cloning; stable expression ID OUTER HAIR-CELLS; MECHANICAL RESPONSES; COCHLEAR AMPLIFIER; VOLTAGE SENSOR; MEMBRANE; CAPACITANCE; MOTILITY AB The electromotility of outer hair cells (OHCs) is believed to be a major factor in cochlear amplification that enables the high sensitivity of hearing in mammals. This motility is thought to be based on voltage-dependent conformational changes of a motor protein embedded in the lateral wall of the OHC. In 2000, this motor protein was identified and termed prestin. To obtain knowledge on the function of prestin, research at the molecular level is necessary. For this purpose, a method of obtaining a large amount of prestin is required. In this study, an attempt was therefore made to construct an expression system for prestin. Prestin cDNA was introduced into Escherichia coli (E. coli), insect cells and Chinese hamster ovary (CHO) cells, and the expression of prestin was examined by Western blotting. As CHO cells expressed prestin well, we generated prestin-expressing cell lines using CHO cells by limiting dilution cloning. The stable expression and the activity of prestin in generated cell lines were then confirmed. Finally, to obtain prestin from these cell lines efficiently, culture conditions of the cells were examined, and it was clarified that cells should be cultured in serum-free medium and harvested around 48 h after passage. (c) 2005 Elsevier B.V. All rights reserved. C1 Tohoku Univ, Detp Bioengn & Robot, Sendai, Miyagi 9808579, Japan. Tohoku Univ, Dept Biomol Engn, Sendai, Miyagi 9808579, Japan. Juntendo Univ, Sch Med, Dept Otorhinolaryngol, Bunkyo Ku, Tokyo 1138421, Japan. Tohoku Univ, Sch Med, Dept Otolaryngol Head & Neck Surg, Sendai, Miyagi 9808575, Japan. RP Wada, H (reprint author), Tohoku Univ, Detp Bioengn & Robot, 6-6-01 Aoba Yama, Sendai, Miyagi 9808579, Japan. EM wada@cc.mech.tohoku.ac.jp CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 AVGERINOS GC, 1990, BIO-TECHNOL, V8, P54, DOI 10.1038/nbt0190-54 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1992, J NEUROSCI, V12, P4575 FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870 Frolenkov GI, 2000, J NEUROSCI, V20, P5940 HUANG GJ, 1993, BIOPHYS J, V65, P2228 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Matsuda K, 2004, J NEUROCHEM, V89, P928, DOI 10.1111/j.1471-4159.2004.02377.x NEHER E, 1982, P NATL ACAD SCI-BIOL, V79, P6712, DOI 10.1073/pnas.79.21.6712 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Wu XD, 2004, MOL BRAIN RES, V126, P30, DOI 10.1016/j.molbrainres.2004.03.020 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032 NR 20 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 262 EP 270 DI 10.1016/j.heares.2005.03.027 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400026 PM 15953535 ER PT J AU Liu, YX Li, XP Ma, CS Liu, JX Lu, H AF Liu, YX Li, XP Ma, CS Liu, JX Lu, H TI Salicylate blocks L-type calcium channels in rat inferior colliculus neurons SO HEARING RESEARCH LA English DT Article DE calcium currents; inferior colliculus; patch clamp; salicylate; tinnitus ID HIPPOCAMPAL-NEURONS; CA2+ CHANNELS AB To investigate the effects of the tinnitus inducer sodium salicylate on L-type voltage-gated calcium channels, we studied freshly (-)dissociated inferior colliculus neurons of rats by the whole-cell voltage clamp method. Salicylate's blocking of L-type calcium Channels was concentration dependent, and the IC50 value of salicylate was estimated to be 1.99 mM. An amount of 1 mM salicylate significantly shifted the steady-state inactivation curve of L-type calcium channels about 9mV in the hyperpolarizing direction and significantly delayed calcium channel recovery. Our results suggest that salicylate's blocking of L-type calcium channels may contribute to salicylate-induced tinnitus by decreasing GABA release in the inferior colliculus. (c) 2005 Elsevier B.V. All rights reserved. C1 Peking Univ, Third Hosp, Dept Otorhinolaryngol, Beijing 100083, Haidian Dist, Peoples R China. Hebei Med Univ, Dept Neurobiol, Shijiazhuang 050017, Peoples R China. Hebei Med Univ, Hosp 2, Dept Otorhinolaryngol, Shijiazhuang 050000, Peoples R China. RP Li, XP (reprint author), Peking Univ, Third Hosp, Dept Otorhinolaryngol, 49 Huayuan Rd, Beijing 100083, Haidian Dist, Peoples R China. EM liuyanxing75@sohu.com; drlixuepei@sohu.com CR Bauer CA, 2000, HEARING RES, V147, P175, DOI 10.1016/S0378-5955(00)00130-1 BRUMMETT RE, 1995, MECH TINNITUS, P7 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O FAINGOLD CL, 1991, HEARING RES, V52, P201, DOI 10.1016/0378-5955(91)90200-S GRAHAM JDP, 1948, Q J MED, V17, P153 JAGER BV, 1946, AM J MED SCI, V211, P273, DOI 10.1097/00000441-194603000-00004 JASTREBOFF PJ, 1991, TINNITUS 91, P109 JASTREBOFF PJ, 1986, ARCH OTOLARYNGOL, V112, P1050 Jensen K, 1999, J NEUROPHYSIOL, V81, P1225 Jensen K, 2001, NAT NEUROSCI, V4, P975, DOI 10.1038/nn722 Liu SQJ, 1998, J NEUROSCI, V18, P8758 Liu YX, 2004, HEARING RES, V193, P68, DOI 10.1016/j.heares.2004.03.006 Liu YX, 2004, NEUROSCI LETT, V369, P115, DOI 10.1016/j.neulet.2004.07.037 Marrion NV, 1998, NATURE, V395, P900, DOI 10.1038/27674 Murakami N, 2002, BRAIN RES, V951, P121, DOI 10.1016/S0006-8993(02)03148-7 MYERS EN, 1965, ARCHIV OTOLARYNGOL, V82, P483 N'Gouemo P, 2003, NEUROSCIENCE, V120, P815, DOI 10.1016/S0306-4522(03)00323-3 N'Gouemo P, 2000, NEUROSCIENCE, V96, P753, DOI 10.1016/S0306-4522(00)00006-3 PENNER MJ, 1966, CLIN ASPECTS HEARING, P258 WESTENBROEK RE, 1990, NATURE, V347, P281, DOI 10.1038/347281a0 NR 20 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 271 EP 276 DI 10.1016/j.heares.2005.03.028 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400027 PM 15953536 ER PT J AU Yang, TH Young, YH AF Yang, TH Young, YH TI Click-evoked myogenic potentials recorded on alert guinea pigs SO HEARING RESEARCH LA English DT Article DE guinea pigs; vestibular evoked myogenic potential; clip electrode; caloric nystagmus ID NECK; RESPONSES; MUSCLES; RAT AB The aim of this study was to establish an animal model of acoustically evoked vestibulo-collie reflex using guinea pigs. A special clamp was applied to restrain the head and body of the guinea pigs, but leaving its four legs free. Each animal underwent vestibular evoked inyogenic potential (VEMP) and caloric tests using clip electrode method without general anesthesia or decerebrate surgery. The response rates for the myogenic potentials on the neck of guinea pigs using 100, 90, 80 and 70 dB monaural acoustic stimulation with unilateral recording were 100%, 62%, 50'% and 0%, respectively. The mean latencies of the positive and negative peaks for the myogenic potentials were 7.24 +/- 0.49 and 9.15 +/- 10.47 ms, 7.09 +/- 0.43 and 9.28 +/- 0.42 ins, as well as 7.03 +/- 0.59 and 9.14 +/- 0.56 ms, when elicited by 100, 90 and 80 dB acoustic stimulation, respectively. The median (minimum-maximum) peak-to-peak amplitudes were 11.93 (6.14-16.86), 10.99 (5.28-19.40), and 11.17 (5.02-20.72) mu V, when elicited by 100, 90 and 80 dB acoustic stimulation, respectively. We found no significant relationship between the stimulus intensity and the mean latencies or peak-to-peak amplitude of the myogenic potentials in guinea pigs. For those treated with gentamicin unilaterally, all guinea pigs showed absent caloric responses on the lesion side, and absent myogenic potentials on the neck when using ipsi-lesional acoustic stimulation, while the hearing was preserved. Hence, the use of gentamicin-treated animals, along with normal controls and auditory brainstem responses, results in convincing results that the recorded myogenic potentials are in fact of vestibular origin. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Taiwan Univ, Coll Med, Taipei 10018, Taiwan. RP Young, YH (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 1 Chang Te St, Taipei, Taiwan. EM youngyh@ha.mc.mu.edu.tw CR BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 DIDIER A, 1989, HEARING RES, V37, P123, DOI 10.1016/0378-5955(89)90034-8 Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6 MATTHEWS PBC, 1986, J PHYSIOL-LONDON, V374, P73 Minor LB, 1999, AM J OTOL, V20, P209 Miyazato H, 1999, BRAIN RES, V822, P60, DOI 10.1016/S0006-8993(99)01074-4 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Sakakura K, 2003, HEARING RES, V185, P57, DOI 10.1016/S0378-5955(03)00232-6 Uchino Y, 1997, J NEUROPHYSIOL, V77, P3003 Wang CT, 2004, HEARING RES, V191, P59, DOI 10.1016/j.heares.2004.01.004 Wang SJ, 2003, HEARING RES, V185, P43, DOI 10.1016/S0378-5955(03)00256-9 YOUNG ED, 1977, ACTA OTOLARYNGOL, V84, P252 Young YH, 2001, TOXICOL APPL PHARM, V177, P103, DOI 10.1006/taap.2001.9285 YOUNG YH, 1992, ANN OTO RHINOL LARYN, V101, P612 YOUNG YH, 1991, EUR ARCH OTO-RHINO-L, V248, P331 NR 16 TC 18 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUL PY 2005 VL 205 IS 1-2 BP 277 EP 283 DI 10.1016/j.heares.2005.03.029 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 941UJ UT WOS:000230239400028 PM 15953537 ER PT J AU Reyes, SA Lockwood, AH Salvi, RJ Coad, ML Wack, DS Burkard, RF AF Reyes, SA Lockwood, AH Salvi, RJ Coad, ML Wack, DS Burkard, RF TI Mapping the 40-Hz auditory steady-state response using current density reconstructions SO HEARING RESEARCH LA English DT Article DE auditory steady-state response; source localization; auditory pathways; evoked potentials; LORETA; MinNorm ID AMPLITUDE-MODULATED TONES; 40 HZ; EVOKED-POTENTIALS; CORTEX; FREQUENCY; PHASE; ACTIVATION; ATTENTION; HUMANS; FIELDS AB We mapped the 40-Hz aSSR from nine normal subjects using PET-independent low-resolution electroencephalographic tomography (LORETA) as well as PET-weighted LORETA and minimum norm (MinNorm) current density reconstructions. In grand mean data, PET-independent LORETA identified seven sites with peaks in current density in right temporal lobe, right brainstem/cerebellum, right parietal lobe, left cerebellum/temporal lobe, and right frontal lobe. PET-weighted LORETA found six of the same sites as the PET-independent LORETA: the right brainstem source was eliminated and two right-frontal sources were added. Both LORETA analyses revealed considerable phase dispersion across identified sources. In both LORETA analyses, the relative time course of activation measured from an arbitrary starting phase progressed from right temporal lobe to right mid-frontal lobe to right parietal-frontal to right inferior parietal and finally to left cerebellum and left temporal lobe. MinNorm analysis incorporating PET information identified sources in the same locations as specified in the PET data. These sources were synchronized, with their amplitudes peaking almost simultaneously. Both PET-independent and PET-weighted LORETA results suggest that the aSSR is: (1) the result of a reverberating network with two or more groups of sources that recurrently excite each other or (2) the result of sequential auditory processing through various levels of a hierarchical network. In contrast, the PET-weighted MinNorm results suggest that the 40-Hz response represents simultaneous activation over widely spaced areas of the brain, perhaps due to synchronization of gamma-band activity to a common neural clock. (c) 2004 Published by Elsevier B.V. C1 SUNY Buffalo, Dept Commun Sci & Disorders, Buffalo, NY 14214 USA. SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. SUNY Buffalo, Sch Med & Biomed Sci, Buffalo, NY 14214 USA. Vet Adm Western New York Healthcare Syst, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Neurol, Buffalo, NY 14214 USA. SUNY Buffalo, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Nucl Med, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA. VA Western NY Healthcare Syst, Buffalo, NY 14215 USA. RP Reyes, SA (reprint author), Univ Miami, Dept Otolaryngol, Miami, FL 33101 USA. EM reyes@myrealbox.com; rfb@acsu.buffalo.edu CR AOYAGI M, 1993, AUDIOLOGY, V32, P293 Diesch E, 2004, EUR J NEUROSCI, V19, P1093, DOI 10.1111/j.1460-9568.2004.03191.x Dobie RA, 1998, J ACOUST SOC AM, V104, P3482, DOI 10.1121/1.423931 FRACKOWIAK R, 1997, FUNCTIONAL MAPPING H FRANOWICZ MN, 1995, J NEUROPHYSIOL, V74, P96 Frith CD, 1996, NEUROIMAGE, V4, P210, DOI 10.1006/nimg.1996.0072 Fuchs M, 1999, J CLIN NEUROPHYSIOL, V16, P267, DOI 10.1097/00004691-199905000-00006 Fuchs M, 1998, IEEE T BIO-MED ENG, V45, P980, DOI 10.1109/10.704867 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 Gilron I, 1998, CAN J ANAESTH, V45, P115 Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093 Herdman AT, 2003, NEUROIMAGE, V20, P995, DOI 10.1016/S1053-8119(03)00403-8 John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 Kiren T, 1994, Acta Otolaryngol Suppl, V511, P28 Kraus N., 1995, CLIN NEUROPHYSIOL, V44, P93 MAKELA JP, 1990, HEARING RES, V45, P41, DOI 10.1016/0378-5955(90)90181-N *NEUR LABS, 2000, CURR V4 5 UPD GUID 2 *NEUR LABS, 1999, CURR 4 0 US GUID Nunez P. L., 1981, ELECT FIELDS BRAIN N Pantev C, 2004, EUR J NEUROSCI, V19, P2337, DOI 10.1111/j.1460-9568.2004.03296.x Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PARK HJ, 2001, CDRSPM 1 0 Pastor MA, 2002, J NEUROSCI, V22, P10501 Patel AD, 2000, NATURE, V404, P80, DOI 10.1038/35003577 Patel AD, 2004, CEREB CORTEX, V14, P35, DOI 10.1093/cercor/bhg089 Picton TW, 1999, AUDIOL NEURO-OTOL, V4, P64, DOI 10.1159/000013823 PLOURDE G, 1993, INT ANESTHESIOL CLIN, V31, P107, DOI 10.1097/00004311-199331040-00010 REYES SA, 2004, MULTIMODAL SOURCE LO Reyes SA, 2004, HEARING RES, V194, P73, DOI 10.1016/j.heares.2004.04.001 RIBARY U, 1991, P NATL ACAD SCI USA, V88, P11037, DOI 10.1073/pnas.88.24.11037 Rickards F.W., 1984, EVOKED POTENTIAL, VII, P163 ROMANI GL, 1982, EXP BRAIN RES, V47, P381 Santarelli R, 1999, Scand Audiol Suppl, V51, P23 SNYDER AZ, 1992, ELECTROEN CLIN NEURO, V84, P257, DOI 10.1016/0168-5597(92)90007-X SPYDELL JD, 1985, ELECTROEN CLIN NEURO, V62, P193, DOI 10.1016/0168-5597(85)90014-0 Talairach J., 1988, COPLANAR STEREOTAXIC TallonBaudry C, 1997, NEUROREPORT, V8, P1103, DOI 10.1097/00001756-199703240-00008 TIITINEN H, 1993, NATURE, V364, P59, DOI 10.1038/364059a0 WAGNER M, 1999, NEUROIMAGE, V9, pS202 WAGNER M, 2000, COMMUNICATION WAGNER M, 1999, RECENT ADV BIOMAGNET, P137 Weisz N, 2004, CLIN NEUROPHYSIOL, V115, P1249, DOI 10.1016/j.clinph.2003.12.034 NR 44 TC 5 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 1 EP 15 DI 10.1016/j.heares.2004.11.016 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200001 PM 15925187 ER PT J AU Rose, MM Moore, BCJ AF Rose, MM Moore, BCJ TI The relationship between stream segregation and frequency discrimination in normally hearing and hearing-impaired subjects SO HEARING RESEARCH LA English DT Article DE stream segregation; frequency discrimination; hearing impairment; perceptual grouping ID SPEECH RECEPTION; ELDERLY SUBJECTS; TONE SEQUENCES; GAP DETECTION; LISTENERS; NOISE; INTELLIGIBILITY; SELECTIVITY; SENTENCES; LOUDNESS AB We examined the relationship between the fission boundary (FB) at which a sequence of pure tones alternating between two frequencies cannot be heard as two separate streams and the frequency difference limen (FDL), using normally hearing subjects and subjects with cochlear hearing loss. The stimuli used in the two tasks were as similar as possible in duration and inter-tone interval. The frequency range examined was 250-8000 Hz for the normally hearing subjects and 250-2000 Hz for the hearing-impaired subjects. For normally hearing subjects, the FBs were almost invariant with frequency when expressed as ERBN values; the mean FB was about 0.4 ERBN. The FDLs, also expressed as ERBN values, increased for frequencies above 2000 Hz. The ratio FB/FDL was roughly constant at 7-9 in the frequency region 250-2000 Hz, but decreased for higher frequencies, reaching about 1 at 8000 Hz. For the hearing-impaired subjects, FB/FDL ratios varied over a large range (1-40), and were not systematically related to the amount of hearing loss. These results suggest that the FB is not determined solely by the discriminability of successive tones. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Rose, MM (reprint author), Aston Univ, Sch Life & Hlth Sci, Birmingham B4 7ET, W Midlands, England. EM rosemm@aston.ac.uk RI Moore, Brian/I-5541-2012 CR BAER T, 1994, J ACOUST SOC AM, V95, P2277, DOI 10.1121/1.408640 BAER T, 1993, J ACOUST SOC AM, V94, P1229, DOI 10.1121/1.408176 Barsz K, 2002, NEUROBIOL AGING, V23, P565, DOI 10.1016/S0197-4580(02)00008-8 Beauvois MW, 1996, J ACOUST SOC AM, V99, P2270, DOI 10.1121/1.415414 Bregman AS., 1990, AUDITORY SCENE ANAL FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256 FLORENTINE M, 1987, J ACOUST SOC AM, V81, P1528, DOI 10.1121/1.394505 GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T HALL JW, 1984, J SPEECH HEAR RES, V27, P252 HARTMANN WM, 1991, MUSIC PERCEPT, V9, P155 JESTEADT W, 1975, J ACOUST SOC AM, V57, P1161, DOI 10.1121/1.380574 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Mackersie CL, 2001, J SPEECH LANG HEAR R, V44, P19, DOI 10.1044/1092-4388(2001/002) McCabe SL, 1997, J ACOUST SOC AM, V101, P1611, DOI 10.1121/1.418176 Moore B., 1998, COCHLEAR HEARING LOS Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1974, J ACOUST SOC AM, V55, P359, DOI 10.1121/1.1914512 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 Moore BCJ, 2002, ACTA ACUST UNITED AC, V88, P320 MOORE BCJ, 1992, J ACOUST SOC AM, V92, P1923, DOI 10.1121/1.405240 MOORE BCJ, 2005, IN PRESS BITCH PERCE Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 2004, J ACOUST SOC AM, V115, P3103, DOI 10.1121/1.1738839 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 Nejime Y, 1997, J ACOUST SOC AM, V102, P603, DOI 10.1121/1.419733 NELSON DA, 1986, J ACOUST SOC AM, V79, P799, DOI 10.1121/1.393470 Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 PLOMP R, 1994, EAR HEARING, V15, P2 Rose MM, 1997, J ACOUST SOC AM, V102, P1768, DOI 10.1121/1.420108 Rose MM, 2000, J ACOUST SOC AM, V108, P1209, DOI 10.1121/1.1287708 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 Stainsby TH, 2004, J ACOUST SOC AM, V115, P1665, DOI [10.1121/1.1650288, 10.1121/1.1650288]] TERKEURS M, 1992, J ACOUST SOC AM, V91, P2872, DOI 10.1121/1.402950 TERKEURS M, 1993, J ACOUST SOC AM, V93, P1547, DOI 10.1121/1.406813 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 TYLER RS, 1983, J ACOUST SOC AM, V74, P1190, DOI 10.1121/1.390043 van Noorden L. P. A. S., 1975, THESIS EINDHOVEN U T VANNOORDEN LPA, 1971, IPO ANN PROG REP, V6, P9 NR 39 TC 20 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 16 EP 28 DI 10.1016/j.heares.2004.12.004 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200002 PM 15925188 ER PT J AU Bibikov, NG Elepfandt, A AF Bibikov, NG Elepfandt, A TI Auditory evoked potentials from medulla and midbrain in the clawed frog, Xenopus laevis laevis SO HEARING RESEARCH LA English DT Article DE frog; Xenopus; auditory evoked potential; click rate; audiogram; pulse shape ID ANURAN AMPHIBIANS; LATERAL-LINE; UNDERWATER HEARING; HYLA-VERSICOLOR; GRAY TREEFROG; BRAIN; SENSITIVITY; COMMUNICATION; TEMPERATURE; BULLFROG AB Auditory evoked potentials (AEPs) to clicks and tonal pulses were recorded from medulla and midbrain in Xenopus laevis laevis. They comprise three components: an initial peak (I) at 2.2-3 ms latency, a fast series of peaks (F) at 5-15 ins latency, and a slow negative wave (S) at 20-40 ins latency. In medullary recordings, the initial peak was largest, whereas in inidbrain recordings typically the two other components prevailed. For all components and animals, response threshold at 4 clicks/s was approximately 69 dB SPL. In response to tonal stimuli, AEP amplitudes were maximal at 1.3-2.0 and 3.5 kHz. Raising the click rate to 100/s gradually reduced the amplitude of the I and the first F peaks, whereas later F peaks and the S wave Virtually disappeared at 20-40 clicks/s. On the other hand. extending the plateau duration of tonal stimuli from 4 to 10 ins hardly affected the I and F peaks but doubled the S amplitude. This suggests two systems for stimulus processing, a fast system capable to follow clicks LIP to high repetition rates and a slow system with longer integration time. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Konstanz, Fak Biol, D-7750 Constance, Germany. Acoust Acad Sci, NN Andreev Acoust Inst, Moscow, Russia. Humboldt Univ, Inst Biol, D-10115 Berlin, Germany. RP Elepfandt, A (reprint author), Univ Konstanz, Fak Biol, D-7750 Constance, Germany. EM andreas.elepfandt@rz.hu-berlin.de CR ALTMAN JS, 1981, J PHYSIOL-LONDON, V317, pP78 BIBIKOV NG, 1974, ACUSTICA, V31, P310 BIBIKOV NG, 1993, MODERN PROBLEMS PHYS, P50 BIBIKOV NG, 1970, SOV PHYS ACOUST+, V16, P168 CAREY MB, 1993, HEARING RES, V70, P216, DOI 10.1016/0378-5955(93)90160-3 CHRISTENSENDALSGAA, 1995, J COMP PHYSIOL A, V176, P317 CORWIN JT, 1982, ELECTROEN CLIN NEURO, V54, P629, DOI 10.1016/0013-4694(82)90117-1 DIEKAMP B, 1995, J COMP PHYSIOL A, V177, P173 DIEKAMP BM, 1992, J COMP PHYSIOL A, V171, P245 ELEPFANDT A, 1987, J COMP PHYSIOL A, V160, P667, DOI 10.1007/BF00611939 Elepfandt A, 2000, J EXP BIOL, V203, P3621 ELEPFANDT A, 1996, BIOL XENOPUS, V68, P177 FENG AS, 1998, COMP HEARING FISH AM, P218 Fuzessery Z.M., 1988, P253 Gerhardt C. H., 2002, ACOUSTIC COMMUNICATI Gerhardt HC, 1999, J COMP PHYSIOL A, V185, P33, DOI 10.1007/s003590050363 GERSHUNI GV, 1973, BASIC MECH HEARING, P923 Hall J, 1992, HDB AUDITORY EVOKED HETHERINGTON TE, 1982, J EXP BIOL, V98, P49 Kobel HR, 1996, BIOL XENOPUS, P9 KOYAMA H, 1982, BRAIN RES, V250, P168, DOI 10.1016/0006-8993(82)90964-7 LOFTUSHI.JJ, 1970, J ACOUST SOC AM, V47, P1131, DOI 10.1121/1.1912015 LOMBARD RE, 1981, J EXP BIOL, V91, P57 LOUMONT C, 1981, MONIT ZOOL ITAL, V15, P23 LOWE DA, 1986, J COMP NEUROL, V245, P498, DOI 10.1002/cne.902450406 PICKER M, 1980, S AFR J ZOOL, V15, P150 POTTER HD, 1965, J NEUROPHYSIOL, V28, P1132 Rogers P.H., 1988, P131 SEAMAN RL, 1991, HEARING RES, V51, P301, DOI 10.1016/0378-5955(91)90046-C TOBIAS ML, 1987, J NEUROSCI, V7, P3191 VIGNY C, 1979, J ZOOL, V188, P103 Walkowiak W., 1988, P275 WALKOWIAK W, 1980, BEHAV PROCESS, V5, P363, DOI 10.1016/0376-6357(80)90019-4 WILCZYNSKI W, 1984, J COMP PHYSIOL, V155, P577, DOI 10.1007/BF00610843 WILL U, 1984, VERH DTSCH ZOOL GES, V77, P345 YAGER D D, 1992, Bioacoustics, V4, P1 ZITTLAU KE, 1985, NEUROSCI LETT, V60, P77, DOI 10.1016/0304-3940(85)90384-2 NR 37 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 29 EP 36 DI 10.1016/j.heares.2004.12.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200003 PM 15925189 ER PT J AU Richardson, RT O'Leary, S Wise, A Hardman, J Clark, G AF Richardson, RT O'Leary, S Wise, A Hardman, J Clark, G TI A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support SO HEARING RESEARCH LA English DT Article DE neurotrophin; cochlea; sensorineural hearing loss; spiral ganglion neurons; I-125; autoradiography ID NERVE GROWTH-FACTOR; RETROGRADE AXONAL-TRANSPORT; RAT SYMPATHETIC NEURONS; HAIR CELL LOSS; ELEMENTS FOLLOWING DISRUPTION; GUINEA-PIG COCHLEA; AUDITORY NEURONS; ULTRASTRUCTURAL CHANGES; HORSERADISH-PEROXIDASE; COMPARTMENTED CULTURES AB Degeneration of spiral ganglion neurons (SGNs) in the cochlea following sensorineural hearing loss is preventable by the infusion of neurotrophins into the scala tympani. This study investigates the trophic effects and distribution of a single bolus infusion of neurotrophin-3 (NT3) into the scala tympani of the cochlea. The left cochleae of 28-day deafened guinea pigs were infused with 0, 100 or 140 ng I-125 NT3 via a cochleostomy in the scala tympani of the basal turn. Seven days post-infusion, cochlear sections were processed for measurements of trophic effect's on SGNs and autoradiography. A single infusion of NT3 increased the soma size of SGNs in a dose-dependent and significant manner but did not contribute to SGN survival. Following infusion of 140ng I-125 NT3 into the cochlea, 0.31% of the total I-125 NT3 signal in the basal turn was detected in Rosenthal's canal, 2.4% was in peripheral processes and 0.35% was in the modiolar auditory nerve. Despite influencing SGN soma size, I-125 NT3 was not observed to accumulate in SGN cell bodies. The data suggest that only a small proportion of neurotrophins infused into the scala tympani diffuses to the SGNs and their processes and produces trophic effects on SGN cell bodies. (c) 2005 Elsevier B.V. All rights reserved. C1 Bion Ear Inst, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. RP Richardson, RT (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM rrichardson@bionicear.org RI Wise, Andrew/B-5943-2014 OI Wise, Andrew/0000-0001-9715-8784 CR Araki S, 1998, LARYNGOSCOPE, V108, P687, DOI 10.1097/00005537-199805000-00012 Bachor E, 1999, AM J OTOL, V20, P612 DUVALL AJ, 1972, ANN OTO RHINOL LARYN, V81, P705 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 Ginty DD, 2002, CURR OPIN NEUROBIOL, V12, P268, DOI 10.1016/S0959-4388(02)00326-4 Gopen Q, 1997, HEARING RES, V107, P9, DOI 10.1016/S0378-5955(97)00017-8 HENDRY IA, 1974, BRAIN RES, V82, P117, DOI 10.1016/0006-8993(74)90897-X HENDRY IA, 1974, BRAIN RES, V68, P103, DOI 10.1016/0006-8993(74)90536-8 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 Lee FS, 2001, CURR OPIN NEUROBIOL, V11, P281, DOI 10.1016/S0959-4388(00)00209-9 MacInnis BL, 2002, SCIENCE, V295, P1536, DOI 10.1126/science.1064913 Miller FD, 2001, NEURON, V32, P767, DOI 10.1016/S0896-6273(01)00529-3 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Reynolds AJ, 2000, BRAIN RES REV, V33, P169, DOI 10.1016/S0165-0173(00)00028-X Reynolds AJ, 1999, BRAIN RES PROTOC, V3, P308, DOI 10.1016/S1385-299X(98)00054-3 Richardson RT, 2004, HEARING RES, V198, P25, DOI 10.1016/j.heares.2004.02.012 Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014 Salt AN, 1998, HEARING RES, V123, P137, DOI 10.1016/S0378-5955(98)00106-3 SALT AN, 1991, HEARING RES, V56, P37, DOI 10.1016/0378-5955(91)90151-X Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 Senger DL, 1997, J CELL BIOL, V138, P411, DOI 10.1083/jcb.138.2.411 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Steljes TPV, 1999, J NEUROBIOL, V41, P295, DOI 10.1002/(SICI)1097-4695(19991105)41:2<295::AID-NEU11>3.0.CO;2-W STOCKEL K, 1975, BRAIN RES, V99, P1, DOI 10.1016/0006-8993(75)90604-6 Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 TERAYAMA Y, 1979, ACTA OTO-LARYNGOL, V88, P27, DOI 10.3109/00016487909137136 TERAYAMA Y, 1977, ACTA OTO-LARYNGOL, V83, P291, DOI 10.3109/00016487709128848 Ure DR, 1997, J NEUROSCI, V17, P1282 URE DR, 1994, DEV BIOL, V162, P339, DOI 10.1006/dbio.1994.1091 vonBartheld CS, 1996, J NEUROSCI, V16, P2995 WISE A, IN PRESS J COMP NEUR Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 YEO SW, 1995, LARYNGOSCOPE, V105, P623, DOI 10.1288/00005537-199506000-00012 YIP HK, 1986, J NEUROCYTOL, V15, P789, DOI 10.1007/BF01625195 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P23 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 45 TC 35 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 37 EP 47 DI 10.1016/j.heares.2005.01.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200004 PM 15925190 ER PT J AU Smittkamp, SE Girod, DA Durham, D AF Smittkamp, SE Girod, DA Durham, D TI Role of cochlear integrity in cochlear nucleus glucose metabolism and neuron number after cochlea removal in aging broiler chickens SO HEARING RESEARCH LA English DT Article DE auditory; avian; deafferentation; nucleus magnocellularis ID STEM AUDITORY NUCLEI; CYTOCHROME-OXIDASE ACTIVITY; NERVE ELECTRICAL-ACTIVITY; BRAIN-STEM; AFFERENT INFLUENCES; CELL-DEATH; BREED DIFFERENCES; VISUAL-SYSTEM; ADULT MONKEYS; RAPID CHANGES AB In the chicken auditory system, cochlear nucleus (nucleus magnocellularis, NM) neurons receive their only excitatory input from the ipsilateral cochlea. Cochlea removal (CR) results in an immediate decrease in NM neuron electrical activity, followed by death of similar to 30% of NM neurons. Previous work showed a decrease in NM activity and subsequent loss of NM neurons in all chicks. Egg layer adults showed NM neuron loss after CR, while neuron number remained stable in broiler adults. This suggested that effects of CR on NM were age- and breed-dependent. We now know that most aging egg layer chickens maintain largely normal cochleae throughout adulthood. Some exhibit cochlear damage with age. The converse is true of broiler chickens. Most aging broiler chickens display cochlear degeneration, with some maintaining normal cochlear anatomy throughout adulthood. The presence of extensive cochlear damage may alter the effect of CR on NM, leading to the described differences. Here, we examine the effect of unilateral CR on NM glucose metabolism and neuron number in 2, 30, 39, and 52 week-old broiler chickens found to have normal cochleae. Chickens with damaged cochleae were excluded. Using 2-deoxyglucose uptake to evaluate bilateral NM glucose metabolism, we found significantly decreased uptake ipsilateral to CR at each age examined. Bilateral cell counts revealed significant neuron loss ipsilateral to CR at each age examined. This suggests that NM glucose metabolism decreases and subsequent neuron death occurs in aging broiler chickens when a normal cochlea is removed. The status of the cochlea must play a role in the effect of deafferentation on NM glucose metabolism and neuron survival. The effect of CR appears to be dependent upon neither age nor breed, but upon cochlear integrity instead. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Dept Speech & Hearing, Smith Mental Retardat Res Ctr, Kansas City, KS 66160 USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Smith Mental Retardat Res Ctr, 3901 Rainbow Blvd,MS 3010, Kansas City, KS 66160 USA. EM ddurham@kume.edu CR BOORD RL, 1969, ANN NY ACAD SCI, V167, P186, DOI 10.1111/j.1749-6632.1969.tb20444.x BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Capurso SA, 1997, J NEUROSCI, V17, P7372 Chen L, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P43 CHINO YM, 1992, VISION RES, V32, P789, DOI 10.1016/0042-6989(92)90021-A Chino YM, 1995, CAN J PHYSIOL PHARM, V73, P1323 Churchill JD, 1998, EXP BRAIN RES, V118, P189, DOI 10.1007/s002210050271 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 DIETRICH WD, 1985, J NEUROSCI, V5, P874 DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 DURHAM D, 1985, J COMP NEUROL, V231, P446, DOI 10.1002/cne.902310404 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 Horton JC, 1998, J NEUROSCI, V18, P5433 HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302 Jain N, 2000, P NATL ACAD SCI USA, V97, P5546, DOI 10.1073/pnas.090572597 JEFFERY G, 1987, EXP BRAIN RES, V67, P651 Leung CHW, 2003, BRAIN RES, V984, P182, DOI 10.1016/S0006-8993(03)03129-9 LEVAY S, 1980, J COMP NEUROL, V191, P1, DOI 10.1002/cne.901910102 LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9 Mandairon N, 2003, NEUROSCIENCE, V119, P507, DOI 10.1016/S0306-4522(03)00172-6 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NUDO RJ, 1986, J COMP NEUROL, V245, P553, DOI 10.1002/cne.902450410 Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 PARK DL, 2003, ARO ABSTR, V26, P94 PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6 Rubel EW, 1988, AUDITORY FUNCTION NE, P3 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1 Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 STEWART GA, 1985, HYPERFINE INTERACT, V23, P1, DOI 10.1007/BF02060135 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 WESTRUM LE, 1986, J COMP NEUROL, V243, P195, DOI 10.1002/cne.902430205 WONGRILEY M, 1984, NATURE, V307, P262, DOI 10.1038/307262a0 Woods TM, 2000, J NEUROSCI, V20, P3884 Xu J, 1999, J NEUROSCI, V19, P7578 Yinon U, 1995, CAN J PHYSIOL PHARM, V73, P1378 NR 47 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 48 EP 59 DI 10.1016/j.heares.2004.12.011 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200005 PM 15925191 ER PT J AU Nakajima, HH Ravicz, ME Merchant, SN Peake, WT Rosowski, JJ AF Nakajima, HH Ravicz, ME Merchant, SN Peake, WT Rosowski, JJ TI Experimental ossicular fixations and the middle ear's response to sound: Evidence for a flexible ossicular chain SO HEARING RESEARCH LA English DT Article DE middle-ear function; sound-induced ossicular motion; middle-ear pathology; evolution of the middle ear ID DOPPLER VIBROMETER LDV; TYMPANIC MEMBRANE; MALLEUS FIXATION; HEARING; EVOLUTION; TRANSMISSION; WINDOWS; EARDRUM; MOTION; MODEL AB A human temporal-bone preparation was used to determine the effects of various degrees of artificial ossicular fixation on the sound-induced velocity at the input-side (the umbo of the malleus) and the output-side (the stapes) of the ossicular chain. Construction of various degrees of attachment between an ossicle and the surrounding temporal bone provided a range of reduction in ossicular mobility or "fixations". The results demonstrate different effects of the fixations on the umbo and stapes velocity: fixations of the stapes or incus produce larger reductions in sound-induced stapes velocity (as much as 40-50 dB with extensive stapes fixation), than reductions in umbo velocity (typically less than 10 dB). Fixations of the malleus produce similar-sized changes in both umbo and stapes velocity. These differential effects are consistent with significant flexibility in the ossicular joints (the incudo-malleolar joint and the incudo-stapedial joint) that permits relative motion between the coupled ossicles. The existence of flexibility in the ossicular joints indicates that joints in the ossicular chain can effect a loss of sound-induced mechanical energy between the umbo and the stapes, with a concomitant reduction in the sound-induced motion of the stapes. The introduction of such losses in sound transmission by the joints raises questions concerning the utility of three ossicles in the mammalian ear. The consequences of ossicular flexibility to ossicular-chain reconstruction is discussed. Also, as examined in a more clinically directed paper [Laryngoscope 115 (2005) 147], the different effects of the various ossicular fixations on the motion of the umbo and malleus may be useful in the diagnosis of the site of fixations in humans with conductive hearing losses caused by such pathologies. (c) 2005 Elsevier B.V. All rights reserved. C1 Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. Harvard Univ, MIT, Speech & Hearing Biosci & Technol Program, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Rosowski, JJ (reprint author), Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. EM john_rosowski@meei.harvard.edu CR ALLIN DF, 1992, EVOLUTIONARY BIOL HE, P587 ALLIN EF, 1975, J MORPHOL, V147, P403, DOI 10.1002/jmor.1051470404 Bekesy G., 1960, EXPT HEARING CROMPTON AW, 1978, AM SCI, V66, P192 Decraemer W., 1999, FUNCTION MECH NORMAL, P23 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R Decraemer W. F, 2004, MIDDLE EAR MECH RES, P3, DOI 10.1142/9789812703019_0001 Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3 Fleischer G, 1978, Adv Anat Embryol Cell Biol, V55, P3 FUNNELL WRJ, 1992, J ACOUST SOC AM, V91, P2082, DOI 10.1121/1.403694 GOODE RL, 2004, ABSTR AM OTOL SOC, V7 Goode RL, 1996, AM J OTOL, V17, P813 GOODE RL, 1994, AM J OTOL, V15, P145 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39 Huber A, 2001, ANN OTO RHINOL LARYN, V110, P31 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 Hüttenbrink K B, 1988, Acta Otolaryngol Suppl, V451, P1 Jerison H. J., 1973, EVOLUTION BRAIN INTE Kermack DM, 1984, EVOLUTION MAMMALIAN KERMACK KA, 1983, ACTA PALAENTOL POL, V28, P148 KOHLLOFFEL LUE, 1984, HEARING RES, V13, P73, DOI 10.1016/0378-5955(84)90096-0 KONISHI T, 1973, J ACOUST SOC AM, V53, P325, DOI 10.1121/1.1982336 KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746 MASTERTO.B, 1969, J ACOUST SOC AM, V45, P966, DOI 10.1121/1.1911574 Mehta RP, 2002, ANN OTO RHINOL LARYN, V111, P246 MERCHANT SN, 2003, SURG EAR, P59 NAKAJIMA HH, 2004, MIDDLE EAR MECH RES, P189, DOI 10.1142/9789812703019_0027 Nakajima HH, 2005, LARYNGOSCOPE, V115, P147, DOI 10.1097/01.mlg.0000150692.23506.b7 Pang X-D, 1986, PERIPHERAL AUDITORY, P36 PEAKE WT, 1992, HEARING RES, V57, P245, DOI 10.1016/0378-5955(92)90155-G POWERS WH, 1967, ARCH OTOLARYNGOL, V85, P73 RAVICZ ME, 2004, MIDDLE EAR MECH RES, P91, DOI 10.1142/9789812703019_0013 RAVICZ ME, 2004, HEARING RES, V195, P105 ROSOWSKI JJ, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P615 ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403 Rosowski JJ, 2003, OTOL NEUROTOL, V24, P165, DOI 10.1097/00129492-200303000-00008 Rosowski JJ, 2003, JARO, V4, P371, DOI 10.1007/s10162-002-3047-1 Saunders J. C., 2000, COMP HEARING BIRDS R, P13 Schuknecht HF, 1993, PATHOLOGY EAR Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 von Bekesy G., 1941, AKUST Z, V6, P1 VONBEKESY G, 1936, AKUST Z, V1, P13 VOSS SE, 1998, THESIS MIT WEVER EG, 1948, ARCH OTOLARYNGOL, V48, P19 Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 Willi UB, 2002, HEARING RES, V174, P32, DOI 10.1016/S0378-5955(02)00632-9 WILLI UB, 2004, THESIS U ZURICH ZUR WILLI UB, 2004, MIDDLE EAR MECH RES, P56, DOI 10.1142/9789812703019_0008 ZWISLOCKI J, 1963, J ACOUST SOC AM, V35, P1034, DOI 10.1121/1.1918650 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 52 TC 45 Z9 46 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 60 EP 77 DI 10.1016/j.heares.2005.01.002 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200006 PM 15925192 ER PT J AU Gordon, KA Papsin, BC Harrison, RV AF Gordon, KA Papsin, BC Harrison, RV TI Effects of cochlear implant use on the electrically evoked middle latency response in children SO HEARING RESEARCH LA English DT Article DE deafness; congenital; pre-lingual; peri-lingual; evoked potentials; electrical stimulation; sensitive periods; auditory; human; children; thalamus; cortex; synchrony; development; plasticity ID PRELINGUALLY DEAF-CHILDREN; AUDITORY BRAIN-STEM; SPEECH-PERCEPTION ABILITIES; GRADED-PROFILE-ANALYSIS; CROSS-MODAL PLASTICITY; CONGENITALLY DEAF; SIGN-LANGUAGE; INFERIOR COLLICULUS; GENERATING-SYSTEM; HEARING-LOSS AB The electrically evoked middle latency response (eMLR) reflects central auditory activity in cochlear implant users. This response was recorded repeatedly in 50 children over the first year of cochlear implant use and in 31 children with 5.3 +/- 2.9 years of implant experience. The eMLR was rarely detected at the time of implantation in anaesthetized or sedated children and was detected in only 35% of awake children at initial device stimulation. The detectability of the eMLR increased over the first year of implant use becoming 100%, detectable in children after at least one year. Acutely evoked responses were more likely to be present in older children despite longer periods of auditory deprivation. Within six months of implant use. most children had detectable eMLRs. At early stages of device use, eMLR amplitudes were lower in children implanted below the age of 5 years compared to children implanted at older ages; amplitudes increased over time in both groups. Latencies after six months of implant use were prolonged in the Younger group and decreased with implant use. EMLR changes with chronic cochlear implant use suggest an activity-dependent plasticity of the central auditory system. Results suggest that the pattern of electrically evoked activity and development in the auditory thalamo-cortical pathways will be dependent upon the duration or auditory deprivation Occurring in early childhood. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Toronto, Hosp Sick Children, Dept Otolaryngol, Toronto, ON M5G 1X8, Canada. Univ Toronto, Hosp Sick Children, Brain & Behav Program, Toronto, ON M5G 1X8, Canada. RP Gordon, KA (reprint author), Univ Toronto, Hosp Sick Children, Dept Otolaryngol, 100 Coll St, Toronto, ON M5G 1X8, Canada. EM karen.gordon@utoronto.ca CR ARMONY JL, 1995, BEHAV NEUROSCI, V109, P246, DOI 10.1037//0735-7044.109.2.246 Bavelier D, 2001, J NEUROSCI, V21, P8931 CLARCY JC, 1992, MAMMALIAN AUDITORY P, V2, P232 *COCHL, 1999, NUCL TECHN REF MAN COLLET L, 1988, BRAIN DEV-JPN, V10, P169 DAWSON PW, 1992, J SPEECH HEAR RES, V35, P401 Daya H, 1999, INT J PEDIATR OTORHI, V49, P135, DOI 10.1016/S0165-5876(99)00112-3 El-Hakim Hamdy, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P102 FEINMAN GR, 1996, GUIDELINES FUNCTIONA Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763 Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002 FRYAUFBERTSCHY H, 1992, J SPEECH HEAR RES, V35, P913 Gao WJ, 1999, J NEUROSCI, V19, P7940 Geers Ann, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P127 Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X Gordon Karen A, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P32 Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4 Groenen P, 1997, AUDIOLOGY, V36, P83 Hall J, 1992, HDB AUDITORY EVOKED HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P31, DOI 10.3109/00016489309135763 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R Hassanzadeh S, 2002, OTOLARYNG HEAD NECK, V126, P524, DOI 10.1067/mhn.2002.125110 KILENY PR, 1989, AM J OTOL, V10, P23 KILENY PR, 1991, AM J OTOL, V12, P43 KILENY PR, 1991, AM J OTOL, V12, P37 Kirk Karen Iler, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P69 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 Kral A, 2001, AUDIOL NEURO-OTOL, V6, P346, DOI 10.1159/000046845 Kraus N, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P93 KRAUS N, 1985, ELECTROEN CLIN NEURO, V62, P343, DOI 10.1016/0168-5597(85)90043-7 KRAUS N, 1989, EAR HEARING, V10, P339, DOI 10.1097/00003446-198912000-00004 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 MacDonald L, 2004, INT CONGR SER, V1273, P215, DOI 10.1016/j.ics.2004.07.040 MCGEE T, 1991, BRAIN RES, V544, P211, DOI 10.1016/0006-8993(91)90056-2 KRAUS N, 1993, EAR HEARING, V14, P36, DOI 10.1097/00003446-199302000-00006 MCGEE T, 1993, EAR HEARING, V14, P76, DOI 10.1097/00003446-199304000-00002 Miller GL, 2003, J NEUROSCI, V23, P1059 Miyamoto RT, 1999, AM J OTOL, V20, P596 Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2 Moore CM, 2002, HEARING RES, V164, P82, DOI 10.1016/S0378-5955(01)00415-4 Neville HJ, 1997, BRAIN LANG, V57, P285, DOI 10.1006/brln.1997.1739 Nikolopoulos T. P., 1999, INT J PEDIAT OTOR S1, V49, P189, DOI 10.1016/S0165-5876(99)00158-5 Nikolopoulos TP, 1999, LARYNGOSCOPE, V109, P595, DOI 10.1097/00005537-199904000-00014 Nishimura H, 2000, NEUROREPORT, V11, P811, DOI 10.1097/00001756-200003200-00031 Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376 OSBERGER MJ, 1991, ANN OTO RHINOL LARYN, V100, P883 Pallas SL, 2001, TRENDS NEUROSCI, V24, P417, DOI 10.1016/S0166-2236(00)01853-1 Papsin B C, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P38 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 Ponton CW, 2001, AUDIOL NEURO-OTOL, V6, P363, DOI 10.1159/000046846 Seldon HL, 1996, HEARING RES, V95, P108, DOI 10.1016/0378-5955(96)00028-7 SHALLOP JK, 1990, EAR HEARING, V11, P5, DOI 10.1097/00003446-199002000-00004 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030 Shipp D, 1997, ADV OTO-RHINO-LARYNG, V52, P74 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Staller S, 1997, OTOLARYNG HEAD NECK, V117, P236, DOI 10.1016/S0194-5998(97)70180-3 Stanton SG, 2000, J COMP NEUROL, V426, P117, DOI 10.1002/1096-9861(20001009)426:1<117::AID-CNE8>3.0.CO;2-S Tyler R, 1997, SCAND AUDIOL, V26, P65 Tyler RS, 1997, OTOLARYNG HEAD NECK, V117, P180, DOI 10.1016/S0194-5998(97)70172-4 Waltzman SB, 1997, AM J OTOL, V18, P342 NR 62 TC 24 Z9 28 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 78 EP 89 DI 10.1016/j.heares.2005.01.003 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200007 PM 15925193 ER PT J AU Harding, GW Bohne, BA Vos, JD AF Harding, GW Bohne, BA Vos, JD TI The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise SO HEARING RESEARCH LA English DT Article DE Ahl gene; TTS; PTS; ABR; DPOAE; histopathology; C57BL/6J; B6.CAST ID PRODUCT OTOACOUSTIC EMISSIONS; MOUSE COCHLEA; F1-HYBRID STRAINS; ACOUSTIC TRAUMA; C57BL/6J MICE; OCTAVE BANDS; EXPOSURE; SUSCEPTIBILITY; DEGENERATION; SENSITIVITY AB Inbred C57BL/6J mice carry two copies of an age-related hearing loss gene (Ahl). It has been shown that these mice begin losing high-frequency hearing at two months. Several functional studies have reported that the AN gene renders mice more susceptible to noise-induced hearing loss (NIHL) than strains which do not carry this gene [e.g., Hear. Res. 93 (1996) 181 ;, Hear. Res. 155 (2001) 81 J. Assoc. Res. Otolaryngol. 2 (2001) 233]. Johnson et al. [Hear. Res. 114 (1997) 83] developed a congenic B6.CAST-+(Ahl) mouse which carries the wild-type allele from Mus musculus castancus at the Ahl locus. Five cacti of young C57BL/6J males and females, and B6.CAST- +(Ahl) males were exposed to a 4-kHz octave band of noise at 108 dB SPL for 4 It. Non-noise-exposed mice of the same strains and age served as controls. The noise-exposed mice were functionally tested for ABR thresholds and DPOAE levels pre-exposure and three times post-exposure: 0 days to determine the magnitude of temporary threshold shift (TTS); 6 days to determine rate of recovery; and 20 days to determine the magnitude of permanent threshold shift (PTS). At 20 days post-exposure, the animals underwent cardiac perfusion to fix their cochleae. The isolated cochleae were embedded in plastic and dissected into flat preparations. By phase-contrast microscopy, each cochlea was evaluated from apex to base to quantify the losses of hair cells, nerve fibers and stria vascularis and to localize stereocilia damage. Functional data from each mouse were aligned with the cytocochleogram using the frequency-place map of Ou et al. [Hear. Res. 145 (2000) 111; Hear. Res. 145 (2000) 123]. Sizable variation in the magnitude of TTS, PTS and hair-cell loss was found among mice of the same genetic strain. The congenic B6.CAST-+(Ahl) male mice had significantly less TTS immediately post-exposure than C57BL/6J males or females but not less PTS or hair-cell losses at 20 days post-exposure. These results indicate that, at one month of age, mice carrying two copies of the AN gene have an increased susceptibility to TTS from a low-frequency noise before they have any indication of age-related hearing or hair-cell loss. However, this appeared not to be the case for PTS. The AN gene appears to play a role in susceptibility to NIHL but, other genes as well as systemic and local factors must also be involved. (c) 2005 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, Box 8115, St Louis, MO 63110 USA. EM hardingg@wustl.edu RI Bohne, Barbara/A-9113-2008; Legarth, Jonas/A-9156-2012 OI Bohne, Barbara/0000-0003-3874-7620; CR ALFORD BR, 1963, ANN OTO RHINOL LARYN, V72, P237 BAGGOT PJ, 1987, J ACOUST SOC AM, V81, P1499, DOI 10.1121/1.394502 Bohne B.A., 1982, NEW PERSPECTIVES NOI, P283 Bohne BA, 2000, AM J OTOL, V21, P505 Bohne BA, 1997, HEARING RES, V109, P34, DOI 10.1016/S0378-5955(97)00019-1 Bohne BA, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P171 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 Candreia C, 2004, HEARING RES, V194, P109, DOI 10.1016/j.heares.2004.04.007 Davis R R, 2003, Noise Health, V5, P19 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Flock A, 1999, J NEUROSCI, V19, P4498 HENRY KR, 1984, BEHAV NEUROSCI, V98, P107, DOI 10.1037/0735-7044.98.1.107 Jimenez AM, 2001, JARO, V2, P233 Jimenez AM, 1999, HEARING RES, V138, P91, DOI 10.1016/S0378-5955(99)00154-9 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Keithley EM, 2004, HEARING RES, V188, P21, DOI 10.1016/S0378-5955(03)00365-4 LI HS, 1993, HEARING RES, V68, P19, DOI 10.1016/0378-5955(93)90060-E LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 Martinez Cachero JM, 2002, INSULA, V57, P25 McFadden SL, 1999, EAR HEARING, V20, P164, DOI 10.1097/00003446-199904000-00007 MCGILL TJI, 1976, LARYNGOSCOPE, V86, P1293, DOI 10.1288/00005537-197609000-00001 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2000, HEARING RES, V149, P239, DOI 10.1016/S0378-5955(00)00191-X Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 RICHARDSON KC, 1960, STAIN TECHNOL, V35, P313 SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 SAUNDERS JC, 1979, BRAIN RES, V185, P1 Vazquez AE, 2004, HEARING RES, V194, P87, DOI 10.1016/j.heares.2004.03.017 WANG L, 1994, CHINESE MED J-PEKING, V107, P500 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WELLESCHIK B, 1980, LARYNG RHINOL OTOL V, V59, P681, DOI 10.1055/s-2007-1008914 Yoshida N, 2000, HEARING RES, V141, P97, DOI 10.1016/S0378-5955(99)00210-5 NR 37 TC 27 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 90 EP 100 DI 10.1016/j.heares.2005.01.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200008 PM 15925194 ER PT J AU Hawley, ML Melcher, JR Fullerton, BC AF Hawley, ML Melcher, JR Fullerton, BC TI Effects of sound bandwidth on fMRI activation in human auditory brainstem nuclei SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 25th Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY JAN 27-31, 2002 CL ST PETERSBURG, FL SP Assoc Res Otolaryngol DE functional imaging; human auditory processing; cochlear nucleus; superior olivary complex; inferior colliculus ID INFERIOR COLLICULUS; SENSORY STIMULATION; ACOUSTIC NOISE; SCANNER NOISE; STIMULUS RATE; TIME-COURSE; CORTEX; FREQUENCY; SIGNAL; TONES AB Few neuro-imaging studies of the auditory system have examined the dependence of brain activation on sound bandwidth, a fundamental stimulus parameter, and none have examined bandwidth dependencies in the brainstem. The present study examined the effect of bandwidth on human brainstem activation using fMRI, an indicator Of Population neural activity. The studied stimuli (broadband, two-. one-. and third-octave continuous noise) activated three brainstem centers: cochlear nucleus, superior olivary complex, and inferior colliculus. Activation could be confidently attributed to these nuclei because it was appropriately punctate (given the small size of the imaged nuclei) and appropriately located (as determined from histological atlases). Activation in all three imaged centers increased monotonically with increasing bandwidth when either Stimulus spectrum level or energy was held constant. Supplementary experiments indicated that the measured bandwidth dependencies were not contaminated by the extraneous sounds produced by the scanner. Increases in fMRI activation with increasing bandwidth would be expected from Populations of neurons having a single best frequency and only excitatory responses to sound, but not necessarily from lower auditory system neurons with their often more complex responses. Our results provide basic information for designing auditory neuro-imaging studies that need to control for, or manipulate sound bandwidth. (c) 2005 Elsevier B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, Boston, MA 02114 USA. MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Biosci & Technlol Program, Cambridge, MA 02139 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. RP Melcher, JR (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab, 243 Charles St, Boston, MA 02114 USA. EM jrm@epi.meei.harvard.edu CR BANDETTINI PA, 1992, MAGNET RESON MED, V25, P390, DOI 10.1002/mrm.1910250220 BINDER JR, 1994, COGNITIVE BRAIN RES, V2, P31, DOI 10.1016/0926-6410(94)90018-3 Bonifacino JS, 2002, DEV CELL, V2, P1, DOI 10.1016/S1534-5807(01)00114-9 Brechmann A, 2002, J NEUROPHYSIOL, V87, P423 Edmister WB, 1999, HUM BRAIN MAPP, V7, P89, DOI 10.1002/(SICI)1097-0193(1999)7:2<89::AID-HBM2>3.0.CO;2-N EHRET G, 1988, BRAIN RES REV, V13, P139, DOI 10.1016/0165-0173(88)90018-5 FRISTON KJ, 1995, HUMAN BRAIN MAPPING, V2, P165 Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 Guimaraes AR, 1998, HUM BRAIN MAPP, V6, P33, DOI 10.1002/(SICI)1097-0193(1998)6:1<33::AID-HBM3>3.0.CO;2-M Hall DA, 2000, MAGNET RESON MED, V43, P601, DOI 10.1002/(SICI)1522-2594(200004)43:4<601::AID-MRM16>3.0.CO;2-R Hall DA, 1999, HUM BRAIN MAPP, V7, P213, DOI 10.1002/(SICI)1097-0193(1999)7:3<213::AID-HBM5>3.0.CO;2-N Hall DA, 2001, J ACOUST SOC AM, V109, P1559, DOI 10.1121/1.1345697 Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002 HART HC, 2002, HEARING RES, V171, P170 Hart HC, 2003, HEARING RES, V179, P104, DOI 10.1016/S0378-5955(03)00100-X HAWLEY ML, 2002, 25 ANN MIDW RES M AS, P244 JANCKE L, 1998, NEUROIMAGE, V7, pS938 KIANG NYS, 1984, ADV AUDIOL, V1, P6 KWONG KK, 1992, P NATL ACAD SCI USA, V89, P5675, DOI 10.1073/pnas.89.12.5675 Lasota KJ, 2003, J COMPUT ASSIST TOMO, V27, P213, DOI 10.1097/00004728-200303000-00018 LEVINE RA, 1993, HEARING RES, V68, P59, DOI 10.1016/0378-5955(93)90065-9 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Logothetis NK, 2001, NATURE, V412, P150, DOI 10.1038/35084005 Melcher JR, 2000, J NEUROPHYSIOL, V83, P1058 Mohr CM, 1999, J ACOUST SOC AM, V105, P2738, DOI 10.1121/1.426942 OGAWA S, 1992, P NATL ACAD SCI USA, V89, P5951, DOI 10.1073/pnas.89.13.5951 PRICE C, 1992, NEUROSCI LETT, V146, P179, DOI 10.1016/0304-3940(92)90072-F Ravicz ME, 2001, J ACOUST SOC AM, V109, P216, DOI 10.1121/1.1326083 Ravicz ME, 2000, J ACOUST SOC AM, V108, P1683, DOI 10.1121/1.1310190 RUGGERO MA, 1973, J NEUROPHYSIOL, V36, P569 Sigalovsky I, 2001, NEUROIMAGE, V13, pS939 Tanaka H, 2000, NEUROREPORT, V11, P2045, DOI 10.1097/00001756-200006260-00047 Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 YAKOVLEV PI, 1970, NEUROPATHOLOGY METHO, P371 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 NR 35 TC 23 Z9 24 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 101 EP 110 DI 10.1016/j.heares.2005.01.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200009 PM 15925195 ER PT J AU Basta, D Todt, I Eisenschenk, A Ernst, A AF Basta, D Todt, I Eisenschenk, A Ernst, A TI Vestibular evoked myogenic potentials induced by intraoperative electrical stimulation of the human inferior vestibular nerve SO HEARING RESEARCH LA English DT Article DE vestibulocollic reflex; VEMP; inferior vestibular nerve; intraoperative neurophysiologic monitoring ID GALVANIC STIMULATION; GUINEA-PIG; RESPONSES; REFLEX; DEAFFERENTATION; PRESERVATION; NEURONS; SURGERY; SYSTEM; SOUND AB Vestibular evoked myogenic potentials (VEMPs) can be recorded from sternocleidomastoid muscle (SCM) in clinical practice. The aim of the present Study was to investigate VEMPs upon direct electrical stimulation of the human inferior vestibular nerve to evidence the vestibulocollic reflex arch and their saccular origin, respectively. Seven subjects were stimulated at the inferior (IVN) and superior (SVN) vestibular nerve. The EMG signals of the SCM were recorded. These recordings were compared to air- and bone-conduction evoked VEMPs with respect to latency and shape. All subjects showed normal VEMPs upon acoustic stimulation with a latency of 12.8 +/- 1.4 ms for P13, and 22.7 +/- 2.0 ms for the N23 pre-operatively. Upon direct electrical Stimulation of the IVN, the mean latency of the positive peak was 9.1 +/- 2.2 and 13.2 +/- 2.3 ms for the negative one. No contralateral SCM response was found. Electrical stimulation of the SVN did not result in any EMG response of the SCM. The study shows experimental evidence of the vestibulocollic reflex by direct electrical stimulation of the human IVN for the first time. The method can be utilized to map VIIIth nerve Subdivisions and to intraoperatively monitor IVN integrity in a real-time mode. (c) 2005 Elsevier B.V. All rights reserved. C1 Hosp Univ Berlin, Charite Med Sch, Dept Otolaryngol, D-12683 Berlin, Germany. Hosp Univ Berlin, Charite, Dept Microsurg, D-12683 Berlin, Germany. RP Ernst, A (reprint author), Hosp Univ Berlin, Charite Med Sch, Dept Otolaryngol, Warener Str 7, D-12683 Berlin, Germany. EM basta@rz.uni-potsdam.de; ArneborgE@ukb.de CR Akin F W, 2001, J Am Acad Audiol, V12, P445 Berryhill WE, 2001, OTOL NEUROTOL, V22, P944, DOI 10.1097/00129492-200111000-00040 CAZALS Y, 1985, ARCH OTO-RHINO-LARYN, V242, P155, DOI 10.1007/BF00454415 Clarke AH, 1998, EXP BRAIN RES, V121, P457, DOI 10.1007/s002210050481 COLEBATCH JG, 1992, NEUROLOGY, V42, P1635 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 Dieterich M, 1999, NEUROREPORT, V10, P3283, DOI 10.1097/00001756-199911080-00007 ERNST A, IN PRESS OTOLARYNGOL Firszt Jill B., 2002, Ear and Hearing, V23, P502, DOI 10.1097/00003446-200212000-00002 Halmagyi GM, 1999, ANN NY ACAD SCI, V871, P195, DOI 10.1111/j.1749-6632.1999.tb09185.x HALMAGYI GM, 1995, NEUROLOGY, V45, P1927 Halmagyi G M, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P1 LENARZ T, 1994, ORL J OTO-RHINO-LARY, V56, P31 Magliulo G, 2003, OTOL NEUROTOL, V24, P308, DOI 10.1097/00129492-200303000-00029 Matsuzaki M, 2002, HEARING RES, V165, P152, DOI 10.1016/S0378-5955(02)00297-6 MCCUE MP, 1994, J NEUROSCI, V14, P6058 McCue MP, 1997, AM J OTOL, V18, P355 MILLER CA, 1993, HEARING RES, V66, P130, DOI 10.1016/0378-5955(93)90134-M Moller AR, 1995, INTRAOPERATIVE NEURO Monobe H, 2004, CLIN NEUROPHYSIOL, V115, P807, DOI 10.1016/j.clinph.2003.11.035 Murofushi T, 2002, CLIN NEUROPHYSIOL, V113, P305, DOI 10.1016/S1388-2457(01)00738-6 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Patko T, 2003, CLIN NEUROPHYSIOL, V114, P1344, DOI 10.1016/S1388-2457(03)00119-6 Schultz A, 2003, ANN OTO RHINOL LARYN, V112, P1050 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Skurczynski W, 1989, Acta Otolaryngol Suppl, V468, P341 Watson SRD, 1998, J PHYSIOL-LONDON, V513, P587, DOI 10.1111/j.1469-7793.1998.587bb.x Watson SRD, 1998, ELECTROMYOGR MOTOR C, V109, P471, DOI 10.1016/S0924-980X(98)00033-2 Welgampola MS, 2003, J NEUROL NEUROSUR PS, V74, P771, DOI 10.1136/jnnp.74.6.771 NR 29 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 111 EP 114 DI 10.1016/j.heares.2005.01.006 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200010 PM 15925196 ER PT J AU Wallace, MN Shackleton, TM Anderson, LA Palmer, AR AF Wallace, MN Shackleton, TM Anderson, LA Palmer, AR TI Representation of the purr call in the guinea pig primary auditory cortex SO HEARING RESEARCH LA English DT Article DE phase-locking; vocalization; cortical column; communication ID ALARM CALLS; VOCALIZATIONS; RESPONSES; MARMOSET; NEURONS; ORGANIZATION; STIMULI; SOUNDS; AREAS; CAT AB Guinea pigs produce the low-frequency purr or rumble call as all alerting signal. A digitised example of the call was presented to anaesthetised guinea pigs via a closed sound system while recording from the primary auditory cortex. The exemplar used ill this study had 9 regular phrases each spaced with their centres about 80 ins apart. Low-frequency ( <= 1.1 kHz) units responded best to the call but within this population there were four separate groups: (1) cells that responded vigorously to many or all of the 9 phrases;, (2) cells that gave an onset response;, (3) cells that only responded to a click embedded in the call; (4) cells that did not respond. Particular response types were often grouped together. Thus when orthogonal electrode tracks were used most units gave a similar response. There was no correlation between the type of response and the cortical depth. A similar range of response types was also found in the thalamus and there was no evidence of a distinct response in the cortex that was due to intracortical processing. Cells in the cortex were able to represent the temporal structure Of the purr With the same fidelity Lis cells in the thalamus. (c) 2005 Elsevier B.V. All rights reserved. C1 MRC, Inst Hearing Res, Nottingham NG7 2RD, England. RP Wallace, MN (reprint author), MRC, Inst Hearing Res, Univ Pk, Nottingham NG7 2RD, England. EM markw@ihr.mrc.ac.uk CR ARVOLA A, 1974, Annales Zoologici Fennici, V11, P1 BERRYMAN JC, 1976, Z TIERPSYCHOL, V41, P80 Bieser A, 1998, EXP BRAIN RES, V122, P139, DOI 10.1007/s002210050501 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 Esser KH, 1997, P NATL ACAD SCI USA, V94, P14019, DOI 10.1073/pnas.94.25.14019 Gehr DD, 2000, HEARING RES, V150, P27, DOI 10.1016/S0378-5955(00)00170-2 Ghazanfar AA, 2001, CURR OPIN NEUROBIOL, V11, P712, DOI 10.1016/S0959-4388(01)00274-4 Greene E, 1998, ANIM BEHAV, V55, P511, DOI 10.1006/anbe.1997.0620 HUBEL DH, 1977, PROC R SOC SER B-BIO, V198, P1, DOI 10.1098/rspb.1977.0085 Lu T, 2001, J NEUROPHYSIOL, V85, P2364 MARDIA KV, 2000, DIRECTIONAL STAT, P94 MERRILL EG, 1972, MED BIOL ENG, V10, P662, DOI 10.1007/BF02476084 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 MITANI A, 1985, J COMP NEUROL, V235, P430, DOI 10.1002/cne.902350403 Nagarajan SS, 2002, J NEUROPHYSIOL, V87, P1723, DOI 10.1152/jn.00632.2001 POPELAR J, 2003, PHYSIOL RES, V55, P615 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 Rood J.P., 1972, Animal Behav Monogr, V5, P1 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 SLOBODCHIKOFF CN, 1991, ANIM BEHAV, V42, P713, DOI 10.1016/S0003-3472(05)80117-4 Suta D, 2003, J NEUROPHYSIOL, V90, P3794, DOI 10.1152/jn.01175.2002 SUTA J, 2004, ASS RES OTOLARYNGOL, V27, P197 Syka J, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P431, DOI 10.1007/978-1-4419-8712-9_39 TANAKA H, 1991, JPN J PHYSIOL, V41, P817, DOI 10.2170/jjphysiol.41.817 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, BRIT J AUDIOL, V34, P92 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 1999, NEUROREPORT, V10, P2095, DOI 10.1097/00001756-199907130-00019 Wallace MN, 2002, HEARING RES, V172, P160, DOI 10.1016/S0378-5955(02)00580-4 Wang XQ, 2000, P NATL ACAD SCI USA, V97, P11843, DOI 10.1073/pnas.97.22.11843 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Wang XQ, 2001, J NEUROPHYSIOL, V86, P2616 NR 34 TC 23 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 115 EP 126 DI 10.1016/j.heares.2005.01.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200011 PM 15925197 ER PT J AU So, HS Park, C Kim, HJ Lee, JH Park, SY Lee, JH Lee, ZW Kim, HM Kalinec, F Lim, DJ Park, R AF So, HS Park, C Kim, HJ Lee, JH Park, SY Lee, JH Lee, ZW Kim, HM Kalinec, F Lim, DJ Park, R TI Protective effect of T-type calcium channel blocker flunarizine on cisplatin-induced death of auditory cells SO HEARING RESEARCH LA English DT Article DE cisplatin; ototoxicity; flunarizine; organ of Corti ID OUTER HAIR-CELLS; GUINEA-PIG; IN-VITRO; ANTAGONIST FLUNARIZINE; ORGANOTYPIC CULTURES; INDUCED OTOTOXICITY; LIPID-PEROXIDATION; INDUCED APOPTOSIS; INDUCED DAMAGE; NEURONS AB Changes in intracellular Ca2+ level are involved in a number of intracellular events, including triggering of apoptosis. The role of intracellular calcium mobilization in cisplatin-induced hair cell death, however, is still unknown. In this study, the effect of calcium channel blocker flunarizine (Sibelium (TM)), Which is used to prescribe for vertigo and tinnitus, on cisplatin-induced hair cell death was investigated in a cochlear organ of Corti-derived cell line, HEI-OCI, and the neonatal (P2) rat organ of Corti explant. Cisplatin induced apoptotic cell death showing nuclear fragmentation, DNA ladder, and TUNEL positive in both HEI-OCI and primary organ of Corti explant. Flunarizine significantly inhibited the cisplatin-induced apoptosis. Unexpectedly, flunarizine increased the intracellular calcium ([Ca2+](i)) levels of HEI-OCI. However, the protective effect of flunarizine against cisplatin was not mediated by modulation of intracellular calcium level. Treatment of cisplatin resulted in ROS generation and lipid peroxidation in HEI-OCI. Flunarizine did not attenuate ROS production but inhibited lipid peroxidation and mitochondrial permeability transition in cisplatin-treated cells. This result suggests that the protective mechanism of flunarizine on cisplatin-induced cytotoxicity is associated with direct inhibition of lipid peroxidation and mitochondrial permeability transition. (c) 2005 Elsevier B.V. All rights reserved. C1 Korea Basic Sci Inst, Vestibulocochlear Res Ctr, Taejon 305333, South Korea. Korea Basic Sci Inst, Dept Microbiol, Taejon 305333, South Korea. Korea Basic Sci Inst, Biomol Res Team, Taejon 305333, South Korea. Kyung Hee Univ, Coll Oriental Med, Dept Pharmacol, Seoul, South Korea. House Ear Res Inst, Gonda Dept Cell & Mol Biol, Los Angeles, CA 90057 USA. RP Park, R (reprint author), Wonkwang Univ, Sch Med, Dept Microbiol, 344-7 Shinyong Dong, Iksan 570749, Jeonbuk, South Korea. EM rkpark@wonkwang.ac.ar CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 APPENROTH D, 1993, RENAL FAILURE, V15, P135, DOI 10.3109/08860229309046144 Blanchet C, 1996, J NEUROSCI, V16, P2574 BUDIHARDJO I, 1999, ANNU REV CELL DEV BI, P15269 Campbell Kathleen C M, 2003, J Am Acad Audiol, V14, P144 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Davis CA, 2001, J AM SOC NEPHROL, V12, P2683 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K EICHLER ME, 1994, J NEUROCHEM, V62, P2148 Elimadi A, 1998, EUR J PHARMACOL, V348, P115, DOI 10.1016/S0014-2999(98)00135-6 ESCHWEILER GW, 1993, J NEUROL SCI, V116, P34, DOI 10.1016/0022-510X(93)90086-E ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 Evans P, 1999, ANN NY ACAD SCI, V884, P19, DOI 10.1111/j.1749-6632.1999.tb08633.x Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 Fram Robert J., 1992, Current Opinion in Oncology, V4, P1073, DOI 10.1097/00001622-199212000-00012 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 GONCALVES T, 1991, EUR J PHARMACOL, V204, P315, DOI 10.1016/0014-2999(91)90858-N GREENBERG DA, 1987, BRAIN RES, V410, P143, DOI 10.1016/S0006-8993(87)80036-7 HANNEMANN J, 1988, TOXICOLOGY, V51, P119 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Humes HD, 1999, ANN NY ACAD SCI, V884, P15 Jordan P, 2000, CELL MOL LIFE SCI, V57, P1229, DOI 10.1007/PL00000762 Kalinec GM, 2003, AUDIOL NEURO-OTOL, V8, P177, DOI 10.1159/000071059 Kartalou M, 2001, MUTAT RES-FUND MOL M, V478, P1, DOI 10.1016/S0027-5107(01)00142-7 KONRAD T, 1995, RES EXP MED, V195, P61, DOI 10.1007/BF02576775 Kopke RD, 1997, AM J OTOL, V18, P559 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 MURAI K, 1992, AM J OTOL, V13, P454 OLESEN J, 1988, ANN NY ACAD SCI, V522, P690, DOI 10.1111/j.1749-6632.1988.tb33414.x Rizzuto R, 2003, ONCOGENE, V22, P8619, DOI 10.1038/sj.onc.1207105 Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004 SAITO T, 1991, HEARING RES, V56, P143, DOI 10.1016/0378-5955(91)90163-4 Santi CM, 2002, J NEUROSCI, V22, P396 Schierle GS, 1999, EXP NEUROL, V157, P338, DOI 10.1006/exnr.1999.7066 SEILER SM, 1987, BIOCHEM PHARMACOL, V36, P3331, DOI 10.1016/0006-2952(87)90307-8 SPIERINGS ELH, 1988, ANN NY ACAD SCI, V522, P676, DOI 10.1111/j.1749-6632.1988.tb33413.x TAKEI M, 1994, NEUROCHEM RES, V19, P1199, DOI 10.1007/BF00965156 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 Teranishi M, 2001, HEARING RES, V151, P61, DOI 10.1016/S0300-2977(00)00080-2 Teranishi M, 2003, INT J PEDIATR OTORHI, V67, P133, DOI 10.1016/S0165-5876(02)00353-1 THOMAS PG, 1990, BIOCHIM BIOPHYS ACTA, V1030, P211, DOI 10.1016/0005-2736(90)90297-2 THOMAS PG, 1993, BIOCHEM J, V291, P397 THOMAS PG, 1988, BIOCHIM BIOPHYS ACTA, V946, P439, DOI 10.1016/0005-2736(88)90421-X Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9 VOGELGESANG R, 1990, EUR J PHARM-MOLEC PH, V188, P17, DOI 10.1016/0922-4106(90)90243-Q VOGELGESANG R, 1988, BIOCHEM PHARMACOL, V37, P1597, DOI 10.1016/0006-2952(88)90023-8 Watanabe K, 2002, CHEMOTHERAPY, V48, P82, DOI 10.1159/000057667 YAMAMOTO T, 1994, BRAIN RES, V648, P296, DOI 10.1016/0006-8993(94)91130-4 Yamoah EN, 1998, J NEUROSCI, V18, P610 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 53 TC 38 Z9 43 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 127 EP 139 DI 10.1016/j.heares.2005.01.011 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200012 PM 15925198 ER PT J AU Sone, M Hayashi, H Yamamoto, H Hoshino, T Mizushima, T Nakashima, T AF Sone, M Hayashi, H Yamamoto, H Hoshino, T Mizushima, T Nakashima, T TI Upregulation of HSP by geranylgeranylacetone protects the cochlear lateral wall from endotoxin-induced inflammation SO HEARING RESEARCH LA English DT Article DE GGA; HSP; inner ear; otitis media; cochlear trauma ID RAT COCHLEA; MOLECULAR CHAPERONES; OTITIS-MEDIA; NITRIC-OXIDE; HEAT-SHOCK-PROTEIN-70; EXPRESSION; INDUCTION; STRESS; INJURY; HYPERTHERMIA AB We investigated whether an acyclic polyisoprenoid antiulcer drug, geranylgeranylacetone (GGA), induces the expression of HSP70 in the rat cochlea. Immunoblotting revealed upregulation of HSP70 in the cochlea at 12 h after transtympanic (local) or oral (systemic) administration of GGA, and this increased at 24 It after administration. Positive immunohistochemical staining of HSP70 was observed in the hair cells, the spiral ganglion, the stria vascularis, the spiral ligament, and the perivascular portion of modiolar vessels. We therefore subsequently studied the effects of GGA as an HSP-inducer on inner ear trauma due to inflammation. Damage to the lateral wall due to inflammation induced by lipopolysaccharide inoculation was protected against by pretreatment with GGA, as assessed physiologically by measurement of cochlear blood flow and morphologically by electron microscopy. The results of the present study suggest that GGA can protect the cochlea against other injuries including those induced by noise, ototoxic drugs, and ischemia by upregulating HSP70. (c) 2005 Elsevier B.V. All rights reserved. C1 Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. Kumamoto Univ, Grad Sch Med & Pharmaceut Sci, Dept Microbiol, Kumamoto, Japan. RP Sone, M (reprint author), Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsursmai Cho, Nagoya, Aichi 4668550, Japan. EM michsone@med.nagoya-u.ac.jp RI Nakashima, Tsutomu/B-8259-2012 OI Nakashima, Tsutomu/0000-0003-3930-9120 CR Altschuler RA, 2002, AUDIOL NEURO-OTOL, V7, P152, DOI 10.1159/000058301 BECKER J, 1994, EUR J BIOCHEM, V219, P11, DOI 10.1111/j.1432-1033.1994.tb19910.x CHOPP M, 1989, NEUROLOGY, V39, P1396 Dobbin CA, 2002, J IMMUNOL, V169, P958 Fairfield DA, 2004, HEARING RES, V188, P1, DOI 10.1016/S0378-5955(03)00369-1 Fujiki M, 2003, BRAIN RES, V991, P254, DOI 10.1016/S0006-8993(03)03540-6 Hauser GJ, 1996, AM J PHYSIOL-HEART C, V271, pH2529 Hayes SA, 1996, J CELL BIOL, V132, P255, DOI 10.1083/jcb.132.3.255 HIRAKAWA T, 1996, GASTROENTEROLOGY, V111, P354 Ikeyama S, 2001, J HEPATOL, V35, P53, DOI 10.1016/S0168-8278(01)00053-8 JACQUIERSARLIN MR, 1994, EXPERIENTIA, V50, P1031, DOI 10.1007/BF01923458 LIM HH, 1993, HEARING RES, V69, P146 Matsuda H, 2000, LIFE SCI, V66, P2151, DOI 10.1016/S0024-3205(00)00542-7 MINOWADA G, 1995, J CLIN INVEST, V95, P3, DOI 10.1172/JCI117655 Nikaido H, 2004, CIRCULATION, V110, P1839, DOI 10.1161/01.CIR.0000142615.88444.31 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Oda H, 2002, J GASTROINTEST SURG, V6, P464, DOI 10.1016/S1091-255X(01)00043-9 Oh SH, 2000, ACTA OTO-LARYNGOL, V120, P146 Ooie T, 2001, CIRCULATION, V104, P1837, DOI 10.1161/hc3901.095771 Sone M, 2003, EUR J PHARMACOL, V482, P313, DOI 10.1016/j.ejphar.2003.09.051 Sone M, 2004, ANN OTO RHINOL LARYN, V113, P450 Suzuki K, 1997, J CLIN INVEST, V99, P1645, DOI 10.1172/JCI119327 Unoshima M, 2003, ANTIMICROB AGENTS CH, V47, P2914, DOI 10.1128/AAC.47.9.2914-2921.2003 Weiss YG, 2002, J CLIN INVEST, V110, P801, DOI 10.1172/JCI200215888 YAMAMOTO H, 2003, HEARING RES, P186 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 26 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 140 EP 146 DI 10.1016/j.heares.2005.01.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200013 PM 15925199 ER PT J AU Mulders, WHAM Robertson, D AF Mulders, WHAM Robertson, D TI Noradrenergic modulation of brainstem nuclei alters cochlear neural output SO HEARING RESEARCH LA English DT Article DE noradrenaline; superior olivary complex; hearing; olivocochlear efferents; guinea pig ID AUDITORY-NERVE FIBERS; CROSSED OLIVOCOCHLEAR BUNDLE; GUINEA-PIG COCHLEA; TEMPORARY THRESHOLD SHIFTS; SUPERIOR OLIVARY COMPLEX; ELECTRICAL-STIMULATION; INFERIOR COLLICULUS; ROUND-WINDOW; OTOACOUSTIC EMISSIONS; EFFERENT STIMULATION AB The peripheral auditory sense organ, the cochlea, receives innervation from lateral and medial olivocochlear neurons in the brainstem. These neurons are able to modulate cochlear neural output. Anatomical studies have shown that one of the neurotransmitters which is present in varicosities surrounding the olivocochlear neurons in the brainstem is noradrenaline and previous work on brainstem slices has demonstrated a generally excitatory effect of noradrenaline on medial olivococlilear neurons. In order to assess in vivo the function of the noradrenergic inputs to olivocochlear neurons, we injected noradrenaline in the brainstem of anaesthetised guinea pigs and recorded ipsilateral cochlear electrical activity. Injections of noradrenaline close to the lateral olivocochlear neurons evoked increases in the sound-driven neural activity from the cochlea, measured as Compound action potential (CAP) amplitude, as well as in the spontaneous activity, measured as amplitude of the 900 Hz peak of the spectrum of the neural noise in the cochlear fluids. In contrast, noradrenaline in the vicinity of the medial olivocochlear neurons evoked inhibitory effects on both the CAP amplitude and 900 Hz peak. These results indicate most likely an excitatory action of noradrenaline on both the lateral and medial olivocochlear neurons in the brainstem. and show that such noradrenergic inputs can modulate cochlear function. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Discipline Physiol, Perth, WA 6009, Australia. RP Mulders, WHAM (reprint author), Univ Western Australia, Sch Biomed & Chem Sci, Auditory Lab, Discipline Physiol, Perth, WA 6009, Australia. EM hmulders@cyllene.uwa.edu.au CR ASTONJONES G, 1981, J NEUROSCI, V1, P876 Aston-Jones G, 1999, BIOL PSYCHIAT, V46, P1309, DOI 10.1016/S0006-3223(99)00140-7 Attias J, 1996, ACTA OTO-LARYNGOL, V116, P534, DOI 10.3109/00016489609137885 BROWN MC, 1984, J PHYSIOL-LONDON, V354, P625 Cazals Y, 1996, HEARING RES, V101, P81, DOI 10.1016/S0378-5955(96)00135-9 DESMEDT J. E., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1478, DOI 10.1121/1.1918374 DEWSON JH, 1968, J NEUROPHYSIOL, V30, P817 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 Ebert U, 1996, EUR J NEUROSCI, V8, P1306, DOI 10.1111/j.1460-9568.1996.tb01299.x Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 Giraud AL, 1995, BRAIN RES, V705, P15, DOI 10.1016/0006-8993(95)01091-2 Giraud AL, 1997, NEUROREPORT, V8, P1779 Groff JA, 2003, J NEUROPHYSIOL, V90, P3178, DOI 10.1152/jn.00537.2003 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 Guinan JJ, 1996, J ACOUST SOC AM, V100, P1680, DOI 10.1121/1.416066 GUINAN JJ, 1988, HEARING RES, V33, P115, DOI 10.1016/0378-5955(88)90024-X Hazell JWP, 1996, P 5 INT TINN SEM AM, P51 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 KEMP DT, 1988, HEARING RES, V34, P49, DOI 10.1016/0378-5955(88)90050-0 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 May BJ, 1995, AUDIT NEUROSCI, V1, P385 McMahon CM, 2002, HEARING RES, V173, P134, DOI 10.1016/S0378-5955(02)00281-2 Mulders WHA, 2000, HEARING RES, V149, P11, DOI 10.1016/S0378-5955(00)00157-X Mulders WHAM, 2000, HEARING RES, V144, P53, DOI 10.1016/S0378-5955(00)00045-9 Mulders WHAM, 2001, J CHEM NEUROANAT, V21, P313, DOI 10.1016/S0891-0618(01)00118-1 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Mulders WHAM, 2005, EXP BRAIN RES, V160, P235, DOI 10.1007/s00221-004-2003-1 Murugasu E, 1996, J NEUROSCI, V16, P325 Patuzzi RB, 1999, HEARING RES, V138, P147, DOI 10.1016/S0378-5955(99)00161-6 Patuzzi RB, 2004, HEARING RES, V190, P87, DOI 10.1016/S0378-5955(03)00405-2 RAJAN R, 1988, J NEUROPHYSIOL, V60, P569 RAJAN R, 1988, J NEUROPHYSIOL, V60, P549 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 ROBERTSON D, 1987, HEARING RES, V25, P69, DOI 10.1016/0378-5955(87)90080-3 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x RUGGERO MA, 1991, J NEUROSCI, V11, P1057 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 VETTER DE, 1993, HEARING RES, V70, P173, DOI 10.1016/0378-5955(93)90156-U VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 Walsh EJ, 1998, J NEUROSCI, V18, P3859 Wang XY, 1997, HEARING RES, V106, P20, DOI 10.1016/S0378-5955(96)00211-0 Wang XY, 1997, J NEUROPHYSIOL, V78, P1800 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WARREN EH, 1989, HEARING RES, V37, P89, DOI 10.1016/0378-5955(89)90032-4 WARREN EH, 1989, HEARING RES, V37, P105, DOI 10.1016/0378-5955(89)90033-6 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P966, DOI 10.1121/1.1912235 WIEDERHO.ML, 1970, J ACOUST SOC AM, V48, P950, DOI 10.1121/1.1912234 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 Woods CI, 1999, BRAIN RES, V836, P9, DOI 10.1016/S0006-8993(99)01541-3 NR 54 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 147 EP 155 DI 10.1016/j.heares.2005.01.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200014 PM 15925200 ER PT J AU Myrdal, SE Johnson, KC Steyger, PS AF Myrdal, SE Johnson, KC Steyger, PS TI Cytoplasmic and intra-nuclear binding of gentamicin does not require endocytosis SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 27th Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB, 2004 CL Daytona Beach, FL SP Assoc Res Otolaryngol DE gentamicin; aminoglycoside; non-endocytotic; cytoplasmic; drug uptake ID PREMATURE STOP MUTATIONS; SACCULAR HAIR-CELLS; PIG INNER-EAR; AMINOGLYCOSIDE ANTIBIOTICS; GUINEA-PIG; LLC-PK1 CELLS; GOLGI-COMPLEX; INDUCED NEPHROTOXICITY; TRANSDUCTION CHANNEL; PROXIMAL TUBULE AB Understanding the cellular mechanism(s) by which the oto- and nephrotoxic aminoglycoside antibiotics penetrate cells, and the precise intracellular distribution of these molecules, will enable identification of aminoglycoside-sensitive targets, and potential uptake blockers. Clones of two kidney cell lines, OK and MDCK, were treated with the aminoglycoside gentamicin linked to the fluorophore Texas Red (GTTR). As in earlier reports, endosomal accumulation was observed in live cells, or cells fixed with formaldehyde only. However, delipidation of fixed cells revealed GTTR fluorescence in cytoplasmic and nuclear compartments. Immunolabeling of both GTTR and unconjugated gentamicin corresponded to the cytoplasmic distribution of GTTR fluorescence. Intra-nuclear GTTR binding co-localized with labeled RNA in the nucleoli and trans-nuclear tubules. Cytoplasmic and nuclear distribution of GTTR was quenched by phosphatidylinositol-bisphosphate (PIP2), a known ligand for gentamicin. Cytoplasmic and nuclear GTTR binding increased over time (at 37 degrees C, or on ice to inhibit endocytosis), and was serially competed off by increasing concentrations of unconjugated gentamicin, i.e., GTTR binding is saturable. In contrast, little or no reduction of endocytotic GTTR uptake was observed when cells were co-incubated with up to 4mg/mL unconjugated gentamicin. Thus, cytoplasmic and nuclear GTTR uptake is time-dependent, weakly temperature-dependent and saturable, suggesting that it occurs via an endosome-independent mechanism, implicating ion channels, transporters or pores in the plasma membrane as bioregulatory routes for gentamicin entry into cells. (c) 2005 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Steyger, PS (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM steygerp@ohsu.edu CR Aran J M, 1993, Rev Laryngol Otol Rhinol (Bord), V114, P125 BAGGERSJOBACK D, 1988, ACTA OTO-LARYNGOL, V106, P19, DOI 10.3109/00016488809107366 BEAUCHAMP D, 1991, ANTIMICROB AGENTS CH, V35, P2173 Bedwell DM, 1997, NAT MED, V3, P1280, DOI 10.1038/nm1197-1280 BEGG EJ, 1995, BRIT J CLIN PHARMACO, V39, P597 Belus A, 2001, EUR J PHARMACOL, V412, P121, DOI 10.1016/S0014-2999(01)00717-8 Clancy JP, 2001, AM J RESP CRIT CARE, V163, P1683 Clemens P R, 2001, Curr Neurol Neurosci Rep, V1, P89, DOI 10.1007/s11910-001-0080-0 COREY DP, 1983, J NEUROSCI, V3, P962 Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066 Cortright DN, 2001, BIOCHEM BIOPH RES CO, V281, P1183, DOI 10.1006/bbrc.2001.4482 Decorti G, 1999, LIFE SCI, V65, P1115, DOI 10.1016/S0024-3205(99)00345-8 de Jager P, 2002, INT J TUBERC LUNG D, V6, P622 DELACHAPELLEGROZ B, 1988, EUR J PHARMACOL, V152, P111, DOI 10.1016/0014-2999(88)90841-2 Ding D, 1997, Zhonghua Er Bi Yan Hou Ke Za Zhi, V32, P348 Ding D, 1995, Zhonghua Er Bi Yan Hou Ke Za Zhi, V30, P323 Dunn KW, 2003, NEPHRON EXP NEPHROL, V94, pE7, DOI 10.1159/000070813 ELLISON DH, 1987, MINER ELECTROL METAB, V13, P422 Fabrizii V, 1997, WIEN KLIN WOCHENSCHR, V109, P830 FIEKERS JF, 1983, J PHARMACOL EXP THER, V225, P496 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Furness DN, 1996, HEARING RES, V93, P136, DOI 10.1016/0378-5955(95)00224-3 Gale JE, 2001, J NEUROSCI, V21, P7013 GILBERT DN, 1989, J INFECT DIS, V159, P945 Goldhill JM, 1996, J PHARM PHARMACOL, V48, P651 Gonzalez-Mariscal L, 2000, KIDNEY INT, V57, P2386, DOI 10.1046/j.1523-1755.2000.00098.x HALL JW, 1986, INT J PEDIATR OTORHI, V12, P187, DOI 10.1016/S0165-5876(86)80075-1 Harris DCH, 2001, EXP NEPHROL, V9, P205 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 Haugland R. P., 1996, HDB FLUORESCENT PROB Haugland R.P., 2004, HDB FLUORESCENT PROB Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200 HIEL H, 1992, HEARING RES, V57, P157, DOI 10.1016/0378-5955(92)90148-G Hille B., 1992, IONIC CHANNELS EXCIT, V2nd HOCK R, 1995, J CRIT CARE, V10, P33, DOI 10.1016/0883-9441(95)90029-2 Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 JORGENSEN F, 1988, J PHYSIOL-LONDON, V403, P577 KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9 Kang HS, 2000, CAN J PHYSIOL PHARM, V78, P595, DOI 10.1139/cjpp-78-8-595 Keeling KM, 2002, J MOL MED-JMM, V80, P367, DOI 10.1007/s00109-001-0317-z KEMPSON SA, 1989, J BIOL CHEM, V264, P18451 KIDWELL DT, 1994, EUR J PHARM-ENVIRON, V270, P97, DOI 10.1016/0926-6917(94)90085-X KUHN K, 1975, CELL TISSUE RES, V160, P193 LEEHEY DJ, 1993, J AM SOC NEPHROL, V4, P81 Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4 LOVELESS MO, 1984, J LAB CLIN MED, V103, P294 Lynch SR, 2001, J MOL BIOL, V306, P1023, DOI 10.1006/jmbi.2000.4419 Meyers JR, 2003, J NEUROSCI, V23, P4054 MILLER JJ, 1985, HDB OTOTOXICITY MORIN JP, 1984, CHEMIOTERAPIA, V3, P33 MYRDAL SE, 2004, ARO MIDW M, V27, P135 Nauli SM, 2004, BIOESSAYS, V26, P844, DOI 10.1002/bies.20069 QUAMME GA, 1986, MAGNESIUM, V5, P248 Richardson GP, 1997, J NEUROSCI, V17, P9506 Sandoval R, 1998, J AM SOC NEPHROL, V9, P167 Sandoval RM, 2004, AM J PHYSIOL-RENAL, V286, pF617, DOI 10.1152/ajprenal.00130.2003 Sandoval RM, 2002, AM J PHYSIOL-RENAL, V283, pF1422, DOI 10.1152/ajprenal.00095.2002 Sandoval RM, 2000, AM J PHYSIOL-RENAL, V279, pF884 SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236 SCHAEFFER SF, 1978, J CELL BIOL, V79, P802, DOI 10.1083/jcb.79.3.802 Schulz A, 2002, J CLIN ENDOCR METAB, V87, P5247, DOI 10.1210/jc.2002-020286 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 STEYGER PS, 2004, ARO MIDW M ABSTR, V27, P135 Strotmann R, 2000, NAT CELL BIOL, V2, P695 TIEDEMANN K, 1983, ANAT EMBRYOL, V168, P241, DOI 10.1007/BF00315819 TULKENS PM, 1989, TOXICOL LETT, V46, P107, DOI 10.1016/0378-4274(89)90121-5 van Lent-Evers NAEM, 1999, THER DRUG MONIT, V21, P63, DOI 10.1097/00007691-199902000-00010 WEDEEN RP, 1983, LAB INVEST, V48, P212 WILLIAMS SE, 1987, BIOCHEM PHARMACOL, V36, P89, DOI 10.1016/0006-2952(87)90385-6 WILLIAMS SE, 1987, HEARING RES, V30, P11, DOI 10.1016/0378-5955(87)90177-8 Wolfrum U, 1998, CELL MOTIL CYTOSKEL, V40, P261, DOI 10.1002/(SICI)1097-0169(1998)40:3<261::AID-CM5>3.0.CO;2-G Yoshizawa S, 1998, EMBO J, V17, P6437, DOI 10.1093/emboj/17.22.6437 Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 Zhou LM, 2002, AATCC REV, V2, P29 Zhou Y, 2001, NEUROSCI LETT, V315, P98, DOI 10.1016/S0304-3940(01)02356-4 NR 75 TC 49 Z9 49 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 156 EP 169 DI 10.1016/j.heares.2005.02.002 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200015 PM 15925201 ER PT J AU Myrdal, SE Steyger, PS AF Myrdal, SE Steyger, PS TI TRPV1 regulators mediate gentamicin penetration of cultured kidney cells SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 27th Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB, 2004 CL Daytona Beach, FL SP Assoc Res Otolaryngol DE aminoglycosides; cytoplasmic drug uptake; non-endocytotic uptake; TRP channel ID VANILLOID RECEPTOR VR1; SACCULAR HAIR-CELLS; CAPSAICIN RECEPTOR; CATION CHANNEL; FUNCTIONAL-CHARACTERIZATION; AMINOGLYCOSIDE ANTIBIOTICS; NOCICEPTIVE NEURONS; GANGLIA NEURONS; FREEZE-FRACTURE; ION-CHANNEL AB Transient receptor potential (TRP) receptors are, typically, calcium-permeant cation channels that transduce environmental stimuli. Both kidney epithelial and inner ear sensory cells express TRPV1, are mechanosensors and accumulate the aminoglycoside antibiotic gentamicin. Recently, we showed that Texas Red-conjugated gentamicin (GTTR) enters kidney cells via an endosome-independent pathway. Here, we used GTTR to investigate this non-endocytotic mechanism of gentamicin uptake. In serum-free buffers, GTTR penetrated MDCK cells within 30 s and uptake was modulated by extracellular, multivalent cations (Ca2+, La3+, Gd3+) or protons. We verified the La3+ modulation of GTTR uptake using immunocytochemical detection of unconjugated gentamicin. Membrane depolarization, induced by high extracellular K+ or valinomycin, also reduced GTTR uptake, suggesting electrophoretic permeation through ion channels. GTTR uptake was enhanced by the TRPV1 agonists, resiniferatoxin and anandamide, in Ca2+-free media. Competitive antagonists of the TRPV1 cation current, iodo-resiniferatoxin and SB366791, also enhanced GTTR uptake independently of Ca2+ reinforcing these antagonists' potential as latent agonists in specific Situations. Ruthenium Red blocked GTTR uptake in the presence or absence of these TRPV1-agonists and antagonists. In addition, GTTR uptake was blocked by RTX in the presence of more physiological levels (2 mM) of Ca2+. Thus gentamicin enters cells via cation channels, and gentamicin uptake can be modulated by regulators of the TRPVI channel. (c) 2005 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Portland, OR 97239 USA. RP Steyger, PS (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd, Portland, OR 97239 USA. EM steygerp@ohsu.edu CR Acs G, 1997, J NEUROSCI, V17, P5622 Acs G, 1996, LIFE SCI, V59, P1899, DOI 10.1016/S0024-3205(96)00537-1 BAGGERSJOBACK D, 1988, ACTA OTO-LARYNGOL, V106, P19, DOI 10.3109/00016488809107366 Barry PH, 1999, CLIN EXP PHARMACOL P, V26, P935, DOI 10.1046/j.1440-1681.1999.03149.x BEGG EJ, 1995, BRIT J CLIN PHARMACO, V39, P597 Benham CD, 2002, NEUROPHARMACOLOGY, V42, P873, DOI 10.1016/S0028-3908(02)00047-3 BERTOLERO F, 1982, RES COMMUN CHEM PATH, V36, P273 BONGARD RD, 1993, DRUG METAB DISPOS, V21, P428 Caterina MJ, 1997, NATURE, V389, P816 Chuang HH, 2001, NATURE, V411, P957, DOI 10.1038/35082088 COREY DP, 1983, J NEUROSCI, V3, P962 Corey DP, 2004, NATURE, V432, P723, DOI 10.1038/nature03066 Cortright DN, 2001, BIOCHEM BIOPH RES CO, V281, P1183, DOI 10.1006/bbrc.2001.4482 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 Crider BP, 2003, J BIOL CHEM, V278, P44281, DOI 10.1074/jbc.M307372200 DAVIS JB, 2001, SOC NEUR ABSTR 9105, V27 de Jager P, 2002, INT J TUBERC LUNG D, V6, P622 De Lalla F, 1999, J CHEMOTHERAPY, V11, P440 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 Fowler CJ, 2003, BIOCHEM PHARMACOL, V66, P757, DOI 10.1016/S0006-2952(03)00392-7 FRENCH RJ, 1985, J GEN PHYSIOL, V85, P669, DOI 10.1085/jgp.85.5.669 Gale JE, 2001, J NEUROSCI, V21, P7013 Gillo B, 1996, P NATL ACAD SCI USA, V93, P14146, DOI 10.1073/pnas.93.24.14146 GITTER AH, 1993, ORL J OTO-RHINO-LARY, V55, P1 Gong XD, 2002, J PHYSIOL-LONDON, V540, P39, DOI 10.1113/jphysiol.2001.013235 Gonzalez-Mariscal L, 2000, KIDNEY INT, V57, P2386, DOI 10.1046/j.1523-1755.2000.00098.x Goodman MB, 2003, ANNU REV PHYSIOL, V65, P429, DOI 10.1146/annurev.physiol.65.092101.142659 Grimm C, 2003, J BIOL CHEM, V278, P21493, DOI 10.1074/jbc.M300945200 Guidoni L, 1999, BIOCHEMISTRY-US, V38, P8599, DOI 10.1021/bi990540c Guler AD, 2002, J NEUROSCI, V22, P6408 Gunthorpe MJ, 2004, NEUROPHARMACOLOGY, V46, P133, DOI 10.1016/S0028-3908(03)00305-8 Hashino E, 1997, BRAIN RES, V777, P75, DOI 10.1016/S0006-8993(97)00977-3 Hellwig N, 2004, J BIOL CHEM, V279, P34553, DOI 10.1074/jbc.M402966200 Hofmann T, 2003, CURR BIOL, V13, P1153, DOI 10.1016/S0960-9822(03)00431-7 Humes HD, 1999, ANN NY ACAD SCI, V884, P15 Inoue R, 2003, J PHARMACOL SCI, V91, P271 JACKSON GG, 1984, J ANTIMICROB CHEMOTH, V13, P1 KAHLMETER G, 1984, J ANTIMICROB CHEMOTH, V13, P9 Keeling KM, 2002, J MOL MED-JMM, V80, P367, DOI 10.1007/s00109-001-0317-z Kessel M, 1999, EUR J CLIN PHARMACOL, V55, P369, DOI 10.1007/s002280050642 Kondoh M, 2003, COMP BIOCHEM PHYS B, V134, P417, DOI 10.1016/S1096-4959(02)00255-5 Koplas PA, 1997, J NEUROSCI, V17, P3525 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 KUHN K, 1975, CELL TISSUE RES, V160, P193 Launay P, 2002, CELL, V109, P397, DOI 10.1016/S0092-8674(02)00719-5 LEEHEY DJ, 1993, J AM SOC NEPHROL, V4, P81 Lesniak W, 2003, CARBOHYD RES, V338, P2853, DOI 10.1016/j.carres.2003.08.005 Meyers JR, 2003, J NEUROSCI, V23, P4054 MILLER JJ, 1985, HDB OTOTOXICITY Mutai H, 2003, CELL CALCIUM, V33, P471, DOI 10.1016/S0143-4160(03)00062-9 Nauli SM, 2004, BIOESSAYS, V26, P844, DOI 10.1002/bies.20069 Nilius B, 2003, J BIOL CHEM, V278, P30813, DOI 10.1074/jbc.M305127200 Numazaki M, 2003, P NATL ACAD SCI USA, V100, P8002, DOI 10.1073/pnas.1337252100 Olah Z, 2001, J BIOL CHEM, V276, P31163, DOI 10.1074/jbc.M101607200 Petho G, 2004, PAIN, V109, P284, DOI 10.1016/j.pain.2004.01.038 Prescott ED, 2003, SCIENCE, V300, P1284, DOI 10.1126/science.1083646 Qu ZQ, 2000, J GEN PHYSIOL, V116, P825, DOI 10.1085/jgp.116.6.825 Ren YL, 2001, AM J PHYSIOL-RENAL, V281, pF1102 Ricci AJ, 1997, J PHYSIOL-LONDON, V501, P111, DOI 10.1111/j.1469-7793.1997.111bo.x Riccio A, 2002, J BIOL CHEM, V277, P12302, DOI 10.1074/jbc.M112313200 Runnels LW, 2002, NAT CELL BIOL, V4, P329, DOI 10.1038/ncb781 Rybak Leonard P, 2003, Curr Opin Otolaryngol Head Neck Surg, V11, P328, DOI 10.1097/00020840-200310000-00004 Sandoval RM, 2004, AM J PHYSIOL-RENAL, V286, pF617, DOI 10.1152/ajprenal.00130.2003 SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236 Schlingmann KP, 2002, NAT GENET, V31, P166, DOI 10.1038/ng889 Schulz A, 2002, J CLIN ENDOCR METAB, V87, P5247, DOI 10.1210/jc.2002-020286 Smith GD, 2002, NATURE, V418, P186, DOI 10.1038/nature00894 Steyger PS, 2003, JARO-J ASSOC RES OTO, V4, P565, DOI 10.1007/s10162-003-4002-5 STEYGER PS, 2004, ARO MIDW M ABSTR, V27, P135 Story GM, 2003, CELL, V112, P819, DOI 10.1016/S0092-8674(03)00158-2 Tanaka F, 2003, HEARING RES, V177, P21, DOI 10.1016/S0378-5955(02)00771-2 Thut PD, 2003, NEUROSCIENCE, V119, P1071, DOI 10.1016/S0306-4522(03)00225-2 TIEDEMANN K, 1983, ANAT EMBRYOL, V168, P241, DOI 10.1007/BF00315819 Tikhonov DB, 1999, BIOPHYS J, V77, P1914 Tominaga M, 1998, NEURON, V21, P531, DOI 10.1016/S0896-6273(00)80564-4 Toth A, 2003, LIFE SCI, V73, P487, DOI 10.1016/S0024-3205(03)00310-2 Trebak M, 2002, J BIOL CHEM, V277, P21617, DOI 10.1074/jbc.M202549200 Tsiokas L, 1999, P NATL ACAD SCI USA, V96, P3934, DOI 10.1073/pnas.96.7.3934 Urbach V, 1999, J MEMBRANE BIOL, V168, P29, DOI 10.1007/s002329900495 Vellani V, 2001, J PHYSIOL-LONDON, V534, P813, DOI 10.1111/j.1469-7793.2001.00813.x Vennekens R, 2002, CELL CALCIUM, V31, P253, DOI 10.1016/S0143-4160(02)00055-6 Voets T, 2003, J MEMBRANE BIOL, V192, P1, DOI 10.1007/s00232-002-1059-8 Wahl P, 2001, MOL PHARMACOL, V59, P9 Walker RL, 2002, AM J PHYSIOL-CELL PH, V283, pC1637, DOI 10.1152/ajpcell.00266.2002 WILLIAMS SE, 1987, HEARING RES, V30, P11, DOI 10.1016/0378-5955(87)90177-8 Wuttke MS, 2000, J NEUROGENET, V14, P43, DOI 10.3109/01677060009083476 Xu HS, 2003, J BIOL CHEM, V278, P11520, DOI 10.1074/jbc.M211061200 Xu HX, 2002, NATURE, V418, P181, DOI 10.1038/nature00882 ZENNER HP, 1986, ARCH OTO-RHINO-LARYN, V243, P108, DOI 10.1007/BF00453760 Zheng JF, 2003, J NEUROPHYSIOL, V90, P444, DOI 10.1152/jn.00919.2002 NR 90 TC 51 Z9 53 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 170 EP 182 DI 10.1016/j.heares.2005.02.005 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200016 PM 15925202 ER PT J AU Gross, J Machulik, A Amarjargal, N Fuchs, J Mazurek, B AF Gross, J Machulik, A Amarjargal, N Fuchs, J Mazurek, B TI Expression of prestin mRNA in the organotypic culture of rat cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; hypoxia; ischemia; prestin mRNA ID OUTER HAIR-CELLS; POLYMERASE CHAIN-REACTION; LOUD SOUND EXPOSURE; MOTOR PROTEIN; GUINEA-PIG; POSTNATAL-DEVELOPMENT; ACOUSTIC EXPOSURE; GENE-EXPRESSION; BLOOD-FLOW; RT-PCR AB To quantitate in absolute terms the prestin mRNA levels in the explant Culture Of rat cochlea, we used competitive RT-PCR with a synthetic internal cRNA standard. Prestin gene expression was found at levels of 100 fg specific mRNA/Pg total RNA oil postnatal day 3, which corresponds to about 300 copies per outer hair cell (OHC) and is indicative of an intermediate level of expression. Two days of culturing resulted in ail increase of prestin mRNA levels and in the formation of an apical-basal gradient (p < 0.001). To elucidate the variations the prestin mRNA levels undergo as a result of damage to the organ of Corti, we exposed the explant cultures to ischemia and hypoxia. While total RNA was observed to remain unchanged, the numbers of OHCs and the prestin mRNA levels were found to decrease by about 20% and 35%, respectively, compared to normoxia. In conclusion, we showed that the prestin mRNA levels during in vitro development increase and form an apical-basal gradient within 2 days in culture, similar to the postnatal in vivo development. Hypoxia and ischemia result in a decrease of the prestin mRNA level ill parallel with OHC loss. The prestin mRNA level call therefore be used as marker of damage to or loss of OHCs. (c) 2005 Elsevier B.V. All rights reserved. C1 Humboldt Univ, Charite Hosp, Dept Otorhinolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany. Hlth Sci Univ, Dept Hearing Res, Pediat Clin, Matern & Child Hlth Res Ctr, Ulaanbaatar, Mongol Peo Rep. RP Gross, J (reprint author), Humboldt Univ, Charite Hosp, Dept Otorhinolaryngol, Mol Biol Res Lab, Spandauer Damm 130, D-14050 Berlin, Germany. EM johann.gross@charite.de CR Belyantseva I.A., 2000, J NEUROSCI, V20, P1 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Gao J, 1999, J NEURAL TRANSM, V106, P111, DOI 10.1007/s007020050143 Grabe N, 2002, IN SILICO BIOL, V2, pS1 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 Judice TN, 2002, BRAIN RES PROTOC, V9, P65, DOI 10.1016/S1385-299X(01)00138-6 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 Lamm K, 1996, Audiol Neurootol, V1, P148 LEE KH, 1995, HEARING RES, V87, P9, DOI 10.1016/0378-5955(95)00072-C Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5 ODRISCOLL L, 1993, CYTOTECHNOLOGY, V12, P289, DOI 10.1007/BF00744669 Oliver D, 1999, J PHYSIOL-LONDON, V519, P791, DOI 10.1111/j.1469-7793.1999.0791n.x Orita Y, 2002, OTOL NEUROTOL, V23, P34, DOI 10.1097/00129492-200201000-00009 ROTH B, 1992, ANAT EMBRYOL, V185, P571, DOI 10.1007/BF00185616 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 Sagerstrom CG, 1997, ANNU REV BIOCHEM, V66, P751, DOI 10.1146/annurev.biochem.66.1.751 SCHEIBE F, 1993, EUR ARCH OTO-RHINO-L, V250, P281 SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y Schweinfurth JM, 2000, AM J OTOL, V21, P636 Seidman MD, 1999, ANN NY ACAD SCI, V884, P226, DOI 10.1111/j.1749-6632.1999.tb08644.x Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5 THORNE PR, 1989, ACTA OTO-LARYNGOL, V107, P71, DOI 10.3109/00016488909127481 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 WANG AM, 1989, P NATL ACAD SCI USA, V86, P9717, DOI 10.1073/pnas.86.24.9717 Weber T, 2002, P NATL ACAD SCI USA, V99, P2901, DOI 10.1073/pnas.052609899 WEBER U, 1997, ANTISENSE TECHNOLOGY, P75 Wenger RH, 2002, FASEB J, V16, DOI 10.1096/fj.01-0944rev Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 30 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 183 EP 190 DI 10.1016/j.heares.2005.02.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200017 PM 15925203 ER PT J AU Supin, AY Popov, VV Milekhina, ON Tarakanov, MB AF Supin, AY Popov, VV Milekhina, ON Tarakanov, MB TI Rippled-spectrum resolution dependence on masker-to-probe ratio SO HEARING RESEARCH LA English DT Article DE spectrum-pattern resolution; rippled noise; dependence on level; masking; humans ID AUDITORY-NERVE FIBERS; 2-TONE SUPPRESSION; SIMULTANEOUS MASKING; BASILAR-MEMBRANE; FILTER SHAPES; TUNING CURVES; FREQUENCY-SELECTIVITY; DENSITY RESOLUTION; RESOLVING POWER; NOTCHED-NOISE AB Resolution of rippled sound spectrum (probe) in the presence of additional noise band (masker) was studied as a function of rnasker-to-probe ratio and Sound level in normal listeners. The probe bands were 0.5-oct wide (ERB) centered at 2 kHz; the masker band either coincided with the probe (on-frequency masker), or was 3/4 octaves below (low-frequency masker), or 3/4 octaves above the probe (high-frequency masker). Ripple-density resolution in the probe band was measured by finding the highest ripple density at which an interchange of ripple peaks and valleys was detectable (the phase-reversal test). (i) The effect of the low-frequency masker increased (resolution decreased) when masker-to-probe ratio changed from -25 dB to +20 dB; the effect increased (resolution decreased) with sound level increase. (ii) The effect of the on-frequency masker steeply increased (resolution abruptly decreased) when masker-to-probe ratio exceeded 0 dB; the effect was little dependent on Sound level. (iii) The high-frequency masker was little effective unless the masker-to-probe ratio reached 30-40 dB; the effect increased (resolution decreased) with sound level decrease. Thus, different position of the masker band relative to the probe resulted in qualitatively different kinds of spectrum-pattern resolution dependence on both the masker-to-probe ratio and sound level. (c) 2005 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, Inst Ecol & Evolut, Moscow 117071, Russia. RP Supin, AY (reprint author), Russian Acad Sci, Inst Ecol & Evolut, 33 Leninsky Prosp, Moscow 117071, Russia. EM alex_supin@sevin.ru CR Cooper NP, 1996, J ACOUST SOC AM, V99, P3087, DOI 10.1121/1.414795 DELGUTTE B, 1990, J ACOUST SOC AM, V87, P791, DOI 10.1121/1.398891 Dubno JR, 2001, J ACOUST SOC AM, V110, P1058, DOI 10.1121/1.1381024 Gifford RH, 2000, J ACOUST SOC AM, V107, P2188, DOI 10.1121/1.428499 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GLASBERG BR, 1984, J ACOUST SOC AM, V75, P536, DOI 10.1121/1.390487 Glasberg BR, 2000, J ACOUST SOC AM, V108, P2318, DOI 10.1121/1.1315291 Green D, 1986, AUDITORY FREQUENCY S, P351 Green DM, 1987, PROFILE ANAL AUDITOR HARRIS DM, 1979, HEARING RES, V1, P133, DOI 10.1016/0378-5955(79)90024-8 HOUTGAST T, 1977, J ACOUST SOC AM, V62, P409, DOI 10.1121/1.381541 Houtgast T., 1974, FACTS MODELS HEARING, P258 HOUTGAST T, 1972, J ACOUST SOC AM, V51, P1885, DOI 10.1121/1.1913048 KIANG NYS, 1974, J ACOUST SOC AM, V55, P620, DOI 10.1121/1.1914572 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 Moore BCJ, 1997, J ACOUST SOC AM, V102, P2284, DOI 10.1121/1.419638 OLOUGHLIN BJ, 1981, J ACOUST SOC AM, V69, P1119, DOI 10.1121/1.385691 Oxenham AJ, 1998, J ACOUST SOC AM, V104, P3500, DOI 10.1121/1.423933 Pang XD, 1997, J ACOUST SOC AM, V102, P3564, DOI 10.1121/1.420147 PATTERSON RD, 1976, J ACOUST SOC AM, V59, P640, DOI 10.1121/1.380914 PATTERSON RD, 1982, J ACOUST SOC AM, V72, P1788, DOI 10.1121/1.388652 PATTERSON RD, 1977, J ACOUST SOC AM, V62, P649, DOI 10.1121/1.381578 Pick G., 1977, PSYCHOPHYSICS PHYSL, P273 PICK GF, 1980, J ACOUST SOC AM, V68, P1085, DOI 10.1121/1.384979 PICKLES JO, 1984, HEARING RES, V14, P245, DOI 10.1016/0378-5955(84)90053-4 POPOV VV, 1984, DOKL AKAD NAUK SSSR+, V278, P1012 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 RHODE WS, 1993, HEARING RES, V66, P31, DOI 10.1016/0378-5955(93)90257-2 RUGGERO MA, 1992, J NEUROPHYSIOL, V68, P1087 SACHS MB, 1968, J ACOUST SOC AM, V43, P1120, DOI 10.1121/1.1910947 SCHMIEDT RA, 1982, HEARING RES, V7, P335, DOI 10.1016/0378-5955(82)90044-2 Shamma S, 1995, AUDIT NEUROSCI, V1, P233 SUMMERS V, 1994, J ACOUST SOC AM, V95, P3518, DOI 10.1121/1.409969 SUPIN AY, 1994, HEARING RES, V78, P31, DOI 10.1016/0378-5955(94)90041-8 Supin AY, 1997, HEARING RES, V108, P17, DOI 10.1016/S0378-5955(97)00035-X Supin A Ia, 1987, Fiziol Cheloveka, V13, P28 Supin AY, 1999, J ACOUST SOC AM, V106, P2800, DOI 10.1121/1.428105 Supin AY, 2001, HEARING RES, V151, P157, DOI 10.1016/S0378-5955(00)00223-9 Supin AY, 2003, HEARING RES, V185, P1, DOI 10.1016/S0378-5955(03)00215-6 Supin AY, 1998, J ACOUST SOC AM, V103, P2042, DOI 10.1121/1.421351 TYLER RS, 1986, AUDITORY FREQUENCY S, P323 WILSON JP, 1971, 7 INT C AC, V3, P397 Zwicker E., 1974, FACTS MODELS HEARING, P132 ZWICKER E, 1970, FREQUENCY ANAL PERIO ZWICKER E, 1982, PSYCHOACUSTIC ZWICKER E, 1981, J ACOUST SOC AM, V70, P1277, DOI 10.1121/1.387141 NR 46 TC 1 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 191 EP 199 DI 10.1016/j.heares.2005.01.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200018 PM 15925204 ER PT J AU Andrianov, GN Puyal, J Raymond, J Venteo, S Dememes, D Ryzhova, IV AF Andrianov, GN Puyal, J Raymond, J Venteo, S Dememes, D Ryzhova, IV TI Immunocytochemical and pharmacological characterization of metabotropic glutamate receptors of the vestibular end organs in the frog SO HEARING RESEARCH LA English DT Article DE metabotropic receptors; neuromodulation; afferent synapse; semicircular canal; frog ID GROUP-I; SYNAPTIC-TRANSMISSION; SEMICIRCULAR CANALS; GANGLION NEURONS; NMDA RECEPTORS; HAIR-CELLS; AGONISTS; RELEASE; MGLUR2; LOCALIZATION AB Using immunocytochemistry and multiunit recording of afferent activity of the whole vestibular nerve, we investigated the role of metabotropic glutamate receptors (mGluR) in the afferent neurotransmission in the frog semicircular canals (SCC). Group I (rnGluR1 alpha) and group II (mGluR2/3) mGluR immunoreactivitics were distributed to the vestibular ganglion neurons, and this can be attributed to a postsynaptic locus of metabotropic regulation of rapid excitatory transmission. The effects of group I/II mGluR agonist (IS,3R)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (ACPD) and antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG) on resting and chemically induced afferent activity were studied. ACPD (10-100 mu M) enhanced the resting discharge frequency. MCPG (5-100 mu M) led to a concentration-dependent decrease of both resting activity and ACPD-induced responses. If the discharge frequency had previously been restored by L-glutainate (L-Glu) in high-Mg2+ solution, ACPD elicited a transient increase in the firing rate in the afferent nerve suggesting that ACPD acts on postsynaptic receptors. The L-Glu agonists, alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and N-methyl-D-aspartate (NMDA), were tested during application of ACPD. AMPA and NMDA-induced responses were higher in the presence than absence of ACPD. implicating mGluR in the modulation of ionotropic glutamate receptors. These results indicate that activation of mGluR potentiates AMPA and NMDA responses through a postsynaptic interaction. We conclude that ACPD may exert modulating postsynaptic effects on vestibular afferents and that this process is activity-dependent. (c) 2005 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, Lab Physiol Recept, IP Pavlov Physiol Inst, St Petersburg 199034, Russia. Univ Lausanne, Dept Cell Biol & Morphol, CH-1005 Lausanne, Switzerland. Univ Montpellier 2, F-34095 Montpellier, France. Hop St Eloi, INSERM U583, INM, F-34295 Montpellier, France. RP Andrianov, GN (reprint author), Russian Acad Sci, Lab Physiol Recept, IP Pavlov Physiol Inst, Nab Makarova 6, St Petersburg 199034, Russia. EM andryu@infran.ru CR AKOEV GN, 1993, SENSORY HAIR CELLS S, P194 ANDRIANOV GN, 1992, COMP BIOCHEM PHYS C, V103, P65, DOI 10.1016/0742-8413(92)90229-Z Andrianov GN, 1999, NEUROSCIENCE, V93, P801, DOI 10.1016/S0306-4522(99)00159-1 Andrianov GN, 2000, NEUROREPORT, V11, P183, DOI 10.1097/00001756-200001170-00036 ANNONI JM, 1984, J NEUROSCI, V4, P2106 Anwyl R, 1999, BRAIN RES REV, V29, P83, DOI 10.1016/S0165-0173(98)00050-2 Awad H, 2000, J NEUROSCI, V20, P7871 Bandrowski AE, 2001, EXP BRAIN RES, V136, P25, DOI 10.1007/s002210000556 BLEDSOE SC, 1998, PHYSL HEARING, P385 BOND A, 1995, NEUROPHARMACOLOGY, V34, P1015, DOI 10.1016/0028-3908(95)00046-9 Bordi F, 1999, PROG NEUROBIOL, V59, P55, DOI 10.1016/S0301-0082(98)00095-1 Conn PJ, 1997, ANNU REV PHARMACOL, V37, P205, DOI 10.1146/annurev.pharmtox.37.1.205 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 Guth PS, 1998, HEARING RES, V125, P154, DOI 10.1016/S0378-5955(98)00145-2 Hendricson AW, 2002, NEUROREPORT, V13, P1765, DOI 10.1097/00001756-200210070-00014 Hendricson AW, 2002, HEARING RES, V172, P99, DOI 10.1016/S0378-5955(02)00519-1 JANE DE, 1993, NEUROPHARMACOLOGY, V32, P725, DOI 10.1016/0028-3908(93)90088-K JONES MW, 1995, NEUROPHARMACOLOGY, V34, P1025, DOI 10.1016/0028-3908(95)00055-B Kleinlogel S, 1999, NEUROREPORT, V10, P1879, DOI 10.1097/00001756-199906230-00015 Liu XB, 1998, J COMP NEUROL, V395, P450, DOI 10.1002/(SICI)1096-9861(19980615)395:4<450::AID-CNE3>3.0.CO;2-0 Lujan R, 1997, J CHEM NEUROANAT, V13, P219, DOI 10.1016/S0891-0618(97)00051-3 MASU M, 1991, NATURE, V349, P760, DOI 10.1038/349760a0 NAKANISHI S, 1994, NEURON, V13, P1031, DOI 10.1016/0896-6273(94)90043-4 NICOLAS MT, 2003, HEARING RES, V4707, P1 OHISHI H, 1994, NEURON, V13, P55, DOI 10.1016/0896-6273(94)90459-6 Peng BG, 2004, NEUROSCIENCE, V123, P221, DOI 10.1016/j.neuroscience.2003.09.010 Petralia RS, 1996, NEUROSCIENCE, V71, P949, DOI 10.1016/0306-4522(95)00533-1 PIN JP, 1995, NEUROPHARMACOLOGY, V34, P1, DOI 10.1016/0028-3908(94)00129-G PRIGIONI I, 1994, NEUROREPORT, V5, P516, DOI 10.1097/00001756-199401120-00038 PRIGIONI I, 1995, AMINO ACIDS, V9, P265, DOI 10.1007/BF00805957 Puyal J, 2003, J PHYSIOL-LONDON, V553, P427, DOI 10.1113/jphysiol.2003.051995 Rabejac D, 1997, EUR J NEUROSCI, V9, P221, DOI 10.1111/j.1460-9568.1997.tb01393.x REID SNM, 1995, J COMP NEUROL, V355, P470, DOI 10.1002/cne.903550311 VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2 Zhong J, 2000, BRAIN RES, V887, P359, DOI 10.1016/S0006-8993(00)03066-3 ZUCCA G, 1992, HEARING RES, V63, P52, DOI 10.1016/0378-5955(92)90073-V ZUCCA G, 1993, NEUROREPORT, V4, P403, DOI 10.1097/00001756-199304000-00015 NR 37 TC 4 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 200 EP 209 DI 10.1016/j.heares.2005.02.003 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200019 PM 15925205 ER PT J AU Fujimoto, K Nakagawa, S Tonoike, M AF Fujimoto, K Nakagawa, S Tonoike, M TI Nonlinear explanation for bone-conducted ultrasonic hearing SO HEARING RESEARCH LA English DT Article DE ultrasonic hearings; bone conduction; pitch perception; amplitude modulation; nonlinearity ID FREQUENCY DISCRIMINATION; AUDITORY-CORTEX; PERCEPTION AB Human listeners can perceive speech from a voice-modulated ultrasonic carrier presented via a bone-conduction stimulator. This study explored the psychoacoustic characteristics and underlying mechanisms of ultrasonic hearing by measuring difference limens for frequency (DLF) for pure tones modulated onto ultrasonic carriers. Human subjects were presented with two pulsed tones and asked to judge whether the first or the second had the higher pitch. When amplitude modulation was based on a double side-band trans-milled carrier, the DLFs were as small as those from the air-conducted pure tones at 0.25-4 kHz. Ultrasounds yielded larger DLFs for tones with low (0.125 kHz) and high (6-8 kHz) frequencies. Results were essentially identical between the two types of carriers, sine wave (30 kHz) and bandpass noise (30 +/- 4 kHz), despite the different bandwidths in the ultrasonic range. When amplitude modulation was based on a double side-band Suppressed carrier, DLFs corresponded to those from tones with double frequencies. These results suggest nonlinear conduction that demodulates audible signals from ultrasounds and provides inputs to the cochlea. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Inst Adv Ind Sci & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. RP Fujimoto, K (reprint author), Kwansei Gakuin Univ, Sch Human, Dept Psychol, 1-1-155 Uegahara, Nishinomiya, Hyogo 6628501, Japan. EM kys.fujitnoto@kwansei.ac.jp; s-nakagawa@aist.go.jp CR Bekesy G., 1960, EXPT HEARING DEATHERAGE BH, 1954, J ACOUST SOC AM, V26, P582, DOI 10.1121/1.1907379 DIEROFF HG, 1975, ARCH OTO-RHINO-LARYN, V209, P277, DOI 10.1007/BF00456548 DOBIE RA, 1992, SCIENCE, V255, P1584, DOI 10.1126/science.1549785 GAVREAU V, 1948, CR HEBD ACAD SCI, V226, P2053 Hosoi H, 1998, LANCET, V351, P496, DOI 10.1016/S0140-6736(05)78683-9 Imaizumi S, 2001, NEUROREPORT, V12, P583, DOI 10.1097/00001756-200103050-00030 Lenhardt Martin L, 2003, Int Tinnitus J, V9, P69 LENHARDT ML, 1991, SCIENCE, V253, P82, DOI 10.1126/science.2063208 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603 NELSON DA, 1983, J ACOUST SOC AM, V73, P2117, DOI 10.1121/1.389579 Nishimura T, 2002, NEUROSCI LETT, V327, P119, DOI 10.1016/S0304-3940(02)00409-3 Nishimura T, 2003, HEARING RES, V175, P171, DOI 10.1016/S0378-5955(02)00735-9 Pickles JO, 1988, INTRO PHYSL HEARING PUMPHREY RJ, 1950, NATURE, V166, P571, DOI 10.1038/166571b0 SEK A, 1995, J ACOUST SOC AM, V97, P2479, DOI 10.1121/1.411968 NR 17 TC 19 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 210 EP 215 DI 10.1016/j.heares.2005.02.004 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200020 PM 15925206 ER PT J AU Nagy, I Bodmer, M Schmid, S Bodmer, D AF Nagy, I Bodmer, M Schmid, S Bodmer, D TI Promyelocytic leukemia zinc finger protein localizes to the cochlear outer hair cells and interacts with prestin, the outer hair cell motor protein SO HEARING RESEARCH LA English DT Article DE organ of Corti; PLZF; prestin; yeast two-hybrid ID MEMBRANE MOTOR; GENE-EXPRESSION; PLZF PROTEIN; REPRESSION; TENSION AB Hair cells in the auditory sensory organ are specialized mechanoreceptors common to mammalian and non-mammalian species. The mammalian cochlear outer hair cells (OHC) possess a distinct motile property, dubbed membrane-based electromotility, that enhances the receptor function. This electromotility is believed to be the basis of cochlear amplification that increases sensitivity of the mammalian ear to sound. Prestin, a unique voltage-sensitive motor molecule localized in the lateral membrane of OHC, is presumably responsible for OHC electromotility. It has been documented that prestin null-animals lack electromotility and suffer from similar to 50 dB loss of hearing sensitivity. To identify proteins that interact with prestin we carried out a yeast two-hybrid library screen using the C-terminal intracellular domain of prestin as bait. Seven bait-dependent prey clones were identified independently. Further analysis revealed that they encode partially over-lapping regions of a single protein: a transcriptional repressor, promyleocytic leukemia zinc finger protein (PLZF). PLZF encodes a POZ/domain Kruppel-type zinc finger transcription factor reported to have pro-apoptotic and anti-proliferative activity. The interaction between endogenous prestin and PLZF proteins in the cochlea was confirmed by co-immunoprecipitation using organ of Corti lysates. Furthermore, immunohistochemical studies strongly suggest that PLZF co-localizes with prestin near the lateral membrane of cochlear OHC. The physiological significance of this interaction remains to be explored. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Zurich Hosp, ENT Dept, Inner Ear Res Lab, CH-8091 Zurich, Switzerland. ETH, Zurich, Switzerland. RP Bodmer, D (reprint author), Univ Zurich Hosp, ENT Dept, Inner Ear Res Lab, NORD 2 Frauenklin Str 24, CH-8091 Zurich, Switzerland. EM Ivana.Nagy@usz.ch; daniel.bodiner@usz.ch CR Adler HJ, 2003, HEARING RES, V184, P27, DOI 10.1016/S0378-5955(03)00192-8 AVANTAGGIATO V, 1995, J NEUROSCI, V15, P4927 Barna M, 2000, NAT GENET, V25, P166 Barna M, 2002, DEV CELL, V3, P499, DOI 10.1016/S1534-5807(02)00289-7 Belyantseva I.A., 2000, J NEUROSCI, V20, P1 Buaas FW, 2004, NAT GENET, V36, P647, DOI 10.1038/ng1366 CHEN CY, 1993, MICROPOROUS MATER, V2, P17, DOI 10.1016/0927-6513(93)80058-3 COOK M, 1995, P NATL ACAD SCI USA, V92, P2249, DOI 10.1073/pnas.92.6.2249 Costoya JA, 2004, NAT GENET, V36, P653, DOI 10.1038/ng1367 David G, 1998, ONCOGENE, V16, P2549, DOI 10.1038/sj.onc.1202043 Dong XX, 2004, BIOPHYS J, V86, P1201 GEIZ RD, 2001, BIOTECHNIQUES, V30, P816 GYURIS J, 1993, CELL, V75, P791, DOI 10.1016/0092-8674(93)90498-F Hyman J, 2000, J CELL BIOL, V149, P537, DOI 10.1083/jcb.149.3.537 Ivins S, 2003, ONCOGENE, V22, P3685, DOI 10.1038/sj.onc.1206328 Kolonin MG, 2000, METHOD ENZYMOL, V328, P26 Li J.H., 1997, GEOLOGICAL J CHINA U, V3, P272 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Matsuda K, 2004, J NEUROCHEM, V89, P928, DOI 10.1111/j.1471-4159.2004.02377.x Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 REID A, 1995, BLOOD, V86, P4544 Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x Senbonmatsu T, 2003, EMBO J, V22, P6471, DOI 10.1093/emboj/cdg637 Serebriiskii IG, 2000, ANAL BIOCHEM, V285, P1, DOI 10.1006/abio.2000.4672 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 26 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JUN PY 2005 VL 204 IS 1-2 BP 216 EP 222 DI 10.1016/j.heares.2005.02.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 938HJ UT WOS:000229990200021 PM 15925207 ER PT J AU Lee, HJ Kang, E Oh, SH Kang, H Lee, DS Lee, MC Kim, CS AF Lee, HJ Kang, E Oh, SH Kang, H Lee, DS Lee, MC Kim, CS TI Preoperative differences of cerebral metabolism relate to the outcome of cochlear implants in congenitally deaf children SO HEARING RESEARCH LA English DT Article DE cochlear implants; brain imaging; PET; deafness ID POSITRON EMISSION TOMOGRAPHY; VERBAL WORKING-MEMORY; HUMAN AUDITORY-CORTEX; SPEECH-PERCEPTION; CORTICAL ACTIVATION; PREFRONTAL CORTEX; VISUAL-ATTENTION; NORMAL-HEARING; PET; PLASTICITY AB In congenitally deaf children, chronological age is generally accepted as a critical factor that affects successful rehabilitation following cochlear implantation (0). However, a wide variance among patients is known to exist regardless of the age at CI [Sarant, J.Z., Blarney, P.J., Dowell, R.C., Clark, G.M., Gibson, W.P., 2001. Variation in speech perception scores among children with cochlear implants. Ear Hear. 22, 18-28]. In a previous study, we reported that prelingually deaf children in the age range 5-7 years at implantation showed greatest outcome variability [Oh S.H., Kim C.S., Kang E.J., Lee D.S., Lee H.J., Chang S.O., Ahn S.H., Hwang C.H., Park H.J., Koo J.W., 2003. Speech perception after cochlear implantation over a 4-year time period. Acta Otolaryngol. 123, 148-153]. Eleven children who underwent CI between the age of 5 and 7 1/2 years were subdivided into a good (above 65%: GOOD) and a poor (below 45%: POOR) group based on the performance in a speech perception test given 2 years after CI. The preoperative F-18-FDG-PET (F-18 fluorodeoxyglucose positron emission tomography) images were compared between the two groups in order to examine if regional glucose metabolic difference preexisted before the CI surgery. In the GOOD group, metabolic activity was greater in diverse fronto-parietal regions compared to the POOR group. In the POOR group, the regions related to the ventral visual pathway showed greater metabolic activity relative to the GOOD group. These findings suggest that the deaf children who had developed greater executive and visuospatial functions subserved by the prefrontal and parietal cortices might be successful in auditory language learning after CI. On the contrary, greater dependency on the visual function subserved by the occipito-temporal region due to auditory deprivation may interfere with acquisition of auditory language after CI. (c) 2004 Elsevier B.V. All rights reserved. C1 Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul, South Korea. Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul 110744, South Korea. RP Oh, SH (reprint author), Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul, South Korea. EM shaoh@snu.ac.kr RI Lee, Dong Soo/J-2778-2012; Oh, Seung Ha/J-5540-2012 CR Audoin B, 2003, HUM BRAIN MAPP, V20, P51, DOI 10.1002/hbm.10128 Bavelier D, 2000, J NEUROSCI, V20 Boussaoud D, 1995, BEHAV BRAIN RES, V72, P1, DOI 10.1016/0166-4328(96)00055-1 CACCAMISE F, 1984, J ACAD REHABIL AUDIO, V17, P106 Crottaz-Herbette S, 2004, NEUROIMAGE, V21, P340, DOI 10.1016/j.neuroimage.2003.09.019 Dawson PW, 2002, J SPEECH LANG HEAR R, V45, DOI 10.1044/1092-4388(2002/064) Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098 FLETCHER PC, 1995, NEUROIMAGE, V2, P195, DOI 10.1006/nimg.1995.1025 FryaufBertschy H, 1997, J SPEECH LANG HEAR R, V40, P183 Gerlach C, 1999, BRAIN, V122, P2159, DOI 10.1093/brain/122.11.2159 Giraud AL, 2001, BRAIN, V124, P1307, DOI 10.1093/brain/124.7.1307 Giraud AL, 2001, AUDIOL NEURO-OTOL, V6, P381, DOI 10.1159/000046847 Giraud AL, 2000, BRAIN, V123, P1391, DOI 10.1093/brain/123.7.1391 Hammes Dianne M, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P74 HAXBY JV, 1991, P NATL ACAD SCI USA, V88, P1621, DOI 10.1073/pnas.88.5.1621 Herath P, 2001, HUM BRAIN MAPP, V12, P110, DOI 10.1002/1097-0193(200102)12:2<110::AID-HBM1008>3.0.CO;2-0 Ishai A, 1999, P NATL ACAD SCI USA, V96, P9379, DOI 10.1073/pnas.96.16.9379 Kammer T, 1997, MAGN RESON IMAGING, V15, P879, DOI 10.1016/S0730-725X(97)00021-0 Kirk K. I., 2000, COCHLEAR IMPLANTS, P252 Koechlin E, 1999, NATURE, V399, P148 Krause BJ, 1999, BRAIN, V122, P255, DOI 10.1093/brain/122.2.255 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 MIYAMOTO RT, 1994, LARYNGOSCOPE, V104, P1120 Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Naito Y, 2000, HEARING RES, V143, P139, DOI 10.1016/S0378-5955(00)00035-6 Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426 Nikolopoulos TP, 1999, LARYNGOSCOPE, V109, P595, DOI 10.1097/00005537-199904000-00014 O'Donoghue GM, 2000, LANCET, V356, P466, DOI 10.1016/S0140-6736(00)02555-1 Oh SH, 2003, ACTA OTO-LARYNGOL, V123, P148, DOI 10.1080/0036554021000028111 Owen AM, 1996, EUR J NEUROSCI, V8, P353, DOI 10.1111/j.1460-9568.1996.tb01219.x Paus T, 1996, EUR J NEUROSCI, V8, P2236, DOI 10.1111/j.1460-9568.1996.tb01187.x PETRIDES M, 1993, P NATL ACAD SCI USA, V90, P878, DOI 10.1073/pnas.90.3.878 Pisoni DB, 2003, EAR HEARING, V24, p106S, DOI 10.1097/01.AUD.0000051692.05140.8E Pisoni D B, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P92 Proksch J, 2002, J COGNITIVE NEUROSCI, V14, P687, DOI 10.1162/08989290260138591 Ptito M, 2003, NEUROIMAGE, V19, P246, DOI 10.1016/S1053-8119(03)00082-X ROLAND PS, 2001, LARYNGOSCOPE, V11, P77 Sarant JZ, 2001, EAR HEARING, V22, P18, DOI 10.1097/00003446-200102000-00003 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 SUROWIECKI VN, 2002, ANN OTO RHINOL LARYN, V18, P119 Talairach J., 1988, COPLANAR STEREOTAXIC Ungerleider Leslie G., 1994, Current Opinion in Neurobiology, V4, P157, DOI 10.1016/0959-4388(94)90066-3 WALTZMAN S, 1998, AM J OTOL, V19, P177 Waltzmann SB, 2002, OTOL NEUROTOL, V23, P333, DOI 10.1097/00129492-200205000-00018 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 NR 46 TC 29 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 2 EP 9 DI 10.1016/j.heares.2004.11.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300001 PM 15855024 ER PT J AU Pandya, PK Moucha, R Engineer, ND Rathbun, DL Vazquez, J Kilgard, MP AF Pandya, PK Moucha, R Engineer, ND Rathbun, DL Vazquez, J Kilgard, MP TI Asynchronous inputs alter excitability, spike timing, and topography in primary auditory cortex SO HEARING RESEARCH LA English DT Article DE cortical plasticity; map reorganization; activity-dependent hebbian plasticity; sensory input; rat; auditory cortex; nucleus basalis ID ADULT OWL MONKEYS; TEMPORAL RESPONSE PROPERTIES; BASAL FOREBRAIN; SYNAPTIC MODIFICATION; CORTICAL PLASTICITY; NUCLEUS BASALIS; CONVERGENT STRABISMUS; SOMATOSENSORY CORTEX; PHYSIOLOGICAL MEMORY; DISCRIMINATION TASK AB Correlation-based synaptic plasticity provides a potential cellular mechanism for learning and memory. Studies in the visual and somatosensory systems have shown that behavioral and surgical manipulation of sensory inputs leads to changes in cortical organization that are consistent with the operation of these learning rules. In this study, we examine how the organization of primary auditory cortex (A1I) is altered by tones designed to decrease the average input correlation across the frequency map. After one month of separately pairing nucleus basalis stimulation with 2 and 14 kHz tones, a greater proportion of A1 neurons responded to frequencies below 2 kHz and above 14 kHz. Despite the expanded representation of these tones, cortical excitability was specifically reduced in the high and low frequency regions of A1, as evidenced by increased neural thresholds and decreased response strength. In contrast, in the frequency region between the two paired tones, driven rates were unaffected and spontaneous firing rate was increased. Neural response latencies were increased across the frequency map when nucleus basalis stimulation was associated with asynchronous activation of the high and low frequency regions of A1. This set of changes did not occur when pulsed noise bursts were paired with nucleus basalis stimulation. These results are consistent with earlier observations that sensory input statistics can shape cortical map organization and spike timing. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Texas, Program Neurosci, Sch Behav & Brain Sci, Richardson, TX 75083 USA. RP Pandya, PK (reprint author), Univ Texas, Program Neurosci, Sch Behav & Brain Sci, POB 830688,GR 41, Richardson, TX 75083 USA. EM pritesh@utdallas.edu CR AHISSAR E, 1992, SCIENCE, V257, P1412, DOI 10.1126/science.1529342 ALLARD T, 1991, J NEUROPHYSIOL, V66, P1048 ARMSTRONGJAMES M, 1994, J NEUROSCI, V14, P6978 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Bao SW, 2003, J NEUROSCI, V23, P10765 Bi GQ, 1999, NATURE, V401, P792, DOI 10.1038/44573 Bi GQ, 2001, ANNU REV NEUROSCI, V24, P139, DOI 10.1146/annurev.neuro.24.1.139 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 CHINO YM, 1983, J NEUROPHYSIOL, V50, P265 CHINO YM, 1988, EXP BRAIN RES, V72, P264 CLARK SA, 1988, NATURE, V332, P444, DOI 10.1038/332444a0 Conner JM, 2003, NEURON, V38, P819, DOI 10.1016/S0896-6273(03)00288-5 CONSTANTINEPATON M, 1978, SCIENCE, V202, P639, DOI 10.1126/science.309179 EDELINE JM, 1994, EXP BRAIN RES, V97, P373 Edeline JM, 1999, PROG NEUROBIOL, V57, P165 Engineer ND, 2004, J NEUROPHYSIOL, V92, P73, DOI 10.1152/jn.00059.2004 ESCHWEILER GW, 1993, EUR J NEUROSCI, V5, P1501, DOI 10.1111/j.1460-9568.1993.tb00218.x Feldman DE, 2000, NEURON, V27, P45, DOI 10.1016/S0896-6273(00)00008-8 Froemke RC, 2002, NATURE, V416, P433, DOI 10.1038/416433a Hebb D, 1949, ORG BEHAV HUBEL DH, 1965, J NEUROPHYSIOL, V28, P1041 Humphrey AL, 1998, J NEUROPHYSIOL, V80, P3005 JENKINS WM, 1990, J NEUROPHYSIOL, V63, P82 Kandel ER, 2001, SCIENCE, V294, P1030, DOI 10.1126/science.1067020 Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133 KAUR S, 2004, J NEUROPHYSIOL Kilgard MP, 2001, AUDIOL NEURO-OTOL, V6, P196, DOI 10.1159/000046832 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Kilgard MP, 2002, BIOL CYBERN, V87, P333, DOI 10.1007/s00422-002-0352-z Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 Kilgard MP, 2002, P NATL ACAD SCI USA, V99, P3205, DOI 10.1073/pnas.261705198 Mercado E, 2001, NEUROREPORT, V12, P2283, DOI 10.1097/00001756-200107200-00047 METHERATE R, 1993, SYNAPSE, V14, P132, DOI 10.1002/syn.890140206 MOUCHA R, IN PRESS EXP BRAIN R RASMUSSON DD, 1988, EXP BRAIN RES, V70, P276 Read HL, 2001, P NATL ACAD SCI USA, V98, P8042, DOI 10.1073/pnas.131591898 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1071 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1031 ROELFSEMA PR, 1994, EUR J NEUROSCI, V6, P1645, DOI 10.1111/j.1460-9568.1994.tb00556.x Schuett S, 2001, NEURON, V32, P325, DOI 10.1016/S0896-6273(01)00472-X Song S, 2000, NAT NEUROSCI, V3, P919 Song S, 2001, NEURON, V32, P339, DOI 10.1016/S0896-6273(01)00451-2 STENT GS, 1973, P NATL ACAD SCI USA, V70, P997, DOI 10.1073/pnas.70.4.997 Stryker MP, 1984, INVEST OPHTHALMOL S, V25, P278 WANG XQ, 1995, NATURE, V378, P71, DOI 10.1038/378071a0 Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 Yao HS, 2001, NEURON, V32, P315, DOI 10.1016/S0896-6273(01)00460-3 Zhang LI, 1998, NATURE, V395, P37 NR 51 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 10 EP 20 DI 10.1016/j.heares.2004.11.018 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300002 PM 15855025 ER PT J AU Caye-Thomasen, P Wagner, N Frederiksen, BL Asal, K Thomsen, J AF Caye-Thomasen, P Wagner, N Frederiksen, BL Asal, K Thomsen, J TI Erythropoietin and erythropoietin receptor expression in the guinea pig inner ear SO HEARING RESEARCH LA English DT Article DE cochlea; spiral ganglion neurons; Deiters' cells; fibrocytes; phalangeal cells; EPO; EPO receptor ID CENTRAL-NERVOUS-SYSTEM; PLEIOTROPIC FUNCTIONS; IN-VITRO; BRAIN; NEUROPROTECTION; NEURONS; CELLS; LOCALIZATION; ISCHEMIA; PROTECTS AB The erythropoietin receptor (EPOR) is expressed in the brain and erythropoietin (EPO) has been shown to have neurotrophic and neuroprotective functions in the central nervous system and in the retina. These findings may be applied to the inner ear, pending EPO receptor presence. Accordingly, this study determines expression of EPO and EPOR in the inner ear of the guinea pig. Normal guinea pig inner ears were processed for immunohistochemistry, using poly-clonal antibodies against EPO and the EPO receptor. EPO expression was exclusively found in most, but not all spiral ganglion neurons. Expression of the EPO receptor was found in the cytoplasm of the inner and outer phalangeal cells (Deiters' cells), as well as the inner sulcus cells and the supporting cells of the organ of Corti (Hensen, Claudius and some Boettcher cells). Some spiral ganglion neurons or glial cells expressed the receptor, as did spiral ligament fibrocytes, some intermediate cells of stria vascularis and the endothelial cells of some modiolar vessels. No parts of the vestibular system stained positive for either antibody. We conclude, that EPO is expressed by spiral ganglion neurons and that the EPO receptor is widely expressed by several cell types within the guinea pig cochlea. We hypothesize on the existence of a local paracrine system and that EPO treatment may be feasible following inner ear damage. (c) 2004 Published by Elsevier B.V. C1 Gentofte Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, DK-2900 Hellerup, Denmark. RP Caye-Thomasen, P (reprint author), Gentofte Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, DK-2900 Hellerup, Denmark. EM peca@gentoftehosp.kbhamt.dk CR Bernaudin M, 2000, GLIA, V30, P271, DOI 10.1002/(SICI)1098-1136(200005)30:3<271::AID-GLIA6>3.0.CO;2-H Brines ML, 2000, P NATL ACAD SCI USA, V97, P10526, DOI 10.1073/pnas.97.19.10526 Buemi M, 2003, J NEUROPATH EXP NEUR, V62, P228 CERAMI A, 2002, NEPHROL DIAL TRANS S, V1, P8 Chattopadhyay A, 2000, BIOCHEM PHARMACOL, V59, P419, DOI 10.1016/S0006-2952(99)00277-4 Chikuma M., 2000, AM J PHYSIOL-ENDOC M, V279, P1242 Digicaylioglu M, 2001, NATURE, V412, P641, DOI 10.1038/35088074 Fisher JW, 2003, EXP BIOL MED, V228, P1 FUKUSHIMA Y, 1990, TOHOKU J EXP MED, V160, P129, DOI 10.1620/tjem.160.129 Grimm C, 2002, NAT MED, V8, P718, DOI 10.1038/nm723 Ihle J N, 1993, Semin Immunol, V5, P375, DOI 10.1006/smim.1993.1043 Junk AK, 2002, P NATL ACAD SCI USA, V99, P10659, DOI 10.1073/pnas.152321399 JUUL S, 2002, ACTA PAEDIATR, V438, P36 Juul SE, 1998, PEDIATR RES, V43, P40, DOI 10.1203/00006450-199801000-00007 Juul SE, 1999, PEDIATR DEVEL PATHOL, V2, P148, DOI 10.1007/s100249900103 Kawakami M, 2001, J BIOL CHEM, V276, P39469, DOI 10.1074/jbc.M105832200 Marti HH, 2000, NEWS PHYSIOL SCI, V15, P225 Marti HH, 1997, KIDNEY INT, V51, P416, DOI 10.1038/ki.1997.55 MASUDA S, 1993, J BIOL CHEM, V268, P11208 Morishita E, 1997, NEUROSCIENCE, V76, P105 Ogilvie M, 2000, J BIOL CHEM, V275, P39754, DOI 10.1074/jbc.M004999200 Renzi MJ, 2002, MOL BRAIN RES, V104, P86, DOI 10.1016/S0169-328X(02)00323-6 SANAKA M, 1998, P NATL ACAD SCI USA, V95, P4635 Sasaki R, 2001, NEWS PHYSIOL SCI, V16, P110 Sasaki R, 2000, BIOSCI BIOTECH BIOCH, V64, P1775, DOI 10.1271/bbb.64.1775 Sasaki R, 2003, INTERNAL MED, V42, P142, DOI 10.2169/internalmedicine.42.142 Shingo T, 2001, J NEUROSCI, V21, P9733 Siren AL, 2001, ACTA NEUROPATHOL, V101, P271 Siren AL, 2001, EUR ARCH PSY CLIN N, V251, P179, DOI 10.1007/s004060170038 Springborg JB, 2002, BRIT J PHARMACOL, V135, P823, DOI 10.1038/sj.bjp.0704521 WESTENFELDER C, 1999, KIDNEY INT, V56, P1159 Yoshimura A, 1998, Curr Opin Hematol, V5, P171, DOI 10.1097/00062752-199805000-00004 NR 32 TC 16 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 21 EP 27 DI 10.1016/j.heares.2004.11.017 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300003 PM 15855026 ER PT J AU Kulahli, I Balci, K Koseoglu, E Yuce, L Cagli, S Senturk, M AF Kulahli, I Balci, K Koseoglu, E Yuce, L Cagli, S Senturk, M TI Audio-vestibular disturbances in Behcet's patients: report of 62 cases SO HEARING RESEARCH LA English DT Article DE Behcet's syndrome; hearing loss; vestibular disturbance; audio-vestibular test; HLA-B51 ID DISEASE; INVOLVEMENT; HEARING AB This study was carried out to determine the characteristics and incidence of hearing loss and vestibular disturbance in Behcet's syndrome with a large number of patients. Sixty-two patients with Behcet's syndrome were included in this study, 34 men and 28 women whose mean age was 33.7 (15-60). Sixty-two healthy normal control subjects (38 male and 24 female) were included. Patient and control groups were questioned about any history of audio-vestibular disturbance and underwent physical and ENT examination and the following audiologic tests: pure tone audiometric test (0.25, 0.5, 1, 2, 4, and 6 kHz), tympanogram, speech discrimination, short increment sensitivity index, tone-decay test, auditory brainstem response. Vestibular system was evaluated by videonistagmogram and caloric test. Cranial and brainstem magnetic resonance imagine (MRI) of patients who have vestibular disturbances were practiced to examine the central nervous system. Both the patient and the control groups were tested with the HLA-B51 antigen. Pure tone audiogram showed sensory-neural hearing loss (>= 25 dB hearing level in at least two frequencies) in 20 of the 62 (32%) Behcet's patients while the control group were normal. There was a hearing loss involving high frequencies in the audiograms of Belicet's patients with hearing disturbances. The recruitment investigation tests and auditory brain stem response confirmed cochlear involvement in all 20 patients. Caloric stimulation tests revealed a normal vestibular function in all patient and control group. In electronystagmography, 21 (34%) patients had hypometric or hypermetric saccades and smooth pursuit tests showing that 4 (6%) patients had pathological changes while the control group was normal. HLA-B51 antigen was found positive in 15 of 20 Belicet's patient with hearing loss. Conclusion: (1) The hearing and vestibular disturbances in Behcet's syndrome is more prevalent than previously recognized; (2) Hearing loss in high frequencies in Behcet's patients is an indicator of cochlear involvement in this disease; (3) There is a higher prevalence of central vestibular syndrome in Belicet's patients than it was thought before; (4) HLA-B51 antigen may be able to be a prognostic factor for sensorineural hearing loss in Belicet's patients. (c) 2004 Elsevier B.V. All rights reserved. C1 Talas Yolu Erciyes Univ Kulak Burun Bogaz, Erciyes Univ, Ear Nose Throat KBB, TR-38015 Kayseri, Turkey. Yozgat Devlet Hastanesi, Yozgat, Turkey. Talas Yolu Erciyes Univ, Erciyes Univ, Noro Ji ABD, TR-38015 Kayseri, Turkey. Lokman Hekim Tip Merkezi, Kayseri, Turkey. RP Yuce, L (reprint author), Talas Yolu Erciyes Univ Kulak Burun Bogaz, Erciyes Univ, Ear Nose Throat KBB, TR-38015 Kayseri, Turkey. EM imdatyuce@hotmail.com CR ALAJOUANINE T, 1961, PRESSE MED, V25, P2579 ANDREOLI C, 1989, AM J OTOL, V10, P466 Belkahia A, 1982, Ann Otolaryngol Chir Cervicofac, V99, P469 BRAMA I, 1980, ARCH OTOLARYNGOL, V106, P215 CHAJEK T, 1975, MEDICINE, V54, P179, DOI 10.1097/00005792-197505000-00001 COHEN SB, 1981, SEMIN ARTHRITIS RHEU, V11, P190, DOI 10.1016/0049-0172(81)90100-1 Evereklioglu C, 2001, J LARYNGOL OTOL, V115, P704 GEMIGNANI G, 1991, ANN OTO RHINOL LARYN, V100, P459 LARRY NS, 1994, AM J OTOL, V15, P286 ODUFFY JD, 1976, AM J MED, V61, P170, DOI 10.1016/0002-9343(76)90166-2 SOYLU L, 1995, ANN OTO RHINOL LARYN, V104, P864 The International Study Group for Behcet's disease, 1990, LANCET, V1335, P1078 NR 12 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 28 EP 31 DI 10.1016/j.heares.2004.11.020 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300004 PM 15855027 ER PT J AU Szalda, K Burkard, R AF Szalda, K Burkard, R TI The effects of nembutal anesthesia on the auditory steady-state response (ASSR) from the inferior colliculus and auditory cortex of the chinchilla SO HEARING RESEARCH LA English DT Article DE auditory steady-state response; difference tone; auditory evoked potential; anesthesia; chinchilla; nembutal ID MODULATION FOLLOWING RESPONSE; EVOKED-POTENTIALS; TONES; FREQUENCY; SLEEP; HUMANS AB We examined the effects of nembutal anesthesia on the amplitude of the auditory steady-state response (ASSR) in the inferior colliculus (IC) and auditory cortex (AC) of the chinchilla. Tungsten electrodes were chronically implanted following anesthesia with ketamine/acepromazine. After a recovery period, the chinchillas were placed in a passive restraining device and put in a sound-attenuating booth. Recordings were made from the right IC and AC simultaneously, while a two-tone stimulus was presented to the left ear. The stimuli consisted of two equal-level tones (F1 and F2) that were mixed acoustically; F1 remained constant at 2000 Hz, while F2 varied between 2029 and 2249 Hz, in steps of similar to 20 Hz. The Stimuli decreased in 10 dB steps from 80 to 30 dB pSPL. Animals were evaluated when unanesthetized, as well as when anesthetized with nembutal (on separate days). In the IC, the administration of nembutal resulted in either no change in ASSR amplitude or an amplitude increase for difference tone (DT) frequencies below 90 Hz, while an amplitude decrease was typically seen for DT frequencies at or above 90 Hz. In the AC, a decrease in amplitude was seen across DT frequencies and stimulus levels after the administration of nembutal anesthesia. Our results suggest that both the AC and IC may contribute to the scalp-recorded ASSR in the awake state. However, in the nembutal -anesthetized state, it seems unlikely that the AC contributes substantially to the surface-recorded ASSR, as the AC response was greatly attenuated under nembutal anesthesia. In contrast, the IC ASSR responses remained robust, which makes it a likely contributor to the surface-recorded responses under nembutal anesthesia. (c) 2004 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, Buffalo, NY 14214 USA. SUNY Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA. RP Szalda, K (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, Dept Communicat Disorders & Sci, 137 Cary Hall, Buffalo, NY 14214 USA. EM kmszalda@acsu.buffalo.edu CR Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7 AOYAGI M, 1993, HEARING RES, V65, P253, DOI 10.1016/0378-5955(93)90218-P Arnold S, 2002, J ACOUST SOC AM, V112, P590, DOI 10.1121/1.1494991 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 Cone-Wesson Barbara, 2002, J Am Acad Audiol, V13, P173 Dimitrijevic Andrew, 2002, J Am Acad Audiol, V13, P205 Dobie RA, 1998, J ACOUST SOC AM, V104, P3482, DOI 10.1121/1.423931 DOLPHIN WF, 1994, J ACOUST SOC AM, V96, P2225, DOI 10.1121/1.411382 Eggermont JJ, 2002, J NEUROPHYSIOL, V87, P305 GALAMBOS R, 1992, J ACOUST SOC AM, V92, P2683, DOI 10.1121/1.404383 Gilron I, 1998, CAN J ANAESTH, V45, P115 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X JERGER J, 1986, EAR HEARING, V7, P240, DOI 10.1097/00003446-198608000-00004 Johnsrude IS, 2002, AUDIOL NEURO-OTOL, V7, P251, DOI 10.1159/000064446 Kiren T, 1994, Acta Otolaryngol Suppl, V511, P28 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188 LEVI EC, 1993, HEARING RES, V68, P42, DOI 10.1016/0378-5955(93)90063-7 LINDEN RD, 1985, EAR HEARING, V6, P167, DOI 10.1097/00003446-198505000-00008 MAKELA JP, 1990, HEARING RES, V45, P41, DOI 10.1016/0378-5955(90)90181-N MOLLER A, 1994, PRINCIPLES APPL AUDI Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PLOURDE G, 1990, ANESTH ANALG, V71, P460 RANCE G, 1995, EAR HEARING, V16, P499, DOI 10.1097/00003446-199510000-00006 REES A, 1983, HEARING RES, V10, P301, DOI 10.1016/0378-5955(83)90095-3 REYES S, 2003, 2003 ASS RES OT M DA TIITINEN H, 1993, NATURE, V364, P59, DOI 10.1038/364059a0 NR 27 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 32 EP 44 DI 10.1016/j.heares.2004.11.014 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300005 PM 15855028 ER PT J AU Lukashkin, AN Russell, IJ AF Lukashkin, AN Russell, IJ TI Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition SO HEARING RESEARCH LA English DT Article DE otoacoustic emissions; cochlear mechanics; hair cell transducer ID PRODUCT OTOACOUSTIC EMISSIONS; CELL MECHANOELECTRICAL TRANSDUCER; GUINEA-PIG COCHLEA; HAIR-CELLS; DISTORTION PRODUCTS; LOW-LEVEL; 2F1-F2; ORIGIN; PRIMARIES; RESPONSES AB Distortion product otoacoustic emissions (DPOAEs) were recorded from guinea pigs in response to simultaneous increases in the levels of high frequency primary tones in the presence of a low frequency biasing tone of 30 Hz at 120 dB SPL. The DPOAE amplitudes plotted as functions of the biasing tone phase angle show distinctive repeatable minima, which are identical to the amplitude notches observed for the distortion products at the output of a single saturating non-linearity. The number of the amplitude minima grows with increasing order of the DPOAE, a feature that is also reproduced by the model. The model of DPOAE generation due to a single saturating non-linearity does not explain the experimentally observed asymmetry of the response of the DPOAEs to rising and falling half cycles of the biasing tone. This asymmetry is attributed to a hypothetical mechanism, which adjusts the operating point of the outer hair cell's mechanoelectrical transducer. Experimental data were consistent with a hypothesis that, for the parameters of stimulation used in this study, both lower and upper sideband DPOAEs are dominated by emission generated from a single and spatially localized place in the cochlea. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. RP Lukashkin, AN (reprint author), Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England. EM a.lukashkin@sussex.ac.uk CR Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285 Bian L, 2002, J ACOUST SOC AM, V112, P198, DOI 10.1121/1.1488943 Bian L, 2004, J ACOUST SOC AM, V115, P2159, DOI 10.1121/1.1690081 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 Brown AM, 1996, J ACOUST SOC AM, V100, P3260, DOI 10.1121/1.417209 CODY AR, 1987, J PHYSIOL-LONDON, V383, P551 CRAWFORD AC, 1989, J PHYSIOL-LONDON, V419, P405 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 Frank G, 1996, HEARING RES, V98, P104, DOI 10.1016/0378-5955(96)00083-4 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 Frolenkov GI, 1998, HEARING RES, V126, P67, DOI 10.1016/S0378-5955(98)00150-6 GELEOC GSG, 1997, P ROY SOC LOND B BIO, V264, P521 KEMP DT, 1980, HEARING RES, V2, P533, DOI 10.1016/0378-5955(80)90091-X Legan PK, 2000, NEURON, V28, P273, DOI 10.1016/S0896-6273(00)00102-1 Liberman MC, 2004, J ACOUST SOC AM, V116, P1649, DOI 10.1121/1.1775275 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Lukashkin AN, 1999, J ACOUST SOC AM, V106, P2661, DOI 10.1121/1.428096 Lukashkin AN, 1998, J ACOUST SOC AM, V103, P973, DOI 10.1121/1.421214 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 NORTON SJ, 1990, LECT NOTES BIOMATH, V87, P219 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 RUSSELL IJ, 1992, PHILOS T ROY SOC B, V336, P317, DOI 10.1098/rstb.1992.0064 RUSSELL IJ, 1983, J PHYSIOL-LONDON, V338, P179 SANTOS-SACCHI J, 1993, BIOPHYS J, V65, P2217 Shera CA, 2003, BIOPHYSICS OF THE COCHLEA: FROM MOLECULES TO MODELS, P439, DOI 10.1142/9789812704931_0062 WHITEHEAD ML, 1990, LECT NOTES BIOMATH, V87, P243 WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 Zheng YL, 1997, HEARING RES, V112, P167, DOI 10.1016/S0378-5955(97)00118-4 NR 30 TC 16 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 45 EP 53 DI 10.1016/j.heares.2004.11.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300006 PM 15855029 ER PT J AU Wardrop, P Whinney, D Rebscher, SJ Roland, JT Luxford, W Leake, PA AF Wardrop, P Whinney, D Rebscher, SJ Roland, JT Luxford, W Leake, PA TI A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. 1: comparison of Nucleus banded and Nucleus Contour (TM) electrodes SO HEARING RESEARCH LA English DT Article ID ELECTRICAL-STIMULATION; SPEECH-PERCEPTION; AUDITORY-NERVE; ARRAY; HEARING; PATIENT; HISTOPATHOLOGY; CONFIGURATION; RECOGNITION; EXCITATION AB In recent years, new designs of cochlear implant electrodes have been introduced in an attempt to improve efficiency and performance by locating stimulation sites closer to spiral ganglion neurons and deeper into the scala tympani. The goal of this study was to document insertion depth, intracochlear position and insertion trauma with the Nucleus Contour (TM) electrode and to compare results to those observed with the earlier generation Nucleus banded electrode. For this comparison eight Nucleus banded electrodes and 18 Contour (TM) electrodes were implanted in cadaver temporal bones using a realistic surgical exposure. Two experienced cochlear implant surgeons and two otology fellows with specialized training in cochlear implant surgery were selected for the study to represent a range of surgical experience similar to that of surgeons currently performing the procedure throughout the world. Following insertion of the electrodes, specimens were imaged using plain film X-ray, embedded in acrylic resin, cut in radial sections with the electrodes in place, and each cut surface was polished. Insertion depth was measured in digitized X-ray images, and trauma was assessed in each cross-section. The Contour (TM) electrode inserted more deeply (mean depth = 17.9 mm or 417 degrees) than the banded electrode (mean depth = 15.3 mm or 285 degrees). The incidence and severity of trauma varied Substantially among the temporal bones studied. However, the nature and frequency of injuries observed with the two devices were very similar. The Contour (TM) electrode was clearly positioned closer to the modiolus than the banded model, and also appeared easier to use. Based on this difference in position and data from previous studies we conclude that the Contour- electrode may provide lower thresholds and improved channel selectivity, but the incidence of trauma remains a problem with the newer design. The relative influences of electrode positioning and neural degeneration that may result from trauma are as yet unclear. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, San Francisco, CA 94143 USA. Crosshouse Hosp, Dept Otolaryngol, Kilmarnock KA2 0BE, Ayr, Scotland. Royal Cornwall Hosp, Dept Otolaryngol, Truro TR1 3LJ, Cornwall, England. NYU, Med Ctr, Dept Otol Neurotol, New York, NY 10016 USA. House Ear Res Inst, Los Angeles, CA 90057 USA. RP Rebscher, SJ (reprint author), Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, 533 Parnassus Ave,Room C401, San Francisco, CA 94143 USA. EM peterwardrop@doctors.org.uk; reb@itsa.ucsf.edu; tom.roland@med.nyu.edu; leake@itsa.ucsf.edu CR Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Chen JM, 1999, AM J OTOL, V20, P192 *COCHL CORP, MAN GUID SURG C124M Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3 Eyles J A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P356 FINLEY C C, 1990, P55 Fu QJ, 1999, EAR HEARING, V20, P321, DOI 10.1097/00003446-199908000-00005 Gantz BJ, 2003, LARYNGOSCOPE, V113, P1726, DOI 10.1097/00005537-200310000-00012 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Gstoettner W, 1997, ACTA OTO-LARYNGOL, V117, P274, DOI 10.3109/00016489709117786 Gstoettner W, 1999, ACTA OTO-LARYNGOL, V119, P229 Gstoettner WK, 2001, ACTA OTO-LARYNGOL, V121, P216 Hodges AV, 1999, AM J OTOL, V20, P53 JOHNSSON LG, 1982, ANN OTO RHINOL LARYN, V91, P74 KENNEDY DW, 1987, LARYNGOSCOPE, V97, P42 KETTEN DR, 1991, 14 MIDW RES M ASS RE, P114 Ketten DR, 1998, ANN OTO RHINOL LARYN, V107, P1 KILENY PR, 1992, AM J OTOL, V13, P117 Kumakawa K, 1997, ADV OTO-RHINO-LARYNG, V52, P129 Laszig R, 2002, J LARYNGOL OTOL, V116, P371 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 2000, COCHLEAR IMPLANTS, P31 LEHNHARDT E, 1993, ADV OTO-RHINO-LARYNG, V48, P62 LINTHICUM FH, 1991, ACTA OTO-LARYNGOL, V111, P327, DOI 10.3109/00016489109137395 LOEB GE, 1983, MED BIOL ENG COMPUT, V21, P241, DOI 10.1007/BF02478489 LUXFORD WM, 1994, NEUROTOLOGY, P1371 Marrinan MS, 2004, OTOL NEUROTOL, V25, P290, DOI 10.1097/00129492-200405000-00015 MARSH MA, 1992, AM J OTOL, V13, P241 NADOL JB, 1994, LARYNGOSCOPE, V104, P299 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 OLEARY MJ, 1991, ANN OTO RHINOL LARYN, V100, P695 Parkinson AJ, 2002, EAR HEARING, V23, p41S, DOI 10.1097/00003446-200202001-00005 Pasanisi E, 2002, LARYNGOSCOPE, V112, P1653, DOI 10.1097/00005537-200209000-00023 Pfingst BE, 2001, JARO, V2, P87 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 Rebscher SJ, 1999, IEEE T BIO-MED ENG, V46, P340, DOI 10.1109/10.748987 Rebscher SJ, 1996, J NEUROSCI METH, V64, P105, DOI 10.1016/0165-0270(95)00116-6 Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023 Roland J T Jr, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P64 Roland JT, 2000, AM J OTOL, V21, P218, DOI 10.1016/S0196-0709(00)80012-5 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SHEPHERD RK, 1985, ANN OTO RHINOL LARYN, V94, P55 Skinner MW, 2002, JARO-J ASSOC RES OTO, V3, P332, DOI 10.1007/s101620020013 TYCOCINSKI M, 2001, OTOL NEUROTOL, V22, P33 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 von Ilberg C, 1999, ORL J OTO-RHINO-LARY, V61, P334, DOI 10.1159/000027695 WELLING DB, 1993, LARYNGOSCOPE, V103, P995 ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 NR 48 TC 58 Z9 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 54 EP 67 DI 10.1016/j.heares.2004.11.006 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300007 PM 15855030 ER PT J AU Wardrop, P Whinney, D Rebscher, SJ Luxford, W Leake, P AF Wardrop, P Whinney, D Rebscher, SJ Luxford, W Leake, P TI A temporal bone study of insertion trauma and intracochlear position of cochlear implant electrodes. II: Comparison of Spiral Clarion (TM) and HiFocus II (TM) electrodes SO HEARING RESEARCH LA English DT Article DE cochlear implant; insertion; trauma; electrodes ID ELECTRICALLY STIMULATED COCHLEA; SCALA TYMPANI; AUDITORY-NERVE; HISTOPATHOLOGY; SELECTIVITY; DIMENSIONS; PATTERNS; DEAFNESS; PATIENT; ARRAY AB In recent years, several new designs of cochlear implant electrodes have been introduced clinically with the goal of optimizing perimodiolar placement of stimulation sites. Previous studies suggest that perimodiolar electrodes may increase both the efficiency and performance of a cochlear implant. This is the second of two studies designed to examine the positioning of electrodes and the occurrence of insertion-related injury with these newer designs and to directly compare two perimodiolar electrodes to their predecessors. In our previous report we compared the Nucleus (TM) banded electrode with the Nucleus Contour (TM) perimodiolar electrode. In the present study, using the same protocol, we examine the Spiral Clarion (TM) electrode and its successor, the HiFocus II (TM) electrode with attached positioner. Eight Spiral Clarion (TM) arrays and 20 HiFocus II (TM) electrodes with positioners were inserted into human cadaver temporal bones. Following insertion, the specimens were embedded in acrylic resin, cut in quarters with a diamond saw and polished. Insertion depth, proximity to the modiolus and trauma were evaluated in X-ray images and light microscopy. The newer electrode was consistently positioned closer to the modiolus than the previous device whereas the angular depth of insertion measured for the two electrodes was similar. The incidence of trauma was minimal when either electrode was inserted to a depth of less than 400 degrees. However, severe trauma was observed in every case in which the HiFocus II (TM) with positioner was inserted beyond 400 degrees and in some cases in which the Spiral Clarion (TM) was inserted beyond 400 degrees. To evaluate the possible role of electrode size in the trauma observed we modeled both devices relative to the dimensions of the scala tympani. We found that the fully inserted HiFocus II (TM) electrode with positioner was larger than the scala tympani in approximately 70% of temporal bones measured. The results suggest that both the Clarion (TM) spiral and HiFocus II (TM) with positioner can be inserted with minimal trauma, but in many cases not to the maximum depth allowed by the design. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, San Francisco, CA 94143 USA. Crosshouse Hosp, Dept Otolaryngol, Kilmarnock KA2 0BE, Ayr, Scotland. Royal Cornwall Hosp, Dept Otolaryngol, Truro TR1 3LJ, Cornwall, England. House Ear Res Inst, Los Angeles, CA 90057 USA. RP Rebscher, SJ (reprint author), Univ Calif San Francisco, Dept Otolaryngol, HNS, Epstein Lab, San Francisco, CA 94143 USA. EM peterwardrop@doctors.org.uk; reb@itsa.ucsf.edu; leake@itsa.ucsf.edu CR *ADV BION CORP, 1996, SPIR CLAR SURG MAN Aschendorff A, 2003, J LARYNGOL OTOL, V117, P527 Briaire JJ, 2000, HEARING RES, V148, P18, DOI 10.1016/S0378-5955(00)00104-0 Briggs R J, 2001, Cochlear Implants Int, V2, P135, DOI 10.1002/cii.45 Cords SM, 2000, AM J OTOL, V21, P212, DOI 10.1016/S0196-0709(00)80011-3 Eshraghi AA, 2003, LARYNGOSCOPE, V113, P415, DOI 10.1097/00005537-200303000-00005 Finley C. C., 1990, COCHLEAR IMPLANTS MO, P55 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Fu QJ, 1999, EAR HEARING, V20, P321, DOI 10.1097/00003446-199908000-00005 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 IGARASHI M, 1976, ARCH OTOLARYNGOL, V102, P428 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 LEAKE PA, 2000, COCHLEAR IMPLANTS, P31 Lenarz T, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P16 MARSH MA, 1992, AM J OTOL, V13, P241 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nadol JB, 2001, ANN OTO RHINOL LARYN, V110, P883 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 Rebscher SJ, 1999, IEEE T BIO-MED ENG, V46, P340, DOI 10.1109/10.748987 Reefhuis J, 2003, NEW ENGL J MED, V349, P435, DOI 10.1056/NEJMoa031101 Richter B, 2001, LARYNGOSCOPE, V111, P508, DOI 10.1097/00005537-200103000-00023 Roland J T Jr, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P64 Roland JT, 2000, AM J OTOL, V21, P218, DOI 10.1016/S0196-0709(00)80012-5 Schindler R A, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P4 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 TYCOCINSKI M, 2001, OTOL NEUROTOL, V22, P33 WARDROP PJ, 2005, HEAR RES ZAPPIA JJ, 1991, ANN OTO RHINOL LARYN, V100, P914 ZRUNEK M, 1980, ARCH OTO-RHINO-LARYN, V229, P159, DOI 10.1007/BF02565517 NR 30 TC 47 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 68 EP 79 DI 10.1016/j.heares.2004.11.007 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300008 PM 15855031 ER PT J AU Cappaert, NLM Klis, SFL Wijbenga, J Smoorenburg, GF AF Cappaert, NLM Klis, SFL Wijbenga, J Smoorenburg, GF TI Acceleration of cisplatin ototoxicity by perilymphatic application of 4-methylthiobenzoic acid SO HEARING RESEARCH LA English DT Article DE cisplatin; 4-methylthiobenzoic acids sodium thiosulfate; compound action potential; summating potential; guinea pig ID ALBINO GUINEA-PIG; INDUCED HEARING-LOSS; STRIA VASCULARIS; D-METHIONINE; SODIUM THIOSULFATE; COCHLEAR POTENTIALS; ROUND WINDOW; ANTITUMOR-ACTIVITY; PROTECTIVE AGENTS; RECOVERY AB The antitumor agent cisplatin has dose-limiting side effects such as ototoxicity. Systemical co-treatment with anti-oxidants like 4-methylthiobenzoic acid (MTBA) and sodium thiosulfate (STS) provides protection against cisplatin ototoxicity. However, systemically administered protective agents may reduce the chemotherapeutic effect of cisplatin. Local application of the protective agents could avoid this undesirable effect. In the present study, we aimed at suppressing cisplatin -induced ototoxicity in guinea pigs by administering MTBA or STS perilymphatically through cochlear perfusion. Guinea pig cochleas were perfused for 10 min with artificial perilymph (ArtP) containing cisplatin at 0.3 mg/ml, either alone, or in combination with MTBA (0. 1 or 1.0 mg/ml) or STS (0.75 or 3.0 mg/ml). The compound action potential (CAP) and the summating potential (SP), evoked by 8 kHz tone bursts, and the endocochlear potential (EP; MTBA only) were measured just before and 1, 2, 3 and 4 h after perfusion. Cisplatin gradually reduced the CAP amplitude in time. Adding MTBA only accelerated this ototoxic effect. After cisplatin treatment a decline was found in the EP, irrespective of co-treatment, i.e., addition of MTBA did not accelerate the EP decrease. In contrast to MTBA, STS ameliorated the ototoxic effect of cisplatin. In conclusion, focal application of anti-oxidants can ameliorate cisplatin ototoxicity but this is not a feature of all anti-oxidants. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP Klis, SFL (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. EM s.klis@kmb.azu.nl CR BOOGAARD PJ, 1991, BIOCHEM PHARMACOL, V41, P1997, DOI 10.1016/0006-2952(91)90141-Q Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 CHARY KK, 1977, CANCER TREAT REP, V61, P367 CHURCH MW, 1995, HEARING RES, V86, P195, DOI 10.1016/0378-5955(95)00066-D DEOLIVIERA JAA, 1989, AUDIOVESTIBULAR TOXI Ekborn A, 2002, HEARING RES, V165, P53, DOI 10.1016/S0378-5955(02)00277-0 Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515 HAYES DM, 1977, CANCER, V39, P1372, DOI 10.1002/1097-0142(197704)39:4<1372::AID-CNCR2820390404>3.0.CO;2-J Kaltenbach JA, 1997, OTOLARYNG HEAD NECK, V117, P493, DOI 10.1016/S0194-5998(97)70020-2 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1 KLIS SFL, 1994, HEARING RES, V75, P114, DOI 10.1016/0378-5955(94)90062-0 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOHN S, 1988, LARYNGOSCOPE, V98, P865 Kohn S, 1997, ULTRASTRUCT PATHOL, V21, P289 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 Li GM, 2001, NEUROTOXICOLOGY, V22, P163, DOI 10.1016/S0161-813X(00)00010-3 MCALPINE D, 1990, HEARING RES, V47, P191, DOI 10.1016/0378-5955(90)90151-E Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 Muldoon LL, 2000, CLIN CANCER RES, V6, P309 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 O'Leary SJ, 2002, ANTICANCER RES, V22, P1525 O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 Rybak LP, 1999, ANN NY ACAD SCI, V884, P143 Rybak LP, 2000, AM J OTOL, V21, P513 Rybak LP, 1999, LARYNGOSCOPE, V109, P1740, DOI 10.1097/00005537-199911000-00003 Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989 SCHWEITZER VG, 1993, OTOLARYNG CLIN N AM, V26, P759 Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0 Tsukasaki N, 2000, HEARING RES, V149, P189, DOI 10.1016/S0378-5955(00)00182-9 vanEmst MG, 1997, HEARING RES, V114, P93, DOI 10.1016/S0378-5955(97)00156-1 Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1 NR 41 TC 2 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 80 EP 87 DI 10.1016/j.heares.2004.10.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300009 PM 15855032 ER PT J AU Kalay, E Caylan, R Kremer, H de Brouwer, APM Karaguzel, A AF Kalay, E Caylan, R Kremer, H de Brouwer, APM Karaguzel, A TI GJB2 mutations in Turkish patients with ARNSHL: prevalence and two novel mutations SO HEARING RESEARCH LA English DT Article DE hearing loss; connexin 26; GJB2; GJB6; 35delG ID NONSYNDROMIC HEARING-LOSS; SENSORINEURAL DEAFNESS; CHILDHOOD DEAFNESS; CONNEXIN-26 MUTATIONS; PRELINGUAL DEAFNESS; MOLECULAR-BASIS; GAP-JUNCTIONS; GENE; POPULATION; DFNB1 AB Mutations in the connexin 26 gene (GJB2) cause a significant proportion of prelingual non-syndromic autosomal recessive deafness in all populations studied so far. To determine the percentage of hearing loss attributed to GJB2 in northeast Turkey, 93 unrelated patients with autosomal recessive non-syndromic hearing loss (ARNSHL) were screened. Seven different mutations were found in 29 of the patients with severe to profound hearing loss. The 35delG mutation was the most common mutation, accounting for 76% of all mutant GJB2 alleles. Four already described mutations, W24X, 310del14, delE120 and R184P and two novel mutations, Q80K and P173S, were identified. The allelic Delta(GJB6-D13S1830), which can cause hearing loss in combination with GJB2 mutations, was not present in our patients. Our results are comparable to those reported in other regions in Turkey and indicate that GJB2 mutations account for about 30% of Turkish patients with ARNSHL. Besides 35delG, W24X and delE120 occur more than once in the Turkish ARNSHL population with a frequency of about 5%. (c) 2004 Elsevier B.V. All rights reserved. C1 Radboud Univ, Nijmegen Med Ctr, Dept Human Genet, NL-6500 HB Nijmegen, Netherlands. Radboud Univ, Nijmegen Med Ctr, Dept Otorhinolaryngol, Nijmegen, Netherlands. Karadeniz Tech Univ, Fac Med, Dept Otorhinolaryngol, Trabzon, Turkey. Karadeniz Tech Univ, Fac Med, Dept Med Biol, Trabzon, Turkey. RP Kalay, E (reprint author), Radboud Univ, Nijmegen Med Ctr, Dept Human Genet, POB 9101, NL-6500 HB Nijmegen, Netherlands. EM e.kalay@antrg.umcn.nl RI Kremer, Hannie/F-5126-2010 CR Ahmad S, 2003, BIOCHEM BIOPH RES CO, V307, P362, DOI 10.1016/S0006-291X(03)01166-5 Bayazit YA, 2003, INT J PEDIATR OTORHI, V67, P1331, DOI 10.1016/j.ijporl.2003.08.003 Brobby GW, 1998, NEW ENGL J MED, V338, P548, DOI 10.1056/NEJM199802193380813 Bruzzone R, 1996, EUR J BIOCHEM, V238, P1, DOI 10.1111/j.1432-1033.1996.0001q.x Chang EH, 2003, EAR HEARING, V24, P314, DOI 10.1097/01.AUD.0000079801.55588.13 Cryns K, 2004, J MED GENET, V41, P147, DOI 10.1136/jmg.2003.013896 del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Erbe CB, 2004, LARYNGOSCOPE, V114, P607, DOI 10.1097/00005537-200404000-00003 Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406 Gorlin R.J., 1995, HEREDITARY HEARING L Günther Barbara, 2003, Hum Mutat, V22, P180, DOI 10.1002/humu.9167 Hamelmann C, 2001, Hum Mutat, V18, P84, DOI 10.1002/humu.1156 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kelsell David P., 2000, European Journal of Human Genetics, V8, P469 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kudo T, 2000, AM J MED GENET, V90, P141, DOI 10.1002/(SICI)1096-8628(20000117)90:2<141::AID-AJMG10>3.0.CO;2-G Kudo T, 2001, OTOL NEUROTOL, V22, P858, DOI 10.1097/00129492-200111000-00025 Lerer I, 2000, AM J MED GENET, V95, P53, DOI 10.1002/1096-8628(20001106)95:1<53::AID-AJMG11>3.0.CO;2-2 Loffler J, 2001, EUR J HUM GENET, V9, P226, DOI 10.1038/sj.ejhg.5200607 Maestrini E, 1999, HUM MOL GENET, V8, P1237, DOI 10.1093/hmg/8.7.1237 MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504 Mason JA, 1998, PEDIATRICS, V101, P221, DOI 10.1542/peds.101.2.221 MILLER SA, 1988, NUCLEIC ACIDS RES, V16, P1215, DOI 10.1093/nar/16.3.1215 Minarik G, 2003, GEN PHYSIOL BIOPHYS, V22, P549 Morle L, 2000, J MED GENET, V37, P368, DOI 10.1136/jmg.37.5.368 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Rabionet R, 2000, HUM GENET, V106, P40, DOI 10.1007/s004390051007 Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I Rabionet R, 2002, TRENDS MOL MED, V8, P205, DOI 10.1016/S1471-4914(02)02327-4 Richard G, 2000, HUM GENET, V106, P321, DOI 10.1007/s004390051045 Richard G, 2002, AM J HUM GENET, V70, P1341, DOI 10.1086/339986 Rothrock CR, 2003, HUM GENET, V113, P18, DOI 10.1007/s00439-003-0944-2 Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8 Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009 Stinckens C, 2004, ANN OTO RHINOL LARYN, V113, P587 Tekin Mustafa, 2003, Hum Mutat, V21, P552, DOI 10.1002/humu.9137 Uyguner O, 2003, CLIN GENET, V64, P65, DOI 10.1034/j.1399-0004.2003.00101.x Uyguner O, 2002, CLIN GENET, V62, P306, DOI 10.1034/j.1399-0004.2002.620409.x Wang YC, 2002, EUR J HUM GENET, V10, P495, DOI 10.1038/sj.ejhg.5200838 Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605 2004, CONNEXIN DEAFNESS HO NR 42 TC 32 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 88 EP 93 DI 10.1016/j.heares.2004.11.022 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300010 PM 15855033 ER PT J AU Chen, YS Tseng, FY Liu, TC Lin-Shiau, SY Hsu, CJ AF Chen, YS Tseng, FY Liu, TC Lin-Shiau, SY Hsu, CJ TI Involvement of nitric oxide generation in noise-induced temporary threshold shift in guinea pigs SO HEARING RESEARCH LA English DT Article DE nitric oxide; noise; temporary threshold shift ID COCHLEAR BLOOD-FLOW; NA+/K+-ATPASE ACTIVITY; INDUCED HEARING-LOSS; LATERAL WALL; LOUD SOUND; REPERFUSION INJURY; ACOUSTIC TRAUMA; SUPEROXIDE; APOPTOSIS; ISCHEMIA AB The present study explored the role of endogenous nitric oxide (NO) in the temporary threshold shift caused by acoustic trauma. Guinea pigs were exposed to broadband white noise at a level of 105 +/- 2 dB sound pressure level (SPL) for 10 min, causing a temporary threshold shift (TTS). The guinea pigs were divided into six groups (N-1 to N-6) according to survival days after noise exposure (0, 1, 2, 3, 7, 28 days). Auditory brainstem responses (ABR) were recorded before noise exposure, immediately after noise exposure and before sacrifice. Immediately after animals were sacrificed, the stria vascularis and the spiral ligament of the lateral wall of each individual cochlea were harvest as a unit and prepared for assay of NO. There was a significant correlation (P < 0.001) between the NO concentration and final ABR threshold in the noise exposure groups. But the return of ABR threshold to pre-noise-exposed level is early than that of NO concentration. An average 16.2 dB threshold shift was found immediately after noise exposure. The threshold returned to the pre-noise-exposed level on the second post-exposure day. Comparing to unexposed control animals, the NO concentration increased nearly threefold immediately following noise exposure and decreased to twofold when the hearing threshold had returned to the pre-noise-exposed level. On the seventh post-exposure day the NO concentration was not different from that in unexposed control animals. Those findings indicate that endogenous NO is generated in the noise-induced temporal threshold shift and its concentration is correlated with the hearing loss. (c) 2005 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Taiwan Univ Hosp, Dept Internal Med, Taipei, Taiwan. Natl Taiwan Univ, Coll Med, Inst Pharmacol, Taipei, Taiwan. RP Chen, YS (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. EM sos008@ha.mc.ntu.edu.tw; cjhsu@ha.mc.ntu.edu.tw CR AXELSSON A, 1981, ACTA OTOLARYNGOL, V88, P45 BONFOCO E, 1995, P NATL ACAD SCI USA, V92, P7162, DOI 10.1073/pnas.92.16.7162 BRECHTELSBAUER PB, 1994, HEARING RES, V77, P38, DOI 10.1016/0378-5955(94)90251-8 BUTTERFIELD DA, 1994, BIOCHEM BIOPH RES CO, V200, P710, DOI 10.1006/bbrc.1994.1508 CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2 CAO W, 1988, NEUROSCI LETT, V88, P233, DOI 10.1016/0304-3940(88)90132-2 CRISTOL JP, 1993, BRIT J PHARMACOL, V109, P188 DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368 Dimmeler S, 1997, NITRIC OXIDE-BIOL CH, V1, P275, DOI 10.1006/niox.1997.0133 Estevez AG, 1998, J NEUROSCI, V18, P923 ESTEVEZ AG, 1995, J NEUROCHEM, V65, P1543 Estevez AG, 2002, ANN NY ACAD SCI, V962, P207 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V GUO YC, 1994, J LARYNGOL OTOL, V108, P310 GUPTA S, 1994, AM J PHYSIOL, V266, pH2146 HALL NC, 1995, NEUROSCIENCE, V64, P81, DOI 10.1016/0306-4522(94)00385-I HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x HAWKINS JE, 1972, LARYNGOSCOPE, V82, P1091, DOI 10.1288/00005537-197207000-00001 HAWKINS JE, 1971, ANN OTO RHINOL LARYN, V80, P903 HENSLEY K, 1994, FREE RADICAL BIO MED, V17, P321, DOI 10.1016/0891-5849(94)90018-3 Hsu CJ, 2000, HEARING RES, V142, P203, DOI 10.1016/S0378-5955(00)00020-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 HULTCRANTZ E, 1979, ARCH OTO-RHINO-LARYN, V224, P103, DOI 10.1007/BF00455231 Kroncke KD, 1997, NITRIC OXIDE-BIOL CH, V1, P107, DOI 10.1006/niox.1997.0118 Lamm K, 1996, Audiol Neurootol, V1, P148 LIN CH, 1999, NEUROSCI LETT, V276, P141 LIPTON SA, 1993, NATURE, V364, P626, DOI 10.1038/364626a0 Margaill I, 1997, BRIT J PHARMACOL, V120, P160, DOI 10.1038/sj.bjp.0700889 MULROY MJ, 1990, HEARING RES, V49, P79, DOI 10.1016/0378-5955(90)90096-8 Muriel P, 2000, NITRIC OXIDE-BIOL CH, V4, P333, DOI 10.1006/niox.2000.0285 Nakai Y, 1988, Acta Otolaryngol Suppl, V447, P23 OHLSEN A, 1993, ACTA OTO-LARYNGOL, V113, P55, DOI 10.3109/00016489309135767 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RICHARD V, 1995, BRIT J PHARMACOL, V115, P1532 Ruan RS, 2002, ANN NY ACAD SCI, V962, P260 Sato T, 1995, BRAIN RES, V704, P117, DOI 10.1016/0006-8993(95)01165-X SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Shi XR, 2002, HEARING RES, V164, P49 Shi XR, 2001, HEARING RES, V153, P23, DOI 10.1016/S0378-5955(00)00254-9 SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7 Takumida M, 2001, ACTA OTO-LARYNGOL, V121, P342 Tamir S, 1996, CHEM RES TOXICOL, V9, P821, DOI 10.1021/tx9600311 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 VANBENTHEM PPG, 1994, HEARING RES, V77, P9, DOI 10.1016/0378-5955(94)90249-6 Vass Z, 1996, HEARING RES, V100, P114, DOI 10.1016/0378-5955(96)00102-5 WANGEMANN P, 1995, HEARING RES, V90, P149, DOI 10.1016/0378-5955(95)00157-2 Weitzberg E, 1998, NITRIC OXIDE-BIOL CH, V2, P1, DOI 10.1006/niox.1997.0162 Wink DA, 1998, FREE RADICAL BIO MED, V25, P434, DOI 10.1016/S0891-5849(98)00092-6 Yamane H, 1997, HEARING RES, V108, P65, DOI 10.1016/S0378-5955(97)00041-5 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Zweier JL, 1999, BBA-BIOENERGETICS, V1411, P250, DOI 10.1016/S0005-2728(99)00018-3 NR 52 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 94 EP 100 DI 10.1016/j.heares.2004.12.006 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300011 PM 15855034 ER PT J AU Kaiser, CL Girod, DA Durham, D AF Kaiser, CL Girod, DA Durham, D TI Breed-dependent susceptibility to acute sound exposure in young chickens SO HEARING RESEARCH LA English DT Article DE avian; auditory; sound damage; cochlea; basilar papilla ID INDUCED HEARING-LOSS; HAIR CELL LOSS; INTENSE AUDITORY-STIMULATION; NOISE-INDUCED APOPTOSIS; SEVERE ACOUSTIC TRAUMA; AVIAN INNER-EAR; BASILAR PAPILLA; COCHLEAR INTEGRITY; TECTORIAL MEMBRANE; DAMAGE AB Commercially available chickens fall into two categories: egg layers and broilers. Durham et a]. (Hear. Res. 166 (2002) 82-95) showed that despite similar noisy living environments, cochleae of most adult broilers show extensive damage, while cochleae of adult egg layers are largely normal. This finding suggests that egg layers and broilers differ in their susceptibility to noise damage. Here, we evaluate breed differences in susceptibility to acoustic trauma. Young egg layers and broilers (10-17 weeks) were exposed to a 1500 Hz pure tone (120 dB SPL; 24 h) and killed 24 or 72 h later. Cochleae were prepared for scanning electron microscopy and photomicrographs of the cochlear surface were used to determine location and severity of damage. Cochleae were grouped based upon damage severity (moderate or severe). While location and area of damage were similar between both breeds at each recovery time, cochlear damage at 72 h was more extensive than at 24 h. We found no quantitative breed differences within either damage category or recovery time. However, more egg layers (25/27) than broilers (16/32) displayed severely damaged cochleae. Our findings conflict with those reported by Durham et al. (2002). Our results identify a breed-dependent difference in susceptibility to acute sound exposure, with young egg layers displaying increased sensitivity. (c) 2004 Elsevier B. V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66103 USA. Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66103 USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66103 USA. EM ddurham@kumc.edu CR ADLER HJ, 1993, HEARING RES, V71, P214, DOI 10.1016/0378-5955(93)90037-2 ADLER HJ, 1995, J NEUROCYTOL, V24, P111, DOI 10.1007/BF01181554 BESS FH, 2003, AUDIOLOGY FUNDAMENTA, P145 Bohne BA, 1999, HEARING RES, V134, P163, DOI 10.1016/S0378-5955(99)00082-9 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 CLARK WW, 1992, OTOLARYNG HEAD NECK, V106, P669 CODY AR, 1983, HEARING RES, V9, P55, DOI 10.1016/0378-5955(83)90134-X COTANCHE DA, 1987, HEARING RES, V30, P197, DOI 10.1016/0378-5955(87)90136-5 COTANCHE DA, 1987, HEARING RES, V25, P267, DOI 10.1016/0378-5955(87)90098-0 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 COTANCHE DA, 1992, EXP NEUROL, V115, P23, DOI 10.1016/0014-4886(92)90215-C Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 Cryns V, 1998, GENE DEV, V12, P1551, DOI 10.1101/gad.12.11.1551 Dagli S, 1997, HEARING RES, V104, P39, DOI 10.1016/S0378-5955(96)00179-7 Davis R R, 2003, Noise Health, V5, P19 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FISCHER FP, 1992, HEARING RES, V61, P167, DOI 10.1016/0378-5955(92)90048-R Freeman S, 1999, AUDIOL NEURO-OTOL, V4, P207, DOI 10.1159/000013844 GIROD DA, 1989, HEARING RES, V42, P175, DOI 10.1016/0378-5955(89)90143-3 HENDERSON D, 1993, EAR HEARING, V14, P152, DOI 10.1097/00003446-199306000-00002 HENRY WJ, 1988, OTOLARYNG HEAD NECK, V98, P607 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Mangiardi DA, 2004, J COMP NEUROL, V475, P1, DOI 10.1002/cne.20129 MARSH RR, 1990, HEARING RES, V46, P229, DOI 10.1016/0378-5955(90)90004-9 Nakagawa T, 1997, ORL J OTO-RHINO-LARY, V59, P303 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ofsie MS, 1996, J COMP NEUROL, V370, P281 Ou HC, 2000, HEARING RES, V145, P111, DOI 10.1016/S0378-5955(00)00081-2 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 Perez R, 2004, HEARING RES, V192, P101, DOI 10.1016/j.heares.2004.01.018 POJE CP, 1995, HEARING RES, V82, P197, DOI 10.1016/0378-5955(94)00177-R RAPHAEL Y, 1993, J COMP NEUROL, V330, P521, DOI 10.1002/cne.903300408 RAPHAEL Y, 1991, HEARING RES, V53, P173, DOI 10.1016/0378-5955(91)90052-B ROYSTER JD, 1996, HEARING DISORDERS, P177 RUBEL EW, 1982, ACTA OTO-LARYNGOL, V93, P31, DOI 10.3109/00016488209130849 RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 RYALS BM, 1985, HEARING RES, V19, P73, DOI 10.1016/0378-5955(85)90099-1 RYALS BM, 1995, HEARING RES, V83, P51, DOI 10.1016/0378-5955(94)00190-2 Ryals BM, 1999, HEARING RES, V131, P71, DOI 10.1016/S0378-5955(99)00022-2 Ryugo DK, 1998, J COMP NEUROL, V397, P532, DOI 10.1002/(SICI)1096-9861(19980810)397:4<532::AID-CNE6>3.0.CO;2-2 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SIEDMAN MD, 2002, AGEING RES REV, V1, P331 Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 NR 53 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 101 EP 111 DI 10.1016/j.heares.2004.11.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300012 PM 15855035 ER PT J AU van Ruijven, MWM de Groot, JCMJ Hendriksen, F Smoorenburg, GF AF van Ruijven, MWM de Groot, JCMJ Hendriksen, F Smoorenburg, GF TI Immunohistochemical detection of platinated DNA in the cochlea of cisplatin-treated guinea pigs SO HEARING RESEARCH LA English DT Article DE cisplatin ototoxicity; cisplatin-DNA adducts; cochlea; guinea pig; organ of Corti; stria vascularis ID X-RAY-MICROANALYSIS; STRIA VASCULARIS; ELECTRON-MICROSCOPY; OTOTOXICITY; LOCALIZATION; DEGENERATION; ADDUCTS; CIS-DIAMMINEDICHLOROPLATINUM(II); CRYOULTRAMICROTOMY; MORPHOLOGY AB Cisplatin-induced ototoxicity is correlated with functional and morphological changes in the organ of Corti, the stria vascularis and the spiral ganglion. However, the cochlear sites of cisplatin uptake and accumulation have not been property identified. Therefore, we have developed an immunohistochemical method to, indirectly, detect cisplatin in semithin cryosections of the guinea pig cochlea (basal turn) using an antiserum containing antibodies against cisplatin-DNA adducts. Platinated DNA was present in the nuclei of most cells in the organ of Corti and the lateral wall after cisplatin administration. Nuclear immunostaining was most pronounced in the outer hair cells, the marginal cells and the spiral ligament fibrocytes. This study is the first to demonstrate the presence of cisplatin in histological sections of the cochlea. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP van Ruijven, MWM (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. EM m.vanruijven@kmb.azu.nl CR ANNIKO M, 1986, AM J OTOLARYNG, V7, P276, DOI 10.1016/S0196-0709(86)80050-3 Bergstrom P, 1997, EUR J CANCER, V33, P153, DOI 10.1016/S0959-8049(96)00339-5 BERRY JP, 1982, CANCER TREAT REP, V66, P1529 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2004, ACTA OTO-LARYNGOL, V124, P144, DOI 10.1080/00016480310015164 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 Chabner BA, 1996, CANC CHEMOTHERAPY BI, P357 DEOLIVEIRA JAA, AUDIOVESTIBULAR TOXI, V2, P181 Endo T, 2002, NEUROSCI LETT, V334, P173, DOI 10.1016/S0304-3940(02)01115-1 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 FLOCK A, 1981, ARCH OTO-RHINO-LARYN, V233, P55, DOI 10.1007/BF00464275 Fuertes MA, 2003, CURR MED CHEM, V10, P257 Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515 JOHNSSON A, 1995, CANCER CHEMOTH PHARM, V37, P23 Kartalou M, 2001, MUTAT RES-FUND MOL M, V478, P1, DOI 10.1016/S0027-5107(01)00142-7 KHAN MUA, 1978, CHEM-BIOL INTERACT, V21, P227, DOI 10.1016/0009-2797(78)90021-2 KOHN S, 1988, LARYNGOSCOPE, V98, P865 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 MAKITA T, 1986, CELL BIOL INT REP, V10, P447, DOI 10.1016/0309-1651(86)90040-8 MARUYAMA K, 1993, J OTOLARYNGOL JAPAN, V96, P1758 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 Meijer C, 1999, NEUROTOXICOLOGY, V20, P883 Meijer C, 2001, BIOCHEM PHARMACOL, V61, P573, DOI 10.1016/S0006-2952(00)00584-0 Ramirez-Camacho R, 2004, LARYNGOSCOPE, V114, P533 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P310 SCHWEITZER VG, 1993, LARYNGOSCOPE S, V103, P59 TAKAGI I, 1994, IMMUNOBIOLOGY IN OTORHINOLARYNGOLOGY, P297 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 TERHEGGEN PMAB, 1991, CANCER CHEMOTH PHARM, V28, P185, DOI 10.1007/BF00685507 TERHEGGEN PMAB, 1987, CANCER RES, V47, P6719 TERHEGGEN PMAB, 1989, TOXICOL APPL PHARM, V99, P334, DOI 10.1016/0041-008X(89)90015-X TOKUYASU KT, 1989, HISTOCHEM J, V21, P163, DOI 10.1007/BF01007491 van Ruijven MWM, 2004, HEARING RES, V197, P44, DOI 10.1016/j.heares.2004.07.014 Verschraagen M, 2002, J CHROMATOGR B, V772, P273, DOI 10.1016/S1570-0232(02)00108-3 Wang J, 2003, NEUROPHARMACOLOGY, V45, P380, DOI 10.1016/S0028-3908(03)00194-1 WELB R, 1995, THESIS UNIV DUSSELDO NR 37 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 112 EP 121 DI 10.1016/j.heares.2004.12.007 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300013 PM 15855036 ER PT J AU Hine, JE Thornton, ARD AF Hine, JE Thornton, ARD TI Transient evoked otoacoustic emissions recorded using maximum length sequences from patients with sensorineural hearing loss SO HEARING RESEARCH LA English DT Article DE evoked otoacoustic emissions; maximum length sequences; hearing loss ID STIMULUS RATE; THRESHOLDS; NOISE AB Much research has shown that transient evoked otoacoustic emissions (TEOAEs) can successfully separate normally hearing and hearing impaired populations. However, this finding comes from TEOAEs recorded using conventional averaging at low stimulation rates. Presenting clicks according to maximum length sequences (MLSs) enables TEOAEs to be recorded at very high stimulation rates. This study compares conventional and MLS TEOAEs in normally hearing and hearing impaired adults. Stimulus presentation rates of 40 clicks/s (conventional) and 5000 clicks/s (MLS) were used. The 'linear' TEOAEs (i.e., the directly recorded waveforms), the 'level nonlinear' (LNL) TEOAEs (i.e., those derived from two linear waveforms separated by a known difference in stimulus level) and the 'rate nonlinear' (RNL) TEOAEs (i.e., obtained by subtracting the emission recorded at 5000 clicks/s from that at 40 clicks/s at a fixed stimulus level) were examined to compare how they separated the normally hearing and hearing impaired subjects. When compared to the results for both conventional and MLS linear or LNL TEOAEs, the present study found that the RNL results best reflected the patients' hearing loss, although the conventional linear and LNL responses performed nearly as well. Only two impaired ears (2%), both with a best threshold of 30 dB HL at 1000 Hz, produced RNL responses with amplitude within the range produced by 95% of the normal group. (c) 2004 Elsevier B.V. All rights reserved. C1 Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. RP Hine, JE (reprint author), Royal S Hants Hosp, MRC, Inst Hearing Res, Southampton SO14 0YG, Hants, England. EM j.kwint@soton.ac.uk CR BONFILS P, 1989, ANN OTO RHINOL LARYN, V98, P326 BONFILS P, 1988, ARCH OTO-RHINO-LARYN, V245, P53, DOI 10.1007/BF00463550 COLLET L, 1993, EAR HEARING, V14, P141, DOI 10.1097/00003446-199304000-00009 Cope Y., 1988, PAEDIATRIC AUDIOLOGY, P221 Fitzgerald TS, 1997, J SPEECH LANG HEAR R, V40, P1164 GRANDORI F, 1994, ADV OTOACOUSTIC EMIS, V1, P46 Hall AJ, 1999, AUDIOLOGY, V38, P277 Harris FP, 2002, OTOACOUSTIC EMISSION, P213 Hine JE, 2001, HEARING RES, V156, P104, DOI 10.1016/S0378-5955(01)00271-4 Hine JE, 1997, EAR HEARING, V18, P121, DOI 10.1097/00003446-199704000-00004 Hussain DM, 1998, EAR HEARING, V19, P434, DOI 10.1097/00003446-199812000-00005 KEMP DT, 1990, EAR HEARING, V11, P93 Moleti A, 2002, HEARING RES, V174, P290, DOI 10.1016/S0378-5955(02)00703-7 PICTON TW, 1993, EAR HEARING, V14, P299, DOI 10.1097/00003446-199310000-00001 PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 Rasmussen AN, 1998, BRIT J AUDIOL, V32, P355, DOI 10.3109/03005364000000087 STEVENS J C, 1988, British Journal of Audiology, V22, P45 THORNTON ARD, 1993, BRIT J AUDIOL, V27, P109, DOI 10.3109/03005369309077900 THORNTON ARD, 1995, SCAND AUDIOL, V24, P83, DOI 10.3109/01050399509047519 Thornton ARD, 2001, CLIN NEUROPHYSIOL, V112, P768, DOI 10.1016/S1388-2457(01)00484-9 THORNTON ARD, 1994, SCAND AUDIOL, V23, P225, DOI 10.3109/01050399409047512 THORNTON ARD, 1993, J ACOUST SOC AM, V94, P132, DOI 10.1121/1.407090 Tognola G, 2001, EAR HEARING, V22, P182, DOI 10.1097/00003446-200106000-00002 VONSPECHT H, 2001, SCAND AUDIOL S, V52, P116 NR 24 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 122 EP 133 DI 10.1016/j.heares.2004.11.019 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300014 PM 15855037 ER PT J AU Sharma, A Dorman, MF Kral, A AF Sharma, A Dorman, MF Kral, A TI The influence of a sensitive period on central auditory development in children with unilateral and bilateral cochlear implants SO HEARING RESEARCH LA English DT Article DE central auditory development; sensitive period; PI cortical auditory evoked potential; cochlear implant; bilateral implants ID CORTICAL MATURATION; EVOKED-POTENTIALS; NORMAL-HEARING; BRAIN-STEM; CORTEX; PLASTICITY; DEAFNESS; DEPRIVATION; PERCEPTION; RESPONSES AB We examined the longitudinal development of the cortical auditory evoked potential (CAEP) in 21 children who were fitted with unilateral cochlear implants and in two children who were fitted with bilateral cochlear implants either before age 3.5 years or after age 7 years. The age cut-offs (<3.5 years for early-implanted and >7 years for late-implanted) were based on the sensitive period for central auditory development described in [Ear Hear. 23 (6), 532.] Our results showed a fundamentally different pattern of development of CAEP morphology and PI cortical response latency for early- and late-implanted children. Early-implanted children and one child who received bilateral implants by age 3.5 years showed rapid development in CAEP waveform morphology and PI latency. Late-implanted children showed aberrant waveform morphology and significantly slower decreases in P1 latency postimplantation. In the case of a child who received his first implant by age 3.5 years and his second implant after age 7 years, CAEP responses elicited by the second implant were similar to late-implanted children. Our results are consistent with animal models of central auditory development after implantation and confirm the presence of a relatively brief sensitive period for central auditory development in young children. 2005 Elsevier B.V. All rights reserved. C1 Univ Texas, Callier Ctr Commun Disorders, Dallas, TX 75206 USA. Arizona State Univ, Tempe, AZ 85287 USA. Univ Klinikum Hamburg Eppendorf, Inst Neurophysiol & Pathophysiol, Hamburg, Germany. RP Sharma, A (reprint author), Univ Texas, Callier Ctr Commun Disorders, 1966 Inwood Rd, Dallas, TX 75206 USA. EM anu.sharma@utdallas.edu CR Conel J. L, 1939, POSTNATAL DEV HUMAN, V1-8 Cunningham J, 2000, EAR HEARING, V21, P554, DOI 10.1097/00003446-200012000-00003 Eggermont JJ, 2003, ACTA OTO-LARYNGOL, V123, P249, DOI 10.1080/0036554021000028098 Finney EM, 2001, NAT NEUROSCI, V4, P1171, DOI 10.1038/nn763 GILLEY P, 2004, ASS RES OTOLARYNGOLO Gordon KA, 2003, EAR HEARING, V24, P485, DOI 10.1097/01.AUD.0000100203.65990.D4 Granier-Deferre C, 1985, Acta Otolaryngol Suppl, V421, P93 Huttenlocher PR, 1997, J COMP NEUROL, V387, P167, DOI 10.1002/(SICI)1096-9861(19971020)387:2<167::AID-CNE1>3.0.CO;2-Z Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 Kral A, 2002, CEREB CORTEX, V12, P797, DOI 10.1093/cercor/12.8.797 KRAL A, IN PRESS CEREB CORTE KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003 Kraus N., 1995, CLIN NEUROPHYSIOL, V44, P93 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 Maurer D, 1999, SCIENCE, V286, P108, DOI 10.1126/science.286.5437.108 Moller AR, 2002, NEUROSCI LETT, V319, P41, DOI 10.1016/S0304-3940(01)02516-2 Moore Jean K, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P7 MOORE JK, 2004, NHS C LAK COM IT Moore JK, 2001, JARO, V2, P297, DOI 10.1007/s101620010052 Mostafapour SP, 2002, J NEUROSCI, V22, P4670 Neville H, 2002, PROG BRAIN RES, V138, P177, DOI 10.1016/S0079-6123(02)38078-6 Nishimura H, 2000, NEUROREPORT, V11, P811, DOI 10.1097/00001756-200003200-00031 Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376 Paus T, 1999, SCIENCE, V283, P1908, DOI 10.1126/science.283.5409.1908 Petitto LA, 2000, P NATL ACAD SCI USA, V97, P13961, DOI 10.1073/pnas.97.25.13961 Ponton C W, 1999, Scand Audiol Suppl, V51, P13 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Ponton CW, 1996, EAR HEARING, V17, P430, DOI 10.1097/00003446-199610000-00009 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 Ponton CW, 2001, AUDIOL NEURO-OTOL, V6, P363, DOI 10.1159/000046846 Roder B, 2002, EUR J NEUROSCI, V16, P930, DOI 10.1046/j.1460-9568.2002.02147.x RUBEL EW, 1985, ACTA OTO-LARYNGOL, P114 SALAMY A, 1984, PRINCIPLES APLLICATI, P287 Sharma Anu, 2002, Ann Otol Rhinol Laryngol Suppl, V189, P38 Sharma Anu, 2002, Ear and Hearing, V23, P532, DOI 10.1097/00003446-200212000-00004 Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Sharma A, 2002, NEUROREPORT, V13, P1365, DOI 10.1097/00001756-200207190-00030 Sharma A, 2004, ARCH OTOLARYNGOL, V130, P511, DOI 10.1001/archotol.130.5.511 Singh S, 2004, EAR HEARING, V25, P598, DOI 10.1097/00003446-200412000-00008 WEITZMAN L, 1967, CLIN NEUROPHYSIOL, V23, P82 YAKOVLEV PL, 1967, REGIONAL DEV BRAIN E, P1 NR 42 TC 159 Z9 172 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 134 EP 143 DI 10.1016/j.heares.2004.12.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300015 PM 15855038 ER PT J AU Lelbovici, M Verpy, E Goodyear, RJ Zwaenepoel, I Blanchard, S Laine, S Richardson, GP Petit, C AF Lelbovici, M Verpy, E Goodyear, RJ Zwaenepoel, I Blanchard, S Laine, S Richardson, GP Petit, C TI Initial characterization of kinocilin, a protein of the hair cell kinocilium SO HEARING RESEARCH LA English DT Article DE kinocilin; kinocilium; stereocilia; inner ear; testis; manchette; microtubules ID INNER-EAR; MYOSIN-VIIA; STEREOCILIARY BUNDLES; SENSORY EPITHELIA; SUPPORTING CELLS; APICAL-SURFACE; MOUSE; MICROTUBULES; COCHLEA; ORGAN AB A subtracted library prepared from vestibular sensory areas [Nat. Genet. 26 (2000) 51] was used to identify a 960 bp murine transcript preferentially expressed in the inner ear and testis. The cDNA predicts a basic 124 aa protein that does not share any significant sequence homology with known proteins. Immunofluorescence and immunoelectron microscopy revealed that the protein is located mainly in the kinocilium of sensory cells in the inner ear. The protein was thus named kinocilin. In the mouse, kinocilin is first detected in the kinocilia of vestibular and auditory hair cells at embryonic days 14.5, and 18.5, respectively. In the mature vestibular hair cells, kinocilin is still present in the kinocilium. As the auditory hair cells begin to lose the kinocilium during postnatal development, kinocilin becomes distributed in an annular pattern at the apex of these cells, where it co-localizes with the tubulin belt [Hear. Res. 42 (1989) 1]. In mature auditory hair cells, kinocilin is also present at the level of the cuticular plate, at the base of each stereocilium. In addition, as the kinocilium regresses from developing auditory hair cells, kinocilin begins to be expressed by the pillar cells and Deiters cells, that both contain prominent transcellular and apical bundles of microtubules. By contrast, kinocilin was not detected in the supporting cells in the vestibular end organs. The protein is also present in the manchette of the spermatids, a transient structure enriched in interconnected microtubules. We propose that kinocilin has a role in stabilizing dense microtubular networks or in vesicular trafficking. 2005 Published by Elsevier B.V. C1 Inst Pasteur, INSERM, U587, Unite Genet Deficits Sensoriels, F-75724 Paris, France. Univ Sussex, Sch Biol Sci, Brighton BN1 9QG, E Sussex, England. RP Lelbovici, M (reprint author), Inst Pasteur, INSERM, U587, Unite Genet Deficits Sensoriels, 25 Rue Dr Roux, F-75724 Paris, France. EM mleibo@pasteur.fr CR ANGELBOR.C, 1972, ACTA OTO-LARYNGOL, P49 Boeda B, 2001, HUM MOL GENET, V10, P1581, DOI 10.1093/hmg/10.15.1581 CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1006/abio.1987.9999 Cohen-Salmon M, 1997, P NATL ACAD SCI USA, V94, P14450, DOI 10.1073/pnas.94.26.14450 COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7 Cyr JL, 2002, J NEUROSCI, V22, P2487 Dabdoub A, 2003, DEVELOPMENT, V130, P2375, DOI 10.1242/dev.00448 Denman-Johnson K, 1999, J NEUROCYTOL, V28, P821, DOI 10.1023/A:1007061819934 DEVEREUX J, NUCLEIC ACIDS RES, V12, P387 ElAmraoui A, 1996, HUM MOL GENET, V5, P1171, DOI 10.1093/hmg/5.8.1171 ERNSTSON S, 1986, ACTA OTO-LARYNGOL, V101, P395, DOI 10.3109/00016488609108624 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 FURNESS DN, 1990, J ELECTRON MICR TECH, V15, P261, DOI 10.1002/jemt.1060150306 Goodyear RJ, 2003, J NEUROSCI, V23, P4878 Hasson T, 1997, J CELL BIOL, V137, P1287, DOI 10.1083/jcb.137.6.1287 HENDERSON CG, 1995, J CELL SCI, V108, P37 Holt JR, 1997, J NEUROSCI, V17, P8739 HUBANK M, 1994, NUCLEIC ACIDS RES, V22, P5640, DOI 10.1093/nar/22.25.5640 Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0 KELLEY MW, 1992, HEARING RES, V59, P108 Kierszenbaum AL, 2002, MOL REPROD DEV, V63, P1, DOI 10.1002/mrd.10179 KIKUCHI T, 1988, ACTA OTO-LARYNGOL, V106, P200, DOI 10.3109/00016488809106426 KIKUCHI T, 1989, ACTA OTO-LARYNGOL, V108, P26, DOI 10.3109/00016488909107388 Kussel-Andermann P, 2000, EMBO J, V19, P6020, DOI 10.1093/emboj/19.22.6020 Leonova EV, 1999, HEARING RES, V130, P137, DOI 10.1016/S0378-5955(99)00004-0 Ohtoshi A, 2002, MECH DEVELOP, V110, P241, DOI 10.1016/S0925-4773(01)00587-1 Raphael Y, 2003, BRAIN RES BULL, V60, P397, DOI 10.1016/S0361-9230(03)00047-9 ROSS MD, 1987, ACTA OTO-LARYNGOL, V104, P56, DOI 10.3109/00016488709109047 RUSSELL LD, 1991, AM J ANAT, V192, P97, DOI 10.1002/aja.1001920202 Senes A, 2000, J MOL BIOL, V296, P921, DOI 10.1006/jmbi.1999.3488 SOBKOWICZ HM, 1995, J NEUROCYTOL, V24, P633, DOI 10.1007/BF01179815 STEYGER PS, 1989, HEARING RES, V42, P1, DOI 10.1016/0378-5955(89)90113-5 Strausberg RL, 2002, P NATL ACAD SCI USA, V99, P16899, DOI 10.1073/pnas.242603899 Thorpe JR, 1999, J HISTOCHEM CYTOCHEM, V47, P1633 Thorpe Jr, 1999, METH MOL B, V117, P99 Tsujikawa M, 2004, NEURON, V42, P703, DOI 10.1016/S0896-6273(04)00268-5 TUCKER JB, 1993, CELL MOTIL CYTOSKEL, V25, P49, DOI 10.1002/cm.970250107 Verpy E, 2000, NAT GENET, V26, P51 Viberg A, 2004, HEARING RES, V197, P1, DOI 10.1016/j.heares.2004.04.016 VONHEIJNE G, 1986, NUCLEIC ACIDS RES, V14, P4683, DOI 10.1093/nar/14.11.4683 Wolfrum U, 1998, CELL MOTIL CYTOSKEL, V40, P261, DOI 10.1002/(SICI)1097-0169(1998)40:3<261::AID-CM5>3.0.CO;2-G Zwaenepoel I, 2002, P NATL ACAD SCI USA, V99, P6240, DOI 10.1073/pnas.082515999 NR 42 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 144 EP 153 DI 10.1016/j.heares.2004.12.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300016 ER PT J AU Falkenius-Schmidt, K Rydmarker, S Horner, KC AF Falkenius-Schmidt, K Rydmarker, S Horner, KC TI Hyperprolactinemia in some Meniere patients even in the absence of incapacitating vertigo SO HEARING RESEARCH LA English DT Article DE Meniere's disease; stress; hyperprolactinemia; pituitary adenoma; hearing; vertigo ID PROLACTIN RECEPTOR; STRESS; HORMONES; DISEASE; SYSTEM; VASOPRESSIN; HOMEOSTASIS; GUIDELINES; DISORDERS; DIZZINESS AB Stress can be a significant factor influencing ear pathologies and is often reported to trigger the symptoms of Meniere's disease. Both physiological and psychological stress provokes the release of prolactin from the pituitary thus allowing the classification of prolactin as a major stress hormone. We investigated the level of the stress hormone prolactin in a Swedish population with early symptoms of Meniere's disease. The median prolactin level in the Meniere patients (n = 33) was not significantly different from that of non-Meniere patients (n = 23). However, in the Meniere group one female (90 year old) had prolactin levels in the upper normal range for women, one male (77 year old) had prolactin levels above the normal limit for men, and a third patient (76 year old female) presented hyper prolactinemia with more than twice the normal level. MR1 confirmed a pituitary adenoma in this patient. This study provides further support for the recent report of hyperprolactinemia in some patients with long-standing Meniere's disease and presenting incapacitating vertigo in France. The data emphasize the likely implication of stress in this pathology where the stress hormone prolactin is likely to represent one actor in a complex hormonal imbalance affecting the inner ear. (c) 2004 Elsevier B.V. All rights reserved. C1 Angelholm Hosp, Dept Otorhinolaryngol, SE-26281 Angelholm, Sweden. Malmo Univ Hosp, Dept Otorhinolaryngol, SE-20502 Malmo, Sweden. CNRS, UMR 6153, Fac Sci St Jerome, Lab Physiol Neurovegetat, F-13397 Marseille, France. RP Falkenius-Schmidt, K (reprint author), Angelholm Hosp, Dept Otorhinolaryngol, SE-26281 Angelholm, Sweden. EM karolina.falkenius@telia.com CR Andersson G, 1997, J PSYCHOSOM RES, V43, P595, DOI 10.1016/S0022-3999(97)00184-0 Biller BMK, 1999, J REPROD MED, V44, P1075 Blagoveshchenskaia N S, 1988, Zh Vopr Neirokhir Im N N Burdenko, P24 BOIKO V, 1991, KOSM BIOL AVIAKOSM, V25, P46 Bole-Feysot C, 1998, ENDOCR REV, V19, P225, DOI 10.1210/er.19.3.225 Dorshkind K, 2001, BIOESSAYS, V23, P288, DOI 10.1002/1521-1878(200103)23:3<288::AID-BIES1039>3.0.CO;2-P EYBALIN M, 1993, PHYSIOL REV, V73, P309 FOWLER EP, 1952, JAMA-J AM MED ASSOC, V148, P1265 Freeman ME, 2000, PHYSIOL REV, V80, P1523 Gaborjan A, 2001, NEUROREPORT, V12, P3327 Hebert S, 2004, HEARING RES, V190, P1, DOI [10.1016/S0378-5955(04)00021-8, 10.1016/S037-5955(04)00021-8] Horner K C, 2003, Noise Health, V5, P29 Horner KC, 2002, NEUROPSYCHOPHARMACOL, V26, P135, DOI 10.1016/S0893-133X(01)00356-6 Horner KC, 2003, NEUROSCI BIOBEHAV R, V27, P437, DOI 10.1016/S0149-7634(03)00071-X Job A, 2004, HEARING RES, V193, P31, DOI 10.1016/j.heares.2004.02.010 Juhn SK, 1999, AM J OTOL, V20, P800 Juhn S K, 2001, Int Tinnitus J, V7, P72 KANT GJ, 1992, PHYSIOL BEHAV, V51, P1285, DOI 10.1016/0031-9384(92)90323-T Kitano H, 1994, Ear Nose Throat J, V73, P921 KJAER A, 1993, NEUROENDOCRINOLOGY, V57, P314 MERCHANT SN, 1995, EUR ARCH OTO-RHINO-L, V252, P63 MEYERHOFF JL, 1988, PSYCHOSOM MED, V50, P295 MONSELL EM, 1995, OTOLARYNG HEAD NECK, V113, P176, DOI 10.1016/S0194-5998(95)70100-1 NAFTALIN L, 1994, EUR ARCH OTO-RHINO-L, V251, P173 PETROSINI L, 1993, ARCH ITAL BIOL, V131, P159 Reavley S, 1997, CLIN ENDOCRINOL, V47, P343, DOI 10.1046/j.1365-2265.1997.2701073.x Roberts CGP, 2004, LANCET, V363, P793, DOI 10.1016/S0140-6736(04)15696-1 ROYSTER M, 1995, ENDOCRINOLOGY, V136, P3892, DOI 10.1210/en.136.9.3892 RYBAK LP, 1995, OTOLARYNG HEAD NECK, V112, P128, DOI 10.1016/S0194-5998(95)70312-8 Seemungal BM, 2001, CURR OPIN NEUROL, V14, P27, DOI 10.1097/00019052-200102000-00005 Sobrinho LG, 1998, PSYCHOTHER PSYCHOSOM, V67, P133, DOI 10.1159/000012273 STEPHENS SDG, 1975, J LARYNGOL OTOL, V89, P479, DOI 10.1017/S0022215100080646 Takeda T, 2000, HEARING RES, V140, P1, DOI 10.1016/S0378-5955(99)00180-X Takeda T, 1995, Acta Otolaryngol Suppl, V519, P219 Torner L, 2001, J NEUROSCI, V21, P3207 Yardley L, 1998, BRIT J GEN PRACT, V48, P1131 Yardley L, 1999, LANCET, V353, P2069, DOI 10.1016/S0140-6736(05)77883-1 Yazigi RA, 1997, FERTIL STERIL, V67, P215, DOI 10.1016/S0015-0282(97)81900-0 NR 38 TC 4 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 154 EP 158 DI 10.1016/j.heares.2004.11.015 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300017 PM 15855040 ER PT J AU Irfan, N Zhang, HM Wu, SH AF Irfan, N Zhang, HM Wu, SH TI Synaptic transmission mediated by ionotropic glutamate, glycine and GABA receptors in the rat's ventral nucleus of the lateral lemniscus SO HEARING RESEARCH LA English DT Article DE auditory system; intracellular recording; AMPA receptor; postsynaptic potential; brain slice ID AUDITORY BRAIN-STEM; SUPERIOR OLIVARY COMPLEX; IN-SITU HYBRIDIZATION; BAT EPTESICUS-FUSCUS; BUSHY CELL AXONS; BIG BROWN BAT; INFERIOR COLLICULUS; COCHLEAR NUCLEUS; GUINEA-PIG; PHYSIOLOGICAL-PROPERTIES AB The synaptic pharmacology of the ventral nucleus of the lateral lemniscus (VNLL) was investigated in brain slices obtained from rat's of 14-37 days old using intracellular recording techniques. Excitatory and inhibitory synaptic potentials (EPSPs and IPSPs) were elicited by electrical stimulation of the lemniscal pathway and recorded from neurons with five types of intrinsic firing patterns (onset, pause, adapting, regular and bursting types). Synaptic receptors that mediated the EPSPs and IPSPs were identified using AMPA, NMDA, GABA(A) and glycine receptor antagonists. The early/short EPSPs were mediated by AMPA receptors. The late/long EPSPs, encountered only in neurons of younger animals, were mediated by NMDA receptors. The IPSPs in most neurons were mediated by glycine receptors. In some neurons the IPSPs were mediated by GABA(A) receptors or both glycine and GABA(A) receptors. The temporal dynamics of fast AMPA EPSPs and glycinergic IPSPs were very similar. AMPA EPSPs and glycinergic (and/or GABAergic) IPSPs could be encountered in a single neuron. The results suggest that the VNLL not only relays incoming signals rapidly from the lower brainstem to the inferior colliculus, but also integrates excitatory and inhibitory inputs to modify and process auditory information. (c) 2004 Elsevier B.V. All rights reserved. C1 Carleton Univ, Inst Neurosci, Ottawa, ON K1S 5B6, Canada. RP Wu, SH (reprint author), Carleton Univ, Inst Neurosci, 335 Life Sci Res Bldg,1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada. EM shwu@ces.carleton.ca CR ADAMS JC, 1990, HEARING RES, V49, P281, DOI 10.1016/0378-5955(90)90109-3 Adams JC, 1997, AUDIT NEUROSCI, V3, P335 AITKIN LM, 1970, J NEUROPHYSIOL, V33, P421 BARNESDAVIES M, 1995, J PHYSIOL-LONDON, V488, P387 Batra R, 2002, J NEUROPHYSIOL, V88, P666, DOI 10.1152/jn.00954.2001 Batra R, 1999, J NEUROPHYSIOL, V82, P1097 Batra R, 1997, J NEUROPHYSIOL, V78, P511 BRUNSOBECHTOLD JK, 1981, J COMP NEUROL, V197, P705, DOI 10.1002/cne.901970410 Caicedo A, 1999, EUR J NEUROSCI, V11, P51, DOI 10.1046/j.1460-9568.1999.00410.x Campos ML, 2001, NEUROSCIENCE, V102, P625, DOI 10.1016/S0306-4522(00)00525-X Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CANT NB, 1998, DEV AUDITORY SYSTEM, P315 Chery N, 1999, J NEUROSCI, V19, P7342 COVEY E, 1991, J NEUROSCI, V11, P3455 COVEY E, 1986, J NEUROSCI, V6, P2926 Cull-Candy S, 2001, CURR OPIN NEUROBIOL, V11, P327, DOI 10.1016/S0959-4388(00)00215-4 FRIAUF E, 1988, EXP BRAIN RES, V73, P263 Friauf E, 1997, J COMP NEUROL, V385, P117, DOI 10.1002/(SICI)1096-9861(19970818)385:1<117::AID-CNE7>3.0.CO;2-5 GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 GLENDENNING KK, 1988, J COMP NEUROL, V275, P288, DOI 10.1002/cne.902750210 GLENDENNING KK, 1981, J COMP NEUROL, V197, P673, DOI 10.1002/cne.901970409 GonzalezHernandez T, 1996, J COMP NEUROL, V372, P309, DOI 10.1002/(SICI)1096-9861(19960819)372:2<309::AID-CNE11>3.0.CO;2-E GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HELFERT RH, 1992, J COMP NEUROL, V323, P305, DOI 10.1002/cne.903230302 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 Helfert RH, 1997, CENTRAL AUDITORY SYS, P193 HUFFMAN RF, 1995, J COMP NEUROL, V357, P532, DOI 10.1002/cne.903570405 Huffman RF, 1998, HEARING RES, V126, P161, DOI 10.1016/S0378-5955(98)00165-8 Huffman RF, 1998, HEARING RES, V126, P181, DOI 10.1016/S0378-5955(98)00166-X ISAACSON JS, 1995, J NEUROPHYSIOL, V73, P964 Jonas P, 1998, SCIENCE, V281, P419, DOI 10.1126/science.281.5375.419 Joshi I, 2002, J PHYSIOL-LONDON, V540, P861 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G Kotak VC, 1998, J NEUROSCI, V18, P4646 KUDO M, 1981, BRAIN RES, V221, P57, DOI 10.1016/0006-8993(81)91063-5 Ma CL, 2002, HEARING RES, V168, P25, DOI 10.1016/S0378-5955(02)00370-2 MCBAIN CJ, 1994, PHYSIOL REV, V74, P723 MOORE DR, 1988, J COMP NEUROL, V269, P342, DOI 10.1002/cne.902690303 MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663 Nabekura J, 2004, NAT NEUROSCI, V7, P17, DOI 10.1038/nn1170 NORDEEN KW, 1983, J COMP NEUROL, V214, P131, DOI 10.1002/cne.902140203 NOWAK L, 1984, NATURE, V307, P462, DOI 10.1038/307462a0 O'Brien JA, 1999, J NEUROPHYSIOL, V82, P1638 Oertel D, 2002, INTEGRATIVE FUNCTION, P207 PETRALIA RS, 1992, J COMP NEUROL, V318, P329, DOI 10.1002/cne.903180309 Piechotta K, 2001, J COMP NEUROL, V438, P336 Riquelme R, 2001, J COMP NEUROL, V432, P409, DOI 10.1002/cne.1111 SAINTMARIE RL, 1990, BRAIN RES, V524, P244, DOI 10.1016/0006-8993(90)90698-B SaintMarie RL, 1997, J COMP NEUROL, V389, P264 SANES DH, 1998, DEV AUDITORY SYSTEM, P217 Sanes D.H., 2000, DEV NERVOUS SYSTEM Sato K, 2000, HEARING RES, V147, P137, DOI 10.1016/S0378-5955(00)00127-1 Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 Schwartz I. R., 1992, MAMMALIAN AUDITORY P, P117 Sivaramakrishnan S, 2001, J NEUROSCI, V21, P2861 SMITH PH, 1993, J COMP NEUROL, V331, P245, DOI 10.1002/cne.903310208 SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349 SMITH PH, 1991, J COMP NEUROL, V304, P387, DOI 10.1002/cne.903040305 SPANGLER KM, 1985, J COMP NEUROL, V238, P249, DOI 10.1002/cne.902380302 SUNEJA SK, 1995, J NEUROCHEM, V64, P161 SUNEJA SK, 1995, J NEUROCHEM, V64, P147 THOMPSON AM, 1993, J COMP NEUROL, V335, P402, DOI 10.1002/cne.903350309 TSUMOTO T, 1987, NATURE, V327, P513, DOI 10.1038/327513a0 VATER M, 1990, J COMP NEUROL, V292, P373, DOI 10.1002/cne.902920305 VATER M, 1992, J COMP NEUROL, V325, P183, DOI 10.1002/cne.903250205 Vater M, 1997, CELL TISSUE RES, V289, P223, DOI 10.1007/s004410050869 Warr WB, 1996, HEARING RES, V93, P83, DOI 10.1016/0378-5955(95)00198-0 WHITLEY JM, 1984, J COMP NEUROL, V229, P257, DOI 10.1002/cne.902290210 WU SH, 1991, J NEUROPHYSIOL, V65, P230 Wu SH, 1999, J NEUROPHYSIOL, V81, P2862 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X Zhang DX, 1998, HEARING RES, V117, P1, DOI 10.1016/S0378-5955(97)00202-5 Zhao M, 2001, J COMP NEUROL, V433, P255, DOI 10.1002/cne.1139 ZOOK JM, 1985, J COMP NEUROL, V237, P307, DOI 10.1002/cne.902370303 NR 76 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 159 EP 171 DI 10.1016/j.heares.2004.11.021 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300018 PM 15855041 ER PT J AU Su, MC Lee, SY Tan, CT Su, CC Li, SY Lin, RH Hung, CC Lin, MJ AF Su, MC Lee, SY Tan, CT Su, CC Li, SY Lin, RH Hung, CC Lin, MJ TI Taicatoxin inhibits the calcium-dependent slow motility of mammalian outer hair cells SO HEARING RESEARCH LA English DT Article DE taicatoxin; outer hair cell; motility; calcium channels ID GUINEA-PIG COCHLEA; CA2+ CHANNELS; MECHANICAL RESPONSES; ACETYLCHOLINE; AMPLIFIER; SUBUNIT; RELEASE; PROTEIN AB The effects of taicatoxin on the slow motility of isolated outer hair cells of guinea pig were studied in the experiments. Pretreatment with taicatoxin (0. 19 mu M) was able to prevent both the cell shortening induced by high K+ (50mM), and the cell elongation induced by ionomycin (10 mu M). These effects of taicatoxin can be mimicked by pretreatment of cells with Ca2+-free medium on the slow motility in response to ionomycin or high K+. Pretreatment with neither calcium channel blockers such as nifedipine (L-type blocker), omega-conotoxin GVIA (N-type blocker), and omega-agatoxin IVA (P-type blocker); nor potassium channel blockers, such as tetraethylammonium chloride (TEA) and 3,4-diaminopyridine (3,4-DAP) can antagonize the cell shortening effect induced by high K+ and cell elongation induced by ionomycin. The calcium-imaging experiment indicated that taicatoxin, but not nifedipine, did prevent an increase of intracellular Ca2+ level significantly induced by high K+. These results demonstrate that the effect of taicatoxin was to block the calcium entry through calcium channels of cell membrane, without relative to its properties of potassium channel blockers. We conclude that taicatoxin-sensitive-calcium channels at least impart, play a significant role in the slow motility of outer hair cell. (c) 2004 Elsevier B.V. All rights reserved. C1 Chung Shan Med Univ, Dept Life Sci, Taichung 402, Taiwan. Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. RP Lin, MJ (reprint author), Chung Shan Med Univ, Dept Life Sci, 110,Sec 1,Chien Kuo N Rd, Taichung 402, Taiwan. EM mjl@csmu.edu.tw CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Coling DE, 1998, HEARING RES, V115, P175, DOI 10.1016/S0378-5955(97)00194-9 Dallos P, 1997, J NEUROSCI, V17, P2212 Doorty KB, 1997, J BIOL CHEM, V272, P19925, DOI 10.1074/jbc.272.32.19925 DULON D, 1992, AM J OTOL, V13, P108 DULON D, 1990, J NEUROSCI, V10, P1388 Engel J, 2002, ADV OTO-RHINO-LARYNG, V59, P35 FROLENKOV G, 2003, CELL CALCIUM, V345, P1 Frolenkov GI, 2000, J NEUROSCI, V20, P5940 Kalinec F, 2000, J BIOL CHEM, V275, P28000 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 Lin MJ, 2003, HEARING RES, V178, P52, DOI 10.1016/S0378-5955(03)00030-3 Lopez I, 1999, NEUROSCIENCE, V92, P773, DOI 10.1016/S0306-4522(99)00005-6 Mammano F, 1999, J NEUROSCI, V19, P6918 NAKAGAWA T, 1991, NEUROSCI LETT, V125, P81, DOI 10.1016/0304-3940(91)90136-H Oshima T, 1996, AM J PHYSIOL-CELL PH, V271, pC944 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 POSSANI LD, 1992, TOXICON, V30, P1343, DOI 10.1016/0041-0101(92)90511-3 PUSCHNER B, 1997, HEARING RES, V110, P241 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SCHNEE ME, 2003, J PHYSL, V15, P697 Tan CT, 2001, HEARING RES, V161, P72, DOI 10.1016/S0378-5955(01)00359-8 VanDenAbbeele T, 1996, J PHYSIOL-LONDON, V494, P77 WILLIAMS ME, 1992, NEURON, V8, P71, DOI 10.1016/0896-6273(92)90109-Q Yamoah EN, 1998, J NEUROSCI, V18, P610 ZENNER HP, 1985, HEARING RES, V18, P127, DOI 10.1016/0378-5955(85)90004-8 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 31 TC 0 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 172 EP 179 DI 10.1016/j.heares.2004.12.003 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300019 PM 15855042 ER PT J AU Rask-Andersen, H Bostrom, M Gerdin, B Kinnefors, A Nyberg, G Engstrand, T Miller, JM Lindholm, D AF Rask-Andersen, H Bostrom, M Gerdin, B Kinnefors, A Nyberg, G Engstrand, T Miller, JM Lindholm, D TI Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion SO HEARING RESEARCH LA English DT Article DE spiral ganglion; in vitro culture; regeneration; stem cells; human ID EAR SENSORY NEURONS; STEM-CELLS; INNER-EAR; HAIR-CELLS; NEUROTROPHIC FACTOR; GROWTH-FACTOR; COCHLEAR IMPLANTATION; DOPAMINERGIC-NEURONS; INNERVATION; SYSTEM AB Time lapse video recordings of cultured adult human and guinea pig spiral ganglion (hSG and gpSG) show that mitogen responsive progenitor/stem cells develop in the form of spheres that proliferate and differentiate into mature neurons and glia cells. Neurospheres, cultured with EGF and bFGF showed expression of nestin and incorporation of 5 '-Bromo-2-deoxyuridine (BrdU). Newly formed BrdU labelled cells were positive for beta-tubulin, and also for GFAP demonstrating that neuronal cells were derived from a dividing population of progenitor cells. Dissociated spheres cultured either with glia cell line-derived neurotrophic factor (GDNF) or brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3), induced differentiation of the progenitor cells. Video microscopy showed that neurons develop from subcultured spheres maintained for up to four weeks. Neurons showed fasciculation and migration with a speed of 10-30 mu m/h, and some cells had up to 6 mm long neurites coexpressing TrkB and TrkC receptors. Precise dissection suggests that the neurons formed are cochlea-specific. The results suggest that the mammalian auditory nerve has the capability for self-renewal and replacement. Transplantation of progenitor cells together with established means to induce neural differentiation and fiber growth may facilitate strategies for better repair and treatment of auditory neuronal damage. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Uppsala Hosp, Dept Otosurg, S-75185 Uppsala, Sweden. Univ Uppsala Hosp, Dept Plast Surg, Uppsala, Sweden. Univ Uppsala Hosp, Dept Neurosurg, Uppsala, Sweden. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. BMC Uppsala Univ, Neurobiol Unit, Dept Neurosci, Uppsala, Sweden. RP Rask-Andersen, H (reprint author), Univ Uppsala Hosp, Dept Otosurg, S-75185 Uppsala, Sweden. EM helge.rask-andersen@akademiska.se RI Lindholm, Dan/B-3777-2014 CR ALTMAN J, 1965, J COMP NEUROL, V124, P319, DOI 10.1002/cne.901240303 Anderson DJ, 2001, NEURON, V30, P19, DOI 10.1016/S0896-6273(01)00260-4 BECK KD, 1995, NATURE, V373, P339, DOI 10.1038/373339a0 Bergstrom L, 1975, Can J Otolaryngol Suppl, V2, P1 Bjorklund A, 1997, NEUROBIOL DIS, V4, P186, DOI 10.1006/nbdi.1997.0151 Brewer GJ, 1999, EXP NEUROL, V159, P237, DOI 10.1006/exnr.1999.7123 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 Cotanche Douglas A., 1994, Current Opinion in Neurobiology, V4, P509, DOI 10.1016/0959-4388(94)90051-5 DAMICOMARTEL A, 1985, AM J ANAT, V166, P173 DAVIS AC, 1991, ACTA OTOLARYNGOL S, V476, P12 Engstrom CM, 2002, J NEUROSCI METH, V117, P111, DOI 10.1016/S0165-0270(02)00074-2 Eriksson C, 2003, EXP NEUROL, V184, P615, DOI 10.1016/S0014-4886(03)00271-1 ERNFORS P, 1992, EUR J NEUROSCI, V4, P1140, DOI 10.1111/j.1460-9568.1992.tb00141.x Farinas I, 2001, J NEUROSCI, V21, P6170 Fritzsch B, 2004, PROG BRAIN RES, V146, P265, DOI 10.1016/S0079-6123(03)46017-2 GILL SS, 2003, NAT MED, V9, P89 Gritti A, 1996, J NEUROSCI, V16, P1091 Hansen MR, 2001, HEARING RES, V161, P87, DOI 10.1016/S0378-5955(01)00360-4 Huang EJ, 2001, DEVELOPMENT, V128, P2421 IGUCHI F, 2003, NEUROREPORT, V20, P77 Incesulu A, 1998, ANN OTO RHINOL LARYN, V107, P906 Jeltsch Helene, 2003, Behavioural Brain Research, V143, P177 Karis A, 2001, J COMP NEUROL, V429, P615, DOI 10.1002/1096-9861(20010122)429:4<615::AID-CNE8>3.0.CO;2-F KAWAMOTO K, 2003, J NEUROSCI, V23, P4000 KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563 Kim WY, 2001, DEVELOPMENT, V128, P417 Li HW, 2003, NAT MED, V9, P1293, DOI 10.1038/nm925 LIN LFH, 1993, SCIENCE, V260, P1130, DOI 10.1126/science.8493557 Ma QF, 2000, JARO, V1, P129, DOI 10.1007/sl01620010017 Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 MCKAY R, 1988, PROG BRAIN RES, V78, P647, DOI 10.1016/S0079-6123(08)60344-1 MORSHEAD CM, 1994, NEURON, V13, P1071, DOI 10.1016/0896-6273(94)90046-9 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 REYNOLDS BA, 1992, SCIENCE, V255, P1707, DOI 10.1126/science.1553558 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Schuknecht HF, 1993, PATHOLOGY EAR Shou JY, 2003, MOL CELL NEUROSCI, V23, P169, DOI 10.1016/S1044-7431(03)00066-6 SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 Stover T, 2001, HEARING RES, V155, P143, DOI 10.1016/S0378-5955(01)00227-1 Sugaya K, 2003, INT REV CYTOL, V228, P1, DOI 10.1016/S0074-7696(03)28001-3 TESSAROLLO L, 2004, J NEUROSCI, V24, P2284 Tylstedt S, 2001, J NEUROCYTOL, V30, P465, DOI 10.1023/A:1015628831641 VESCOVI AL, 1993, NEURON, V11, P951, DOI 10.1016/0896-6273(93)90124-A WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Weiss S, 1996, J NEUROSCI, V16, P7599 Xiang MQ, 2003, BMC NEUROSCI, V4, DOI 10.1186/1471-2202-4-2 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 NR 48 TC 70 Z9 74 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 180 EP 191 DI 10.1016/j.heares.2004.12.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300020 PM 15855043 ER PT J AU Ohashi, T Ochi, K Nishino, H Kenmochi, M Yoshida, K AF Ohashi, T Ochi, K Nishino, H Kenmochi, M Yoshida, K TI Recovery of human compound action potential using a paired-click stimulation paradigm SO HEARING RESEARCH LA English DT Article DE human compound action potential (CAP); synaptic function; CAP recovery; adaptation; paired click stimulation ID AUDITORY-NERVE FIBERS; UNANESTHETIZED DECEREBRATE CAT; SHORT-TERM ADAPTATION; NEURAL TRANSDUCTION; SIMULATED ECHOES; RESPONSES; MASKING; COCHLEAR; NEURONS; RECEPTOR AB The recovery process from adaptation of the compound action potential (CAP) was studied using an equilevel paired click stimulation paradigm in humans with normal hearing. The CAP amplitude to the second click of paired clicks was normalized to the amplitude to the first click. The second-click CAP amplitude recovered as a function of interclick interval (ICI) between the first and the second click of a pair. A regression line fitted to the recovered amplitude data demonstrated the logarithmic function of the ICI. Full recovery times changed from 118 to 278 ms with increasing click intensity. The regression lines for higher click intensities exhibited two different slopes in two ICI ranges: from 3 to 100 and 120 to 300 ms. We suppose that the CAP recovery for ICI <100 ms is attributable to both the relative refractoriness of auditory nerve and the short-term adaptation mechanisms, while, for ICI >100 ms chiefly to the short-term adaptation mechanisms. The recovery process of the second-click CAP slowed with increasing intensity, which is a similar result to that obtained in the animal experiments by Parham et al. The input-output (I-O) curve of the second-click CAP amplitudes exhibited a different slopes above and below 60 dB normal hearing level (nHL). We assume that the mechanisms underlying this characteristic curve pattern differ from those for the I-O curve of the CAP in response to single-click stimuli. We expect that investigating the CAP recovery in pathological ears will provide clinically useful information on cochlear synaptic function. 2005 Elsevier B.V. All rights reserved. C1 St Marianna Univ, Red Cross Hosp Hadano City, Dept Otorhinolaryngol, Hadano, Kanagawa, Japan. St Marianna Univ, Sch Med, Dept Prevent Med, Miyamae Ku, Kawasaki, Kanagawa, Japan. RP Ohashi, T (reprint author), 949-10 Sasagi, Tsukuba, Ibaraki, Japan. EM toliashi@vc-net.jp CR ABBAS PJ, 1981, J ACOUST SOC AM, V69, P492, DOI 10.1121/1.385477 CHIMENTO TC, 1990, J ACOUST SOC AM, V88, P857, DOI 10.1121/1.399735 CHIMENTO TC, 1991, J ACOUST SOC AM, V90, P263, DOI 10.1121/1.401296 COATS AC, 1964, J NEUROPHYSIOL, V27, P988 COATS AC, 1972, J ACOUST SOC AM, V52, P1607, DOI 10.1121/1.1913293 Duan ML, 2001, ACTA OTO-LARYNGOL, V121, P21 EGGERMON.JJ, 1973, AUDIOLOGY, V12, P221 EGGERMON.JJ, 1974, AUDIOLOGY, V13, P1 FINCK A, 1962, J AUD RES, V2, P1 GAUMOND RP, 1982, J NEUROPHYSIOL, V48, P856 GIBSON WPR, 1978, ESSENTIALS CLIN ELEC, P59 GRANADE GL, 1995, HEARING RES, V87, P55 HESS CW, 1987, J NEUROL, V234, P298, DOI 10.1007/BF00314284 Kiang NYS, 1976, ELECTROCOCHLEOGRAPHY, P95 KRAMER SJ, 1982, J ACOUST SOC AM, V72, P795, DOI 10.1121/1.388186 LUTKENHONER B, 1980, HEARING RES, V2, P565, DOI 10.1016/0378-5955(80)90094-5 MEDDIS R, 1988, J ACOUST SOC AM, V83, P1056, DOI 10.1121/1.396050 MEDDIS R, 1986, J ACOUST SOC AM, V79, P702, DOI 10.1121/1.393460 MURNANE OD, 1998, HEARING RES, P124 OHASHI T, 1996, ECOG OAE INTRAOPERAT, P79 Parham K, 1996, J NEUROPHYSIOL, V76, P17 Parham K, 1998, HEARING RES, V125, P131, DOI 10.1016/S0378-5955(98)00140-3 PFEIFFER RR, 1972, J ACOUST SOC AM, V52, P1669, DOI 10.1121/1.1913301 REKLIN EM, 1991, HEARING RES, V55, P215 RELKIN EM, 1995, HEARING RES, V83, P183, DOI 10.1016/0378-5955(95)00004-N RELKIN EM, 1987, J ACOUST SOC AM, V82, P1679, DOI 10.1121/1.395159 SIEGEL JH, 1987, HEARING RES, V29, P169, DOI 10.1016/0378-5955(87)90165-1 SMITH RL, 1982, BIOL CYBERN, V44, P107, DOI 10.1007/BF00317970 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 SORENSEN H, 1959, Acta Otolaryngol, V50, P438, DOI 10.3109/00016485909129217 Spoor A., 1976, ELECTROCOCHLEOGRAPHY, P183 THORNTON ARD, 1975, ELECTROEN CLIN NEURO, V39, P399, DOI 10.1016/0013-4694(75)90103-0 Walton J, 1999, HEARING RES, V127, P86, DOI 10.1016/S0378-5955(98)00175-0 Westerman LA, 1984, HEARING RES, V15, P260 YOSHIE N, 1971, REV LARYNGOL S, P673 YOSHIE N, 1968, LARYNGOSCOPE, V78, P198, DOI 10.1288/00005537-196802000-00002 NR 36 TC 13 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 192 EP 200 DI 10.1016/j.heares.2004.12.001 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300021 PM 15855044 ER PT J AU Zhou, XM Jen, PHS AF Zhou, XM Jen, PHS TI Corticofugal modulation of directional sensitivity in the midbrain of the big brown bat, Eptesicus fuscus SO HEARING RESEARCH LA English DT Article DE auditory cortex; bat; corticofugal modulation; directional sensitivity; frequency; inferior colliculus inhibition ID INFERIOR COLLICULAR NEURONS; PRIMARY AUDITORY-CORTEX; SOUND PRESSURE TRANSFORMATION; PATTERNED PULSE TRAINS; SPACE REPRESENTATION; HOUSE MOUSE; GUINEA-PIG; FM BAT; FREQUENCY REPRESENTATION; DESCENDING PROJECTIONS AB In our recent Study of corticofugal modulation of collicular amplitude sensitivity of the big brown bat, Eptesicus fuscus, we suggested that the corticofugal modulation is based upon the best frequency (BF) differences and the relative amplitude sensitivity difference between collicular (IC) and cortical (AC) neurons but not the absolute amplitude sensitivity of IC and AC neurons. To show that corticofugal modulation is systematic and multiparametric, we studied corticofugal modulation of directional sensitivity in 89 corticofugally inhibited IC neurons in the same bat species under free field stimulation conditions. A neuron's directional sensitivity was expressed with the azimuthal range (AR) at 50%, below the maximum of each directional sensitivity Curve and the best azimuth (BAZ) at which the neuron discharged maximally. Cortical electrical stimulation did not affect the directional sensitivity of 40 (45%) neurons with BFIC-Ac differences of 7.3 +/- 4.4 kHz but sharpened the directional sensitivity of other 49 (55%) neurons with BFIC-Ac differences of 2.3 +/- 1.8 kHz. Corticofugal modulation sharpened directional sensitivity curves of IC neurons by decreasing the AR and shifting collicular BAZ toward cortical BAZ. The decrease in AR and the shift in BAZ increased significantly with AR(IC-Ac) and BAZ(IC-Ac) differences but not with absolute AR and BAZ of IC and AC neurons or BFIC-Ac differences. Corticofual modulation also shifted collicular BF toward cortical BF. The shift in BF increased significantly with BFIC-Ac differences but not with the BF of IC and AC neurons or BAZ shift. Consonant with out- previous study, these data indicate that corticofugal modulation of collicular directional sensitivity is based on topographic projections between the IC and the AC and the difference in directional sensitivity but not the absolute directional sensitivity of IC or AC neurons. (c) 2005 Elsevier B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. Univ Missouri, Interdisciplinary Neurosci Program, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, 208 Lefevre Hall, Columbia, MO 65211 USA. EM jetip@missouri.edu CR ANDERSEN RA, 1980, J COMP NEUROL, V191, P479, DOI 10.1002/cne.901910310 Cain D, 1999, CHINESE J PHYSIOL, V42, P1 CHEN QC, 1995, J EXP BIOL, V198, P2007 DEAR SP, 1993, J NEUROPHYSIOL, V70, P1988 Druga R, 1997, PHYSIOL RES, V46, P215 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Gao E, 1998, P NATL ACAD SCI USA, V95, P12663, DOI 10.1073/pnas.95.21.12663 Gao EQ, 2000, P NATL ACAD SCI USA, V97, P8081, DOI 10.1073/pnas.97.14.8081 Gooler D.M., 1988, PHYSL CONTROL MAMMAL, P153 GOOLER DM, 1993, J NEUROPHYSIOL, V69, P1018 Gooler DM, 1996, J NEUROPHYSIOL, V76, P2580 GRINNELL AD, 1963, J PHYSIOL-LONDON, V167, P97 GRINNELL AD, 1965, J PHYSIOL-LONDON, V181, P830 Grothe B, 1996, J COMP PHYSIOL A, V179, P89 He JF, 1997, J NEUROPHYSIOL, V77, P896 He JF, 2003, J NEUROPHYSIOL, V89, P367, DOI 10.1152/jn.00593.2002 He JF, 2002, J NEUROPHYSIOL, V88, P1040, DOI 10.1152/jn00014.2002 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794 Jen PHS, 1998, J COMP PHYSIOL A, V183, P683, DOI 10.1007/s003590050291 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 Jen P H, 1997, Acta Otolaryngol Suppl, V532, P61 Jen PHS, 2003, HEARING RES, V184, P91, DOI 10.1016/S0378-5955(03)00237-5 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Jen P H, 1993, Chin J Physiol, V36, P7 JEN PHS, 2003, ADV STUDY ECHOLOCATI, P196 Jen PHS, 2002, HEARING RES, V168, P196, DOI 10.1016/S0378-5955(02)00358-1 Jen PHS, 2001, EXP BRAIN RES, V137, P292 JEN PHS, 1984, BRAIN RES, V301, P157 JEN PHS, 1999, BRAIN RES, V842, P184 JURGENS U, 1983, EXP NEUROL, V80, P395, DOI 10.1016/0014-4886(83)90291-1 KELLY JP, 1981, BRAIN RES, V212, P1, DOI 10.1016/0006-8993(81)90027-5 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 Lu Y, 2003, HEARING RES, V177, P100, DOI 10.1016/S0378-5955(03)00024-8 Ma XF, 2001, P NATL ACAD SCI USA, V98, P14060, DOI 10.1073/pnas.241517098 Ma XF, 2001, J NEUROPHYSIOL, V85, P1078 MAKOUS JC, 1986, HEARING RES, V24, P73, DOI 10.1016/0378-5955(86)90006-7 Malmierca MS, 1996, HEARING RES, V93, P167, DOI 10.1016/0378-5955(95)00227-8 MASTERS WM, 1985, SCIENCE, V228, P1331, DOI 10.1126/science.4001947 MULLERPREUSS P, 1980, BRAIN RES, V202, P307, DOI 10.1016/0006-8993(80)90143-2 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POON PWF, 1990, EXP BRAIN RES, V79, P83 Popelar J, 2003, PHYSIOL RES, V52, P615 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SCHLEGEL P, 1977, J COMP PHYSIOL, V118, P327 SCHLEGEL PA, 1988, BRAIN RES, V456, P127, DOI 10.1016/0006-8993(88)90354-X SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 Shen JX, 1997, J COMP PHYSIOL A, V181, P591, DOI 10.1007/s003590050142 SHIMOZAWA T, 1984, BRAIN RES, V311, P289 STIEBLER I, 1985, J COMP NEUROL, V238, P65, DOI 10.1002/cne.902380106 STIEBLER I, 1986, NEUROSCI LETT, V65, P336, DOI 10.1016/0304-3940(86)90285-5 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 Suga N, 2002, NEURON, V36, P9, DOI 10.1016/S0896-6273(02)00933-9 Suga N., 1997, ENCY ACOUSTICS, P1409 Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55 Suga N, 1997, Trends Cogn Sci, V1, P13, DOI 10.1016/S1364-6613(97)01002-4 SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2 Sun XD, 1996, NEUROSCI LETT, V212, P131, DOI 10.1016/0304-3940(96)12788-9 SUN XD, 1987, HEARING RES, V27, P207 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X VILLA AEP, 1991, EXP BRAIN RES, V86, P506 WENSTRUP JJ, 1988, J NEUROPHYSIOL, V60, P1384 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2002, HEARING RES, V168, P181, DOI 10.1016/S0378-5955(02)00489-6 Winer JA, 2001, J COMP NEUROL, V430, P27 Wu M, 1991, Chin J Physiol, V34, P145 Wu MI, 1996, J COMP PHYSIOL A, V179, P385 XU JH, 1994, J ACOUST SOC AM, V95, P2160, DOI 10.1121/1.408677 Yan J, 1996, SCIENCE, V273, P1100, DOI 10.1126/science.273.5278.1100 Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033 Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 Zhang H, 1999, J COMP PHYSIOL A, V184, P85, DOI 10.1007/s003590050308 Zhang JP, 2000, J COMP PHYSIOL A, V186, P913, DOI 10.1007/s003590000142 Zhang YF, 1997, NATURE, V387, P900 Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489 Zhang YF, 2000, J NEUROPHYSIOL, V84, P325 Zhou XM, 2004, BRAIN RES, V1019, P281, DOI 10.1016/j.brainres.2004.06.004 Zhou XM, 2002, J COMP PHYSIOL A, V188, P815, DOI 10.1007/s00359-002-0367-x Zhou XM, 2000, J COMP PHYSIOL A, V186, P389, DOI 10.1007/s003590050438 Zhou XM, 2000, BRAIN RES, V881, P62, DOI 10.1016/S0006-8993(00)02805-5 Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083 ZOOK JM, 1985, J COMP NEUROL, V231, P530, DOI 10.1002/cne.902310410 NR 90 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAY PY 2005 VL 203 IS 1-2 BP 201 EP 215 DI 10.1016/j.heares.2004.12.008 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 927BB UT WOS:000229166300022 PM 15855045 ER PT J AU Kubli, LR Leek, MR Dreisbach, LE AF Kubli, LR Leek, MR Dreisbach, LE TI Acoustic reflexes to Schroeder-phase harmonic complexes in normal-hearing and hearing-impaired individuals SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 23rd Midwinter Research Meeting of the Association-for-Research-in-Otolaryngology CY FEB 20-24, 2000 CL ST PETERSBURG BEACH, FL SP Assoc Res Otolaryngol DE acoustic reflex; cochlear excitation; harmonic complexes; Schroeder phase ID STAPEDIUS REFLEX; INNER-EAR; DISPERSION; STIMULI; MASKING; LISTENERS; RESPONSES; SIGNALS; GROWTH; MODEL AB Harmonic complexes generated with positive or negative Schroeder-phases may result in differences in cochlear excitation, even though their long-term spectra and amplitudes are equal. As a measure of possible differences in cochlear excitation resulting from these harmonic complexes, thresholds and growth of the acoustic reflex were assessed in normal-hearing and hearing-impaired subjects. Harmonic complexes with fundamental frequencies of 50, 100, and 200 Hz were constructed with positive and negative-Schroeder phases. In normal-hearing subjects, acoustic reflex thresholds for the 50- and 100-Hz fundamental waveforms were typically lower for negative Schroeder-phase complexes than for positive Schroeder phase stimuli. At the highest fundamental frequency of 200 Hz. there were no significant threshold differences due to phase. Hearing-impaired subjects showed a similar pattern for thresholds between the two phase selections, but with smaller differences than those observed in normal-hearing subjects. At levels above reflex threshold, the magnitude of the acoustic reflex was greater for the negative-phase than the positive-phase stimuli for the lowest fundamental frequency, but no significant differences were observed at fundamental frequencies of 100 and 200 Hz. These results are consistent with generally greater cochlear excitation in response to negative than to positive Schroeder-phase stimuli when the fundamental frequency is sufficiently low. Increased excitation may reflect a synchronization of response across a wide band of frequencies in the cochlea when the rate of frequency sweep within periods of these harmonic complexes is appropriately matched to timing characteristics of the traveling wave. (c) 2004 Elsevier B.V. All rights reserved. C1 Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, Washington, DC 20307 USA. RP Kubli, LR (reprint author), Walter Reed Army Med Ctr, Army Audiol & Speech Ctr, 6900 Georgia Ave NW, Washington, DC 20307 USA. EM lina.kubli@na.amedd.army.mil CR American National Standards Institute (ANSI), 1996, S361996 ANSI American National Standards Institute (ANSI), 1987, S3391987 ANSI BORG E, 1990, BRAIN RES, V506, P79, DOI 10.1016/0006-8993(90)91201-Q BORG E, 1973, BRAIN RES, V49, P101, DOI 10.1016/0006-8993(73)90404-6 BORG E, 1977, AUDIOLOGY, V16, P316 CACACE AT, 1985, J ACOUST SOC AM, V78, P1568, DOI 10.1121/1.392793 DALLOS PJ, 1964, J ACOUST SOC AM, V36, P2175, DOI 10.1121/1.1919340 Dau T, 2000, J ACOUST SOC AM, V107, P1530, DOI 10.1121/1.428438 DEBOER E, 1997, J ACOUST SOC AM, V101, P3503 FLOTTORP G, 1971, J ACOUST SOC AM, V49, P457, DOI 10.1121/1.1912373 Kawase T, 1997, HEARING RES, V108, P37, DOI 10.1016/S0378-5955(97)00039-7 KOHLRAUSCH A, 1995, J ACOUST SOC AM, V97, P1817, DOI 10.1121/1.413097 LEEK MR, 1993, J ACOUST SOC AM, V94, P2074, DOI 10.1121/1.407480 MOLLER AR, 2000, HEARING PHYSL PATHOP Moore B.C.J., 1995, PERCEPTUAL CONSEQUEN PATTERSON RD, 1987, J ACOUST SOC AM, V82, P1560, DOI 10.1121/1.395146 Recio A, 2000, J ACOUST SOC AM, V108, P2281, DOI 10.1121/1.1318898 Recio A, 2001, J ACOUST SOC AM, V110, P2024, DOI 10.1121/1.1397356 SCHROEDE.MR, 1970, IEEE T INFORM THEORY, V16, P85, DOI 10.1109/TIT.1970.1054411 SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 SILMAN S, 1982, AUDIOLOGY, V7, P125 SILMAN S, 1987, Seminars in Hearing, V8, P379, DOI 10.1055/s-0028-1091385 SILMAN S, 1978, J ACOUST SOC AM, V64, P1406, DOI 10.1121/1.382107 SMITH BK, 1986, J ACOUST SOC AM, V80, P1631, DOI 10.1121/1.394327 Summers V, 1998, HEARING RES, V118, P139, DOI 10.1016/S0378-5955(98)00030-6 WILSON RH, 1978, J ACOUST SOC AM, V63, P147, DOI 10.1121/1.381706 NR 26 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 1 EP 12 DI 10.1016/j.heares.2004.08.012 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300001 PM 15811693 ER PT J AU Zou, J Pyykko, M Sutinen, P Toppila, E AF Zou, J Pyykko, M Sutinen, P Toppila, E TI Vibration induced hearing loss in guinea pig cochlea: expression of TNF-alpha and VEGF SO HEARING RESEARCH LA English DT Article DE hearing loss; cytokine; shear stress; spiral ganglion cell; epithelial cell; organ of corti ID FLUID SHEAR-STRESS; ENDOTHELIAL GROWTH-FACTOR; GENERATED NOISE-LEVELS; EAR SURGERY; RESPONSE ELEMENT; CHAIN PROMOTER; DRILL; CELLS; APOPTOSIS; BONE AB Transcranial vibration was applied for seven animals at a frequency of 250 Hz for 15 min, and five animals Were used as normal controls to investigate cellular and Molecular mechanism linked to vibration-induced hearing loss in animal model. Compound action potential (CAP) thresholds were measured by round window niche electrode. The expression of tumour necrosis factor alpha (TNF-alpha) and its receptors (TNF R1, TNF R2), vascular endothelium growth factor (VEGF) and its receptors (VEGF R1. VEGF R2) were analysed by immunohistochemistry. Transcranial vibration caused expression of TNF-alpha, TNF R1 and TNF R2 in the cochlea and the expression of TNF R2 was stronger than that of TNF R1. Vibration also induced VEGF and VEGF R2 expression in the cochlea. The average immediate hearing loss was 62 dB and after three days still 48 dB. It is concluded that transcranial vibration as during temporal bone drilling produces cochlear shear stress that is connected With Up-regulation of TNF-alpha. and its receptors. Also VEGF and VEGF R2 are Up-regulated. These responses may be linked to both the damage and repair process of the cochlea. (c) 2004 Elsevier B.V. All rights reserved. C1 Tampere Univ Hosp, Dept Otolaryngol, FIN-33521 Tampere, Finland. Karolinska Hosp, Dept Otolaryngol, Ctr Hearing & Commun Res, S-10401 Stockholm, Sweden. No Karelian Cent Hosp, Dept Phys Med & Rehabil, Joensuu, Finland. Inst Occupat Hlth, Dept Phys, Helsinki, Finland. Shanghai Med Univ 2, Xinhua Hosp, Dept Otolaryngol Head & Neck Surg, Shanghai 200092, Peoples R China. RP Pyykko, M (reprint author), Tampere Univ Hosp, Dept Otolaryngol, FIN-33521 Tampere, Finland. EM jing.zou@uta.fi; ilmari.pyykko@pshp.fi CR ABUMIYA T, 2001, ARTERIOSCL THROM VAS, V22, P907 Ashkenazi A, 1998, SCIENCE, V281, P1305, DOI 10.1126/science.281.5381.1305 Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 Biswas DK, 2003, CANCER RES, V63, P290 Chintalgattu V, 2003, J MOL CELL CARDIOL, V35, P277, DOI 10.1016/S0022-2828(03)00006-3 Conklin BS, 2002, J SURG RES, V102, P13, DOI 10.1006/jsre.2001.6295 DOMENECH J, 1989, ARCH OTO-RHINO-LARYN, V246, P280, DOI 10.1007/BF00463575 Fridberger A, 2002, J NEUROSCI, V22, P9850 Gan LM, 2000, BIOCHEM BIOPH RES CO, V272, P490, DOI 10.1006/bbrc.2000.2663 Gjuric M, 1997, ACTA OTO-LARYNGOL, V117, P497, DOI 10.3109/00016489709113427 Goeddel D. V., 1999, CHEST, V116, P69 HOLMQUIST J, 1979, ACTA OTO-LARYNGOL, V87, P458, DOI 10.3109/00016487909126451 Khachigian LM, 1997, ARTERIOSCL THROM VAS, V17, P2280 KHACHIGIAN LM, 1995, J CLIN INVEST, V96, P1169, DOI 10.1172/JCI118106 KYLEN P, 1976, ACTA OTO-LARYNGOL, V82, P402, DOI 10.3109/00016487609120925 Milkiewicz M, 2001, MICROCIRCULATION, V8, P229, DOI 10.1038/sj.mn.7800074 Nomura S, 2000, MATRIX BIOL, V19, P91, DOI 10.1016/S0945-053X(00)00050-0 Pavalko FM, 2003, J CELL PHYSIOL, V194, P194, DOI 10.1002/jcp.10221 RESNICK N, 1993, P NATL ACAD SCI USA, V90, P4591, DOI 10.1073/pnas.90.10.4591 Seki M, 2001, ANN OTO RHINOL LARYN, V110, P122 SHYY JYJ, 1995, P NATL ACAD SCI USA, V92, P8069, DOI 10.1073/pnas.92.17.8069 Stamatas GN, 2001, BIOTECHNOL PROGR, V17, P383, DOI 10.1021/bp0100272 TONNDORF J, 1968, ARCH OTOLARYNGOL, V87, P595 TOS M, 1984, ANN OTO RHINOL LARYN, V93, P403 TURNER CH, 1994, FASEB J, V8, P875 VONBEKESY A, 1932, ANN PHYSIK, V12, P111 Watanabe T, 2002, DEV BIOL, V250, P332, DOI 10.1006/dbio.2002.0781 Zou J, 2001, ACTA OTO-LARYNGOL, V121, P143 NR 28 TC 32 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 13 EP 20 DI 10.1016/j.heares.2004.10.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300002 PM 15811694 ER PT J AU Labbe, D Teranishi, M Hess, A Bloch, W Michel, O AF Labbe, D Teranishi, M Hess, A Bloch, W Michel, O TI Activation of caspase-3 Is associated with oxidative stress in the hydropic guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE hydrops; nitric oxide; oxidative stress; hearing loss ID NITRIC-OXIDE-SYNTHASE; INOS/NOS-II; APOPTOSIS; EXPRESSION; DEATH; ISOPROSTANES; MARKERS; GENE AB The aim of this study was to investigate the involvement of oxidative stress and apoptosis in an animal model of Meniere's disease. Endolymphatic hydrops (ELH) is generally accepted as the decisive histological characteristic of Meniere's disease. Closure of the endolymphatic duct (Kimura's method) was used to induce endolymphatic hydrops in guinea pigs. Sham-operated animals served as controls. After 4 weeks the animals operated showed a significant elevation of the hearing thresholds as measured by audiometric brainstem responses (ABR) pre- and postoperatively. Immediately after the second ABR measurement, the animals were sacrificed for further immunohistological examinations of the inner ear with specific antibodies to active caspase-3 (cas-3) as a marker for apoptosis and antibodies to 8-isoprostane (8-iso) and nitrotyrosine (NT) as indicators of oxidative stress. Compared with the sham-operated controls, hydropic cochleae showed strong immumostaining for both oxidative stress markers in spiral ganglion cells, in the blood-vessels and fibrocytes of the lateral wall, as well as in supporting cells of the organ of Corti. Activation of cas-3 in spiral ganglion cells and the lateral wall was found exclusively in hydropic cochleae. Our findings suggest that oxidative stress is involved in the development of endolymphatic hydrops and may lead to cellular damage which induces apoptosis by activation of cas-3. Apoptotic cell death might contribute to the sensorineural hearing loss found in later stages of Meniere's disease. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Cologne, Dept Otorhinolaryngol, D-50924 Cologne, Germany. German Sport Univ, Dept Mol & Cellular Sport Med, Cologne, Germany. RP Labbe, D (reprint author), Univ Cologne, Dept Otorhinolaryngol, Joseph Stelzmann Str 9, D-50924 Cologne, Germany. EM daniel.labbe@uni-koeln.de; michel@um-koeln.de RI Teranishi, Masaaki/I-1956-2012; Michel, Olaf/B-3673-2012 OI Michel, Olaf/0000-0003-4289-5693 CR BAO F, 2003, NEUROSCIENCE, V1, P59 BLASITS S, 2000, PFLUGERS ARCH, V5, P710 Brown ASC, 1999, GREEN CHEM, V1, P17, DOI 10.1039/a807963c Creagh EM, 2001, BIOCHEM SOC T, V29, P696, DOI 10.1042/0300-5127:0290696 DAVID EA, 2002, J OTOLARYNGOL, V5, P304 Hess A, 1999, NEUROSCI LETT, V264, P145, DOI 10.1016/S0304-3940(99)00195-0 Hunot S, 2001, SCIENCE, V292, P865, DOI 10.1126/science.1060885 ICHIYAMA I, 1994, ANN OTO RHINOL LARYN, V6, P457 IKEDA K, 1991, HEARING RES, V51, P185, DOI 10.1016/0378-5955(91)90035-8 Kim YM, 1999, CIRC RES, V84, P253 KIMURA RS, 1980, ACTA OTO-LARYNGOL, V89, P295, DOI 10.3109/00016488009127141 Kroncke KD, 2001, INT IMMUNOPHARMACOL, V1, P1407, DOI 10.1016/S1567-5769(01)00087-X LEE JE, 2003, LARYNGOSCOPE, V6, P994 Lefebvre PP, 2000, BRAIN RES REV, V32, P159 LEFEBVRE PP, 2002, AUDIOL NEURO-OTOL, V3, P165 Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034 MADRIGAL JL, 2001, NEUROPSYCHOPHARMACOL, V4, P420 Mezzetti A, 2000, CARDIOVASC RES, V47, P475, DOI 10.1016/S0008-6363(00)00118-8 MICHEL O, 1999, HEARING RES, V1, P1 Michel O, 2000, HEARING RES, V143, P23, DOI 10.1016/S0378-5955(00)00018-6 MISHRA OP, 2002, NEUROSCI LETT, V3, P115 Nadol J B Jr, 1995, Acta Otolaryngol Suppl, V519, P47 Nagata S, 1997, CELL, V88, P355, DOI 10.1016/S0092-8674(00)81874-7 Nishizaki K, 1999, HEARING RES, V130, P131, DOI 10.1016/S0378-5955(99)00002-7 OHINATA Y, 2003, BRAIN RES, V2, P265 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Orita Y, 1999, Acta Otolaryngol Suppl, V540, P22 Patrono C, 1997, ARTERIOSCL THROM VAS, V17, P2309 RACKE MM, 2002, J NEUROCHEM, V6, P1039 RAMUZ O, 2003, INT J EXP PATHOL, V2, P75 TODT I, 2001, J MEMBRANE BIOL, V2, P107 Viera L, 1999, METHOD ENZYMOL, V301, P373 WANG J, 2002, NEUROSCIENCE, V3, P635 WANGEMANN P, 2002, HEARING RES, V1, P1 Watanabe K, 2001, J VESTIBUL RES-EQUIL, V11, P67 WATANABE K, 2001, ORL J OTORHINOLARYNG, V3, P155 Watanabe K, 2000, ANTI-CANCER DRUG, V11, P731, DOI 10.1097/00001813-200010000-00010 WATANABE K, 2002, EUR ARCH OTO-RHINO-L, V5, P257 NR 38 TC 20 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 21 EP 27 DI 10.1016/j.heares.2004.10.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300003 PM 15811695 ER PT J AU Hammond, GR Seth, Y Ison, JR AF Hammond, GR Seth, Y Ison, JR TI Concurrent measurement of the detectability of tone bursts and their effect on the excitability of the human blink reflex using a probe-signal method SO HEARING RESEARCH LA English DT Article DE auditory attention; attentional band; olivocochlear bundle; blink reflex; prepulse inhibition ID ACOUSTIC STARTLE RESPONSE; OLIVOCOCHLEAR BUNDLE; DETECTING SIGNALS; RECEPTIVE-FIELDS; INHIBITION; NOISE; PLASTICITY; FREQUENCY; ATTENTION; RAT AB The probe-signal method has shown that auditory signals that are either presented more often in a series of trials or that are immediately preceded by cues of the same frequency on a single trial are detected more readily than signals of other frequencies. The frequency range in which detection is favored defines an attentional band, which is thought to result from an effective attenuation of deviant frequencies in the cochlea, possibly by activation of the olivocochlear bundle. In a 2IFC procedure in which the first observation interval was preceded by a 1300-Hz cue, subjects detected cued probe tones (at 1300 Hz) but not uncued probe tones (at 1000 Hz or 1600 Hz) at better than chance levels. Concurrent elicitation of a blink reflex by presentation of an air puff in the first observation interval on a random half of the trials showed that cued probes, but not uncued probes, inhibited the size of the blink reflex. These data show that uncued probes do not enter into the low-level sensory processing in the brainstem which is responsible for reflex modification. This finding is consistent with the view that stimuli whose frequency falls outside an attentional band are excluded at the auditory periphery. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Western Australia, Sch Psychol, Crawley, WA 6907, Australia. Univ Rochester, Rochester, NY 14627 USA. RP Hammond, GR (reprint author), Univ Western Australia, Sch Psychol, Crawley, WA 6907, Australia. EM geoff@psy.uwa.edu.au RI Hammond, Geoff/H-9343-2014 CR Arbogast TL, 2000, J ACOUST SOC AM, V108, P1803, DOI 10.1121/1.1289366 DAI HP, 1995, J ACOUST SOC AM, V98, P798, DOI 10.1121/1.413572 DAI HP, 1991, J ACOUST SOC AM, V89, P2837, DOI 10.1121/1.400721 DAVIS M, 1977, J COMP PHYSIOL PSYCH, V91, P549, DOI 10.1037/h0077345 Faure PA, 2003, J NEUROSCI, V23, P3052 Fritz J, 2003, NAT NEUROSCI, V6, P1216, DOI 10.1038/nn1141 Giraud AL, 1997, NEUROREPORT, V8, P1779 GREENBER.GZ, 1968, J ACOUST SOC AM, V44, P1513, DOI 10.1121/1.1911290 HAMMOND GR, 1974, PHYSIOL PSYCHOL, V2, P151 HOFFMAN HS, 1992, ATTENTION AND INFORMATION PROCESSING IN INFANTS AND ADULTS, P83 HOFFMAN HS, 1970, J ACOUST SOC AM, V47, P489, DOI 10.1121/1.1911919 HOFFMAN HS, 1980, PSYCHOL REV, V87, P175, DOI 10.1037/0033-295X.87.2.175 Irvine DRF, 2001, AUDIOL NEURO-OTOL, V6, P192, DOI 10.1159/000046831 ISON JR, 1971, J COMP PHYSIOL PSYCH, V75, P435, DOI 10.1037/h0030934 ISON JR, 1983, PSYCHOL BULL, V94, P3, DOI 10.1037/0033-2909.94.1.3 Ison JR, 2002, J ACOUST SOC AM, V112, P238, DOI 10.1121/1.1483321 ISON JR, 1973, J COMP PHYSIOL PSYCH, V83, P324, DOI 10.1037/h0034423 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Koch M, 1997, BEHAV BRAIN RES, V89, P35, DOI 10.1016/S0166-4328(97)02296-1 Koch M, 1999, PROG NEUROBIOL, V59, P107, DOI 10.1016/S0301-0082(98)00098-7 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MACMILLAN NA, 1975, J ACOUST SOC AM, V58, P1051, DOI 10.1121/1.380764 PATTERSO.RD, 1974, J ACOUST SOC AM, V55, P802, DOI 10.1121/1.1914603 REITER LA, 1977, J EXP PSYCHOL HUMAN, V3, P325, DOI 10.1037//0096-1523.3.2.325 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SCHARF B, 1987, PERCEPT PSYCHOPHYS, V42, P215, DOI 10.3758/BF03203073 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 Scharf B., 1998, ATTENTION, P75 SILVERSTEIN LD, 1980, ELECTROEN CLIN NEURO, V48, P406, DOI 10.1016/0013-4694(80)90133-9 Walsh EJ, 1998, J NEUROSCI, V18, P3859 Weinberger N M, 1993, Curr Opin Neurobiol, V3, P570, DOI 10.1016/0959-4388(93)90058-7 Wright BA, 1998, J ACOUST SOC AM, V104, P2991, DOI 10.1121/1.423881 WRIGHT BA, 1994, J ACOUST SOC AM, V95, P931, DOI 10.1121/1.410010 Zeng FG, 2000, HEARING RES, V142, P102, DOI 10.1016/S0378-5955(00)00011-3 NR 34 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 28 EP 34 DI 10.1016/j.heares.2004.07.018 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300004 PM 15811696 ER PT J AU Hu, N Nuttall, AL Ren, TY AF Hu, N Nuttall, AL Ren, TY TI Spatial distribution of electrically induced high frequency vibration on basilar membrane SO HEARING RESEARCH LA English DT Article DE electromotility; vibration; high frequency; laser Doppler velocimeter; cochlea; basilar membrane; outer hair cells; guinea pig ID OUTER HAIR CELL; GUINEA-PIG COCHLEA; OTOACOUSTIC EMISSIONS; MECHANICAL RESPONSES; PIEZOELECTRIC MODEL; MOTOR PROTEIN; MOTILITY; STIFFNESS; AMPLIFIER; CURRENTS AB We reported that the electrically evoked basilar membrane (BM) vibration at frequencies above the best frequency (BF) showed a lowest BM velocity magnitude. called a "dip", in the velocity-frequency spectra, indicating a cancellation. In the present study, we measured the high frequency BM motion as functions of the longitudinal and radial locations. Measurements were taken at three longitudinal locations in the first turn and the hook region: 14.9, 15.8 and 16.8 mm from the apex, corresponding to the BFs of 17, 213 and 28.0 kHz calculated from Greenwood [J. Acoust. Soc. Am. 87, 2592], and at different radial locations across the width of the BM. It was found that the clip frequency (DF) varied with the longitudinal and radial locations. In the longitudinal direction, the average value of the DF was 49.6, 55.6 and 72.8 kHz, respectively. Thus, the longitudinal distribution of the high frequency BM vibration was correlated with the BF. In the radial direction, there was consistent variation of the response spectrum such that the dip was mainly evident in the pectinate zone of the BM. These results imply that the high frequency BM motion is related to mechanical properties of the cochlear partition, including the outer hair cells (OHCs) themselves. Data also indicate different vibration modes across the width of the organ of Corti. (c) 2004 Elsevier B.V. All rights reserved. C1 Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, Portland, OR 97239 USA. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Dept Otolaryngol Head & Neck Surg, Oregon Hearing Res Ctr, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97239 USA. EM nuttall@ohsu.edu CR Ashmore J. F., 1990, NEUROSCI RES S, V12, pS39 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 COOPER NP, 1992, HEARING RES, V63, P191, DOI 10.1016/0378-5955(92)90084-Z Dallos P, 2002, NAT REV MOL CELL BIO, V3, P104, DOI 10.1038/nrm730 DALLOS P, 1995, SCIENCE, V268, P1420, DOI 10.1126/science.7770765 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 Emadi G, 2004, J NEUROPHYSIOL, V91, P474, DOI 10.1152/jn.00446.2003 FRANK GWH, 1999, P NATL ACAD SCI USA, V96, P4410 GALE JE, 1994, P ROY SOC B-BIOL SCI, V255, P243, DOI 10.1098/rspb.1994.0035 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Grosh K, 2004, J ACOUST SOC AM, V115, P2178, DOI 10.1121/1.1695431 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094 Iwasa KH, 2001, BIOPHYS J, V81, P2495 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 KAKEHATA S, 1995, BIOPHYS J, V68, P2190 KIRK DL, 1994, HEARING RES, V74, P38, DOI 10.1016/0378-5955(94)90174-0 MOUNTAIN DC, 1994, J ACOUST SOC AM, V95, P350, DOI 10.1121/1.408273 Naidu RC, 1998, HEARING RES, V124, P124, DOI 10.1016/S0378-5955(98)00133-6 Nuttall AL, 2001, HEARING RES, V152, P77, DOI 10.1016/S0378-5955(00)00238-0 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 NUTTALL AL, 2003, ASS RES OT MIDW M DA NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 OLSON ES, 1991, J ACOUST SOC AM, V89, P1262, DOI 10.1121/1.400535 Preyer S, 1996, Audiol Neurootol, V1, P3 PUJOL R, 1992, ADV BIOSCI, V83, P45 RABBITT RD, 2004, ASS RES OT MIDW M AR Ren TY, 1996, HEARING RES, V102, P43, DOI 10.1016/S0378-5955(96)00145-1 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 TOLOMEO JA, 1995, J ACOUST SOC AM, V97, P3006, DOI 10.1121/1.411865 Weitzel EK, 2003, J ACOUST SOC AM, V114, P1462, DOI 10.1121/1.1596172 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 38 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 35 EP 46 DI 10.1016/j.heares.2004.11.002 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300005 PM 15811697 ER PT J AU Soeta, Y Nakagawa, S Tonoike, M AF Soeta, Y Nakagawa, S Tonoike, M TI Auditory evoked magnetic fields in relation to bandwidth variations of bandpass noise SO HEARING RESEARCH LA English DT Article DE magnetoencephalography; auditory evoked response; Nlm; bandpass noise; autocorrelation function ID ITERATED RIPPLED NOISE; TONOTOPIC ORGANIZATION; PHASE SENSITIVITY; PITCH STRENGTH; COMPUTER-MODEL; VIRTUAL PITCH; COMPLEX TONES; HUMAN BRAIN; CORTEX; FREQUENCY AB Auditory evoked magnetic fields in relation to the bandwidth of bandpass noise were examined by magnetoencephalography (MEG). Pure tone and bandpass noises with center frequencies of 500, 1000 or 2000 Hz were used as the auditory signals. All source signals had the sound pressure level set at 74 dB. The stimulus duration was 0.5 s, with rise and fall ramps of 10 ms. Eight Volunteers with normal hearing took part in the study. Auditory evoked fields were recorded using a neuromagnetometer in a magnetically-shielded room. The results showed that the peak amplitude of Nlm, which was found above the left and right temporal lobes around 100 ms after the Stimulus onset, decreased with increasing bandwidth of the bandpass noise. The latency and estimated equivalent Current dipole (ECD) locations of Nlm did not show any systematic variation as a function of the bandwidth for any of the center frequencies. (c) 2004 Elsevier B.V. All rights reserved. C1 Natl Inst Adv Ind Sch & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. RP Soeta, Y (reprint author), Natl Inst Adv Ind Sch & Technol, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp CR Alku P, 2001, NEUROSCI LETT, V298, P25, DOI 10.1016/S0304-3940(00)01708-0 Ando Y., 1998, ARCHITECTURAL ACOUST Ando Y, 1999, COMPUTATIONAL ACOUST, P63 Von Bekesy G., 1963, Journal of the Acoustical Society of America, V35 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 de Cheveigne A, 2002, J ACOUST SOC AM, V111, P1917, DOI 10.1121/1.1458024 FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 Griffiths TD, 2001, NAT NEUROSCI, V4, P633, DOI 10.1038/88459 GRIFFITHS TD, 1998, NAT NEUROSCI, V1, P421 Gulick W. L., 1989, HEARING PHYSL ACOUST HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60 KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163 Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LICKLIDER JCR, 1951, EXPERIENTIA, V7, P128, DOI 10.1007/BF02156143 LYON R, 1995, AUDITORY COMPUTATION, P221 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2883, DOI 10.1121/1.400726 MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 Moore BC., 2003, INTRO PSYCHOL HEARIN Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Palomaki KJ, 2002, COGNITIVE BRAIN RES, V14, P294, DOI 10.1016/S0926-6410(02)00132-5 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Patterson RD, 1996, J ACOUST SOC AM, V100, P3286, DOI 10.1121/1.417212 REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0 REITE M, 1982, ELECTROEN CLIN NEURO, V53, P643, DOI 10.1016/0013-4694(82)90140-7 Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4 Sato S, 2002, J SOUND VIB, V250, P47, DOI 10.1006/jsvi.2001.3888 SCHARF B, 1961, PSYCHOL BULL, V58, P205, DOI 10.1037/h0049235 Seither-Preisler A, 2003, AUDIOL NEURO-OTOL, V8, P322, DOI 10.1159/000073517 WIGHTMAN FL, 1973, J ACOUST SOC AM, V54, P407, DOI 10.1121/1.1913592 Yost WA, 1996, J ACOUST SOC AM, V100, P3329, DOI 10.1121/1.416973 Yost W.A., 2000, FUNDAMENTALS HEARING Zwicker E, 1999, PSYCHOACOUSTICS FACT ZWICKER E, 1957, J ACOUST SOC AM, V29, P548, DOI 10.1121/1.1908963 NR 41 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 47 EP 54 DI 10.1016/j.heares.2004.09.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300006 PM 15811698 ER PT J AU Fu, QJ AF Fu, QJ TI Loudness growth in cochlear implants: effect of stimulation rate and electrode configuration SO HEARING RESEARCH LA English DT Article DE cochlear implants; loudness balance; loudness growth; stimulation rate; electrode configuration; amplitude mapping ID PHONEME RECOGNITION; LISTENERS; HEARING; BALANCE AB In cochlear implant speech processor design, acoustic amplitudes are mapped to electric currents with the intention of preserving loudness relationships across electrodes. Many parameters may affect the growth of loudness with electrical stimulation. The present study measured the effects of stimulation rate and electrode configuration on loudness growth in six Nucleus-22 cochlear implant users. Loudness balance functions were measured for stimuli that differed in terms of stimulation rate, electrode coil figuration and electrode location: a 2-alternative, forced-choice adaptive procedure (double-staircase) was used. First, subjects adaptively adjusted the amplitude of a 100-pulse-per-second (pps) pulse train to match the loudness of a 1000-pps standard Pulse train. For a range of reference stimulation levels, the loudness of the 100-pps stimulus was matched to that of the 1000-pps standard stimulus: loudness balancing was performed for three electrode pairs [(20,22), (1 3) (1,22)]. The results showed that the loudness balance functions between the 100- and 1000-pps stimulation rates were highly subject-dependent. Some subjects' loudness balance functions were logarithmic, while others' were nearly linear. Loudness balance functions were also measured across electrode locations [(20,22) vs. (1,3)] for two stimulation rates (100, 1000 pps). Results showed that the loudness balance functions between the apical and basal electrode pairs highly depended on the stimulation rate. For all subjects, at the 1000-pps rate, the loudness balance functions between the two electrode locations were nearly linear; however, at the 100-pps rate, the loudness balance function was highly nonlinear in two out of six subjects. These results suggest that, for some cochlear implant patients, low-frequency stimulation may be processed differently at different electrode locations-, for these patients, acoustic-to-electric amplitude mapping may need to be sensitive to this place-dependent processing when relatively low stimulation rates Lire used. (c) 2004 Elsevier B.V. All rights reserved. C1 House Ear Res Inst, Dept Audiory Implants & Percept, Los Angeles, CA 90057 USA. RP Fu, QJ (reprint author), House Ear Res Inst, Dept Audiory Implants & Percept, 2100 W 3rd St, Los Angeles, CA 90057 USA. EM qfu@hei.org CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 BOEX CS, 1997, 1997 C IMPL AUD PROS, P26 BOEX CS, 1995, 1995 C IMPL AUD PROS, P57 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 Charasse B, 2004, INT J AUDIOL, V43, P236, DOI 10.1080/14992020400050032 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 DORMAN MF, 1993, EAR HEARING, V14, P290, DOI 10.1097/00003446-199308000-00008 Eddington D K, 1978, Ann Otol Rhinol Laryngol, V87, P1 Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004 Fu QJ, 2000, J ACOUST SOC AM, V107, P589, DOI 10.1121/1.428325 Fu QJ, 1998, J ACOUST SOC AM, V104, P2570, DOI 10.1121/1.423912 Gallego S, 1999, ACTA OTO-LARYNGOL, V119, P234, DOI 10.1080/00016489950181738 JESTEADT W, 1980, PERCEPT PSYCHOPHYS, V28, P85, DOI 10.3758/BF03204321 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 McDermott HJ, 2003, J ACOUST SOC AM, V114, P2190, DOI 10.1121/1.1612488 MULLER C, 1981, J ACOUST SOC AM, V70, pS52 SHANNON RV, 1992, AUDITORY PROCESSING, P263 STEVENS SS, 1955, J ACOUST SOC AM, V27, P815, DOI 10.1121/1.1908048 STEVENS SS, 1959, J EXP PSYCHOL, V57, P201, DOI 10.1037/h0048957 Stevens SS, 1937, J ACOUST SOC AM, V8, P191, DOI 10.1121/1.1915894 ZENG FG, 1991, Q J EXP PSYCHOL-A, V43, P565 ZENG FG, 1992, HEARING RES, V60, P231, DOI 10.1016/0378-5955(92)90024-H ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 NR 23 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 55 EP 62 DI 10.1016/j.heares.2004.10.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300007 PM 15811699 ER PT J AU Muller, M von Hunerbein, K Holdis, S Smolders, JWT AF Muller, M von Hunerbein, K Holdis, S Smolders, JWT TI A physiological place-frequency map of the cochlea in the CBA/J mouse SO HEARING RESEARCH LA English DT Article DE mouse; cochlea; place-frequency map; cochlear nucleus; tonotopy ID AUDITORY-NERVE FIBERS; BASILAR-MEMBRANE; INFERIOR COLLICULUS; PACHYUROMYS-DUPRASI; CRITICAL RATIOS; ACOUSTIC FOVEA; HORSESHOE BAT; SINGLE UNITS; HOUSE-MOUSE; REPRESENTATION AB Genetically manipulated mice have gained a prominent role in in vivo research on development and function of the auditory system. A prerequisite for the interpretation of normal and abnormal structural Mid functional features of the inner ear is the exact knowledge of the cochlear place-frequency map. Using a stereotaxic approach to the projection site of the auditory nerve fibers ill the cochlear nucleus. we succeeded in labelling physiologically characterized auditory nerve afferents and determined their peripheral innervation site in the cochlea. From the neuronal characteristic frequency (CF) and the innervation site in the organ of Corti a place-frequency map was established for characteristic frequencies between 7.2 and 61.8 kHz, corresponding to locations between 90% and 10% basilar membrane length (base = 0%, apex = 100%, mean length measured tinder the inner hair cells 5.13 mm). The relation between normalized distance from the base (d) and frequency (kHz) can be described by a simple logarithmic function: d(%) = 156.5 - 82.5 x log(f), With a slope of 1.25 mm/octave of frequency. The present map, recorded tinder physiological conditions, differs from earlier maps determined with different methods. The simple logarithmic place-frequency relation found in the mouse indicates that mice are acoustic generalists rather than specialists. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Frankfurt, Inst Physiol 2, D-60590 Frankfurt, Germany. RP Smolders, JWT (reprint author), Univ Frankfurt, Inst Physiol 2, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. EM Jean.Smolders@em.uni-frankfurt.de CR Bekesy G., 1960, EXPT HEARING BERGLUND AM, 1994, HEARING RES, V75, P121, DOI 10.1016/0378-5955(94)90063-9 BIRCH LM, 1968, J AUD RES, V8, P459 BROWN AM, 1973, J COMP PHYSIOL, V83, P377, DOI 10.1007/BF00696353 BRUNS V, 1980, HEARING RES, V3, P27, DOI 10.1016/0378-5955(80)90006-4 BURDA H, 1988, J MORPHOL, V198, P269, DOI 10.1002/jmor.1051980303 CODY AR, 1980, HEARING RES, V3, P3, DOI 10.1016/0378-5955(80)90004-0 Egorova M, 2001, EXP BRAIN RES, V140, P145, DOI 10.1007/s002210100786 Ehret G., 1997, CENTRAL AUDITORY SYS EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 EHRET G, 1985, J COMP PHYSIOL A, V156, P637, DOI 10.1007/BF00619112 EHRET G, 1975, J COMP PHYSIOL, V103, P329 EHRET G, 1984, HEARING RES, V14, P45, DOI 10.1016/0378-5955(84)90068-6 Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362 KRAUS HJ, 1982, VERH DTSCH ZOOL GES, P279 LePage EL, 2003, J ACOUST SOC AM, V114, P896, DOI 10.1121/1.1587150 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 MULLER M, 1991, HEARING RES, V56, P191, DOI 10.1016/0378-5955(91)90169-A MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 MULLER M, 1993, HEARING RES, V67, P198, DOI 10.1016/0378-5955(93)90247-X MULLER M, 1990, EXP BRAIN RES, V81, P140 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 MULLER M, 1992, J COMP PHYSIOL A, V171, P469 Muller M, 2003, HEARING RES, V183, P37, DOI 10.1016/S0378-5955(03)00217-X Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 PENFIELD T, 1950, CEREBRAL CORTEX MAN TABERNER A, 2003, C P ARO ASS RES OT TOOTELL RBH, 1982, SCIENCE, V218, P902, DOI 10.1126/science.7134981 Tsuji J, 1997, J COMP NEUROL, V381, P188 VATER M, 1985, J COMP PHYSIOL A, V157, P671, DOI 10.1007/BF01351361 VONBEKESY G, 1944, AKUST Z, V9, P3 Wald A., 1947, SEQUENTIAL ANAL NR 37 TC 112 Z9 113 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 63 EP 73 DI 10.1016/j.heares.2004.08.011 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300008 PM 15811700 ER PT J AU Ray, B Roy, TS Wadhwa, S Roy, KK AF Ray, B Roy, TS Wadhwa, S Roy, KK TI Development of the human fetal cochlear nerve: a morphometric study SO HEARING RESEARCH LA English DT Article DE auditory nerve; ontogeny; myelination; asymmetry; stereology ID HUMAN FETUSES; SCHWANN-CELL; TIME-COURSE; HAIR-CELLS; GUINEA-PIG; MYELINATION; INNERVATION; MATURATION; HEARING; FIBERS AB Ontogenesis of the human peripheral auditory pathway is relatively less explored. While the distal part of the auditory perception apparatus (i.e. the cochlea) received attention, studies on the neural element carrying information to the brainstem (i.e. the cochlear nerve) are scarce. In the present study, axonal differentiation, maturation and myelination of the distal end of the human cochlear nerve (CN) were assessed using light and electron microscopy. Seven human fetuses of 12, 15, 18 20, 22 28 and 38 weeks' gestation (WG) were analyzed. Light microscopy revealed nerve fascicles as early as 12 WG, initially arranged loosely but later compacted by 18 WG. Myelinated fibers were clearly detected at 28 WG. Ultrastructurally, at 12 WG developing Schwann cells were present between the thin unmyelinated axons. At 15 WG, the fascicular arrangement was distinct with blood vessels in the perineurium. The maximum number of axons was found at 20 WG, which subsequently reduced to reach the adult level at 22 WG. The myelinated axons in the CN were first observed on the left side at 20 WG, following which the number and proportion of myelinated axons increased until term, incorporating both small and large axons. The right CN lagged behind in maturation. Axon size also increased with age. Thus, the maturation of the human CN commences during the mid-gestation period and produces exuberant axons that are eventually pruned at a time when axons start to myelinate. During this developmental period the human CN maintains maturational asymmetry, the functional consequences of which remain to be elucidated. (c) 2004 Elsevier B.V. All rights reserved. C1 All India Inst Med Sci, Dept Anat, New Delhi 110029, India. All India Inst Med Sci, Dept Obstet & Gynecol, New Delhi 110029, India. RP Roy, TS (reprint author), All India Inst Med Sci, Dept Anat, New Delhi 110029, India. EM tarasankar@hotmail.com RI Ray, Bappaditya/F-4489-2014; Ray, Bappaditya/O-2556-2014 CR ANGULO A, 1990, J ANAT, V168, P241 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 BARDEN TP, 1968, AM J OBSTET GYNECOL, V100, P1128 BIRNHOLZ JC, 1983, SCIENCE, V222, P516, DOI 10.1126/science.6623091 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 CANT NB, 1998, DEV AUDITORY SYSTEM, P315 Crespo D, 1985, Brain Res, V351, P129 DWORNICKA B, 1964, Acta Otolaryngol, V57, P571, DOI 10.3109/00016486409137118 EGGERMONT JJ, 1988, HEARING RES, V33, P35, DOI 10.1016/0378-5955(88)90019-6 FELIX H, 1985, ACTA OTO-LARYNGOL, P67 Fujii M, 1990, Nihon Jibiinkoka Gakkai Kaiho, V93, P723 GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402 Geuna S, 2001, ANAT EMBRYOL, V204, P1, DOI 10.1007/s004290100188 GOODLIN RC, 1972, AM J OBSTET GYNECOL, V114, P613 GRIMWADE JC, 1971, AM J OBSTET GYNECOL, V109, P86 GUNDERSEN HJG, 1977, J MICROSC-OXFORD, V111, P219 Harris SJ, 2000, J ANAT, V197, P477, DOI 10.1046/j.1469-7580.2000.19730477.x Ishiyama A, 2001, NEUROSCI LETT, V304, P93, DOI 10.1016/S0304-3940(01)01774-8 JACKSON H, 1982, J NEUROSCI, V2, P1736 JHAVERI S, 1982, NEUROSCIENCE, V7, P837, DOI 10.1016/0306-4522(82)90046-X Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Koppl C, 2000, HEARING RES, V139, P123, DOI 10.1016/S0378-5955(99)00178-1 KUHLMAN KA, 1988, AM J OBSTET GYNECOL, V158, P47 Larsen JO, 1998, J NEUROSCI METH, V85, P107, DOI 10.1016/S0165-0270(98)00129-0 LAVIGNEREBILLARD M, 1990, J ELECTRON MICR TECH, V15, P115, DOI 10.1002/jemt.1060150204 LAVIGNEREBILLARD M, 1988, ACTA OTO-LARYNGOL, V105, P398, DOI 10.3109/00016488809119492 LAVIGNEREBILLARD M, 1986, ANAT EMBRYOL, V174, P369, DOI 10.1007/BF00698787 Moore D. R., 1994, TXB FETAL PHYSL, P278 MOORE JK, 1995, HEARING RES, V87, P21, DOI 10.1016/0378-5955(95)00073-D Moore JK, 2001, ANN OTO RHINOL LARYN, V110, P655 Moore JK, 1997, ANAT EMBRYOL, V195, P15 Paternostro MA, 1996, INT J DEV NEUROSCI, V14, P867, DOI 10.1016/S0736-5748(96)00064-0 PETERS A, 1991, FINE STRUCTURE NERVO, P212 PIRILA T, 1992, AUDIOLOGY, V31, P150 POHL P, 1984, NEUROPEDIATRICS, V15, P139, DOI 10.1055/s-2008-1052357 PUJOL R, 1973, ACTA OTO-LARYNGOL, V76, P1, DOI 10.3109/00016487309121476 PUJOL R, 1991, HEARING RES, V57, P129, DOI 10.1016/0378-5955(91)90082-K Pujol R., 1998, DEV AUDITORY SYSTEM, P146 PUJOL R, 1985, ACTA OTO-LARYNGOL, P43 Rasmussen AT, 1940, LARYNGOSCOPE, V50, P67 RITCHIE JM, 1982, PROC R SOC SER B-BIO, V217, P29, DOI 10.1098/rspb.1982.0092 Rogers LJ, 1999, BEHAV BRAIN RES, V98, P277, DOI 10.1016/S0166-4328(98)00094-1 ROMAND R, 1970, CR ACAD SCI D NAT, V270, P2476 ROMAND R, 1976, J COMP NEUROL, V170, P1, DOI 10.1002/cne.901700102 ROTH B, 1993, ANAT EMBRYOL, V187, P565, DOI 10.1007/BF00214435 RUBEL EW, 2004, IN PRESS PLASTICITY RUSHTON WAH, 1951, J PHYSIOL-LONDON, V115, P101 RYUGO DK, 1967, MAMMALIAN AUDITORY P, P23 Sailaja K, 1996, NATL MED J INDIA, V9, P165 SAKABE N, 1969, Acta Oto-Laryngologica Supplement, V252, P29 Sanes D H, 1985, Brain Res, V354, P255 SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805 SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q SPOENDLIN H, 1990, ACTA OTO-LARYNGOL, P61 USSON Y, 1988, J NEUROCYTOL, V17, P639, DOI 10.1007/BF01260991 WILLARD FH, 1993, NATO ADV SCI INST SE, V239, P29 WILLARD FH, 1995, ADV NEU SCI, V2, P205 YOKOVLEV PI, 1967, REGIONAL DEV BRAIN E, P3 NR 59 TC 14 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 74 EP 86 DI 10.1016/j.heares.2004.09.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300009 PM 15811701 ER PT J AU Carlsson, PI Van Laer, L Borg, E Bondeson, ML Thys, M Fransen, E Van Camp, G AF Carlsson, PI Van Laer, L Borg, E Bondeson, ML Thys, M Fransen, E Van Camp, G TI The influence of genetic variation in oxidative stress genes on human noise susceptibility SO HEARING RESEARCH LA English DT Article DE hearing loss; noise induced hearing loss; reactive oxygen species; antioxidant; genetic polymorphisms; glutathione-S-transferase; catalase; supeioxide dismutase; glutathione peroxidase; glutathione reductase ID INDUCED HEARING-LOSS; GLUTATHIONE-S-TRANSFERASE; INCREASES SUSCEPTIBILITY; MICE; ASSOCIATION; EXPOSURE; POLYMORPHISMS; ANTIOXIDANTS; MUTATION; DISEASE AB Noise induced hearing loss (NIHL) is a complex disease Caused by an interaction between genetic and environmental factors. Damage in the cochlea as a result of noise exposure appears to be mediated by reactive oxygen species (ROS). To investigate whether genetic variation in the human protective antioxidant system is associated with high or low susceptibility to NIHL genetic polymorphisms derived from genes involved in the oxidative stress response were analysed in the 10% most susceptible and 10% most resistant extremes of 1200 Swedish noise-exposed workers. The genetic polymorphisms included 2 deletion polymorphisms for the GSTM1 and GSTT1 gene, and 14 SNPs derived from the CAT, SOD, GPX, GSR and GSTP1 genes. No significant differences were found between susceptible and resistant groups, providing no support for a major role of genetic variation of antioxidant enzymes in the susceptibility to NIHL. (c) 2004 Elsevier B.V. All rights reserved. C1 Orebro Univ Hosp, Dept Audiol, SE-70116 Orebro, Sweden. Orebro Univ Hosp, Ahlsen Res Inst, SE-70116 Orebro, Sweden. Univ Antwerp, Dept Med Genet, B-2610 Antwerp, Belgium. Univ Uppsala, Dept Genet & Pathol, Rudbeck Lab, SE-75185 Uppsala, Sweden. RP Carlsson, PI (reprint author), Orebro Univ Hosp, Dept Audiol, POB 1613, SE-70116 Orebro, Sweden. EM per-inge.carlsson@orebroll.se RI Van Camp, Guy/F-3386-2013; Fransen, Erik/C-4102-2015 OI Van Camp, Guy/0000-0001-5105-9000; Fransen, Erik/0000-0001-7785-4790 CR BOARD PG, 1981, AM J HUM GENET, V33, P36 Borg E, 1995, Scand Audiol Suppl, V40, P1 Carlsson PI, 2004, AUDIOL MED, V2, P123, DOI 10.1080/16513860410035854 CHUNG DY, 1983, J ACOUST SOC AM, V73, P1277, DOI 10.1121/1.389276 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 Davis RR, 2001, HEARING RES, V155, P82, DOI 10.1016/S0378-5955(01)00250-7 ELBARBARY A, 1993, HEARING RES, V71, P80 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FOWLER T, 1995, HEARING RES, V88, P1, DOI 10.1016/0378-5955(95)00062-9 Ghobadloo SM, 2004, J GASTROINTEST SURG, V8, P423, DOI 10.1016/j.gassur.2004.02.005 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x Holme RH, 2004, JARO-J ASSOC RES OTO, V5, P66, DOI 10.1007/s10162-003-4021-2 *INT ORG STAND, 1990, INT STAND ISO 1999 A Ivaschenko TE, 2002, J MOL MED-JMM, V80, P39, DOI 10.1007/s001090100274 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Johansson M, 2001, NOISE HEALTH, V3, P15 Karlsson KK, 1997, EAR HEARING, V18, P114, DOI 10.1097/00003446-199704000-00003 Kozel PJ, 2002, HEARING RES, V164, P231, DOI 10.1016/S0378-5955(01)00420-8 Lataye R, 2000, HEARING RES, V139, P86, DOI 10.1016/S0378-5955(99)00174-4 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 LI HS, 1992, KAROLINSKA I STOCKHO, V39 Mann CLA, 2000, NEUROLOGY, V54, P552 MANNERVIK B, 1992, BIOCHEM J, V282, P305 Niu XZ, 2002, ADV OTO-RHINO-LARYNG, V59, P96 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 PEMBLE S, 1994, BIOCHEM J, V300, P271 PIRILA T, 1991, ACTA OTO-LARYNGOL, V111, P677, DOI 10.3109/00016489109138399 Purcell S, 2003, BIOINFORMATICS, V19, P149, DOI 10.1093/bioinformatics/19.1.149 Rabinowitz PM, 2002, HEARING RES, V173, P164, DOI 10.1016/S0378-5955(02)00350-7 Seidman MD, 2000, LARYNGOSCOPE, V110, P727, DOI 10.1097/00005537-200005000-00003 SHAM PC, 1995, ANN HUM GENET, V59, P323, DOI 10.1111/j.1469-1809.1995.tb00751.x SLIWINSKAKOWALSKA, 2004, J OCCUP ENVIRON MED, V46, P30 Strange RC, 2001, MUTAT RES-FUND MOL M, V482, P21, DOI 10.1016/S0027-5107(01)00206-8 Tan EK, 2000, NEUROLOGY, V55, P533 TAYLOR W, 1965, J ACOUST SOC AM, V38, P113, DOI 10.1121/1.1909580 Wille A, 2003, GENET EPIDEMIOL, V25, P350, DOI 10.1002/gepi.10263 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X NR 39 TC 35 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 87 EP 96 DI 10.1016/j.heares.2004.09.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300010 PM 15811702 ER PT J AU Meyer, J Preyer, S Hofmann, SI Gummer, AW AF Meyer, J Preyer, S Hofmann, SI Gummer, AW TI Tonic mechanosensitivity of outer hair cells after loss of tip links SO HEARING RESEARCH LA English DT Article DE cochlea; stereocilia; channel gating; caged calcium; mechanoelectrical transduction dihydrostreptomycin ID GUINEA-PIG COCHLEA; MECHANOELECTRICAL TRANSDUCTION; CALCIUM CHELATION; ION CHANNELS; MECHANOTRANSDUCER CHANNEL; STEREOCILIARY BUNDLE; MOUSE COCHLEA; CROSS-LINKS; CURRENTS; ADAPTATION AB Tip links-the extracellular connectors between the distal ends of adjacent stereocilia - are essential for the first mechanical gating hair-cell transducer channels. Transduction in the absence of tip links was investigated for outer hair cells of the adult guiea-pig, cochlea by patch-clamp recordings of the whole-cell current during mechanical stimulation of the hair bundle. Loss of tip links induced by application of BAPTA led to permanently opened transducer channels, as evidenced by a constant inward current, loss of response to sinusoidal mechanical deflection of the hair bundle and block by the open-channel blocker dihydrostreptomycin (100 mu M). Step deflection of the hair bundle (200-500 nm) in the inhibitory direction exponentially reduced this current to a constant value with time constant, tau(on), of the order of seconds. The Current returned exponentially to the pre-stimulus level with time-constant, tau(off), also of the order of seconds. tau(on) was dependent on the inter-stimulus interval, Delta t, such that reducing this interval below about 40 s resulted in an exponentially faster response. tau(off) was independent of At. Application of the calcium ionophore, ionomycin (10 mu M), showed that tau(on) became independent of Delta t after saturating elevation of the intracellular Ca(2+) concentration. Flash-photolytic release of intracellular caged calcium (25-mu M NP-EGTA/AM) showed that tau(on) is dependent on intracellular Ca(2+) concentration. These experiments imply an intracellular, calcium-dependent gating mechanism for hair-cell transducer channels. (c) 2004 Elsevier B.V. All results reserved. C1 Univ Tubingen, Sect Physiol Acoust & Commun, Dept Otolaryngol, D-72076 Tubingen, Germany. RP Gummer, AW (reprint author), Univ Tubingen, Sect Physiol Acoust & Commun, Dept Otolaryngol, Elfriede Aulhorn Str 5, D-72076 Tubingen, Germany. EM anthony.gummer@uni-tuebingen.de CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Bashtanov ME, 2004, J PHYSIOL-LONDON, V559, P287, DOI 10.1113/jphysiol.2004.065565 Connors K.A., 1990, CHEM KINETICS COREY DP, 1979, BIOPHYS J, V26, P499 Corey DP, 2004, NATURE, V428, P901, DOI 10.1038/428901a COREY DP, 1983, J NEUROSCI, V3, P962 CRAWFORD AC, 1991, J PHYSIOL-LONDON, V434, P369 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 Duncan RK, 1998, HEARING RES, V124, P69, DOI 10.1016/S0378-5955(98)00118-X FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 Furness DN, 1997, P ROY SOC B-BIOL SCI, V264, P45 Furness DN, 2002, HEARING RES, V173, P10, DOI 10.1016/S0378-5955(02)00584-1 FURNESS DN, 1989, HEARING RES, V38, P95, DOI 10.1016/0378-5955(89)90131-7 Gale JE, 2001, J NEUROSCI, V21, P7013 GarciaAnoveros J, 1997, ANNU REV NEUROSCI, V20, P567, DOI 10.1146/annurev.neuro.20.1.567 Geleoc GSG, 1997, P ROY SOC B-BIOL SCI, V264, P611 Ghazi A, 1998, BIOCHIMIE, V80, P357 Glowatzki E, 1997, NEUROPHARMACOLOGY, V36, P1269, DOI 10.1016/S0028-3908(97)00108-1 Goodyear R, 1999, J NEUROSCI, V19, P3761 Goodyear RJ, 2003, J NEUROSCI, V23, P4878 GUHARAY F, 1984, J PHYSIOL-LONDON, V352, P685 HACKNEY CM, 1997, P SENDAI EAR S, V7, P83 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 HACKNEY CM, 1992, P ROY SOC B-BIOL SCI, V248, P215, DOI 10.1098/rspb.1992.0064 HACKNEY CM, 1995, ACTIVE HEARING, P103 Hamill OP, 2001, PHYSIOL REV, V81, P685 Hamill OP, 1997, ANNU REV PHYSIOL, V59, P621, DOI 10.1146/annurev.physiol.59.1.621 Hamill OP, 1997, BIOL BULL, V192, P121, DOI 10.2307/1542583 He DZZ, 2004, NATURE, V429, P766, DOI 10.1038/nature02591 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Howard J, 2004, CURR BIOL, V14, pR224, DOI 10.1016/j.cub.2004.02.050 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9 Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 Kennedy HJ, 2003, NAT NEUROSCI, V6, P832, DOI 10.1038/nn1089 KIMITSUKI T, 1993, BRAIN RES, V624, P143, DOI 10.1016/0006-8993(93)90072-U KOSSL M, 1990, HEARING RES, V44, P217, DOI 10.1016/0378-5955(90)90082-Z KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 KROS CJ, 1992, P ROY SOC B-BIOL SCI, V249, P185, DOI 10.1098/rspb.1992.0102 Langer MG, 2001, BIOPHYS J, V80, P2608 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923 MARTINAC B, 1990, NATURE, V348, P261, DOI 10.1038/348261a0 Meyer J, 2001, HEARING RES, V161, P10, DOI 10.1016/S0378-5955(01)00338-0 Meyer J, 1998, J NEUROSCI, V18, P6748 Meyers JR, 2003, J NEUROSCI, V23, P4054 MOCKETT BG, 1994, J NEUROSCI, V14, P6992 PAE SS, 1994, P NATL ACAD SCI USA, V91, P1153, DOI 10.1073/pnas.91.3.1153 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 PICKLES JO, 1991, HEARING RES, V54, P153, DOI 10.1016/0378-5955(91)90116-Q Preyer S, 1996, AUDIT NEUROSCI, V2, P145 PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5 Preyer S, 1996, Audiol Neurootol, V1, P3 Ricci Anthony, 2003, J Am Acad Audiol, V14, P325 Ricci AJ, 2003, NEURON, V40, P983, DOI 10.1016/S0896-6273(03)00721-9 RUSCH A, 1994, J PHYSIOL-LONDON, V474, P75 Sachs F, 1997, SOC GEN PHY, V52, P209 SAUNDERS JC, 1989, J ACOUST SOC AM, V86, P1797, DOI 10.1121/1.398612 Schulte CC, 2002, HEARING RES, V164, P190, DOI 10.1016/S0378-5955(01)00431-2 SHOTWELL SL, 1981, ANN NY ACAD SCI, V374, P1, DOI 10.1111/j.1749-6632.1981.tb30854.x Siemens J, 2004, NATURE, V428, P950, DOI 10.1038/nature02483 Sollner C, 2004, NATURE, V428, P955, DOI 10.1038/nature02484 SUKHAREV SI, 1994, NATURE, V368, P265, DOI 10.1038/368265a0 Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010 van Netten SM, 2003, P NATL ACAD SCI USA, V100, P15510, DOI 10.1073/pnas.2632626100 Watson GM, 1997, HEARING RES, V107, P53, DOI 10.1016/S0378-5955(97)00022-1 Yamoah EN, 1998, J NEUROSCI, V18, P610 Zhang RT, 1996, BIOPHYS J, V70, P349 ZHAO Y, 1996, P NATL ACAD SCI USA, V94, P15469 NR 74 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 97 EP 113 DI 10.1016/j.heares.2004.11.013 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300011 PM 15811703 ER PT J AU Harkrider, AW Hedrick, MS AF Harkrider, AW Hedrick, MS TI Acute effect of nicotine on auditory gating in smokers and non-smokers SO HEARING RESEARCH LA English DT Article DE cholinergic; nAChRs; transdermal nicotine; mismatch negativity; auditory gating ID CORTICAL EVOKED-POTENTIALS; OUTER HAIR-CELLS; SCHIZOPHRENIC-PATIENTS; TOBACCO SMOKING; SUBCUTANEOUS NICOTINE; CIGARETTE-SMOKING; ACOUSTIC CHANGE; RAT; NORMALIZATION; PERFORMANCE AB This paper investigates the role of cholinergic mechanisms in auditory gating by assessing the acute effects of nicotine, an acetylcholinomimetic drug, on behavioral and electrophysiological measures of consonant-vowel (CV) discrimination in quiet and in broadband noise (BBN). fit a single-blind procedure, categorical boundaries and mismatch negativity (MMN) in two conditions (quiet, BBN) were obtained from 10 non-smokers and 4 smokers with normal hearing under two drug conditions (nicotine, placebo). After the nicotine sessions, plasma tests revealed a subject's nicotine concentration and subjects reported any symptoms. Larger MMN areas and steeper slopes at the boundary were interpreted as reflecting better electrophysiological and behavioral CV discrimination, respectively. Results indicate that, in non-smokers, the effects of nicotine on electrophysiological CV discrimination in quiet increase with an increase in severity of symptoms. Specifically, asymptomatic non-smokers (N = 5) demonstrate little improvement (and sometimes decrements) in performance while symptomatic non-smokers (N = 5) exhibit nicotine-enhanced discrimination, as do smokers. In noise, all subjects demonstrate nicotine-enhanced behavioral and electrophysiological discrimination. Additionally, in noise, smokers exhibit a larger number of measurable categorical boundaries as well as larger MMN areas than non-smokers in both placebo and nicotine sessions. Results are consistent with the hypothesis that nicotinic cholinergic mechanisms play a role in the gating of auditory stimuli. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Tennessee, Dept Speech Pathol & Audiol, Knoxville, TN 37996 USA. RP Harkrider, AW (reprint author), Univ Tennessee, Dept Speech Pathol & Audiol, 578 S Stadium Hall, Knoxville, TN 37996 USA. EM aharkrid@utk.edu CR ADLER LE, 1992, BIOL PSYCHIAT, V32, P607, DOI 10.1016/0006-3223(92)90073-9 ADLER LE, 1993, AM J PSYCHIAT, V150, P1856 Adler LE, 1998, SCHIZOPHRENIA BULL, V24, P189 *ANSI, 1996, S3221987 ANSI ARMITAGE AK, 1969, BRIT J PHARMACOL, V35, P152 BATTIG K, 1970, PSYCHOPHARMACOLOGIA, V18, P300, DOI 10.1007/BF00412675 BENWELL MEM, 1988, J NEUROCHEM, V50, P1243, DOI 10.1111/j.1471-4159.1988.tb10600.x BHARGAVA VK, 1978, NEUROPHARMACOLOGY, V17, P1009, DOI 10.1016/0028-3908(78)90026-6 BRAFF DL, 1992, ARCH GEN PSYCHIAT, V49, P206 BREESE CR, 1997, J PHARMACOL EXP THER, V232, P7 BROWN BA, 1967, ANN NY ACAD SCI, V562, P190 COHEN AJ, 1981, 4 TOB ADV COUNC CURZON P, 1994, PHARMACOL BIOCHEM BE, V49, P877, DOI 10.1016/0091-3057(94)90237-2 EDWARDS JA, 1983, PHARMACOL THERAPEUT, V19, P147 Ehlers CL, 1997, PHARMACOL BIOCHEM BE, V58, P713, DOI 10.1016/S0091-3057(97)90011-3 ELKINDHIRSCH KE, 1992, HEARING RES, V60, P143, DOI 10.1016/0378-5955(92)90016-G ELKINDHIRSCH KE, 1994, OTOLARYNG HEAD NECK, V110, P46, DOI 10.1016/S0194-5998(94)70791-X EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 Foulds J, 1996, PSYCHOPHARMACOLOGY, V127, P31, DOI 10.1007/BF02805972 FREEDMAN R, 1995, BIOL PSYCHIAT, V38, P22, DOI 10.1016/0006-3223(94)00252-X FRIEDMAN J, 1980, CLIN EXP PHARMACOL P, V7, P609, DOI 10.1111/j.1440-1681.1980.tb00119.x FRIEDMAN J, 1974, CLIN EXP PHARMACOL P, V1, P249, DOI 10.1111/j.1440-1681.1974.tb00547.x FUCHS PA, 1992, BRAIN RES, V159, P440 GOLDING JF, 1988, PHARMACOL BIOCHEM BE, V29, P23, DOI 10.1016/0091-3057(88)90268-7 GOLDSTEIN L, 1967, ANN NY ACAD SCI, V562, P170 Harkrider Ashley Whicker, 2001, Hearing Research, V160, P89 Harkrider AW, 2001, HEARING RES, V160, P73, DOI 10.1016/S0378-5955(01)00345-8 Harkrider AW, 2001, HEARING RES, V160, P99, DOI 10.1016/S0378-5955(01)00347-1 Hirata K, 1996, BRAIN TOPOGR, V8, P279, DOI 10.1007/BF01184785 Hirata K, 1996, Rinsho Shinkeigaku, V36, P1318 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 JONES GMM, 1992, PSYCHOPHARMACOLOGY, V108, P485, DOI 10.1007/BF02247426 KING C, 1995, HEARING RES, V85, P45, DOI 10.1016/0378-5955(95)00028-3 KLATT DH, 1980, J ACOUST SOC AM, V67, P971, DOI 10.1121/1.383940 KNOTT VJ, 1985, NEUROPSYCHOBIOLOGY, V13, P136, DOI 10.1159/000118176 KNOTT VJ, 1986, ADDICT BEHAV, V11, P219, DOI 10.1016/0306-4603(86)90050-X KNOTT VJ, 1978, PSYCHOPHYSIOLOGY, V15, P186, DOI 10.1111/j.1469-8986.1978.tb01360.x KNOTT VJ, 1985, NEUROPSYCHOBIOLOGY, V13, P74, DOI 10.1159/000118166 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 Levin E. D., 2002, NICOTINIC RECEPTORS LEVIN ED, 1992, PSYCHOPHARMACOLOGY, V108, P417, DOI 10.1007/BF02247415 LONGO VG, 1967, ANN NY ACAD SCI, V562, P159 LUNTZLEYBMAN V, 1992, BRAIN RES, V587, P130, DOI 10.1016/0006-8993(92)91437-J MARLER JA, 1997, INT EV RESP AUD STUD Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271 NEWHOUSE PA, 1992, PSYCHOPHARMACOLOGY, V108, P480, DOI 10.1007/BF02247425 Perkins KA, 1999, BEHAV PHARMACOL, V10, P597 Picton TW, 1985, HUMAN COMMUNICATION, V9, P127 SCHAEPPI U, 1967, ANN NY ACAD SCI, V562, P40 SIEGEL C, 1984, ARCH GEN PSYCHIAT, V41, P607 SRIVASTAVA ED, 1991, PSYCHOPHARMACOLOGY, V105, P63, DOI 10.1007/BF02316865 Stevens KE, 1997, PHARMACOL BIOCHEM BE, V57, P869, DOI 10.1016/S0091-3057(96)00466-2 STEVENS KE, 1995, PSYCHOPHARMACOLOGY, V119, P163, DOI 10.1007/BF02246157 WALDO M, 1992, PSYCHIAT RES, V44, P21, DOI 10.1016/0165-1781(92)90066-C WESNES K, 1983, PHARMACOL THERAPEUT, V21, P189, DOI 10.1016/0163-7258(83)90072-4 NR 57 TC 35 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 114 EP 128 DI 10.1016/j.heares.2004.11.009 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300012 PM 15811704 ER PT J AU Turner, JG Hughes, LF Caspary, DM AF Turner, JG Hughes, LF Caspary, DM TI Divergent response properties of layer-V neurons in rat primary auditory cortex SO HEARING RESEARCH LA English DT Article DE layer V; rat; primary auditory cortex; pyramidal; extracellular; receptive field; juxtacellular ID GERBIL MERIONES-UNGUICULATUS; INFERIOR COLLICULAR NEURONS; INTRINSIC FIRING PATTERNS; SUPERIOR OLIVARY COMPLEX; BIG BROWN BAT; CORTICOFUGAL MODULATION; PYRAMIDAL NEURONS; CORTICOCORTICAL CONNECTIONS; FUNCTIONAL-ORGANIZATION; COMMISSURAL CONNECTIONS AB Layer-V pyramidal cells comprise a major output of primary auditory cortex (Al). At least two cell types displaying different morphology, projections and in vitro physiology have been previously identified in layer-V. The focus of the present study was to characterize extracellular receptive field properties of layer-V neurons to determine whether a similar breakdown of responses can be found in vivo. Recordings from 105 layer-V neurons revealed two predominant receptive field types. Thirty-two percent displayed strong excitatory V/U-shaped receptive field maps and spiking patterns with shorter stimulus-driven interspike intervals (ISIs), reminiscent of the bursting cells discussed in the in vitro literature. V/U-shaped maps remained relatively unchanged across the three sequential repetitions of the map run on each neuron. Neurons with V/U-shaped maps were also easily depolarized with extracellular current pulse stimulation. In contrast, 47% of the neurons displayed Complex receptive field maps characterized by weak and/or inconsistent excitatory regions and were difficult to depolarize with current pulses. These findings suggest that V/U-shaped receptive fields could correspond to previously described intrinsic bursting (M) cells with corticotectal projections, and that neurons with Complex receptive fields might represent the regular spiking (RS) cells with their greater inhibitory input and corticocortical/corticostriatal projection pattern. (c) 2004 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Dept Pharmacol, Springfield, IL 62794 USA. So Illinois Univ, Sch Med, Dept Surg, Springfield, IL 62794 USA. RP Caspary, DM (reprint author), So Illinois Univ, Sch Med, Dept Pharmacol, POB 19629,801 N Rutledge St, Springfield, IL 62794 USA. EM dcaspary@siumed.edu CR AGMON A, 1989, NEUROSCI LETT, V99, P137, DOI 10.1016/0304-3940(89)90278-4 AITKIN LM, 1981, J COMP NEUROL, V196, P25, DOI 10.1002/cne.901960104 Beneyto M, 1998, J COMP NEUROL, V401, P329 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x CASPARY DM, 2003, ASS RES OT ABSTR 720 CHAGNACAMITAL Y, 1990, J COMP NEUROL, V296, P598, DOI 10.1002/cne.902960407 CODE RA, 1986, HEARING RES, V23, P205, DOI 10.1016/0378-5955(86)90110-3 COLEMAN JR, 1987, J COMP NEUROL, V262, P215, DOI 10.1002/cne.902620204 COLWELL SA, 1975, BRAIN RES, V92, P443, DOI 10.1016/0006-8993(75)90328-5 CONNORS BW, 1990, TRENDS NEUROSCI, V13, P99, DOI 10.1016/0166-2236(90)90185-D Coomes DL, 2004, EUR J NEUROSCI, V19, P2188, DOI 10.1111/j.1460-9568.2004.03317.x DESCHENES M, 1994, BRAIN RES, V664, P215, DOI 10.1016/0006-8993(94)91974-7 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6 DYKES RW, 1984, J NEUROPHYSIOL, V52, P1066 FAYELUND H, 1985, ANAT EMBRYOL, V173, P53, DOI 10.1007/BF00707304 Foeller E, 2001, JARO, V2, P279 GAMES KD, 1988, HEARING RES, V34, P1, DOI 10.1016/0378-5955(88)90047-0 Hara K, 2002, ANESTH ANALG, V94, P313, DOI 10.1097/00000539-200202000-00015 Hefti Brenda J., 2003, JARO Journal of the Association for Research in Otolaryngology, V4, P106, DOI 10.1007/s10162-002-3012-z Hefti BJ, 2000, J NEUROPHYSIOL, V83, P2626 HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Leventhal AG, 2003, SCIENCE, V300, P812, DOI 10.1126/science.1082874 MAGGI CA, 1986, EXPERIENTIA, V42, P109, DOI 10.1007/BF01952426 MORIIZUMI T, 1991, BRAIN RES BULL, V27, P141, DOI 10.1016/0361-9230(91)90297-W Nicoll A, 1996, J PHYSIOL-LONDON, V497, P109 OJIMA H, 1992, Cerebral Cortex, V2, P197, DOI 10.1093/cercor/2.3.197 PALOMBI PS, 1996, J NEUROPHYSIOL, V75, P2111 Paxinos G., 1998, RAT BRAIN STEREOTAXI Paxinos G, 1986, RAT BRAIN STEREOTAXI, V2nd Pilowsky PM, 2001, J COMP NEUROL, V433, P1, DOI 10.1002/cne.1120 Pinault D, 1996, J NEUROSCI METH, V65, P113, DOI 10.1016/0165-0270(95)00144-1 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 REALE RA, 1983, NEUROSCIENCE, V8, P67, DOI 10.1016/0306-4522(83)90026-X RUTTGERS K, 1990, BRAIN RES, V509, P71, DOI 10.1016/0006-8993(90)90310-8 Sakai M, 2001, P NATL ACAD SCI USA, V98, P3507, DOI 10.1073/pnas.061021698 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Suga N, 2000, P NATL ACAD SCI USA, V97, P11807, DOI 10.1073/pnas.97.22.11807 SUN X, 1989, BRAIN RES, V495, P1, DOI 10.1016/0006-8993(89)91212-2 Sutter ML, 2000, J NEUROPHYSIOL, V84, P1012 SYKA J, 1984, NEUROSCI LETT, V51, P235, DOI 10.1016/0304-3940(84)90557-3 Torterolo P, 1998, NEUROSCI LETT, V249, P172, DOI 10.1016/S0304-3940(98)00367-X TURNER JG, 2003, ASS RES OT ABSTR 200 VAUGHAN DW, 1983, BRAIN RES, V260, P181, DOI 10.1016/0006-8993(83)90673-X Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 Wang JA, 2002, BRAIN RES, V944, P219, DOI 10.1016/S0006-8993(02)02926-8 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weedman DL, 1996, J COMP NEUROL, V371, P311 Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 Winer JA, 1998, J COMP NEUROL, V400, P147 Winer JA, 2001, J COMP NEUROL, V434, P379, DOI 10.1002/cne.1183 WINGER JA, 1992, SPRINGER HDB AUDITOR, V1, P222 WINGUTH SD, 1986, J COMP NEUROL, V248, P36, DOI 10.1002/cne.902480104 Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033 Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x Yan W, 1998, NAT NEUROSCI, V1, P54, DOI 10.1038/255 Zhang YF, 1997, J NEUROPHYSIOL, V78, P3489 Zhang YF, 2000, J NEUROPHYSIOL, V84, P325 Zhou XM, 2000, BRAIN RES, V881, P62, DOI 10.1016/S0006-8993(00)02805-5 Zhou XM, 2000, J NEUROPHYSIOL, V84, P3083 Zhu JJ, 1999, J NEUROPHYSIOL, V81, P1171 Zilles Karl, 1995, P649 NR 68 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 129 EP 140 DI 10.1016/j.heares.2004.09.011 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300013 PM 15811705 ER PT J AU Nourski, KV Abbas, PJ Miller, CA Robinson, BK Jeng, FC AF Nourski, KV Abbas, PJ Miller, CA Robinson, BK Jeng, FC TI Effects of acoustic noise on the auditory nerve compound action potentials evoked by electric pulse trains SO HEARING RESEARCH LA English DT Article DE acoustic noise; adaptation; cochlear implant; compound action potential; electric-acoustic stimulation; guinea pig ID GUINEA-PIG; STIMULATION; RESPONSES; ADAPTATION AB This study investigated the effects of acoustic noise on the auditory nerve compound action potentials in response to electric pulse trains. subjects were adult guinea pigs, implanted with a minimally invasive electrode to preserve acoustic sensitivity. Electrically evoked compound action potentials (ECAP) were recorded front the auditory nerve trunk in response to electric pulse trains both during and after the presentation of acoustic white noise. Simultaneously presented acoustic noise produced a decrease in ECAP amplitude. The effect of the acoustic masker on the electric probe was greatest at the onset of the acoustic stimulus and it was followed by a partial recovery of the ECAP amplitude. Following, cessation of the acoustic noise, ECAP amplitude recovered over a period of approximately 100-200 ms. The effects of the acoustic noise were more prominent at lower electric Pulse rates (interpulse intervals of 3 ms and higher). At higher pulse rates, the ECAP adaptation to the electric Pulse train alone was larger and the acoustic noise, when presented, produced little additional effect. The observed effects of noise on ECAP were the greatest at high electric stimulus levels and. for a particular electric stimulus level. at high acoustic noise levels. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. RP Nourski, KV (reprint author), Univ Iowa, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. EM kirill-nourski@uiowa.edu CR ABKES BA, 2003, 26 ANN MIDW RES M AS, P197 Gstoettner W, 2004, ACTA OTO-LARYNGOL, V124, P348, DOI 10.1080/00016480410016432 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HARRIS DM, 1979, J NEUROPHYSIOL, V42, P1083 Hu N, 2003, HEARING RES, V185, P77, DOI 10.1016/S0378-5955(03)00261-2 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 Kiang NYS, 1965, RES MONOGRAPH, V35 KILLIAN MJP, 1994, HEARING RES, V81, P66, DOI 10.1016/0378-5955(94)90154-6 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 MILLER CA, 2003, EFFECTS REMAINING HA Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X MILLER CA, 2003, 2003 C IMPL AUD PROS, P15 Miller RG, 2001, AMYOTROPH LATERAL SC, V2, P3 MILLER WR, 2000, CLIN BREAST CANC S1, V1, P9 National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1 NOURSKI KV, 2003, SOC NEUR 33 ANN M 8 NOURSKI KV, 2003, 2003 C IMPL AUD PROS, P89 TURNER C, 2001, 2001 C IMPL AUD PROS, P33 WESTERMAN LA, 1984, HEARING RES, V15, P249, DOI 10.1016/0378-5955(84)90032-7 NR 19 TC 10 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 141 EP 153 DI 10.1016/j.heares.2004.11.001 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300014 PM 15811706 ER PT J AU Maeda, K Yoshida, K Ichimiya, I Suzuki, M AF Maeda, K Yoshida, K Ichimiya, I Suzuki, M TI Dexamethasone inhibits tumor necrosis factor-alpha-induced cytokine secretion from spiral ligament fibrocytes SO HEARING RESEARCH LA English DT Article DE cell culture; enzyme-linked immunosorbent assay; intercellular adhesion molecule-1; mice; reverse transcribed-polymerase chain reaction ID INTERCELLULAR-ADHESION MOLECULE-1; COCHLEAR LATERAL WALL; INNER-EAR; GLUCOCORTICOID RECEPTORS; PROINFLAMMATORY CYTOKINES; RAT COCHLEA; INFLAMMATION; EXPRESSION; CLONING; LOCALIZATION AB To investigate the effect of proinflammatory cytokines on spiral ligament (SL) fibrocytes and regulation of cytokines by dexamethasone (Dex), in vitro studies were performed in murine secondary cell cultures. Cultured SL fibrocytes were stimulated with tumor necrosis factor-alpha (TNF-alpha), and the secretion of various mediators was measured by enzynne-linked immunosorbent assay (ELISA) and reverse transcribed-polymerase chain reaction (RT-PCR). After stimulation with TNF-alpha, levels of keratinocyte-derived cytokine (KC), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), interleukin-6 (IL-6) and soluble intercellular adhesion molecule-1 (sICAM-1) were elevated in the culture supernatant, and their corresponding messenger RNAs were detected in the cultured fibrocytes. When the cultures were incubated with both TNF-alpha and Dex, the levels of KC. MCP-1. MIP-2 and IL-6 were significantly lower than those in Cultures treated with TNF-alpha alone. The data suggest that Dex suppresses the inflammatory response in SL fibrocytes. Given that SL fibrocytes play a role in cochlear fluid and ion homeostasis, glucocrticoids may suppress the cochlear malfunction caused by SL inflammation. (c) 2004 Elsevier B.V. All rights reserved. C1 Oita Univ, Fac Med, Dept Otolaryngol, Oita 8795593, Japan. RP Suzuki, M (reprint author), Oita Univ, Fac Med, Dept Otolaryngol, 1-1 Idaigaoka, Oita 8795593, Japan. EM suzukim@med.oita-u.ac.jp CR Barnes PJ, 1997, NEW ENGL J MED, V336, P1066 BAULIEU EE, 1989, ENDOCRINOLOGY, P16 COCHRAN BH, 1983, CELL, V33, P939, DOI 10.1016/0092-8674(83)90037-5 CRONSTEIN BN, 1992, P NATL ACAD SCI USA, V89, P9991, DOI 10.1073/pnas.89.21.9991 DRISCOLL KE, 1994, EXP LUNG RES, V20, P473, DOI 10.3109/01902149409031733 GUSTAFSSON JA, 1987, ENDOCR REV, V8, P185 ICHIMIYA I, 1994, ANN OTO RHINOL LARYN, V103, P457 Ichimiya I, 2003, ANN OTO RHINOL LARYN, V112, P722 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 Ichimiya I, 1998, LARYNGOSCOPE, V108, P585, DOI 10.1097/00005537-199804000-00023 Ichimiya I, 1999, HEARING RES, V131, P128, DOI 10.1016/S0378-5955(99)00025-8 Ichimiya I, 2000, HEARING RES, V139, P116, DOI 10.1016/S0378-5955(99)00170-7 KAWAUCHI H, 1988, ACTA OTOLARYNGOL S S, V457, P100 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KISHIMOTO TK, 1989, ADV IMMUNOL, V46, P149 Kopke RD, 2001, OTOL NEUROTOL, V22, P475, DOI 10.1097/00129492-200107000-00011 LIM D J, 1970, Journal of Laryngology and Otology, V84, P413, DOI 10.1017/S0022215100072029 Oran A, 1997, BRIT J DERMATOL, V136, P519, DOI 10.1111/j.1365-2133.1997.tb02134.x PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 Pousset F, 1999, GLIA, V26, P12, DOI 10.1002/(SICI)1098-1136(199903)26:1<12::AID-GLIA2>3.0.CO;2-S Proost P, 1996, INT J CLIN LAB RES, V26, P211, DOI 10.1007/BF02602952 QING L, 2000, BIOCHEM BIOPH RES CO, V271, P364 Rarey KE, 1996, OTOLARYNG HEAD NECK, V115, P38, DOI 10.1016/S0194-5998(96)70133-X RYSECK RP, 1989, EXP CELL RES, V180, P266, DOI 10.1016/0014-4827(89)90230-9 SCHUKNECHT HF, 1991, ADV OTO-RHINO-LARYNG, V46, P50 Shimazaki T, 2002, ANN OTO RHINOL LARYN, V111, P1133 Su YH, 1996, J VIROL, V70, P1277 Suko T, 2000, HEARING RES, V140, P137, DOI 10.1016/S0378-5955(99)00191-4 TEKAMPOLSON P, 1990, J EXP MED, V172, P911, DOI 10.1084/jem.172.3.911 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Yoshida K, 1999, HEARING RES, V137, P155, DOI 10.1016/S0378-5955(99)00134-3 NR 31 TC 29 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 154 EP 160 DI 10.1016/j.heares.2004.08.022 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300015 PM 15811707 ER PT J AU Washington, JL Pitts, D Wright, CG Erway, LC Davis, RR Alagramam, K AF Washington, JL Pitts, D Wright, CG Erway, LC Davis, RR Alagramam, K TI Characterization of a new allele of Ames waltzer generated by ENU mutagenesis SO HEARING RESEARCH LA English DT Article DE deafness; hair cells; Pcdh15; mouse ID HEARING-LOSS; ETHYLNITROSOUREA MUTAGENESIS; PROTOCADHERIN GENE; F1-HYBRID STRAINS; MUTANT ALLELES; MUTATIONS; PCDH15; POLARITY; MICE; DROSOPHILA AB Mutation in the protocadherin 15 (Pcdh15) gene causes hair cell dysfunction and is associated with abnormal stereocilia development. We have characterized the first allele (Pcdh15(a nu-nmf79)) of Ames waltzer (a nu) obtained by N-ethyl-N-nitrosourea (ENU) mutaizenesis. Pcdh15(a nu-nmf19) was generated in the Neuroscience Mutagenesis Facility (NMF) at The Jackson Lab (Bar Habor, USA). Pcdh15(a nu-nmf19) mutants display circling and abnormal swimming behavior along with lack of aUditory-evoked brainsterri response at the highest intensities tested. Mutation analysis shows base substitution (A - G) in the consensus splice donor sequence linked to exon 14 resulting in the skipping of exon 14 and the splicing of exon 13-15. This results in the introduction of a stop codon in the coding sequence of exon 15 due to shift in the reading frame. The effect of nmf19 mutation is expected to be severe since the expressed Pcdh15 protein is predicted to truncate in the 5th cadherin domain. Abnormalities of cochlear hair cell stereocilia are apparent in Pcdh15(a nu-nmf19) mutants near the time of birth and by about P15 (15 days after birth) there is evidence of sensory cell degeneration. Disorganization of outer hair cell stereocilia is observed as early as P2. Inner hair cell stereocilia are also affected, but less severely than those of the outer hair cells. These results are consistent with characteristics of the mutation in the Pcdh15(a nu-nmf19) allele and the, support our previous finding that Protocadherin 15 plays an important role in hair-bundle morphogenesis. (c) 2004 Elsevier B.V. All rights reserved. C1 Case Western Reserve Univ, Dept Otolaryngol Head & Neck Surg, Cleveland, OH 44106 USA. Case Western Reserve Univ, Dept Pediat, Cleveland, OH 44106 USA. Univ Texas, SW Med Ctr, Dept Otolaryngol Head & Neck Surg, Dallas, TX 75235 USA. Univ Cincinnati, Dept Biol Sci, Cincinnati, OH 45221 USA. NIOSH, Div Appl Res & Technol, Engn & Phys Hazards Branch, Hearing Loss Prevent Team, Cincinnati, OH 45226 USA. RP Alagramam, K (reprint author), Case Western Reserve Univ, Dept Otolaryngol Head & Neck Surg, 11100 Euclid Ave, Cleveland, OH 44106 USA. EM kna3@case.edu RI Davis, Rickie/A-3186-2008 CR Adler PN, 1998, DEVELOPMENT, V125, P959 Ahmed ZM, 2003, HUM MOL GENET, V12, P3215, DOI 10.1093/hmg/ddg358 Ahmed ZM, 2001, AM J HUM GENET, V69, P25, DOI 10.1086/321277 Alagramam KN, 1999, GENETICS, V152, P1691 Alagramam KN, 2001, NAT GENET, V27, P99 Alagramam KN, 2001, HUM MOL GENET, V10, P1709, DOI 10.1093/hmg/10.16.1709 Alagramam KN, 2000, HEARING RES, V148, P181, DOI 10.1016/S0378-5955(00)00152-0 BODE VC, 1984, GENETICS, V108, P457 Bray S, 2000, CURR BIOL, V10, pR155, DOI 10.1016/S0960-9822(00)00330-4 Eaton S, 1997, CURR OPIN CELL BIOL, V9, P860, DOI 10.1016/S0955-0674(97)80089-0 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X JUSTICE MJ, 1988, GENETICS, V120, P533 Raphael Y, 2001, HEARING RES, V151, P237, DOI 10.1016/S0378-5955(00)00233-1 SCHAIBLE RH, 1961, MOUSE NEWS LETT, V24, P38 Takeichi T, 2000, RRD POLYM SCI, V4, P85 Vivian JL, 2002, P NATL ACAD SCI USA, V99, P15542, DOI 10.1073/pnas.242474199 Winter CG, 2001, CELL, V105, P81, DOI 10.1016/S0092-8674(01)00298-7 NR 18 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 161 EP 169 DI 10.1016/j.heares.2004.09.014 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300016 PM 15811708 ER PT J AU Drennan, WR Pfingst, BE AF Drennan, WR Pfingst, BE TI Current-level discrimination using bipolar and monopolar electrode configurations in cochlear implants SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 26th Midwinter Meeting of the Association-for-Research-in-Otolaryngology CY FEB 23-27, 2003 CL Daytona Beach, FL SP Assoc Res Otolaryngol DE cochlear; implant; bipolar; monopolar; lntensity discrimination ID INTENSITY DISCRIMINATION; AUDITORY-NERVE; ELECTRICAL-STIMULATION; STIMULUS LEVEL; PSYCHOPHYSICS; EXCITATION; PATTERNS; DEGENERATION; PERFORMANCE; STRATEGIES AB This study examined current-level discrimination ability in listeners with cochlear implants using bipolar and monopolar electrode configurations. Current-level discrimination ability was measured as a function of electrode configuration (monopolar and bipolar), stimulation site (8 and 16) and level (5%, 15% 25%, 50% and 80% of the dynamic range). Weber fractions usually decreased with increasing level. Differences in Weber fractions between monopolar and bipolar configurations were observed for listeners with short durations of deafness (< 5 years). For these listeners, in the bipolar condition at the more-apical site 16, Weber fractions remained constant with increasing level, and the Weber fractions at low levels were smaller than in other conditions. We suggest that nerve density was better and the nerve-to-site-of-action-potential distance was smaller in these cases such that more fibers could be recruited with a unit increase in current level, leading to better current-level sensitivity. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Drennan, WR (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM warddrennan@yahoo.com CR Bierer JA, 2002, J NEUROPHYSIOL, V87, P478 Chatterjee M, 1999, J ACOUST SOC AM, V105, P850, DOI 10.1121/1.426274 Cohen LT, 2001, HEARING RES, V155, P63, DOI 10.1016/S0378-5955(01)00248-9 DILLIER N, 1983, ANN NY ACAD SCI, V405, P360, DOI 10.1111/j.1749-6632.1983.tb31650.x FLORENTINE M, 1981, J ACOUST SOC AM, V70, P1646, DOI 10.1121/1.387219 Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 HOCHMAIRDESOYER IJ, 1981, MED PROG TECHNOL, V8, P107 Kileny PR, 1998, AM J OTOL, V19, P313 LEHNHARDT E, 1992, J OTORHINOLARYNGOL R, V54, P308 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MERZENICH MM, 1977, FUNCTIONAL ELECT STI, P321 MOORE BCJ, 1974, J ACOUST SOC AM, V55, P1049, DOI 10.1121/1.1914646 Morris DJ, 2000, JARO, V1, P211, DOI 10.1007/s101620010022 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Nadol JB, 1997, OTOLARYNG HEAD NECK, V117, P220, DOI 10.1016/S0194-5998(97)70178-5 Nelson DA, 1996, J ACOUST SOC AM, V100, P2393, DOI 10.1121/1.417949 PFINGST BE, 1983, J ACOUST SOC AM, V73, P1283, DOI 10.1121/1.389277 PFINGST BE, 1990, HEARING RES, V50, P43, DOI 10.1016/0378-5955(90)90032-K Pfingst BE, 2001, JARO, V2, P87 PFINGST BE, 1984, ARCH OTOLARYNGOL, V110, P140 RYAN AF, 1990, HEARING RES, V50, P57, DOI 10.1016/0378-5955(90)90033-L Saunders E, 2002, EAR HEARING, V23, p28S, DOI 10.1097/00003446-200202001-00004 SHANNON RV, 1983, HEARING RES, V11, P157, DOI 10.1016/0378-5955(83)90077-1 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SPOENDLIN H, 1984, ACTA OTOLARYNGOL S S, V450, P1 SUZUKA Y, 1988, ANN OTOL RHINO LARYN, V158, P1 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 VIEMEIST.NF, 1972, J ACOUST SOC AM, V51, P1265, DOI 10.1121/1.1912970 Von Wallenberg E. L., 1995, Annals of Otology Rhinology and Laryngology, V104, P372 Zeng FG, 1999, NEUROREPORT, V10, P1931, DOI 10.1097/00001756-199906230-00025 ZENG FG, 1994, SCIENCE, V264, P564, DOI 10.1126/science.8160013 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 Zwolan TA, 1996, AM J OTOL, V17, P717 NR 33 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 170 EP 179 DI 10.1016/j.heares.2004.11.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300017 PM 15811709 ER PT J AU Valk, WL Wit, HP Segenhout, JM Dijk, F van der Want, JJL Albers, FWJ AF Valk, WL Wit, HP Segenhout, JM Dijk, F van der Want, JJL Albers, FWJ TI Morphology of the endolymphatic sac after an acute endolymphatic in the guinea pig hydrops SO HEARING RESEARCH LA English DT Article DE endolymphatic sac; homogeneous substance; volume regulation; endolymphatic hydrops; Meniere's disease ID INNER-EAR; COCHLEA; VOLUME; CELLS; RAT AB The role of the endolymphatic sac (ES) in endolymph volume homeostasis is speculative. The present study investigates changes of the ES's epithelia and luminal filling after induction of an acute endolymphatic hydrops. After microiniection of 1.1 mu l artificial endolymph into scala media of the cochlea, guinea pigs were terminated immediately (n = 6) or after different time intervals; 1/2 h (n = 3), 1 h (n = 4) and 2 h (n = 4). Inner ear specimens were processed for light and/or transmission electron microscopy. The noninjected contralateral ear served as a histological control. Correct injection was confirmed by detection of microspheres in the endolymphatic compartment after the same microinjection procedure. In all specimens, ribosome rich cells and intraluminal macrophages appeared to be actively involved in degradation of homogeneous substance (HS) by secreting lytic enzymes and digestion, respectively. Amazingly, in our study no ES differences were found between injected and non-injected ears and no distinct changes were observed in guinea pigs terminated after different time intervals. The ES's luminal HIS was always present and often to a large extent. This is in contrast with [Hear. Res. 138, 81] dramatic changes were observed. Endolymph volume homeostasis is a complex mechanism, in which the role of HS remains obscure. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands. RP Valk, WL (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30-001, NL-9700 RB Groningen, Netherlands. EM w.l.valk@kno.azg.nl CR BARTOLI E, 1989, AM J PHYSIOL, V257, P341 Beitz E, 2003, CELL MOL NEUROBIOL, V23, P315, DOI 10.1023/A:1023636620721 ERWALL C, 1988, HEARING RES, V35, P109, DOI 10.1016/0378-5955(88)90045-7 FUKAZAWA K, 1991, ANAT REC, V230, P425, DOI 10.1002/ar.1092300315 Grunnet M, 2003, J PHYSIOL-LONDON, V549, P419, DOI 10.1113/jphysiol.2003.038455 Hallpike C. S., 1938, J LARYNG, V53, P625, DOI 10.1017/S0022215100003947 IKEDA M, 1984, ANN OTO RHINOL LARYN, V93, P540 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 LEE KS, 1992, ACTA OTO-LARYNGOL, V112, P658, DOI 10.3109/00016489209137456 Mongin AA, 2001, PATHOPHYSIOLOGY, V8, P77, DOI 10.1016/S0928-4680(01)00074-8 PARKER DA, 1992, LARYNGOSCOPE, V102, P152 Peters TA, 2003, HEARING RES, V176, P94, DOI 10.1016/S0378-5955(02)00748-7 Qvortrup K, 1999, ACTA OTO-LARYNGOL, V119, P194 Qvortrup K, 1996, AM J PHYSIOL-RENAL, V270, pF1073 Rask-Andersen H, 1999, HEARING RES, V138, P81, DOI 10.1016/S0378-5955(99)00153-7 RASKANDERSEN H, 1979, ACTA OTO-LARYNGOL, V88, P315, DOI 10.3109/00016487909137175 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X Shinomori Y, 2001, ANN OTO RHINOL LARYN, V110, P91 Stankovic KM, 1997, HEARING RES, V114, P21, DOI 10.1016/S0378-5955(97)00072-5 Takeda T, 2003, HEARING RES, V182, P9, DOI 10.1016/S0378-5955(03)00135-7 Thalmann I, 2001, DIS MARKERS, V17, P259 Valk WL, 2004, HEARING RES, V192, P47, DOI 10.1016/j.heares.2003.12.021 Voie AH, 2002, HEARING RES, V171, P119, DOI 10.1016/S0378-5955(02)00493-8 Yan Z, 2003, LARYNGOSCOPE, V113, P1609, DOI 10.1097/00005537-200309000-00038 NR 24 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 180 EP 187 DI 10.1016/j.heares.2004.10.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300018 PM 15811710 ER PT J AU Phillips, DP Hall, SE AF Phillips, DP Hall, SE TI Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level SO HEARING RESEARCH LA English DT Article DE interaural time difference; interaural level difference; selective adaptations; psychophysics ID SPATIAL RECEPTIVE-FIELDS; CAT INFERIOR COLLICULUS; SOUND-LOCALIZATION; SELECTIVE ADAPTATION; SUPERIOR COLLICULUS; PROLONGED EXPOSURE; CORTEX; SENSITIVITY; RESPONSES; NEURONS AB Human listeners were studied for their ability to lateralize single target tones of each of two frequencies relative to midline clicks. They did so before and after exposure to adaptor tones of the same frequencies. The adaptor tones were strongly lateralized, and in opposite directions for each frequency, by either an interaural time difference (ITD, Experiment 1) or interaural level difference (ILD, Experiment 2). Following adaptation, psychometric functions for ITD (Exp. 1) and ILD (Exp. 2) were obtained for target tones for the two frequencies separately. These were found to be shifted in the direction of the fatigued side. fit the case of ILD, this was in the absence of a shift in monaural sensitivity sufficient to account for the effect. For both ITD and ILD studies, shifts in perceived laterality were induced in opposite directions at two frequencies concurrently. This effect was induced with only seconds of intermittent exposure to the adaptor tones. The fact that it could be induced at two frequencies in opposite directions at the same time, suggests (a), that these data constitute new psychophysical evidence for the frequency specificity of ITD and ILD coding in the human brain, and (b), that the effect was not due to the introduction of some response bias at the decision level of perceptual judgement. The data are interpreted in terms of a two- or three-channel opponent process model. (c) 2004 Elsevier B.V. All rights reserved. C1 Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. RP Phillips, DP (reprint author), Dalhousie Univ, Dept Psychol, Hearing Res Lab, Halifax, NS B3H 4J1, Canada. EM dennis.phillips@dal.ca RI Phillips, Dennis/A-6496-2011 CR Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 BRUGGE JF, 1970, J NEUROPHYSIOL, V33, P441 Carlile S, 2001, J ACOUST SOC AM, V110, P416, DOI 10.1121/1.1375843 Chatterjee M, 1999, J ACOUST SOC AM, V105, P1853, DOI 10.1121/1.426722 COOPER WE, 1974, J ACOUST SOC AM, V56, P617, DOI 10.1121/1.1903300 Dennett D. C., 1991, CONSCIOUSNESS EXPLAI Dong CJ, 1999, NAT NEUROSCI, V2, P863, DOI 10.1038/13161 Dong CJ, 2000, PERCEPT PSYCHOPHYS, V62, P1099, DOI 10.3758/BF03212091 EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6 ELFNER L, 1966, J ACOUST SOC AM, V39, P716, DOI 10.1121/1.1909946 Frisby J. P., 1980, SEEING ILLUSION BRAI GRANTHAM DW, 1989, PERCEPT PSYCHOPHYS, V45, P129, DOI 10.3758/BF03208047 GRANTHAM DW, 1979, PERCEPT PSYCHOPHYS, V26, P403, DOI 10.3758/BF03204166 HARI R, 1995, NEUROSCI LETT, V189, P29, DOI 10.1016/0304-3940(95)11443-Z JENKINS WM, 1982, J NEUROPHYSIOL, V47, P987 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 KELLY JB, 1991, HEARING RES, V55, P39, DOI 10.1016/0378-5955(91)90089-R KITZES LM, 1980, J COMP NEUROL, V192, P455, DOI 10.1002/cne.901920306 KNUDSEN EI, 1978, J NEUROPHYSIOL, V41, P870 KNUDSEN EI, 1978, SCIENCE, V200, P795, DOI 10.1126/science.644324 McAlpine D, 2001, NAT NEUROSCI, V4, P396, DOI 10.1038/86049 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 Mills A. W., 1972, F MODERN AUDITORY TH, V2, P301 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 Moore BC., 2003, INTRO PSYCHOL HEARIN MOORE DR, 1984, HEARING RES, V13, P175, DOI 10.1016/0378-5955(84)90107-2 PALMER AR, 1985, HEARING RES, V17, P267, DOI 10.1016/0378-5955(85)90071-1 Phillips D P, 2003, J Am Acad Audiol, V14, P518, DOI 10.3766/jaaa.14.9.7 PHILLIPS DP, 1981, HEARING RES, V4, P299, DOI 10.1016/0378-5955(81)90014-9 Phillips DP, 2002, PERCEPTION, V31, P875, DOI 10.1068/p3293 Phillips DP, 2002, HEARING RES, V167, P192, DOI 10.1016/S0378-5955(02)00393-3 PHILLIPS DP, 1985, ANNU REV PSYCHOL, V36, P245 PHILLIPS DP, 2001, PHYSL EAR, P613 Phillips DP, 2001, J ACOUST SOC AM, V110, P1539, DOI 10.1121/1.1396329 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 ROBERTS M, 1981, PERCEPT PSYCHOPHYS, V30, P309, DOI 10.3758/BF03206144 SAMSON FK, 1993, J NEUROPHYSIOL, V70, P492 SAWUSCH JR, 1981, J EXP PSYCHOL HUMAN, V7, P408, DOI 10.1037//0096-1523.7.2.408 SEMPLE MN, 1983, HEARING RES, V10, P203, DOI 10.1016/0378-5955(83)90054-0 Shore DI, 1998, J ACOUST SOC AM, V103, P3730, DOI 10.1121/1.423093 SMITH RL, 1977, J NEUROPHYSIOL, V40, P1098 Stecker GC, 2003, BIOL CYBERN, V89, P341, DOI 10.1007/s00422-003-0439-1 THURLOW WR, 1973, J ACOUST SOC AM, V53, P1573, DOI 10.1121/1.1913505 TSUCHITANI C, 1991, NEUROBIOLOGY HEARING, P163 TURNER CW, 1994, J ACOUST SOC AM, V96, P795, DOI 10.1121/1.410317 VOLMAN SF, 1989, J NEUROSCI, V9, P3083 Wichmann FA, 2001, PERCEPT PSYCHOPHYS, V63, P1293, DOI 10.3758/BF03194544 WISE LZ, 1985, J NEUROPHYSIOL, V54, P185 YIN TCT, 1983, J NEUROPHYSIOL, V50, P1020 YOST WA, 1974, J ACOUST SOC AM, V55, P1299, DOI 10.1121/1.1914701 NR 50 TC 35 Z9 35 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 188 EP 199 DI 10.1016/j.heres.2004.11.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300019 PM 15811711 ER PT J AU McFadden, SL Woo, JM Michalak, N Ding, DL AF McFadden, SL Woo, JM Michalak, N Ding, DL TI Dietary vitamin C supplementation reduces noise-induced hearing loss in guinea pigs SO HEARING RESEARCH LA English DT Article DE antioxidants; ascorbate; ascorbic acid; acoustic trauma; reactive oxygen species; free radicals ID ACOUSTIC TRAUMA; IMPULSE NOISE; COCHLEAR DAMAGE; LIPID-PEROXIDATION; OXIDATIVE DAMAGE; ASCORBIC-ACID; INNER-EAR; GLUTATHIONE; EXPOSURE; PROTECTION AB Vitamin C (ascorbate) is a water-soluble, low molecular weight antioxidant that works in conjunction with glutathione and other cellular antioxidants, and is effective against a variety of reactive oxygen species. including superoxide and hydroxyl radicals that have been implicated in the etiology of noise-induced hearing loss (NIHL). Whereas most animals can manufacture their own vitamin C. humans and a few other mammals such as guinea pigs lack the terminal enzyme for vitamin C synthesis and must obtain it from dietary Sources. To determine if Susceptibility to NIHL Could be influenced by manipulating dietary levels of vitamin C, albino guinea pigs were raised for 35 days on a diet with normal, supplemented or deficient levels of ascorbate, then exposed to 4 kHz octave band noise at 114 dB SPL for 6 h to induce permanent threshold shifts (PTS) of the scalp-recorded auditory brainstem response. Animals that received the highest levels of dietary ascorbate developed significantly less PTS for click stimuli and 4, 8, 12, and 16 kHz tones than animals on normal and deficient diets. Outer hair cell loss was minimal in all groups after noise exposure, but permanent damage to stereocilia were observed in noise-exposed ears. The results support the hypothesis that dietary factors influence individual Susceptibility to hearing loss, and suggest that high levels of vitamin C may be beneficial in reducing susceptibility to NIHL. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Buffalo, Ctr Hearing & Deafness, Dept Commun Sci & Disorders, Buffalo, NY 14214 USA. RP McFadden, SL (reprint author), Univ Buffalo, Ctr Hearing & Deafness, Dept Commun Sci & Disorders, 137E Cary Hall, Buffalo, NY 14214 USA. EM mcfadden@buffalo.edu CR BARJA G, 1994, FREE RADICAL BIO MED, V17, P105, DOI 10.1016/0891-5849(94)90108-2 BIESALSKI HK, 1990, J NUTR, V120, P726 Chatterjee I B, 1978, World Rev Nutr Diet, V30, P69 COLEMAN JW, 1976, ACTA OTO-LARYNGOL, V82, P33, DOI 10.3109/00016487609120860 Daruwala R, 1999, FEBS LETT, V460, P480, DOI 10.1016/S0014-5793(99)01393-9 de Rodas BZ, 1998, J ANIM SCI, V76, P1636 Duan ML, 2004, HEARING RES, V192, P1, DOI 10.1016/j.heares.2004.02.005 Esposito E, 2002, NEUROBIOL AGING, V23, P719, DOI 10.1016/S0197-4580(02)00078-7 GAO WY, 1992, HEARING RES, V62, P27, DOI 10.1016/0378-5955(92)90200-7 Ghosh MK, 1996, FREE RADICAL RES, V25, P173, DOI 10.3109/10715769609149922 GOLDENBERG H, 1994, J BIOENERG BIOMEMBR, V26, P359, DOI 10.1007/BF00762776 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GRENNER J, 1989, J ACOUST SOC AM, V86, P2223, DOI 10.1121/1.398483 Henderson D, 1999, ANN NY ACAD SCI, V884, P368, DOI 10.1111/j.1749-6632.1999.tb08655.x HENDERSON D, 1999, COCHLEAR PARM NOISE, P85 Hight NG, 2003, HEARING RES, V179, P21, DOI 10.1016/S0378-5955(03)00067-4 HU BH, 2001, NOISE INDUCED HEARIN, P203 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 JAIN A, 1992, P NATL ACAD SCI USA, V89, P5093, DOI 10.1073/pnas.89.11.5093 Jovanovic SV, 2000, ANN NY ACAD SCI, V899, P326 Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 Lomaestro BM, 1995, ANN PHARMACOTHER, V29, P1263 Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 McFadden SL, 1998, HEARING RES, V117, P81, DOI 10.1016/S0378-5955(98)00013-6 MEISTER A, 1982, BIOCHEM SOC T, V10, P78 MEISTER A, 1986, J AM COLL NUTR, V5, P137 MEISTER A, 1992, BIOCHEM PHARMACOL, V44, P1905, DOI 10.1016/0006-2952(92)90091-V *NAT AC SCI, 2000, DIET REF INT VIT C National Institute on Deafness and Other Communication Disorders, 2002, NIH PUB Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 PACKER JE, 1979, NATURE, V278, P737, DOI 10.1038/278737a0 Pourbakht A, 2003, HEARING RES, V178, P70, DOI 10.1016/S0378-5955(03)00039-X Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3 Quiles JL, 2002, TOXICOLOGY, V180, P79, DOI 10.1016/S0300-483X(02)00383-9 ROBERTSON D, 1982, HEARING RES, V7, P55, DOI 10.1016/0378-5955(82)90081-8 ROSE RC, 1993, FASEB J, V7, P1135 Scheibe F, 2000, EUR ARCH OTO-RHINO-L, V257, P10, DOI 10.1007/PL00007505 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SLEPECKY N, 1982, ACTA OTO-LARYNGOL, V93, P329, DOI 10.3109/00016488209130890 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 SLEPECKY N, 1981, ARCH OTO-RHINO-LARYN, V230, P273, DOI 10.1007/BF00456329 Som S, 1983, Acta Vitaminol Enzymol, V5, P243 Spongr V P, 1998, Scand Audiol Suppl, V48, P15 SUN AH, 1991, ACTA OTO-LARYNGOL, V111, P684, DOI 10.3109/00016489109138400 Van Campen LE, 2002, HEARING RES, V164, P29, DOI 10.1016/S0378-5955(01)00391-4 WELLS WW, 1994, J BIOENERG BIOMEMBR, V26, P369, DOI 10.1007/BF00762777 WILLOTT JF, 1991, ANGING AUDITORY SYST Yamane H, 1995, Acta Otolaryngol Suppl, V519, P87 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YAMASHITA D, IN PRESS BRAIN RES, V1019, P201 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 NR 53 TC 33 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 200 EP 208 DI 10.1016/j.heares.2004.10.011 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300020 PM 15811712 ER PT J AU Smittkamp, SE Durham, D AF Smittkamp, SE Durham, D TI Effect of cochlear integrity on cochlear nucleus neuron glucose metabolism in aged adult broiler chickens SO HEARING RESEARCH LA English DT Article DE aging; auditory; chicken; 2-deoxyglucose; nucleus magnocellularis ID STEM AUDITORY NUCLEI; HAIR CELL LOSS; RETINAL GANGLION-CELLS; BRAIN-STEM; TONOTOPIC ORGANIZATION; NEUROTROPHIC FACTOR; AFFERENT INFLUENCES; FREQUENCY ORGANIZATION; BREED DIFFERENCES; BASILAR PAPILLA AB Abrupt removal of excitatory input is devastating to post-synaptic neurons in normally functioning sensory systems. Ill both mammalian and avian auditory systems, abrupt temporary or permanent experimental deafferentation stimulates a cascade of changes in central auditory structures that can result in neuron death. Effects of naturally occurring progressive deafferentation oil central auditory structure and function have not been fully described. Extensive naturally occurring cochlear damage is found in some aged chickens, despite their regenerative capacity, providing the opportunity to examine the effects of this type of deafferentation on the avian cochlear nucleus (nucleus magnocellularis, NM). Previous evaluation of NM oxidative metabolism using cytochrome oxidase histochemistry revealed that naturally occurring cochlear damage results in down-regulated metabolism in corresponding regions of NM. It is unknown how progressive hair cell damage and loss affects NM glucose uptake. Here, NM glucose metabolism is assessed using 2-deoxyglucose uptake as a marker for metabolic activity in the presence of normal, mildly damaged, severely damaged, and totally damaged cochlear hair cells. Results indicate that while severe and total cochlear damage significantly decrease NM oxidative metabolism, only total damage results in significantly decreased NM glucose metabolism. Results are discussed in the context of functional reorganization and trophic support. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Dept Anat & Cell Biol, Kansas City, KS 66160 USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd,MS 3010, Kansas City, KS 66160 USA. EM ddurham@kumc.edu CR Agerman K, 1999, ANN NY ACAD SCI, V884, P131 Altschuler RA, 1999, ANN NY ACAD SCI, V884, P305, DOI 10.1111/j.1749-6632.1999.tb08650.x BESS FH, 1996, HEARING DISORDERS, P199 BOORD RL, 1969, ANN NY ACAD SCI, V167, P186, DOI 10.1111/j.1749-6632.1969.tb20444.x BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 Churchill JD, 1998, EXP BRAIN RES, V118, P189, DOI 10.1007/s002210050271 Cochran SL, 1999, J COMP NEUROL, V413, P271, DOI 10.1002/(SICI)1096-9861(19991018)413:2<271::AID-CNE8>3.0.CO;2-L COLGAN AL, 2002, ARO ABSTR, V25, P72 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 DeBello WM, 2001, J NEUROSCI, V21, P3161 Dietrich V, 2001, HEARING RES, V158, P95, DOI 10.1016/S0378-5955(01)00282-9 DIETRICH WD, 1985, J NEUROSCI, V5, P874 DURHAM D, 1985, J COMP NEUROL, V231, P446, DOI 10.1002/cne.902310404 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 Hiebert GW, 2002, J NEUROSCI RES, V69, P160, DOI 10.1002/jnr.10275 Horton JC, 1998, J NEUROSCI, V18, P5433 HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302 Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W Illing RB, 1997, J COMP NEUROL, V382, P116, DOI 10.1002/(SICI)1096-9861(19970526)382:1<116::AID-CNE8>3.0.CO;2-4 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 2003, J COMP NEUROL, V467, P354, DOI 10.1002/ene.10921 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 JONES SM, 1995, HEARING RES, V82, P149, DOI 10.1016/0378-5955(94)00173-N Kajikawa H, 1997, J NEUROCYTOL, V26, P501, DOI 10.1023/A:1018585508713 Klocker N, 2001, NEUROBIOL DIS, V8, P103, DOI 10.1006/nbdi.2000.0329 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 LEVAY S, 1980, J COMP NEUROL, V191, P1, DOI 10.1002/cne.901910102 LICHTENHAN JL, IN PRESS HEAR RES Linkenhoker BA, 2002, NATURE, V419, P293, DOI 10.1038/nature01002 LIPPE W, 1985, J COMP NEUROL, V237, P273, DOI 10.1002/cne.902370211 Lurie DI, 2000, HEARING RES, V149, P178, DOI 10.1016/S0378-5955(00)00181-7 Mandairon N, 2003, NEUROSCIENCE, V119, P507, DOI 10.1016/S0306-4522(03)00172-6 Manger PR, 1996, P ROY SOC B-BIOL SCI, V263, P933, DOI 10.1098/rspb.1996.0138 MANLEY GA, 1987, SCIENCE, V237, P655, DOI 10.1126/science.3603046 Marzella PL, 2002, CLIN EXP PHARMACOL P, V29, P363, DOI 10.1046/j.1440-1681.2002.03684.x Michler SA, 2002, J COMP NEUROL, V451, P250, DOI 10.1002/cne.10348 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 PARKS TN, 1978, J COMP NEUROL, V180, P439, DOI 10.1002/cne.901800303 Pirvola U, 1997, J NEUROBIOL, V33, P1019, DOI 10.1002/(SICI)1097-4695(199712)33:7<1019::AID-NEU11>3.0.CO;2-A Rajan R, 1998, J COMP NEUROL, V399, P35 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Ramer MS, 2002, MOL CELL NEUROSCI, V19, P239, DOI 10.1006/mcne.2001.1067 Reser DH, 1997, ACTA OTO-LARYNGOL, V117, P239, DOI 10.3109/00016489709117779 RYALS BM, 1982, ACTA OTO-LARYNGOL, V93, P205, DOI 10.3109/00016488209130873 SANDS SJ, 1999, ASS RES OT ABSTR, V22, P146 Sanes J.R., 2000, PRINCIPLES NEURAL SC, P1063 Saunders JC, 1998, J COMP NEUROL, V390, P412 Sawai H, 1996, J NEUROSCI, V16, P3887 SCHWABER MK, 1993, AM J OTOL, V14, P252 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1 Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008 SMITTKAMP SE, UNPUB HEAR RES Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Waleszczyk WJ, 2003, EUR J NEUROSCI, V17, P2351, DOI 10.1046/j.1460-9568.2003.02674.x WESTRUM LE, 1986, J COMP NEUROL, V243, P195, DOI 10.1002/cne.902430205 Wilkinson Brandy L, 2002, Brain Res Mol Brain Res, V99, P67 WILLIAMS PP, 1993, CAN J VET RES, V57, P1 Yasuno H, 2000, BRAIN RES, V887, P53, DOI 10.1016/S0006-8993(00)02966-8 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x NR 71 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 209 EP 221 DI 10.1016/j.heares.2004.10.009 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300021 PM 15811713 ER PT J AU Jen, PHS Wu, CH AF Jen, PHS Wu, CH TI The role of GABAergic inhibition in shaping the response size and duration selectivity of bat inferior collicular neurons to sound pulses in rapid sequences SO HEARING RESEARCH LA English DT Article DE bat; bicuculline; duration selectivity; inferior colliculus; GABA; response size ID BIG BROWN BAT; VENTRAL COCHLEAR NUCLEUS; DEPENDENT RECOVERY CYCLE; PRIMARY AUDITORY-CORTEX; EPTESICUS-FUSCUS; SPACE REPRESENTATION; REPETITION RATE; FM BAT; DIRECTIONAL SELECTIVITY; BICUCULLINE APPLICATION AB Natural sounds, Such as vocal communication sounds of many animal species typically occur as sequential sound pulses. Therefore, the response size of auditory neurons to a sound Pulse Would be inevitably affected when the sound pulse is preceded and succeeded by another Sound pulse (i.e., forward and backward masking). The present study presents data to show that increasing strength of GABAergic inhibition relative to excitation contributes to decreasing response size and sharpening of duration selectivity of bat inferior collicular (IC) neurons to Sound pulses in rapid sequences. The response size in number of impulses and duration selectivity of IC neurons were studied with a pulse train containing 9 sound pulses. A family of duration tuning curves was plotted for IC neurons using the number of impulses discharged to each presented sound pulse against pulse duration. Our data show that the response size of IC neurons progressively decreased and duration selectivity increased when determined with sequentially presented sound pulses. This variation in the response size and duration selectivity of IC neurons with sequentially presented sound pulses was abolished or reduced during bicuculline and GABA application. Bicuculline application increased the response size and broadened the duration tuning curve of IC neurons while GABA application produced opposite results. Possible mechanisms underlying increasing strength of GABAergic inhibition with sequentially presented sound pulses are presented. Biological significance of these findings in relation to acoustic signal processing is also discussed. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA. Univ Missouri, Interdisciplinary Neurosci Program, Columbia, MO 65211 USA. RP Jen, PHS (reprint author), Univ Missouri, Div Biol Sci, 208 Lefevre Hall, Columbia, MO 65211 USA. EM jenp@missouri.edu CR ADAMS JC, 1979, J COMP NEUROL, V183, P519, DOI 10.1002/cne.901830305 BORMANN J, 1988, TRENDS NEUROSCI, V11, P112, DOI 10.1016/0166-2236(88)90156-7 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 CALFORD MB, 1995, J NEUROPHYSIOL, V73, P1876 CASSEDAY JH, 1995, NEURAL REPRESENTATIO, P25 Casseday JH, 2000, J NEUROPHYSIOL, V84, P1475 CASSEDAY JH, 1994, SCIENCE, V264, P847, DOI 10.1126/science.8171341 Cooper J. R., 1982, BIOMEDICAL BASIS NEU Covey Ellen, 1995, Springer Handbook of Auditory Research, V5, P235 Ebert U, 1995, HEARING RES, V91, P160, DOI 10.1016/0378-5955(96)83100-5 Faure PA, 2003, J NEUROSCI, V23, P3052 Fubara BM, 1996, J COMP NEUROL, V369, P83 Fuzessery ZM, 1996, J NEUROPHYSIOL, V76, P1059 Galarreta M, 1998, NAT NEUROSCI, V1, P587 Galazyuk AV, 2000, J NEUROPHYSIOL, V83, P128 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 Griffin DR, 1958, LISTENING DARK HERBERT H, 1991, J COMP NEUROL, V304, P103, DOI 10.1002/cne.903040108 HOCHERMAN S, 1981, J NEUROPHYSIOL, V45, P987 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 JEN PHS, 1989, J COMP PHYSIOL A, V165, P1, DOI 10.1007/BF00613794 Jen PHS, 2000, BRAIN RES, V862, P127, DOI 10.1016/S0006-8993(00)02098-9 JEN PHS, 1982, J COMP PHYSIOL, V147, P351 JEN PHS, 1987, BRAIN RES, V419, P7, DOI 10.1016/0006-8993(87)90563-4 Jen PHS, 2001, J COMP PHYSIOL A, V187, P605, DOI 10.1007/s003590100233 Jen PHS, 1999, J COMP PHYSIOL A, V184, P185, DOI 10.1007/s003590050317 Jen PHS, 1999, J COMP PHYSIOL A, V185, P471, DOI 10.1007/s003590050408 Jen PHS, 2002, BRAIN RES, V948, P159, DOI 10.1016/S0006-8993(02)03056-1 KLUG A, 1995, J NEUROPHYSIOL, V74, P1701 Koch U, 1998, J NEUROPHYSIOL, V80, P71 LeBeau FEN, 1996, J NEUROPHYSIOL, V75, P902 LeBeau FEN, 2001, J NEUROSCI, V21, P7303 Lu Y, 1997, J COMP PHYSIOL A, V181, P331, DOI 10.1007/s003590050119 Lu Y, 2001, EXP BRAIN RES, V141, P331, DOI 10.1007/s002210100885 Lu Y, 2003, HEARING RES, V177, P100, DOI 10.1016/S0378-5955(03)00024-8 Lu Y, 1998, J NEUROPHYSIOL, V79, P2303 Lu Y, 2002, HEARING RES, V169, P140, DOI 10.1016/S0378-5955(02)00457-4 Malmierca MS, 1998, J NEUROSCI, V18, P10603 MORIYAMA T, 1994, HEARING RES, V79, P105, DOI 10.1016/0378-5955(94)90132-5 Oliver D. L., 1991, NEUROBIOLOGY HEARING, P195 OLIVER DL, 1994, J COMP NEUROL, V340, P27, DOI 10.1002/cne.903400104 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 PINHEIRO AD, 1991, J COMP PHYSIOL A, V169, P69 POLLAK GD, 1993, HEARING RES, V65, P99, DOI 10.1016/0378-5955(93)90205-F POLLAK GD, 1989, NEURAL BASIS ECHOLAC POON PWF, 1990, EXP BRAIN RES, V79, P83 ROBERTS RC, 1987, J NEUROCYTOL, V16, P333, DOI 10.1007/BF01611345 SAINTMARIE RL, 1989, HEARING RES, V42, P97 Saldana E, 1996, J COMP NEUROL, V371, P15, DOI 10.1002/(SICI)1096-9861(19960715)371:1<15::AID-CNE2>3.0.CO;2-O SHNEIDERMAN A, 1989, J COMP NEUROL, V286, P28, DOI 10.1002/cne.902860103 SIMMONS JA, 1979, SCIENCE, V203, P16, DOI 10.1126/science.758674 Suga N., 1997, ENCY ACOUSTICS, P1409 Suga N, 1998, CENTRAL AUDITORY PROCESSING AND NEURAL MODELING, P55 Winer JA, 1998, J COMP NEUROL, V400, P147 Wu LG, 1998, BIOPHYS J, V74, P3003 Wu M, 1991, Chin J Physiol, V34, P145 Wu Min, 1995, Rhinolophe, V11, P75 Wu MI, 1996, J COMP PHYSIOL A, V179, P385 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 Zhou XM, 2003, BRAIN RES, V973, P131, DOI 10.1016/S0006-8993(03)02575-7 Zhou XM, 2004, BRAIN RES, V1019, P281, DOI 10.1016/j.brainres.2004.06.004 Zhou XM, 2002, J COMP PHYSIOL A, V188, P815, DOI 10.1007/s00359-002-0367-x Zuckerman E.B., 1989, CHEM MATER, V1, P12, DOI 10.1021/cm00001a006 NR 63 TC 17 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 222 EP 234 DI 10.1016/j.heures.2004.11.008 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300022 PM 15811714 ER PT J AU Li, L Qi, JG He, Y Alain, C Schneider, BA AF Li, L Qi, JG He, Y Alain, C Schneider, BA TI Attribute capture in the precedence effect for long-duration noise sounds SO HEARING RESEARCH LA English DT Article DE precedence effect; fusion; reverberant environment; correlation; gap; event-related potential ID INFERIOR COLLICULUS; ECHO SUPPRESSION; SIMULATED ECHOES; AUDITORY-CORTEX; DISCRIMINATION; LOCALIZATION; CAT; LATERALIZATION; RESPONSES; BREAKDOWN AB Listeners perceptually fuse the direct wave from a sound Source with its reflections off nearby surfaces into a single sound image, located at or near the Sound source (the precedence effect). This study investigated how a brief gap presented in the middle of either a direct wave or simulated reflection is incorporated into the fused image. For short (< 9.5 ms) delays between the direct (leading) and reflected (lagging) waves. no sound was perceived from the direction of the lagging wave. For delays between 10 and 15 ins. both Sounds were perceived. but the gap was heard only on the leading side. When the gap was only in the correlated lagging Sound at short delays, it also was perceived as occurring on the leading side. Moreover, gap detection thresholds were the same for gaps in the leading and lagging sounds. suggesting that the perception of the gap was not suppressed, but rather incorporated into the leading sound. Finally. scalp event-related potentials were not associated with the precedence effect until the gap occurred. This suggests that cortical mechanisms are engaged to maintain fusion when attributes in direct or reflected waves change. (c) 2004 Elsevier B.V. All rights reserved. C1 Peking Univ, Natl Key Lab Machine Precept, Speech & Hearing Res Ctr, Dept Psychol, Beijing 100871, Peoples R China. Univ Toronto, Dept Psychol, Ctr Res Biol Commun Syst, Mississauga, ON L5L 1C6, Canada. Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada. RP Li, L (reprint author), Peking Univ, Natl Key Lab Machine Precept, Speech & Hearing Res Ctr, Dept Psychol, Beijing 100871, Peoples R China. EM liang@psych.utoronto.ca CR Blauert J., 1997, SPATIAL HEARING CLIFTON RK, 1989, PERCEPT PSYCHOPHYS, V46, P139, DOI 10.3758/BF03204973 CLIFTON RK, 1987, J ACOUST SOC AM, V82, P1834, DOI 10.1121/1.395802 Clifton RK, 2002, PERCEPT PSYCHOPHYS, V64, P180, DOI 10.3758/BF03195784 CLIFTON RK, 1994, J ACOUST SOC AM, V95, P1525, DOI 10.1121/1.408540 CORNELISSE LE, 1987, NEUROPSYCHOLOGIA, V25, P449, DOI 10.1016/0028-3932(87)90033-9 Fitzpatrick DC, 1995, J NEUROPHYSIOL, V74, P2469 Fitzpatrick DC, 1999, J ACOUST SOC AM, V106, P3460, DOI 10.1121/1.428199 Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 FREYMAN RL, 1991, J ACOUST SOC AM, V90, P874, DOI 10.1121/1.401955 Freyman RL, 1998, J ACOUST SOC AM, V103, P2031, DOI 10.1121/1.421350 Hartung K, 2001, J ACOUST SOC AM, V110, P1505, DOI 10.1121/1.1390339 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LI L, 2002, HEARING RES, V168, P113 Liebenthal E, 1999, J ACOUST SOC AM, V106, P291, DOI 10.1121/1.427057 Litovsky RY, 2001, J ACOUST SOC AM, V109, P346, DOI 10.1121/1.1328792 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1285 Litovsky RY, 1998, J NEUROPHYSIOL, V80, P1302 Litovsky RY, 2002, HEARING RES, V165, P177, DOI 10.1016/S0378-5955(02)00304-0 Litovsky RY, 1998, J ACOUST SOC AM, V103, P3139, DOI 10.1121/1.423072 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 Litovsky RY, 1997, J NEUROPHYSIOL, V77, P2223 Litovsky RY, 2002, J NEUROPHYSIOL, V87, P976, DOI 10.1152/jn.00568.2001 PERROTT D R, 1987, Journal of Auditory Research, V27, P59 Picton TW, 2000, CLIN NEUROPHYSIOL, V111, P53, DOI 10.1016/S1388-2457(99)00227-8 Rakerd B, 2000, J ACOUST SOC AM, V107, P1061, DOI 10.1121/1.428287 SHINNCUNNINGHAM BG, 1993, J ACOUST SOC AM, V93, P2923, DOI 10.1121/1.405812 Tollin DJ, 1999, J ACOUST SOC AM, V105, P838, DOI 10.1121/1.426273 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 YIN TCT, 1994, J NEUROSCI, V14, P5170 Zurek P. M., 1987, DIRECTIONAL HEARING, P85, DOI 10.1007/978-1-4612-4738-8_4 ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 NR 32 TC 25 Z9 29 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 235 EP 247 DI 10.1016/j.heures.2004.10.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300023 PM 15811715 ER PT J AU Schmerber, S Sheykholeslami, K Kermany, MH Hotta, S Kaga, K AF Schmerber, S Sheykholeslami, K Kermany, MH Hotta, S Kaga, K TI Time-intensity trading in bilateral congenital aural atresia patients SO HEARING RESEARCH LA English DT Article DE bone conduction; sound lateralization; binaural processing; plasticity; auditory cues; human ID SUPERIOR OLIVARY COMPLEX; ANCHORED HEARING-AID; INTERAURAL TIME; AUDITORY LOCALIZATION; SOUND LOCALIZATION; BRAIN-STEM; BARN OWL; PHYSIOLOGICAL-MECHANISMS; LATERALIZATION; BONE AB In an effort to examine the rules by which information of bilaterally applied bone-conducted signals arising from interaural time differences (ITD) and interaural intensity differences (IID) is combined, data were measured for continuous 500 Hz narrow band noise at 65-70 dB HL in 11 patients with bilateral congenital aural atresia. Time-intensity trading functions were obtained by shifting the sound image towards one side using ITD, and shifting back to a centered sound image by varying the IID in the same ear (auditory midline task). ITD values were varied from -600 to +600 ps at 200 ps steps, where negative values indicate delays to the right ear. The results indicate that time-intensity trading is present in patients with bilateral aural atresia. The gross response properties of time-intensity trading in response to bone-conducted signals were comparable in patients with bilateral aural atresia and normal-hearing Subjects, though there was a larger inter-subject variability and higher discrimination thresholds across IlDs in the atresia group. These results suggest that the mature auditory brainstem has a potential to employ binaural cues later in life, although to a restricted degree. A binaural fitting of a bone-conducted hearing aid might optimize binaural hearing and improve sound lateralization, and we recommend now systematically bilateral fitting in aural atresia patients. (c) 2004 Elsevier B.V. All rights reserved. C1 CHU Grenoble, Serv ORL, Univ Hosp, Dept Otolaryngol, F-38043 Grenoble, France. Univ Tokyo, Grad Sch Med, Dept Otolaryngol, Tokyo, Japan. RP Schmerber, S (reprint author), CHU Grenoble, Serv ORL, Univ Hosp, Dept Otolaryngol, BP 217, F-38043 Grenoble, France. EM sschmerber@chu-greuoble.fr CR Barany E, 1938, ACTA OTO-LARYNGOL, V26, P1 BAUER BB, 1965, J ACOUST SOC AM, V39, P25 Beggs W D, 1980, Br J Audiol, V14, P41, DOI 10.3109/03005368009078899 Blauert J., 1997, SPATIAL HEARING PSYC Calzolari F, 1999, BRIT J AUDIOL, V33, P303 CASSEDAY JH, 1975, J NEUROPHYSIOL, V38, P842 Gantz BJ, 2002, OTOL NEUROTOL, V23, P169, DOI 10.1097/00129492-200203000-00012 GOLDBERG JM, 1969, J NEUROPHYSIOL, V32, P613 HAFTER ER, 1977, J ACOUST SOC AM, V62, P633, DOI 10.1121/1.381565 HAFTER ER, 1990, J ACOUST SOC AM, V87, P1702, DOI 10.1121/1.399418 Harkrider A W, 1998, J Am Acad Audiol, V9, P410 HERSHKOW.RM, 1969, J ACOUST SOC AM, V46, P1583, DOI 10.1121/1.1911908 Illing RB, 2000, MICROSC RES TECHNIQ, V51, P364, DOI 10.1002/1097-0029(20001115)51:4<364::AID-JEMT6>3.0.CO;2-E Irvine D. R. F., 1992, MAMMALIAN AUDITORY P, P153 IRVING R, 1967, J COMP NEUROL, V130, P77, DOI 10.1002/cne.901300105 JAHN AF, 1982, AM J OTOLARYNG, V3, P133, DOI 10.1016/S0196-0709(82)80044-6 Kaga K, 2001, ACTA OTO-LARYNGOL, V121, P274 KAGA K, 1995, INT J PEDIATR OTORHI, V32, P13, DOI 10.1016/0165-5876(94)01108-A King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 Klemm O, 1920, ARCH GESAMTE PSYCHOL, V40, P117 KNUDSEN EI, 1983, SCIENCE, V222, P939, DOI 10.1126/science.6635667 KNUDSEN EI, 1984, J NEUROSCI, V4, P1012 Knudsen EI, 1999, J COMP PHYSIOL A, V185, P305, DOI 10.1007/s003590050391 KOEHNKE J, 1995, EAR HEARING, V16, P331, DOI 10.1097/00003446-199508000-00001 LANGENBECK B, 1954, ANN OTOLARYNGOL, P509 Lewald J, 1998, EXP BRAIN RES, V121, P230, DOI 10.1007/s002210050456 Lewald J, 2000, J NEUROPHYSIOL, V84, P1107 Mayer TE, 1997, AM J NEURORADIOL, V18, P53 McPartland JL, 1997, HEARING RES, V113, P165, DOI 10.1016/S0378-5955(97)00142-1 Moore D R, 1986, Acta Otolaryngol Suppl, V429, P51 MOORE DR, 1991, AUDIOLOGY, V30, P125 Moore D R, 1993, J Am Acad Audiol, V4, P277 Moore D R, 1985, Acta Otolaryngol Suppl, V421, P19 MOUSHEGIAN G, 1959, J ACOUST SOC AM, V31, P1441, DOI 10.1121/1.1907647 Okajima H, 1996, Acta Otolaryngol Suppl, V525, P18 Polyakov A, 1996, HEARING RES, V94, P107, DOI 10.1016/0378-5955(96)00009-3 Pratt H, 1996, J Basic Clin Physiol Pharmacol, V7, P235 ROSENZWEIG MR, 1961, PSYCHOL BULL, V58, P376, DOI 10.1037/h0042114 ROSENZWEIG M, 1961, SCI AM, V205, P132 SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 Snik AFM, 1998, ANN OTO RHINOL LARYN, V107, P187 STOTLER WA, 1953, J COMP NEUROL, V98, P401, DOI 10.1002/cne.900980303 TSUCHITANI C, 1964, J NEUROPHYSIOL, V27, P814 van der Pouw KTM, 1998, LARYNGOSCOPE, V108, P548, DOI 10.1097/00005537-199804000-00016 VONBEKESY G, 1957, J ACOUST SOC AM, P1059 WHITWORTH R, 1961, J ACOUST SOC AM, V33, P925, DOI 10.1121/1.1908849 WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 Wittmann J, 1925, ARCH GESAMTE PSYCHOL, V51, P21 YOST WA, 1971, J ACOUST SOC AM, V50, P1526, DOI 10.1121/1.1912806 YOST WA, 1991, HEARING RES, V56, P8, DOI 10.1016/0378-5955(91)90148-3 YOUNG LL, 1976, J SPEECH HEAR RES, V19, P55 NR 51 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 248 EP 257 DI 10.1016/j.heures.2004.11.012 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300024 PM 15811716 ER PT J AU Leshinsky-Silver, E Berman, Z Vinkler, C Yannov-Sharav, M Lev, D AF Leshinsky-Silver, E Berman, Z Vinkler, C Yannov-Sharav, M Lev, D TI A novel missense mutation in the Connexin 26 gene associated with autosomal recessive sensorineural deafness SO HEARING RESEARCH LA English DT Article DE Connexin 26; sensorineural deafness; mutation ID HEARING-LOSS AB Mutations in the Connexin 26 (Cx26) gene (GJB2) are a common cause of hereditary hearing impairment. We report the identification of a novel point mutation in the Cx26 gene, Leu205Pro(L205P), linked to familial, autosomal recessive sensorineural hearing loss. This missense mutation, causing amino acid leucine at position 205 to be substituted by proline, is located in the highly conserved sequence of the fourth transmembrane domain (TM4) of Cx26. Hearing loss with this mutation occurred in a Georgian Jewish family, was congenital, moderate to profound and nonprogressive. We have shown that the new mutation L205P in Cx26 is strongly associated with congenital NSHL. Multiple-sample screening for this mutation can be easily performed with a mismatch PCR that creates a restriction site. (c) 2004 Elsevier B.V. All rights reserved. C1 Wolfson Med Ctr, Mol Genet Lab, IL-58100 Holon, Israel. Wolfson Med Ctr, Genet Inst, IL-58100 Holon, Israel. RP Leshinsky-Silver, E (reprint author), Wolfson Med Ctr, Mol Genet Lab, POB 5, IL-58100 Holon, Israel. EM leshinsky@wolfson.health.gov.il CR Cohen M.M., 1995, HEREDITARY HEARING L, P9 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001 Kumar NM, 1996, CELL, V84, P381, DOI 10.1016/S0092-8674(00)81282-9 LIU XZ, 2000, HUM MOL GENET, V137, P368 Liu XZ, 2001, HUM MOL GENET, V10, P2945, DOI 10.1093/hmg/10.25.2945 Mese G, 2004, HUM GENET, V115, P191, DOI 10.1007/s00439-004-1142-6 Morle L, 2000, J MED GENET, V37, P368, DOI 10.1136/jmg.37.5.368 Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009 VanCamp G, 1997, AM J HUM GENET, V60, P758 Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605 NR 11 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD APR PY 2005 VL 202 IS 1-2 BP 258 EP 261 DI 10.1016/j.heares.2004.11.003 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 919JM UT WOS:000228614300025 PM 15811717 ER PT J AU Yarin, YM Amarjargal, N Fuchs, J Haupt, H Mazurek, B Morozova, SV Gross, J AF Yarin, YM Amarjargal, N Fuchs, J Haupt, H Mazurek, B Morozova, SV Gross, J TI Argon protects hypoxia-, cisplatin- and gentamycin-exposed hair cells in the newborn rat's organ of Corti SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 41st Inner Ear Biology Workshop CY SEP 05-07, 2004 CL Debrecen, HUNGARY DE argon; cisplatin; gentamycin; hair cells; hypoxia; ototoxicity ID SUDDEN HEARING-LOSS; GUINEA-PIG COCHLEA; NOBLE-GASES; TRANSMITTER RELEASE; INDUCED APOPTOSIS; MOUSE COCHLEA; CA2+ CHANNELS; IN-VITRO; XENON; DEATH AB During the last few years, an important protective effect of the noble gas xenon against neuronal hypoxic damage was observed. However, argon (Ar), a gas from the same chemical group, but less expensive and without anesthetic effect at normobaric pressure, has not been studied in terms of possible biological effects on cell protection. Ar was tested for its ability to protect organotypic cultures of the organ of Corti from 3-5 day old rats against hypoxia, cisplatin, and gentamycin toxicity. Cultures were exposed to nitrogen hypoxia (5%, CO2, 95% N-2), Ar hypoxia (5% CO2, 95% Ar) or normoxia for 30 h. Ar protected the hair cells from hypoxia-induced damage by about 25%. Ar oxygen (O-2) mixtures (21% O-2, 5% CO2, 74% Ar) had no effect on the hair cell survival. Cisplatin (7.5-25 mu M) and gentamycin (5-40 mu M) exposed in medium under air damaged the hair cells in a dose-dependent manner. The exposure of cisplatin- and gentamycin-treated cultures to the Ar-O-2 atmosphere significantly reduced the hair cell damage by up to 25%. This protective effect of Ar might provide a new protective approach against ototoxic processes. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Med Berlin, Charite, Dept Otolaryngol, Mol Biol Res Lab, D-14050 Berlin, Germany. Tech Univ Dresden, Dept Otorhinolaryngol, D-8027 Dresden, Germany. Hlth Sci Univ, Matern & Child Hlth Res Ctr, Pediat Clin, Dept Hearing Res, Ulaanbaatar, Mongol Peo Rep. IM Sechenov Moscow Acad Med, Dept Otorhinolaryngol, Moscow, Russia. RP Gross, J (reprint author), Univ Med Berlin, Charite, Dept Otolaryngol, Mol Biol Res Lab, Spandauer Damn 130,Bldg 31, D-14050 Berlin, Germany. EM johann.gross@charite.de CR Abraini JH, 2003, ANESTH ANALG, V96, P746, DOI 10.1213/01.ANE.0000050282.14291.38 Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Altschuler EL, 2001, MED HYPOTHESES, V56, P227, DOI 10.1054/mehy.2000.1159 Arnold T, 1998, HEARING RES, V125, P147, DOI 10.1016/S0378-5955(98)00144-0 Chen GD, 1999, HEARING RES, V138, P181, DOI 10.1016/S0378-5955(99)00157-4 Cheng AG, 1999, BRAIN RES, V850, P234, DOI 10.1016/S0006-8993(99)01983-6 Cinamon U, 2001, EUR ARCH OTO-RHINO-L, V258, P477, DOI 10.1007/s004050100366 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 de Sousa SLM, 2000, ANESTHESIOLOGY, V92, P1055, DOI 10.1097/00000542-200004000-00024 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 DOLIN SJ, 1986, BRIT J PHARMACOL, V88, P909 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 FILLOUX FM, 1994, EUR J PHARM-MOLEC PH, V269, P325, DOI 10.1016/0922-4106(94)90040-X FISCH U, 1984, AM J OTOL, V5, P488 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Franks JJ, 1998, ANESTHESIOLOGY, V89, P149, DOI 10.1097/00000542-199807000-00022 Franks NP, 1998, NATURE, V396, P324, DOI 10.1038/24525 Koblin DD, 1998, ANESTH ANALG, V87, P419, DOI 10.1097/00000539-199808000-00035 Koga K, 2003, J COMP NEUROL, V456, P105, DOI 10.1002/cne.10479 Kopke RD, 1997, AM J OTOL, V18, P559 Lawrence J. H., 1946, JOUR PHYSIOL, V105, P197 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 Lipton P, 1999, PHYSIOL REV, V79, P1431 Lowenheim H, 1999, HEARING RES, V128, P16, DOI 10.1016/S0378-5955(98)00181-6 Lynch C, 2000, ANESTHESIOLOGY, V92, P865, DOI 10.1097/00000542-200003000-00031 Ma D, 2002, BRIT J ANAESTH, V89, P739, DOI 10.1093/bja/aef258 Ma DQ, 2003, ANESTHESIOLOGY, V98, P690, DOI 10.1097/00000542-200303000-00017 MARTINDALE L, 2002, J CELL PHYSL, V192, P1 Mazurek B, 2003, HEARING RES, V182, P2, DOI 10.1016/S0378-5955(03)00134-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 OSTREICHER E, 1998, ORL J OROTHINOLARYNG, V60, P18 Pavlov BN, 1997, HIGH PRESSURE BIOL M, P133 Petzelt C, 2003, LIFE SCI, V72, P1909, DOI 10.1016/S0024-3205(02)02439-6 Prange T, 1998, PROTEINS, V30, P61, DOI 10.1002/(SICI)1097-0134(19980101)30:1<61::AID-PROT6>3.0.CO;2-N Puchala M, 1999, FREE RADICAL BIO MED, V26, P1284, DOI 10.1016/S0891-5849(98)00336-0 Puel JL, 2002, AUDIOL NEURO-OTOL, V7, P49, DOI 10.1159/000046864 Pujol R, 1990, Acta Otolaryngol Suppl, V476, P32 Quillin ML, 2000, J MOL BIOL, V302, P955, DOI 10.1006/jmbi.2000.4063 Robertson D, 2002, J NEUROPHYSIOL, V87, P2734, DOI 10.1152/jn.00327.2001 Ryan AF, 2000, P NATL ACAD SCI USA, V97, P6939, DOI 10.1073/pnas.97.13.6939 SELVADURAI DK, 2000, CLIN OTOLARYNGOL, V25, P570, DOI 10.1046/j.1365-2273.2000.00422-16.x Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shulagin Iu A, 2001, Fiziol Cheloveka, V27, P95 Siddik ZH, 2003, ONCOGENE, V22, P7265, DOI 10.1038/sj.onc.1206933 Silver IA, 1997, NEUROSCIENCE, V78, P589, DOI 10.1016/S0306-4522(96)00600-8 Staecker H, 2001, ACTA OTO-LARYNGOL, V121, P666, DOI 10.1080/00016480152583593 Sunami K, 1999, EUR ARCH OTO-RHINO-L, V256, P323, DOI 10.1007/s004050050156 Tabuchi Y, 2002, BIOCHEM BIOPH RES CO, V290, P498, DOI 10.1006/bbrc.2001.6203 THALMANN R, 1970, LARYNGOSCOPE, V80, P1619, DOI 10.1288/00005537-197011000-00001 Trudell JR, 1998, ANESTH ANALG, V87, P411, DOI 10.1097/00000539-199808000-00034 Wade RS, 1996, CHEM RES TOXICOL, V9, P1382, DOI 10.1021/tx9600457 Wilhelm S, 2002, ANESTHESIOLOGY, V96, P1485, DOI 10.1097/00000542-200206000-00031 Yamamoto S, 1997, J NEUROPHYSIOL, V78, P903 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 NR 55 TC 18 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 EI 1878-5891 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2004.09.015 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200001 PM 15721555 ER PT J AU Roman, S Canevet, G Marquis, P Triglia, JM Liegeois-Chauvel, C AF Roman, S Canevet, G Marquis, P Triglia, JM Liegeois-Chauvel, C TI Relationship between auditory perception skills and mismatch negativity recorded in free field in cochlear-implant users SO HEARING RESEARCH LA English DT Article DE mismatch negativity; cochlear implant; frequency discrimination; detection thresholds; word discrimination ID SPEECH RECOGNITION; EVOKED-RESPONSES; DISCRIMINATION; PERFORMANCE; POTENTIALS; COMPONENTS; STIMULI; RANGE AB This study investigated the ability of cochlear-implanted patients to discriminate tone bursts in free field using the electrophysiological recordings of mismatch negativity (MMN). Seven cochlear-implanted patients (CIP) and eight control subjects (CS) were tested. Event-related potentials were recorded from either 32 or 64 electrodes in response to binaural stimuli using a passive oddball paradigm. Two stimulus-contrast conditions were used to produce MMN: The standard-tone frequency was fixed at 1 kHz, and the deviant-tone frequency was set at 2 or 1.5 kHz. The results show that response waveforms (N-1/P-2) are similar in latency and amplitude for CS and CIP, suggesting that pure-tone detection is performed over the same time window in both groups. These waveforms are also similar in left- and right-implanted patients, suggesting that electric stimulation of the auditory nerve activates both hemispheres in profound, bilateral hearing loss. Pure-tone audiograms and word-discrimination scores were also measured in each subject in an anechoic room and their relations with MMN data were examined. Correlations were found between the latency of MMN for a 1.5 kHz deviant and the thresholds obtained for pure-tone detection and word discrimination. MMN appears as a possible complementary clinical toot to objectively assess auditory sensitivity in cochlear-implanted populations. However, further improvements are still necessary before it can be used as a standard clinical examination. (c) 2004 Elsevier B.V. All rights reserved. C1 CHU Timone, Lab Audiophonol Clin, F-13385 Marseille, France. CNRS, Lab Mecan & Acoust, F-13402 Marseille, France. Fac Med Marseille, INSERM, Lab Neurophysiol & Neuropsychol, F-13385 Marseille, France. RP Roman, S (reprint author), CHU Timone, Lab Audiophonol Clin, Rue St Pierre, F-13385 Marseille, France. EM stephane.roman@mail.ap-hm.fr CR ADLER G, 1989, AUDIOLOGY, V28, P316 [Anonymous], 1987, 226 ISO, P226 Blamey P, 1996, Audiol Neurootol, V1, P293 BRINKMANN K, 1994, ACUSTICA, V80, P453 Chouard C H, 1998, Ann Otolaryngol Chir Cervicofac, V115, P129 Fant G., 1973, SPEECH SOUNDS FEATUR Groenen P, 1996, Audiol Neurootol, V1, P112 GROENEN PA, 1996, ACTA OTOLARYNGOL, V16, P785 *ISR R, 1961, 226 ISR R KHOSLA D, 2003, JARO-J ASSOC RES OTO, V4, P1 KITZES L M, 1984, Brain Research, V306, P171, DOI 10.1016/0006-8993(84)90366-4 KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G KRAUS N, 1992, EAR HEARING, V13, P158, DOI 10.1097/00003446-199206000-00004 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 Maurer J, 2002, LARYNGOSCOPE, V112, P2220, DOI 10.1097/00005537-200212000-00017 McGee T, 1997, EVOKED POTENTIAL, V104, P359, DOI 10.1016/S0168-5597(97)00024-5 Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X Okusa M, 1999, OTOLARYNG HEAD NECK, V121, P610, DOI 10.1016/S0194-5998(99)70067-7 PELIZZONE M, 1989, AUDIOLOGY, V28, P230 Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 Ponton CW, 1997, EVOKED POTENTIAL, V104, P143, DOI 10.1016/S0168-5597(97)96104-9 PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010 Skinner MW, 1997, J ACOUST SOC AM, V101, P3766, DOI 10.1121/1.418383 Summerfield AQ, 1995, COCHLEAR IMPLANTATIO van Dijk JE, 1999, AUDIOLOGY, V38, P109 Wable J, 2000, CLIN NEUROPHYSIOL, V111, P743, DOI 10.1016/S1388-2457(99)00298-9 Waltzman S B, 1995, Ann Otol Rhinol Laryngol Suppl, V165, P15 WOODS DL, 1995, CLIN NEUROPHYSIOL, V44, P102 Zeng FG, 2002, J ACOUST SOC AM, V111, P377, DOI 10.1121/1.1423926 NR 31 TC 19 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 10 EP 20 DI 10.1016/j.heares.2004.08.021 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200002 PM 15721556 ER PT J AU Toyama, K Ozeki, M Hamajima, Y Lin, JZ AF Toyama, K Ozeki, M Hamajima, Y Lin, JZ TI Expression of the integrin genes in the developing cochlea of rats SO HEARING RESEARCH LA English DT Article DE integrins; cochlear development; microarrays; NF-kappa B; Sprague-Dawley rats ID FIBROBLAST-GROWTH-FACTOR; INNER-EAR; CELL-ADHESION; EXTRACELLULAR-MATRIX; IDENTIFICATION; PROLIFERATION; ACTIVATION; PATHWAY; ORGAN; CORTI AB Integrins play an important role in the development of the cochlea. However, little is known about the expression pattern of integrins in-the developing cochlear tissue. In this Study, we investigated the dynamic expression profile of the integrin genes in the developing cochlear tissue of rats by Affymetrix microarrays and explored the role of the integrin genes in vitro by using antisense oligonucleotides. It was demonstrated that the alpha 1, alpha 7, alpha v, beta 3, and beta 4 genes were expressed in the developing cochlear tissue of rats. Inhibition of the integrin expression with antisense oligonucleotides against alpha v, alpha 7, beta 3, and beta 4, respectively, in cochlear sensorineural epithelial cells significantly decreased the [H-3]thymidine incorporation, suggesting that these integrins are involved in cell growth and proliferation. Inhibition of the alpha v and beta 4 integrins significantly decreased the transcription of nuclear factor-kappa B (NF-kappa B, a signal molecule involved in cell growth and proliferation) induced by epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), respectively. It suggests that EGF-induced cell growth is dependent upon the alpha v integrin whereas bFGF-induced cell growth is dependent upon the beta 4 integrin in the cochlear tissue during the development of the inner ear. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Minnesota, Sch Med, Dept Otolaryngol, Auditory Mol Biol Lab, Minneapolis, MN 55455 USA. RP Lin, JZ (reprint author), Univ Minnesota, Sch Med, Dept Otolaryngol, Auditory Mol Biol Lab, Minneapolis, MN 55455 USA. EM linxx004@umn.edu CR Biswas DK, 2000, P NATL ACAD SCI USA, V97, P8542, DOI 10.1073/pnas.97.15.8542 BROOKS PC, 1994, SCIENCE, V264, P569, DOI 10.1126/science.7512751 Cohen-Salmon M, 1997, P NATL ACAD SCI USA, V94, P14450, DOI 10.1073/pnas.94.26.14450 Davies D, 2002, J COMP NEUROL, V445, P122, DOI 10.1002/cne10161 Eudy JD, 1998, SCIENCE, V280, P1753, DOI 10.1126/science.280.5370.1753 Giancotti FG, 1999, SCIENCE, V285, P1028, DOI 10.1126/science.285.5430.1028 HYNES RO, 1992, CELL, V69, P11, DOI 10.1016/0092-8674(92)90115-S HYNES RO, 1987, CELL, V48, P549, DOI 10.1016/0092-8674(87)90233-9 Ladher RK, 2000, SCIENCE, V290, P1965, DOI 10.1126/science.290.5498.1965 Lee YW, 2004, ACTA OTO-LARYNGOL, V124, P558, DOI 10.1080/00016480410016577 Legan PK, 1997, SEMIN CELL DEV BIOL, V8, P217, DOI 10.1006/scdb.1997.0145 Legan PK, 1997, J BIOL CHEM, V272, P8791 Lin JH, 2003, HEARING RES, V175, P2, DOI 10.1016/S0378-5955(02)00704-9 Lin JZ, 1999, J INFECT DIS, V179, P1145, DOI 10.1086/314714 Littlewood Evans Amanda, 2000, Nature Genetics, V24, P424 Malgrange B, 2002, MECH DEVELOP, V112, P79, DOI 10.1016/S0925-4773(01)00642-6 McGuirt WT, 1999, NAT GENET, V23, P413 MONTGOMERY AMP, 1994, P NATL ACAD SCI USA, V91, P8856, DOI 10.1073/pnas.91.19.8856 Mueller KL, 2002, J NEUROSCI, V22, P9368 Ozeki M, 2003, HEARING RES, V179, P43, DOI 10.1016/S0378-5955(03)00077-7 Petit B, 1996, EXP CELL RES, V225, P151, DOI 10.1006/excr.1996.0166 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 Pirvola U, 2000, J NEUROSCI, V20, P6125 RUOSLAHTI E, 1987, SCIENCE, V238, P491, DOI 10.1126/science.2821619 Schwartz MA, 2001, J CELL SCI, V114, P2553 Simmler MC, 2000, NAT GENET, V24, P139, DOI 10.1038/72793 van der Flier A, 2001, CELL TISSUE RES, V305, P285, DOI 10.1007/s004410100417 Yamada S, 1995, CELL ADHES COMMUN, V3, P311, DOI 10.3109/15419069509081016 Zheng JL, 1997, J NEUROSCI, V17, P216 NR 29 TC 11 Z9 13 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 21 EP 26 DI 10.1016/j.heares.2004.04.019 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200003 PM 15721557 ER PT J AU Wysocki, LE Ladich, F AF Wysocki, LE Ladich, F TI Effects of noise exposure on click detection and the temporal resolution ability of the goldfish auditory system SO HEARING RESEARCH LA English DT Article DE auditory evoked potentials; auditory temporal resolution; noise exposure; temporal hearing loss ID BRAIN-STEM RESPONSES; INDUCED HEARING-LOSS; CARASSIUS-AURATUS; ACOUSTIC COMMUNICATION; UNDERWATER NOISE; FISH; SOUNDS; BEHAVIOR; DISCRIMINATION; SENSITIVITY AB Hearing specialist fishes investigated so far revealed excellent temporal resolution abilities, enabling them to accurately process temporal patterns of sounds. Because noise is a growing environmental problem, we investigated how it affects the temporal resolution ability of goldfish. Auditory evoked potentials (AEPs) in response to clicks and double clicks were recorded before exposing, immediately after exposing the fish to white noise of 158 dB re 1 mu Pa for 24 h, and after 3, 7 and 14 days of recovery. Immediately after noise exposure, hearing sensitivity to clicks was reduced on average by 21 dB and recovered within 1 week. Amplitudes of the AEPs decreased by about 71% while latencies increased by 0.63 ins. Both AEP characteristics returned to baseline values within 2 weeks. Analysis of the response to double clicks showed that the minimum click period resolvable by the auditory system increased significantly from 1.25 to 2.08 ms immediately after noise exposure. After a recovery period of 3 days, this minimum period returned to pre-exposure values. The present study revealed that noise exposure affects the detection of short transient signals and the temporal resolution ability. Because acoustic information is primarily encoded via temporal patterns of sounds in fishes, environmental noise could severely impair acoustic orientation and communication. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Vienna, Inst Zool, A-1090 Vienna, Austria. RP Wysocki, LE (reprint author), Univ Vienna, Inst Zool, Althanstr 14, A-1090 Vienna, Austria. EM Lidia.Wysocki@univie.ac.at CR Amoser S, 2003, J ACOUST SOC AM, V113, P2170, DOI 10.1121/1.1557212 Andrew R. K., 2002, Acoustics Research Letters Online, V3, DOI 10.1121/1.1461915 BAUER P, 1991, J ACOUST SOC AM, V90, P3086, DOI 10.1121/1.401418 CHURCH MW, 1993, EAR HEARING, V14, P249, DOI 10.1097/00003446-199308000-00004 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 Corwin J.T., 1981, HEARING SOUND COMMUN, P81 Crawford JD, 1997, MAR FRESHW BEHAV PHY, V29, P65 Dooling RJ, 1997, P NATL ACAD SCI USA, V94, P14206, DOI 10.1073/pnas.94.25.14206 Enger PS, 1981, HEARING SOUND COMMUN, P243 FAY RR, 1980, J NEUROPHYSIOL, V44, P312 FAY RR, 1983, HEARING RES, V12, P31, DOI 10.1016/0378-5955(83)90117-X FAY RR, 1982, J ACOUST SOC AM, V72, P753, DOI 10.1121/1.388255 FAY RR, 1995, HEARING RES, V89, P146, DOI 10.1016/0378-5955(95)00132-8 FAY RR, 1982, J COMP PHYSIOL, V147, P201 Fay R.R., 1985, P28 Fay RR, 1998, HEARING RES, V120, P69, DOI 10.1016/S0378-5955(98)00058-6 Feng A. S., 1999, COMP HEARING FISH AM, P218 Fraenkel R, 2003, AUDIOL NEURO-OTOL, V8, P129, DOI 10.1159/000069476 GERALD JW, 1971, EVOLUTION, V25, P75, DOI 10.2307/2406500 GRIFFITHS SK, 1994, HEARING RES, V74, P221, DOI 10.1016/0378-5955(94)90190-2 HAMERNIK RP, 1982, NEW PERSPECTIVES NOI Handegard NO, 2003, AQUAT LIVING RESOUR, V16, P265, DOI 10.1016/S0990-7440(03)00020-2 Hastings MC, 1996, J ACOUST SOC AM, V99, P1759, DOI 10.1121/1.414699 HAWKINS AD, 1978, J MAR BIOL ASSOC UK, V58, P891 HAWKINS AD, 1983, BIOACOUSTICS COMP AP, P373 Kenyon TN, 1998, J COMP PHYSIOL A, V182, P307, DOI 10.1007/s003590050181 Kratochvil H, 2000, J COMP PHYSIOL A, V186, P279, DOI 10.1007/s003590050428 Ladich F, 1998, ETHOLOGY, V104, P517 Ladich F, 1997, MAR FRESHW BEHAV PHY, V29, P87 Ladich F, 2003, HEARING RES, V182, P119, DOI 10.1016/S0378-5955(03)00188-6 Ladich F., 1992, Bioacoustics, V4, P131 Ladich Friedrich, 2003, P173, DOI 10.1007/978-0-387-22628-6_9 LOMBARTE A, 1993, HEARING RES, V64, P166, DOI 10.1016/0378-5955(93)90002-I Mann DA, 1997, J ACOUST SOC AM, V101, P3783, DOI 10.1121/1.418425 Marvit P, 2000, J ACOUST SOC AM, V108, P1819, DOI 10.1121/1.1287845 McCauley RD, 2003, J ACOUST SOC AM, V113, P638, DOI 10.1121/1.1527962 Mitson RB, 2003, AQUAT LIVING RESOUR, V16, P255, DOI 10.1016/S0990-7440(03)00021-4 Myrberg A.A. Jr, 1978, P137 MYRBERG AA, 1972, J EXP BIOL, V57, P727 MYRBERG AA, 1990, ENVIRON INT, V16, P575, DOI 10.1016/0160-4120(90)90028-5 PEARSON WH, 1992, CAN J FISH AQUAT SCI, V49, P1343, DOI 10.1139/f92-150 Platt C., 1981, HEARING SOUND COMMUN, P3 POPOV VV, 1990, J COMP PHYSIOL A, V166, P385 Popper A.N., 1999, COMP HEARING FISH AM, P43 POPPER AN, 1976, COMP BIOCHEM PHYS A, V53, P11, DOI 10.1016/S0300-9629(76)80003-5 Santulli A, 1999, MAR POLLUT BULL, V38, P1105, DOI 10.1016/S0025-326X(99)00136-8 SAUNDERS J, 1975, P NATL ACAD SCI USA, V71, P1961 Scholik AR, 2001, HEARING RES, V152, P17, DOI 10.1016/S0378-5955(00)00213-6 Scholik AR, 2002, COMP BIOCHEM PHYS A, V133, P43, DOI 10.1016/S1095-6433(02)00108-3 SCHWARZ AL, 1984, CAN J FISH AQUAT SCI, V41, P1183, DOI 10.1139/f84-140 Smith ME, 2004, J EXP BIOL, V207, P427, DOI 10.1242/jeb.00755 SPANIER E, 1979, Z TIERPSYCHOL, V51, P301 SUPIN AY, 1995, J ACOUST SOC AM, V97, P2586, DOI 10.1121/1.411913 SVERDRUP A, 1994, J FISH BIOL, V45, P973 Vabo R, 2002, FISH RES, V58, P59, DOI 10.1016/S0165-7836(01)00360-5 Wysocki LE, 2003, J EXP BIOL, V206, P2229, DOI 10.1242/jeb.00417 Wysocki LE, 2001, J COMP PHYSIOL A, V187, P177, DOI 10.1007/s003590100186 Wysocki LE, 2002, HEARING RES, V169, P36, DOI 10.1016/S0378-5955(02)00336-2 NR 58 TC 29 Z9 32 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 27 EP 36 DI 10.1016/j.heares.2004.08.015 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200004 PM 15721558 ER PT J AU Avallone, B Fascio, U Senatore, A Balsamo, G Bianco, PG Marmo, F AF Avallone, B Fascio, U Senatore, A Balsamo, G Bianco, PG Marmo, F TI The membranous labyrinth during larval development in lamprey (Lampetra planeri, Bloch, 1784) SO HEARING RESEARCH LA English DT Article DE Lampetra planeri; brook lamprey; membranous labyrinth; hair cells; Macula communis; ciliated chamber ID ULTRASTRUCTURE; ANATOMY; EAR AB SEM and CLSM studies were performed on the membranous labyrinth of Lampetra planeri, a threatened species of brook lamprey, spanning from the 1st to the 4th year of ammocoetes larval stages and on the adults. In all the examined stages, the entire membranous labyrinth does not show any morphologic differences, but only a progressive increase in size. SEM and CLSM observations show that the ciliated chamber is lined with numerous unsensorial multiciliated cells. In the early stages, the ciliary bundles were approximately 15 mu m long, while in the late stages they reached 30 mu m. In the crista sensory area, we observed two populations of hair cells. "Type II" cells are peculiar for this species and show both long stereocilia decreasing in length and a long kinocilium (10-12 mu m). Two other types of ciliary bundles have been found on the sensory hair cells of the Macula communis: the first one has both kinocilium and stereocilia about 4-5 mu m long; the second shows a long kinocilium (7-10 mu m in length) and short stereocilia bundles with a gradual increase in length. In the early stages of development, the three macular areas show few and sparsely distributed hair cells. In the late developmental stages, hair cells become more numerous and densely populated. (c) 2004 Published by Elsevier B.V. C1 Univ Naples Federico II, Dept Genet Gen & Mol Biol, Naples, Italy. Univ Milan, CIMA, I-20122 Milan, Italy. Univ Naples Federico II, Dept Zool, Naples, Italy. RP Marmo, F (reprint author), Univ Naples Federico II, Dept Genet Gen & Mol Biol, Naples, Italy. EM Avallone@biol.dgbm.unina.it; marmo@biol.dgbm.unina.it CR Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6 BHAVE SA, 1995, J NEUROSCI, V15, P4618 CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358 de Burlet HM, 1930, ACTA OTO-LARYNGOL, P5 Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103 HAGELIN LO, 1974, ACTA ZOOL STOCKHOL S, P218 HARDISTY MW, 1979, BYOLOGY CYCLOSTOMATE HOSHINO T, 1975, ACTA OTO-LARYNGOL, V80, P43, DOI 10.3109/00016487509121299 Jarvik E., 1980, BASIC STRUCTURE EVOL, V1 Jorgensen JM, 1998, ACTA ZOOL-STOCKHOLM, V79, P251 LOWENSTE.O, 1968, PROC R SOC SER B-BIO, V170, P113, DOI 10.1098/rspb.1968.0029 LOWENSTE.O, 1970, PROC R SOC SER B-BIO, V176, P21, DOI 10.1098/rspb.1970.0031 MYGIND S M, 1948, Pract Otorhinolaryngol (Basel), V10, P292 POPPER AN, 1977, J MORPHOL, V153, P397, DOI 10.1002/jmor.1051530306 POPPER AN, 1987, BRAIN BEHAV EVOLUT, V30, P43, DOI 10.1159/000118637 Retzius G., 1881 Romer A.S., 1966, VERTEBRATE PALEONTOL THORNHIL.RA, 1972, PROC R SOC SER B-BIO, V181, P175, DOI 10.1098/rspb.1972.0045 NR 18 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 37 EP 43 DI 10.1016/j.heares.2004.09.002 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200005 PM 15721559 ER PT J AU Williams, EJ Bacon, SP AF Williams, EJ Bacon, SP TI Compression estimates using behavioral and otoacoustic emission measures SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT Annual Convention of the American-Speech-Language-Hearing-Association CY NOV 13-15, 2003 CL Chicago, IL SP Amer Speech Language Hearing Assoc DE compression; distortion product otoacoustic emissions; forward masking ID BASILAR-MEMBRANE NONLINEARITY; INPUT-OUTPUT FUNCTIONS; GUINEA-PIG COCHLEA; NORMAL-HEARING; CHINCHILLA COCHLEA; PERIPHERAL COMPRESSION; AUDITORY COMPRESSION; MOSSBAUER TECHNIQUE; GROWTH-BEHAVIOR; IN-VIVO AB Cochlear compression in normal-hearing listeners was estimated at octave frequencies from 250 to 4000 Hz using a forward-masking paradigm. Temporal masking curves (TMCs) for a 10-dB SL signal were obtained with two maskers - one equal in frequency to the signal and another an octave below the signal. The ratio of the slope of the off-frequency function to that of the mid-level portion of the on-frequency function was computed as an estimate of the amount of compression at each frequency. Compression was less frequency selective at low frequencies, so an average of the off-frequency slopes at high frequencies (1000, 2000, and 4000 Hz) was used in computing the ratio for each signal frequency. Results indicated strong compression (similar to 0.15-0.30) at all frequencies using the averaged off-frequency slopes, indicating little difference in compression across frequencies. Distortion product otoacoustic emission (DPOAE) input-output (I-O) functions were obtained for each subject at 1000, 2000, and 4000 Hz. The slopes of the DPOAE I-O functions and the psychophysical growth rates were similar to one another, reinforcing the assumption that the forward-masking procedure is providing an estimate of cochlear compression, at least at frequencies from 1000 to 4000 Hz. (c) 2004 Elsevier B.V. All rights reserved. C1 Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, Tempe, AZ 85287 USA. RP Bacon, SP (reprint author), Arizona State Univ, Dept Speech & Hearing Sci, Psychoacoust Lab, POB 870102, Tempe, AZ 85287 USA. EM spb@asu.edu CR American National Standards Institute (ANSI), 1996, S361996 ANSI Bacon Sid P., 2004, VVolume 17, P1 Cooper NP, 1997, J NEUROPHYSIOL, V78, P261 COOPER NP, 1994, HEARING RES, V78, P221, DOI 10.1016/0378-5955(94)90028-0 Cooper Nigel P., 2004, VVolume 17, P18 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X COOPER NP, 2001, ASS RES OT MID WINT, V24, P228 Dorn PA, 2001, J ACOUST SOC AM, V110, P3119, DOI 10.1121/1.1417524 Dorn Patricia A., 1998, Journal of the Acoustical Society of America, V104, P964, DOI 10.1121/1.423339 GREEN DM, 1957, J ACOUST SOC AM, V29, P523, DOI 10.1121/1.1908951 Hicks ML, 1999, J ACOUST SOC AM, V106, P1436, DOI 10.1121/1.427146 HICKS ML, 2000, ABSTR J ACOUST SOC A, V107, P2914 Hicks ML, 1999, J ACOUST SOC AM, V105, P326, DOI 10.1121/1.424526 Janssen T, 1998, J ACOUST SOC AM, V103, P3418, DOI 10.1121/1.423053 Kummer P, 1998, J ACOUST SOC AM, V103, P3431, DOI 10.1121/1.423054 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Lopez-Poveda EA, 2003, J ACOUST SOC AM, V113, P951, DOI 10.1121/1.1534838 Moore BCJ, 1999, J ACOUST SOC AM, V106, P2761, DOI 10.1121/1.428133 Murugasu E., 1995, AUDIT NEUROSCI, V1, P139 Nelson DA, 2001, J ACOUST SOC AM, V110, P2045, DOI 10.1121/1.1404439 Nelson DA, 2004, J ACOUST SOC AM, V115, P2221, DOI 10.1121/1.1689341 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 Oxenham AJ, 1997, J ACOUST SOC AM, V101, P3666, DOI 10.1121/1.418327 Plack CJ, 2000, J ACOUST SOC AM, V107, P501, DOI 10.1121/1.428318 Plack CJ, 1998, J ACOUST SOC AM, V103, P1598, DOI 10.1121/1.421294 Plack CJ, 2003, JARO, V4, P405, DOI 10.1007/s10162-002-3056-0 Plack CJ, 2003, J ACOUST SOC AM, V113, P1574, DOI 10.1121/1.1538247 RECIO A, 1995, ASS RES OT MIDW M, V18, P200 Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 Rhode WS, 1996, AUDIT NEUROSCI, V3, P101 RHODE WS, 1997, DIVERSITY AUDITORY M, P318 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 RHODE WS, 1971, J ACOUST SOC AM, V49, P1218, DOI 10.1121/1.1912485 ROBLES L, 1986, J ACOUST SOC AM, V80, P1364, DOI 10.1121/1.394389 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RUGGERO MA, 1991, HEARING RES, V51, P215, DOI 10.1016/0378-5955(91)90038-B Ruggero MA, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P23 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 Zinn C, 2000, HEARING RES, V142, P159, DOI 10.1016/S0378-5955(00)00012-5 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 41 TC 22 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 44 EP 54 DI 10.1016/j.heares.2004.10.006 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200006 PM 15721560 ER PT J AU Lychakov, DV Rebane, YT AF Lychakov, DV Rebane, YT TI Fish otolith mass asymmetry: morphometry and influence on acoustic functionality SO HEARING RESEARCH LA English DT Article DE otolith mass asymmetry; fish; sacculus; utriculus; lagena; otolith growth fluctuation model; sensitivity; time resolution; directional detection ID INNER-EAR; HAIR CELL; EVOLUTION; APPARATUS AB The role of the fish otolith mass asymmetry in acoustic functionality is studied. The saccular, lagenar and utricular otoliths are weighted in two species of the Black Sea rays, 15 species of the Black Sea teleost fish and guppy fish. The dimensionless otolith mass asymmetry chi is calculated as ratio of the difference between masses of the right and left paired otoliths to average otolith mass. In the most fish studied the otolith mass asymmetry is within the range of -0.2 < chi < + 0.2 (< 20%). We do not find specific fish species with extremely large or extremely small otolith asymmetry. The large otoliths do not belong solely to any particular side, left or right. The heavier otoliths of different otolithic organs can be located in different labyrinths. No relationship has been found between the magnitude of the otolith mass asymmetry and the length (mass, age) of the animal. The suggested fluctuation model of the otolith growth can interpret these results. The model Supposes that the otolith growth rate varies slightly hither and thither during lifetime of the individual fish. Therefore, the sign of the relative otolith mass asymmetry can change several times in the process of the individual fish growth but within the range outlined above. Mathematical modeling shows that acoustic functionality (sensitivity, temporal processing, sound localization) of the fish can be disturbed by the otolith mass asymmetry. But this is valid only for the fish with largest otolith masses, characteristic of the bottom and littoral fish, and with highest otolith asymmetry. For most fish the values of otolith mass asymmetry is well below critical values. Thus, the most fish get around the troubles related to the otolith mass asymmetry. We suggest that a specific physicochemical mechanism of the paired otolith growth that maintains the otolith mass asymmetry at the lowest possible level should exist. However, the principle and details of this mechanism are still far from being understood. (c) 2004 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, St Petersburg 194223, Russia. Russian Acad Sci, Ioffe Phys Tech Inst, St Petersburg 194021, Russia. RP Lychakov, DV (reprint author), Russian Acad Sci, IM Sechenov Evolutionary Physiol & Biochem Inst, Thorez Pr 44, St Petersburg 194223, Russia. EM Lychakov@ieplib.ru CR Anken RH, 1998, HEARING RES, V121, P77, DOI 10.1016/S0378-5955(98)00067-7 BARBER VC, 1980, CELL TISSUE RES, V205, P199 CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358 CHAPMAN CJ, 1974, COMP BIOCHEM PHYSIOL, V47, P371, DOI 10.1016/0300-9629(74)90082-6 CHAPMAN CJ, 1974, J EXP BIOL, V61, P521 DALE T, 1976, Norwegian Journal of Zoology, V24, P85 DAVID AW, 1993, FISH B, V92, P509 DeVRIES H., 1950, ACTA OTO LARYNGOL, V38, P262, DOI 10.3109/00016485009118384 Edds-Walton Peggy L., 2002, Bioacoustics, V12, P202 Egorov A.D., 1970, KOSMICHESKAYA BIOL A, V4, P85 Fay R.R., 1980, P3 Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103 GAULDIE RW, 1993, J MORPHOL, V218, P1, DOI 10.1002/jmor.1052180102 GAULDIE RW, 1990, ACTA ZOOL-STOCKHOLM, V71, P193 HUDSPETH AJ, 1977, P NATL ACAD SCI USA, V74, P2407, DOI 10.1073/pnas.74.6.2407 Isakovich M.A., 1973, GEN ACOUSTICS LIM DJ, 1974, BRAIN BEHAV EVOLUT, V10, P37, DOI 10.1159/000124301 Lindeman H H, 1969, Ergeb Anat Entwicklungsgesch, V42, P1 Lu Z, 1998, J COMP PHYSIOL A, V182, P805, DOI 10.1007/s003590050225 LYCHAKOV DV, 1995, J EVOL BIOCHEM PHYS+, V31, P90 LYCHAKOV D V, 1990, Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, V26, P550 Lychakov DV, 1995, J EVOL BIOCHEM PHYS+, V31, P182 Lychakov DV, 2000, HEARING RES, V143, P83, DOI 10.1016/S0378-5955(00)00026-5 LYCHAKOV DV, 1992, J EVOL BIOCHEM PHYS+, V28, P531 LYCHAKOV DV, 1996, J EVOL BIOCHEM PHYS+, V32, P385 Lychakov DV, 1988, ZH EVOL BIOKHIM FIZ, V24, P256 Lychakov DV., 2002, THESIS SECHENOV I ST, V2, P1 Lychakov DV, 2000, FISH RES, V46, P27, DOI 10.1016/S0165-7836(00)00130-2 MATHIESEN C, 1987, J MORPHOL, V194, P129, DOI 10.1002/jmor.1051940203 MULIGAN KP, 1989, COPEIA, V4, P856 OHMORI H, 1987, J PHYSIOL-LONDON, V387, P589 PEDROZO HA, 1994, HEARING RES, V79, P137, DOI 10.1016/0378-5955(94)90135-X Platt C., 1981, HEARING SOUND COMMUN, P3 PLATT C, 1993, HEARING RES, V65, P133, DOI 10.1016/0378-5955(93)90208-I POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 POPPER AN, 1982, AM ZOOL, V22, P311 RADTKE RL, 1982, FISH B-NOAA, V80, P201 Rahmann H., 2002, J GRAVITATIONAL PHYS, V9, P19 RIMAN IS, 1947, T TSAGI, V637, P1 ROGERS PH, 1988, J ACOUST SOC AM, V83, P338, DOI 10.1121/1.396444 SAMARIN GI, 1992, THESIS I BIOMEDICAL Sand Olav, 2002, Bioacoustics, V12, P199 Scherer H, 2001, Biol Sci Space, V15, P401, DOI 10.2187/bss.15.401 Schuijf A., 1980, P43 Tolimieri Nicholas, 2002, Bioacoustics, V12, P214 VILSTRUP T, 1951, ANN OTO RHINOL LARYN, V60, P974 Wysocki LE, 2002, HEARING RES, V169, P36, DOI 10.1016/S0378-5955(02)00336-2 NR 47 TC 20 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 55 EP 69 DI 10.1016/j.heares.2004.08.017 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200007 PM 15721561 ER PT J AU Shaikh, AG Finlayson, PG AF Shaikh, AG Finlayson, PG TI Excitability of auditory brainstem neurons, in vivo, is increased by cyclic-AMP SO HEARING RESEARCH LA English DT Article ID DORSAL COCHLEAR NUCLEUS; SPONTANEOUS NEURAL ACTIVITY; UNIQUE DITERPENE ACTIVATOR; INTENSE SOUND EXPOSURE; EAR OSSICLE REMOVAL; PROTEIN-KINASE; UNILATERAL COCHLEAR; ACOUSTIC TRAUMA; CATION CURRENT; INFERIOR COLLICULUS AB Physiological control of auditory neural responses is critical for accurate representation of acoustic information, such as Sound source localization and speech perception. Central auditory neural responses are almost certainly regulated by a range of mechanisms, including second messenger systems, such as the cAMP pathway. An increase in spontaneous neural discharge is known to accompany cochlear insults. Here we report that an increase in spontaneous as well as tone-evoked discharge can also be induced by pressure application of forskolin, a pharmacological agent that elevates intracellular cAMP level by activating adenyl cyclase. The forskolin induced increase in superior olivary complex (SOC) brainstem neurons is specific, dose-dependent, and reversible, whereas application of artificial cerebrospinal fluid (aCSF, the vehicle) does not alter activity. Forskolin-application also has a relatively greater effect on spontaneous activity compared to tone evoked responses. Blockade of the hyperpolarization-activated current, I-h, by ZD7288, consistently reversed the effects of forskolin. Based on these findings, we propose that the second messenger, cAMP, can significantly modulate neural excitability and spontaneous discharge in SOC neurons, principally by shifting the activation of I-h channels. (c) 2004 Elsevier B.V. All rights reserved. C1 Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA. RP Shaikh, AG (reprint author), Wayne State Univ, Sch Med, Dept Otolaryngol, Detroit, MI 48201 USA. EM ashaikh@med.wayne.edu CR Adam TJ, 2001, J NEUROPHYSIOL, V86, P922 AKASU T, 1994, PFLUG ARCH EUR J PHY, V429, P117, DOI 10.1007/BF02584037 Axelsson A., 1992, NOISE INDUCED HEARIN, P269 Bal R, 2000, J NEUROPHYSIOL, V84, P806 BANKS M, 1993, J NEUROPHYSIOL, V71, P119 Beaumont V, 2000, NAT NEUROSCI, V3, P133, DOI 10.1038/72072 Benson CG, 1997, SYNAPSE, V25, P243 Bickmeyer U, 2002, EUR J NEUROSCI, V16, P209, DOI 10.1046/j.1460-9568.2002.02072.x Bilak M, 1997, EXP NEUROL, V147, P256, DOI 10.1006/exnr.1997.6636 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Cathala L, 1997, J PHYSIOL-LONDON, V503, P87, DOI 10.1111/j.1469-7793.1997.087bi.x Chapin EM, 2001, J PHARMACOL EXP THER, V297, P403 Chen C, 1997, HEARING RES, V110, P179, DOI 10.1016/S0378-5955(97)00078-6 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Cribbs LL, 1998, CIRC RES, V83, P103 Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x Enyeart JA, 2000, J BIOL CHEM, V275, P34640, DOI 10.1074/jbc.M004214200 Fields RD, 1997, J NEUROSCI, V17, P7252 Finlayson PG, 1997, HEARING RES, V103, P1, DOI 10.1016/S0378-5955(96)00158-X GERKEN GM, 1979, J ACOUST SOC AM, V66, P721, DOI 10.1121/1.383222 Grewal SS, 1999, CURR OPIN NEUROBIOL, V9, P544, DOI 10.1016/S0959-4388(99)00010-0 HAMPSON RE, 1995, LIFE SCI, V56, P2081, DOI 10.1016/0024-3205(95)00192-9 HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114 Hoffman DA, 1998, J NEUROSCI, V18, P3521 Houslay MD, 2003, BIOCHEM SOC T, V31, P1186 Impey S, 1999, NEURON, V23, P11, DOI 10.1016/S0896-6273(00)80747-3 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 KACZMAREK LK, 1984, J NEUROPHYSIOL, V52, P340 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 Kaltenbach JA, 2000, HEARING RES, V147, P282, DOI 10.1016/S0378-5955(00)00138-6 KALTENBACH JA, 1996, P 5 INT TINN SEM AM, P455 Kaltenbach JA, 2000, HEARING RES, V140, P165, DOI 10.1016/S0378-5955(99)00197-5 Klugbauer N, 1999, PFLUG ARCH EUR J PHY, V437, P710, DOI 10.1007/s004240050836 LEE JH, 1999, J NEUROSCI, V19, P912 Mazzucchelli C, 2000, CELL MOL LIFE SCI, V57, P604, DOI 10.1007/PL00000722 MCCORMICK DA, 1990, J PHYSIOL-LONDON, V431, P291 Mo ZL, 1997, J NEUROPHYSIOL, V78, P3019 Monteil A, 2000, J BIOL CHEM, V275, P6090, DOI 10.1074/jbc.275.9.6090 Muly SM, 2004, J NEUROSCI RES, V75, P585, DOI 10.1002/jnr.20011 Muly SM, 2002, EXP NEUROL, V177, P202, DOI 10.1006/exnr.2002.7963 Paxinos G., 1982, RAT BRAIN STEREOTAXI Pearson G, 2001, ENDOCR REV, V22, P153, DOI 10.1210/er.22.2.153 PEDARZANI P, 1995, P NATL ACAD SCI USA, V92, P11716, DOI 10.1073/pnas.92.25.11716 Pemberton KE, 2000, PFLUG ARCH EUR J PHY, V440, P452, DOI 10.1007/s004240000303 Pisani A, 2003, J NEUROSCI, V23, P5272 Potashner SJ, 1997, EXP NEUROL, V148, P222, DOI 10.1006/exnr.1997.6641 POTASHNER SJ, 1999, ASS RES OTOLARYNGOL, V22, P67 QU YS, 1995, J BIOL CHEM, V270, P25696 Rachel JD, 2002, HEARING RES, V164, P206, DOI 10.1016/S0378-5955(02)00287-3 Rothberg BS, 2002, J GEN PHYSIOL, V119, P83, DOI 10.1085/jgp.119.1.83 Saitow F, 2000, J NEUROPHYSIOL, V84, P2026 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U Salvi RJ, 2000, HEARING RES, V147, P261, DOI 10.1016/S0378-5955(00)00136-2 Santoro B, 2000, J NEUROSCI, V20, P5264 SEAMON KB, 1981, P NATL ACAD SCI-BIOL, V78, P3363, DOI 10.1073/pnas.78.6.3363 SEAMON KB, 1981, J CYCLIC NUCL PROT, V7, P201 Shaikh AG, 2003, HEARING RES, V183, P126, DOI 10.1016/S0378-5955(03)00224-7 Shin KS, 2004, NEURON, V41, P737, DOI 10.1016/S0896-6273(04)00083-2 Shin KS, 2001, J GEN PHYSIOL, V117, P91, DOI 10.1085/jgp.117.2.91 Starodub AM, 2000, J PHARMACOL EXP THER, V294, P555 Sun QQ, 2003, J NEUROSCI, V23, P2751 Suneja SK, 2000, EXP NEUROL, V165, P355, DOI 10.1006/exnr.2000.7471 Suneja SK, 1998, EXP NEUROL, V151, P273, DOI 10.1006/exnr.1998.6812 Suneja SK, 2003, J NEUROSCI RES, V73, P235, DOI 10.1002/jnr.10644 Suneja SK, 1998, EXP NEUROL, V154, P473, DOI 10.1006/exnr.1998.6946 Sweatt JD, 2001, J NEUROCHEM, V76, P1, DOI 10.1046/j.1471-4159.2001.00054.x TOKIMASA T, 1990, J PHYSIOL-LONDON, V420, P409 Wainger BJ, 2001, NATURE, V411, P805, DOI 10.1038/35081088 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 Wynne B, 1996, Audiol Neurootol, V1, P54 Xia ZG, 1996, J NEUROSCI, V16, P5425 Yao WD, 2001, J NEUROPHYSIOL, V85, P1384 Yao WP, 1998, MICROSC RES TECHNIQ, V41, P270, DOI 10.1002/(SICI)1097-0029(19980501)41:3<270::AID-JEMT10>3.0.CO;2-L NR 73 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 70 EP 80 DI 10.1016/j.heares.2004.10.005 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200008 PM 15721562 ER PT J AU Lynch, ED Gu, RD Pierce, C Kil, J AF Lynch, ED Gu, RD Pierce, C Kil, J TI Reduction of acute cisplatin ototoxicity and nephrotoxicity in rats by oral administration of allopurinol and ebselen SO HEARING RESEARCH LA English DT Article DE chemoprotection; ototoxicity; nephrotoxicity; allopurinol; ebselen ID BLIND CLINICAL-TRIAL; PHASE-II; SUPEROXIDE-DISMUTASE; ANTIOXIDANT SYSTEM; PROTECTIVE AGENTS; COCHLEAR DAMAGE; CIS-PLATINUM; HEARING-LOSS; GUINEA-PIG; NOISE AB Cisplatin ototoxicity has been associated with the generation of toxic levels of reactive oxygen species (ROS) which can lead to injury or loss of outer hair cells in the organ of Corti, damage to the stria vascularis, and loss of spiral ganglion cells, resulting in permanent hearing loss. In an attempt to reduce the formation of ROS and to bolster the innate oxidative stress defenses of the cochlea, we tested individual and combined formulations of allopurinol, a xanthine oxidase inhibitor, and ebselen, a glutathione peroxidase mimic. We used an acute cisplatin toxicity rat model (16 mg/kg i.p.) to analyze allopurinol and ebselen alone and in combination for their ability to reduce cisplatin associated hearing loss and nephrotoxicity. The results from our studies indicate that a combined formulation of ebselen and allopurinol affords significant protection to the cochlea and kidney from cisplatin toxicity. In the cochlea, protection is dependent on the preservation of outer hair cell number, while in the kidney, protection is associated with the preservation of proximal tubular epithelia. Further evaluation of the chemoprotective effects of ebselen and allopurinol on cisplatin side effects in the presence of tumor appears warranted. (c) 2004 Elsevier B.V. All rights reserved. C1 Sound Pharmaceut Inc, Res & Dev, Seattle, WA 98103 USA. RP Lynch, ED (reprint author), Sound Pharmaceut Inc, Res & Dev, 4010 Stone Way N,Suite 120, Seattle, WA 98103 USA. EM elynch@soundpharmaceuticals.com CR BALDEW GS, 1990, CANCER RES, V50, P7031 BLEIBERG H, 1990, CANCER INVEST, V8, P471, DOI 10.3109/07357909009012070 Cassandro E, 2003, ACTA OTO-LARYNGOL, V123, P802, DOI 10.1080/00016480310005138 De Besi P, 1988, Recent Results Cancer Res, V110, P196 Erdinc M, 2000, EXP TOXICOL PATHOL, V52, P329 FISCHER H, 1988, XENOBIOTICA, V18, P1347 Hatzopoulos S, 1999, ANN NY ACAD SCI, V884, P211, DOI 10.1111/j.1749-6632.1999.tb08643.x Hensley ML, 1999, J CLIN ONCOL, V17, P3333 HINOJOSA R, 1995, AM J OTOL, V16, P731 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 Husain K, 1998, MOL CELL BIOCHEM, V178, P127, DOI 10.1023/A:1006889427520 Kopke RD, 1997, AM J OTOL, V18, P559 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 LEE JS, 1987, AM J CLIN ONCOL-CANC, V10, P512, DOI 10.1097/00000421-198712000-00010 Lynch ED, 2004, LARYNGOSCOPE, V114, P333, DOI 10.1097/00005537-200402000-00029 McFadden SL, 2001, NOISE HEALTH, V3, P49 Melamed SB, 2000, AUDIOLOGY, V39, P24 MOROSO MJ, 1983, J OTOLARYNGOL, V12, P365 Ogawa A, 1999, CEREBROVASC DIS, V9, P112, DOI 10.1159/000015908 Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Pourbakht A, 2003, HEARING RES, V181, P100, DOI 10.1016/S0378-5955(03)00178-3 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Rybak LP, 1999, ANN NY ACAD SCI, V884, P143 Rybak LP, 2000, AM J OTOL, V21, P513 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 WEISS GR, 1990, GYNECOL ONCOL, V37, P354, DOI 10.1016/0090-8258(90)90366-S Yamaguchi T, 1998, STROKE, V29, P12 Yoshida M, 2000, TOHOKU J EXP MED, V191, P209, DOI 10.1620/tjem.191.209 NR 33 TC 50 Z9 58 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 81 EP 89 DI 10.1016/j.heares.2004.08.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200009 PM 15721563 ER PT J AU Emmerich, E Richter, F Linss, V Linss, W AF Emmerich, E Richter, F Linss, V Linss, W TI Frequency-specific cochlear damage in guinea pig after exposure to different types of realistic industrial noise SO HEARING RESEARCH LA English DT Article DE DPOAE; outer hair cell; industrial noise exposure; scanning electron microscopy; hearing loss; guinea pig ID PRODUCT OTOACOUSTIC EMISSIONS; HAIR CELL LOSS; INDUCED HEARING-LOSS; IMPULSE NOISE; THRESHOLD SHIFTS; CHINCHILLA; RESPONSES; DPOAE; EARS; INTERMITTENT AB For the causal evaluation of occupational hearing damage it is important to identify definitely the noise source. Here we tested, whether recordings of distortion product otoacoustic emissions (DPOAEs) in awake guinea pigs can distinguish the effects of different industrial noises. Six groups of 12 animals each were investigated before and over four months after a single 2 h exposure to specific, played-back industrial noise as well as before and for 2 months after impulse noise exposure. We compared broadband noise (buzz saw, bottle washing machine), low frequency noise (drawing press), and mid-frequency noise (bottle filling machine). All animals had stable DPOAE levels before noise exposure. Frequency specific decreases in DPOAEs were found after exposure to the different noises. Broadband noise diminished mostly all frequencies tested.. whereas low- or mid-frequency noise had a greater effect on DPOAE evoked by middle and higher frequencies, respectively. DPOAE evoked by middle and higher frequencies were obliterated after impulse noise. Morphological analysis of the cochleae confirmed these alterations. OHC loss was found in the middle turns of the cochleae corresponding to the diminution of DPOAE. We conclude that different kinds of industrial noise tend to produce typical changes in DPOAE levels. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Jena, Inst Physiol Neurophysiol, D-07740 Jena, Germany. Univ Jena, Inst Anat 1, D-07740 Jena, Germany. RP Emmerich, E (reprint author), Univ Jena, Inst Physiol Neurophysiol, Teichgraben 8, D-07740 Jena, Germany. EM EEMM@mti.uni-jena.de; fric@mti.uni-jena.de CR AVAN P, 2001, NOISE HLTH, V3, P1 Boege P, 2002, J ACOUST SOC AM, V111, P1810, DOI 10.1121/1.1460923 Boyev KP, 2002, JARO, V3, P362, DOI 10.1007/s101620020044 Clark JA, 1996, HEARING RES, V99, P119, DOI 10.1016/S0378-5955(96)00092-5 Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3 DIEROFF HG, 1968, Z LARYNGOL RHINOL OT, V47, P53 Emmerich E, 2000, EUR ARCH OTO-RHINO-L, V257, P128, DOI 10.1007/s004050050208 Emmerich E, 2000, HEARING RES, V148, P9, DOI 10.1016/S0378-5955(00)00101-5 Gorga MP, 2003, J ACOUST SOC AM, V114, P263, DOI 10.1121/1.1575751 GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 Gorga MP, 1997, EAR HEARING, V18, P440, DOI 10.1097/00003446-199712000-00003 Hamernik RP, 2001, J ACOUST SOC AM, V110, P3163, DOI 10.1121/1.1414707 Hamernik RP, 2000, HEARING RES, V150, P245, DOI 10.1016/S0378-5955(00)00204-5 Hamernik RP, 1998, HEARING RES, V118, P73, DOI 10.1016/S0378-5955(98)00021-5 Hamernik RP, 2002, J ACOUST SOC AM, V111, P320, DOI 10.1121/1.1428545 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 HOTH S, 2004, EUR ARCH OTORHINOLAR KISS JG, 2001, SCAND AUDIO S, V52, P138 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 LINSS V, IN PRESS EUR ARCH OT Linss W, 2000, ANN ANAT, V182, P445, DOI 10.1016/S0940-9602(00)80051-5 MEYER C, 1985, ANAT ANZEIGER, V158, P5 Pandya Pritesh K, 2004, J Am Acad Audiol, V15, P184, DOI 10.3766/jaaa.15.3.2 POPELAR J, 1993, HEARING RES, V67, P69, DOI 10.1016/0378-5955(93)90233-Q POPELAR J, 1982, HEARING RES, V8, P273, DOI 10.1016/0378-5955(82)90019-3 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 Rabinowitz PM, 2000, AM FAM PHYSICIAN, V61, P2749 RICHTER F, 1987, ARCH OTO-RHINO-LARYN, V244, P269, DOI 10.1007/BF00468634 SATALOFF J, 1983, ANN OTO RHINOL LARYN, V92, P623 Schneider S, 2003, J ACOUST SOC AM, V113, P3285, DOI 10.1121/1.1568753 Shaffer LA, 2003, EAR HEARING, V24, P367, DOI 10.1097/01.AUD.0000090439.16438.9F Skellett RA, 1996, HEARING RES, V98, P68, DOI 10.1016/0378-5955(96)00062-7 SYKA J, 1982, HEARING RES, V8, P263, DOI 10.1016/0378-5955(82)90018-1 White DR, 1998, J ACOUST SOC AM, V103, P1566, DOI 10.1121/1.421303 Withnell RH, 2003, HEARING RES, V178, P106, DOI 10.1016/S0378-5955(03)00064-9 NR 36 TC 10 Z9 10 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 90 EP 98 DI 10.1016/j.heares.2004.09.009 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200010 PM 15721564 ER PT J AU Halsey, K Skjonsberg, A Ulfendahl, M Dolan, DF AF Halsey, K Skjonsberg, A Ulfendahl, M Dolan, DF TI Efferent-mediated adaptation of the DPOAE as a predictor of aminoglycoside toxicity SO HEARING RESEARCH LA English DT Article DE hearing; gender; aminoglycoside; efferent; adaptation; DPOAE ID PRODUCT OTOACOUSTIC EMISSION; OUTER HAIR-CELLS; GUINEA-PIG; ALKALINE-PHOSPHATASE; GENTAMICIN BLOCKS; OTOTOXICITY; RECEPTOR; SUSCEPTIBILITY; ACTIVATION; SLOW AB Rapid efferent adaptation of the distortion product otoacoustic emission (DPOAE) predicts susceptibility to noise-induced damage, and is linked to the concentration of the efferent receptor (alpha 9). Maximum adaptation occurs at intense primary levels, rapidly switching from positive to negative orientation in a very narrow (2 dB) range of F-1 and F-2 levels. Aminoglycosides are commonly used antibiotics, with the undesirable side-effect of ototoxicity. Susceptibility to hair cell damage from the aminoglycoside gentamicin can be quite variable, even within a single strain and species of animal. Since one of gentamicin's first sites of action in the outer hair cell (OHC) is at the efferent receptor, it is possible that efferent activity could be a predictor of susceptibility to gentamicin induced damage. Significant sex-related differences were found in two strains of guinea pigs when treated with gentamicin. Female guinea pigs were more susceptible both to systemic effects and to specific ototoxic effects. Efferent-mediated DPOAE adaptation served as a predictor of sensitivity to aminoglycoside damage, predicting both number of days before onset of deafness in male animals, and predicting final threshold shifts from gentamicin doses which produced variable results. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. Karolinska Inst, Ctr Hearing & Commun Res, SE-17176 Stockholm, Sweden. Karolinska Inst, Dept Otolaryngol, SE-17176 Stockholm, Sweden. RP Dolan, DF (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM ddolan@umich.edu CR Blanchet C, 2000, J PHYSIOL-LONDON, V525, P641, DOI 10.1111/j.1469-7793.2000.t01-1-00641.x CAPPS MJ, 1977, LARYNGOSCOPE, V87, P1100, DOI 10.1288/00005537-197707000-00009 daCosta DL, 1997, J NEUROPHYSIOL, V78, P1826 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DEGKWITZ E, 1982, Z ERNAHRUNGSWISS, V21, P51 GOODRICH JA, 1995, TOXICOL LETT, V75, P127, DOI 10.1016/0378-4274(94)03170-C Imamura S, 2003, JARO, V4, P176, DOI 10.1007/s10162-002-2036-8 Kim DO, 2001, JARO, V2, P31, DOI 10.1007/s101620010066 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Luebke AE, 2002, JARO, V3, P16, DOI 10.1007/s101620010089 Luebke AE, 2002, J NEUROSCI, V22, P4241 Mahmoodian F, 1996, ARCH BIOCHEM BIOPHYS, V336, P86, DOI 10.1006/abbi.1996.0535 Maison SF, 2000, J NEUROSCI, V20, P4701 Mills CD, 1999, HEARING RES, V128, P75, DOI 10.1016/S0378-5955(98)00190-7 Rothlin CV, 2000, NEUROPHARMACOLOGY, V39, P2525, DOI 10.1016/S0028-3908(00)00056-3 Sinswat P, 2000, KIDNEY INT, V58, P2525, DOI 10.1046/j.1523-1755.2000.00437.x SMITH DW, 1994, BRAIN RES, V652, P243, DOI 10.1016/0006-8993(94)90233-X SOKOLL MD, 1981, ANESTHESIOLOGY, V55, P148, DOI 10.1097/00000542-198108000-00011 Sun XM, 1999, J ACOUST SOC AM, V105, P3399, DOI 10.1121/1.424668 Wu WJ, 2002, AUDIOL NEURO-OTOL, V7, P171, DOI 10.1159/000058305 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 NR 22 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 99 EP 108 DI 10.1016/j.heares.2004.09.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200011 PM 15721565 ER PT J AU Lichtenhan, JT Chertoff, ME Smittkamp, SE Durham, D Girod, DA AF Lichtenhan, JT Chertoff, ME Smittkamp, SE Durham, D Girod, DA TI Predicting severity of cochlear hair cell damage in adult chickens using DPOAE input-output functions SO HEARING RESEARCH LA English DT Article DE distortion product otoacoustic emissions; binary logistic regression; auditory; avian ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC DISTORTION PRODUCTS; EVOKED-POTENTIAL THRESHOLDS; INTERRUPTED NOISE EXPOSURES; AUDITORY BRAIN-STEM; HYALINE CELLS; NUCLEUS NEURONS; BREED DIFFERENCES; DEAFFERENTATION; REGENERATION AB Distortion product otoacoustic emissions (DPOAE) were recorded from the ear canal of aged broiler chickens which have been shown to present with age-related cochlear degeneration [Hear. Res. 166 (2002) 82]. We describe the relationship between the shape of the DPOAE input-output (I/O) function and the type of hair cell damage present at and between the cochlear frequency places of the DPOAE primary tones (f(1) and f(2)). The mid stimulus level compressive growth of the mean DPOAE I/O functions is reduced in a graded fashion relative to the severity of hair cell damage. However, individual DPOAE I/O functions within most hair cell damage groups show large variability from this characteristic. Various least squares regression models were used to predict hair cell density from indices derived from the DPOAE I/O function (area, threshold and slope). The results showed that no simple linear relationship exists between hair cell density and the DPOAE I/O function indices. multivariate binary logistic regression used DPOAE I/O function indices to predict membership in hair cell damage groups. The logistic model revealed that DPOAE threshold can be used to predict the occurrence of severe/total hair cell damage with good specificity though poor sensitivity. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Dept Speech & Hearing, Kansas City, KS 66160 USA. RP Durham, D (reprint author), Univ Kansas, Med Ctr, Dept Otolaryngol Head & Neck Surg, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. EM ddurham@kunic.edu CR AVAN P, 2001, NOISE INDUCED HEARIN, P411 BESS FH, 1996, HEARING DISORDERS, P199 BRIX J, 1994, HEARING RES, V76, P147, DOI 10.1016/0378-5955(94)90096-5 BROWN AM, 1984, HEARING RES, V13, P29, DOI 10.1016/0378-5955(84)90092-3 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 Chen L, 2001, HEARING RES, V161, P54, DOI 10.1016/S0378-5955(01)00353-7 COTANCHE DA, 1992, J COMP NEUROL, V324, P353, DOI 10.1002/cne.903240306 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 Cotanche DA, 1995, HEARING RES, V91, P148, DOI 10.1016/0378-5955(95)00185-9 Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3 DRENCKHAHN D, 1991, HEARING RES, V54, P29, DOI 10.1016/0378-5955(91)90133-T Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Edmonds JL, 1999, HEARING RES, V127, P62, DOI 10.1016/S0378-5955(98)00180-4 Fleiss JL, 1981, STAT METHODS RATES P, V2nd, P212 Francis HW, 2000, HEARING RES, V149, P91, DOI 10.1016/S0378-5955(00)00165-9 Frisancho JC, 1997, J NEUROCYTOL, V26, P121, DOI 10.1023/A:1018575811922 FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867 GLEICH O, 2000, COMP HEARING BIRDS R, P70 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 Hamernik RP, 2000, HEARING RES, V150, P245, DOI 10.1016/S0378-5955(00)00204-5 Hamernik RP, 1996, J ACOUST SOC AM, V100, P1003, DOI 10.1121/1.416285 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 He DZZ, 2003, J PHYSIOL-LONDON, V546, P511, DOI 10.1113/jphysiol.2002.026070 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Illing RB, 1999, J COMP NEUROL, V412, P353, DOI 10.1002/(SICI)1096-9861(19990920)412:2<353::AID-CNE12>3.0.CO;2-W KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 LICHTENHAN JT, 2004, ARO ABSTR, V24, P109 LINDEN R, 1994, NEUROSCIENCE, V58, P671, DOI 10.1016/0306-4522(94)90447-2 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MENDENHALL W, 2003, 2 COURSE STAT REGRES, P321 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G Park DL, 1999, HEARING RES, V138, P45, DOI 10.1016/S0378-5955(99)00138-0 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 SAUNDERS SS, 1993, J ACOUST SOC AM, V94, P83, DOI 10.1121/1.406945 Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1 Smittkamp SE, 2004, HEARING RES, V195, P79, DOI 10.1016/j.heares.2004.05.008 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 SUBRAMANIAM M, 1995, EAR HEARING, V16, P372, DOI 10.1097/00003446-199508000-00004 SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 Syka J, 2002, PHYSIOL REV, V82, P601, DOI 10.1152/physrev.00002.2002 Tabachnick B., 2001, USING MULTIVARIATE S, P517 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R Trautwein P, 1996, Audiol Neurootol, V1, P86 Willott JF, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P297 Woolley SMN, 2001, HEARING RES, V153, P181, DOI 10.1016/S0378-5955(00)00217-3 NR 54 TC 4 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 109 EP 120 DI 10.1016/j.heares.2004.09.001 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200012 PM 15721566 ER PT J AU Bauer, CA Brozoski, TJ AF Bauer, CA Brozoski, TJ TI Cochlear structure and function after round window application of ototoxins SO HEARING RESEARCH LA English DT Article DE ototoxin; cochlea; carboplatin; cisplatin; chinchilla ID HAIR CELL LOSS; CIS-DIAMMINEDICHLOROPLATINUM; HEARING-LOSS; GUINEA-PIG; CISPLATIN; INNER; CARBOPLATIN; CHINCHILLAS; TINNITUS; DEGENERATION AB Topical round window application of ototoxic agents has been a useful method for studying ototoxicity and hearing loss in the mammalian cochlea. For example, species-specific differences in cochlear susceptibility to damage have been documented using this technique. Carboplatin has been characterized in the literature as a selective inner hair cell (IHC) toxin in chinchillas, while cisplatin has been characterized as a selective outer hair cell (OHC) toxin. The present experiment quantified dose-dependent damage to cochlear hair cells in the chinchilla after a single direct round window application of either cisplatin or carboplatin. Detailed cyto-cochleograms were obtained for the entire cochlear duct, for a range of doses, along with auditory brainstem response thresholds. In agreement with the literature, although there was variability, at the lowest concentrations tested (2 and 3 mg/ml), carboplatin produced Substantial IHC damage with no OHC damage. In contrast, the effects of cisplatin were more variable, and contrary to published reports, across the range of doses producing OHC damage, IHC damage was always observed. Limitations of direct round window ototoxin treatments are discussed, in addition to their potential application in the study of tinnitus. (c) 2004 Elsevier B.V. All rights reserved. C1 So Illinois Univ, Sch Med, Div Otolaryngol, Springfield, IL 62794 USA. RP Bauer, CA (reprint author), So Illinois Univ, Sch Med, Div Otolaryngol, POB 19662, Springfield, IL 62794 USA. EM cbauer@siumed.edu CR BOHNE BA, 1972, LARYNGOSCOPE, V82, P1 Brozoski TJ, 2002, J NEUROSCI, V22, P2383 Ekborn A, 2000, HEARING RES, V140, P38, DOI 10.1016/S0378-5955(99)00190-2 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 GRATTON MA, 1990, HEARING RES, V50, P211, DOI 10.1016/0378-5955(90)90046-R GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Janning MH, 1998, OTOLARYNG HEAD NECK, V119, P574, DOI 10.1016/S0194-5998(98)70014-2 Kaltenbach JA, 2002, J NEUROPHYSIOL, V88, P699, DOI 10.1152/jn00893.2001 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 Korver KD, 2002, OTOLARYNG HEAD NECK, V126, P683, DOI 10.1067/mhn.2002.125299 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 Ramirez-Camacho R, 2004, LARYNGOSCOPE, V114, P533 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Takeno S, 1998, AUDIOL NEURO-OTOL, V3, P281, DOI 10.1159/000013800 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 TONNDORF J, 1981, ACTA OTO-LARYNGOL, V91, P469, DOI 10.3109/00016488109138530 Wang J, 2003, HEARING RES, V181, P65, DOI 10.1016/S0378-5955(03)00176-X NR 19 TC 16 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 121 EP 131 DI 10.1016/j.heares.2004.09.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200013 PM 15721567 ER PT J AU Kitahara, T Li, HS Balaban, CD AF Kitahara, T Li, HS Balaban, CD TI Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge SO HEARING RESEARCH LA English DT Article DE transient receptor potential cation channel subfamily V (TRPV); vanilloid receptors; kanamycin; dihydroxybenzoate; innerear; real-time PCR ID RAT DORSAL-ROOT; FREE-RADICAL FORMATION; NERVE GROWTH-FACTOR; HAIR CELL LOSS; NEUROTROPHIC FACTOR; AMINOGLYCOSIDE OTOTOXICITY; CAPSAICIN-RECEPTOR; SENSORY NEURONS; COCHLEAR NERVE; DRG NEURONS AB The transient receptor potential cation channel subfamily V (TRPV) is a non-specific cation ion channel receptor family that is gated by heat, protons, low extracellular osmolarity and arachidonic acid derivatives. Since some of these endogenous agonists of TRPV receptors are reactive oxygen intermediates produced by lipoxygenases, it has been hypothesized that some members of the TRPV family may respond to challenges by reactive oxygen species. This study used real-time PCR to quantitatively track changes in TRPV1-4 mRNA expression in the spiral, vestibular, and trigeminal ganglia and the kidney from kanamycin (KM)-treated mice. TRPV1, TRPV2, TRPV3 and TRPV4 mRNAs were expressed in spiral and vestibular ganglia, and TRPV2 and TRPV1 mRNAs were most predominant in control mice. After KM (700 mg/kg s.c. b.i.d., 14 days), TRPV1 mRNA and protein expression were significantly up-regulated both in the spiral and vestibular ganglia, but expression was unaffected in the trigeminal ganglion and kidney. Real-time PCR also demonstrated a significant down-regulation in TRPV4 mRNA expression in the inner ear ganglia and kidney after KM treatment. All these mRNA and protein expression changes were eliminated by simultaneous administration of dihydroxybenzoate (300 mg/kg s.c. b.i.d., 14 days), an anti-oxidant that blocks KM ototoxicity. It is proposed that up-regulated TRPV1 expression during KM exposure may promote ganglion cell survival by contributing to neuronal depolarization, with KM-induced tinnitus and dizziness as consequences. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Inst Eye & Ear, Pittsburgh, PA 15213 USA. Univ Pittsburgh, Dept Neurobiol, Pittsburgh, PA 15260 USA. Univ Pittsburgh, Dept Commun Sci, Pittsburgh, PA 15260 USA. RP Balaban, CD (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Inst Eye & Ear, 107,Room 153,203 Lothrop St, Pittsburgh, PA 15213 USA. EM cbalaban@pitt.edu CR Amaya F, 2003, BRAIN RES, V963, P190, DOI 10.1016/S0006-8993(02)03972-0 Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7 Benham CD, 2003, CELL CALCIUM, V33, P479, DOI 10.1016/S0143-4160(03)00063-0 BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725 Caterina MJ, 1997, NATURE, V389, P816 Caterina MJ, 1999, NATURE, V398, P436 Chung MK, 2003, J BIOL CHEM, V278, P32037, DOI 10.1074/jbc.M303251200 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 Guler AD, 2002, J NEUROSCI, V22, P6408 Ha SO, 2000, MOL BRAIN RES, V81, P181, DOI 10.1016/S0169-328X(00)00144-3 Hansen MR, 2001, J NEUROSCI, V21, P2256 Harada Y, 1991, Acta Otolaryngol Suppl, V481, P135 HAWKINS J. E., 1959, ANN OTOL RHINOL AND LARYNGOL, V68, P698 Hegarty JL, 1997, J NEUROSCI, V17, P1959 HINOJOSA R, 1987, J INFECT DIS, V156, P449 Huang SM, 2002, P NATL ACAD SCI USA, V99, P8400, DOI 10.1073/pnas.122196999 Hudson LJ, 2001, EUR J NEUROSCI, V13, P2105, DOI 10.1046/j.0953-816x.2001.01591.x Hwang SW, 2000, P NATL ACAD SCI USA, V97, P6155, DOI 10.1073/pnas.97.11.6155 Ji RR, 2002, NEURON, V36, P57, DOI 10.1016/S0896-6273(02)00908-X KAMMERMAN JR, 1992, ARMED FORCES I PATHO, P72 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 KELLERHALS B, 1967, ACTA OTOLARYNGOL S S, V26, P1 Liedtke W, 2000, CELL, V103, P525, DOI 10.1016/S0092-8674(00)00143-4 MATZ GJ, 1965, LARYNGOSCOPE, V75, P1690 MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 Michael GJ, 1999, J NEUROSCI, V19, P1844 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Montell C, 2002, CELL, V108, P595, DOI 10.1016/S0092-8674(02)00670-0 Nilius B, 2004, AM J PHYSIOL-CELL PH, V286, pC195, DOI 10.1152/ajpcell.00365.2003 Ogun-Muyiwa P, 1999, NEUROREPORT, V10, P2107, DOI 10.1097/00001756-199907130-00021 Popper P, 1999, BRAIN RES, V846, P40, DOI 10.1016/S0006-8993(99)01941-1 SATALOFF J, 1966, ARCH OTOLARYNGOL, V80, P413 Schmittgen TD, 2000, ANAL BIOCHEM, V285, P194, DOI 10.1006/abio.2000.4753 SERA K, 1987, SCANNING MICROSCOPY, V1, P1191 Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Shin J, 2002, P NATL ACAD SCI USA, V99, P10150, DOI 10.1073/pnas.152002699 Sone M, 1998, HEARING RES, V115, P217, DOI 10.1016/S0378-5955(97)00191-3 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 Stucky CL, 1998, NEUROSCIENCE, V84, P1257, DOI 10.1016/S0306-4522(97)00572-1 Toth A, 2003, LIFE SCI, V73, P487, DOI 10.1016/S0024-3205(03)00310-2 Veldhuis WB, 2003, J NEUROSCI, V23, P4127 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Winston J, 2001, PAIN, V89, P181, DOI 10.1016/S0304-3959(00)00370-5 Winter J, 1998, NEUROSCI LETT, V241, P21, DOI 10.1016/S0304-3940(97)00978-6 Wissenbach U, 2000, FEBS LETT, V485, P127, DOI 10.1016/S0014-5793(00)02212-2 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 Zha XM, 2001, HEARING RES, V156, P53, DOI 10.1016/S0378-5955(01)00267-2 ZIMMERMANN CE, 1995, HEARING RES, V90, P192, DOI 10.1016/0378-5955(95)00165-1 NR 51 TC 38 Z9 41 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 132 EP 144 DI 10.1016/j.heares.2004.09.007 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200014 PM 15721568 ER PT J AU Zhang, YF Dyck, RH Hamilton, SE Nathanson, NM Yan, J AF Zhang, YF Dyck, RH Hamilton, SE Nathanson, NM Yan, J TI Disrupted tonotopy of the auditory cortex in mice lacking M-1 muscarinic acetylcholine receptor SO HEARING RESEARCH LA English DT Article DE auditory cortex; tonotopy; frequency tuning; muscarinic receptor; cholinergic; development; mouse ID MOUSE CEREBRAL NEOCORTEX; DENDRITES IN-VIVO; VISUAL-CORTEX; NUCLEUS BASALIS; PHYSIOLOGICAL MEMORY; CORTICAL DEVELOPMENT; STRIATE CORTEX; MUTANT MICE; HOUSE MOUSE; PLASTICITY AB Sensory cortices have multiple and distinct functional maps that systematically represent environmental information. Development of these maps is precisely controlled by a number of intrinsic and extrinsic factors. Cortical cholinergic regulation is a crucial factor for normal cortical morphogenesis. In this study, we test the role of the M-1 muscarinic acetylcholine receptor, the main muscarinic receptor subtype in the neocortex in the development of tonotopic maps in the auditory cortex. Mice lacking M-1 receptors have normal hearing sensitivity but exhibit disrupted tonotopic organization and frequency tuning in the auditory cortex. In contrast, tonotopic organization and frequency tuning remain normal in the auditory midbrain. In addition, cortical layer IV neurons of M-1 mutants exhibit significantly shorter or sparser dendrites compared to neurons of wildtype mice. In summary, our data suggest that the M-1 receptor appears to be critical for the refinement or normal maturation of cortical tonotopy that is guided by thalamocortical inputs during early development. (c) 2004 Elsevier B.V. All rights reserved. C1 Univ Calgary, Fac Med, Dept Physiol & Biophys, Neurosci Res Grp, Calgary, AB T2N 4N1, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 4N1, Canada. Univ Washington, Sch Med, Dept Pharmacol, Seattle, WA 98195 USA. RP Yan, J (reprint author), Univ Calgary, Fac Med, Dept Physiol & Biophys, Neurosci Res Grp, Calgary, AB T2N 4N1, Canada. EM juyan@ucalgary.ca CR Anagnostaras SG, 2003, NAT NEUROSCI, V6, P51, DOI 10.1038/nn992 Aramakis VB, 1999, SYNAPSE, V32, P262, DOI 10.1002/(SICI)1098-2396(19990615)32:4<262::AID-SYN3>3.0.CO;2-J Aramakis VB, 1997, EXP BRAIN RES, V113, P484, DOI 10.1007/PL00005601 Assad JA, 2003, CURR OPIN NEUROBIOL, V13, P194, DOI 10.1016/S0959-4388(03)00045-X Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Berger-Sweeney J, 2003, NEUROSCI BIOBEHAV R, V27, P401, DOI 10.1016/S0149-7634(03)00070-8 Chang EF, 2003, SCIENCE, V300, P498, DOI 10.1126/science.1082163 Cline HT, 2001, CURR OPIN NEUROBIOL, V11, P118, DOI 10.1016/S0959-4388(00)00182-3 Cohen-Cory S, 2002, SCIENCE, V298, P770, DOI 10.1126/science.1075510 EGGERMONT JJ, 1990, EVOKED POTENTIAL MAN, P41 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Fox K, 2002, NEUROSCIENCE, V111, P799, DOI 10.1016/S0306-4522(02)00027-1 Franklin KBJ, 1996, MOUSE BRAIN STEREOTA Gibb R, 1998, J NEUROSCI METH, V79, P1, DOI 10.1016/S0165-0270(97)00163-5 GLASER EM, 1981, J NEUROSCI METH, V4, P117, DOI 10.1016/0165-0270(81)90045-5 Gordon JA, 1996, J NEUROSCI, V16, P3274 GU Q, 1993, EUR J NEUROSCI, V5, P475, DOI 10.1111/j.1460-9568.1993.tb00514.x Hall J. W., 1992, HDB AUDITORY EVOKED, P41 Hamilton SE, 1997, P NATL ACAD SCI USA, V94, P13311, DOI 10.1073/pnas.94.24.13311 HOHMANN CF, 1995, J COMP NEUROL, V358, P88, DOI 10.1002/cne.903580106 Hohmann CF, 2003, NEUROSCI BIOBEHAV R, V27, P351, DOI 10.1016/S0149-7634(03)00066-6 Hohmann CF, 1998, PERSPECT DEV NEUROBI, V5, P401 Ji WQ, 2003, J NEUROPHYSIOL, V90, P1904, DOI 10.1152/jn.00363.2003 Kaas JH, 2002, BIOESSAYS, V24, P334, DOI 10.1002/bies.10076 LEUBA G, 1978, J HIRNFORSCH, V19, P301 LEVEY AI, 1993, LIFE SCI, V52, P441, DOI 10.1016/0024-3205(93)90300-R LIU YL, 1994, DEV BRAIN RES, V79, P63, DOI 10.1016/0165-3806(94)90049-3 Mechawar N, 2001, NEUROSCIENCE, V108, P555, DOI 10.1016/S0306-4522(01)00389-X METHERATE R, 1990, SYNAPSE, V6, P364, DOI 10.1002/syn.890060409 Miasnikov AA, 2001, NEUROREPORT, V12, P1537, DOI 10.1097/00001756-200105250-00047 Miller LM, 2001, NEURON, V32, P151, DOI 10.1016/S0896-6273(01)00445-7 Molnar Z, 1998, J NEUROSCI, V18, P5723 Monfils MH, 2004, SYNAPSE, V53, P114, DOI 10.1002/syn.20039 Pallas SL, 2001, TRENDS NEUROSCI, V24, P417, DOI 10.1016/S0166-2236(00)01853-1 Plummer KL, 1999, J COMP NEUROL, V404, P408 PRUSKY G, 1990, DEV BRAIN RES, V56, P1, DOI 10.1016/0165-3806(90)90157-T Rajan I, 1999, J NEUROBIOL, V38, P357, DOI 10.1002/(SICI)1097-4695(19990215)38:3<357::AID-NEU5>3.0.CO;2-# Rajan I, 1998, J NEUROSCI, V18, P7836 ROBERTSON RT, 1991, DEV BRAIN RES, V58, P81, DOI 10.1016/0165-3806(91)90240-J ROMAND R, 1990, DEV BRAIN RES, V54, P221, DOI 10.1016/0165-3806(90)90145-O Schmidt KE, 1999, J NEUROBIOL, V41, P10, DOI 10.1002/(SICI)1097-4695(199910)41:1<10::AID-NEU3>3.0.CO;2-L Semple MN, 2003, CURR OPIN NEUROBIOL, V13, P167, DOI 10.1016/S0959-4388(03)00048-5 Sharma J, 2000, NATURE, V404, P841, DOI 10.1038/35009043 Sholl D., 1956, ORG CEREBRAL CORTEX SIMONS DJ, 1987, NATURE, V326, P694, DOI 10.1038/326694a0 Stiebler I, 1997, J COMP PHYSIOL A, V181, P559, DOI 10.1007/s003590050140 Suga N, 1997, J NEUROPHYSIOL, V77, P2098 WEI J, 1994, J NEUROCHEM, V63, P815 Weinberger NM, 2003, NEUROBIOL LEARN MEM, V80, P268, DOI 10.1016/S1074-7427(03)00072-8 Weinberger NM, 1998, NEUROBIOL LEARN MEM, V70, P226, DOI 10.1006/nlme.1998.3850 WIESEL TN, 1963, J NEUROPHYSIOL, V26, P1003 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 Yan J, 2002, J NEUROSCI, V22 Yan J, 2003, EXP BRAIN RES, V150, P184, DOI 10.1007/s00221-003-1396-6 Yan J, 2001, NEUROREPORT, V12, P3313, DOI 10.1097/00001756-200110290-00033 Yan J, 2003, CAN J NEUROL SCI, V30, P189 Yan J, 2002, EUR J NEUROSCI, V16, P119, DOI 10.1046/j.1460-9568.2002.02046.x Yuste R, 1999, J NEUROBIOL, V41, P1, DOI 10.1002/(SICI)1097-4695(199910)41:1<1::AID-NEU1>3.0.CO;2-2 Zhang LI, 2002, P NATL ACAD SCI USA, V99, P2309, DOI 10.1073/pnas.261707398 Zhang LI, 2001, NAT NEUROSCI, V4, P1123, DOI 10.1038/nn745 ZHANG QY, 1999, HEARING RES, V130, P94 NR 61 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD MAR PY 2005 VL 201 IS 1-2 BP 145 EP 155 DI 10.1016/j.heares.2004.10.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 905YA UT WOS:000227606200015 PM 15721569 ER PT J AU Chen, GD Liu, Y AF Chen, GD Liu, Y TI Mechanisms of noise-induced hearing loss potentiation by hypoxia SO HEARING RESEARCH LA English DT Article DE noise-induced hearing loss; hypoxia; cochlear potentials; gene expression in the cochlea ID OUTER HAIR-CELLS; SUCCINIC-DEHYDROGENASE; COCHLEAR AMPLIFIER; ACTIN; THRESHOLD; INNER; ELECTROMOTILITY; PRESTIN; ELEMENT; PLASMA AB Potentiation of noise-induced permanent threshold shift (PTS) by hypoxia has been reported [Hear. Res. 172 (1-2) (2002) 186]. In this study in rats, effects of noise (110 dB SPL), hypoxia (10% O-2), and their combination have been determined on different cochlear potentials and on the expression of genes coding proteins in the outer hair cell (OHC) membrane skeleton (beta-actin) and in the mitochondrial respiratory chain (SDHa & b). The noise exposure alone caused CAP threshold shift only in the noise-band. The combined exposure to noise and hypoxia caused an about 40-dB PTS at all frequencies within and above the noise band. Loss of the cochlear amplification was not always related to the CM-suppression. SP was only affected at high frequencies by the combined exposure. Gene expression of beta-actin was up-regulated by the noise exposure, which was blocked by hypoxia. Gene expression of SDHa was also up-regulated by the noise and the combined exposure. The data suggest that loss of the cochlear active process, due to damage to the OHC membrane skeleton and to the cellular energy generation system, is related to the noise-induced hearing loss potentiation by hypoxia. Inner hair cell damage may also be involved in the hypoxia potentiation in the basal turn. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, Oklahoma City, OK 73117 USA. RP Chen, GD (reprint author), Univ Oklahoma, Hlth Sci Ctr, Coll Pharm, POB 26901,1110 N Stonewall Ave, Oklahoma City, OK 73117 USA. EM guangdi-chen@ouhsc.edu CR ATTIAS J, 1990, HEARING RES, V45, P247, DOI 10.1016/0378-5955(90)90124-8 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 BUICK F, 1991, SPACE ENV MED, V62, P1119 BURSAUX E, 1971, Bulletin de Physio-Pathologie Respiratoire, V7, P729 CARLILE S, 1992, AVIAT SPACE ENVIR MD, V63, P1093 Chen GD, 2002, HEARING RES, V172, P186, DOI 10.1016/S0378-5955(02)00582-8 Chen GD, 2000, HEARING RES, V145, P91, DOI 10.1016/S0378-5955(00)00076-9 CUMMING JF, 1976, CLIN PHARMACOL THER, V19, P468 Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 DENOFRIO D, 1989, J CELL BIOL, V109, P191, DOI 10.1083/jcb.109.1.191 Durrant JD, 1998, J ACOUST SOC AM, V104, P370, DOI 10.1121/1.423293 Fredelius L, 2001, ORL J OTO-RHINO-LARY, V63, P12, DOI 10.1159/000055700 GARRELS JI, 1976, CELL, V9, P793, DOI 10.1016/0092-8674(76)90142-2 He DZZ, 2003, HEARING RES, V175, P183, DOI 10.1016/S0378-5955(02)00737-2 HILDESHEIMER M, 1987, ARYNGOSCOPE, V97, P204 HOLLEY MC, 1988, NATURE, V335, P635, DOI 10.1038/335635a0 HOOCK TC, 1991, J CELL BIOL, V112, P653, DOI 10.1083/jcb.112.4.653 Hu BH, 2002, HEARING RES, V172, P1, DOI 10.1016/S0378-5955(01)00361-6 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Nishioka T, 2002, CMES-COMP MODEL ENG, V3, P129 Ricci Anthony, 2003, J Am Acad Audiol, V14, P325 Schneider ME, 2002, NATURE, V418, P837, DOI 10.1038/418837a SERIES F, 1990, ANN INTERN MED, V113, P507 SOHMER H, 1989, HEARING RES, V40, P87, DOI 10.1016/0378-5955(89)90102-0 Swenson ER, 1997, AVIAT SPACE ENVIR MD, V68, P499 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 TIRLAPUR VG, 1983, THORAX, V38, P785, DOI 10.1136/thx.38.10.785 *US DEP HHS, 1996, MMWR-MORBID MORTAL W, V35, P185 Wang J A, 1990, Hear Res, V44, P143, DOI 10.1016/0378-5955(90)90076-2 ZAKUT R, 1982, NATURE, V298, P857, DOI 10.1038/298857a0 Zhai SQ, 1998, ACTA OTO-LARYNGOL, V118, P813, DOI 10.1080/00016489850182495 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 36 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2004.08.016 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700001 PM 15668034 ER PT J AU Aggarwal, PS Lowen, SB Colburn, HS Dolphin, WF AF Aggarwal, PS Lowen, SB Colburn, HS Dolphin, WF TI Intrinsic oscillations in spike trains indicate non-renewal statistics due to convergence of inputs in dorsal cochlear nucleus neurons SO HEARING RESEARCH LA English DT Article DE intrinsic oscillations; spectral analysis; inter-spike interval regularity; dorsal cochlear nucleus; refractory; integrate-and-fire; convergence; encoding ID UNANESTHETIZED DECEREBRATE CATS; INTRACELLULAR-RECORDINGS; INHIBITORY INTERACTIONS; RESPONSE PROPERTIES; DISCHARGE PATTERNS; AUDITORY-SYSTEM; ELECTRIC FISH; UNITS; CELLS; GERBIL AB The occurrence of intrinsic oscillations (IOs) in a unit's discharge is reflected by a prominent peak in the power spectrum (i.e., Fourier transform of the autocorrelation function) of spike trains obtained from single-unit discharge, at a frequency independent of stimulus spectral characteristics. IOs have been reported by researchers in the dorsal cochlear nucleus (DCN) of both the cat and the Mongolian gerbil. It has been hypothesized that IOs are related to inter-spike interval (ISI) regularity (e.g., [Hear. Res. 58 (1992) 153]). This hypothesis is tested in this paper. Responses to multiple presentations of 50-300 ms duration tone bursts, at and near the unit's best frequency (BF) at 20-60 dB rethreshold were recorded from DCN units of barbiturate-anesthetized (30 units), as well as decerebrate (53 units) Mongolian gerbils. IOs in the recordings were then compared with the IOs in simulations of spiking-neuron models. The models were selected because: (1) their ISI regularity characteristics follow those of experimental data and (2) their 10 properties are completely determined by their ISI regularity. Such comparison reveals that Ghoshal's hypothesis fails for a fraction of the units. These results suggest a re-evaluation of the purported relationship between IOs, ISI regularity, and SAM response. Alternate hypotheses are proposed here using computational models that are based on convergence of multiple neural inputs onto the unit under study. These models produce non-renewal statistics that resemble those of the experimental data, as is evident from IO-based analysis. (C) 2004 Elsevier B.V. All rights reserved. C1 Boston Univ, Biomed Engn Dept, Boston, MA 02215 USA. Boston Univ, Ctr Memory & Brain, Boston, MA 02215 USA. Mclean Hosp, Brain Imaging Ctr, Belmont, MA 02478 USA. RP Aggarwal, PS (reprint author), Boston Univ, Biomed Engn Dept, 2 Cummington St, Boston, MA 02215 USA. EM prateekji@hotmail.com CR BACKOFF PM, 1991, ABSTR ASS RES OT, V14, P459 BULLOCK TH, 1965, P NATL ACAD SCI USA, V54, P422, DOI 10.1073/pnas.54.2.422 Cox DR, 1962, RENEWAL THEORY Davis KA, 1996, J NEUROPHYSIOL, V75, P1411 DAVIS KA, 1995, J NEUROSCI METH, V57, P107, DOI 10.1016/0165-0270(94)00146-8 Davis KA, 1997, J NEUROSCI, V17, P6798 DOLPHIN WF, 1992, HEARING RES, V58, P70, DOI 10.1016/0378-5955(92)90010-K EVANS EF, 1973, EXP BRAIN RES, V17, P402 FRISINA RD, 1982, HEARING RES, V6, P259, DOI 10.1016/0378-5955(82)90059-4 Gardner SM, 1999, J NEUROSCI, V19, P8721 Gdowski GT, 1998, ANN BIOMED ENG, V26, P473, DOI 10.1114/1.96 GHOSHAL S, 1992, HEARING RES, V58, P153, DOI 10.1016/0378-5955(92)90124-6 Golding NL, 1997, J NEUROPHYSIOL, V78, P248 Golding NL, 1996, J NEUROSCI, V16, P2208 HAGIWARA S, 1963, J NEUROPHYSIOL, V26, P551 Hancock KE, 1997, BIOL CYBERN, V76, P419, DOI 10.1007/s004220050355 HOPFIELD JJ, 1995, P NATL ACAD SCI USA, V92, P6655, DOI 10.1073/pnas.92.15.6655 JORIS PX, 1998, J NEUROSCI, V8, P1157 KIM DO, 1990, HEARING RES, V45, P95, DOI 10.1016/0378-5955(90)90186-S Langner G, 1997, Acta Otolaryngol Suppl, V532, P68 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LINEBARGER DA, 1986, HEARING RES, V23, P185, DOI 10.1016/0378-5955(86)90015-8 MACGREGO.RJ, 1974, KYBERNETIK, V16, P53, DOI 10.1007/BF00270295 MOLNER CE, 1966, THESIS WASHINGTON U Nelken I, 1997, J NEUROPHYSIOL, V78, P800 OERTEL D, 2004, TRENDS NEUROSCI, V27 PARHAM K, 1992, J NEUROPHYSIOL, V67, P1247 Ratnam R, 2000, J NEUROSCI, V20, P6672 Rhode WS, 1999, J NEUROPHYSIOL, V82, P1019 RODIECK RW, 1962, BIOPHYS J, V2, P3515 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SHOFNER WP, 1989, J ACOUST SOC AM, V86, P2172, DOI 10.1121/1.398478 SOKOLICH W G, 1973, Journal of the Acoustical Society of America, V54, P283, DOI 10.1121/1.1978024 Teich MC, 1997, J OPT SOC AM A, V14, P529, DOI 10.1364/JOSAA.14.000529 VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76 VOIGT HF, 1990, J NEUROPHYSIOL, V64, P1590 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1992, PHILOS T ROY SOC B, V336, P407, DOI 10.1098/rstb.1992.0076 YOUNG ED, 1976, J NEUROPHYSIOL, V39, P282 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1398 ZHANG S, 1993, J NEUROPHYSIOL, V69, P1409 ZHANG S, 1994, J NEUROPHYSIOL, V71, P914 Zhao HB, 1997, HEARING RES, V106, P83, DOI 10.1016/S0378-5955(97)00004-X NR 43 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 10 EP 28 DI 10.1016/j.heares.2004.08.010 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700002 PM 15668035 ER PT J AU Henson, MM Madden, VJ Rask-Andersen, H Henson, OW AF Henson, MM Madden, VJ Rask-Andersen, H Henson, OW TI Smooth muscle in the annulus fibrosus of the tympanic membrane in bats, rodents, insectivores, and humans SO HEARING RESEARCH LA English DT Article DE tympanic membrane; tympanic annulus; annulus fibrosus; smooth muscle ID RAT AB The annulus fibrosus and its attachment to the bony tympanic ring were studied in a series of mammals. In the pallid bat, Antrozous pallidus, there is an extensive plexus of large interconnected blood sinuses in the part of the annulus that borders the tympanic bone. The spaces between the sinuses are packed with smooth muscle cells. Most of the cells have a predominately radial orientation; they extend from the bony tympanic sulcus to a dense collagenous matrix (apical zone) where radially oriented fibers of the pars tensa are confluent with the annulus. The muscles and vessels constitute a myovascular zone. A structurally similar myovascular zone is also present in the European hedgehog. In rodents, the annulus lacks the large interconnected blood sinuses but many small vessels are present. Smooth muscle is concentrated in the broad area of attachment of the annulus to the tympanic bone. In the gerbil, smooth muscle seems to be concentrated in the central part of the width of the annulus where it is attached to bone and radiates toward the tympanic membrane. In humans collections of radially oriented smooth muscle cells were found in several locations. The smooth muscle in all species studied appears to form a rim of contractile elements for the pars tensa. This arrangement suggests a role in controlling blood flow and/or creating and maintaining tension on the tympanic membrane. (C) 2004 Published by Elsevier B.V. C1 Univ N Carolina, Dept Cell & Dev Biol, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Otolaryngol, Chapel Hill, NC 27599 USA. Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA. Univ Hosp, Dept Otorhinolaryngol, S-75185 Uppsala, Sweden. RP Henson, OW (reprint author), Univ N Carolina, Dept Cell & Dev Biol, Taylor Hall,CB 7090, Chapel Hill, NC 27599 USA. EM owh@med.unc.edu CR ALBIIN N, 1985, ANAT REC, V212, P17, DOI 10.1002/ar.1092120103 BADIA L, 1994, J LARYNGOL OTOL, V108, P380 BAIRD IL, 1961, STAIN TECHNOL, V36, P173 Bento R F, 1998, Ear Nose Throat J, V77, P814 Bondy Gustav, 1907, Anal Hefte Wiesbaden Abt 1, V35 Bulbring E., 1981, SMOOTH MUSCLE ASSESS Gabella G., 1997, CELLULAR ASPECTS SMO, P1, DOI 10.1017/CBO9780511759383.002 Henson Jr O. W., 1974, HDB SENSORY PHYSIOLO, P39 HENSON OW, 2002, ABSTR 25 ANN MIDW M, P153 HENSON OW, 2001, ABSTR 25 ANN MIDW M, P153 Henson OW, 2000, JARO, V1, P25, DOI 10.1007/s101620010003 HENSON OW, 1961, U KANS SCI B, V42, P131 HENSON OW, 2000, ABSTR 23 ANN MIDW RE, P188 HENSON OW, 2001, ABSTR 24 ANN MIDW RE, P105 Kao C, 1997, CELLULAR ASPECTS SMO Kuijpers W, 1999, HEARING RES, V128, P80, DOI 10.1016/S0378-5955(98)00203-2 Madden VJ, 1997, HEARING RES, V111, P76, DOI 10.1016/S0378-5955(97)00107-X NEWSTEAD JD, 1987, CELL TISSUE RES, V250, P401 Nowak RM, 1994, WALKERS BATS WORLD UEHARA Y, 1990, ULTRASTRUCTURE SMOOT, P119 Yang XM, 2002, HEARING RES, V164, P105, DOI 10.1016/S0378-5955(01)00416-6 NR 21 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 29 EP 37 DI 10.1016/j.heares.2004.09.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700003 PM 15668036 ER PT J AU Gehr, DD Werner, YL AF Gehr, DD Werner, YL TI Age effects and size effects in the ears of gekkonomorph lizards: inner ear SO HEARING RESEARCH LA English DT Article DE cochlear duct; inner ear; basilar papilla; directional asymmetry; sexual dimorphism; otoconia; variation; geckos ID HAIR-CELL REGENERATION; MIDDLE-EAR; AUDITORY-SENSITIVITY; TECTORIAL MEMBRANE; PODARCIS-SICULA; GEKKO-GECKO; BODY-SIZE; ASYMMETRY; OTOCONIA; COCHLEA AB Audiograms have indicated greater auditory sensitivity in larger than in smaller geckos; part of this difference, interspecifically and intraspecifically, is explained by middle-ear proportions. To investigate the contribution of the inner ear to the variation in sensitivity, we examined it in museum specimens representing 11 species and three subfamilies. We measured papilla basilaris length, and, when intact, the saccular otoconial mass. Papilla length approximated 1% of rostrum-anus length in large geckos but 2% in small geckos; in some species some inter-aural difference was indicated. Over the lumped material, relative papilla length varied as a function of body length, with highly significant correlation. Similar relations prevailed within each subfamily. However, intraspecifically the correlation of papilla basilaris length with animal size was usually nonsignificant. Hair cell populations assessed from SEM photographs were larger in the larger species but intraspecifically did not relate to an individual's size. Hence interspecifically, the dependence of auditory sensitivity on animal size seems supported by inner-ear differences but intraspecifically this relation derives only from the middle ear. Otoconial mass, as measured by its volume, was correlated with animal length both interspecifically and intraspecifically. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Penn, Dept Otohinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. Tech Univ Munich, ENT Dept, D-81664 Munich, Germany. RP Werner, YL (reprint author), Hebrew Univ Jerusalem, Dept Evolut Systemat & Ecol, IL-91904 Jerusalem, Israel. EM yehudah_w@yahoo.com CR ABDERHALDEN E, 1924, HDB BIOL ARBEITSMETH, V9 Anken RH, 1998, HEARING RES, V121, P77, DOI 10.1016/S0378-5955(98)00067-7 Avallone B, 2003, HEARING RES, V178, P79, DOI 10.1016/S0378-5955(03)00040-6 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 CARLSTROM DD, 1963, BIOL BULL, V125, P441, DOI 10.2307/1539358 CHEVERUD JM, 1982, AM J PHYS ANTHROPOL, V59, P139, DOI 10.1002/ajpa.1330590204 Corwin JT, 1997, NEURON, V19, P951, DOI 10.1016/S0896-6273(00)80386-4 CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 CORWIN JT, 1992, EXP NEUROL, V115, P7, DOI 10.1016/0014-4886(92)90212-9 CORWIN JT, 1991, ANNU REV NEUROSCI, V14, P301, DOI 10.1146/annurev.neuro.14.1.301 COTANCHE DA, 1991, HEARING RES, V52, P379, DOI 10.1016/0378-5955(91)90027-7 Dickman JD, 2004, HEARING RES, V188, P89, DOI 10.1016/S0378-5955(03)00377-0 Evans LT, 1936, ANAT REC, V64, P187, DOI 10.1002/ar.1090640206 Fermin CD, 1998, HISTOL HISTOPATHOL, V13, P1103 FLEISSIG J, 1908, ANAT HEFTE, V37, P3 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Frankenberg Eliezer, 1992, Acta Zoologica Lilloana, V41, P45 HAMILTON DW, 1964, J MORPHOL, V115, P255, DOI 10.1002/jmor.1051150209 HAMILTON DAVID WHITMAN, 1960, UNIV KANSAS SCI BULL, V41, P983 Ismail H, 2003, HEARING RES, V179, P97, DOI 10.1016/S0378-5955(03)00099-6 JOGER U., 1985, AFRICAN VERTEBRATES, P479 Johnstone Brian M., 2001, Herpetological Natural History, V8, P49 KANNAN PM, 1974, J ACOUST SOC AM, V55, P1092, DOI 10.1121/1.1914657 KATAYAMA A, 1989, J COMP NEUROL, V281, P129, DOI 10.1002/cne.902810110 KAVAMOTO K, 2003, J NEUROSCI, V23, P4395 KOPPL C, 1995, HEARING RES, V82, P14 LEWIS ER, 1985, VERTEBRATE INNER BIR Lychakov DV, 2000, HEARING RES, V143, P83, DOI 10.1016/S0378-5955(00)00026-5 Manley G., 2000, COMP HEARING BIRDS R, P139 MILLER MR, 1985, J COMP NEUROL, V232, P1, DOI 10.1002/cne.902320102 MILLER MR, 1992, EVOLUTIONARY BIOLOGY OF HEARING, P463 MILLER MR, 1973, Z ZELLFORSCH MIK ANA, V136, P307, DOI 10.1007/BF00307037 MILLER MALCOLM R., 1966, PROC CALIF AC AD SCI, V33, P255 MONTGOMERY LG, 1995, ABS ASS RES OTOLARYN, V18, P67 MORALES J, 1990, INNER EAR PATHOBIOLO, V45, P111 Newmark M., 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P133 Piscopo M, 2004, HEARING RES, V189, P76, DOI 10.1016/S0378-5955(03)00366-6 POPPER AN, 1984, HEARING RES, V15, P133, DOI 10.1016/0378-5955(84)90044-3 Reiss M. J., 1989, ALLOMETRY GROWTH REP RETZIUS G, 1984, GEHORORGAN WIRBELTHE, V2 Roberson DW, 2002, HEARING RES, V172, P62, DOI 10.1016/S0378-5955(02)00512-9 RYALS BM, 1984, ACTA OTO-LARYNGOL, V98, P93, DOI 10.3109/00016488409107539 SAFFORD SD, 1995, ABS ASS RES OTOLARYN, V18, P66 SAUNDERS JC, 1992, EXP NEUROL, V115, P13, DOI 10.1016/0014-4886(92)90213-A SCHWARTZKOPFF J, 1957, Z MORPHOLOGIE OKOLOG, V45, P365 SCHWENTER SA, 1994, STUD LANG, V18, P71, DOI 10.1075/sl.18.1.05sch SHUTE CCD, 1953, P ZOOL SOC LOND, V123, P695 WERNER YL, 1991, J ZOOL, V225, P647 WERNER YL, 1971, SYST ZOOL, V20, P249, DOI 10.2307/2412063 Werner YL, 2002, HEARING RES, V167, P33, DOI 10.1016/S0378-5955(02)00331-3 WERNER YL, 2001, J BASIC CLIN PHYSL P, V12, P169 Werner YL, 2002, J EXP BIOL, V205, P3215 Werner Y. L., 1997, Journal of Morphology, V232, P339 Werner YL, 2001, HEARING RES, V160, P22, DOI 10.1016/S0378-5955(01)00331-8 WERNER YL, IN PRESS AGE EFFECTS Werner Yehudah L., 2001, Herpetological Natural History, V8, P37 WERNER YL, IN PRESS ANAT REC Werner YL, 1998, J EXP BIOL, V201, P487 WEVER EG, 1978, REPTILE EAR WEVER EG, 1974, J MORPHOL, V143, P121, DOI 10.1002/jmor.1051430202 WEVER EG, 1967, J MORPHOL, V123, P355, DOI 10.1002/jmor.1051230404 WEVER EG, 1967, J MORPHOL, V122, P307, DOI 10.1002/jmor.1051220403 NR 62 TC 8 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 38 EP 50 DI 10.1016/j.heares.2004.08.013 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700004 PM 15668037 ER PT J AU Coppens, AG Gilbert-Gregory, S Steinberg, SA Heizmann, C Poncelet, L AF Coppens, AG Gilbert-Gregory, S Steinberg, SA Heizmann, C Poncelet, L TI Inner ear histopathology in "nervous Pointer dogs" with severe hearing loss SO HEARING RESEARCH LA English DT Article DE dog; hearing loss; hereditary; neuroepithelial degeneration ID POSTNATAL-DEVELOPMENT; HEREDITARY DEAFNESS; CONGENITAL DEAFNESS; INHERITED DEAFNESS; AUDITORY-SYSTEM; DALMATIANS; MODEL; IMMUNOLOCALIZATION; DEGENERATION; MATURATION AB Ten puppy dogs (82, 131 or 148 days-old) from a Pointer cross-colony, exhibiting a juvenile severe hearing loss transmitted as an amosomal recessive trait, were used for histopathological characterization of the inner ear lesion. Immunostaining with calbindin, Na,K-ATPase, cytokeratins, S100, S100A1 and S100A6 antisera were helpful in identifying the different cell types in the degenerated cochleae. Lesions, restricted to the Corti's organ and spiral ganglion, were bilateral but sometimes slightly asymmetrical. Mild to severe lesions of the Corti's organ were unevenly distributed among the different parts of the middle and basal cochlear turns while the apical turn remained unaffected at 148 days. In 82 day-old puppies (n = 2), severe lesions of the Corti's organ, meaning that it was replaced by a layer of unidentifiable cells, involved the lower middle and upper basal turns junction area, extending in the upper basal turn. Mild lesions of the Corti's organ, with both hair and supporting cells abnormalities, involved the lower middle turn and extended from the rest of upper basal turn. into the lower basal turn. The outer hair cells (ohc) were more affected than the inner hair cell (ihc). The lesions extended towards the basal end of the cochlea in the 131 (n = 5) and 148 (n = 3) day-old puppies. Additionally, the number of spiral ganglion neurons was reduced in the 131 and 148 day-old puppies; it is earlier than observed in most other canine hereditary deafness. These lesions were interpreted as a degeneration of the neuroepithelial type. This possible animal model might provide information about progressive juvenile hereditary deafness and neuronal retrograde degeneration investigations in human. (C) 2004 Elsevier B.V. All rights reserved. C1 Free Univ Brussels, Fac Med, Lab Vet Anat, Dept Anat & Embryol, B-1070 Brussels, Belgium. Univ Penn, Sch Vet Med, Sect Neurol Ophthalmol, Philadelphia, PA 19104 USA. Univ Zurich, Div Clin Chem, Dept Paediat, Zurich, Switzerland. RP Coppens, AG (reprint author), Free Univ Brussels, Fac Med, Lab Vet Anat, Dept Anat & Embryol, 808 Lennik St, B-1070 Brussels, Belgium. EM angelique.coppens@ulb.ac.be CR BORG E, 1982, SCAND AUDIOL, V11, P277, DOI 10.3109/01050398209087479 Coppens AG, 2003, J COMP PATHOL, V128, P67, DOI 10.1053/jcpa.2002.0596 Coppens AG, 2000, HEARING RES, V145, P101, DOI 10.1016/S0378-5955(00)00077-0 Coppens AG, 2000, J COMP PATHOL, V122, P223, DOI 10.1053/jcpa.1999.0360 Coppens AG, 2001, DEV BRAIN RES, V126, P191, DOI 10.1016/S0165-3806(00)00153-X Coppens AG, 2003, ANAT REC PART A, V270A, P82, DOI 10.1002/ar.a.10009 Coppens AG, 2001, HEARING RES, V161, P65, DOI 10.1016/S0378-5955(01)00354-9 Famula TR, 2000, AM J VET RES, V61, P550, DOI 10.2460/ajvr.2000.61.550 Famula TR, 1996, MAMM GENOME, V7, P650, DOI 10.1007/s003359900199 Famula TR, 2001, PREV VET MED, V48, P15, DOI 10.1016/S0167-5877(00)00183-5 Feghali JG, 1998, ENT-EAR NOSE THROAT, V77, P280 GREIBROKK T, 1994, J AM ANIM HOSP ASSOC, V30, P170 Hardisty RE, 1998, J LARYNGOL OTOL, V112, P432 Harvey SJ, 2001, AM J PATHOL, V159, P1097, DOI 10.1016/S0002-9440(10)61785-3 HIRAIDE F, 1988, Auris Nasus Larynx, V15, P97 IGARASHI M, 1972, ANN OTO RHINOL LARYN, V81, P249 Ilg EC, 1996, INT J CANCER, V68, P325, DOI 10.1002/(SICI)1097-0215(19961104)68:3<325::AID-IJC10>3.0.CO;2-7 KLEIN E, 1988, PHYSIOL BEHAV, V43, P307, DOI 10.1016/0031-9384(88)90192-8 Lalwani AK, 1997, AUDIOL NEURO-OTOL, V2, P139 Lefebvre P P, 2002, Acta Otorhinolaryngol Belg, V56, P45 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 MAIR IWS, 1976, ARCH OTO-RHINO-LARYN, V212, P1, DOI 10.1007/BF00456358 Malgrange B, 1999, INT J PEDIATR OTORHI, V49, pS19, DOI 10.1016/S0165-5876(99)00126-3 Miura M, 2002, ANN OTO RHINOL LARYN, V111, P1059 Muhle AC, 2002, VET J, V163, P311, DOI 10.1053/tvjl.2001.0661 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 Niparko JK, 1997, OTOLARYNG HEAD NECK, V117, P229, DOI 10.1016/S0194-5998(97)70179-7 NIPARKO JK, 1993, ANN OTO RHINOL LARYN, V102, P447 Poncelet LC, 2000, AM J VET RES, V61, P1343, DOI 10.2460/ajvr.2000.61.1343 Rak SG, 2002, CHROMOSOME RES, V10, P407, DOI 10.1023/A:1016805803686 Sockalingam R, 2002, ANN OTO RHINOL LARYN, V111, P745 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 STEINBERG SA, 1994, J HERED, V85, P56 Strain GM, 1996, BRIT VET J, V152, P17, DOI 10.1016/S0007-1935(96)80083-2 WILKES MK, 1992, J SMALL ANIM PRACT, V33, P218, DOI 10.1111/j.1748-5827.1992.tb01120.x NR 36 TC 9 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 51 EP 62 DI 10.1016/j.heares.2004.08.019 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700005 PM 15668038 ER PT J AU Rybalko, N Syka, J AF Rybalko, N Syka, J TI Effect of noise exposure on gap detection in rats SO HEARING RESEARCH LA English DT Article DE noise exposure; temporal resolution; gap detection; hearing loss; tinnitus; rat ID HEARING-IMPAIRED LISTENERS; AWAKE GUINEA-PIGS; INFERIOR COLLICULUS; EVOKED-RESPONSES; TEMPORAL GAP; FREQUENCY; THRESHOLDS; CHINCHILLA; BANDWIDTH; TINNITUS AB The effects of intense (110-120 dB) noise exposure (broadband noise for one hour) on temporal resolution was estimated in rats by measuring the behavioural gap detection threshold (GDT). Changes in GDT after 120 dB noise exposure were compared with changes in the threshold and amplitude of middle latency responses (MLR) recorded in response to tone stimuli. GDT values increased from 1.6 to 4.3 or 7.8 ms after exposure to 110 or 115 dB SPL, respectively; GDT recovered to pre-exposure values in 3-7 days. Three main types of noise-induced changes were observed after 120 dB SPL exposure: (I) GDT changes similar to those following noise exposure to 115 dB SPL and maximal hearing threshold shifts (TSs) at high frequencies of about 45 dB; (II) more pronounced changes in GDT (up to 60 ms) with maximal hearing threshold shifts of about 65 dB and (III) a lack of reliable responses to gap during the first weeks post-exposure with maximal hearing threshold shifts of about 80 dB. An increased GDT was present two months after noise exposure in animals with types II and III post-exposure changes; enhanced MLR amplitudes were also found in most of these in the first post-exposure week. The pronounced deficit in gap detection in some rats after 120 dB SPL noise exposure may signal the presence of a noise-induced tinnitus. (C) 2004 Elsevier B.V. All rights reserved. C1 Acad Sci Czech Republ, Inst Expt Med, Prague 14220 4, Czech Republic. RP Rybalko, N (reprint author), Acad Sci Czech Republ, Inst Expt Med, Videnska 1083, Prague 14220 4, Czech Republic. EM rybalko@biomed.cas.cz RI Rybalko, Natalia/H-2629-2014; Syka, Josef/H-3103-2014 CR BORG E, 1982, HEARING RES, V8, P101, DOI 10.1016/0378-5955(82)90069-7 DAVIS H, 1965, ACTA OTO-LARYNGOL S, V206, P128 DEFILIPPO CL, 1986, J ACOUST SOC AM, V80, P1354, DOI 10.1121/1.394488 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 FITZGIBBONS PJ, 1983, J ACOUST SOC AM, V74, P67, DOI 10.1121/1.389619 FITZGIBBONS PJ, 1982, J ACOUST SOC AM, V72, P761, DOI 10.1121/1.388256 FLORENTINE M, 1984, J SPEECH HEAR RES, V27, P449 GERKEN G, 1986, BASIC APPL ASPECTS N, P195 Gerken GM, 1996, HEARING RES, V97, P75 GERKEN GM, 2001, HEARING RES, V57, P52 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 GIRAUDIPERRY DM, 1982, J ACOUST SOC AM, V72, P1387, DOI 10.1121/1.388444 GLASBERG BR, 1987, J ACOUST SOC AM, V81, P1546, DOI 10.1121/1.394507 Heffner HE, 2002, HEARING RES, V170, P83, DOI 10.1016/S0378-5955(02)00343-X HEFFNER RS, 1988, J COMP PSYCHOL, V102, P66, DOI 10.1037/0735-7036.102.1.66 HENDERSON D, 1983, AUDIOLOGY, V22, P172 HENDRICK.J, 1966, J EXP ANAL BEHAV, V9, P501, DOI 10.1901/jeab.1966.9-501 IRWIN RJ, 1981, AUDIOLOGY, V20, P234 ISON JR, 1982, J COMP PHYSIOL PSYCH, V96, P945, DOI 10.1037/0735-7036.96.6.945 Kaltenbach JA, 2004, NEUROSCI LETT, V355, P121, DOI 10.1016/j.neulet.2003.10.038 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kelly JB, 1996, BEHAV NEUROSCI, V110, P542 LEITNER DS, 1993, PERCEPT PSYCHOPHYS, V54, P395, DOI 10.3758/BF03205275 OKANOYA K, 1990, HEARING RES, V50, P185, DOI 10.1016/0378-5955(90)90044-P PENNER MJ, 1977, J ACOUST SOC AM, V61, P552, DOI 10.1121/1.381297 PLOMP R, 1964, J ACOUST SOC AM, V36, P227 POPELAR J, 1987, HEARING RES, V26, P239, DOI 10.1016/0378-5955(87)90060-8 PRATT H, 1978, AUDIOLOGY, V17, P285 RYBALKO N, 2001, HEARING RES, V55, P32 SALVI RJ, 1999, NOISE HLTH, V2, P28 SALVI RJ, 1990, HEARING RES, V50, P245, DOI 10.1016/0378-5955(90)90049-U SALVI RJ, 1985, J ACOUST SOC AM, V77, P1173, DOI 10.1121/1.392181 SHAILER MJ, 1983, J ACOUST SOC AM, V74, P467, DOI 10.1121/1.389812 SNELL KB, 1994, J ACOUST SOC AM, V96, P1458, DOI 10.1121/1.410288 SUZUKI T, 1981, EAR HEARING, V2, P276, DOI 10.1097/00003446-198111000-00007 Syka J, 2000, HEARING RES, V139, P59, DOI 10.1016/S0378-5955(99)00175-6 Syka J, 2002, HEARING RES, V172, P151, DOI 10.1016/S0378-5955(02)00578-6 SYKA J, 1994, HEARING RES, V78, P158, DOI 10.1016/0378-5955(94)90021-3 Szczepaniak WS, 1996, EVOKED POTENTIAL, V100, P158, DOI 10.1016/0013-4694(95)00234-0 TYLER RS, 1982, J ACOUST SOC AM, V72, P740, DOI 10.1121/1.388254 Walton JP, 1997, J COMP PHYSIOL A, V181, P161, DOI 10.1007/s003590050103 Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 WILLOTT JF, 1982, SCIENCE, V216, P1331, DOI 10.1126/science.7079767 NR 43 TC 13 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 63 EP 72 DI 10.1016/j.heares.2004.08.014 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700006 PM 15668039 ER PT J AU van Wieringen, A Carlyon, RP Laneau, J Wouters, J AF van Wieringen, A Carlyon, RP Laneau, J Wouters, J TI Effects of waveform shape on human sensitivity to electrical stimulation of the inner ear SO HEARING RESEARCH LA English DT Article DE cochlear implant; behavioural thresholds; symmetric and asymmetric waveforms ID PSYCHOPHYSICAL DETECTION THRESHOLDS; COCHLEAR IMPLANT USERS; AUDITORY-NERVE; SPEECH RECOGNITION; MONOPHASIC STIMULATION; ACTION-POTENTIALS; RESPONSES; SINGLE; DURATION; CONFIGURATION AB Psychophysical measures of the electrically stimulated human auditory system were obtained for different types of symmetric and asymmetric charge-balanced waveforms. Absolute detection thresholds of biphasic, pseudomonophasic, and 'alternating monophasic' current waveforms delivered by a bipolar intra-cochlear electrode pair were determined for four subjects implanted with the LAURA device. Thresholds for alternating monophasic stimuli, in which anodic and cathodic phases alternated every 5 ms, were 5-8 dB lower than for the biphasic waveforms for all four subjects. For two of the four subjects, thresholds for the pseudomonophasic waveforms were also significantly lower than for the biphasic waveforms. These pseudomonophasic thresholds were greatly affected neither by a 500-mus gap inserted between the two phases, nor by whether the shorter phase preceded or followed the longer one. Loudness balancing measures performed at the most comfortable levels also showed that, for equal loudness, alternating monophasic stimuli required a lower level than biphasic and pseudomonophasic waveforms. For three of the four subjects, the dynamic ranges of the pseudomonophasic (but not alternating monophasic) waveforms were greater than those of the biphasic waveforms. The results demonstrate that thresholds and dynamic ranges of human cochlear implant users can be controlled by manipulating the way in which the charge produced by the initial phase of an electrical pulse is recovered. (C) 2004 Elsevier B.V. All rights reserved. C1 Catholic Univ Louvain, Lab Exp ORL, B-3000 Louvain, Belgium. MRC Cognit & Brain Sci Unit, Cambridge CB2 2EF, England. RP van Wieringen, A (reprint author), Catholic Univ Louvain, Lab Exp ORL, Kapucijnenvoer 33, B-3000 Louvain, Belgium. EM astrid.vanwieringen@uz.kuleuven.ac.be RI Carlyon, Robert/A-5387-2010; Wouters, Jan/D-1800-2015 CR [Anonymous], SPSS 10 0 Bonnet RM, 2004, ACTA OTO-LARYNGOL, V124, P371, DOI 10.1080/00016480410031084 CARLYON RP, 2004, 27 ANN MIDW RES M AB, P848 deSauvage RC, 1997, HEARING RES, V110, P119 Coste RL, 1996, J ACOUST SOC AM, V99, P3099, DOI 10.1121/1.414796 EDDINGTON DK, 2002, 7 INT COCHL IMPL C M Frijns JHM, 1996, HEARING RES, V95, P33, DOI 10.1016/0378-5955(96)00004-4 Geurts L, 2000, J ACOUST SOC AM, V108, P2949, DOI 10.1121/1.1321011 Grill WM, 1996, IEEE T BIO-MED ENG, V43, P161, DOI 10.1109/10.481985 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140 Miller AL, 1999, HEARING RES, V135, P47, DOI 10.1016/S0378-5955(99)00089-1 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 Miller CA, 1999, HEARING RES, V130, P197, DOI 10.1016/S0378-5955(99)00012-X Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 MILLER JM, 1990, COCHLEAR IMPLANTS MO, P55 MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U OTA CY, 1980, ACTA OTO-LARYNGOL, V89, P53, DOI 10.3109/00016488009127108 Pfingst BE, 1997, HEARING RES, V112, P247, DOI 10.1016/S0378-5955(97)00122-6 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 PFINGST BE, 1995, HEARING RES, V85, P76, DOI 10.1016/0378-5955(95)00037-5 Rubinstein JT, 2001, IEEE T BIO-MED ENG, V48, P1065, DOI 10.1109/10.951508 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Shepherd RK, 1999, HEARING RES, V130, P171, DOI 10.1016/S0378-5955(99)00011-8 SHEPHERD RK, 1991, ACTA OTO-LARYNGOL, V111, P848, DOI 10.3109/00016489109138421 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 van Wieringen A, 1999, EAR HEARING, V20, P89, DOI 10.1097/00003446-199904000-00001 van Wieringen A, 2001, EAR HEARING, V22, P528, DOI 10.1097/00003446-200112000-00008 WILER JA, 1989, HEARING RES, V39, P251, DOI 10.1016/0378-5955(89)90045-2 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 *WORLD MED ASS, 1975, REC GUID MED DOCT BI NR 35 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 73 EP 86 DI 10.1016/j.heares.2004.08.006 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700007 PM 15668040 ER PT J AU Spicer, SS Schulte, BA AF Spicer, SS Schulte, BA TI Novel structures in marginal and intermediate cells presumably relate to functions of apical versus basal strial strata SO HEARING RESEARCH LA English DT Article DE K+ flow; upper stria; lower stria; fine structure/function ID MOUSE INNER-EAR; ENDOCOCHLEAR POTENTIAL GENERATION; GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; GERBIL COCHLEA; FINE-STRUCTURE; ION-TRANSPORT; ENDOPLASMIC-RETICULUM; SPIRAL LIGAMENT; PLACE-FREQUENCY AB Prior ultrastructural studies showed that K+ supplied to the stria vascularis came from recycling ions from the organ of Corti or perilymph to strial basal cells. A newly distinguished basal subtype of intermediate cell (BIC) completely covered the basal cells with a leaf-like horizontal process and appeared situated to absorb from them all of the recycled K+. The basal region of marginal cells (MCs) projected foot-like and enlarged processes to border BICs opposite an unique ca. 150 A space. These basal MC processes appeared positioned to resorb part of the K+ recycled to BICs. A second, upper subtype of IC (UIC), occupying middle to upper strial strata, contacted BIC's extensively. UICs were thus located to resorb from BICs the portion of the recycled K+ not forwarded to basal MC processes. The apical segment of MCs projected mitochondria-filled primary processes and numerous associated secondary processes. The Na,K-ATPase-rich secondary processes populated mid to upper stria where they could siphon K+ from UICs and resorb and secrete the ions thus generating the 150 mM [KCl] of endolymph. The morphologic relationship of basal marginal cell processes to BICs differed so strikingly from the relation of upper MC processes to UICs as to suggest a different function for basal stria, one possibly concerned with generating the endocochlear potential. (C) 2004 Elsevier B.V. All rights reserved. C1 Med Univ S Carolina, Dept Pathol & Lab Med, Charleston, SC 29425 USA. RP Schulte, BA (reprint author), Med Univ S Carolina, Dept Pathol & Lab Med, 165 Ashley Ave,Suite 309,POB 250908, Charleston, SC 29425 USA. EM schulteb@musc.edu CR Ando M, 1999, CELL TISSUE RES, V298, P179, DOI 10.1007/s004419900066 ANNIKO M, 1984, ULTRASTRUCTURAL ATLA, P184 ASHMORE JF, 1986, NATURE, V322, P386 BARON DA, 1984, LAB INVEST, V51, P233 CABLE J, 1991, PIGM CELL RES, V4, P87, DOI 10.1111/j.1600-0749.1991.tb00320.x CABLE J, 1992, HEARING RES, V64, P6, DOI 10.1016/0378-5955(92)90164-I CARLISLE L, 1990, CELL TISSUE RES, V262, P329, DOI 10.1007/BF00309888 CONLEE JW, 1994, HEARING RES, V79, P115, DOI 10.1016/0378-5955(94)90133-3 CONLEE JW, 1989, ACTA OTO-LARYNGOL, V107, P48, DOI 10.3109/00016488909127478 COREY DP, 1979, NATURE, V281, P675, DOI 10.1038/281675a0 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 DUVALL AJ, 1970, BIOCH MECH HEARING D ENGSTROM H, 1955, Pract Otorhinolaryngol (Basel), V17, P69 FORGE A, 1982, CELL TISSUE RES, V226, P375 GITTER AH, 1986, ORL J OTO-RHINO-LARY, V48, P68 HILDING DA, 1977, ACTA OTO-LARYNGOL, V84, P24, DOI 10.3109/00016487709123939 HINOJOSA R, 1966, AM J ANAT, V118, P631, DOI 10.1002/aja.1001180218 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 KIMURA RS, 1970, ACTA OTO-LARYNGOL, V69, P415, DOI 10.3109/00016487009123387 KONISHI T, 1978, ACTA OTO-LARYNGOL, V86, P22, DOI 10.3109/00016487809124717 Lang H, 2003, JARO, V4, P164, DOI 10.1007/s10162-002-2056-4 MARCUS DC, 1985, HEARING RES, V17, P79, DOI 10.1016/0378-5955(85)90133-9 Marcus DC, 2002, AM J PHYSIOL-CELL PH, V282, pC403 MARCUS DC, 1994, AM J PHYSIOL, V267, pC857 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 RODRIGUEZECHAND.EL, 1965, Z ZELLFORSCH, V67, P600 ROSTGAARD J, 1980, CELL TISSUE RES, V212, P17 SAKAGAMI M, 1991, HEARING RES, V56, P168, DOI 10.1016/0378-5955(91)90166-7 Salt A., 1986, NEUROBIOLOGY HEARING SALT AN, 1987, LARYNGOSCOPE, V97, P984 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1985, ACTA OTO-LARYNGOL, V100, P26, DOI 10.3109/00016488509108583 Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SCHULTE BA, 1994, HEARING RES, V78, P65, DOI 10.1016/0378-5955(94)90045-0 Sharma D, 2004, J MOL CELL CARDIOL, V37, P79, DOI 10.1016/j.yjmcc.2004.03.015 SMITH CA, 1981, PROGR SENSORY PHYSL, V2, P135 SMITH C., 1957, ANN OTOL RHINOL AND LARYNGOL, V66, P521 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202 SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 Spicer SS, 2003, ANAT REC PART A, V271A, P342, DOI 10.1002/ar.a.10041 SPICER SS, 1993, ANAT REC, V237, P421, DOI 10.1002/ar.1092370316 SPOENDLIN H, 1967, SUBMICROSCOPIC STRUC, P131 Takeuchi S, 2001, HEARING RES, V155, P103, DOI 10.1016/S0378-5955(01)00252-0 Takeuchi S, 2000, BIOPHYS J, V79, P2572 Takeuchi S, 1999, AM J PHYSIOL-CELL PH, V277, pC91 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S WILLINGHAM MC, 1984, J HISTOCHEM CYTOCHEM, V32, P455 WODA J, 1979, ARCH OTORHINOLARYNGO, V225, P79 WRIGHT CG, 1989, ACTA OTO-LARYNGOL, V108, P190, DOI 10.3109/00016488909125518 ZIDANIC M, 1990, BIOPHYS J, V57, P1253 NR 53 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 87 EP 101 DI 10.1016/j.heares.2004.09.006 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700008 PM 15668041 ER PT J AU Hildebrand, MS de Silva, MG Klockars, T Solares, CA Hirose, K Smith, JD Patel, SC Dahl, HHM AF Hildebrand, MS de Silva, MG Klockars, T Solares, CA Hirose, K Smith, JD Patel, SC Dahl, HHM TI Expression of the carrier protein apolipoprotein D in the mouse inner ear SO HEARING RESEARCH LA English DT Article DE apolipoprotein D; inner ear; potassium recycling; spiral ligament; spiral limbus; outer hair cells; apoD knockout mouse model ID OUTER HAIR-CELLS; SPIRAL-LIGAMENT; LIMBUS-SPIRALIS; F1-HYBRID STRAINS; MAMMALIAN COCHLEA; HEARING-LOSS; RAT COCHLEA; DEAFNESS; GENE; COTRANSPORTER AB The cochlear portion of the inner ear converts movements produced by sound waves into electrical impulses. Transcripts enriched in the cochlea are likely to have an important role in hearing. In this paper, we report that microarray analyses of the Soares NMIE inner ear library revealed cochlear enriched expression of apolipoprotein D (apoD), a glycoprotein and member of the lipocalin family that transport small hydrophobic ligands. The cochlear enriched expression of Apod was validated by quantitative real time PCR analysis. To investigate the function of apoD in the inner ear the transcript and protein were localised in the cochlea. Apod messenger RNA (mRNA) expression was localised to the spiral ligament and spiral limbus, particularly in the suprastrial and supralimbral regions. The apoD protein was detected in the spiral ligament, spiral limbus and also in the outer hair cells of the organ of Corti. Investigation of cell lines exhibiting characteristics of hair and supporting cells revealed no Apod mRNA expression in these cells. This suggests transport of the protein within the cochlea, followed by internalisation into outer hair cells. The spiral limbus and ligament contain subpopulations of fibrocytes that are intimately involved in regulation of ion balance in the cochlear fluids and type I, II and III fibrocytes of the spiral ligament were all shown to be positive for apoD protein. On the basis of these results it was hypothesised that apoD could be involved in maintaining cochlear fluid homeostasis. To determine whether the apoD gene product was important for normal auditory function the hearing ability of an apoD knockout mouse was tested. The mouse was found to have a hearing threshold that was not significantly different to the control strain. (C) 2004 Elsevier B.V. All rights reserved. C1 Royal Childrens Hosp, Murdoch Childrens Res Inst, Dept Gene Identificat & Express, Parkville, Vic 3052, Australia. Univ Melbourne, Dept Biochem & Mol Biol, Melbourne, Vic, Australia. Cleveland Clin Fdn, Head & Neck Inst, Cleveland, OH USA. Cleveland Clin Fdn, Lerner Res Inst, Dept Neurosci, Cleveland, OH USA. Cleveland Clin Fdn, Lerner Res Inst, Dept Cell Biol, Cleveland, OH USA. New England Biomed Res Ctr & VA Connecticut Healt, Newington, CT USA. Univ Melbourne, Royal Childrens Hosp, Dept Paediat, Melbourne, Vic, Australia. RP Dahl, HHM (reprint author), Royal Childrens Hosp, Murdoch Childrens Res Inst, Dept Gene Identificat & Express, Flemington Rd, Parkville, Vic 3052, Australia. EM henrik.dahl@mcri.edu.au RI de Silva, Michelle/E-5848-2011 CR ARNOLD W, 1973, ACTA OTO-LARYNGOL, V75, P192, DOI 10.3109/00016487309139695 AYRAULTJARRIER M, 1963, B SOC CHIM BIOL, V45, P703 Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a BORGHESAN E, 1957, Laryngoscope, V67, P1266 BORGHINI I, 1995, BBA-LIPID LIPID MET, V1255, P192, DOI 10.1016/0005-2760(94)00232-N Cofer S, 1996, GENE, V171, P261, DOI 10.1016/0378-1119(96)00099-6 Cohen-Salmon M, 2000, J BIOL CHEM, V275, P40036, DOI 10.1074/jbc.M002876200 Crouch JJ, 1997, J HISTOCHEM CYTOCHEM, V45, P773 Crozet F, 1997, GENOMICS, V40, P332, DOI 10.1006/geno.1996.4526 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Delprat B, 2002, J NEUROSCI, V22, P1718 DRAYNA D, 1986, J BIOL CHEM, V261, P6535 DRAYNA DT, 1987, DNA-J MOLEC CELL BIO, V6, P199, DOI 10.1089/dna.1987.6.199 Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FIRBAS W, 1981, ARCH OTO-RHINO-LARYN, V232, P131, DOI 10.1007/BF00505032 Flower DR, 2000, BBA-PROTEIN STRUCT M, V1482, P327, DOI 10.1016/S0167-4838(00)00169-2 Harter C, 1999, DNA CELL BIOL, V18, P1, DOI 10.1089/104454999315574 HENSON MM, 1984, HEARING RES, V16, P231, DOI 10.1016/0378-5955(84)90112-6 HENSON MM, 1985, HEARING RES, V20, P207, DOI 10.1016/0378-5955(85)90025-5 Hildebrand MS, 2004, HEARING RES, V190, P149, DOI 10.1016/S0378-5955(04)00015-2 Hoffmann A, 1996, DEV DYNAM, V207, P332, DOI 10.1002/(SICI)1097-0177(199611)207:3<332::AID-AJA10>3.0.CO;2-6 ICHIMIYA I, 1994, ANN OTO RHINOL LARYN, V103, P457 ICHIMIYA I, 1994, ACTA OTO-LARYNGOL, V114, P167, DOI 10.3109/00016489409126037 Juhn S K, 1988, Acta Otolaryngol Suppl, V458, P79 JUHN SK, 1986, AUDIOL SUPPL, V26, P7 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 KIMURA RS, 1990, AM J OTOLARYNG, V11, P99, DOI 10.1016/0196-0709(90)90006-H Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 Logdberg L, 2000, BBA-PROTEIN STRUCT M, V1482, P284, DOI 10.1016/S0167-4838(00)00164-3 Morais Cabral Joao H., 1995, FEBS Letters, V366, P53, DOI 10.1016/0014-5793(95)00484-Q Ong WY, 1997, NEUROSCIENCE, V79, P359, DOI 10.1016/S0306-4522(96)00608-2 Patel RC, 1997, PROTEIN ENG, V10, P621, DOI 10.1093/protein/10.6.621 PATEL SC, 1995, NEUROREPORT, V6, P653, DOI 10.1097/00001756-199503000-00017 Rassart E, 2000, BBA-PROTEIN STRUCT M, V1482, P185, DOI 10.1016/S0167-4838(00)00162-X Resendes BL, 2001, AM J HUM GENET, V69, P923, DOI 10.1086/324122 Rivolta MN, 1998, P ROY SOC B-BIOL SCI, V265, P1595 Sakaguchi N, 1998, HEARING RES, V118, P114, DOI 10.1016/S0378-5955(98)00022-7 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 Suko T, 2000, HEARING RES, V140, P137, DOI 10.1016/S0378-5955(99)00191-4 Suresh S, 1998, J NEUROCHEM, V70, P242 Tekin M, 2001, LANCET, V358, P1082, DOI 10.1016/S0140-6736(01)06186-4 Terrisse L, 2001, LIFE SCI, V70, P629, DOI 10.1016/S0024-3205(01)01439-4 THALMANN I, 1994, OTOLARYNG HEAD NECK, V111, P273, DOI 10.1016/S0194-5998(94)70602-6 Ulfendahl M, 2000, NEUROIMAGE, V12, P307, DOI 10.1006/nimg.2000.0617 Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X Voldrich L, 1967, Acta Otolaryngol, V63, P503 Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 ZUSMAN RM, 1981, ANNU REV MED, V32, P359, DOI 10.1146/annurev.me.32.020181.002043 NR 56 TC 11 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 102 EP 114 DI 10.1016/j.heares.2004.08.018 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700009 PM 15668042 ER PT J AU Kluk, K Moore, BCJ AF Kluk, K Moore, BCJ TI Factors affecting psychophysical tuning curves for hearing-impaired subjects with high-frequency dead regions SO HEARING RESEARCH LA English DT Article DE psychophysical tuning curve; dead region; beats; combination tone ID AUDITORY FILTER SHAPES; COMBINATION TONES; MASKING PATTERNS; PURE-TONE; AMPLITUDE-MODULATION; SINUSOIDAL CARRIERS; NORMALLY HEARING; RELATIVE ROLE; BAND NOISE; LISTENERS AB A dead region (DR) is a region of the cochlea where there are no functioning inner hair cells and/or neurons. DRs can be detected using the threshold-equalizing-noise (TEN) test, but psychophysical tuning curves (PTCs) are sometimes used to give a more precise estimate of the edge frequency of a DR; a shifted tip of the PTC indicates a DR. We show here that the shapes of PTCs for hearing-impaired subjects can be influenced by the detection of beats and simple difference tones (SDTs). As a result, PTCs can have tips at f(s), even when f(s) falls in a DR. PTCs were measured for subjects with mild to moderate low-frequency and severe high-frequency hearing loss using sinusoidal and narrowband noise maskers (80-, 160-, 320-Hz wide): (1) in quiet; (2) in the presence of additional lowpass filtered noise (LF noise) designed to mask SDTs; (3) in the presence of a pair of low-frequency tones designed to interfere with the detection of beats (MDI tones). In condition (1), the PTCs were often W-shaped, with a sharp tip at f(s). This occurred less for the wider noise bandwidths. For subjects with good low-frequency hearing, the LF noise often reduced or eliminated the tip at f(s), suggesting that this tip was partly caused by detection of SDTs. For the sinusoidal and 80-Hz wide noise maskers, the addition of the MDI tones reduced the masker level required for threshold for masker frequencies adjacent to f(s), for nearly all subjects, suggesting a strong influence of beat detection. To minimize the influence of beats, we recommend using noise maskers with a bandwidth of 160 or (preferably) 320 Hz. In cases of near-normal hearing at low frequencies, we recommend using an additional LF noise to mask SDTs. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. RP Kluk, K (reprint author), Univ Cambridge, Dept Expt Psychol, Cambridge CB2 3EB, England. EM kk278@cam.ac.uk RI Moore, Brian/I-5541-2012 CR Alcantara JI, 2002, HEARING RES, V165, P103, DOI 10.1016/S0378-5955(02)00291-5 Alcantara JI, 2000, HEARING RES, V148, P63, DOI 10.1016/S0378-5955(00)00114-3 BACON SP, 1994, J ACOUST SOC AM, V95, P2637, DOI 10.1121/1.410020 Baker RJ, 2002, J ACOUST SOC AM, V111, P1330, DOI 10.1121/1.1448516 Cheatham MA, 2001, J ACOUST SOC AM, V110, P2034, DOI 10.1121/1.1397357 Chistovich L.A., 1957, BIOPHYSICS-USSR, V2, P743 Dau T, 1997, J ACOUST SOC AM, V102, P2892, DOI 10.1121/1.420344 Derleth RP, 2000, J ACOUST SOC AM, V108, P285, DOI 10.1121/1.429464 DUBNO JR, 1989, J ACOUST SOC AM, V85, P1666, DOI 10.1121/1.397955 EGAN JP, 1950, J ACOUST SOC AM, V22, P622, DOI 10.1121/1.1906661 EHMER RH, 1959, J ACOUST SOC AM, V31, P1115, DOI 10.1121/1.1907836 Ewert SD, 2000, J ACOUST SOC AM, V108, P1181, DOI 10.1121/1.1288665 FLORENTINE M, 1983, J ACOUST SOC AM, V73, P961, DOI 10.1121/1.389021 GLASBERG BR, 1986, J ACOUST SOC AM, V79, P1020, DOI 10.1121/1.393374 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T GOLDSTEI.JL, 1967, J ACOUST SOC AM, V41, P676, DOI 10.1121/1.1910396 GREENWOO.DD, 1971, J ACOUST SOC AM, V50, P502, DOI 10.1121/1.1912668 HELMHOLTZ H, 1963, LEHRE TONEMPFINDUNGE Hoekstra A., 1977, PSYCHOPHYSICS PHYSL, P263 HUSS M, 2004, THESIS U CAMBRIDGE Huss M, 2003, J ACOUST SOC AM, V114, P3283, DOI 10.1121/1.162400 JOHNSONDAVIES D, 1979, J ACOUST SOC AM, V65, P765, DOI 10.1121/1.382490 Kluk K, 2004, HEARING RES, V194, P118, DOI 10.1016/j.heares.2004.04.012 Kohlrausch A, 2000, J ACOUST SOC AM, V108, P723, DOI 10.1121/1.429605 LAWSON JL, 1950, THERSHOLD SIGNALS, V24 LEEK MR, 1993, J ACOUST SOC AM, V94, P3127, DOI 10.1121/1.407218 LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 Moore B., 1998, COCHLEAR HEARING LOS Moore B, 2001, PHYSL PSYCHOPHYSICAL, P419 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 Moore B C, 2001, Trends Amplif, V5, P1, DOI 10.1177/108471380100500102 Moore BCJ, 1998, J ACOUST SOC AM, V104, P1023, DOI 10.1121/1.423321 MOORE BCJ, 2004, IN PRESS EAR HEAR, V25 MOORE BCJ, 1978, J ACOUST SOC AM, V63, P524, DOI 10.1121/1.381752 Moore BCJ, 1997, J AUDIO ENG SOC, V45, P224 Moore BCJ, 2001, J ACOUST SOC AM, V110, P1067, DOI 10.1121/1.1385177 Moore BCJ, 2003, INT J AUDIOL, V42, P465, DOI 10.3109/14992020309081516 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 MOORE BCJ, 2002, IRAN AUDIOL, V1, P17 Moore BCJ, 2001, EAR HEARING, V22, P268, DOI 10.1097/00003446-200108000-00002 Patterson RD, 1986, FREQUENCY SELECTIVIT, P123 PLOMP R, 1965, J ACOUST SOC AM, V37, P1110, DOI 10.1121/1.1909532 Riesz RR, 1928, PHYS REV, V31, P0867, DOI 10.1103/PhysRev.31.867 SMALL AM, 1959, J ACOUST SOC AM, V31, P1619, DOI 10.1121/1.1907670 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P615, DOI 10.1121/1.1913152 SMOORENB.GF, 1972, J ACOUST SOC AM, V52, P603, DOI 10.1121/1.1913151 Summers V, 2003, EAR HEARING, V24, P133, DOI 10.1097/01.AUD.0000058148.27540.D9 THORNTON AR, 1980, J ACOUST SOC AM, V67, P638, DOI 10.1121/1.383888 TURNER C, 1983, J ACOUST SOC AM, V73, P966, DOI 10.1121/1.389022 TYLER RS, 1984, J ACOUST SOC AM, V76, P1363, DOI 10.1121/1.391452 Vogten LL, 1974, FACTS MODELS HEARING, P142 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 YOST WA, 1989, J ACOUST SOC AM, V86, P2138, DOI 10.1121/1.398474 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 NR 55 TC 37 Z9 40 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD FEB PY 2005 VL 200 IS 1-2 BP 115 EP 131 DI 10.1016/j.heares.2004.09.003 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 896FJ UT WOS:000226919700010 PM 15668043 ER PT J AU Wu, XH Wang, C Chen, J Qu, HW Li, WR Wu, YH Schneider, BA Li, L AF Wu, XH Wang, C Chen, J Qu, HW Li, WR Wu, YH Schneider, BA Li, L TI The effect of perceived spatial separation on informational masking of Chinese speech SO HEARING RESEARCH LA English DT Article DE Chinese speech; nonsense sentences; precedence effect; perceived spatial separation; informational masking; energetic masking ID ENERGETIC MASKING; INTELLIGIBILITY; NOISE; PERCEPTION; RELEASE AB The effect of perceived spatial separation, induced by the precedence effect, on release from noise or speech masking was investigated. Listeners were asked to orally repeat Chinese nonsense sentences, which were spoken by a female talker and presented by both the left (-45degrees) and right (+45degrees) loudspeakers, when maskers, which were either speech-spectrum noise sounds or Chinese nonsense sentences spoken by two other female talkers, were presented by the same two loudspeakers. Delays between identical sounds presented over the two loudspeakers were used to control the perceived locations of the target (right only) and masker (right, center, or left). The results show that perceived 45degrees and 90degrees separations of target speech from masking speech led to equivalently marked improvement in speech recognition, even though the degree of improvement was smaller than that reported in [J. Acoust. Soc. Am. 106 (1999) 3578 (using English nonsense speech)]. When the masker was noise, however, perceived separation only marginally improved speech recognition. These results indicate that release from informational masking, due to perceived target/masker spatial separation induced by the precedence effect, also occurs for tonal Chinese speech. Compared to the 45degrees perceived within-hemifield separation, the 90degrees perceived cross-hemifield separation does not produce further unmasking. (C) 2004 Elsevier B.V. All rights reserved. C1 Peking Univ, Natl Key Lab Machine Percept, Speech & Hearing Res Ctr, Beijing 100871, Peoples R China. Peking Univ, Dept Psychol, Beijing 100871, Peoples R China. Univ Toronto, Dept Psychol, Ctr Res Biol Commun Syst, Mississauga, ON L5L 1C6, Canada. RP Wu, XH (reprint author), Peking Univ, Natl Key Lab Machine Percept, Speech & Hearing Res Ctr, Beijing 100871, Peoples R China. EM wxh@cis.pku.edu.cn CR Arbogast TL, 2002, J ACOUST SOC AM, V112, P2086, DOI 10.1121/1.1510141 Blauert J., 1997, SPATIAL HEARING Boehnke SE, 1999, J ACOUST SOC AM, V106, P1948, DOI 10.1121/1.428037 BRONKHORST AW, 1988, J ACOUST SOC AM, V83, P1508, DOI 10.1121/1.395906 Brungart DS, 2001, J ACOUST SOC AM, V109, P1101, DOI 10.1121/1.1345696 Brungart DS, 2002, J ACOUST SOC AM, V112, P664, DOI 10.1121/1.1490592 CHERRY EC, 1953, J ACOUST SOC AM, V25, P975, DOI 10.1121/1.1907229 Dubno JR, 2002, J SPEECH LANG HEAR R, V45, P1297, DOI 10.1044/1092-4388(2002/104) Durlach NI, 2003, J ACOUST SOC AM, V114, P368, DOI 10.1121/1.1577562 DUQUESNOY AJ, 1983, J ACOUST SOC AM, V74, P739, DOI 10.1121/1.389859 Freyman RL, 1999, J ACOUST SOC AM, V106, P3578, DOI 10.1121/1.428211 Freyman RL, 2001, J ACOUST SOC AM, V109, P2112, DOI 10.1121/1.1354984 GELFAND SA, 1988, J ACOUST SOC AM, V83, P248, DOI 10.1121/1.396426 Helfer KS, 1997, J SPEECH LANG HEAR R, V40, P432 Kang J, 1998, J ACOUST SOC AM, V103, P1213, DOI 10.1121/1.421253 KIDD G, 1994, J ACOUST SOC AM, V95, P3475, DOI 10.1121/1.410023 Kidd G, 1998, J ACOUST SOC AM, V104, P422, DOI 10.1121/1.423246 Koehnke J, 1996, EAR HEARING, V17, P211, DOI 10.1097/00003446-199606000-00004 LI L, 2002, HEARING RES, V168, P113 Litovsky RY, 1999, J ACOUST SOC AM, V106, P1633, DOI 10.1121/1.427914 WALLACH H, 1949, AM J PSYCHOL, V62, P315, DOI 10.2307/1418275 WOLFRAM S., 1991, MATHEMATICA SYSTEM D ZUREK PM, 1993, ACOUSTIC FACTORS AFF ZUREK PM, 1980, J ACOUST SOC AM, V67, P952, DOI 10.1121/1.383974 NR 24 TC 27 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2004.03.010 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200001 PM 15574295 ER PT J AU Samadi, DS Saunders, JC Crenshaw, EB AF Samadi, DS Saunders, JC Crenshaw, EB TI Mutation of the POU-domain gene Brn4/Pou3f4 affects middle-ear sound conduction in the mouse SO HEARING RESEARCH LA English DT Article DE POU-domain genes; Brn4/Pou3f4; middle ear; velocity transfer functions; transgenic mice; umbo response; targeted mutagenesis; laser interferometry ID TYMPANIC-MEMBRANE PERFORATIONS; AUDITORY DEVELOPMENT; INNER-EAR; CATS AB Mutagenesis of the POU-domain gene Brn4/Pou3f4 causes defects in the cochlear duct, semicircular canal, temporal bone and stapes footplate. The footplate defect suggested a middle-ear conductive component to the hearing loss associated with this mutation. This was examined by measuring velocity transfer functions at the umbo of wild type and knockout mice during sound stimulation of the tympanic membrane. When the median umbo velocity of test frequencies in the two groups were compared, the mid-range frequencies of the knockout mice showed a statistically reliable reduction in velocity (maximum of 13 dB) and high variability among animals. These results indicated that mutation of the POU-domain gene, Brn4, changed middle-ear sound conduction when measured at the umbo. The origin of the abnormal velocity response was sought by puncturing a hole in the pars flaccida (PF), and subsequently, measuring movements at the umbo and the head of the long arm of the incus. This hole permitted us to measure velocity at the tip of the incus long arm, just above the incudostapedial joint. The comparison of umbo behavior in both groups with PF perforated showed a loss of sensitivity in the mid-range frequencies of the knockout animals. A comparison of incus velocity in the two groups also exhibited a velocity reduction in the mid-range frequencies of the knockout animals. The reduction at the incus, however, was milder than observed at the umbo. The effect of the perforation in, and variability of, the knockout incus responses may have masked a more potent mid-range frequency effect. Nevertheless, evaluation of the stapes and oval window in knockout mice showed variable pathology from ear to ear. The presence of this pathology, the mid-frequency loss in incus sensitivity and the variability in incus velocity among animals suggested that abnormal stapes behavior in Brn4 deficient mice may determine the response of the ossicles, and thus account for the abnormal mid-frequency umbo behavior seen in knockout animals. (C) 2004 Elsevier B.V. All rights reserved. C1 Childrens Hosp Philadelphia, Mammalian Neurogenet Grp, Ctr Childhood Commun, Div Pediat Otolaryngol,Abraham Res Ctr 712, Philadelphia, PA 19104 USA. Univ Penn, Sch Med, Dept Otorhinolaryngol Head & Neck Surg, Philadelphia, PA 19104 USA. RP Crenshaw, EB (reprint author), Childrens Hosp Philadelphia, Mammalian Neurogenet Grp, Ctr Childhood Commun, Div Pediat Otolaryngol,Abraham Res Ctr 712, 34th & Civic Blvd, Philadelphia, PA 19104 USA. EM crenshaw@email.chop.edu CR Bigelow DC, 1996, LARYNGOSCOPE, V106, P71, DOI 10.1097/00005537-199601000-00014 Cantos R, 2000, P NATL ACAD SCI USA, V97, P11707, DOI 10.1073/pnas.97.22.11707 COHEN YE, 1993, AM J OTOLARYNG, V14, P191, DOI 10.1016/0196-0709(93)90029-7 COHEN YE, 1992, HEARING RES, V58, P1, DOI 10.1016/0378-5955(92)90002-5 DECRAEMER WF, 1989, HEARING RES, V38, P1, DOI 10.1016/0378-5955(89)90123-8 DIMAIO FHP, 1978, ARCH OTOLARYNGOL, V104, P570 Doan DE, 1996, HEARING RES, V97, P174, DOI 10.1016/0378-5955(96)00060-3 DOAN DE, 1994, J COMP PHYSIOL A, V174, P103 Fleischer G., 1978, Advances in Anatomy Embryology and Cell Biology, V55, P1 FRITZSCH B, 1998, DEV AUDITORY SYSTEM GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HUANGFU M, 1983, J MORPHOL, V176, P249, DOI 10.1002/jmor.1051760302 KRUGER B, 1977, J ACOUST SOC AM, V61, P126, DOI 10.1121/1.381275 Minowa O, 1999, SCIENCE, V285, P1408, DOI 10.1126/science.285.5432.1408 Phippard D, 2000, HUM MOL GENET, V9, P79, DOI 10.1093/hmg/9.1.79 Phippard D, 1999, J NEUROSCI, V19, P5980 ROSOWSKI JJ, 1995, AM J OTOL, V16, P468 ROSOWSKI JJ, 2003, JARO-J ASSOC RES OTO, V4, P85 Saunders JC, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P99, DOI 10.1201/9781420038736.sec2 SAUNDERS JC, 1993, COMP BIOCHEM PHYS A, V106, P7, DOI 10.1016/0300-9629(93)90030-8 SAUNDERS JC, 1982, J COMP PHYSIOL, V146, P517 Steel KP, 1999, SCIENCE, V285, P1363, DOI 10.1126/science.285.5432.1363 Voss SE, 2001, J ACOUST SOC AM, V110, P1432, DOI 10.1121/1.1394195 WEINER BJ, 1962, STAT PRINCIPLES EXPT, P239 NR 24 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 11 EP 21 DI 10.1016/j.heares.2004.07.013 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200002 PM 15574296 ER PT J AU Yang, JJ Tsai, CC Hsu, HM Shiao, JY Su, CC Li, SY AF Yang, JJ Tsai, CC Hsu, HM Shiao, JY Su, CC Li, SY TI Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice-site mutation in the PDS gene SO HEARING RESEARCH LA English DT Article DE PDS; EVA; Mondini dysplasia; prelingual deafness; Pendrin syndrome; hearing ID PENDRED-SYNDROME; MOLECULAR ANALYSIS; AUDITORY-SYSTEM; DEAFNESS; IDENTIFICATION; FREQUENCIES; DISCOVERY; SPECTRUM; PROTEIN; IODIDE AB Recessive mutations of PDS gene are the common causes of Pendred syndrome and non-syndromic hearing loss associated with temporal bone abnormalities ranging from isolated enlargement of the vestibular aqueduct (EVA) to Mondini dysplasia. In this study we evaluate the relationship between EVA and Mondini dysplasia in 10 prelingual deaf patients and PDS gene mutation. One of three mutations, IVS7 - 2A --> G, INS16 - 6G -->A or IVS15 + 5G --> A, was identified in the PDS gene in each patient. In family studies of four probands with the IVS7 - 2A --> G mutation, we found that this mutation was inherited from the same mutant alleles of parental origin. The effect of IVS7 - 2A --> G mutation on PDS gene expression was determined by reverse transcription and polymerase chain reaction (RT-PCR). Sequencing of the RT-PCR products revealed that the PDS transcripts from the allele with 1VS7 - 2A --> G mutation lose the entire exon 8, resulting in a joining of exons 7 and 9. Deletion of the exon 8 results in frameshift and premature termination of translation. Haplotype analysis showed a significant haplotype shared among the family members carrying IVS7 - 2A --> G mutation, suggesting that they may be derived from a common ancestor. Our results provide evidence that hearing loss with EVA and Mondini dysplasia may be caused by splice-site mutation in the PDS gene. (C) 2004 Elsevier B.V. All rights reserved. C1 Chung Shan Med Univ, Genet Lab, Taichung 402, Taiwan. Chung Shan Med Univ, Dept Life Sci, Taichung 402, Taiwan. Chung Shan Med Univ, Inst Med, Taichung, Taiwan. Taichung Vet Gen Hosp, Dept Otorhinolaryngol, Taichung, Taiwan. Tian Sheng Mem Hosp, Tong Kong, Pin Tong, Taiwan. RP Li, SY (reprint author), Chung Shan Med Univ, Genet Lab, 110,Sec 1,Chien Kuo N Rd, Taichung 402, Taiwan. EM syl@csmu.edu.tw CR Bidart JM, 2000, J CLIN ENDOCR METAB, V85, P4367, DOI 10.1210/jc.85.11.4367 Campbell C, 2001, HUM MUTAT, V17, P403, DOI 10.1002/humu.1116 Coucke PJ, 1999, J MED GENET, V36, P475 Coyle B, 1998, HUM MOL GENET, V7, P1105, DOI 10.1093/hmg/7.7.1105 Coyle J, 1996, INTERNET WORLD, V7, P12 Dib C, 1996, NATURE, V380, P152, DOI 10.1038/380152a0 Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411 EVERETT LA, 1999, P NATL ACAD SCI USA, V696, P727 Fugazzola L, 2002, PEDIATR RES, V51, P479, DOI 10.1203/00006450-200204000-00013 GORLIN RJ, 1995, HEREDITARY HEARING L, P337 JOHNSEN T, 1986, ACTA OTO-LARYNGOL, V102, P239, DOI 10.3109/00016488609108673 KABAKKAYA Y, 1993, ANN OTO RHINOL LARYN, V102, P285 Kitamura K, 2000, ACTA OTO-LARYNGOL, V120, P137, DOI 10.1080/000164800750000775 KRAWCZAK M, 1992, HUM GENET, V90, P41 Kruglyak L, 1996, AM J HUM GENET, V58, P1347 Larriba S, 1998, HUM MOL GENET, V7, P1739, DOI 10.1093/hmg/7.11.1739 Li XC, 1998, NAT GENET, V18, P215, DOI 10.1038/ng0398-215 Lopez-Bigas N, 1999, HUM MUTAT, V14, P520, DOI 10.1002/(SICI)1098-1004(199912)14:6<520::AID-HUMU11>3.0.CO;2-K Massa G, 2003, EUR J PEDIATR, V162, P674, DOI 10.1007/s00431-003-1281-0 Morton CC, 2002, HUM MOL GENET, V11, P1229, DOI 10.1093/hmg/11.10.1229 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Park HJ, 2003, J MED GENET, V40, P242, DOI 10.1136/jmg.40.4.242 Pendred V, 1896, LANCET, V2, P532 Phelps PD, 1998, CLIN RADIOL, V53, P268, DOI 10.1016/S0009-9260(98)80125-6 Resendes BL, 2001, AM J HUM GENET, V69, P923, DOI 10.1086/324122 Royaux IE, 2000, ENDOCRINOLOGY, V141, P839, DOI 10.1210/en.141.2.839 Scott DA, 1999, NAT GENET, V21, P440 Scott DA, 2000, HUM MOL GENET, V9, P1709, DOI 10.1093/hmg/9.11.1709 Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, P356 SUZUKI K, 2002, J CLIN ENDOCR METAB, V987, P938 Tsukamoto K, 2003, EUR J HUM GENET, V11, P916, DOI 10.1038/sj.ejhg.5201073 Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933 Van Hauwe P, 1998, HUM MOL GENET, V7, P1099, DOI 10.1093/hmg/7.7.1099 Yong AML, 2001, J CLIN ENDOCR METAB, V86, P3907, DOI 10.1210/jc.86.8.3907 NR 34 TC 32 Z9 42 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 22 EP 30 DI 10.1016/j.heares.2004.08.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200003 PM 15574297 ER PT J AU Kozou, H Kujala, T Shtyrov, Y Toppila, E Starck, J Alku, P Naatanen, R AF Kozou, H Kujala, T Shtyrov, Y Toppila, E Starck, J Alku, P Naatanen, R TI The effect of different noise types on the speech and non-speech elicited mismatch negativity SO HEARING RESEARCH LA English DT Article DE noise; mismatch negativity; event-related brain potentials; speech ID HUMAN BRAIN; NORMAL-HEARING; WHITE-NOISE; MASKING; RECOGNITION; PERCEPTION; SOUNDS; REPRESENTATION; THRESHOLD; ACCURACY AB The effect of different types of real-life noise on the central auditory processing of speech and non-speech sounds was evaluated by the means of mismatch negativity and behavioral responses. Subjects (19-34 years old; 6 males, 4 females) were presented, in separate conditions, with either speech or non-speech stimuli of approximately equal complexity in five background conditions: babble noise, industrial noise, traffic noise, wide band noise, and silent condition. Whereas there were no effects of stimuli or noise on the behavioral responses, the MMN results revealed that speech and non-speech sounds are processed differently both in silent and noisy conditions. Speech processing was more affected than non-speech processing in all noise conditions. Moreover, different noise types had a differential effect on the pre-attentive discrimination, as reflected in MMN, on speech and non-speech sounds. Babble and industrial noises dramatically reduced the MMN amplitudes for both stimulus types, while traffic noise affected only speech stimuli. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, FIN-00014 Helsinki, Finland. Alexandria Sch Med, Dept Otolaryngol Head & Neck Surg, Alexandria, Egypt. Univ Helsinki, Helsinki Coll Adv Studies, FIN-00014 Helsinki, Finland. Univ Helsinki, Inst Brain Res, Helsinki, Finland. MRC, Cognit & Brain Sci Unit, Cambridge, England. Finnish Inst Occupat Hlth, Dept Phys, Helsinki, Finland. Helsinki Univ Technol, Lab Acoust & Audio Signal Proc, FIN-02150 Espoo, Finland. RP Kujala, T (reprint author), Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, POB 9, FIN-00014 Helsinki, Finland. EM teija.m.kujala@helsinki.fi RI Alku, Paavo/E-2400-2012; Shtyrov, Yury/I-3421-2013 CR Alku P, 1999, CLIN NEUROPHYSIOL, V110, P1329, DOI 10.1016/S1388-2457(99)00088-7 Amenedo E, 2000, EUR J NEUROSCI, V12, P2570, DOI 10.1046/j.1460-9568.2000.00114.x BOOTHROYD A, 1984, J SPEECH HEAR RES, V27, P134 DIRKS DD, 1982, J SPEECH HEAR DISORD, V47, P114 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 GARSTECKI DC, 1974, J AUD RES, V3, P171 GUSTAFSSON HA, 1994, J ACOUST SOC AM, V95, P518, DOI 10.1121/1.408346 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 HERRMANN C, 2000, NEUROREPORT, V112, P227 HYGGE S, 1992, J SPEECH HEAR RES, V35, P208 JERGER S, 1994, EAR HEARING, V152, P138 Kujala T, 2001, CLIN NEUROPHYSIOL, V112, P1712, DOI 10.1016/S1388-2457(01)00625-3 Levanen S, 1997, PSYCHOPHYSIOLOGY, V34, P258, DOI 10.1111/j.1469-8986.1997.tb02396.x Martin BA, 1999, J SPEECH LANG HEAR R, V42, P271 Muller-Gass A, 2001, NEUROSCI LETT, V299, P197, DOI 10.1016/S0304-3940(01)01508-7 MUSIEK FE, 1987, EAR HEARING S, V84, pS22 Musiek F E, 1999, Scand Audiol Suppl, V51, P33 MUSIEK FE, 1980, LARYNGOSCOPE, V923, P251 Naatanen R, 2001, PSYCHOPHYSIOLOGY, V38, P1, DOI 10.1017/S0048577201000208 Näätänen R, 1995, Int J Neurosci, V80, P317, DOI 10.3109/00207459508986107 Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341 SALO SK, 1995, SCAND AUDIOL, V24, P165, DOI 10.3109/01050399509047531 Salvi RJ, 2002, HEARING RES, V170, P96, DOI 10.1016/S0378-5955(02)00386-6 Shtyrov Y, 1998, NEUROSCI LETT, V251, P141, DOI 10.1016/S0304-3940(98)00529-1 Sperry J L, 1997, J Am Acad Audiol, V8, P71 VANTASELL DJ, 1987, J SPEECH HEAR RES, V30, P377 WANG MD, 1973, J ACOUST SOC AM, V54, P1248, DOI 10.1121/1.1914417 NR 28 TC 20 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 31 EP 39 DI 10.1016/j.heares.2004.07.010 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200004 PM 15574298 ER PT J AU Glueckert, R Pfaller, K Kinnefors, A Schrott-Fischer, A Rask-Andersen, H AF Glueckert, R Pfaller, K Kinnefors, A Schrott-Fischer, A Rask-Andersen, H TI High resolution scanning electron microscopy of the human organ of Corti. A study using freshly fixed surgical specimens SO HEARING RESEARCH LA English DT Article DE nerve fibres; tectorial membrane; sound transduction; marginal net; stereocilia; glycocalyx; supernumerary hair cells; supporting cells; stria vascularis ID COCHLEAR HAIR-CELLS; TECTORIAL MEMBRANE; GUINEA-PIG; NERVE-FIBERS; EFFERENT INNERVATION; STRIA VASCULARIS; SPIRAL GANGLION; HUMAN FETUSES; STEREOCILIA; BUNDLES AB Scanning electron microscopy on immediately fixed human cochleae obtained during surgery for life-threatening petro-clival meningioma showed excellently preserved morphology. We compared the morphological findings with those from transmission electron microscopic sections of well preserved human and animal tissue. The characteristics of neural innervation, the pathways of the nerves through the organ of Corti and the intimate relation of nerves to supporting cells along their route could be studied in detail. The lateral membranes of Hensen and Claudius cells were folded creating a surface enlargement. Marginal pillars extended the distal end of the tectorial membrane and correspond to the marginal net or "randfasernetz" described earlier. Stereocilia imprints at the undersurface of the tectorial membrane go as far as to the distal end of the marginal pillars. The presence of an irregularly distributed fourth row of outer hair cell, attached to the marginal pillars, raises questions about differences in the excitation of the last row of outer hair cells. The complex nature of many supporting cells, stria vascularis and Reissner's membrane, intracellular complexities as well as surface features are described. Supernumerary inner hair cells were observed and the different arrangement of outer spiral fibres in contrast to findings in animals and variations of nerve fibres within the organ of Corti between apex and base are discussed. (C) 2004 Elsevier B.V. All rights reserved. C1 Med Univ Innsbruck, Dept Otolaryngol, A-6020 Innsbruck, Austria. Med Univ Innsbruck, Dept Hist & Mol Cell Biol, Inst Anat & Histol, Innsbruck, Austria. Univ Uppsala Hosp, Dept Otolaryngol, S-75185 Uppsala, Sweden. RP Glueckert, R (reprint author), Med Univ Innsbruck, Dept Otolaryngol, Anichstr 35, A-6020 Innsbruck, Austria. EM rudolf.glueckert@uibk.ac.at; annelies.schrott@uibk.ac.at CR ANNIKO M, 1986, HEARING RES, V22, P279, DOI 10.1016/0378-5955(86)90104-8 BAGGERSJOBACK D, 1985, ANN OTO RHINOL LARYN, V94, P284 Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a BREDBERG G, 1977, ARCH OTO-RHINO-LARYN, V217, P321, DOI 10.1007/BF00465549 BREDBERG G, 1970, SCIENCE, V170, P861, DOI 10.1126/science.170.3960.861 BREDBERG G, 1977, ACTA OTO-LARYNGOL, V83, P71, DOI 10.3109/00016487709128815 COMIS SD, 1985, J NEUROCYTOL, V14, P113, DOI 10.1007/BF01150266 COMIS SD, 1990, ACTA OTO-LARYNGOL, V109, P361, DOI 10.3109/00016489009125156 Engström B, 1987, Acta Otolaryngol Suppl, V436, P110 Engström B, 1990, Acta Otolaryngol Suppl, V470, P31 FELIX H, 1993, ACTA OTO-LARYNGOL, V113, P321, DOI 10.3109/00016489309135817 FUJIMOTO S, 1981, ARCH HISTOL JAPON, V44, P223 FURNESS DN, 1986, HEARING RES, V21, P243, DOI 10.1016/0378-5955(86)90222-4 GLEESON MJ, 1985, ACTA OTO-LARYNGOL, V100, P419, DOI 10.3109/00016488509126566 HACKNEY CM, 1988, HEARING RES, V34, P207, DOI 10.1016/0378-5955(88)90109-8 HARADA Y, 1983, SCAN ELECTRON MICROS, P183 HENSON MM, 1983, HEARING RES, V10, P153, DOI 10.1016/0378-5955(83)90051-5 HOSHINO T, 1985, ANN OTO RHINOL LARYN, V94, P304 HOSHINO T, 1981, ARCH OTO-RHINO-LARYN, V232, P65, DOI 10.1007/BF00661004 HOSHINO T, 1990, J ELECTRON MICR TECH, V15, P104, DOI 10.1002/jemt.1060150203 HOSHINO T, 1977, ARCH OTO-RHINO-LARYN, V217, P53, DOI 10.1007/BF00453890 Hunter-Duvar I M, 1975, Can J Otolaryngol, V4, P152 IGARASHI Y, 1980, ARCH HISTOL JAPON, V43, P195 Jin ZH, 2003, TOHOKU J EXP MED, V200, P137, DOI 10.1620/tjem.200.137 Jongebloed WL, 1999, J MICROSC-OXFORD, V193, P158 Kammen-Jolly K, 2001, HEARING RES, V160, P15, DOI 10.1016/S0378-5955(01)00310-0 KAMMENJOLLY K, 2001, HEARING RES, V167, P102 KIANG NYS, 1982, SCIENCE, V217, P175, DOI 10.1126/science.7089553 KIKUCHI T, 2004, ARO MIDW M DAYT BEAC KIMURA RS, 1975, INT REV CYTOL, V42, P173, DOI 10.1016/S0074-7696(08)60981-X LAVIGNEREBILLARD M, 1990, J ELECTRON MICR TECH, V15, P115, DOI 10.1002/jemt.1060150204 LAVIGNEREBILLARD M, 1986, ANAT EMBRYOL, V174, P369, DOI 10.1007/BF00698787 Lavigne-Rebillard M, 1985, Ann Otolaryngol Chir Cervicofac, V102, P493 Lavigne-Rebillard M, 1987, Acta Otolaryngol Suppl, V436, P43 LAWRENCE M, 1980, ANN OTO RHINOL LARYN, V89, P325 LIM DJ, 1972, ARCHIV OTOLARYNGOL, V96, P199 LIM DJ, 1969, ANN OTO RHINOL LARYN, V78, P827 MORITA H, 1992, SCANNING MICROSCOPY, V6, P1105 Morita Hirofumi, 1996, Scanning Microscopy, V10, P165 NOMURA Y, 1979, ARCH OHREN NASEN KEH, V222, P181, DOI 10.1007/BF00456314 OSBORNE MP, 1989, ACTA OTO-LARYNGOL, V108, P217, DOI 10.3109/00016488909125521 Pujol R, 1991, Acta Otolaryngol Suppl, V482, P7 Reiss G, 1990, Acta Otolaryngol Suppl, V470, P23 REISS M, 1990, ACTA OTO-LARYNGOL S, V470, P109 SANTI PA, 1994, J HISTOCHEM CYTOCHEM, V42, P705 SANTI PA, 1987, HEARING RES, V27, P47, DOI 10.1016/0378-5955(87)90025-6 Schrott-Fischer A, 2002, HEARING RES, V174, P75, DOI 10.1016/S0378-5955(02)00640-8 Simmons DD, 2002, J NEUROBIOL, V53, P228, DOI 10.1002/neu.10130 SLEPECKY NB, 1992, CELL TISSUE RES, V267, P413, DOI 10.1007/BF00319363 Sobkowicz HM, 1998, ANAT EMBRYOL, V198, P353, DOI 10.1007/s004290050190 Spicer SA, 2000, HEARING RES, V143, P147, DOI 10.1016/S0378-5955(00)00037-X Spicer SS, 2000, CELL TISSUE RES, V302, P1, DOI 10.1007/s004410000253 SPICER SS, 1994, ANAT REC, V240, P149, DOI 10.1002/ar.1092400202 SPOENDLIN H, 1982, AM J OTOL, V3, P274 SPOENDLIN H, 1988, ACTA OTO-LARYNGOL, V105, P403, DOI 10.3109/00016488809119493 SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927 SPOENDLIN H, 1985, AM J OTOLARYNG, V6, P453, DOI 10.1016/S0196-0709(85)80026-0 SPOENDLI.H, 1971, ARCH KLIN EXP OHR, V200, P275, DOI 10.1007/BF00373310 TAKUMIDA M, 1988, ACTA OTO-LARYNGOL, V106, P130, DOI 10.3109/00016488809107380 Takumida M, 1988, Acta Otolaryngol Suppl, V458, P84 TANAKA K, 1979, ANN OTO RHINOL LARYN, V88, P749 Thiers FA, 2002, HEARING RES, V164, P97, DOI 10.1016/S0378-5955(01)00414-2 Valk WL, 2002, ORL J OTO-RHINO-LARY, V64, P242, DOI 10.1159/000064137 Warr WB, 1997, HEARING RES, V108, P89, DOI 10.1016/S0378-5955(97)00044-0 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WRIGHT A, 1983, J ROY SOC MED, V76, P269 WRIGHT A, 1982, CLIN OTOLARYNGOL, V7, P193, DOI 10.1111/j.1365-2273.1982.tb01582.x WRIGHT A, 1981, ARCH OTO-RHINO-LARYN, V230, P11, DOI 10.1007/BF00665375 WRIGHT A, 1981, CLIN OTOLARYNGOL, V6, P237, DOI 10.1111/j.1365-2273.1981.tb01541.x WRIGHT A, 1980, ARCH OTO-RHINO-LARYN, V228, P1, DOI 10.1007/BF00455888 WRIGHT A, 1980, ARCH OTO-RHINO-LARYN, V229, P39, DOI 10.1007/BF00453750 Zheng JL, 2000, DEVELOPMENT, V127, P4551 NR 72 TC 19 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 40 EP 56 DI 10.1016/j.heares.2004.05.006 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200005 PM 15574299 ER PT J AU Pal, B Por, A Pocsai, K Szucs, G Rusznak, Z AF Pal, B Por, A Pocsai, K Szucs, G Rusznak, Z TI Voltage-gated and background K(+) channel subunits expressed by the bushy cells of the rat cochlear nucleus SO HEARING RESEARCH LA English DT Article DE bushy cells; K(+) channel subunits; TASK channel; immunochemistry; BDS-I; phrixotoxin ID THRESHOLD POTASSIUM CHANNEL; 2 PORE DOMAINS; SUBTHRESHOLD POTENTIALS; OUTWARD CURRENTS; NEURONS; TANDEM; BRAIN; MOUSE; FAMILY; LOCALIZATION AB Bushy cells of the ventral cochlear nucleus produce a single, short latency action potential at the beginning of long depolarisations. In the present work an immunochemical survey was performed to detect the presence of K(+) channel subunits which may contribute to the specific membrane properties of the bushy cells. The immunocytochemical experiments conducted on enzymatically isolated bushy cells indicated positive immunolabelling for several subunits known to be responsible for the genesis of rapidly inactivating K(+) currents. Bushy cells showed strong expression of Kv3.4,4.2 and 4.3 subunits, with the lack of Kv1.4 specific immunoreaction. The Kv3.4-specific immunoreaction had a specific, patchy appearance. Bushy cells also expressed various members of the Kv1 subunit family, most notably Kv1.1, 1.2, 1.3 and 1.6. Weak positivity could be observed for Kv3.2 subunits. The positive immunolabelling for Kv3.4, Kv4.2 and Kv4.3 was confirmed in free-floating tissue slices. Voltage-clamp experiments performed on positively identified bushy cells in brain slices corroborated the presence and activity of Kv3.4 and Kv4.2/4.3 containing K(+) channels. Bushy cell showed strong immunopositivity for TASK-I channels too. The results presented in this work indicate that bushy cells possess several types of voltage-gated K(+) channel subunits whose activity may contribute to the membrane properties and firing characteristics of these neurones. (C) 2004 Elsevier B.V. All rights reserved. C1 Debrecen Univ, Dept Physiol, Med & Hlth Sci Ctr, H-4012 Debrecen, Hungary. RP Rusznak, Z (reprint author), Debrecen Univ, Dept Physiol, Med & Hlth Sci Ctr, POB 22, H-4012 Debrecen, Hungary. EM rz@phys.dote.hu RI Szucs, Geza/A-2121-2008 CR ANDERSON AJ, 1988, BRIT J PHARMACOL, V93, P215 Ashmole I, 2001, PFLUG ARCH EUR J PHY, V442, P828, DOI 10.1007/s004240100620 BALDWIN TJ, 1991, NEURON, V7, P471, DOI 10.1016/0896-6273(91)90299-F Brew HM, 1995, J NEUROSCI, V15, P8011 Coetzee WA, 1999, ANN NY ACAD SCI, V868, P233, DOI 10.1111/j.1749-6632.1999.tb11293.x CONNOR JA, 1971, J PHYSIOL-LONDON, V213, P21 Cuttle MF, 2001, J PHYSIOL-LONDON, V534, P733, DOI 10.1111/j.1469-7793.2001.00733.x Diochot S, 1998, J BIOL CHEM, V273, P6744, DOI 10.1074/jbc.273.12.6744 Diochot S, 1999, BRIT J PHARMACOL, V126, P251, DOI 10.1038/sj.bjp.0702283 Dodson PD, 2003, J PHYSIOL-LONDON, V550, P27, DOI 10.1113/jphysiol.2003.046250 Dodson PD, 2004, TRENDS NEUROSCI, V27, P210, DOI 10.1016/j.tins.2004.02.012 Doughty JM, 1998, J PHYSIOL-LONDON, V512, P365, DOI 10.1111/j.1469-7793.1998.365be.x Duprat F, 1997, EMBO J, V16, P5464, DOI 10.1093/emboj/16.17.5464 FEKETE DM, 1984, J COMP NEUROL, V229, P432, DOI 10.1002/cne.902290311 Fitzakerley JL, 2000, HEARING RES, V147, P31, DOI 10.1016/S0378-5955(00)00118-0 Frisina RD, 2001, HEARING RES, V158, P1, DOI 10.1016/S0378-5955(01)00296-9 Grigg JJ, 2000, HEARING RES, V140, P77, DOI 10.1016/S0378-5955(99)00187-2 Hess D, 2001, P NATL ACAD SCI USA, V98, P5276, DOI 10.1073/pnas.091096198 Karschin C, 2001, MOL CELL NEUROSCI, V18, P632, DOI 10.1006/mcne.2001.1045 KETCHUM KA, 1995, NATURE, V376, P690, DOI 10.1038/376690a0 Kim D, 2001, BIOCHEM BIOPH RES CO, V284, P923, DOI 10.1006/bbrc.2001.5064 Kim Y, 2000, J BIOL CHEM, V275, P9340, DOI 10.1074/jbc.275.13.9340 KIM Y, 1999, AM J PHYSIOL, V277, pH1678 Kupper J, 2002, PFLUG ARCH EUR J PHY, V443, P541, DOI 10.1007/s00424-001-0734-4 Leonoudakis D, 1998, J NEUROSCI, V18, P868 Li W, 2001, J COMP NEUROL, V437, P196, DOI 10.1002/cne.1279 MANIS PB, 1991, J NEUROSCI, V11, P2865 Martina M, 2003, J NEUROSCI, V23, P5698 MOORE JK, 1986, NEUROBIOLOGY HEARING, P283 MOREST DK, 1993, NATO ADV SCI INST SE, V239, P1 NEHER E, 1971, J GEN PHYSIOL, V58, P36, DOI 10.1085/jgp.58.1.36 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 OERTEL D, 1983, J NEUROSCI, V3, P2043 Perney TM, 1997, J COMP NEUROL, V386, P178 Rajan S, 2000, J BIOL CHEM, V275, P16650, DOI 10.1074/jbc.M000030200 Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824 RETTIG J, 1994, NATURE, V369, P289, DOI 10.1038/369289a0 Reyes R, 1998, J BIOL CHEM, V273, P30863, DOI 10.1074/jbc.273.47.30863 Rhode WS, 1991, NEUROBIOLOGY HEARING, P47 Rothman JS, 2003, J NEUROPHYSIOL, V89, P3070, DOI 10.1152/jn.00125.2002 Rudy B, 2001, TRENDS NEUROSCI, V24, P517, DOI 10.1016/S0166-2236(00)01892-0 Rusznak Z, 1997, EUR J NEUROSCI, V9, P2348, DOI 10.1111/j.1460-9568.1997.tb01652.x Rusznak Z, 2001, BRAIN RES PROTOC, V7, P68, DOI 10.1016/S1385-299X(01)00047-2 Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424 SCHROTER KH, 1991, FEBS LETT, V278, P211, DOI 10.1016/0014-5793(91)80119-N Serodio P, 1996, J NEUROPHYSIOL, V75, P2174 SERODIO P, 1994, J NEUROPHYSIOL, V72, P1516 Sewing S, 1996, NEURON, V16, P455, DOI 10.1016/S0896-6273(00)80063-X Shibata R, 2000, J NEUROSCI, V20, P4145 WANG H, 1994, J NEUROSCI, V14, P4588 Wang LY, 1998, J PHYSIOL-LONDON, V509, P183, DOI 10.1111/j.1469-7793.1998.183bo.x WU SH, 1984, J NEUROSCI, V4, P1577 NR 52 TC 15 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 57 EP 70 DI 10.1016/j.heares.2004.07.020 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200006 PM 15574300 ER PT J AU Tognola, G Parazzini, M de Jager, P Brienesse, P Ravazzani, P Grandori, F AF Tognola, G Parazzini, M de Jager, P Brienesse, P Ravazzani, P Grandori, F TI Cochlear maturation and otoacoustic emissions in preterm infants: a time-frequency approach SO HEARING RESEARCH LA English DT Article DE cochlear maturation; otoacoustic emissions; preterm newborn; cochlear modeling; wavelet transform ID MEDIAL OLIVOCOCHLEAR SYSTEM; TRAVELING-WAVE DELAY; BRAIN-STEM RESPONSES; ACOUSTIC ADMITTANCE; HEARING IMPAIRMENT; DISTORTION-PRODUCT; EAR; NEWBORNS; HUMANS; REFLECTANCE AB Click-evoked otoacoustic emissions (CEOAEs) from preterm infants were analyzed to characterize developmental changes of cochlear active mechanisms. Due to their strong time-varying properties, CEOAEs were studied with a time-frequency approach the wavelet transform (WT). By means of the WT, CEOAEs were decomposed into 12 frequency bands, spanning the 0.25-6.25 kHz range. For each band, the root-mean-square (RMS) level and latency were studied as functions of both frequency and age. Because CEOAEs were averaged using the non-linear mode of acquisition, the developmental changes in observed in this study are related to the non-linear component (which is actually the most predominant component of the active cochlear response) of CEOAEs, the linear one being mostly canceled out by non-linear averaging. In our study, there was evidence that properties of CEOAE non-linear components are related to the post-conception age (PCA) in that the levels and latency of CEOAE frequency components changed until the age of about 38 weeks post-conception, whereas after 38 weeks, CEOAE features were very similar to those of term newborns. In particular, the CEOAE levels increased and latency decreased with age. The observed changes in CEOAE properties seem to reveal a development of cochlear active mechanisms, although contributions from outer and middle car development cannot be excluded. Also, in agreement with previous physiological and behavioral findings, our results revealed that the development of CEOAE properties was not the same for all the frequencies, being greater for frequencies less than or equal to4 kHz, and resembled the development of the cochlear partition, which proceeds from base to apex. (C) 2004 Elsevier B.V. All rights reserved. C1 Politecn Milan, CNR, Ist Ingn Biomed, I-20133 Milan, Italy. Univ Hosp Masstricht, Dept Otorhinolaryngol & Head & Neck Surg, Maastricht, Netherlands. RP Tognola, G (reprint author), Politecn Milan, CNR, Ist Ingn Biomed, 32 Piazza Leonardo Da Vinci, I-20133 Milan, Italy. EM gabriella.tognola@polimi.it RI Parazzini, Marta/J-8175-2014; Tognola, Gabriella/B-9025-2015; Ravazzani, Paolo/B-9139-2015 OI Parazzini, Marta/0000-0001-9008-7530; Ravazzani, Paolo/0000-0003-0282-3329 CR Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 Brienesse P, 1998, AUDIOLOGY, V37, P278 Brienesse P, 1996, AUDIOLOGY, V35, P296 BROWN AM, 1995, AUDIT NEUROSCI, V1, P169 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 CHUANG SW, 1993, INT J PEDIATR OTORHI, V26, P39, DOI 10.1016/0165-5876(93)90194-8 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 Eggermont JJ, 1996, EAR HEARING, V17, P386, DOI 10.1097/00003446-199610000-00004 EGGERMONT JJ, 1991, J ACOUST SOC AM, V90, P288, DOI 10.1121/1.401299 Guinan JJ, 2003, JARO-J ASSOC RES OTO, V4, P521, DOI 10.1007/s10162-002-3037-3 HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651 Joint Committee on Infant Hearing, 1991, ASHA S5, V33, P3 Keefe DH, 2003, J ACOUST SOC AM, V113, P389, DOI 10.1121/1.1523387 Keefe DH, 2000, EAR HEARING, V21, P443, DOI 10.1097/00003446-200010000-00009 KEEFE DH, 1993, J ACOUST SOC AM, V94, P2617, DOI 10.1121/1.407347 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KEMP DT, 1990, EAR HEARING, V11, P93 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463 MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 MORLET T, 1993, ACTA OTO-LARYNGOL, V113, P271, DOI 10.3109/00016489309135808 MORLET T, 1999, SERIES AUDIOLOGY, V1, P13 Morlet T, 1999, HEARING RES, V134, P153, DOI 10.1016/S0378-5955(99)00078-7 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 Pujol R, 1985, Acta Otolaryngol Suppl, V421, P5 ROMAND R, 1987, HEARING RES, V28, P117, DOI 10.1016/0378-5955(87)90158-4 ROTTEVEEL JJ, 1987, HEARING RES, V26, P21, DOI 10.1016/0378-5955(87)90033-5 RUBEL EW, 1984, ANN OTO RHINOL LARYN, V93, P609 SMURZYNSKI J, 1994, EAR HEARING, V15, P210, DOI 10.1097/00003446-199406000-00002 Tognola G, 1998, IEEE T BIO-MED ENG, V45, P686, DOI 10.1109/10.678603 Tognola G, 1999, AUDIOLOGY, V38, P243 Tognola G, 1999, AUDIOLOGY, V38, P127 Tognola G, 2001, EAR HEARING, V22, P182, DOI 10.1097/00003446-200106000-00002 Tognola G, 1997, HEARING RES, V106, P112, DOI 10.1016/S0378-5955(97)00007-5 Unser M, 1996, P IEEE, V84, P626, DOI 10.1109/5.488704 VANZANTEN BGA, 1995, INT J PEDIATR OTORHI, V32, pS187, DOI 10.1016/0165-5876(94)01158-T Vohr BR, 1996, J PEDIATR-US, V128, P710, DOI 10.1016/S0022-3476(96)80143-0 YANG XW, 1992, IEEE T INFORM THEORY, V38, P824, DOI 10.1109/18.119739 NR 40 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 71 EP 80 DI 10.1016/j.heares.2004.08.005 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200007 PM 15574301 ER PT J AU Kalcioglu, MT Bayindir, T Erdem, T Ozturan, O AF Kalcioglu, MT Bayindir, T Erdem, T Ozturan, O TI Objective evaluation of the effects of intravenous lidocaine on tinnitus SO HEARING RESEARCH LA English DT Article DE tinnitus; lidocaine; treatment; otoacoustic emissions ID OTOACOUSTIC EMISSIONS; AUDITORY-SYSTEM; SUPPRESSION; DPOAE AB Objective: Tinnitus is one of the most common and distressing otological symptoms. Although numerous therapeutic modalities have been tried, there is no consensus regarding effective therapeutic agents up to now. The effects of lidocaine on tinnitus have been reported in literature using either subjective or audiologic tests. Nevertheless, the otoacoustic emissions (OAEs) have not been utilized to demonstrate lidocaine's effect on the cochlea in the English literature. The aim of this study was to evaluate the effect of lidocaine on tinnitus by considering the alterations with tinnitus, it induces on OAEs and subjective symptoms. Methods: This study was performed in 30 patients with tinnitus. Twenty-eight of the patients had normal hearing and two of them evidenced mild sensorineural hearing loss. To determine the severity of tinnitus, the patients were required to fill out a tinnitus scoring scale before lidocaine infusion on the same day. Then, lidocaine was administered intravenously to each patient at a dose of mg/kg body weight over a period of 30 min. Spontaneous otoacoustic emissions (SOAEs) and distortion product otoacoustic 1.5 mg emissions (DPOAEs) were measured three times; namely before lidocaine injection, at 25 min after injection and on the next day. The severity of tinnitus was scored again 1 d, 1 wk and 1 mo after lidocaine administration. Results: Immediately after infusion, four patients (13.3%) declared total suppression of tinnitus, whereas three patients (10%) reported only partial relief in tinnitus subjectively. The patients, who had a subjective improved response (group 1) were compared with the patients, who had no response (group 2). Statistically significant changes (p < 0.05) in DPOAE response/growth or input/output (I/O) functions were observed at 1, 2, 3, 4 and 6 kHz frequencies in lidocaine responders and at 1, 2, 3, 4 and 5 kHz frequencies in no responders at different primary stimulus levels. Statistically significant changes (p < 0.05) were seen at 2 kHz for 53 dB and at 3 kHz for 62 dB SPL primaries in both groups. When the significant results of these two groups were compared with each other, differences were found insignificant. Conclusion: Systematic OAE measurements revealed that no changes occurred in SOAE and DPOAE levels in that alterations disappeared the next day. Subjective relief from tinnitus was stated in some of the patients and lasted for 4 wk at longest. (C) 2004 Elsevier B.V. All rights reserved. C1 Inonu Univ, Sch Med, Dept Otorhinolaryngol, Turgut Ozal Med Ctr, TR-44069 Malatya, Turkey. RP Kalcioglu, MT (reprint author), Inonu Univ, Sch Med, Dept Otorhinolaryngol, Turgut Ozal Med Ctr, TR-44069 Malatya, Turkey. EM mtkalcioglu@hotmail.com RI OZTURAN, ORHAN/E-9610-2012; Kalcioglu, Mahmut/I-5884-2013; OZTURAN, ORHAN/B-4984-2015 OI OZTURAN, ORHAN/0000-0002-6129-8627 CR Baguley DM, 2002, BRIT MED BULL, V63, P195, DOI 10.1093/bmb/63.1.195 BONFILS P, 1989, LARYNGOSCOPE, V99, P752 CATTERALL W, 2001, GOODMAN GILMANS PHAR, P374 Davis A, 2000, TINNITUS HDB, P1 DENHARTIGH J, 1993, CLIN PHARMACOL THER, V54, P415 DUCKERT LG, 1983, OTOLARYNG HEAD NECK, V91, P550 HAGINOMORI S, 1995, ACTA OTO-LARYNGOL, V115, P488, DOI 10.3109/00016489509139353 Hashimoto Y, 1997, Nihon Jibiinkoka Gakkai Kaiho, V100, P747 Jastreboff PJ, 1998, OTOLARYNGOLOGY HEAD, P3198 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kemp D T, 1981, Ciba Found Symp, V85, P54 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Laurikainen E, 1997, ACTA OTO-LARYNGOL, V117, P523, DOI 10.3109/00016489709113432 Laurikainen EA, 1996, EAR HEARING, V17, P49, DOI 10.1097/00003446-199602000-00006 Linke R, 2000, LARYNGO RHINO OTOL, V79, P517 Lockwood AH, 2002, NEW ENGL J MED, V347, P904, DOI 10.1056/NEJMra013395 Maruyama J, 2001, ACTA OTO-LARYNGOL, V121, P803 McFadden D, 1982, TINNITUS FACTS THEOR MELDING PS, 1978, J LARYNGOL OTOL, V92, P115, DOI 10.1017/S002221510008511X NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011 OHSAKI K, 1988, AURIS NASUS LARYNX, V25, P149 PENNER MJ, 1987, J SPEECH HEAR RES, V30, P396 PERUCCA E, 1985, J LARYNGOL OTOL, V99, P657, DOI 10.1017/S0022215100097437 PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3 Shiomi Y, 1997, HEARING RES, V108, P83, DOI 10.1016/S0378-5955(97)00043-9 Ueda S, 1993, Acta Otolaryngol Suppl, V504, P89 VERMEIJ P, 1986, INT J CLIN PHARM TH, V24, P207 Yetiser S, 2002, AURIS NASUS LARYNX, V29, P329, DOI 10.1016/S0385-8146(02)00023-8 ZENNER HP, 1993, EUR ARCH OTO-RHINO-L, V249, P447 NR 29 TC 9 Z9 11 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 81 EP 88 DI 10.1016/j.heares.2004.08.004 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200008 PM 15574302 ER PT J AU Schofield, BR Coomes, DL AF Schofield, BR Coomes, DL TI Auditory cortical projections to the cochlear nucleus in guinea pigs SO HEARING RESEARCH LA English DT Article DE descending pathways; efferent; olivocochlear; auditory system ID DIFFERING SPONTANEOUS RATE; INFERIOR COLLICULUS; IMMUNOCYTOCHEMICAL CHARACTERIZATION; NERVE FIBERS; CORTEX; RAT; NEURONS; CONNECTIONS; SYNAPSES; BRANCHES AB We used anterograde tracing techniques to examine projections from auditory cortex to the cochlear nucleus in guinea pigs. Following injection of dextrans into the temporal cortex, labeled axons were present bilaterally in the cochlear nucleus. The distribution of boutons within the cochlear nucleus was similar on the two sides. The majority of boutons was usually located on the ipsilateral side. Most of the boutons were located in the granule cell areas, where many small boutons and a few larger, mossy-type endings were labeled. Additional small, labeled boutons were found in all layers of the dorsal cochlear nucleus, with the majority located in the fusiform cell layer. Labeled boutons were also present in the ventral cochlear nucleus, where they were located in the small cell cap as well as magnocellular parts of both posteroventral and anteroventral cochlear nucleus. Similar results were obtained with injections restricted to primary auditory cortex or to the dorsocaudal auditory field. The results illustrate direct cortical projections to the cochlear nucleus that are likely to modulate the activity in a number of ascending auditory pathways. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Louisville, Dept Anat Sci & Neurobiol, Louisville, KY 40202 USA. RP Schofield, BR (reprint author), Univ Louisville, Dept Anat Sci & Neurobiol, 500 S Preston St, Louisville, KY 40202 USA. EM brscho01@gwise.louisville.edu CR ADAMS JC, 1981, J HISTOCHEM CYTOCHEM, V29, P775 Alibardi L, 1998, ANN ANAT, V180, P415 Alibardi L, 1998, ANN ANAT, V180, P427 BENSON TE, 1990, J COMP NEUROL, V295, P52, DOI 10.1002/cne.902950106 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 BROWN MC, 1988, J COMP NEUROL, V278, P581, DOI 10.1002/cne.902780409 Cant NB, 2003, BRAIN RES BULL, V60, P457, DOI 10.1016/S0361-9230(03)00050-9 CANT NB, 1982, NEUROSCI LETT, V32, P241, DOI 10.1016/0304-3940(82)90300-7 Doron NN, 2002, J COMP NEUROL, V453, P345, DOI 10.1002/cne.10412 Doucet JR, 2003, J COMP NEUROL, V461, P452, DOI 10.1002/cne.10722 Doucet JR, 1997, J COMP NEUROL, V385, P245 Doucet JR, 2002, BRAIN RES, V925, P28, DOI 10.1016/S0006-8993(01)03248-6 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 HACKNEY CM, 1990, ANAT EMBRYOL, V182, P123 Helfert RH, 1997, CENTRAL AUDITORY SYS, P193 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Jacomme AV, 2003, EXP BRAIN RES, V153, P467, DOI 10.1007/s00221-003-1606-2 KIM DO, 1995, ACTIVE HEARING, P31 LIBERMAN MC, 1993, J COMP NEUROL, V327, P17, DOI 10.1002/cne.903270103 LIBERMAN MC, 1991, J COMP NEUROL, V313, P240, DOI 10.1002/cne.903130205 MUGNAINI E, 1980, J COMP NEUROL, V191, P581, DOI 10.1002/cne.901910406 Mulders WHAM, 2000, HEARING RES, V144, P65, DOI 10.1016/S0378-5955(00)00046-0 Oertel D, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P127, DOI 10.1007/978-1-4419-8712-9_12 Read HL, 2002, CURR OPIN NEUROBIOL, V12, P433, DOI 10.1016/S0959-4388(02)00342-2 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 Rouiller EM, 1997, CENTRAL AUDITORY SYS, P3 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Rutkowski RG, 2003, HEARING RES, V181, P116, DOI 10.1016/S0378-5955(03)00182-5 SALDANA E, 1993, NATO ADV SCI INST SE, V239, P153 SCHOFIELD BR, 2001, ASS RES OTOLARYNGOL, V24, P44 Schofield BR, 1996, J COMP NEUROL, V375, P128, DOI 10.1002/(SICI)1096-9861(19961104)375:1<128::AID-CNE8>3.0.CO;2-5 Schofield BR, 1997, J COMP NEUROL, V379, P363, DOI 10.1002/(SICI)1096-9861(19970317)379:3<363::AID-CNE4>3.0.CO;2-1 Schofield BR, 2001, J COMP NEUROL, V429, P206, DOI 10.1002/1096-9861(20000108)429:2<206::AID-CNE3>3.0.CO;2-X Schofield BR, 1996, HEARING RES, V102, P1, DOI 10.1016/S0378-5955(96)00121-9 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 Suga N, 2003, NAT REV NEUROSCI, V4, P783, DOI 10.1038/nrn1222 Wallace MN, 2002, EXP BRAIN RES, V143, P106, DOI 10.1007/s00221-001-0973-9 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Weedman DL, 1996, BRAIN RES, V706, P97, DOI 10.1016/0006-8993(95)01201-X Weedman DL, 1996, J COMP NEUROL, V371, P311 WENTHOLD RJ, 1987, BRAIN RES, V415, P183, DOI 10.1016/0006-8993(87)90285-X YE Y, 2000, J COMP NEUROL, V420, P137 Young E. D., 2002, INTEGRATIVE FUNCTION, P160 NR 44 TC 37 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 89 EP 102 DI 10.1016/j.heares.2004.08.003 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200009 PM 15574303 ER PT J AU Wysocki, J AF Wysocki, J TI Topographical anatomy of the guinea pig temporal bone SO HEARING RESEARCH LA English DT Article DE temporal bone; anatomy; guinea pig ID COCHLEA AB Systematic anatomical description of the various structures of the temporal bone have been performed based on dissection of 16 guinea pigs (32 temporal bones). It has been found that besides two main air spaces in the middle ear, the tympanic bulla and dorsal bulla described in literature, there are also additional air cells in the mastoid process and facial nerve region in the temporal bone of a guinea pig. Moreover recesses were found in the walls of the tympanic bulla that formed almost completely separated partitions of tympanic cavity. The malleus head, the body of the incus and the superior and lateral semicircular canals as well as the facial nerve are easily accessible from the dorsal bulla. From the ventral tympanic bulla, one can access both windows and the cochlea. The semicircular canals are relatively large, the lateral canal is largest and the posterior the smallest. The cochlea has thin bony wall, and is composed of 3.5-3.75 turns. (C) 2004 Elsevier B.V. All rights reserved. C1 Warsaw Univ, Sch Med, Dept Normal Anat, Warsaw, Poland. RP Wysocki, J (reprint author), Warsaw Univ, Sch Med, Dept Normal Anat, Warsaw, Poland. EM jwysocki@ib.amwaw.edu.pl CR [Anonymous], 1998, TERMINOLOGIA ANATOMI ASARCH R, 1975, ANN OTO RHINOL LARYN, V84, P250 BUGGE J, 1978, ACTA ANAT, V101, P45 COOPER G, 1975, ANAT GUINEA PIG Counter SA, 1999, NEUROREPORT, V10, P473, DOI 10.1097/00001756-199902250-00006 DAVISON A, 2003, MAMMALIAN ANATOMY SP DYCE KM, 1996, VET ANATOMY GOKSU N, 1992, ANN OTO RHINOL LARYN, V101, P699 HAYMANN L, 1912, ARCH OHRENHEILD, V89, P267 Kayhan Fatma Tülin, 2003, Kulak Burun Bogaz Ihtis Derg, V10, P51 POPESCO P, 2002, COLOR ATLAS SMALL LA, V1 Saunders J. T., 1969, MANUAL PRACTICAL VER SISSON S, 1945, ANATOMY DOMESTIC ANI SMALLWOOD JE, 1992, GUIDED TOUR VET ANAT SUZAKI Y, 1997, J OTOLARYNGOL JPN, V3, P342 WELLS JR, 1986, OTOLARYNG HEAD NECK, V95, P450 Wysocki J, 2001, HEARING RES, V161, P1, DOI 10.1016/S0378-5955(01)00314-8 1994, HOMINA ANATOMICA VET NR 18 TC 15 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 103 EP 110 DI 10.1016/j.heares.2004.08.008 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200010 PM 15574304 ER PT J AU Tokui, N Suzuki, H Udaka, T Hiraki, N Fujimura, T Fujimura, K Makishima, K AF Tokui, N Suzuki, H Udaka, T Hiraki, N Fujimura, T Fujimura, K Makishima, K TI Delayed-onset temporary auditor threshold shift following head blow in guinea pigs SO HEARING RESEARCH LA English DT Article DE sensorineural hearing loss; head injury; head blow device; disintegration of myelin sheath ID SPINAL-CORD INJURY; COCHLEAR NERVE; HEARING-LOSS; TRAUMA; SYSTEM; NEUROTOXICITY; DEMYELINATION; RESPONSES; CULTURES; MICE AB This study attempts to investigate the development of sensorineural hearing loss following a head blow without skull fracture in association with physiological and histopathologic changes in an experimental animal model. With the head in a freely movable position, albino guinea pigs were given a single blow to the occipital region by a head blow device. At 1. 7. and 14 days after the blow, the animals' auditory brainstem response (ABR) and cochlear microphonics (CM) were examined, and both the temporal bone and brain stem were observed by light and electron microscopy. The ABR threshold was unchanged at day 1, was significantly increased at day 7, and was fully recovered at day 14. The I-V and I-II interpeak latencies were significantly prolonged at days I and 7, and wave I latency was significantly prolonged at day 7 only. These latencies were recovered to normal limits at day 14. On the other hand, no significant change in CM versus the control group was observed at any point in the measurements. Histopathologically, no abnormal finding was seen at the light microscopic level. However, at the electron microscopic level, there were some injuries to the eighth nerve. At day 1, the lamellar structure of the myelin sheath was irregular, and the periaxonal space was expanded; at day 7, the myelin sheath was disintegrated. At day 14, however, these changes were partially reversed. These results suggest that sensorineural hearing loss following a head blow in this model is attributed to dysfunction of the eighth nerve rather than to cochlear impairment. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Occupat & Environm Hlth, Dept Otorhinolaryngol, Sch Med, Yahatanishi Ku, Kitakyushu, Fukuoka 8078555, Japan. RP Tokui, N (reprint author), Univ Occupat & Environm Hlth, Dept Otorhinolaryngol, Sch Med, Yahatanishi Ku, 1-1 Iseigaoka, Kitakyushu, Fukuoka 8078555, Japan. EM n-tokui@med.uoeh-u.ac.jp CR BLIGHT AR, 1986, NEUROSCIENCE, V19, P321, DOI 10.1016/0306-4522(86)90025-4 Blight A R, 1985, Cent Nerv Syst Trauma, V2, P299 DAWSON VL, 1993, J NEUROSCI, V13, P2651 DAWSON VL, 1991, P NATL ACAD SCI USA, V88, P6368, DOI 10.1073/pnas.88.14.6368 DENNYBROWM JP, 1941, EXPT CEREBRAL CONCUS, V64, P93 D'Hooge R, 1999, BRAIN RES, V847, P352, DOI 10.1016/S0006-8993(99)02085-5 FELDMANN H, 1987, ACTA OTO-LARYNGOL, V103, P379 FENELEY MR, 1994, J LARYNGOL OTOL, V108, P54 GOKSU N, 1992, ANN OTO RHINOL LARYN, V101, P699 Gurdjian E S, 1970, Trans Am Neurol Assoc, V95, P248 Holbourn AHS, 1943, LANCET, V2, P438 LUDWIN SK, 1978, LAB INVEST, V39, P597 MACDERMOTT AB, 1986, NATURE, V321, P519, DOI 10.1038/321519a0 MAKISHIMA K, 1976, LARYNGOSCOPE, V86, P1303, DOI 10.1288/00005537-197609000-00002 MAKISHIMA K, 1975, ARCH OTOLARYNGOL, V101, P426 MAKISHIMA K, 1975, LARYNGOSCOPE, V85, P1947, DOI 10.1288/00005537-197512000-00001 MOLLER AR, 1983, J NEUROSURG, V59, P1013, DOI 10.3171/jns.1983.59.6.1013 Naito R, 1999, HEARING RES, V136, P44, DOI 10.1016/S0378-5955(99)00107-0 PANTER SS, 1990, ANN NEUROL, V27, P96, DOI 10.1002/ana.410270115 PODOSHIN L, 1975, ARCH OTOLARYNGOL, V101, P15 PUDENZ RH, 1946, J NEUROSURG, V3, P487, DOI 10.3171/jns.1946.3.6.0487 SCAIOLI V, 1992, J NEUROL NEUROSUR PS, V55, P1027, DOI 10.1136/jnnp.55.11.1027 SCHUKNEC.HF, 1969, ANN OTO RHINOL LARYN, V78, P253 SEKIYA T, 1988, ACTA NEUROCHIR, V90, P45, DOI 10.1007/BF01541266 SEKIYA T, 1987, J NEUROSURG, V67, P244, DOI 10.3171/jns.1987.67.2.0244 Spoendlin H, 1990, Acta Otolaryngol Suppl, V470, P61 VANREEMPTS J, 1993, EXP NEUROL, V120, P283, DOI 10.1006/exnr.1993.1062 WITTMAACK K, 1932, ARCH OHREN NASEN KEH, V313, P59 YLIKOSKI J, 1982, AM J OTOL, V3, P343 YLIKOSKI J, 1981, ACTA OTO-LARYNGOL, V91, P161, DOI 10.3109/00016488109138495 ZHOU RZ, 1995, HEARING RES, V88, P87, DOI 10.1016/0378-5955(95)00104-C NR 31 TC 1 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 111 EP 116 DI 10.1016/j.heares.2004.08.009 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200011 PM 15574305 ER PT J AU Gillespie, LN Marzella, PL Clark, GA Crook, JA AF Gillespie, LN Marzella, PL Clark, GA Crook, JA TI Netrin-1 as a guidance molecule in the postnatal rat cochlea SO HEARING RESEARCH LA English DT Article DE spiral ganglion neurons; axon guidance; netrin-1; DCC ID NEURONS IN-VITRO; CANCER DCC GENE; AUDITORY NEURONS; COLORECTAL-CANCER; AXON GUIDANCE; INNER-EAR; ELECTRODE ARRAY; NERVOUS-SYSTEM; SPINAL-CORD; EXPRESSION AB During synaptogenesis a number of growth factors and peptides control the guidance of auditory neuron (spiral ganglion neuron, SGN) axons to their target cells. Furthermore, evidence suggests that these factors exert their actions at discrete times and sites during development. This study demonstrates that the guidance molecule netrin-1 is expressed in the early postnatal rat cochlea, but shows decreasing expression with increasing age. These results suggest that netrin-1 may be involved in guiding axonal growth from SGNs for the onset of innervation, but is not required for maintenance of synaptic connections. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Melbourne, Eye & Ear Hosp, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Bion Ear Inst, Melbourne, Vic 3002, Australia. RP Gillespie, LN (reprint author), Univ Melbourne, Eye & Ear Hosp, Dept Otolaryngol, 2nd Floor, Melbourne, Vic 3002, Australia. EM lgillespie@bionicear.org CR Ackerman SL, 1997, NATURE, V386, P838, DOI 10.1038/386838a0 Badi AN, 2003, LARYNGOSCOPE, V113, P833, DOI 10.1097/00005537-200305000-00012 Chisholm A, 1999, CURR OPIN NEUROBIOL, V9, P603, DOI 10.1016/S0959-4388(99)00021-5 COLAMARINO SA, 1995, CELL, V81, P621, DOI 10.1016/0092-8674(95)90083-7 Cooper HM, 1999, CLIN EXP PHARMACOL P, V26, P749, DOI 10.1046/j.1440-1681.1999.03106.x Crook JM, 2002, MOL PSYCHIATR, V7, P157, DOI 10.1038/sj.mp.4000966 Deiner MS, 1999, J NEUROSCI, V19, P9900 Deiner MS, 1997, NEURON, V19, P575, DOI 10.1016/S0896-6273(00)80373-6 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Fazeli A, 1997, NATURE, V386, P796, DOI 10.1038/386796a0 Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 Hillman T, 2003, OTOL NEUROTOL, V24, P764, DOI 10.1097/00129492-200309000-00013 Hong KS, 1999, CELL, V97, P927, DOI 10.1016/S0092-8674(00)80804-1 Johansson K, 2001, DEV BRAIN RES, V130, P133, DOI 10.1016/S0165-3806(01)00221-8 Kennedy TE, 2000, BIOCHEM CELL BIOL, V78, P569, DOI 10.1139/bcb-78-5-569 KENNEDY TE, 1994, CELL, V78, P425, DOI 10.1016/0092-8674(94)90421-9 LEFEBVRE PP, 1994, NEUROREPORT, V5, P865, DOI 10.1097/00001756-199404000-00003 Leonardo ED, 1997, NATURE, V386, P833, DOI 10.1038/386833a0 Livesey FJ, 1997, MOL CELL NEUROSCI, V8, P417, DOI 10.1006/mcne.1997.0598 Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 Manitt C, 2001, J NEUROSCI, V21, P3911 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 MULLER M, 1991, HEARING RES, V56, P1, DOI 10.1016/0378-5955(91)90147-2 PIRVOLA U, 1994, HEARING RES, V75, P131, DOI 10.1016/0378-5955(94)90064-7 Poe BH, 1998, DEV BRAIN RES, V105, P153, DOI 10.1016/S0165-3806(97)00186-7 REALE MA, 1994, CANCER RES, V54, P4493 Salminen M, 2000, DEVELOPMENT, V127, P13 Saunders E, 2002, EAR HEARING, V23, p28S, DOI 10.1097/00003446-200202001-00004 Serafini T, 1996, CELL, V87, P1001, DOI 10.1016/S0092-8674(00)81795-X SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 Shirasaki R, 1996, NEURON, V17, P1079, DOI 10.1016/S0896-6273(00)80241-X Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 TessierLavigne M, 1996, SCIENCE, V274, P1123, DOI 10.1126/science.274.5290.1123 Tykocinski M, 2001, OTOL NEUROTOL, V22, P33, DOI 10.1097/00129492-200101000-00007 VIELMETTER J, 1994, J CELL BIOL, V127, P2009, DOI 10.1083/jcb.127.6.2009 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C NR 36 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 117 EP 123 DI 10.1016/j.heares.2004.07.004 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200012 PM 15574306 ER PT J AU Sabin, AT Macpherson, EA Middlebrooks, JC AF Sabin, AT Macpherson, EA Middlebrooks, JC TI Human sound localization at near-threshold levels SO HEARING RESEARCH LA English DT Article DE sound localization; psychoacoustics; spatial coding; auditory cortex ID PRIMARY AUDITORY-CORTEX; FILTER SHAPES; MEDIAN PLANE; CAT; SENSITIVITY; NEURONS; LISTENERS; LOCATION; ANGLE AB Physiological studies of spatial hearing show that the spatial receptive fields of cortical neurons typically are narrow at near-threshold levels, broadening at moderate levels. The apparent loss of neuronal spatial selectivity at increasing sound levels conflicts with the accurate performance of human subjects localizing at moderate sound levels. In the present study, human sound localization was evaluated across a wide range of sensation levels, extending down to the detection threshold. Listeners reported whether they heard each target sound and, if the target was audible, turned their heads to face the apparent source direction. Head orientation was tracked electromagnetically. At near-threshold levels, the lateral (left/right) components of responses were highly variable and slightly biased towards the midline, and front vertical components consistently exhibited a strong bias towards the horizontal plane. Stimulus levels were specified relative to the detection threshold for a front-positioned source, so low-level rear targets often were inaudible. As the sound level increased, first lateral and then vertical localization neared asymptotic levels. The improvement of localization over a range of increasing levels, in which neural spatial receptive fields presumably are broadening, indicates that sound localization does not depend on narrow spatial receptive fields of cortical neurons. (C) 2004 Elsevier B.V. All rights reserved. C1 Kresge Hearing Res Inst, Cent Syst Lab, Ann Arbor, MI 48109 USA. RP Middlebrooks, JC (reprint author), Kresge Hearing Res Inst, Cent Syst Lab, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM jmidd@umich.edu CR ALTSHULER M W, 1975, Journal of Auditory Research, V15, P262 BLAUERT J, 1969, ACUSTICA, V22, P205 Brugge JF, 1996, J NEUROSCI, V16, P4420 BUTLER RA, 1971, PERCEPT PSYCHOPHYS, V9, P99, DOI 10.3758/BF03213038 COMALLI P E JR, 1976, Journal of Auditory Research, V16, P275 DAVIS JR, 1974, J SOUND VIB, V35, P223 GLASBERG BR, 1990, HEARING RES, V47, P103, DOI 10.1016/0378-5955(90)90170-T HARTMANN WM, 1993, J ACOUST SOC AM, V94, P2083, DOI 10.1121/1.407481 HEBRANK J, 1975, J SOUND VIB, V38, P498, DOI 10.1016/S0022-460X(75)80137-4 Hofman PM, 1998, J ACOUST SOC AM, V103, P2634, DOI 10.1121/1.422784 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Inoue Jinro, 2001, Journal of UOEH, V23, P127 Jenison RL, 2001, NEUROCOMPUTING, V38, P239, DOI 10.1016/S0925-2312(01)00355-1 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MACPHERSON EA, 2000, J ACOUST SOC AM, V108, P1837 Macpherson EA, 2002, J ACOUST SOC AM, V111, P2219, DOI 10.1121/1.1471898 MIDDLEBROOKS JC, 1992, J ACOUST SOC AM, V92, P2607, DOI 10.1121/1.404400 MIDDLEBROOKS JC, 1991, ANNU REV PSYCHOL, V42, P135, DOI 10.1146/annurev.ps.42.020191.001031 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MILLS AW, 1958, J ACOUST SOC AM, V30, P237, DOI 10.1121/1.1909553 Morimoto M., 1984, Journal of the Acoustical Society of Japan (E), V5 PERRETT S, 1995, PERCEPT PSYCHOPHYS, V57, P150, DOI 10.3758/BF03206501 RAJAN R, 1990, J NEUROPHYSIOL, V64, P888 REALE RA, 2002, J NEUROPHYSIOL, V89, P1024, DOI 10.1152/jn.00563.2002 Rosen S, 1998, J ACOUST SOC AM, V103, P2539, DOI 10.1121/1.422775 SHAILER MJ, 1990, J ACOUST SOC AM, V88, P141, DOI 10.1121/1.399961 Stecker GC, 2003, BIOL CYBERN, V89, P341, DOI 10.1007/s00422-003-0439-1 Stecker GC, 2003, J NEUROPHYSIOL, V89, P2889, DOI 10.1152/jn.00980.2002 Strutt J. W, 1907, PHILOS MAG, V13, P214, DOI 10.1080/14786440709463595 Su TIK, 2001, JARO, V2, P246, DOI 10.1007/s101620010073 SU TK, 2000, SOC NEUR ABSTR, V26, P955 Supin AY, 2003, HEARING RES, V185, P1, DOI 10.1016/S0378-5955(03)00215-6 Vliegen J, 2004, J ACOUST SOC AM, V115, P1705, DOI 10.1121/1.1687423 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 NR 35 TC 31 Z9 33 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 124 EP 134 DI 10.1016/j.heares.2004.08.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200013 PM 15574307 ER PT J AU Kimitsuki, T Ohashi, M Wada, Y Fukudome, S Komune, S AF Kimitsuki, T Ohashi, M Wada, Y Fukudome, S Komune, S TI Dissociation enzyme effects on the potassium currents of inner hair cells isolated from guinea-pig cochlea SO HEARING RESEARCH LA English DT Article DE inner hair cell; cochlea; potassium current; inactivation; trypsin; protease VIII; papain ID ION-DEPENDENT CONDUCTANCES; INACTIVATING BK CHANNELS; CHROMAFFIN CELLS; FROG; ROD; EXPRESSION; MEMBRANE AB Tetraethylammonium (TEA)-sensitive potassium currents in the cochlear inner hair cells (IHCs) possess the kinetics of fast inactivation. Some enzymes using for IHCs dissociation affect these inactivation kinetics. IHCs were dissociated from guinea-pig cochlea by I mg/ml trypsin or 0.25 mg/ml protease VIII, and the properties of the K+ currents were compared using conventional whole-cell voltage-clamp recordings. TEA-sensitive potassium currents showed fast inactivation kinetics in both trypsin-dissociated cells and protease VIII-dissociated cells. The time constant of the inactivation phase in trypsin-treated cells was similar to that in protease VIII-treated cells. However, the rate of inactivation (compared by the ratio between the steady-state current and initial peak current) in protease VIII-treated cells was larger than that in trypsin-treated cells. In protease VIII-dissociated cells, the time constant of recovery from inactivation elucidated by paired-pulse protocol was 3.5 ins. Papain is another enzyme that is sometimes used for dissociating IHCs, so effects of papain were observed. Extracellular papain application (8 unit/ml) demonstrated a slight increase of the outward potassium currents. (C) 2004 Elsevier B.V. All rights reserved. C1 Miyazaki Univ, Miyazaki Med Coll, Dept Otorhinolaryngol, Miyazaki 8891692, Japan. Khusyu Univ, Dept Otorhinolaryngol, Fac Med, Higashi Ku, Fukuoka 8128582, Japan. RP Kimitsuki, T (reprint author), Miyazaki Univ, Miyazaki Med Coll, Dept Otorhinolaryngol, 5200 Kihara, Miyazaki 8891692, Japan. EM kimituki@fc.med.miyazaki-u.ac.jp CR ARMSTRON.CM, 1973, J GEN PHYSIOL, V62, P375, DOI 10.1085/jgp.62.4.375 Armstrong CE, 2001, J PHYSIOL-LONDON, V536, P49, DOI 10.1111/j.1469-7793.2001.00049.x Armstrong CE, 1998, J NEUROSCI, V18, P2962 ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 ASHMORE JF, 1983, NATURE, V304, P536, DOI 10.1038/304536a0 Catacuzzeno L, 2003, HEARING RES, V175, P36, DOI 10.1016/S0378-5955(02)00707-4 Ding JP, 1998, BIOPHYS J, V74, P268 HESTRIN S, 1987, J NEUROSCI, V7, P3072 Hicks GA, 1998, J PHYSIOL-LONDON, V508, P721, DOI 10.1111/j.1469-7793.1998.721bp.x HOSHI T, 1990, SCIENCE, V250, P533, DOI 10.1126/science.2122519 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 KIMITSUKI T, 2004, ACTA OTOLARYNGOL S, V553, P28 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 Li ZW, 1999, J NEUROPHYSIOL, V81, P611 Lingle C J, 1996, Ion Channels, V4, P261 Marcotti W, 2003, J PHYSIOL-LONDON, V548, P383, DOI 10.1113/jphysiol.2002.034801 MARCOTTI W, 2004, J PHYSL, P613 PALLOTTA BS, 1981, NATURE, V293, P471, DOI 10.1038/293471a0 Santos-Sacchi J, 1997, BIOPHYS J, V73, P1424 SHEN J, 1995, JPN J PHYSIOL, V45, P151, DOI 10.2170/jjphysiol.45.151 Skinner LJ, 2003, J NEUROPHYSIOL, V90, P320, DOI 10.1152/jn.01155.2002 SOLARO CR, 1992, SCIENCE, V257, P1694, DOI 10.1126/science.1529355 TOWNESANDERSON E, 1985, J CELL BIOL, V100, P175, DOI 10.1083/jcb.100.1.175 NR 25 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD JAN PY 2005 VL 199 IS 1-2 BP 135 EP 139 DI 10.1016/j.heares.2004.08.020 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 885RI UT WOS:000226174200014 PM 15574308 ER PT J AU Agaeva, M AF Agaeva, M TI Velocity discrimination of auditory image moving in vertical plane SO HEARING RESEARCH LA English DT Article DE psychoacoustics; moving sound image; differential thresholds to velocity; vertical plane ID AUDIBLE MOVEMENT ANGLE; SPECTRAL CUES; DICHOTIC STIMULATION; HORIZONTAL PLANE; MEDIAN PLANE; SOUND; LOCALIZATION; FREQUENCY; ELEVATION; DURATION AB This research investigated the ability of humans to discriminate changes in velocity of apparent movement of a sound source (as defined by the time required for the sound to traverse a 180 deg arc) in the median vertical plane. Apparent auditory movement was created by successive switching of the loudspeakers situated over the arc. The broadband noise with band width of 0.25-4 kHz (low-pass noise - LP) and of 4-12.5 kHz (high-pass noise - HP) was employed as stimuli. Discrimination thresholds were calculated for reference velocities of 58 and 115 deg/s under four stimuli types: movement of stepped movement of noise for low-pass noise and for high-pass noise and continuous motion for low-pass noise and for high-pass noise. The result showed that discrimination of the velocity depended on the signal frequency spectrum. The differential thresholds for the signals with low pass noise were significantly higher than those for signals with high pass noise (F(1;78) much greater than 3.96, p < 0.05). Magnitude of the absolute thresholds was the highest when the velocity was It 5 deg/s for each of four types. It is interesting to note that the thresholds magnitude depended on the type of signal motion, that is on whether it was continuous or stepped. (C) 2004 Elsevier B.V. All rights reserved. C1 Russian Acad Sci, Grp Hearing Physiol, IP Pavlov Physiol Inst, St Petersburg 199034, Russia. RP Agaeva, M (reprint author), Russian Acad Sci, Grp Hearing Physiol, IP Pavlov Physiol Inst, 6 Makarov Embankment, St Petersburg 199034, Russia. EM agamu@infran.ru CR Agaeva MY, 2004, ACOUST PHYS+, V50, P278, DOI 10.1134/1.1739496 Algazi VR, 2001, J ACOUST SOC AM, V109, P1110, DOI 10.1121/1.1349185 ALGOM D, 1984, J EXP PSYCHOL HUMAN, V10, P486, DOI 10.1037//0096-1523.10.4.486 ALTMAN JA, 1988, INT J NEUROSCI, V38, P369 ALTMAN JA, 1977, J ACOUST SOC AM, V61, P816, DOI 10.1121/1.381371 ASANO F, 1990, J ACOUST SOC AM, V88, P159, DOI 10.1121/1.399963 BUTLER RA, 1992, PERCEPT PSYCHOPHYS, V51, P182, DOI 10.3758/BF03212242 Carlile S, 2002, J ACOUST SOC AM, V111, P1026, DOI 10.1121/1.1436067 CHANDLER DW, 1992, J ACOUST SOC AM, V91, P1624, DOI 10.1121/1.402443 GRANTHAM DW, 1986, J ACOUST SOC AM, V79, P1939, DOI 10.1121/1.393201 Grantham DW, 2003, J ACOUST SOC AM, V114, P1009, DOI 10.1121/1.1590970 HEBRANK J, 1974, J ACOUST SOC AM, V56, P1829, DOI 10.1121/1.1903520 HUMANSKI RA, 1988, J ACOUST SOC AM, V83, P2300, DOI 10.1121/1.396361 JONES B, 1982, PSYCHOL BULL, V91, P128, DOI 10.1037/0033-2909.91.1.128 Kuhn GF, 1987, DIRECTIONAL HEARING, P3 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MILLER GA, 1948, J ACOUST SOC AM, V20, P171, DOI 10.1121/1.1906360 Perrott D R, 1979, J Aud Res, V19, P277 ROFFLER SK, 1968, J ACOUST SOC AM, V43, P1255, DOI 10.1121/1.1910976 SABERI K, 1990, J ACOUST SOC AM, V88, P2639, DOI 10.1121/1.399984 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 Strybel TZ, 1998, PERCEPT PSYCHOPHYS, V60, P1441, DOI 10.3758/BF03208004 STRYBEL TZ, 1992, HUM FACTORS, V34, P267 NR 23 TC 1 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 1 EP 9 DI 10.1016/j.heares.2004.07.007 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000001 PM 15567597 ER PT J AU Stenfelt, S Hato, N Goode, RL AF Stenfelt, S Hato, N Goode, RL TI Round window membrane motion with air conduction and bone conduction stimulation SO HEARING RESEARCH LA English DT Article DE round window; vibration pattern; air conduction; bone conduction; middle ear reconstruction ID TYMPANIC MEMBRANE; TEMPORAL BONES; PATTERN; EAR AB The vibration patterns of the round window (RW) membrane in human cadaver temporal bone specimens were assessed by measurements of the velocity of reflective targets placed on the RW membrane with an approximate spacing of 0.2 mm. The velocity was measured in the frequency range 0.1-10 kHz by a laser Doppler vibrometer in four specimens with air conduction (AC) stimulation and in four specimens with bone conduction (BC) stimulation. The response pattern was investigated by analyzing the velocity response of all targets on the RW membrane, by making iso-amplitude and iso-phase contour plots of the membrane surface, and by creating animations of the surface vibration at several frequencies. Similar response pattern was found with AC and BC stimulations. At frequencies below 1.5 kHz, the RW membrane vibrates nearly as a whole in an in-and-out motion and above 1.5 kHz, the membrane moves primarily in two sections that vibrate with approximately 180degrees difference. Indication of some traveling wave motion of the RW membrane at those frequencies was also found. At higher frequencies, above 3 kHz, the membrane motion is complex with a mixture of modal and traveling wave motion. An increase of the stimulation level did not alter the vibration pattern; it only gave an increase of the RW membrane vibration amplitude corresponding to the increase in stimulation. When the mode of stimulation at the oval window was altered, by the insertion of a 0.6 mm piston, the vibration pattern of the RW membrane changed. (C) 2004 Elsevier B.V. All rights reserved. C1 Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden. Stanford Univ, Med Ctr, Div Otolaryngol Head & Neck Surg, Stanford, CA 94305 USA. RP Stenfelt, S (reprint author), Chalmers Univ Technol, Dept Signals & Syst, SE-41296 Gothenburg, Sweden. EM stenfelt@s2.chalmers.se RI Stenfelt, Stefan/J-9363-2013 OI Stenfelt, Stefan/0000-0003-3350-8997 CR Asai M, 1999, ACTA OTO-LARYNGOL, V119, P356 Ball G R, 1997, Ear Nose Throat J, V76, P213 Hato N, 2001, OTOLARYNG HEAD NECK, V124, P274, DOI 10.1067/mhn.2001.113664 KHANNA SM, 1971, J ACOUST SOC AM, V50, P1475, DOI 10.1121/1.1912801 KHANNA SM, 1976, J ACOUST SOC AM, V60, P139, DOI 10.1121/1.381081 KONRADSSON KS, 1987, SCAND AUDIOL, V16, P159, DOI 10.3109/01050398709042171 KRINGLEBOTN M, 1995, J ACOUST SOC AM, V98, P192, DOI 10.1121/1.413746 Nomura Y, 1984, Adv Otorhinolaryngol, V33, P1 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Stenfelt S, 2002, J ACOUST SOC AM, V111, P947, DOI 10.1121/1.1432977 Stenfelt S, 2004, J ACOUST SOC AM, V115, P797, DOI 10.1121/1.1639903 Stenfelt S, 2003, HEARING RES, V181, P131, DOI 10.1016/S0378-5955(03)00183-7 TONNDORF J, 1972, F MODERN AUDITORY TH, V2, P197 VONBEKESY G, 1948, J ACOUST SOC AM, V20, P227 VONBEKESY G, 1955, J ACOUST SOC AM, V27, P137 VONBEKESY G, 1932, ANN PHYS, V13, P11 Wada H, 2002, J ACOUST SOC AM, V111, P2189, DOI 10.1121/1.1467671 Wever EG, 1954, PHYSL ACOUSTICS NR 18 TC 16 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 10 EP 24 DI 10.1016/j.heares.2004.07.008 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000002 PM 15567598 ER PT J AU Richardson, RT Wise, A O'Leary, S Hardman, J Casley, D Clark, G AF Richardson, RT Wise, A O'Leary, S Hardman, J Casley, D Clark, G TI Tracing neurotrophin-3 diffusion and uptake in the guinea pig cochlea SO HEARING RESEARCH LA English DT Article DE neurotrophin-3; I-125; microspheres; cochlea; autoradiography; sensorineural hearing loss ID SPIRAL GANGLION NEURONS; RAT SYMPATHETIC NEURONS; AUDITORY NEURONS; IN-VITRO; COMPARTMENTED CULTURES; RETROGRADE TRANSPORT; PROMOTES SURVIVAL; NERVOUS-SYSTEM; GENE-TRANSFER; GROWTH-FACTOR AB Neurotrophin therapy in the cochlea can potentially slow or reverse the degeneration of the auditory nerve that occurs during progressive deafness. Studies were performed to trace the diffusion and uptake of neurotrophin-3 (NT-3) following infusion into the cochlea. NT-3 labeled with I-125 or coated onto fluorescent microspheres was introduced into the basal turn of normal hearing and deafened guinea pig cochleae via a single slow-rate injection. Cochleae were examined between 2 h and 28 days post-infusion by autoradiography or fluorescent microscopy to determine the number of turns labeled by NT-3, identify individual cells and tissues receiving NT-3 and quantify the proportion of signal in each tissue. In general, long-term infusions were required for all cochlear turns to receive NT-3. I-125 NT-3 signal was strongest in cells lining the perilymphatic space of the scala tympani, basilar membrane, osseous spiral lamina and spiral ligament. Signal in the peripheral nerve tract and Rosenthal's canal was only 1.3-2.1 times background levels of radiation. NT-3 microspheres were detected within neural areas of the cochlea (nerve tract and Rosenthal's canal) in all cases, but not within neuronal cell bodies. NT-3 microspheres remained in the cochlea for at least 28 days, suggesting a low clearance rate within cochlear tissues. (C) 2004 Elsevier B.V. All rights reserved. C1 Bion Ear Inst, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Univ Melbourne, Dept Med, Austin & Repatriat Med Ctr, Heidelberg, Vic 3084, Australia. RP Richardson, RT (reprint author), Bion Ear Inst, 384-388 Albert St, Melbourne, Vic 3002, Australia. EM rrichardson@bionicear.org RI Wise, Andrew/B-5943-2014 OI Wise, Andrew/0000-0001-9715-8784 CR CHOLE RA, 1994, HEARING RES, V75, P233, DOI 10.1016/0378-5955(94)90074-4 Clark G. M., 2003, COCHLEAR IMPLANTS FU Dazert S, 2001, HEARING RES, V151, P30, DOI 10.1016/S0378-5955(00)00189-1 DeFreitas MF, 2001, J NEUROSCI, V21, P5121 Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3 DUVALL AJ, 1972, ANN OTO RHINOL LARYN, V81, P705 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Gestwa G, 1999, J COMP NEUROL, V414, P33, DOI 10.1002/(SICI)1096-9861(19991108)414:1<33::AID-CNE3>3.0.CO;2-M Gillespie LN, 2003, J NEUROSCI RES, V71, P785, DOI 10.1002/jnr.10542 Gillespie LN, 2001, NEUROREPORT, V12, P275, DOI 10.1097/00001756-200102120-00019 GREENWOOD FC, 1963, BIOCHEM J, V89, P114 Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545 Ilberg C V, 1969, Acta Otolaryngol, V67, P165, DOI 10.3109/00016486909125439 Kaplan DR, 2000, CURR OPIN NEUROBIOL, V10, P381, DOI 10.1016/S0959-4388(00)00092-1 Lee FS, 2001, CURR OPIN NEUROBIOL, V11, P281, DOI 10.1016/S0959-4388(00)00209-9 Lim D J, 1983, Adv Otorhinolaryngol, V31, P85 Lom B, 1999, J NEUROSCI, V19, P9928 Malgrange B, 1996, NEUROREPORT, V7, P913, DOI 10.1097/00001756-199603220-00016 Marzella PL, 1998, NEUROSCI LETT, V240, P77, DOI 10.1016/S0304-3940(97)00928-2 Marzella PL, 1999, HEARING RES, V138, P73, DOI 10.1016/S0378-5955(99)00152-5 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mou K, 1997, J COMP NEUROL, V386, P529 NADOL JB, 1979, ANN OTO RHINOL LARYN, V88, P2 Reynolds AJ, 1999, BRAIN RES PROTOC, V3, P308, DOI 10.1016/S1385-299X(98)00054-3 RIDDLE DR, 1995, NATURE, V378, P189, DOI 10.1038/378189a0 Riddle DR, 1997, BIOTECHNIQUES, V23, P928 Salt AN, 2002, ADV OTO-RHINO-LARYNG, V59, P140 Schuknecht HF, 1960, NEURAL MECH AUDITORY Senger DL, 1997, J CELL BIOL, V138, P411, DOI 10.1083/jcb.138.2.411 SHEPHERD RK, 1985, HEARING RES, V18, P105, DOI 10.1016/0378-5955(85)90001-2 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 STAECKER H, 1995, NEUROREPORT, V6, P1533 Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Steljes TPV, 1999, J NEUROBIOL, V41, P295, DOI 10.1002/(SICI)1097-4695(19991105)41:2<295::AID-NEU11>3.0.CO;2-W Ure DR, 1997, J NEUROSCI, V17, P1282 vonBartheld CS, 1996, J NEUROSCI, V16, P2995 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 YEO SW, 1995, LARYNGOSCOPE, V105, P623, DOI 10.1288/00005537-199506000-00012 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 YLIKOSKI J, 1993, HEARING RES, V65, P69, DOI 10.1016/0378-5955(93)90202-C ZHENG JL, 1995, J NEUROSCI, V15, P5079 NR 42 TC 18 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 25 EP 35 DI 10.1016/j.heares.2004.02.012 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000003 PM 15567599 ER PT J AU Caravelli, A Pianese, L Saulino, C Di Leva, F Sequino, L Cocozza, S Marciano, E Franze, A AF Caravelli, A Pianese, L Saulino, C Di Leva, F Sequino, L Cocozza, S Marciano, E Franze, A TI Down-regulation of otospiralin mRNA in response to acoustic stress in guinea pig SO HEARING RESEARCH LA English DT Article DE otospiralin; mRNA; quantitative RT-PCR; cochlea; gene expression ID INDUCED HEARING-LOSS; CHICK BASILAR PAPILLA; INNER-EAR PROTEIN; GENE-EXPRESSION; COCHLEAR ENDOLYMPH; NOISE EXPOSURE; MOUSE COCHLEA; REAL-TIME; DEAFNESS; MUTATIONS AB Noise over-stimulation will induce or influence molecular pathways in the cochlea; one approach to the identification of the components of these pathways in the cochlea is to examine genes and proteins that change following different types and levels of stress. Quantitative reverse transcription polymerase chain reaction provides a method to look at differential expression of genes in the acoustic stress response. By using this technique we have revealed a down-regulation of the level of otospiralin mRNA in the cochlea of guinea pigs after white noise over-stimulation for 2 h at 108 dB SPL. Otospiralin represents an inner ear specific protein found in fibrocytes of spiral limbus and spiral ligament in the cochlea, and some regions of the vestibule as the stroma underlying the utricle and crista sensory epithelia and the subepithelial layer of the walls of semicircular canals and maculae. It has been recently reported that transient down-regulation of otospiralin in guinea pigs causes vestibular syndrome and deafness. Our results suggest a possible role of this gene in response to acoustical stress, although the exact mechanism remains to be resolved. (C) 2004 Elsevier B.V. All rights reserved. C1 IGB, Inst Genet & Biophys, I-80131 Naples, Italy. Univ Naples Federico 2, Dept Neurosci & Behav Sci, Inst Audiol, Naples, Italy. SCARL, Biotechnol & Mol Genet, BioGem, Ariano Irpino, Av, Italy. Univ Naples Federico 2, Dept Biol & Cellular & Mol Pathol, Naples, Italy. RP Franze, A (reprint author), IGB, Inst Genet & Biophys, A Buzzati Traverso,Via P Castellino 111, I-80131 Naples, Italy. EM franze@igb.cnr.it RI Franze', Annamaria/H-2539-2012 CR Adler HJ, 1999, GENOMICS, V56, P59, DOI 10.1006/geno.1998.5672 Adur J, 2003, BIOCHEM BIOPH RES CO, V305, P700, DOI 10.1016/S0006-291X(03)00769-1 Delprat B, 2002, J NEUROSCI, V22, P1718 Franze A, 2003, INT J AUDIOL, V42, P227, DOI 10.3109/14992020309101318 Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5 Grifa A, 1999, NAT GENET, V23, P16 Hirose K, 2003, JARO, V4, P339, DOI 10.1007/s10162-002-3036-4 IKEDA K, 1988, HEARING RES, V32, P103, DOI 10.1016/0378-5955(88)90081-0 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Lavigne-Rebillard M, 2003, NEUROGENETICS, V4, P137, DOI 10.1007/s10048-003-0145-0 Li WD, 1997, CHINESE MED J-PEKING, V110, P883 Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262 Lomax MI, 2000, HEARING RES, V147, P293, DOI 10.1016/S0378-5955(00)00139-8 MILLS JH, 1981, J ACOUST SOC AM, V70, P390, DOI 10.1121/1.386774 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Ohlemiller KK, 2000, JARO, V1, P243, DOI 10.1007/s101620010043 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Pfaffl MW, 2002, NUCLEIC ACIDS RES, V30, DOI 10.1093/nar/30.9.e36 Robertson NG, 2000, GENOMICS, V66, P242, DOI 10.1006/geno.2000.6224 Robertson NG, 1998, NAT GENET, V20, P299 Schmittgen TD, 2000, J BIOCHEM BIOPH METH, V46, P69, DOI 10.1016/S0165-022X(00)00129-9 SCHNEIDER J, 1976, S AFR MED J, V50, P1912 SPICER SS, 1991, HEARING RES, V56, P53, DOI 10.1016/0378-5955(91)90153-Z SUGISAWA T, 1994, ORL J OTO-RHINO-LARY, V56, P263 Taggart R.T., 2001, NOISE HEALTH, V3, P1 Terunuma T, 2001, HEARING RES, V151, P121, DOI 10.1016/S0378-5955(00)00218-5 Terunuma T, 2003, MOL BRAIN RES, V120, P65, DOI 10.1016/j.molbrainres.2003.10.002 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 29 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 36 EP 40 DI 10.1016/j.heares.2004.07.011 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000004 PM 15567600 ER PT J AU Hirai, S Harada, T AF Hirai, S Harada, T TI Morphological comparison of apoptotic with non-apoptotic dying cells in the developing inner ear of mouse embryos SO HEARING RESEARCH LA English DT Article DE apoptosis; non-apoptotic cell death; inner ear; mouse embryo; TUNEL method; transmission electron microscopy ID DEATH; APAF1 AB Dying cells studied by the TdT-mediated dUTP nick end-labeling (TUNEL) method have been classified as "apoptotic" and "non-apoptotic" cells. In this study, in which 12-day-old mouse embryos were used because of a high frequency of "natural cell death" due to changing inner ear morphology [Kaufman, M.H., 1992. The Atlas of Mouse Development, first ed., Academic Press, London, p. 147], the percentages of "apoptotic" and "non-apoptotic" dying cells (ADC and NADC) among total dying cells in the inner ear were calculated. Observation of consecutive paraffin sections showed about 90%) of the dying inner ear cells to be ADC and about 10% to be NADC. ADC and NADC TUNEL positive dying cells in resin sections observed by light microscopy were examined again by transmission electron microscopy using a re-embedding procedure. ADC and NADC were then analyzed based on the classification of dying cells (types 1, 2, 3A, and 3B) as described by Clarke [Anat. Embryol. 181 (1990) 195]. It was clear that ADC were the equivalent of type 1 (apoptotic) dying cells and NADC were the equivalent of type 2 (autophagic) dying cells. We consider these findings to be important baselines for determining the process underlying abnormal development of the inner ear and its functional disorders such as hearing loss. (C) 2004 Published by Elsevier B.V. C1 Kawasaki Med Univ, Dept Otorhinolaryngol, Kurashiki, Okayama 7010192, Japan. RP Hirai, S (reprint author), Kawasaki Med Univ, Dept Otorhinolaryngol, 577 Matsushima, Kurashiki, Okayama 7010192, Japan. EM shigezo@mx1.tiki.ne.jp CR ABBADIE C, 1993, CELL, V75, P899, DOI 10.1016/0092-8674(93)90534-W Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 Cecconi F, 1998, CELL, V94, P727, DOI 10.1016/S0092-8674(00)81732-8 CLARKE PGH, 1990, ANAT EMBRYOL, V181, P195 GAVRIELI Y, 1992, J CELL BIOL, V119, P493, DOI 10.1083/jcb.119.3.493 GLUSMANN A, 1951, BIOL REV CAMBRIDGE P, V26, P59 HORNUNG JP, 1989, J COMP NEUROL, V283, P425, DOI 10.1002/cne.902830310 KAUFMAN MH, 1992, ATLAS MOUSE DEV, P147 KERR JFR, 1972, BRIT J CANCER, V26, P239, DOI 10.1038/bjc.1972.33 Kitanaka C, 1999, CELL DEATH DIFFER, V6, P508, DOI 10.1038/sj.cdd.4400526 Nishikori T, 1999, ANAT EMBRYOL, V200, P19, DOI 10.1007/s004290050255 Nishizaki K, 1998, ACTA OTO-LARYNGOL, V118, P96 Nishizaki K, 1998, ORL J OTO-RHINO-LARY, V60, P267, DOI 10.1159/000027608 Orita Y, 1999, Acta Otolaryngol Suppl, V540, P22 SCHWEICH.JU, 1973, TERATOLOGY, V7, P253, DOI 10.1002/tera.1420070306 SOHAL GS, 1978, EXP NEUROL, V61, P53, DOI 10.1016/0014-4886(78)90180-2 Tampakopoulou DA, 1999, HEARING RES, V132, P51, DOI 10.1016/S0378-5955(99)00033-7 WYLLIE AH, 1980, NATURE, V284, P555, DOI 10.1038/284555a0 Wyllie A H, 1980, Int Rev Cytol, V68, P251 Yoshida H, 1998, CELL, V94, P739, DOI 10.1016/S0092-8674(00)81733-X NR 20 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 41 EP 47 DI 10.1016/j.heares.2004.07.012 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000005 PM 15567601 ER PT J AU Miller, CA Robinson, BK Hetke, JF Abbas, PJ Nourski, KV AF Miller, CA Robinson, BK Hetke, JF Abbas, PJ Nourski, KV TI Feasibility of using silicon-substrate recording electrodes within the auditory nerve SO HEARING RESEARCH LA English DT Article DE auditory nerve; cat; compound action potential; microelectrode; neurophysiology; penetrating electrode; peripheral nerve; silicon ID MONOPOLAR; CAT AB The use of penetrating, silicon-substrate (i.e., "thin-film") probes within a cross-section of a sensory nerve offers the possibility of assessing the pattern and extent of fiber excitation within the nerve. We used acute cat preparations to assess the feasibility of this technique for recordings within the auditory nerve trunk. Four probe configurations fabricated by the University of Michigan Center for Neural Communication Technology were evaluated using acoustic and electric stimuli. Our main concerns were the nature of the recorded potentials and the degree of spatial selectivity provided by these probes. We also made some basic assessments of electrode-tissue compatibility. The recorded potentials were characterized as field potentials with varying degrees of spatial selectivity. In some cases, responses to pure tones demonstrated good spatial selectivity, with unique responses recorded by different electrode sites. When electrode sites were positioned at different longitudinal positions along the nerve trunk, responses with latencies characteristic of each site were recorded. These results indicate that thin-film electrodes are capable of providing spatially specific response information from sensory nerves. However, in the case of feline auditory nerves, place-specific responses were inconsistently observed, making it difficult to use this technique to obtain detailed cochleotopic maps of neural excitation. More productive results may be possible from other peripheral nerves with less complex spatial arrangements of fibers. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Otolaryngol, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA. RP Miller, CA (reprint author), Univ Iowa, Dept Otolaryngol, 21201 PFP,200 Hawkins Dr, Iowa City, IA 52242 USA. EM charles-miller@uiowa.edu CR Arenberg JG, 2000, JARO, V1, P183, DOI 10.1007/sl01620010036 ARNESEN AR, 1978, J COMP NEUROL, V178, P661, DOI 10.1002/cne.901780405 BIERER JA, 2002, ASS RES OTOLARYNGOL, P541 DRAKE KL, 1988, IEEE T BIO-MED ENG, V35, P719, DOI 10.1109/10.7273 HETKE JF, 2002, HDB NEUROPROSTHETIC, P163 Kiang NY-s, 1965, DISCHARGE PATTERNS S KIANG NYS, 1976, ELECTROCOCHLEOGRAPHY, P96 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Moxon E. C., 1971, NEURAL MECH RESPONSE Nguyen BH, 1999, AM J OTOL, V20, P522 Sando I, 1965, ACTA OTOLARYNG STOCK, V59, P417, DOI 10.3109/00016486509124577 NR 12 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 48 EP 58 DI 10.1016/j.heares.2004.07.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000006 PM 15567602 ER PT J AU Oghalai, JS AF Oghalai, JS TI Chlorpromazine inhibits cochlear function in guinea pigs SO HEARING RESEARCH LA English DT Article DE cochlea; electromotility; outer hair cell; cochlear amplifier; salicylate; chlorpromazine ID OUTER HAIR CELL; PRODUCT OTOACOUSTIC EMISSIONS; GAP JUNCTIONAL CONDUCTANCE; BASILAR-MEMBRANE; SUPPORTING CELLS; INNER-EAR; OLIVOCOCHLEAR ACTIVATION; MAMMALIAN COCHLEA; PLASMA-MEMBRANE; VOLTAGE SENSOR AB Outer hair cell (OHC) electromotility provides mechanical positive feedback that functions as the cochlear amplifier. In isolated OHCs, chlorpromazine shifts the electromotility voltage-displacement transfer function in a depolarizing direction without affecting its magnitude. This study sought to measure the effects of chlorpromazine on cochlear function in vivo. Salicylate, a drug that greatly reduces the magnitude of electromotility, was used for comparison. Perilymphatic perfusion of the guinea pig cochlea with chlorpromazine or salicylate increased the compound action potential (CAP) threshold across the frequency spectrum (1-20 kHz). Both drugs also increased distortion product otoacoustic emission (DPOAE) thresholds in the higher frequencies (10-20 kHz). Complete reversibility of these effects occurred after washout. Both drugs demonstrated concentration-dependent reductions in cochlear function that followed sigmoidal curves with similar fits to previously reported results in isolated OHCs. The endolymphatic potential was not affected by either of these drugs. Thus, chlorpromazine inhibits cochlear function in a manner consistent with what would be expected from data in isolated OHCs. This suggests that shifting the electromotility transfer function correspondingly reduces the gain of the cochlear amplifier. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, San Francisco, CA 94143 USA. RP Oghalai, JS (reprint author), Baylor Coll Med, Dept Otorhinolaryngol Head & Neck Surg, NA102,1 Baylor Plaza, Houston, TX 77030 USA. EM jso@bcm.tmc.edu CR Belyantseva IA, 2000, J NEUROSCI, V20, P8996 BOBBIN RP, 1974, ACTA OTO-LARYNGOL, V77, P56, DOI 10.3109/00016487409124598 BOBBIN RP, 1971, NATURE-NEW BIOL, V231, P222 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CHEN C, 1995, HEARING RES, V87, P1, DOI 10.1016/0378-5955(95)00071-B COOPER NP, 1992, HEARING RES, V63, P163, DOI 10.1016/0378-5955(92)90083-Y DALDIN C, 1995, HEARING RES, V90, P202, DOI 10.1016/0378-5955(95)00167-5 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 EYBALIN M, 1993, NEUROSCIENCE, V54, P133, DOI 10.1016/0306-4522(93)90389-W EYBALIN M, 1993, PHYSIOL REV, V73, P309 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S Flock A, 1999, J NEUROSCI, V19, P4498 Fridberger A, 2002, J NEUROSCI, V22, P9850 Frolenkov GI, 1998, HEARING RES, V126, P67, DOI 10.1016/S0378-5955(98)00150-6 Gill SS, 1997, HEARING RES, V113, P191, DOI 10.1016/S0378-5955(97)00141-X HOLLEY MC, 1990, J CELL SCI, V96, P283 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 Kakehata S, 1996, J NEUROSCI, V16, P4881 Kalinec F, 2000, J BIOL CHEM, V275, P28000 KIANG NYS, 1986, HEARING RES, V22, P171 KONISHI T, 1972, ACTA OTO-LARYNGOL, V74, P252, DOI 10.3109/00016487209128447 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N KUJAWA SG, 1992, HEARING RES, V61, P106, DOI 10.1016/0378-5955(92)90041-K Kujawa SG, 1999, J NEUROPHYSIOL, V82, P863 Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 Lagostena L, 2001, CELL COMMUN ADHES, V8, P393, DOI 10.3109/15419060109080760 Laurikainen E, 1997, ACTA OTO-LARYNGOL, V117, P523, DOI 10.3109/00016489709113432 LEAKE PA, 1987, HEARING RES, V25, P153, DOI 10.1016/0378-5955(87)90088-8 Liberman MC, 2002, NATURE, V419, P300, DOI 10.1038/nature01059 Liberman MC, 1996, J ACOUST SOC AM, V99, P3572, DOI 10.1121/1.414956 Lim D J, 1983, Adv Otorhinolaryngol, V31, P85 Lue AJC, 2001, OTOLARYNG HEAD NECK, V125, P71, DOI 10.1067/mhn.2001.116446 Lukashkin AN, 2002, J ACOUST SOC AM, V111, P2740, DOI 10.1121/1.1479151 Maison SF, 2000, J NEUROSCI, V20, P4701 Maruyama J, 2001, ACTA OTO-LARYNGOL, V121, P803 OGHALAI JS, 2002, MIDW RES M ASS RES O, V25, P6 Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658 Oghalai JS, 1998, J NEUROPHYSIOL, V79, P2235 Oghalai JS, 1999, HEARING RES, V135, P19, DOI 10.1016/S0378-5955(99)00077-5 Oghalai JS, 1998, J NEUROSCI, V18, P48 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 OLSON ES, 1994, J ACOUST SOC AM, V95, P395, DOI 10.1121/1.408331 Plontke SKR, 2002, OTOL NEUROTOL, V23, P967, DOI 10.1097/00129492-200211000-00026 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 Ruel J, 2001, EUR J NEUROSCI, V14, P977, DOI 10.1046/j.0953-816x.2001.01721.x RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 Saha S, 2000, CELL TISSUE RES, V300, P29, DOI 10.1007/s004419900163 SANTOS-SACCHI J, 1991, HEARING RES, V52, P89, DOI 10.1016/0378-5955(91)90190-K SATO Y, 1994, HEARING RES, V80, P21, DOI 10.1016/0378-5955(94)90004-3 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 SIEGEL JH, 1986, J NEUROCYTOL, V15, P311, DOI 10.1007/BF01611434 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 UEDA H, 1992, HEARING RES, V62, P199, DOI 10.1016/0378-5955(92)90187-R Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 Yoshida N, 2001, J NEUROPHYSIOL, V85, P84 Zhang M, 2003, J BIOL CHEM, V278, P35644, DOI 10.1074/jbc.M301668200 Zhao HB, 1998, J GEN PHYSIOL, V112, P447, DOI 10.1085/jgp.112.4.447 ZHENG J, 2004, MIDW RES M ASS RES O, V27, P343 Zheng XY, 2000, HEARING RES, V143, P14, DOI 10.1016/S0378-5955(99)00217-8 NR 65 TC 18 Z9 20 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 59 EP 68 DI 10.1016/j.heares.2004.03.013 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000007 PM 15567603 ER PT J AU Zeftawi, MS AF Zeftawi, MS TI MMN to natural Arabic CV syllables: 1-normative data SO HEARING RESEARCH LA English DT Article DE MMN; Arabic; CV syllables; auditory pathway ID MISMATCH NEGATIVITY MMN; SPEECH SOUNDS; AUDITORY-DISCRIMINATION; HUMAN BRAIN; PERCEPTION; REPRESENTATION; CHILDREN; MEMORY; GENERATORS; POTENTIALS AB Mismatch negativity response parameters; latency, amplitude, and duration to natural Arabic CV syllables differing in durational change (Baa-Waa) and in spectrotemporal change (Gaa-Daa) were obtained from normal hearing young adult Egyptians. The aim was to get normative data for MMN response parameters and to find any differences between both primary and non-primary auditory pathways in encoding and processing speech signals. Statistically significant differences between durational and spectrotemporal contrasts for latency and duration were found. This was attributed to acoustic differences and to physiological differences between primary and non-primary auditory pathways. (C) 2004 Elsevier B.V. All rights reserved. C1 Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt. RP Zeftawi, MS (reprint author), Mansoura Gen Hosp, Audiol Unit, Mansoura, Egypt. EM m.samir@medscape.com CR ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Bellis TJ, 2000, J NEUROSCI, V20, P791 Ceponiene R, 2002, INT J PSYCHOPHYSIOL, V43, P199, DOI 10.1016/S0167-8760(01)00172-6 Cheour M, 2000, CLIN NEUROPHYSIOL, V111, P4, DOI 10.1016/S1388-2457(99)00191-1 CSEPE V, 1995, EAR HEARING, V16, P91 DehaeneLambertz G, 1997, NEUROREPORT, V8, P919, DOI 10.1097/00001756-199703030-00021 Fitch RH, 1997, ANNU REV NEUROSCI, V20, P331, DOI 10.1146/annurev.neuro.20.1.331 Gage N, 1998, BRAIN RES, V814, P236, DOI 10.1016/S0006-8993(98)01058-0 Gomes H, 2001, DEV BRAIN RES, V129, P147, DOI 10.1016/S0165-3806(01)00196-1 Greenberg S, 1996, PRINCIPLES EXPT PHON, P362 Halgren E, 1998, ELECTROEN CLIN NEURO, V106, P156, DOI 10.1016/S0013-4694(97)00119-3 KRAUS N, 1993, EAR HEARING, V14, P223, DOI 10.1097/00003446-199308000-00001 Kraus N, 1998, AUDIOL NEURO-OTOL, V3, P168, DOI 10.1159/000013788 Kraus N, 1999, J SPEECH LANG HEAR R, V42, P1042 KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004 KRAUS N, 1994, AM J AUDIOL, V94, P39 McGee T, 1997, EVOKED POTENTIAL, V104, P359, DOI 10.1016/S0168-5597(97)00024-5 NAATANEN R, 1995, EAR HEARING, V16, P6 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X Naatanen R, 2001, PSYCHOPHYSIOLOGY, V38, P1, DOI 10.1017/S0048577201000208 Paavilainen P, 2001, NEUROSCI LETT, V301, P179, DOI 10.1016/S0304-3940(01)01635-4 Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X Phillips C, 2001, COGNITIVE SCI, V25, P711, DOI 10.1016/S0364-0213(01)00049-0 RITTER W, 1995, EAR HEARING, V16, P52, DOI 10.1097/00003446-199502000-00005 Rivera-Gaxiola M, 2000, BEHAV BRAIN RES, V111, P13, DOI 10.1016/S0166-4328(00)00139-X Salmelin R, 1999, P NATL ACAD SCI USA, V96, P10460, DOI 10.1073/pnas.96.18.10460 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Shtyrov Y, 2000, NEUROIMAGE, V12, P657, DOI 10.1006/nimg.2000.0646 SOLIMAN S, 1976, AIN SHAMS MEN, V3, P27 Stapells D R, 2002, HDB CLIN AUDIOLOGY, P378 Tiitinen H, 1999, COGNITIVE BRAIN RES, V8, P355, DOI 10.1016/S0926-6410(99)00028-2 Winkler I, 1999, COGNITIVE BRAIN RES, V7, P357, DOI 10.1016/S0926-6410(98)00039-1 NR 35 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 69 EP 74 DI 10.1016/j.heares.2004.07.003 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000008 ER PT J AU Miller, CA Abbas, PJ Hay-McCutcheon, MJ Robinson, BK Nourski, KV Jeng, FC AF Miller, CA Abbas, PJ Hay-McCutcheon, MJ Robinson, BK Nourski, KV Jeng, FC TI Intracochlear and extracochlear ECAPs suggest antidromic action potentials SO HEARING RESEARCH LA English DT Article DE auditory nerve; electrical stimulation; cochlear implant; compound action potential; cat; antidromic ID COCHLEAR IMPLANT USERS; STIMULATED AUDITORY-NERVE; ELECTRICAL-STIMULATION; GUINEA-PIG; ELECTRODE CONFIGURATION; EXCITATION PATTERNS; NEURAL EXCITATION; SPEECH-PERCEPTION; SCALA TYMPANI; MODEL AB With experimental animals, the electrically evoked compound action potential (ECAP) can be recorded from multiple sites (e.g., round window, intracranial and intracochlear sites). However, human ECAPs are typically recorded from intracochlear electrodes of the implanted array. To bridge this difference, we obtained ECAPs from cats using both intracochlear and nerve-trunk recording sites. We also sought to determine how recording the site influences the acquired evoked potential and how those differences may provide insight into basic excitation properties. In the main experiment, ECAPs were recorded from four acutely deafened cats after implanting a Nucleus-style banded electrode array. Potentials were recorded from an electrode positioned on the nerve trunk and an intracochlear electrode. We manipulated stimulus level, electrode configuration (monopolar vs bipolar) and stimulus polarity, variables that influence the site of excitation. Intracochlear ECAPs were found to be an order of magnitude greater than those obtained with the nerve-trunk electrode. Also, compared with the nerve-trunk potentials, the intracochlear ECAPs more closely resembled those obtained from humans in that latencies were shorter and the waveform morphology was typically biphasic (a negative peak followed by a positive peak). With anodic monophasic stimuli, the ECAP had a unique positive-to-negative morphology which we attributed to antidromic action potentials resulting from a relatively central site of excitation. We also collected intracochlear ECAPs from twenty Nucleus 24 implant users. Compared with the feline ECAPs, the human potentials had smaller amplitudes and longer latencies. It is not clear what underlies these differences, although several factors are considered. (C) 2004 Published by Elsevier B.V. C1 Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. RP Miller, CA (reprint author), Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, 21201 PFP,200 Hawkins Dr, Iowa City, IA 52242 USA. EM charles-miller@uiowa.edu CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 BROWN MC, 1994, J NEUROPHYSIOL, V71, P1826 Cohen LT, 2003, HEARING RES, V179, P72, DOI 10.1016/S0378-5955(03)00096-0 Dillier N, 2002, ANN OTO RHINOL LARYN, V111, P407 Finley C. C., 1990, COCHLEAR IMPLANTS MO Franck KH, 2001, EAR HEARING, V22, P289, DOI 10.1097/00003446-200108000-00004 Frijns JHM, 2001, OTOL NEUROTOL, V22, P340, DOI 10.1097/00129492-200105000-00012 FRIJNS JHM, 1995, HEARING RES, V87, P170, DOI 10.1016/0378-5955(95)00090-Q Frijns JHM, 2002, EAR HEARING, V23, P184, DOI 10.1097/00003446-200206000-00003 Haenggeli A, 1998, AUDIOLOGY, V37, P353 HATSUSHIKA S, 1990, ANN OTO RHINOL LARYN, V99, P871 Hughes ML, 2001, EAR HEARING, V22, P471, DOI 10.1097/00003446-200112000-00004 Hughes ML, 2000, EAR HEARING, V21, P164, DOI 10.1097/00003446-200004000-00010 IGARASHI M, 1976, ARCH OTOLARYNGOL, V102, P428 Miller CA, 2003, HEARING RES, V175, P200 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7 Miller CA, 2001, HEARING RES, V151, P79, DOI 10.1016/S0300-2977(00)00082-6 NADOL JB, 1988, HEARING RES, V34, P253, DOI 10.1016/0378-5955(88)90006-8 NAGEL D, 1974, ARCH OTO-RHINO-LARYN, V206, P293, DOI 10.1007/BF00460282 PRIJS VF, 1980, ACUSTICA, V45, P1 RATTAY F, 1986, IEEE T BIO-MED ENG, V33, P974, DOI 10.1109/TBME.1986.325670 Rebscher SJ, 2001, J ACOUST SOC AM, V109, P2035, DOI 10.1121/1.1365115 REILLY JP, 1985, IEEE T BIO-MED ENG, V32, P1001, DOI 10.1109/TBME.1985.325509 RUBINSTEIN JT, 1993, IEEE T BIO-MED ENG, V40, P654, DOI 10.1109/10.237695 RUBINSTEIN JT, 1995, BIOPHYS J, V68, P779 Smoorenburg GF, 2002, AUDIOL NEURO-OTOL, V7, P335, DOI 10.1159/000066154 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 WILSON BS, 1994, SPEECH PROCESSORS AU Wilson BS, 1997, AM J OTOL, V18, pS30 Zimmerling MJ, 2002, EAR HEARING, V23, P81, DOI 10.1097/00003446-200204000-00001 NR 35 TC 24 Z9 25 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 75 EP 86 DI 10.1016/j.heares.2004.07.005 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000009 PM 15567605 ER PT J AU Khalfa, S Bruneau, N Roge, B Georgieff, N Veuillet, E Adrien, JL Barthelemy, C Collet, L AF Khalfa, S Bruneau, N Roge, B Georgieff, N Veuillet, E Adrien, JL Barthelemy, C Collet, L TI Increased perception of loudness in autism SO HEARING RESEARCH LA English DT Article DE autism; auditory dynamic range; loudness; hyperacusis ID CHILDHOOD AUTISM; FOLLOW-UP; DYSFUNCTION; CHILDREN AB Clinical reports on autism describe abnormal responses to auditory stimuli such as intolerance to sounds. The present study assessed subjective perception of loudness in subjects with autism compared to healthy controls, using two psychoacoustic tests. First, the auditory dynamic range was evaluated at six different tone frequencies. Secondly, loudness growth as a function of the intensity level of a 1 kHz tone was estimated. Verbal responses from a group of 11 children and adolescents with autism were compared to responses of 11 age- and gender- matched healthy controls. Smaller auditory dynamic ranges were found in the autistic group than in the control group, as well as increased perception of loudness, indicating hyperacusis in subjects with autism. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Mediterranee, INSERM, EMI U 9926, Fac Med Timone,Lab Neurophysiol & Neuropsychol, F-13385 Marseille 5, France. CHU Bretonneau, INSERM, U619, Serv Neurophysiol Pedopsychiat,IFR 135, F-37044 Tours, France. Univ Toulouse Le Mirail, UFR Psychol, F-31058 Toulouse 1, France. ITTAC, F-69616 Villeurbanne, France. Hop Edouard Herriot, CNRS, UMR 5020, F-69003 Lyon, France. Univ Paris 05, Lab Psychol Clin Psychopathol, F-75270 Paris 06, France. RP Khalfa, S (reprint author), Univ Mediterranee, INSERM, EMI U 9926, Fac Med Timone,Lab Neurophysiol & Neuropsychol, 27 Bd Jean Moulin, F-13385 Marseille 5, France. EM skhalfa@skhalfa.com CR ALLEN JB, 1990, J ACOUST SOC AM, V88, P745, DOI 10.1121/1.399778 American Psychiatric Association (APA), 1994, DIAGN STAT MAN MENT, V4th Baron-Cohen S., 1987, HDB AUTISM PERVASIVE, P85 Berard G, 1993, HEARING EQUALS BEHAV BERGLUND B, 1976, J ACOUST SOC AM, V60, P1119, DOI 10.1121/1.381212 BODDAERT N, 2001, NEUROIMAGE, V13, P1028, DOI 10.1016/S1053-8119(01)92362-6 Brandy WT, 1995, AM J AUDIOL, V4, P46 Bruneau N, 1999, CLIN NEUROPHYSIOL, V110, P1927, DOI 10.1016/S1388-2457(99)00149-2 CHESS S, 1977, J AUTISM CHILD SCHIZ, V7, P69, DOI 10.1007/BF01531116 DAHLGREN SO, 1989, EUR ARCH PSY CLIN N, V238, P169 Dawson G, 2000, J AUTISM DEV DISORD, V30, P415, DOI 10.1023/A:1005547422749 Ellis M R, 1999, Am J Audiol, V8, P40, DOI 10.1044/1059-0889(1999/008) Goldstein B, 1991, TINNITUS DIAGNOSIS T, P293 GOLDSTEIN B, 1996, P NES, V24, P113 HERMELIN B, 1970, PSYCHOLOGICAL EXPERI Kanner L, 1943, NERV CHILD, V2, P217 LOCKYER L, 1969, BRIT J PSYCHIAT, V115, P865, DOI 10.1192/bjp.115.525.865 Moore BCJ, 1997, INTRO PSYCHOL HEARIN Ohnishi T, 2000, BRAIN, V123, P1838, DOI 10.1093/brain/123.9.1838 ORNITZ EM, 1974, J AUTISM CHILD SCHIZ, V4, P197, DOI 10.1007/BF02115226 Rosenhall U, 1999, J AUTISM DEV DISORD, V29, P349, DOI 10.1023/A:1023022709710 SCHOPLER E, 1980, J AUTISM DEV DISORD, V10, P91, DOI 10.1007/BF02408436 Wechsler D, 1981, WECHSLER ADULT INTEL Wechsler D., 1981, ECHELLE INTELLIGENCE Zilbovicius M, 2000, AM J PSYCHIAT, V157, P1988, DOI 10.1176/appi.ajp.157.12.1988 NR 25 TC 56 Z9 59 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 87 EP 92 DI 10.1016/j.heares.2004.07.006 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000010 PM 15617227 ER PT J AU Young, YH Kuo, SW AF Young, YH Kuo, SW TI Side-difference of vestibular evoked myogenic potentials in healthy subjects SO HEARING RESEARCH LA English DT Article DE binaural acoustic stimulation; side-difference; vestibular evoked myogenic potential; relative amplitude; interaural amplitude difference ratio ID REFLEX; CATS; NEURONS AB The aim of this study was to investigate the side-difference of vestibular evoked myogenic potentials (VEMPs) in relation to the provocation rates, latencies and amplitudes using binaural acoustic stimulation with bilateral recording. Fourteen healthy volunteers underwent a serial VEMP testings elicited binaurally by a sequence of alternating stimulus intensities, that is, 95-95 (right-left), 85-95, 95-85, and 85-85 dBHL tone burst, respectively. The provocation rates as well as the mean latencies of p13 and n23 for the VEMPs demonstrated no significant side-difference despite using 95-95, 85-95, 95-85 and 85-85 dBHL binaural acoustic stimulation. In contrast, nine (64%) of the 14 subjects showed side-difference of absolute p13-n23 amplitude, including right side dominant in five subjects, and left side dominant in four subjects. However, there was no significant side-difference in terms of relative amplitude despite using 95-95, 85-95, 95-85 and 85-85 dBHL binaural acoustic stimulation. Furthermore, the relative amplitude or interaural amplitude difference (IAD) ratios between those with and without side-difference of p13-n23 amplitude did not differ significantly. Hence, this study provides a potentially important method for adjusting the side difference of p13-n23 amplitudes by using a relative amplitude or IAD ratio adjustment. It also adds confidence to the successful use of binaural stimulation and recording of VEMPs under conditions of bilateral SCM muscular contractions. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. Natl Taiwan Univ, Coll Med, Taipei, Taiwan. Far Eastern Mem Hosp, Dept Otolaryngol, Taipei, Taiwan. RP Young, YH (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 1 Chang Te St, Taipei, Taiwan. EM youngyh@ha.mc.ntu.edu.tw CR Brantberg K, 2001, SCAND AUDIOL, V30, P189, DOI 10.1080/010503901316914566 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 HALMAGYI GM, 1994, BAILLIERE CLIN NEUR, V3, P485 Kushiro K, 1999, EXP BRAIN RES, V126, P410, DOI 10.1007/s002210050747 LIM CL, 1995, MUSCLE NERVE, V18, P1210 MATTHEWS PBC, 1986, J PHYSIOL-LONDON, V374, P73 MUROFUSHI T, 1995, EXP BRAIN RES, V103, P174 Sato H, 1997, EXP BRAIN RES, V116, P381, DOI 10.1007/PL00005766 Uchino Y, 1997, J NEUROPHYSIOL, V77, P3003 Wang CT, 2004, HEARING RES, V191, P59, DOI 10.1016/j.heares.2004.01.004 Wang SJ, 2003, HEARING RES, V185, P43, DOI 10.1016/S0378-5955(03)00256-9 Wu CC, 2002, EAR HEARING, V23, P235, DOI 10.1097/00003446-200206000-00007 Wu CH, 1999, ACTA OTO-LARYNGOL, V119, P741 Young YH, 2002, LARYNGOSCOPE, V112, P509, DOI 10.1097/00005537-200203000-00019 Young YH, 2003, ARCH OTOLARYNGOL, V129, P815, DOI 10.1001/archotol.129.8.815 NR 15 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 93 EP 98 DI 10.1016/j.heares.2004.06.011 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000011 PM 15567606 ER PT J AU Munirathinam, S Ostapoff, EM Gross, J Kempe, GS Dutton, JA Morest, DK AF Munirathinam, S Ostapoff, EM Gross, J Kempe, GS Dutton, JA Morest, DK TI Organization of inhibitory feed-forward synapses from the dorsal to the ventral cochlear nucleus in the cat: a quantitative analysis of endings by vesicle morphology SO HEARING RESEARCH LA English DT Article DE synaptic morphometry; vesicle morphology; convolution filters; imaging; tuberculo-ventral tract; axonal tracers; auditory center/surround; local circuits; temporal processing ID BRAIN-STEM; GUINEA-PIG; SYNAPTIC ORGANIZATION; AUDITORY-SYSTEM; SINGLE UNITS; BUSHY CELLS; D-ASPARTATE; GLYCINE; PROJECTIONS; NEURONS AB The main ascending, excitatory pathway from the cochlea undergoes synaptic interruption in the dorsal and ventral cochlear nuclei. The dorsal cochlear nucleus also forms a feed-forward circuit, which receives cochlear input and projects to the ventral cochlear nucleus by a tuberculo-ventral tract. This circuit may provide an inhibitory fringe (side bands) surrounding the center bands of the main ascending pathway. Biotinylated dextran injections into the dorsal cochlear nucleus anterogradely labeled the tuberculo-ventral tract and its endings in the anteroventral cochlear nucleus but also retrogradely filled cochlear nerve fibers and their terminals in the same regions. To distinguish tuberculo-ventral from cochlear nerve terminals, we used electron microscopy of the immunolabeled endings. Images were digitized and filter-enhanced, and the sizes and shapes of synaptic vesicles were used to construct quantitative profiles of the terminal types. The cochlear nerve endbulbs mapped to the same iso-frequency band of the injection site (main band). Flanking the main band were smaller labeled endings. About 45% of labeled terminals were pleomorphic and equally represented in the main band and side bands. Therefore, if there is an inhibitory fringe in the main projection pathway, it was not selective for tuberculo-ventral tract endings. Surprisingly, an excitatory category of round vesicles of intermediate size was labeled in the main band but not in the side bands. These intermediate endings may balance the feed-forward inhibition from the tuberculo-ventral tract. The quantitative method devised for classification of ending types by their vesicle profiles should be a generally useful tool for analysis. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Connecticut, Ctr Hlth, Dept Neurosci, Ctr Neurol Sci, Farmington, CT 06030 USA. RP Morest, DK (reprint author), Univ Connecticut, Ctr Hlth, Dept Neurosci, Ctr Neurol Sci, Farmington, CT 06030 USA. EM kent@neuron.uchc.edu CR ADAMS JC, 1987, J COMP NEUROL, V262, P375, DOI 10.1002/cne.902620305 Alibardi L, 2003, J ANAT, V203, P31, DOI 10.1046/j.1469-7580.2003.00208.x ALTSCHULER RA, 1986, AM J OTOLARYNG, V7, P100, DOI 10.1016/S0196-0709(86)80038-2 BRAWER JR, 1975, J COMP NEUROL, V160, P491, DOI 10.1002/cne.901600406 CANT NB, 1979, NEUROSCIENCE, V4, P1925, DOI 10.1016/0306-4522(79)90066-6 CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 CASPARY DM, 1983, EXP NEUROL, V82, P491, DOI 10.1016/0014-4886(83)90419-3 EVANS EF, 1993, PROG BRAIN RES, V97, P117 Fujino K, 2001, J NEUROSCI, V21, P7372 Gerken GM, 1996, HEARING RES, V97, P75 GODFREY DA, 1977, J HISTOCHEM CYTOCHEM, V25, P397 HENDERSON Z, 1991, J COMP NEUROL, V314, P147, DOI 10.1002/cne.903140114 HUNTER C, 1992, OTOLARYNG CLIN N AM, V25, P1027 Hurd LB, 1999, SYNAPSE, V33, P83 Jonas P, 1998, SCIENCE, V281, P419, DOI 10.1126/science.281.5375.419 JONES DR, 1984, HEARING RES, V15, P197, DOI 10.1016/0378-5955(84)90029-7 Josephson EM, 1998, J NEUROCYTOL, V27, P841, DOI 10.1023/A:1006959532686 Juiz JM, 1996, J COMP NEUROL, V373, P11, DOI 10.1002/(SICI)1096-9861(19960909)373:1<11::AID-CNE2>3.0.CO;2-G KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 Kopp-Scheinpflug C, 2002, J NEUROSCI, V22, P11004 Lim R, 2000, J PHYSIOL-LONDON, V525, P447, DOI 10.1111/j.1469-7793.2000.t01-1-00447.x LOATS HL, 1988, IMAGING TECHNIQUES B, P1 Mahendrasingam S, 2004, EUR J NEUROSCI, V19, P993, DOI 10.1111/j.1460-9568.2004.03193.x MATUS AI, 1971, BRAIN RES, V32, P195, DOI 10.1016/0006-8993(71)90164-8 MCDONALD DM, 1977, J COMP NEUROL, V173, P475, DOI 10.1002/cne.901730306 MOREST DK, 1993, NATO ADV SCI INST SE, V239, P1 Morest DK, 1973, BASIC MECH HEARING, P479 MOREST DK, 1975, J COMP NEUROL, V162, P157, DOI 10.1002/cne.901620202 MUNIRATHINAM S, 2004, ABSTR ASS RES OTOLAR, V27, P122 Needham K, 2003, J NEUROSCI, V23, P6357 O'Brien JA, 1999, J NEUROPHYSIOL, V82, P1638 OLIVER DL, 1983, J NEUROSCI, V3, P455 Osen K.K., 1990, GLYCINE NEUROTRANSMI, P417 OSTAPOFF EM, 1991, J COMP NEUROL, V314, P598, DOI 10.1002/cne.903140314 Ostapoff EM, 1999, HEARING RES, V130, P75, DOI 10.1016/S0378-5955(98)00224-X OSTAPOFF EM, 1994, J COMP NEUROL, V346, P19, DOI 10.1002/cne.903460103 Pappas G.D., 1972, STRUCTURE FUNCTION S Peters A., 1976, FINE STRUCTURE NERVO POTASHNER SJ, 1985, AUDITORY BIOCH, P141 Rubio ME, 2004, J COMP NEUROL, V477, P253, DOI 10.1002/cne.20249 Rubio ME, 1998, J COMP NEUROL, V399, P341, DOI 10.1002/(SICI)1096-9861(19980928)399:3<341::AID-CNE4>3.0.CO;2-0 SAINTMARIE RL, 1989, HEARING RES, V42, P97 SAINTMARIE RL, 1991, HEARING RES, V51, P11, DOI 10.1016/0378-5955(91)90003-R SCHOFIELD BR, 1994, J COMP NEUROL, V344, P83, DOI 10.1002/cne.903440107 Shore SE, 2003, EXP BRAIN RES, V153, P427, DOI 10.1007/s00221-003-1610-6 VALDIVIA O, 1971, J COMP NEUROL, V142, P257, DOI 10.1002/cne.901420302 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X STARR A, 1968, J NEUROPHYSIOL, V31, P549 WICKESBERG RE, 1990, J NEUROSCI, V10, P1762 WINTER IM, 1990, HEARING RES, V44, P161, DOI 10.1016/0378-5955(90)90078-4 Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3 Yao WP, 1999, J HISTOCHEM CYTOCHEM, V47, P83 Young E.D., 2004, SYNAPTIC ORG BRAIN, P125 NR 54 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 99 EP 115 DI 10.1016/j.heares.2004.06.007 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000012 PM 15567607 ER PT J AU Recanzone, GH Beckerman, NS AF Recanzone, GH Beckerman, NS TI Effects of intensity and location on sound location discrimination in macaque monkeys SO HEARING RESEARCH LA English DT Article DE macaque; sound; localization; intensity ID PRIMARY AUDITORY-CORTEX; OLD-WORLD MONKEYS; LOCALIZATION BEHAVIOR; RECEPTIVE-FIELDS; CORTICAL-NEURONS; CAT; FREQUENCY; PRIMATES; REPRESENTATION; SENSITIVITY AB Sound localization performance is degraded at low stimulus intensities in humans, and while the sound localization ability of humans and macaque monkeys appears similar, the effects of intensity have yet to be described in the macaque. We therefore defined the ability of four macaque monkeys to localize broadband noise stimuli at four different absolute intensities and six different starting locations in azimuth. Results indicate that performance was poorest at the lowest intensity tested (25 dB SPL), intermediate at 35 dB SPL, and equivalent at 55 and 75 dB SPL. Localization performance was best at 0degrees (directly in front of the animal) and was systematically degraded at more peripheral locations (+/-30degrees and 90degrees) and worst at a location directly behind the animal. Reaction times showed the same trends, with reaction times increasing with decreasing stimulus intensity, even under conditions where the monkey discriminated the location change with the same performance. These results indicate that sound level as well as position profoundly influences sound localization ability. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA. Univ Calif Davis, Sect Neurobiol Physiol & Behav, Davis, CA 95616 USA. RP Recanzone, GH (reprint author), Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA. EM ghrecanzone@ucdavis.edu CR ALTSHULER M W, 1975, Journal of Auditory Research, V15, P262 BROWN CH, 1980, J ACOUST SOC AM, V68, P127, DOI 10.1121/1.384638 BROWN CH, 1978, SCIENCE, V201, P753, DOI 10.1126/science.97785 BROWN CH, 1982, J ACOUST SOC AM, V72, P1804, DOI 10.1121/1.388653 Brugge JF, 1996, J NEUROSCI, V16, P4420 COMALLI P E JR, 1976, Journal of Auditory Research, V16, P275 Furukawa S, 2000, J NEUROSCI, V20, P1216 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 JENKINS WM, 1984, J NEUROPHYSIOL, V52, P819 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 KAVANAGH GL, 1987, J NEUROPHYSIOL, V57, P1746 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 Rauschecker JP, 2000, P NATL ACAD SCI USA, V97, P11800, DOI 10.1073/pnas.97.22.11800 Reale RA, 2003, J NEUROPHYSIOL, V89, P1024, DOI 10.1152/jn.00563.2002 Recanzone GH, 2000, P NATL ACAD SCI USA, V97, P11829, DOI 10.1073/pnas.97.22.11829 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 RECANZONE GH, 1991, BEHAV RES METH INSTR, V23, P357 Recanzone GH, 1999, J COMP NEUROL, V415, P460, DOI 10.1002/(SICI)1096-9861(19991227)415:4<460::AID-CNE4>3.0.CO;2-F Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 SANCHEZLONGO LP, 1958, NEUROLOGY, V8, P119 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 Spezio ML, 2000, HEARING RES, V144, P73, DOI 10.1016/S0378-5955(00)00050-2 Su TIK, 2001, JARO, V2, P246, DOI 10.1007/s101620010073 NR 25 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 116 EP 124 DI 10.1016/j.heares.2004.07.017 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000013 PM 15567608 ER PT J AU Jerger, J Martin, J AF Jerger, J Martin, J TI Hemispheric asymmetry of the right ear advantage in dichotic listening SO HEARING RESEARCH LA English DT Article DE dichotic listening; interaural asymmetry; interhemispheric asymmetry; right-ear advantage; structural model; attentional model ID PERIPHERAL AUDITORY LATERALIZATION; EVENT-RELATED POTENTIALS; OTOACOUSTIC EMISSIONS; SELECTIVE ATTENTION; HEARING SENSITIVITY; DIRECTED ATTENTION; CHILDREN; STIMULI; WAVE; REA AB ERP waveforms evoked by target-right and target-left stimuli in a directed-attention, dichotic-listening paradigm were examined using cross-correlation analysis. We analyzed data from two experiments involving linguistic processing. They involved listening for (1) a phonemic feature, and (2) a series of morpho-syntactic anomalies. The maximum correlation between target-right and target-left waveforms was achieved when the target-right waveform was delayed relative to the target-left waveform (the T shift), reflecting the shorter latency of the target-right waveform. We interpret the direction of displacement as equivalent to a "right-ear advantage" in the dichotic listening paradigm. In both tasks, tau shifts were not uniformly distributed across the parietal electrode array. They were greatest on the extreme left side of the head and systematically declined as the electrode site moved rightward, indicating a temporal gradient in the relative latencies of the two waveforms. Results are interpreted in relation to both structural and attentional aspects of dichotic listening. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Texas, Sch Behav & Brain Sci, Texas Auditory Proc Disorder Lab, Richardson, TX 75080 USA. RP Jerger, J (reprint author), Univ Texas, Sch Behav & Brain Sci, Texas Auditory Proc Disorder Lab, 2612 Prairie Creek Dr E, Richardson, TX 75080 USA. EM jjerger@utdallas.edu CR AHONNISKA J, 1993, BRAIN LANG, V45, P127, DOI 10.1006/brln.1993.1039 ANNETT M, 1970, BRIT J PSYCHOL, V61, P303 ASBJORNSEN A, 1990, BRAIN LANG, V39, P447, DOI 10.1016/0093-934X(90)90150-F BANICH TM, 1998, BRAIN COGNITION, V36, P128 Beauchamp K.G., 1979, DIGITAL METHODS SIGN Bradshaw J.L., 1988, HDB DICHOTIC LISTENI, P45 Brancucci A, 2004, EUR J NEUROSCI, V19, P2329, DOI 10.1111/j.0953-816X.2004.03302.x BRYDEN M, 1982, LARERALITY FUNCTIONA Bryden M. P., 1988, HDB DICHOTIC LISTENI, P1 BRYDEN MP, 1991, CAN J PSYCHOL, V45, P427, DOI 10.1037/h0084305 CONNOLLY JF, 1985, PSYCHOPHYSIOLOGY, V22, P87, DOI 10.1111/j.1469-8986.1985.tb01564.x Davidson R. J., 1998, BRAIN ASYMMETRY DEAN RS, 1982, NEUROPSYCHOLOGIA, V20, P685, DOI 10.1016/0028-3932(82)90068-9 EGAN JP, 1948, LARYNGOSCOPE, V58, P955, DOI 10.1288/00005537-194809000-00002 Fujiki N, 2002, J NEUROSCI, V22, P1 Gadea M, 1997, Appl Neuropsychol, V4, P171, DOI 10.1207/s15324826an0403_5 GEVINS AS, 1987, HDB ELECTROENCEPHALO, V1, P171 Hellige JB, 1993, HEMISPHERIC ASYMMETR Hugdahl K, 2003, EXPT METHODS NEUROPS, P29 HUGDAHL K, 1998, BRAIN ASYMMETRY, P123 JAENCKE L, 2002, LATERALITY, V7, P309 JEGER J, 2004, J AM ACAD AUDIOL, V15, P79 JEGER J, 2000, J AM ACAD AUDIOL, V11, P273 Khalfa S, 2000, PERCEPT PSYCHOPHYS, V62, P647, DOI 10.3758/BF03212116 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Khalfa S, 1998, HEARING RES, V121, P29, DOI 10.1016/S0378-5955(98)00062-8 Khalfa S, 1998, EUR J NEUROSCI, V10, P2731, DOI 10.1046/j.1460-9568.1998.00286.x Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 Kimura D., 1967, CORTEX, V3, P163 Kinsbourne M., 1978, ASYMMETRICAL FUNCTIO, P3 KINSBOURNE M, 1982, AM PSYCHOL, V37, P411, DOI 10.1037//0003-066X.37.4.411 Liederman J, 1998, BRAIN COGNITION, V36, P193, DOI 10.1006/brcg.1997.0952 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MILNER B, 1968, SCIENCE, V161, P184, DOI 10.1126/science.161.3837.184 MOLLON J, 1978, ASYMMETRICAL FUNCTIO, P318 MONDOR TA, 1991, NEUROPSYCHOLOGIA, V29, P1179, DOI 10.1016/0028-3932(91)90032-4 MONDOR TA, 1992, PERCEPT PSYCHOPHYS, V52, P393, DOI 10.3758/BF03206699 MURRAY MR, 1983, ACTA PSYCHOL, V53, P243, DOI 10.1016/0001-6918(83)90006-9 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Neuhoff J., 2004, ECOLOGICAL PSYCHOACO, P1, DOI 10.1016/B978-012515851-0/50002-3 NORDBY H, 1995, J PSYCHOPHYSIOL, V9, P56 OBRZUT JE, 1986, J EXP CHILD PSYCHOL, V41, P198, DOI 10.1016/0022-0965(86)90058-5 OBRZUT JE, 1993, NEUROPSYCHOLOGIA, V31, P1411, DOI 10.1016/0028-3932(93)90107-B Obrzut JE, 1999, DEV NEUROPSYCHOL, V16, P127, DOI 10.1207/S15326942DN160108 OLeary DS, 1996, BRAIN LANG, V53, P20, DOI 10.1006/brln.1996.0034 PAPANICOLAOU AC, 1988, ARCH NEUROL-CHICAGO, V45, P1025 PICTON TW, 1992, J CLIN NEUROPHYSIOL, V9, P456, DOI 10.1097/00004691-199210000-00002 Poeppel D, 2004, NEUROPSYCHOLOGIA, V42, P183, DOI 10.1016/j.neuropsychologia.2003.07.010 Regan D., 1989, HUMAN BRAIN ELECTROP Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Sidtis J., 1988, HDB DICHOTIC LISTENI, P161 Sinai A, 2003, CLIN NEUROPHYSIOL, V114, P1181, DOI [10.1016/S1388-2457(03)00087-7, 10.1016/S388-2457(03)000087-7] Sparks R, 1970, Cortex, V6, P249 Sparks R., 1968, CORTEX, V4, P3 SPRINGER SP, 1975, NEUROPSYCHOLOGIA, V13, P341, DOI 10.1016/0028-3932(75)90011-1 Stanley W. D., 1975, DIGITAL SIGNAL PROCE Stearns S. D., 1975, DIGITAL SIGNAL ANAL SWANSON J, 1978, ASYMMETRICAL FUNCTIO, P274 TENKE CE, 1993, PSYCHOPHYSIOLOGY, V30, P62 TUKEY JW, 1978, EVENT RELATED BRAIN, P139 Voyer D, 2001, BRAIN COGNITION, V46, P397, DOI 10.1006/breg.2001.1298 Voyer D, 2002, J CLIN EXP NEUROPSYC, V24, P605 Weber EH, 1834, PULSU RESORPTIONE AU WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x Yund EW, 1999, BRAIN LANG, V66, P358, DOI 10.1006/brln.1998.2034 NR 66 TC 21 Z9 23 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 125 EP 136 DI 10.1016/j.heares.2004.07.019 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000014 PM 15567609 ER PT J AU Minami, SB Sha, SH Schacht, J AF Minami, SB Sha, SH Schacht, J TI Antioxidant protection in a new animal model of cisplatin-induced ototoxicity SO HEARING RESEARCH LA English DT Article DE hearing loss; salicylate; reactive oxygen species ID SQUAMOUS-CELL CARCINOMA; 4-METHYLTHIOBENZOIC ACID; SODIUM THIOSULFATE; DOSE CISPLATIN; GUINEA-PIGS; CHEMOTHERAPY; CANCER; SALICYLATE; RAT; RADIOTHERAPY AB Mortality is a major complication in animal models of cisplatin-induced hearing loss due to the systemic toxicity of the drug. Here we report on a novel two-cycle treatment in rats, each cycle consisting of four days of cisplatin injections (1 mg/kg, i.p., twice daily) separated by 10 days of rest. This regimen, similar to clinical courses of cancer chemotherapy, produced significant hearing loss without mortality. Auditory brain stem evoked responses were unchanged after the first cycle but were elevated by 40-50 dB at 16 and 20 kHz after the second. Loss of outer hair cells occurred after the second cycle, predominantly in the base of the cochlea. Total cochlear antioxidants declined progressively during drug treatment and were reduced to 60% of control values after the second cisplatin cycle. Co-administration of salicylate (100 mg/kg, s.c., twice daily) during both cycles or during the second cycle restored antioxidant levels and reduced cisplatin-induced threshold shifts. This model of cisplatin ototoxicity without mortality eliminates potentially confounding factors that may determine the survival of a special cohort of animals. The results also support the notion that reactive oxygen species are involved in cisplatin ototoxicity and show the potential usefulness of antioxidant treatment. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Keio Univ, Dept Otolaryngol, Tokyo 160, Japan. RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. EM schacht@umich.edu CR Le Chevalier T, 2004, NEW ENGL J MED, V350, P351 Bernier J, 2004, NEW ENGL J MED, V350, P1945, DOI 10.1056/NEJMoa032641 Bosl GJ, 1997, NEW ENGL J MED, V337, P242, DOI 10.1056/NEJM199707243370406 BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1006/abio.1976.9999 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Cardinaal RM, 2000, HEARING RES, V144, P157, DOI 10.1016/S0378-5955(00)00061-7 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Cooper JS, 2004, NEW ENGL J MED, V350, P1937, DOI 10.1056/NEJMoa032646 CORNELISON TL, 1993, GYNECOL ONCOL, V50, P147, DOI 10.1006/gyno.1993.1184 DINIS TCP, 1994, ARCH BIOCHEM BIOPHYS, V315, P161, DOI 10.1006/abbi.1994.1485 Guitton MJ, 2003, J NEUROSCI, V23, P3944 HOOP RG, 1990, NEW ENGL J MED, V322, P89 ISHIKAWA T, 1993, J BIOL CHEM, V268, P20116 JULICHER RHM, 1984, ARCH TOXICOL, V56, P83, DOI 10.1007/BF00349076 Kalkanis JG, 2004, LARYNGOSCOPE, V114, P538, DOI 10.1097/00005537-200403000-00028 Kamimura T, 1999, HEARING RES, V131, P117, DOI 10.1016/S0378-5955(99)00017-9 KLIS SFL, 2000, NEUROREPORT, V28, P623 LAURELL G, 1990, LARYNGOSCOPE, V100, P724 LAUTERMANN J, 1995, HEARING RES, V88, P47, DOI 10.1016/0378-5955(95)00097-N Leitao DJ, 2003, J OTOLARYNGOL, V32, P146, DOI 10.2310/7070.2003.40406 LI G, 2002, LAB INVEST, V85, P585 MARTY M, 1990, NEW ENGL J MED, V322, P816, DOI 10.1056/NEJM199003223221205 McGuire WP, 1996, NEW ENGL J MED, V334, P1, DOI 10.1056/NEJM199601043340101 MERLANO M, 1992, NEW ENGL J MED, V327, P1115, DOI 10.1056/NEJM199210153271602 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 POWELL SR, 1994, FREE RADICAL RES, V21, P355, DOI 10.3109/10715769409056588 Ramesh G, 2004, KIDNEY INT, V65, P490, DOI 10.1111/j.1523-1755.2004.00413.x RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Reser D, 1999, NEUROTOXICOLOGY, V20, P731 Rose PG, 1999, NEW ENGL J MED, V340, P1144, DOI 10.1056/NEJM199904153401502 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 Saito T, 1997, EUR ARCH OTO-RHINO-L, V254, P281, DOI 10.1007/BF02905989 SCHAEFER SD, 1985, CANCER, V56, P1934, DOI 10.1002/1097-0142(19851015)56:8<1934::AID-CNCR2820560807>3.0.CO;2-F Sha SH, 1999, LAB INVEST, V79, P807 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Watanabe KI, 2002, ANTICANCER RES, V22, P4081 Weijl NI, 1998, ANN ONCOL, V9, P1331, DOI 10.1023/A:1008407014084 NR 37 TC 36 Z9 44 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD DEC PY 2004 VL 198 IS 1-2 BP 137 EP 143 DI 10.1016/j.heares.2004.07.016 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 878IK UT WOS:000225640000015 PM 15567610 ER PT J AU Viberg, A Canlon, B AF Viberg, A Canlon, B TI The guide to plotting a cochleogram SO HEARING RESEARCH LA English DT Article DE auditory; basilar membrane; frequency-place maps; hearing loss ID AUDITORY-NERVE FIBERS; HAIR CELL-DENSITY; GUINEA-PIG; BASILAR-MEMBRANE; HOUSE-MOUSE; SPIRAL GANGLION; RAT COCHLEA; FREQUENCY; ORGAN; CORTI AB The cochleogram is commonly used for illustrating hair cell loss after insult, yet standardized procedures for plotting either individual or averaged cochleograms are lacking despite more than 40 years of use. Due to the intra-species variation in basilar membrane (BM) length, it is important that length is plotted on the cochleogram in percent and not millimeter. It is also of interest to correlate the location of lesion to frequency by using a frequency-place equation. However, there is no consensus as which equation is most suitable for the species under study. This is an important issue since two different equations can result in significantly different frequency-place maps for the same cochlea. The purpose of this presentation is to suggest procedures for standardizing the cochleogram. The guidelines include: (i) basilar membrane length should be plotted as percent instead of millimeter due to the biological variation that exists in BM length within a particular species and strain, and the total length in millimeter stated on the cochleogram; (ii) the equations used for frequency-place maps should be stated on the cochleogram; (iii) different basilar membrane lengths should be normalized to percent before averaged cochleograms are made. These procedures are illustrated and discussed. (C) 2004 Published by Elsevier B.V. C1 Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. RP Canlon, B (reprint author), Karolinska Inst, Dept Physiol & Pharmacol, S-17177 Stockholm, Sweden. EM barbara.canlon@fyfa.ki.se CR Bekesy G, 1960, EXPT HEARING BOHNE BA, 1979, J ACOUST SOC AM, V66, P411, DOI 10.1121/1.383092 BREDBERG G, 1968, ACTA OTOLARYNGOL S, V236 BURDA H, 1985, HEARING RES, V17, P201, DOI 10.1016/0378-5955(85)90064-4 BURDA H, 1984, HEARING RES, V14, P315, DOI 10.1016/0378-5955(84)90058-3 BURDA H, 1988, HEARING RES, V36, P97, DOI 10.1016/0378-5955(88)90140-2 BURDA H, 1980, HEARING RES, V3, P91, DOI 10.1016/0378-5955(80)90010-6 BURDA H, 1988, J MORPHOL, V198, P269, DOI 10.1002/jmor.1051980303 Canlon B, 2003, EUR J NEUROSCI, V17, P2035, DOI 10.1046/j.1460-9568.2003.02641.x Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 Ehret G, 1983, AUDITORY PSYCHOBIOLO, P169 EHRET G, 1977, J COMP PHYSIOL, V122, P65 EHRET G, 1975, J COMP PHYSIOL, V103, P329 Engstrom H, 1966, STRUCTURAL PATTERN O Greenwood DD, 1996, HEARING RES, V94, P157, DOI 10.1016/0378-5955(95)00229-4 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 Keiler S, 2001, HEARING RES, V162, P91, DOI 10.1016/S0378-5955(01)00374-4 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 Mu MY, 1997, DEV BRAIN RES, V99, P29, DOI 10.1016/S0165-3806(96)00194-0 MULLER M, 2004, ARO 27 ANN MIDW M DA MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 Ou HC, 2000, HEARING RES, V145, P123, DOI 10.1016/S0378-5955(00)00082-4 ROBERTSON D, 1980, J ACOUST SOC AM, V67, P1295, DOI 10.1121/1.384182 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X RUSSELL IJ, 1978, J PHYSIOL-LONDON, V284, P261 Tsuji J, 1997, J COMP NEUROL, V381, P188 Wada H, 1998, HEARING RES, V120, P1, DOI 10.1016/S0378-5955(98)00007-0 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 NR 28 TC 64 Z9 68 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 1 EP 10 DI 10.1016/j.heares.2004.04.016 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800001 PM 15504598 ER PT J AU Corbacella, E Lanzoni, I Ding, DL Previati, M Salvi, R AF Corbacella, E Lanzoni, I Ding, DL Previati, M Salvi, R TI Minocycline attenuates gentamicin induced hair cell loss in neonatal cochlear cultures SO HEARING RESEARCH LA English DT Article DE gentamicin; ototoxicity; hair cells; minocycline; cytochrome c; apoptosis ID AMINOGLYCOSIDE INDUCED OTOTOXICITY; CYTOCHROME-C RELEASE; GUINEA-PIG; INDUCED APOPTOSIS; CASPASE ACTIVATION; PROTECTS COCHLEAR; DEATH RECEPTOR; ELEGANS CED-4; IN-VITRO; ANTIBIOTICS AB Minocycline, a second-generation tetracycline antibiotic used against gram-negative and gram-positive bacteria, protects against a wide range of neurodegenerative disorders by inhibiting caspases, NOS and the release of cytochrome c. Since aminoglycoside antibiotics damage sensory hair cells in the inner ear by activating caspase-mediated cell death pathways, we hypothesized that minocycline would protect against gentamicin (GM) ototoxicity. To test this hypothesis, postnatal day 3 (P3) rat, cochlear organotypic cultures were treated with GM alone or in combination with minocycline (10-500 muM). Treatment with GM induced a dose-dependent loss of outer hair cells (OHC) and inner hair cells (IHC). Addition of minocycline to the GM-treated cultures greatly reduced the amount of GM-induced hair cell damage in P3 cochlear cultures. The greatest protection was achieved with 100 muM of minocycline. Application of minocycline alone had no adverse effects on hair cell survival. The advantage of this combination therapy is that minocycline prevents GM-induced hair cell loss while helping to suppress the bacterial infection. (C) 2004 Published by Elsevier B.V. C1 SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Univ Ferrara, Human Anat Sect, I-44100 Ferrara, Italy. Univ Ferrara, Dept Audiol, I-44100 Ferrara, Italy. RP Salvi, R (reprint author), SUNY Buffalo, Dept Commun Disorders & Sci, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. EM salvi@buffalo.edu CR ARONSON AL, 1980, J AM VET MED ASSOC, V176, P1061 Barton-Davis ER, 1999, J CLIN INVEST, V104, P375, DOI 10.1172/JCI7866 Bratton SB, 2000, EXP CELL RES, V256, P27, DOI 10.1006/excr.2000.4835 Chen M, 2000, NAT MED, V6, P797 Cheng AG, 2003, JARO, V4, P91, DOI 10.1007/s10162-002-3016-8 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Colovic M, 2003, J CHROMATOGR B, V791, P337, DOI 10.1016/S1570-0232(03)00247-2 Cunha BA, 1997, POSTGRAD MED, V101, P68 Cunningham LL, 2002, J NEUROSCI, V22, P8532 DAUTZENBERG B, 1995, CHEST, V107, P1035, DOI 10.1378/chest.107.4.1035 Denovan-Wright EM, 2002, J PSYCHOPHARMACOL, V16, P393 Devarajan P, 2002, HEARING RES, V174, P45, DOI 10.1016/S0378-5955(02)00634-2 Ding DL, 2002, HEARING RES, V164, P115, DOI 10.1016/S0378-5955(01)00417-8 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1985, HEARING RES, V19, P171, DOI 10.1016/0378-5955(85)90121-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Gorman A.M., 1998, NEUROREPORT, V9, P49 Green DR, 1998, SCIENCE, V281, P1309, DOI 10.1126/science.281.5381.1309 Hester TO, 1998, OTOLARYNG HEAD NECK, V119, P581, DOI 10.1016/S0194-5998(98)70015-4 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 LI L, 1995, J COMP NEUROL, V355, P405, DOI 10.1002/cne.903550307 Lin SZ, 2001, NEUROSCI LETT, V315, P61, DOI 10.1016/S0304-3940(01)02324-2 Mather M, 2001, BBA-BIOENERGETICS, V1503, P357, DOI 10.1016/S0005-2728(00)00231-0 McFadden SL, 2003, TOXICOL APPL PHARM, V186, P46, DOI 10.1016/S0041-008X(02)00017-0 MULHERIN D, 1991, IRISH J MED SCI, V160, P173, DOI 10.1007/BF02961666 Nakagawa T, 1998, EUR ARCH OTO-RHINO-L, V255, P127, DOI 10.1007/s004050050027 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Seshagiri S, 1997, CURR BIOL, V7, P455, DOI 10.1016/S0960-9822(06)00216-8 Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Sinswat P, 2000, KIDNEY INT, V58, P2525, DOI 10.1046/j.1523-1755.2000.00437.x TABLAN OC, 1984, J INFECT DIS, V149, P257 Tikka T, 2001, J NEUROCHEM, V78, P1409, DOI 10.1046/j.1471-4159.2001.00543.x VANDERAUWERA P, 1985, J ANTIMICROB CHEMOTH, V16, P581, DOI 10.1093/jac/16.5.581 Wu WJ, 2001, HEARING RES, V158, P165, DOI 10.1016/S0378-5955(01)00303-3 YLIKOSKI J, 1973, Acta Pathologica et Microbiologica Scandinavica Supplementum, V241, P30 Yoshizawa S, 1998, EMBO J, V17, P6437, DOI 10.1093/emboj/17.22.6437 Zhai DY, 2000, FEBS LETT, V472, P293, DOI 10.1016/S0014-5793(00)01471-X Zhang YP, 2002, EXP GERONTOL, V37, P777, DOI 10.1016/S0531-5565(02)00013-X Zhu S, 2002, NATURE, V417, P74, DOI 10.1038/417074a Zou H, 1997, CELL, V90, P405, DOI 10.1016/S0092-8674(00)80501-2 NR 42 TC 37 Z9 39 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 11 EP 18 DI 10.1016/j.heares.2004.03.012 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800002 PM 15504599 ER PT J AU Shi, GZ Gong, LX Xu, XH Nie, WY Lin, Q Qi, YS AF Shi, GZ Gong, LX Xu, XH Nie, WY Lin, Q Qi, YS TI GJB2 gene mutations in newborns with non-syndromic hearing impairment in Northern China SO HEARING RESEARCH LA English DT Article DE bilateral hearing loss; neonatal screening; hearing tests; mutation; GJB2 gene ID CONNEXIN 26 GENE; SENSORINEURAL DEAFNESS; PREVALENCE; JAPANESE; CHILDREN; POPULATION; FAMILY AB Mutations in GJB2 account for the majority of recessive forms of prelingual hearing loss. However, in most previous studies it was not possible to distinguish between congenital (present at birth) and non-congenital prelingual hearing loss. In the present study, the frequency of GJB2 alleles in 20 newborns with bilateral severe-to-profound non-syndromic hearing impairment (NSHI) who were found at birth through newborn hearing screening and clinical examination is reported. PCR was used to amplify the coding region of GJB2 gene followed by sequencing analyses. Fifty volunteers with normal hearing were included as controls. Results showed that three cases were 235delC/235delC homozygotes; one was 235delC/605ins46 compound heterozygotes, 605ins46 mutation was a novel mutation reported in the Chinese population; another was 235delC/299-300delAT compound heterozygotes. 25% (5/20) of the deafness in newborns studied was caused by GJB2 gene mutations. The frequency of 235delC allele carrier in patients and in control group was 22.5% and 1%, respectively. One case was identified as being a 235delC heterozygote without other mutations detected. Besides, multiple polymorphisms such as V27I, V37I, E114G, T123N were also detected. In conclusion, GJB2 analysis is an important test that identifies a major cause of newborns with bilateral severe-to-profound NSHI screened by universal newborn hearing screening in Northern China. The most common pathologic mutation of GJB2 in studied cases was 235delC. Molecular analysis and genetic counseling will be extremely important for congenital deafness present at birth. (C) 2004 Elsevier B.V. All rights reserved. C1 Shantou Univ, Coll Med, Dept Forens Med, Shantou 515031, Guangdong, Peoples R China. Jinan Matern & Child Care Hosp, Shandong 250001, Peoples R China. RP Shi, GZ (reprint author), Shantou Univ, Coll Med, Dept Forens Med, 22 Xinling Rd, Shantou 515031, Guangdong, Peoples R China. EM laurelshi@yahoo.com.cn CR Abe S, 2000, J MED GENET, V37, P41, DOI 10.1136/jmg.37.1.41 Bason L, 2002, CLIN GENET, V61, P459, DOI 10.1034/j.1399-0004.2002.610611.x Bruzzone R, 2003, FEBS LETT, V533, P79, DOI 10.1016/S0014-5793(02)03755-9 Dahl HHM, 2001, MED J AUSTRALIA, V175, P191 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Holt JR, 1999, NEURON, V22, P217, DOI 10.1016/S0896-6273(00)81083-1 Kammen-Jolly K, 2001, HEARING RES, V160, P15, DOI 10.1016/S0378-5955(01)00310-0 Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kenneson A, 2002, GENET MED, V4, P258, DOI 10.1097/01.GIM.0000020750.60733.CA Lench NJ, 1998, J MED GENET, V35, P151, DOI 10.1136/jmg.35.2.151 Liu XZ, 2002, HUM GENET, V111, P394, DOI 10.1007/s00439-002-0811-6 Loffler J, 2001, EUR J HUM GENET, V9, P226, DOI 10.1038/sj.ejhg.5200607 Lopponen T, 2003, LARYNGOSCOPE, V113, P1758 MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504 Matsushiro N, 2002, LARYNGOSCOPE, V112, P255, DOI 10.1097/00005537-200202000-00011 McGuirt W T, 1999, Am J Audiol, V8, P93, DOI 10.1044/1059-0889(1999/016) Milunsky JM, 2000, GENET TEST, V4, P345, DOI 10.1089/109065700750065072 Morell RJ, 1998, NEW ENGL J MED, V339, P1500, DOI 10.1056/NEJM199811193392103 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x [聂文英 Nie Wenying], 2003, [中华医学杂志, National Medical Journal of China], V83, P274 Park HJ, 2000, LARYNGOSCOPE, V110, P1535, DOI 10.1097/00005537-200009000-00023 Steel KP, 2000, BRIT MED J, V320, P622, DOI 10.1136/bmj.320.7235.622 VanCamp G, 1997, AM J HUM GENET, V60, P758 Wangemann P, 2002, HEARING RES, V165, P1, DOI 10.1016/S0378-5955(02)00279-4 Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273 Wu BL, 2002, GENET MED, V4, P279, DOI 10.1097/01.GIM.0000020823.93575.C2 Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161 Yuge I, 2002, AURIS NASUS LARYNX, V29, P379, DOI 10.1016/S0385-8146(02)00055-X NR 30 TC 27 Z9 31 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 19 EP 23 DI 10.1016/j.heares.2004.06.012 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800003 PM 15504600 ER PT J AU Kondrachuk, AV Wiederhold, ML AF Kondrachuk, AV Wiederhold, ML TI On generation of statoconia in gravireceptors of mollusks SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 22nd Annual International Gravitational Physiology Meeting CY APR 22-27, 2001 CL Budapest, HUNGARY DE model; statoconia; statocyst; mollusks; statoconia growth; rate of growth ID BIOMPHALARIA-GLABRATA PULMONATA; STATOCYST; BASOMMATOPHORA AB Two models of development of statoconia in the statocyst of mollusks, based on the experimental data [Hearing Res. 49 (1990) 63; Hearing Res. 109 (1997) 125; Hearing Res. 109 (1997) 109] are proposed. The purpose of the present work is to apply mathematical modeling to the analysis of mechanisms of statoconia formation and generation by supporting cells at the stage of their accumulation in the cyst lumen. In the case of Aplysia californica, it is not clear whether there is a temporal change of statoconia, due to their growth in the cyst lumen similar to that in Biomphalaria, or whether the growth of statoconia, occurs in supporting cells before they get into the cyst lumen. This question has to do with a more general and insufficiently investigated problem of the mechanisms of statoconia evolution during their stage of accumulation. This is related to A. californica as well as to the initial phase of development of Biomphalaria glabrata. This problem is of practical importance because the majority of experiments related to the study of the effects of altered gravity on the development of gravireceptors in the two mollusks A. californica and B. glabrata deals with the initial phase of statoconia development. It is assumed that two main processes determine the evolution of statoconia in developing mollusks: generation of new statoconia, by growing supporting cells and growth of statoconia sizes in the cyst lumen. Analysis of experimental data related to the generation of statoconia in Aplysia and comparison of these data with the results of modeling of accumulation of statoconia, suggest that the basic mechanism of evolution of size distribution of statoconia in Aplysia is growth of embryonic statoconia in supporting cells, that follows the growth of animal size. Thus, the large sizes of statoconia are determined by their development within supporting cells rather than by their growth in the cyst lumen. Analysis of the data concerning Biomphalaria allows us to assume that distribution of supporting cells which generate statoconia also varies. The results of modeling of evolution of statoconia specify necessary additional experiments, which are required to refine and test the model. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, UA-252143 Kiev, Ukraine. Univ Texas, Hlth Sci Ctr, Dept Physiol, San Antonio, TX 78229 USA. RP Kondrachuk, AV (reprint author), Natl Acad Sci Ukraine, Inst Phys, Dept Theoret Phys, Zabolotny St 154, UA-252143 Kiev, Ukraine. EM kondr@kondr.kiev.ua CR Gao WY, 1997, HEARING RES, V109, P109, DOI 10.1016/S0378-5955(97)00058-0 Gao WY, 1997, HEARING RES, V109, P125, DOI 10.1016/S0378-5955(97)00059-2 Kondrachuk AV, 2001, HEARING RES, V154, P1, DOI 10.1016/S0378-5955(00)00185-4 KONDRACHUK AV, 2001, J GRAVITATIONAL PHYS, V8, P109 WIEDERHOLD ML, 1990, HEARING RES, V49, P63, DOI 10.1016/0378-5955(90)90095-7 NR 5 TC 1 Z9 1 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 24 EP 34 DI 10.1016/j.heares.2004.06.001 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800004 PM 15504601 ER PT J AU Liu, X Mohamed, JA Ruan, RS AF Liu, X Mohamed, JA Ruan, RS TI Analysis of differential gene expression in the cochlea and kidney of mouse by cDNA microarrays SO HEARING RESEARCH LA English DT Article DE cochlea; kidney; microarray; hearing; mouse ID QUIET-AGED GERBILS; INNER-EAR; NA,K-ATPASE ACTIVITY; MAMMALIAN COCHLEA; MESSENGER-RNA; LATERAL WALL; HEARING-LOSS; HAIR-CELLS; LOCALIZATION; DEAFNESS AB Microarray hybridization analysis of gene expression in the cochlea and kidney suggest a relationship between these tissues at the genomic level, indicating the common gene expression, likely serving a common function in both the organs primarily maintaining ion transport, and implied previously from morphological, pharmaco-kinetic and teratogenic studies. The cDNAs of more than 100 genes listed on the hereditary hearing loss homepage were amplified as targets by RT-PCR and were hybridized with probes prepared from total RNA of the cochlea and the kidney. Thirteen of the genes analyzed showed altered fluorescence ratios of more than two logs. Of these, the expressions of I I genes were over expressed and two were under expressed in the cochlea than in the kidney. Our data is the first report to corroborate the genomic similarities between these two important organs and may help to explain the somewhat similar response of these organs to certain therapeutic drugs. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Univ Singapore Hosp, Dept Otolaryngol, Singapore 117548, Singapore. Univ Texas, Hlth Sci Ctr, Dept Internal Med, Houston, TX 77030 USA. RP Ruan, RS (reprint author), Natl Univ Singapore Hosp, Dept Otolaryngol, Main Bldg,Level 3, Singapore 117548, Singapore. EM entrrs@nus.edu.sg CR ARNOLD W, 1976, ARCH OTO-RHINO-LARYN, V212, P99, DOI 10.1007/BF00454270 Ashraf SS, 1995, SCAND J THORAC CARD, V29, P187, DOI 10.3109/14017439509107228 BARRITT LC, 1999, BRAIN RES MOL, V7, P42 Bier FF, 2001, FRESEN J ANAL CHEM, V371, P151, DOI 10.1007/s002160101003 Birkenhager R, 2001, NAT GENET, V29, P310, DOI 10.1038/ng752 Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a Cheatham MA, 2001, AUDIOL NEURO-OTOL, V6, P79, DOI 10.1159/000046813 CHO A, 2001, SCIENCE, V288, P1954 Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042 Cosgrove D, 1996, HEARING RES, V97, P54 Crawley JN, 1999, BRAIN RES, V835, P18, DOI 10.1016/S0006-8993(98)01258-X Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Estevez R, 2001, NATURE, V414, P558, DOI 10.1038/35107099 FERMIN CD, 1995, CELL MOL BIOL, V41, P213 FRIEDMANN I, 1990, BRIT MED J, V301, P164 GONZALEZ TO, 2001, EUR J ENDOCRINOL, V144, P585, DOI 10.1530/EJE.0.1440585 Goodyear RJ, 2003, J NEUROSCI, V23, P9208 Gratton MA, 1997, HEARING RES, V108, P9, DOI 10.1016/S0378-5955(97)00034-8 GRATTON MA, 1995, HEARING RES, V83, P43, DOI 10.1016/0378-5955(94)00188-V Green GE, 1996, J NEUROCHEM, V67, P37 Holzmuller M, 2000, HNO, V48, P839, DOI 10.1007/s001060050671 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14889, DOI 10.1073/pnas.94.26.14889 Kurc M, 1998, HEARING RES, V116, P1, DOI 10.1016/S0378-5955(97)00183-4 Lashkari DA, 1997, P NATL ACAD SCI USA, V94, P13057, DOI 10.1073/pnas.94.24.13057 Lin JH, 2003, HEARING RES, V175, P2, DOI 10.1016/S0378-5955(02)00704-9 Mhatre AN, 2002, HEARING RES, V170, P59, DOI 10.1016/S0378-5955(02)00452-5 Pace AJ, 2000, J CLIN INVEST, V105, P441, DOI 10.1172/JCI8553 PAUL JW, 1987, J CLIN LAB IMMUNOL, V22, P49 QUICK CA, 1973, LARYNGOSCOPE, V83, P1469, DOI 10.1288/00005537-197309000-00007 Ravecca F, 1998, Acta Otorhinolaryngol Ital, V18, P42 Sage CL, 2001, HEARING RES, V160, P1, DOI 10.1016/S0378-5955(01)00308-2 Schafer BW, 1996, TRENDS BIOCHEM SCI, V21, P134, DOI 10.1016/S0968-0004(96)80167-8 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P766, DOI 10.1288/00005537-197405000-00008 Skvorak Giersch Anne B., 1999, Current Opinion in Pediatrics, V11, P551 SPECTOR GJ, 1979, LARYNGOSCOPE, V89, P1, DOI 10.1288/00005537-197906001-00001 Street VA, 1998, NAT GENET, V19, P390 Tago C, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P87 Takahashi M, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P58 Takizawa T, 1999, J HISTOCHEM CYTOCHEM, V47, P525 Tranebjaerg L, 2000, Ugeskr Laeger, V162, P3044 Verpy E, 2000, NAT GENET, V26, P51 Willems PJ, 2000, NEW ENGL J MED, V342, P1101, DOI 10.1056/NEJM200004133421506 Yokogawa T, 2000, J BIOL CHEM, V275, P19913, DOI 10.1074/jbc.M908473199 Zheng J, 2002, AUDIOL NEURO-OTOL, V7, P9, DOI 10.1159/000046855 NR 44 TC 7 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 35 EP 43 DI 10.1016/j.heares.2004.04.014 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800005 PM 15504602 ER PT J AU van Ruijven, MWM de Groot, JCMJ Smoorenburg, GF AF van Ruijven, MWM de Groot, JCMJ Smoorenburg, GF TI Time sequence of degeneration pattern in the guinea pig cochlea during cisplatin administration. A quantitative histological study SO HEARING RESEARCH LA English DT Article DE cisplatin ototoxicity; guinea pig; cochlea; stria vascularis; spiral ganglion; organ of Corti; degeneration pattern ID STRIA VASCULARIS; SPIRAL GANGLION; INDUCED OTOTOXICITY; CIS-PLATINUM; INNER-EAR; SEMIQUANTITATIVE ANALYSIS; ADENYLATE-CYCLASE; ALBINO; RECOVERY; MORPHOLOGY AB We investigated the key tissues that are implicated in cisplatin ototoxicity within the time window during which degeneration starts. Guinea pigs were treated with cisplatin at a dose of 2 mg/kg/day for either 4, 6, or 8 consecutive days. Histological changes in the organ of Corti, the stria vascularis and the spiral ganglion were quantified at the light microscopical level. Outer hair cell (OHC) loss started between 4 and 6 days of cisplatin administration, but is only significantly different from the non-treated group after 8 days of treatment. Midmodiolar OHC counts were comparable to the cytocochleogram data. The cross-sectional area of the stria vascularis did not differ from the non-treated group, nor did an endolymphatic hydrops develop during the course of treatment. Spiral ganglion cell (SGC) densities did not decrease. After 6 days, however, detachment of the myelin sheath of the type-I SGCs was seen in the lower basal turn, whereas after 8 days it was also present in the more apically located turns. Myelin sheath detachment is the result of perikaryal shrinkage and swelling of the myelin sheath. The present study confirms that cisplatin at a daily dose of 2 mg/kg has a detrimental effect on the OHCs as well as on the type-I SGCs. These intracochlear effects occur simultaneously; OHC loss and SGC shrinkage start between the fourth and sixth day of cisplatin administration and appear to develop in parallel. At this dose, no histological effect on the stria vascularis could be observed, although previous electrophysiological experiments demonstrated a clear effect on the endocochlear potential [NeuroReport 11, 623 Hear. Res. 164, 138]. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, NL-3508 GA Utrecht, Netherlands. RP van Ruijven, MWM (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Hearing Res Labs, Room G-02-531,POB 85-500, NL-3508 GA Utrecht, Netherlands. EM m.vanruijven@kmb.azu.nl CR Alam SA, 2000, HEARING RES, V141, P28, DOI 10.1016/S0378-5955(99)00211-7 BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 Bertolaso L, 2001, AUDIOLOGY, V40, P327 Bouman H, 1998, HEARING RES, V117, P119, DOI 10.1016/S0378-5955(97)00216-5 Bowers WJ, 2002, MOL THER, V6, P12, DOI 10.1006/mthe.2002.0627 Campbell KCM, 1999, HEARING RES, V138, P13, DOI 10.1016/S0378-5955(99)00142-2 Cardinaal RM, 2000, HEARING RES, V144, P147, DOI 10.1016/S0378-5955(00)00060-5 Cardinaal RM, 2004, ACTA OTO-LARYNGOL, V124, P144, DOI 10.1080/00016480310015164 Cardinaal RM, 2000, HEARING RES, V144, P135, DOI 10.1016/S0378-5955(00)00059-9 CONLEE JW, 1994, HEARING RES, V72, P108, DOI 10.1016/0378-5955(94)90211-9 DEGROOT JCM, 2000, 37 WORKSH INN EAR BI, P46 deGroot JCMJ, 1997, HEARING RES, V106, P9, DOI 10.1016/S0378-5955(96)00213-4 DEOLIVEIRA JAA, 1989, AUDIOVESTIBULAR TOXI, V2, P181 ESTREM SA, 1981, OTOLARYNG HEAD NECK, V89, P638 Feghali JG, 2001, LARYNGOSCOPE, V111, P1147, DOI 10.1097/00005537-200107000-00005 FERNANDEZCERVILLA F, 1993, ORL J OTO-RHINO-LARY, V55, P337 GAIBAIZADEH R, 1997, ACTA OTOLARYNGOL STO, V117, P232 Hamers FPT, 2003, AUDIOL NEURO-OTOL, V8, P305, DOI 10.1159/000073515 HAMERS FPT, 1997, NEUROPROTECTION CNS, P513 Heijmen PS, 1999, HEARING RES, V128, P27, DOI 10.1016/S0378-5955(98)00194-4 HOEVE LJ, 1989, ARCH OTORHINOLARYNGO, V245, P98 JIANG D, 1993, BRIT J AUDIOL, V27, P195, DOI 10.3109/03005369309076693 Klis SFL, 2000, NEUROREPORT, V11, P623, DOI 10.1097/00001756-200002280-00037 Klis SFL, 2002, HEARING RES, V164, P138, DOI 10.1016/S0378-5955(01)00425-7 KOCH T, 1991, EUR ARCH OTO-RHINO-L, V248, P459, DOI 10.1007/BF00627634 KOHN S, 1988, LARYNGOSCOPE, V98, P865 KOMUNE S, 1981, OTOLARYNG HEAD NECK, V89, P275 KONISHI T, 1983, AM J OTOLARYNG, V4, P18, DOI 10.1016/S0196-0709(83)80003-9 LAURELL G, 1991, J OTOLARYNGOL, V20, P158 LAURELL G, 1989, HEARING RES, V38, P27, DOI 10.1016/0378-5955(89)90125-1 LAURELL G, 1991, ACTA OTO-LARYNGOL, V111, P891, DOI 10.3109/00016489109138427 Meech RP, 1998, HEARING RES, V124, P44, DOI 10.1016/S0378-5955(98)00116-6 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 NAKAI Y, 1982, ACTA OTO-LARYNGOL, V93, P227, DOI 10.3109/00016488209130876 O'Leary SJ, 2001, HEARING RES, V154, P135, DOI 10.1016/S0378-5955(01)00232-5 SAITO T, 1995, SCANNING MICROSCOPY, V9, P271 SAITO T, 1994, ORL J OTO-RHINO-LARY, V56, P315 SCHWEITZER VG, 1993, LARYNGOSCOPE, V103, P1, DOI 10.1288/00005537-199304000-00001 Sluyter S, 2003, HEARING RES, V185, P49, DOI 10.1016/S0378-5955(03)00260-0 SPOENDLI.H, 1974, ARCH OTO-RHINO-LARYN, V208, P137, DOI 10.1007/BF00453927 SPOENDLIN H, 1979, ARCH OTO-RHINO-LARYN, V223, P1, DOI 10.1007/BF00455076 Stengs CHM, 1998, HEARING RES, V124, P99, DOI 10.1016/S0378-5955(98)00129-4 Stengs CHM, 1997, HEARING RES, V111, P103, DOI 10.1016/S0378-5955(97)00095-6 TANGE RA, 1984, ARCH OTO-RHINO-LARYN, V239, P41, DOI 10.1007/BF00454261 TANGE RA, 1982, ARCH OTO-RHINO-LARYN, V237, P17, DOI 10.1007/BF00453712 TANGE RA, 1984, CLIN OTOLARYNGOL, V9, P323, DOI 10.1111/j.1365-2273.1984.tb01515.x WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Ylikoski J, 1974, Acta Otolaryngol Suppl, V326, P23 Zheng JL, 1996, EUR J NEUROSCI, V8, P1897, DOI 10.1111/j.1460-9568.1996.tb01333.x ZHENG JL, 1995, J NEUROSCI, V15, P5079 NR 51 TC 35 Z9 38 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 44 EP 54 DI 10.1016/j.heares.2004.07.014 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800006 PM 15504603 ER PT J AU Gabriel, D Veuillet, E Ragot, R Schwartz, D Ducorps, A Norena, A Durrant, JD Bonmartin, A Cotton, F Collet, L AF Gabriel, D Veuillet, E Ragot, R Schwartz, D Ducorps, A Norena, A Durrant, JD Bonmartin, A Cotton, F Collet, L TI Effect of stimulus frequency and stimulation site on the N1m response of the human auditory cortex SO HEARING RESEARCH LA English DT Article DE tonotopy; magnetoencephalography; asymmetry; high frequencies ID EVOKED MAGNETIC-FIELDS; DIPOLE MODEL ANALYSIS; TONOTOPIC ORGANIZATION; RIGHT-HEMISPHERE; HUMAN-BRAIN; COMPONENT; WAVE; REPRESENTATION; TRANSIENT; SYSTEM AB The aim of the present study was to investigate the functional organization of the auditory cortex for pure tones of 1, 2, 4, 6, 8 and 12 kHz. Ten subjects were tested with a whole-head magnetometer (151 channels). The location, latency and amplitude of the generators of the N1m (the main component of the response, peaking approximately at 100 ms) were explored simultaneously in the right and left hemispheres under monaural stimulation. Our results revealed that tonotopy is a rather complex functional organization of the auditory cortex. From I to 12 kHz, tonotopic maps were found for contralateral as well as for ipsilateral stimulation: N1m generators were found to be tonotopically organized mainly in an anterior-posterior direction in both hemispheres, whatever the stimulated ear, but also in an inferior-superior direction in the right hemisphere. Furthermore, latencies were longer in the left than in the right hemisphere. Two different representations of spectral distribution were found in the right auditory cortex: one for ipsilateral and one for contralateral stimulation. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Lyon 1, CNRS, GDR 2213, Lab Neurosci & Syst Sensoriels,UMR 5020, F-69366 Lyon 07, France. Hop La Pitie Salpetriere, CNRS, UPR 640, LENA, F-75651 Paris, France. Ctr Hosp Lyon Sud, Unite RMN, F-69495 Pierre Benite, France. RP Gabriel, D (reprint author), Univ Lyon 1, CNRS, GDR 2213, Lab Neurosci & Syst Sensoriels,UMR 5020, 50 Av Tony Garnier, F-69366 Lyon 07, France. EM damiengabriel@yahoo.fr RI cotton, francois/F-4762-2013 OI cotton, francois/0000-0003-0046-2478 CR BEHRENS SJ, 1988, J PHONETICS, V16, P295 Bekesy G., 1960, EXPT HEARING Bilecen D, 1998, HEARING RES, V126, P19, DOI 10.1016/S0378-5955(98)00139-7 CANSINO S, 1994, BRAIN RES, V663, P38, DOI 10.1016/0006-8993(94)90460-X CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403 ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201 Fujioka T, 2002, NEUROSCIENCE, V112, P367, DOI 10.1016/S0306-4522(02)00086-6 GESCHWIN.N, 1968, SCIENCE, V161, P186, DOI 10.1126/science.161.3837.186 GIARD MH, 1994, ELECTROEN CLIN NEURO, V92, P238, DOI 10.1016/0168-5597(94)90067-1 Hari R, 1990, Electroencephalogr Clin Neurophysiol Suppl, V41, P3 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kanno A, 1996, Electroencephalogr Clin Neurophysiol Suppl, V47, P129 Kosaki H, 1997, J COMP NEUROL, V386, P304 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 LAVIKAINEN J, 1994, NEUROREPORT, V6, P182, DOI 10.1097/00001756-199412300-00046 Liegeois-Chauvel C, 2001, ANN NY ACAD SCI, V930, P117 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 Lutkenhoner B, 2003, NEUROIMAGE, V19, P935, DOI 10.1016/S1053-8119(03)00172-1 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 Muhlnickel W, 1998, P NATL ACAD SCI USA, V95, P10340, DOI 10.1073/pnas.95.17.10340 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Naka D, 1999, NEUROSCIENCE, V93, P573, DOI 10.1016/S0306-4522(99)00177-3 NAKASATO N, 1995, ELECTROEN CLIN NEURO, V94, P183, DOI 10.1016/0013-4694(94)00280-X PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789 REITE M, 1994, COGNITIVE BRAIN RES, V2, P13, DOI 10.1016/0926-6410(94)90016-7 Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007 Rosburg T, 1998, NEUROSCI LETT, V258, P105, DOI 10.1016/S0304-3940(98)00865-9 Schonwiesner M, 2002, NEUROIMAGE, V17, P1144, DOI 10.1006/nimg.2002.1250 Schreiner CE, 1998, AUDIOL NEURO-OTOL, V3, P104, DOI 10.1159/000013785 Strainer JC, 1997, AM J NEURORADIOL, V18, P601 Szikla G, 1977, ANGIOGRAPHY HUMAN BR VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 Wessinger CM, 1997, HUM BRAIN MAPP, V5, P18, DOI 10.1002/(SICI)1097-0193(1997)5:1<18::AID-HBM3>3.0.CO;2-Q WILLIAMSON S J, 1991, Brain Topography, V4, P169, DOI 10.1007/BF01132773 Zouridakis G, 1998, BRAIN TOPOGR, V10, P183, DOI 10.1023/A:1022246825461 NR 41 TC 17 Z9 19 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 55 EP 64 DI 10.1016/j.heares.2004.07.015 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800007 PM 15504604 ER PT J AU Stjernschantz, J Wentzel, P Rask-Andersen, H AF Stjernschantz, J Wentzel, P Rask-Andersen, H TI Localization of prostanoid receptors and cyclo-oxygenase enzymes in guinea pig and human cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; guinea pig; man; prostanoid receptors; cyclo-oxygenase; immunohistochemistry ID PROSTAGLANDIN SYNTHESIS; SALICYLATE; EXPRESSION; QUININE; CELLS AB Endogenous production of prostaglandins has been demonstrated in the cochlea, but no information is available on the distribution of the cyclo-oxygenase (COX) enzymes, or prostanoid receptors in the cochlea. The purpose of the present study was to investigate the localization of the FP, EP1 and EP3 prostanoid receptors as well as the COX-1 and COX-2 enzymes in the cochlea of guinea pig and man. Cochleas were processed for immunohistochemistry using routine techniques. Appropriate controls comprised incubation with specific blocking peptides, or incubation without primary antibodies. Both in guinea pig and man the FP prostanoid receptor was abundantly distributed in the cochlea, e.g., in stria vascularis, the spiral ligament, spiral ganglion, and organ of Corti. The immunohistochemical staining of the EP1 and EP3 receptors in the same structures was significantly weaker and sometimes lacking altogether (e.g., EP3 receptor in human cochlea). Weak, but mostly consistent immunostaining of the COX-1 enzyme was found in the cochlear structures. The COX-2 enzyme appeared to be lacking. The abundant distribution of the FP receptor in several important cochlear structures both in guinea pig and man suggests a physiological function for PGF(2alpha) in the cochlea. The COX-1 enzyme seems to be constitutively expressed in the cochlea in contrast to COX-2. (C) 2004 Elsevier B.V. All rights reserved. C1 Uppsala Univ, Pharmacol Unit, Dept Neurosci, SE-75124 Uppsala, Sweden. Uppsala Univ, Unit Otolaryngol & Head & Neck Surg, Dept Surg Sci, SE-75124 Uppsala, Sweden. RP Stjernschantz, J (reprint author), Uppsala Univ, Pharmacol Unit, Dept Neurosci, SE-75124 Uppsala, Sweden. EM johan.stjernschantz@neuro.uu.se CR Cazals Y, 2000, PROG NEUROBIOL, V62, P583, DOI 10.1016/S0301-0082(00)00027-7 Chin MS, 2001, INVEST OPHTH VIS SCI, V42, P2338 Coleman R. A., 1990, COMPREHENSIVE MED CH, V3, P643 COLEMAN RA, 1994, PHARMACOL REV, V46, P205 Damm J, 2001, EXP EYE RES, V72, P611, DOI 10.1006/exer.2001.0977 ESCOUBET B, 1985, PROSTAGLANDINS, V29, P589 JUNG TTK, 1993, OTOLARYNG CLIN N AM, V26, P791 KAWATA R, 1988, PROSTAGLANDINS, V35, P173, DOI 10.1016/0090-6980(88)90085-8 Kong W, 1991, Zhonghua Er Bi Yan Hou Ke Za Zhi, V26, P275 Konishi K, 1998, Acta Otolaryngol Suppl, V538, P40 Mukhopadhyay P, 1997, BIOCHEM PHARMACOL, V53, P1249, DOI 10.1016/S0006-2952(97)00011-7 Narumiya S, 1999, PHYSIOL REV, V79, P1193 Ocklind A, 1996, INVEST OPHTH VIS SCI, V37, P716 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 Rhee CK, 1999, EUR ARCH OTO-RHINO-L, V256, P479, DOI 10.1007/s004050050195 Sauer C, 1987, Prog Clin Biol Res, V242, P131 SCHLOTZERSCHREHARD, 2002, INVEST OPHTH VIS SCI, V43, P1475 Stjernschantz J, 1996, Curr Opin Ophthalmol, V7, P11, DOI 10.1097/00055735-199604000-00003 Stjernschantz JW, 2001, INVEST OPHTH VIS SCI, V42, P1134 Vane JR, 1998, ANNU REV PHARMACOL, V38, P97, DOI 10.1146/annurev.pharmtox.38.1.97 Wentzel P, 2003, PIGM CELL RES, V16, P43, DOI 10.1034/j.1600-0749.2003.00001.x NR 21 TC 12 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 65 EP 73 DI 10.1016/j.heares.2004.04.018 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800008 PM 15504605 ER PT J AU Firzlaff, U Schuller, G AF Firzlaff, U Schuller, G TI Directionality of hearing in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi SO HEARING RESEARCH LA English DT Article DE head-related transfer function; spatial hearing; pinna; microchiroptera ID SOUND PRESSURE TRANSFORMATION; LEAF-NOSED BATS; BIG BROWN BAT; CONSTANT FREQUENCY BATS; RUFOUS HORSESHOE BAT; CF-FM BAT; CAROLLIA-PERSPICILLATA; EPTESICUS-FUSCUS; AUDITORY-CORTEX; SPECTRAL CUES AB The head-related transfer function (HRTF) has been measured in two CF/FM bats, Pteronotus parnellii and Rhinolophus rouxi from 575 positions in the frontal hemisphere. P. parnellii showed an increase of the elevation angle of the axis of highest pinna gain with increasing frequency followed by a specific decrease at 75 kHz. Such a drop of elevation angle of the acoustic axis was not seen in R. rouxi. The HRTF further showed a spectral notch dependent on elevation and frequency in P. parnellii, but not in R. rouxi. The functional implications of this difference between both bat species are discussed. Frequencies at maximum pinna gain values did not clearly match the frequencies of the harmonics of the echolocation calls whereas spatial resolution of interaural intensity differences was best in a frequency range that included the higher harmonics of the echolocation calls in both bat species. However, specializations of HRTF patterns matching the exact frequencies of the harmonics of the echolocation calls could not be observed in both bat species. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Munich, Dept Biol 2, D-82152 Planegg Martinsried, Germany. RP Firzlaff, U (reprint author), Univ Munich, Dept Biol 2, Grosshadernerstr 2, D-82152 Planegg Martinsried, Germany. EM firzlaff@zi.biologie.uni-muenchen.de CR BRUNS V, 1976, J COMP PHYSIOL, V106, P77 CARLILE S, 1990, J ACOUST SOC AM, V88, P2180, DOI 10.1121/1.400115 COLES RB, 1989, J COMP PHYSIOL A, V165, P269, DOI 10.1007/BF00619201 COLES RB, 1986, J EXP BIOL, V121, P371 Esser KH, 1996, J COMP PHYSIOL A, V178, P779 Esser KH, 1999, EUR J NEUROSCI, V11, P3669, DOI 10.1046/j.1460-9568.1999.00789.x Firzlaff Uwe, 2003, Hearing Research, V185, P110, DOI 10.1016/S0378-5955(03)00281-8 Fuzessery ZM, 1996, HEARING RES, V95, P1, DOI 10.1016/0378-5955(95)00223-5 FUZESSERY ZM, 1985, J NEUROPHYSIOL, V54, P757 FUZESSERY ZM, 1992, J COMP PHYSIOL A, V170, P57 GRIFFIN DR, 1962, NATURE, V196, P1186 GRINNELL AD, 1967, LAB PHYSL ACOUST JOU, P451 GUPPY A, 1988, J COMP PHYSIOL A, V162, P653, DOI 10.1007/BF01342641 HARTLEY DJ, 1990, J ACOUST SOC AM, V87, P2756, DOI 10.1121/1.399066 Heffner RS, 2003, HEARING RES, V184, P113, DOI 10.1016/S0378-5955(03)00233-8 HENSON OW, 1985, J COMP PHYSIOL A, V157, P587, DOI 10.1007/BF01351353 HOWELL DJ, 1974, J MAMMAL, V55, P293, DOI 10.2307/1378999 JEN PHS, 1988, HEARING RES, V34, P101, DOI 10.1016/0378-5955(88)90098-6 Kanwal JS, 2003, NETWORK-COMP NEURAL, V14, P413, DOI 10.1088/0954-898X/14/3/303 Koay G, 2003, HEARING RES, V178, P27, DOI 10.1016/S0378-5955(03)00025-X Koay G, 1997, HEARING RES, V105, P202, DOI 10.1016/S0378-5955(96)00208-0 Koay G, 2002, HEARING RES, V171, P96, DOI 10.1016/S0378-5955(02)00458-6 KOSSL M, 1985, J COMP PHYSIOL A, V157, P687, DOI 10.1007/BF01351362 KOSSL M, 1992, HEARING RES, V60, P156, DOI 10.1016/0378-5955(92)90018-I KOSSL M, 1994, HEARING RES, V72, P59, DOI 10.1016/0378-5955(94)90206-2 KOSSL M, 1994, HEARING RES, V72, P73, DOI 10.1016/0378-5955(94)90207-0 LONG GR, 1975, J COMP PHYSIOL, V100, P211 MAKOUS JC, 1986, HEARING RES, V24, P73, DOI 10.1016/0378-5955(86)90006-7 MEHRGARDT S, 1977, J ACOUST SOC AM, V61, P1567, DOI 10.1121/1.381470 MOORE BCJ, 1989, J ACOUST SOC AM, V85, P820, DOI 10.1121/1.397554 NEUWEILER G, 1987, BEHAV ECOL SOCIOBIOL, V20, P53, DOI 10.1007/BF00292166 OBRIST MK, 1993, J EXP BIOL, V180, P119 PHILLIPS DP, 1982, HEARING RES, V8, P13, DOI 10.1016/0378-5955(82)90031-4 RADTKESCHULLER S, 1995, EUR J NEUROSCI, V7, P570, DOI 10.1111/j.1460-9568.1995.tb00662.x RICE JJ, 1992, HEARING RES, V58, P132, DOI 10.1016/0378-5955(92)90123-5 RIFE DD, 1989, J AUDIO ENG SOC, V37, P419 Schmidt S., 1984, Myotis, V21-22, P62 SCHMIDT U, 1991, J COMP PHYSIOL A, V168, P45, DOI 10.1007/BF00217102 SCHNEIDER H, 1960, Z VERGL PHYSIOL, V44, P1, DOI 10.1007/BF00297861 SCHNITZL.HU, 1970, Z VERGL PHYSIOL, V68, P25, DOI 10.1007/BF00297809 SCHNITZLER HU, 1977, J COMP PHYSIOL, V116, P51 SCHROEDER MR, 1979, J ACOUST SOC AM, V66, P467 SCHULLER G, 1979, J COMP PHYSIOL, V132, P47 SUGA N, 1976, SCIENCE, V194, P542, DOI 10.1126/science.973140 SUGA N, 1975, J EXP BIOL, V63, P161 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 Wotton JM, 2000, J ACOUST SOC AM, V107, P1034, DOI 10.1121/1.428283 WOTTON JM, 1995, J ACOUST SOC AM, V98, P1423, DOI 10.1121/1.413410 Young ED, 1996, J ACOUST SOC AM, V99, P3064, DOI 10.1121/1.414883 NR 49 TC 17 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 74 EP 86 DI 10.1016/j.heares.2004.06.009 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800009 PM 15504606 ER PT J AU Wei, CG Cao, KL Zeng, FG AF Wei, CG Cao, KL Zeng, FG TI Mandarin tone recognition in cochlear-implant subjects SO HEARING RESEARCH LA English DT Article DE cochlear implant; tone recognition; speech recognition; rate discrimination; electrode; channel ID INTERLEAVED SAMPLING PROCESSORS; SPEECH RECOGNITION; TEMPORAL CUES; FUNDAMENTAL-FREQUENCY; ELECTRIC HEARING; ENVELOPE CUES; PERCEPTION; CHINESE; PITCH; INFORMATION AB This study examined tone recognition in five cochlear-implant subjects who were native speakers of Mandarin and used a Nucleus-22 device. Psychophysical experiments were conduced to measure rate discrimination in individual electrodes from the most apical to the most basal electrodes. The rate range was from 100 to 200 Hz, which corresponded to the range of variation in fundamental frequency for the tonal tokens used in this study. Speech recognition experiments were also conducted to measure tone recognition as function of the number of electrodes from a 1-electrode map to a 20-electrode map. Large individual variability was observed for both rate discrimination and tone recognition result: Average rate discrimination ranged between 0.2 and 1.2 (Weber's fraction) whereas tone recognition ranged between 30% and 70% correct. A highly significant correlation was found between rate discrimination and tone recognition with the 20-electrode map, but a non-significant correlation was observed with the 1-electrode map due to a floor effect in tone recognition. The present result supports the hypothesis that both spectral and temporal cues contribute to tone recognition. In addition, the present result shows that current cochlear-implant subjects produced significantly lower performance than acoustic simulations in normal-hearing subjects, suggesting that neither temporal nor spectral cues have been adequately and appropriately extracted and encoded in current cochlear implants. New designs are discussed to improve tone recognition in cochlear implant subjects. (C) 2004 Elsevier B.V. All rights reserved. C1 Beijing Union Med Coll Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100730, Peoples R China. Univ Calif Irvine, Dept Anat & Neurobiol, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Biomed Engn Head & Neck Surg, Irvine, CA 92697 USA. Univ Calif Irvine, Dept Cognit Sci & Otolaryngol, Irvine, CA 92697 USA. RP Zeng, FG (reprint author), Beijing Union Med Coll Hosp, Dept Otolaryngol Head & Neck Surg, Beijing 100730, Peoples R China. EM fzeng@uci.edu RI Zeng, Fan-Gang/G-4875-2012 CR AU SKK, 2003, CLIN OTOLARYNGOL, V28, P533 BLICHER DL, 1990, J PHONETICS, V18, P37 Busby PA, 2000, J ACOUST SOC AM, V107, P547, DOI 10.1121/1.428353 Cao K, 2000, Zhonghua Er Bi Yan Hou Ke Za Zhi, V35, P16 曹克利, 2004, [中华耳鼻咽喉科杂志, Chinese Journal of Otorhinolaryngology], V39, P71 Fishman KE, 1997, J SPEECH LANG HEAR R, V40, P1201 Friesen LM, 2001, J ACOUST SOC AM, V110, P1150, DOI 10.1121/1.1381538 Fu QJ, 2000, ASIA PACIFIC J SPEEC, V5, P45 Fu QJ, 2002, NEUROREPORT, V13, P1635, DOI 10.1097/00001756-200209160-00013 Fu QJ, 1998, J ACOUST SOC AM, V104, P505, DOI 10.1121/1.423251 GARDING E, 1986, LANG SPEECH, V29, P281 Garnham Carolyn, 2002, Ear and Hearing, V23, P540, DOI 10.1097/00003446-200212000-00005 Geurts L, 2001, J ACOUST SOC AM, V109, P713, DOI 10.1121/1.1340650 Geurts L, 1999, J ACOUST SOC AM, V105, P2476, DOI 10.1121/1.426851 Geurts L, 2004, J ACOUST SOC AM, V115, P844, DOI 10.1121/1.1642623 Green T, 2002, J ACOUST SOC AM, V112, P2155, DOI 10.1121/1.1506688 韩德民, 2004, [中华耳鼻咽喉科杂志, Chinese Journal of Otorhinolaryngology], V39, P70 HOWIE JM, 1974, PHONETICA, V30, P129 Huang T S, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P294 Kong YY, 2004, EAR HEARING, V25, P173, DOI 10.1097/01.AUD.0000120365.97792.2F KONG YY, 2003, 26 ANN MIDW RES M, V26, P213 Lan N, 2004, IEEE T BIO-MED ENG, V51, P752, DOI 10.1109/TBME.2004.826597 Lee KYS, 2002, INT J PEDIATR OTORHI, V63, P137, DOI 10.1016/S0165-5876(02)00005-8 Liang Z. A., 1963, ACTA PHYS SINICA, V26, P85 LIN MC, 1988, CHIN LINGUIST, V3, P182 Litvak LM, 2003, J ACOUST SOC AM, V114, P2079, DOI 10.1121/1.1612493 NIE K, 2004, IN PRESS IEEE T BIOM Oxenham AJ, 2004, P NATL ACAD SCI USA, V101, P1421, DOI 10.1073/pnas.0306958101 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Rosen S, 1999, J ACOUST SOC AM, V106, P3629, DOI 10.1121/1.428215 Rubinstein Jay T, 2003, Ann Otol Rhinol Laryngol Suppl, V191, P14 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SKINNER MW, 1994, AM J OTOL, V15, P15 STICKNEY GS, 2004, IN PRESS J ACOUST SO VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 VONGPHOE M, 2004, IN PRESS J ACOUST SO WEI C, 1994, CHIN J OTORHINOLARYN, V34, P84 Wei WI, 2000, ACTA OTO-LARYNGOL, V120, P218 WHALEN DH, 1992, PHONETICA, V49, P25 WHITFORD LA, 1993, ADV OTO-RHINO-LARYNG, V48, P85 Wu JL, 2003, INT J PEDIATR OTORHI, V67, P247, DOI 10.1016/S0165-5876(02)00378-6 Xu L, 2003, J ACOUST SOC AM, V114, P3024, DOI 10.1121/1.1623786 Xu L, 2002, J ACOUST SOC AM, V112, P247, DOI 10.1121/1.1487843 XU SA, 1987, ANN OTO RHINOL LARYN, V96, P126 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 ZENG FG, 1995, AUDIOLOGY, V34, P61 NR 46 TC 51 Z9 62 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 87 EP 95 DI 10.1016/j.heares.2004.06.002 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800010 PM 15504607 ER PT J AU Cotton, J Grant, W AF Cotton, J Grant, W TI Computational models of hair cell bundle mechanics: I. Single stereocilium SO HEARING RESEARCH LA English DT Article DE stereocilia computational model; stereocilia deformation; actin shear deformation ID ACTIN-FILAMENTS; SENSORY HAIRS; INNER-EAR; MECHANOELECTRICAL TRANSDUCTION; RECEPTOR CELLS; STIFFNESS; COCHLEA AB A distributed parameter model for describing the response of a stereocilium to an applied force is presented. This model is based on elasticity theory, plus the geometry and material properties of the stereocilium. The stereocilia shaft above the taper is not assumed to be perfectly rigid. It is assumed to be deformable and that two separate mechanisms are involved in its deformation: bending and shear. The influence of each mode of deformation is explored in parametric studies. Results show that the magnitude of tip deflection depends on the shear compliance of the stereocilium material, the degree of base taper, and stereocilium height. Furthermore, the deformation profiles observed experimentally will occur only if there are constraints on the geometry and material properties of the stereocilium. (C) 2004 Elsevier B.V. All rights reserved. C1 Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA. RP Grant, W (reprint author), Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Mail Code 0219, Blacksburg, VA 24061 USA. EM jgrant@vt.edu RI Cotton, John/H-6302-2011 OI Cotton, John/0000-0003-4029-2565 CR Beer F. P., 2001, MECH MAT BORESI AP, 1993, ADV MECH MAT, P178 COTTON JR, 1998, THESIS VIRGINIA POLY Cotton JR, 2000, J BIOMECH ENG-T ASME, V122, P44, DOI 10.1115/1.429626 DUNCAN RK, 1993, THESIS VIRGINIA POLY Duncan RK, 1999, HEARING RES, V127, P22, DOI 10.1016/S0378-5955(98)00168-3 Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 FLOCK A, 1984, NATURE, V310, P597, DOI 10.1038/310597a0 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 FLOCK A, 1977, J CELL BIOL, V75, P339, DOI 10.1083/jcb.75.2.339 GITTES F, 1993, J CELL BIOL, V120, P923, DOI 10.1083/jcb.120.4.923 GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208 HOWARD J, 1988, ANNU REV BIOPHYS BIO, V17, P99 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 Jones R. M., 1999, MECH COMPOSITE MAT LEWIS ER, 1985, VERTEBRATE EAR LIM DJ, 1977, P SHAMB 5 INT WORKSH, P16 Lindeman H H, 1973, Adv Otorhinolaryngol, V20, P405 PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P PICKLES JO, 1992, TRENDS NEUROSCI, V15, P254, DOI 10.1016/0166-2236(92)90066-H SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P299, DOI 10.1121/1.392491 Silver RB, 1998, J COMP NEUROL, V402, P48 SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C TILNEY LG, 1983, J CELL BIOL, V96, P822, DOI 10.1083/jcb.96.3.822 NR 24 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 96 EP 104 DI 10.1016/j.heares.2004.06.004 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800011 PM 15504608 ER PT J AU Cotton, J Grant, W AF Cotton, J Grant, W TI Computational models of hair cell bundle mechanics: II. Simplified bundle models SO HEARING RESEARCH LA English DT Article DE hair cell bundle; mechanical model; bundle stiffness; distributed parameter bundle model ID INNER-EAR; CILIARY BUNDLES; STIFFNESS; COCHLEA AB Simplified versions of hair cell bundles are mechanically modeled. The influence of various geometric and material combinations on bundle stiffness, link tensions and deformation shape are examined; Three models are analyzed within this paper: two stereocilia connected by one link, two stereocilia connected by a biologically realistic set of links, and a column of stereocilia connected by realistic links. Stereocilia are modeled using a distributed parameter model [J.Biomech.Eng. 122, 44]. Some fundamental rules for linking bundles emerge from these tests: (1) Links must have a threshold stiffness value for the bundle to deform as a whole. Beyond this value, the stereocilia are perfectly linked and variations in link stiffness do not significantly effect the bundle stiffness or link tension. (2) Decreasing the relative heights of successive stereocilia may increase link tension while decreasing bundle stiffness. (3) When lateral links exist, the top most lateral links carry the majority of tension. Lower links in single column model appear mechanically insignificant. (4) Extending the length of the bundle in a column does not increase the stiffness once the column reaches a certain length. (C) 2004 Elsevier B.V. All rights reserved. C1 Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA. RP Grant, W (reprint author), Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Mail Code 0219, Blacksburg, VA 24061 USA. EM jgrant@vt.edu RI Cotton, John/H-6302-2011 OI Cotton, John/0000-0003-4029-2565 CR Beer F. P., 2001, MECH MAT COREY D P, 1989, Society for Neuroscience Abstracts, V15, P208 COTTON JR, 1998, THESIS VIRGINIA POLY COTTON JR, 1997, ANAL FINITE ELEMENT Cotton JR, 2000, J BIOMECH ENG-T ASME, V122, P44, DOI 10.1115/1.429626 Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 Duncan RK, 1995, AUDIT NEUROSCI, V1, P321 FLOCK A, 1977, ACTA OTO-LARYNGOL, V83, P85, DOI 10.3109/00016487709128817 GITTES F, 1993, J CELL BIOL J, V20, P93 GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 HUDSPETH AJ, 1983, SCI AM, V248, P54 KACHAR B, 2000, PNAS, V97 Lewis ER, 1985, VERTEBRATE INNER EAR Peterson EH, 1996, ANN NY ACAD SCI, V781, P85, DOI 10.1111/j.1749-6632.1996.tb15695.x PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P Reddy J. N., 1993, FINITE ELEMENT METHO SZYMKO YM, 1992, HEARING RES, V59, P241, DOI 10.1016/0378-5955(92)90120-C Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010 NR 19 TC 14 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 105 EP 111 DI 10.1016/j.heares.2004.06.005 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800012 PM 15504609 ER PT J AU Silber, J Cotton, J Nam, JH Peterson, EH Grant, W AF Silber, J Cotton, J Nam, JH Peterson, EH Grant, W TI Computational models of hair cell bundle mechanics: III. 3-D utricular bundles SO HEARING RESEARCH LA English DT Article DE finite element bundle model; 3-D hair cell bundle model; tip-link tensions; upper lateral link tensions ID MECHANOELECTRICAL TRANSDUCTION; FLEXURAL RIGIDITY; CILIARY BUNDLES; TIP LINKS; INNER-EAR; MICROTUBULES; STEREOCILIA; ADAPTATION; FROG AB Six utricular hair bundles from a red-eared turtle are modeled using 3-D finite element analysis. The mechanical model includes shear deformable stereocilia, realignment of all forces during force load increments, and tip and lateral link inter-stereocilia connections. Results show that there are two distinct bundle types that can be separated by mechanical bundle stiffness. The more compliant group has fewer total stereocilia and short stereocilia relative to kinocilium height; these cells are located in the medial and lateral extrastriola. The stiff group are located in the striola. They have more stereocilia and long stereocilia relative to kinocilia heights. Tip link tensions show parallel behavior in peripheral columns of the bundle and serial behavior in central columns when the tip link modulus is near or above that of collagen (1x10(9) N/m(2)). This analysis shows that lumped parameter models of single stereocilia columns can show some aspects of bundle mechanics; however, a distributed, 3-D model is needed to explore overall bundle behavior. (C) 2004 Elsevier B.V. All rights reserved. C1 Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Blacksburg, VA 24061 USA. Virginia Polytech Inst & State Univ, Sch Biomed Engn & Sci, Blacksburg, VA 24061 USA. Virginia Polytech Inst & State Univ, Dept Mech Engn, Blacksburg, VA 24061 USA. Ohio Univ, Dept Sci Biol, Athens, OH 45701 USA. Ohio Univ, Program Neurosci, Athens, OH 45701 USA. RP Grant, W (reprint author), Virginia Polytech Inst & State Univ, Dept Engn Sci & Mech, Mail Code 0219, Blacksburg, VA 24061 USA. EM jgrant@vt.edu RI Cotton, John/H-6302-2011 OI Cotton, John/0000-0003-4029-2565 CR ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BAGGERSJOBACK D, 1988, ACTA OTOLARYNGOL STO, V106, P394 COREY DP, 2004, NATURE NEWS VIEWS, V248, P901 COTTON JR, 1998, THESIS VIRGINIA POLY Cotton JR, 2000, J BIOMECH ENG-T ASME, V122, P44, DOI 10.1115/1.429626 DUNCAN RK, 1993, THESIS VIRGINIA POLY DUNCAN RK, THESIS U PENNSYLVANI Duncan RK, 1997, HEARING RES, V104, P15, DOI 10.1016/S0378-5955(96)00176-1 Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Fontilla MF, 2000, HEARING RES, V145, P8, DOI 10.1016/S0378-5955(00)00068-X Fung Y. C., 1981, BIOMECHANICS MECH PR GITTES F, 1993, J CELL BIOL, V120, P923, DOI 10.1083/jcb.120.4.923 GOODYEAR R, 1992, J COMP NEUROL, V325, P243, DOI 10.1002/cne.903250208 GOODYEAR R, 1994, J COMP NEUROL, V345, P267, DOI 10.1002/cne.903450208 HILLMAN DE, 1971, SCIENCE, V174, P416, DOI 10.1126/science.174.4007.416 Howard J., 2001, MECH MOTOR PROTEINS HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HOWARD J, 1988, NEURON, V1, P189, DOI 10.1016/0896-6273(88)90139-0 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 ISHIJIMA S, 1994, CELL STRUCT FUNCT, V19, P349 JACOBS RA, 1990, COLD SH Q B, V55, P547 Jones R. M., 1999, MECH COMPOSITE MAT Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 KIKUCHI T, 1989, ACTA OTO-LARYNGOL, V108, P26, DOI 10.3109/00016488909107388 Langer MG, 2001, BIOPHYS J, V80, P2608 MERKLE AC, 2000, THESIS VIRGINIA POLY MICKEY B, 1995, J CELL BIOL, V130, P909, DOI 10.1083/jcb.130.4.909 MIKLOS S, 1997, SCIENCE, V267, P1112 Peterson EH, 1996, ANN NY ACAD SCI, V781, P85, DOI 10.1111/j.1749-6632.1996.tb15695.x PICKLES JO, 1993, HEARING RES, V68, P159, DOI 10.1016/0378-5955(93)90120-P SILVERMAN JM, 2002, THESIS VIRGINIA POLY TSKHOVROEBOVA L, 1997, NATURE, V386, P308 Tsuprun V, 2000, JARO, V1, P224, DOI 10.1007/s101620010010 NR 33 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 112 EP 130 DI 10.1016/j.heares.2004.06.006 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800013 PM 15504610 ER PT J AU Chen, ZQ Ulfendahl, M Ruan, RS Tan, L Duan, ML AF Chen, ZQ Ulfendahl, M Ruan, RS Tan, L Duan, ML TI Protection of auditory function against noise trauma with local caroverine administration in guinea pigs SO HEARING RESEARCH LA English DT Article DE caroverine; glutamate receptor antagonist; protection; noise-induced hearing loss; auditory brainstem response; guinea pig ID EXCITATORY AMINO-ACIDS; INDUCED HEARING-LOSS; RECEPTOR SUBUNITS; MAMMALIAN COCHLEA; KAINIC ACID; INNER-EAR; EXCITOTOXICITY; ASPARTATE; SYNAPSES; NEURONS AB Glutamate is the most likely neurotransmitter at the synapse between the inner hair cell and its afferent neuron in the peripheral auditory system. Intense noise exposure may result in excessive glutamate release, binding to the post-synaptic receptors and leading to neuronal degeneration and hearing impairment. The present study investigated the protective effect of caroverine, an antagonist of two glutamate receptors, N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, on noise-induced hearing loss. Two different doses of caroverine were applied onto the round window membrane with gelfoam, followed by one-third-octave band noise centered at 6.3 kHz (110 dB SPL) for 1h. Auditory brainstem responses were measured at regular time intervals afterwards. Caroverine was found to offer significant protection of the cochlear function against noise-induced hearing loss. (C) 2004 Elsevier B.V. All rights reserved. C1 Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden. Natl Univ Singapore, Dept Otolaryngol, Singapore, Singapore. Karolinska Hosp, Karolinska Inst, Ctr Hearing & Commun Res, SE-17176 Stockholm, Sweden. Karolinska Hosp, Dept Otolaryngol, S-10401 Stockholm, Sweden. RP Duan, ML (reprint author), Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden. EM maoli.duan@cfh.ki.se CR ALTSCHULER RA, 1989, HEARING RES, V42, P167, DOI 10.1016/0378-5955(89)90142-1 BLEDSOE SC, 1980, EXP BRAIN RES, V40, P97 Bullock R, 1995, ANN NY ACAD SCI, V765, P272, DOI 10.1111/j.1749-6632.1995.tb16584.x Chen GD, 2001, HEARING RES, V154, P108, DOI 10.1016/S0378-5955(01)00228-3 CHEN Z, 2003, AUDIOL NEURO-OTOL, V8, P46 CHOI DW, 1987, J NEUROSCI, V7, P369 Denk DM, 1997, ACTA OTO-LARYNGOL, V117, P825, DOI 10.3109/00016489709114208 Doble A, 1999, PHARMACOL THERAPEUT, V81, P163, DOI 10.1016/S0163-7258(98)00042-4 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 Duan M L, 1996, Audiol Neurootol, V1, P320 Duan ML, 2002, HEARING RES, V169, P169, DOI 10.1016/S0378-5955(02)00484-7 EHRENBERGER K, 1992, NEUROPHARMACOLOGY, V31, P1259, DOI 10.1016/0028-3908(92)90054-S EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1991, EUR ARCH OTO-RHINO-L, V248, P429, DOI 10.1007/BF00627627 Glowatzki E, 2002, NAT NEUROSCI, V5, P147, DOI 10.1038/nn796 Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Jager W, 1998, EXP BRAIN RES, V121, P425, DOI 10.1007/s002210050477 KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KLINKE R, 1977, EXP BRAIN RES, V30, P145 KOCH RA, 1994, J NEUROSCI, V14, P2585 LIPTON SA, 1994, NEW ENGL J MED, V330, P613 Matsubara A, 1996, J NEUROSCI, V16, P4457 MUIR KW, 1995, STROKE, V26, P503 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 Oestreicher E, 2002, ADV OTO-RHINO-LARYNG, V59, P18 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002 SAUNDERS JC, 1970, BRAIN RES, V24, P336 Shero M, 1998, NEUROSCI LETT, V257, P81, DOI 10.1016/S0304-3940(98)00821-0 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 USAMI S, 1995, NEUROREPORT, V6, P1161, DOI 10.1097/00001756-199505300-00022 ZIVIN JA, 1991, SCI AM, V265, P56 NR 38 TC 7 Z9 9 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD NOV PY 2004 VL 197 IS 1-2 BP 131 EP 136 DI 10.1016/j.heares.2004.03.021 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 871JH UT WOS:000225126800014 PM 15504611 ER PT J AU Szucs, A Szappanos, H Toth, A Farkas, Z Panyi, G Csernoch, L Sziklai, I AF Szucs, A Szappanos, H Toth, A Farkas, Z Panyi, G Csernoch, L Sziklai, I TI Differential expression of purinergic receptor subtypes in the outer hair cells of the guinea pig SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 40th Workshop on Inner Ear Biology CY SEP 07-10, 2003 CL Granada, SPAIN DE OHC; purinoceptors; ATP; calcium ID 5'-TRIPHOSPHATE-GATED ION-CHANNEL; DEVELOPING RAT COCHLEA; P2X RECEPTORS; ATP RECEPTOR; MUSCLE CELLS; ELECTROMOTILITY; ACETYLCHOLINE; LOCALIZATION; SUBUNITS; NOMENCLATURE AB ATP acts as a neuro-modulator through purinoceptors in many different tissues. Many subtypes of these receptors have been identified in the inner ear, but so far only two types have been shown to be present in the membrane of the isolated outer hair cells (OHCs). The aim of this study was to detect and visualize the existence and distribution of purinoceptor subtypes as well as to study the [Ca2+](i) response of these cells in response to stimulation with ATP. Four P2X and three P2Y receptor subtypes were identified with different expression pattern in the membrane of guinea pig outer hair cells. Whereas intense labeling was observed for P2X1, P2X2, P2X4, P2Y1, P2Y2, and P2Y4, the labeling for the subtype P2X7 was weak. There was a marked difference in the distribution of the receptors along the surface of the cells with a homogenous distribution in cases of P2X I, P2X4, and P2Y1. In contrast, P2X2 and P2Y2 receptor density was high mainly at the apical, while P2X7 and P2Y4 at the basal pole of the cells. Similarly a heterogeneity was observed in the ATP-induced transient elevation in [Ca2+](i), which had either fast kinetics without desensitization or slow rise with desensitization. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Debrecen, Sch Med, Med & Hlth Sci Ctr, Dept Otolaryngol & Head & Neck Surg, H-4012 Debrecen, Hungary. Univ Debrecen, Med Sch, Med & Hlth Sci Ctr, Dept Physiol, Debrecen, Hungary. Univ Debrecen, Med Sch, Med & Hlth Sci Ctr, Dept Biophys & Cell Biol, Debrecen, Hungary. Univ Debrecen, Med Sch, Med & Hlth Sci Ctr, Cell Physiol Res Grp, Debrecen, Hungary. RP Szucs, A (reprint author), Univ Debrecen, Sch Med, Med & Hlth Sci Ctr, Dept Otolaryngol & Head & Neck Surg, H-4012 Debrecen, Hungary. EM aszucs10@hotmail.com RI Cserne Szappanos, Henrietta/A-3216-2009; Panyi, Gyorgy/H-4406-2013 CR ABBRACCHIO MP, 1993, DRUG DEVELOP RES, V28, P207, DOI 10.1002/ddr.430280304 Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 BURNSTOCK G, 1993, DRUG DEVELOP RES, V28, P301, DOI 10.1002/ddr.430280320 CHEN C, 1995, HEARING RES, V86, P25, DOI 10.1016/0378-5955(95)00050-E Cseri J, 2002, PFLUG ARCH EUR J PHY, V443, P731, DOI 10.1007/s00424-001-0757-x Dallos P, 1997, J NEUROSCI, V17, P2212 EDWARDS FA, 1992, NATURE, V359, P144, DOI 10.1038/359144a0 EVANS RJ, 1992, NATURE, V357, P503, DOI 10.1038/357503a0 FRIEL DD, 1988, J PHYSIOL-LONDON, V401, P361 GRYNKIEWICZ G, 1985, J BIOL CHEM, V260, P3440 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 Khakh BS, 2001, PHARMACOL REV, V53, P107 Mammano F, 1999, J NEUROSCI, V19, P6918 MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 Nikolic P, 2003, AUDIOL NEURO-OTOL, V8, P28, DOI 10.1159/000067891 Nikolic P, 2001, DEV BRAIN RES, V126, P173, DOI 10.1016/S0165-3806(00)00149-8 North RA, 2002, PHYSIOL REV, V82, P1013, DOI 10.1152/physrev.00015.2002 Parker MS, 1998, HEARING RES, V121, P62, DOI 10.1016/S0378-5955(98)00065-3 Skellett RA, 1997, HEARING RES, V111, P42, DOI 10.1016/S0378-5955(97)00093-2 Sziklai I, 1996, HEARING RES, V95, P87, DOI 10.1016/0378-5955(96)00026-3 Sziklai I, 2001, ACTA OTO-LARYNGOL, V121, P153 WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 WILKSTROM MA, 1998, J PHYSIOL-PARIS, V92, P345 Xiang ZH, 1999, HEARING RES, V128, P190, DOI 10.1016/S0378-5955(98)00208-1 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X NR 29 TC 18 Z9 18 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 2 EP 7 DI 10.1016/j.heares.2004.04.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700002 PM 15464295 ER PT J AU Previati, M Lanzoni, I Corbacella, E Magosso, S Giuffre, S Francioso, F Arcelli, D Volinia, S Barbieri, A Hatzopoulos, S Capitani, S Martini, A AF Previati, M Lanzoni, I Corbacella, E Magosso, S Giuffre, S Francioso, F Arcelli, D Volinia, S Barbieri, A Hatzopoulos, S Capitani, S Martini, A TI RNA expression induced by cisplatin in an organ of Corti-derived immortalized cell line SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 40th Workshop on Inner Ear Biology CY SEP 07-10, 2003 CL Granada, SPAIN ID HEP G2 CELLS; DIHYDRORHODAMINE 123; LIPID-PEROXIDATION; ARACHIDONIC-ACID; CIS-PLATINUM; HEARING-LOSS; APOPTOSIS; CYTOTOXICITY; OTOTOXICITY; GENERATION AB Cisplatin [civ-diamminedichloroplatinum(II)] (CDDP) is an organic compound that is widely used for the treatment of a large number of tumors. Its clinical use is limited by the presence of some undesired side effects, like as oto- and nephro toxicity, whose mechanisms of action are not understood. One of the possible CDDP toxicity mechanism seems to involve the generation of reactive oxygen species (ROS), that can impair morphology and function of hair cells (HQ in the organ of Corti. To test this hypothesis we evaluated the effect of CDDP treatment on RNA steady-state levels of 15,000 genes by microarray analysis, using, as a experimental model, the OC-k3 cell line, obtained from the organ of Corti of transgenic mice and constitutively expressing the large SV40 T antigen. We have found overexpression of several genes related to arachidonate mobilization including phospholipase A2, group IV and V, phospholipase A2 activating protein and lysophospholipase I and 111, as well as lipoxygenation like arachidonate 12-lipoxygenase and arachidonate 5-lipoxygenase activating protein. In addition, we found significant transcription of genes regulating cell respiration, including cyt c oxidase, as well as genes involved in xenobiotic detoxification and lipid peroxidation such as cyt P450, and other oxidases including spermine oxidase and monoamine oxidase. As a whole, overexpression of the group of different genes seems to indicate that an oxidative burst could take place during cisplatin administration. We therefore searched for evidences of superoxide anion and hydrogen peroxide by means of electron paramagnetic resonance (EPR) spectroscopy and flow cytometry, but failed to detect them. On the other hand, we found an increase of malondialdehyde (MDA) synthesis and protein carbonylation products, indicating the occurence of lipid peroxidative degradation. When we tested the effectiveness of butylated hydroxytoluene (BHT), dithiothreitol (DTT) and N-acetylcysteine (N-Ac) as cytoprotectants, all of them reduced protein carbonylation to control levels and significantly protected OC-k3 from CDDP-induced cell death, with an higher protection when using the lipophylic antioxidant BHT. The same antioxidants prevented also the onset of protein carbonylation, which extent was decreased to basal levels. These data indicate that CDDP is able to stimulate gene expression up to 12 h after the beginning of the treatment. This increase in gene transcription involves a large number of genes potentially able to increase the level of cell ROS. Consistently, cells survival is improved by cotreatment with antioxidants, in particular lipophilics. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Ferrara, Human Anat Div, Dept Morphol & Embryol, I-44100 Ferrara, Italy. Univ Ferrara, Ctr Bioacust, Ferrara, Italy. Univ Ferrara, Histol Div, Dept Morphol & Embryol, Ferrara, Italy. CNR, ISOF, Ferrara, Italy. RP Previati, M (reprint author), Univ Ferrara, Human Anat Div, Dept Morphol & Embryol, Via Fossato Mortara 66, I-44100 Ferrara, Italy. EM prm@unife.it RI Barbieri, Andrea/B-8712-2009 OI Barbieri, Andrea/0000-0002-8841-9521 CR BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 Bertolaso L, 2001, AUDIOLOGY, V40, P327 BONDY SC, 1994, BIOCHEM PHARMACOL, V48, P155, DOI 10.1016/0006-2952(94)90235-6 BYOUNG JS, 2001, CHEM-BIOL INTERACT, V130, P943 Cao Y, 2000, P NATL ACAD SCI USA, V97, P11280, DOI 10.1073/pnas.200367597 Cederbaum AI, 1998, BIOFACTORS, V8, P93, DOI 10.1002/biof.5520080116 Chen Q, 1997, MOL PHARMACOL, V52, P648 Chen Q, 1997, J BIOL CHEM, V272, P14532, DOI 10.1074/jbc.272.23.14532 Dalle-Donne I, 2003, TRENDS MOL MED, V9, P169, DOI 10.1016/S1471-4914(03)00031-5 DRAPER HH, 1990, METHOD ENZYMOL, V186, P421 DULING DR, 1994, J MAGN RESON SER B, V104, P105, DOI 10.1006/jmrb.1994.1062 EASTMAN A, 1987, CHEM-BIOL INTERACT, V61, P241, DOI 10.1016/0009-2797(87)90004-4 ESTERBAUER H, 1990, METHOD ENZYMOL, V186, P407 FAUSTI SA, 1984, CANCER, V53, P224, DOI 10.1002/1097-0142(19840115)53:2<224::AID-CNCR2820530207>3.0.CO;2-D Gabaizadeh R, 1997, MOL BRAIN RES, V50, P71, DOI 10.1016/S0169-328X(97)00173-3 Golub TR, 1999, SCIENCE, V286, P531, DOI 10.1126/science.286.5439.531 Gonzalez VM, 2001, MOL PHARMACOL, V59, P657 Hawksworth GM, 1996, ARCH TOX S, V18, P184 HENDERSON LM, 1993, EUR J BIOCHEM, V217, P973, DOI 10.1111/j.1432-1033.1993.tb18328.x Kalinec F, 1999, CELL BIOL INT, V23, P175, DOI 10.1006/cbir.1998.0339 KOHN S, 1988, LARYNGOSCOPE, V98, P865 LEVINE RL, 1990, METHOD ENZYMOL, V186, P464 Lopez-Ganzalez MA, 2000, J PINEAL RES, V28, P73, DOI 10.1034/j.1600-079X.2001.280202.x PATTEN CJ, 1995, ARCH BIOCHEM BIOPHYS, V317, P504, DOI 10.1006/abbi.1995.1194 Perez RP, 1998, EUR J CANCER, V34, P1535, DOI 10.1016/S0959-8049(98)00227-5 RAFF MC, 1993, SCIENCE, V262, P695, DOI 10.1126/science.8235590 Roberts J J, 1979, Prog Nucleic Acid Res Mol Biol, V22, P71, DOI 10.1016/S0079-6603(08)60799-0 ROYALL JA, 1993, ARCH BIOCHEM BIOPHYS, V302, P348, DOI 10.1006/abbi.1993.1222 RYBAK LP, 1981, J LARYNGOL OTOL, V95, P745, DOI 10.1017/S0022215100091374 Schulze A, 2001, NAT CELL BIOL, V3, pE190, DOI 10.1038/35087138 SEGAL AW, 1993, TRENDS BIOCHEM SCI, V18, P43, DOI 10.1016/0968-0004(93)90051-N SMITH PK, 1985, ANAL BIOCHEM, V150, P76, DOI 10.1016/0003-2697(85)90442-7 SORENSON CM, 1990, J NATL CANCER I, V82, P749, DOI 10.1093/jnci/82.9.749 STADNICKI SW, 1975, CANCER CHEMOTH REP 1, V59, P467 STELLER H, 1995, SCIENCE, V267, P1445, DOI 10.1126/science.7878463 WRIGHT CG, 1982, LARYNGOSCOPE, V92, P1408 Zamai L, 2001, CYTOMETRY, V44, P57, DOI 10.1002/1097-0320(20010501)44:1<57::AID-CYTO1082>3.3.CO;2-F NR 37 TC 14 Z9 17 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 8 EP 18 DI 10.1016/j.heares.2004.04.009 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700003 PM 15464296 ER PT J AU Varela-Nieto, I Morales-Garcia, JA Vigil, P Diaz-Casares, A Gorospe, I Sanchez-Galiano, S Canon, S Camarero, G Contreras, J Cediel, R Leon, Y AF Varela-Nieto, I Morales-Garcia, JA Vigil, P Diaz-Casares, A Gorospe, I Sanchez-Galiano, S Canon, S Camarero, G Contreras, J Cediel, R Leon, Y TI Trophic effects of insulin-like growth factor-I (IGF-I) in the inner ear SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 40th Workshop on Inner Ear Biology CY SEP 07-10, 2003 CL Granada, SPAIN DE apoptosis; insulin-like growth factors; cochleovestibular ganglion; development; IGF-I deficit; neurodegeneration; neuroprotection; otic vesicle ID CELL-PROLIFERATION; TRANSGENIC MICE; AUDITORY-SYSTEM; NERVOUS-SYSTEM; CHICK-EMBRYO; OTIC NEURONS; HAIR-CELLS; GENE; EXPRESSION; INSULIN-LIKE-GROWTH-FACTOR-1 AB lnsulin-like growth factors (IGFs) have a pivotal role during nervous system development and in its functional maintenance. IGF-I and its high affinity receptor (IGF1R) are expressed in the developing inner ear and in the postnatal cochlear and vestibular ganglia. We recently showed that trophic support by IGF-I is essential for the early neurogenesis of the chick cochleovestibular ganglion (CVG). In the chicken embryo otic vesicle, IGF-I regulates developmental death dynamics by regulating the activity and/or levels of key intracellular molecules, including lipid and protein kinases such as ceramide kinase, Akt and Jun N-terminal kinase (JNK). Mice lacking IGF-I lose many auditory neurons and present increased auditory thresholds at early postnatal ages. Neuronal loss associated to IGF-I deficiency is caused by apoptosis of the auditory neurons, which presented abnormally increased levels of activated caspase-3. It is worth noting that in man, homozygous deletion of the IGF-I gene causes sensory-neural deafness (reviewed in Rev. Endo. Met. Disord. 3 (2002) 357). IGF-I is thus necessary for normal development and maintenance of the inner ear. The trophic actio, is of IGF-I in the inner car suggest that this factor may have therapeutic potential for the treatment of hearing loss. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Autonoma Madrid, Consejo Super Invest Cientificas, Inst Invest Biomed Alberto Sols, Madrid 28029, Spain. Univ Complutense Madrid, Fac Vet, Madrid 28040, Spain. Univ Autonoma Madrid, Dept Biol Fisiol Anim, Madrid, Spain. RP Varela-Nieto, I (reprint author), Univ Autonoma Madrid, Consejo Super Invest Cientificas, Inst Invest Biomed Alberto Sols, Arturo Duperier 4, Madrid 28029, Spain. EM ivarela@iib.uam.es CR Alsina B, 2003, CURR TOP DEV BIOL, V57, P177, DOI 10.1016/S0070-2153(03)57006-5 BECK KD, 1995, NEURON, V14, P717, DOI 10.1016/0896-6273(95)90216-3 Burns JL, 2001, DEVELOPMENT, V128, P3819 Camacho-Hübner Cecilia, 2002, Rev Endocr Metab Disord, V3, P357, DOI 10.1023/A:1020957809082 Camarero G, 2002, HEARING RES, V170, P2, DOI 10.1016/S0378-5955(02)00447-1 Camarero G, 2001, J NEUROSCI, V21, P7630 Camarero G, 2003, DEV BIOL, V262, P242, DOI 10.1016/S0012-1606(03)00387-7 CARSON MJ, 1993, NEURON, V10, P729, DOI 10.1016/0896-6273(93)90173-O Cho YS, 2002, JARO, V3, P54, DOI 10.1007/s101620010042 Dore S, 1997, TRENDS NEUROSCI, V20, P326 Duan ML, 2000, P NATL ACAD SCI USA, V97, P7597, DOI 10.1073/pnas.97.13.7597 Efstratiadis A, 1998, INT J DEV BIOL, V42, P955 Fekete DM, 2002, CURR OPIN NEUROBIOL, V12, P35, DOI 10.1016/S0959-4388(02)00287-8 Frago LM, 2003, J CELL SCI, V116, P475, DOI 10.1242/jcs.00223 Frago LM, 1998, J CELL SCI, V111, P549 Gao WQ, 1999, J NEUROBIOL, V39, P142, DOI 10.1002/(SICI)1097-4695(199904)39:1<142::AID-NEU11>3.0.CO;2-H HAMBURGER V, 1992, DEV DYNAM, V195, P231, DOI 10.1002/dvdy.1001950404 HEMOND SG, 1991, ANAT EMBRYOL, V184, P1, DOI 10.1007/BF01744256 Kanzaki S, 2002, J COMP NEUROL, V454, P350, DOI 10.1002/cne.10480 Kirkwood TBL, 2003, TRENDS ENDOCRIN MET, V14, P345, DOI 10.1016/j.tem.2003.08.003 Kopke RD, 2001, P NATL ACAD SCI USA, V98, P5886, DOI 10.1073/pnas.101120898 Kuntz AL, 1998, J COMP NEUROL, V399, P413 Leon Yolanda, 1998, Journal of Comparative Neurology, V398, P323, DOI 10.1002/(SICI)1096-9861(19980831)398:3<323::AID-CNE2>3.0.CO;2-1 LEON Y, 1995, ENDOCRINOLOGY, V136, P3494, DOI 10.1210/en.136.8.3494 LIU JP, 1993, CELL, V75, P59, DOI 10.1016/0092-8674(93)90679-K Liu JL, 1998, MOL ENDOCRINOL, V12, P1452, DOI 10.1210/me.12.9.1452 Malgrange B, 2002, HEARING RES, V170, P48, DOI 10.1016/S0378-5955(02)00451-3 Nakae J, 2001, ENDOCR REV, V22, P818, DOI 10.1210/edrv.22.6.0452 Oesterle EC, 1997, J COMP NEUROL, V380, P262, DOI 10.1002/(SICI)1096-9861(19970407)380:2<262::AID-CNE8>3.0.CO;2-1 POWELLBRAXTON L, 1993, GENE DEV, V7, P2609, DOI 10.1101/gad.7.12b.2609 Resendes BL, 2002, JARO, V3, P45, DOI 10.1007/s101620020005 Romand R, 1999, BRAIN RES, V825, P46, DOI 10.1016/S0006-8993(99)01211-1 Rubel EW, 2002, ANNU REV NEUROSCI, V25, P51, DOI 10.1146/annurev.neuro.25.112701.142849 Sanz C, 1999, J CELL SCI, V112, P3967 Sanz C, 1999, ONCOGENE, V18, P429, DOI 10.1038/sj.onc.1202312 Savage M O, 2001, Growth Horm IGF Res, V11 Suppl A, pS65, DOI 10.1016/S1096-6374(01)80011-3 Stacey DJ, 2000, BRAIN RES, V871, P319, DOI 10.1016/S0006-8993(00)02488-4 Staecker H, 1998, CURR OPIN NEUROBIOL, V8, P480, DOI 10.1016/S0959-4388(98)80035-4 SWANSON GJ, 1990, DEV BIOL, V137, P243, DOI 10.1016/0012-1606(90)90251-D Varela-Nieto I, 2003, MOL NEUROBIOL, V28, P23, DOI 10.1385/MN:28:1:23 Woods KA, 1996, NEW ENGL J MED, V335, P1363, DOI 10.1056/NEJM199610313351805 Woods K A, 1997, Acta Paediatr Suppl, V423, P39 YE P, 1995, J NEUROSCI, V15, P7344 NR 43 TC 32 Z9 34 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 19 EP 25 DI 10.1016/j.heares.2003.12.022 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700004 PM 15464297 ER PT J AU Soto, A Labella, T Santos, S del Rio, M Lirola, A Cabanas, E Elhendi, W AF Soto, A Labella, T Santos, S del Rio, M Lirola, A Cabanas, E Elhendi, W TI The usefulness of computerized dynamic posturography for the study of equilibrium in patients with Meniere's disease: correlation with clinical and audiologic data SO HEARING RESEARCH LA English DT Article; Proceedings Paper CT 40th Workshop on Inner Ear Biology CY SEP 07-10, 2003 CL Granada, SPAIN DE Meniere's disease; posturography; staging ID PAROXYSMAL POSITIONAL VERTIGO; POSTURAL CONTROL; PLATFORM POSTUROGRAPHY; DIZZINESS; HANDICAP AB The use of computerized dynamic posturogaphy (CDP) in the evaluation of patients with balance alterations not only allows quantification of the subject's capacity to maintain a stable centre of gravity, but also analysis of the degree to which the subject is able to use different types of sensory information. The present study investigated the possible use of CDP for clinical staging of vestibular diseases, specifically Meniere's disease (MD). We applied CDP sensory organization tests to 75 patients with definitive MD (AAO-HNS 1995 criteria). A total of 98 CDP sessions were included in the analysis, which focused on four CDP parameters specifically related to vestibular function (condition-5 score, condition-6 score, overall balance score, and VEST, a measure of the relative importance of vestibular information for maintenance of balance). We found a statistically significant relationship between audiometric hearing threshold and CDP scores, especially in patients with audiometrically advanced disease. In addition, CDP scores showed statistically significant variation with time elapsed since the last typical vertigo attack, suggesting that patients can be usefully grouped into three MD activity-level categories: recent post-attack (less than I week since last vertigo attack), late post-attack (1 week - 60 days since last attack), and inactive MD (more than 60 days since last attack). On the basis of these results, we propose expected ranges for each of the four CDP parameters in each of the three MD activity-level categories, allowing staging in terms of balance and posture. This staging system complements existing staging systems (based on audiometric criteria, and on subjective assessment of the severity of vertigo attacks and their implications for quality of life). (C) 2004 Elsevier B.V. All rights reserved. C1 Sch Med, Santiago De Compostela, Spain. RP Soto, A (reprint author), Clin Hosp, Dept Otolaryngol, Santiago De Compostela, Spain. EM ciandsot@usc.es CR ANDREWS JC, 1996, DISORDERS VESTIBULAR, P300 ARENBERG IK, 1993, ECOG, OAE AND INTRAOPERATIVE MONITORING, P131 Cass SP, 1997, ANN OTO RHINOL LARYN, V106, P182 Committee on Hearing and Equilibrium, 1995, HEAD NECK SURG, V113, P181 DiFabio RP, 1996, ARCH OTOLARYNGOL, V122, P150 Di Girolamo S, 1998, ACTA OTO-LARYNGOL, V118, P289 Di Girolamo S, 2000, EUR ARCH OTO-RHINO-L, V257, P372, DOI 10.1007/s004050000243 Di Girolamo S, 2001, ACTA OTO-LARYNGOL, V121, P813 Filipo R, 1997, Acta Otolaryngol Suppl, V526, P10 Giacomini PG, 2002, ORL J OTO-RHINO-LARY, V64, P237, DOI 10.1159/000064130 GIBSON WPR, 2000, MENIERES DIS UPDATE, P227 Jacobson GP, 1998, AM J OTOL, V19, P804 Karlberg M, 1996, J VESTIBUL RES-EQUIL, V6, P37 KUMAGAMI H, 1982, ARCH OTOLARYNGOL, V108, P224 NORRE ME, 1993, AM J OTOLARYNG, V14, P404, DOI 10.1016/0196-0709(93)90114-M NORRE ME, 1987, J OTOLARYNGOL, V16, P340 NORRE ME, 1994, ACTA OTO-LARYNGOL, V114, P465, DOI 10.3109/00016489409126088 Perez N, 2003, OTOLARYNG HEAD NECK, V128, P372, DOI 10.1067/mhn.2003.102 ROBERTSON DD, 1995, J OTOLARYNGOL, V24, P118 SHEA JJ, 1993, AM J OTOL, V14, P224 Stewart MG, 1999, LARYNGOSCOPE, V109, P600, DOI 10.1097/00005537-199904000-00015 Williams NP, 1997, AM J OTOL, V18, P93 NR 22 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 26 EP 32 DI 10.1016/j.heares.2004.06.010 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700005 PM 15464298 ER PT J AU Ahn, SH Oh, SH Lee, JS Jeong, JM Lim, D Lee, DS Kim, CS AF Ahn, SH Oh, SH Lee, JS Jeong, JM Lim, D Lee, DS Kim, CS TI Changes of 2-deoxyglucose uptake in the rat auditory pathway after bilateral ablation of the cochlea SO HEARING RESEARCH LA English DT Article DE deaf; 2-deoxyglucose; auditory cortex; glucose metabolism; cross-modal plasticity ID CROSS-MODAL PLASTICITY; INFERIOR COLLICULUS; IMAGE REGISTRATION; SPEECH-PERCEPTION; IMPLANTATION; CORTEX; PATTERNS; THALAMUS; CHILDREN; SYSTEM AB It has been reported that the area of decreased glucose metabolism in the FDG-PET of prelingually deaf children correlates significantly with speech performance after cochlear implantation. In this study, we undertook to confirm changes of glucose metabolism in the cerebral cortex using an animal model with age-matching groups to completely exclude the influence of age differences between the deaf and normal-hearing groups. The cochlea was ablated bilaterally at a postnatal 10-14 days in the deaf groups; 3-4 deaf and normal rats were included at each time point at 1, 2, 4 and 8 weeks and 7 months after ablation. After injecting 2-deoxyglucose intraperitoneally, digitalized auto-radiographic images were obtained, and analyzed by using two different methods; 3-dimensional voxel-wise statistical analysis and conventional 2-dimensional densitometry. The hypometabolic area analyzed using 3-dimensional analysis and the differences of optical density between normal and deaf as determined by densitometry were widest and most prominent between 4 and 8 weeks after ablation. Differences were not significant before 2 weeks or after 7 months after ablation. This result shows that the hypometabolic area becomes prominent after a critical period and it decreases as the duration of deafness increases. We believe that cross-modal plasticity may be the mechanism of changes in glucose metabolism and that this result reinforced the usefulness of evaluating hypometabolic area using FDG-PET in deaf children. (C) 2004 Elsevier B.V. All rights reserved. C1 Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, Seoul 110744, South Korea. Seoul Natl Univ, Coll Med, Dept Nucl Med, Seoul, South Korea. RP Kim, CS (reprint author), Seoul Natl Univ, Coll Med, Dept Otolaryngol Head & Neck Surg, 28 Yongon Dong, Seoul 110744, South Korea. EM chongkim@plaza.snu.ac.kr RI Jeong, Jae Min/E-2102-2012; Lee, Dong Soo/J-2778-2012; Lee, Jae Sung/J-2781-2012 OI Jeong, Jae Min/0000-0003-2611-6020; CR ALPERT NM, 1990, J NUCL MED, V31, P1717 ASANUMA C, 1988, DEV BRAIN RES, V41, P159, DOI 10.1016/0165-3806(88)90179-4 Bavelier D, 2002, NAT REV NEUROSCI, V3, P443, DOI 10.1038/nrn848 Clerici WJ, 1998, J COMP NEUROL, V399, P110, DOI 10.1002/(SICI)1096-9861(19980914)399:1<110::AID-CNE9>3.0.CO;2-4 CLERICI WJ, 1986, DEV BRAIN RES, V27, P127, DOI 10.1016/0165-3806(86)90239-7 Friston KJ, 1994, HUMAN BRAIN MAPPING, V2, P189, DOI DOI 10.1002/HBM.460020402 Gabriele ML, 2000, J NEUROSCI, V20, P6939 HEIL P, 1986, J COMP NEUROL, V252, P279, DOI 10.1002/cne.902520302 Kirk KI, 2002, ANN OTO RHINOL LARYN, V111, P69 KRAL A, 2002, ARO MIDW M KUBO M, 1997, MOGERA NEUROREPORT, V8, P3405 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 LEE JS, 2002, NUCL SCI S C R IEEE, V3, P1552 Maes F, 1997, IEEE T MED IMAGING, V16, P187, DOI 10.1109/42.563664 Malmierca MS, 2002, J NEUROSCI, V22, P10891 Metherate R, 1999, DEV BRAIN RES, V115, P131, DOI 10.1016/S0165-3806(99)00058-9 O'Donoghue GM, 2000, LANCET, V356, P466, DOI 10.1016/S0140-6736(00)02555-1 Oh SH, 2003, ACTA OTO-LARYNGOL, V123, P148, DOI 10.1080/0036554021000028111 Pallas SL, 2001, TRENDS NEUROSCI, V24, P417, DOI 10.1016/S0166-2236(00)01853-1 Paxinos G., 1998, RAT BRAIN STEREOTAXI RAUSCHECKER JP, 1995, TRENDS NEUROSCI, V18, P36, DOI 10.1016/0166-2236(95)93948-W REBILLARD G, 1976, ACTA OTO-LARYNGOL, V82, P48, DOI 10.3109/00016487609120862 REBILLARD G, 1977, BRAIN RES, V129, P162, DOI 10.1016/0006-8993(77)90980-5 SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 SOKOLOFF L, 1977, J NEUROCHEM, V28, P897, DOI 10.1111/j.1471-4159.1977.tb10649.x NR 25 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 33 EP 38 DI 10.1016/j.heares.2004.05.012 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700006 PM 15464299 ER PT J AU Kitahara, T Li, HS Balaban, CD AF Kitahara, T Li, HS Balaban, CD TI Localization of the mitochondrial uncoupling protein family in the rat inner ear SO HEARING RESEARCH LA English DT Article DE uncoupling protein; PGC-1 alpha; PPAR gamma; vestibular ganglion; spiral ganglion; mitochondria; real-time PCR; immunohistochemistry ID CALORIC NYSTAGMUS; VESTIBULAR-NERVE; 3-DIMENSIONAL ASPECTS; ENERGY-METABOLISM; SQUIRREL-MONKEY; CELLS; EXPRESSION; BRAIN; MICE; THERMOGENESIS AB Uncoupling proteins (UCPs) are a proton transporter family located in the mitochondrial inner membrane. The molecular expression and activity of UCPs in brown adipose tissue and skeletal muscle are regulated by factors as diverse as chronic overeating and cold exposure,. suggesting roles in energy expenditure and heat production. Although UCP2, UCP4 and brain mitochondrial carrier proteir-1 (BMCP-1, i.e. UCP5) mRNAs are expressed in the central nervous system, their central function is unknown. This study presents the first evidence on localization and quantitative expression of UCPs in the rat inner ear by real-time PCR and immunohistochemistry. Real-time PCR studies revealed that UCP2 mRNA was expressed in the vestibular and spiral ganglia more abundantly than any other UCP. Neocortex, by contrast, contained UCP2 and UCP4 equally. Notably, UCP3 and UCP4 mRNAs were expressed in inner ear ganglia, but brain UCP3 mRNA expression level was undetectable by simple PCR. Immunohistochemical studies confirmed that both UCP2- and UCP3-like immunoreactivities were detected in vestibular and spiral ganglion cells and co-localized with a mitochondrial marker, MitoFluorGreen. According to previous reports, UCP2 and UCP3 are thermogenic in yeast and train UCP2 has been suggested to modulate pre- and post-synaptic events by axonal thermogenesis. It has also been reported recently that UCP2 and UCP3 responses to superoxide application may be an antioxidant protective mechanism. Therefore, it is suggested that mitochondrial UCPs (UCP2, UCP3, UCP4) may play both a protective role against oxidative damage and a thermal signaling role in the eighth nerve. (C) 2004 Published by Elsevier B.V. C1 Univ Pittsburgh, Sch Med, Dept Otolaryngol, Eye & Ear Inst 107, Pittsburgh, PA 15123 USA. Univ Pittsburgh, Sch Med, Dept Neurobiol, Pittsburgh, PA 15123 USA. Univ Pittsburgh, Sch Med, Dept Commun Sci, Pittsburgh, PA 15123 USA. RP Balaban, CD (reprint author), Univ Pittsburgh, Sch Med, Dept Otolaryngol, Eye & Ear Inst 107, 203 Lothrop St, Pittsburgh, PA 15123 USA. EM balabancd@pitt.edu CR Argyropoulos G, 2002, J APPL PHYSIOL, V92, P2187, DOI 10.1152/japplphysiol.00994.2001 Balaban CD, 2003, HEARING RES, V175, P165, DOI 10.1016/S0378-5955(02)00734-7 Boss O, 1997, FEBS LETT, V408, P39, DOI 10.1016/S0014-5793(97)00384-0 CLARKE AH, 1993, ACTA OTO-LARYNGOL, V113, P687, DOI 10.3109/00016489309135886 CLARKE AH, 1993, ACTA OTO-LARYNGOL, V113, P693, DOI 10.3109/00016489309135887 Cline GW, 2001, J BIOL CHEM, V276, P20240, DOI 10.1074/jbc.M102540200 Curtin NA, 2002, J PHYSIOL-LONDON, V542, P231, DOI 10.1113/jphysiol.2002.021964 Diano S, 2000, ENDOCRINOLOGY, V141, P4226, DOI 10.1210/en.141.11.4226 Echtay KS, 2002, NATURE, V415, P96, DOI 10.1038/415096a Enerback S, 1997, NATURE, V387, P90, DOI 10.1038/387090a0 Erlanson-Albertsson C, 2003, ACTA PHYSIOL SCAND, V178, P405, DOI 10.1046/j.1365-201X.2003.01159.x Fleury C, 1997, NAT GENET, V15, P269, DOI 10.1038/ng0397-269 GOLDBERG JM, 1984, J NEUROPHYSIOL, V51, P1236 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P791 Hinz W, 1999, FEBS LETT, V448, P57, DOI 10.1016/S0014-5793(99)00331-2 Hong Y, 2001, ENDOCRINOLOGY, V142, P249, DOI 10.1210/en.142.1.249 HOOD JD, 1989, ACTA OTO-LARYNGOL, V107, P161, DOI 10.3109/00016488909127494 Horvath TL, 1999, J NEUROSCI, V19, P10417 Jaburek M, 1999, J BIOL CHEM, V274, P26003, DOI 10.1074/jbc.274.37.26003 Jezek P, 2002, INT J BIOCHEM CELL B, V34, P1190, DOI 10.1016/S1357-2725(02)00061-4 KAMMERMAN JR, 1992, LAB METHODS HISTOTEC, P72 Mao WG, 1999, FEBS LETT, V443, P326, DOI 10.1016/S0014-5793(98)01713-X MCLEAN IW, 1974, J HISTOCHEM CYTOCHEM, V22, P1077 MINOR LB, 1991, J NEUROSCI, V11, P1636 Park Byung Rim, 1999, Auris Nasus Larynx, V26, P263 Paulik MA, 1998, PHARMACEUT RES, V15, P944, DOI 10.1023/A:1011993019385 Pecqueur C, 2001, J MOL MED-JMM, V79, P48, DOI 10.1007/s001090000150 Porter Jr, 2001, POPTRONICS, V2, P3 Puigserver P, 2003, ENDOCR REV, V24, P78, DOI 10.1210/er.2002-0012 SCHERER H, 1986, EXP BRAIN RES, V64, P255 Schmittgen TD, 2000, ANAL BIOCHEM, V285, P194, DOI 10.1006/abio.2000.4753 St-Pierre J, 2003, J BIOL CHEM, V278, P26597, DOI 10.1074/jbc.M301850200 Stuart JA, 2001, BBA-BIOENERGETICS, V1504, P144, DOI 10.1016/S0005-2728(00)00243-7 Vidal-Puig AJ, 2000, J BIOL CHEM, V275, P16258, DOI 10.1074/jbc.M910179199 Yu XX, 2000, FASEB J, V14, P1611, DOI 10.1096/fj.14.11.1611 ZENNER HP, 1995, ACTA OTO-LARYNGOL, V115, P484, DOI 10.3109/00016489509139352 NR 36 TC 10 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 39 EP 48 DI 10.1016/j.heares.2004.02.002 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700007 PM 15464300 ER PT J AU Baumann, U Nobbe, A AF Baumann, U Nobbe, A TI Pulse rate discrimination with deeply inserted electrode arrays SO HEARING RESEARCH LA English DT Article DE temporal pitch; electric hearing; cochlear implant; frequency discrimination ID COCHLEAR IMPLANT SUBJECTS; FREQUENCY DISCRIMINATION; PITCH PERCEPTION; ELECTRICAL-STIMULATION; TEMPORAL PITCH; HEARING-LOSS; MODULATION; TONES; SENSITIVITY; LISTENERS AB Pulse rate difference limen (PRDL) and amplitude modulation difference limen (AMDL) were assessed as a function of base rate and cochlear electrode location in seven (three for AMDL) subjects implanted with the MED-EL COMBI 40+ implant. The MEDEL COMBI 40+ electrode array allows deep insertion of the electrode up to the apex of the cochlea to minimize the rate/place mismatch for pulse rates below 500 pps. A three interval, two alternative forced-choice procedure with feedback was used to measure the difference limen. The base rate was in the range between 200 and 800 pps. The carrier rate for the AMDL measurement was 5081 pps. The PRDL increased with increasing base pulse rate. At 200 pps the average PRDL measured at the apical electrode amounted to 48.7 pps, at 400 pps the average PRDL reached 206.6 pps. No significant difference between PRDL obtained from apical or basal electrodes could be observed. AMDL was higher than PRDL at all tested base rates. The ability to discriminate rate changes is limited to base rates up to about 283 pps. The results indicate that rate changes smaller than a major third do not elicit distinguishable auditory perceptions in electrical hearing. The absence of a difference between apical and basal electrode locations indicates that a reduction of the rate/place mismatch does not improve discrimination performance. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Munich, Dept Otorhinolaryngol, D-81377 Munich, Germany. RP Baumann, U (reprint author), Univ Munich, Dept Otorhinolaryngol, Marchioninistr 15, D-81377 Munich, Germany. EM uwe.baumann@med.uni-muenchen.de CR Baumann U, 2004, EAR HEARING, V25, P275, DOI 10.1097/00003446-200406000-00008 Berlin CI, 2003, PEDIATR CLIN N AM, V50, P331, DOI 10.1016/S0031-3955(03)00031-2 Carlyon RP, 2002, J ACOUST SOC AM, V112, P1009, DOI 10.1121/1.1496766 FASTL H, 1981, ACUSTICA, V49, P77 Fearn R., 1999, Acoustics Australia, V27 FORMBY C, 1985, J ACOUST SOC AM, V78, P70, DOI 10.1121/1.392456 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 HOCHMAIRDESOYER IJ, 1983, ANN NY ACAD SCI, V405, P295, DOI 10.1111/j.1749-6632.1983.tb31642.x Kaernbach C, 2001, J ACOUST SOC AM, V110, P1039, DOI 10.1121/1.1381535 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay CM, 1999, J ACOUST SOC AM, V105, P347, DOI 10.1121/1.424553 MOORE BCJ, 1973, J ACOUST SOC AM, V54, P610, DOI 10.1121/1.1913640 MOORE BCJ, 1989, J ACOUST SOC AM, V86, P1722, DOI 10.1121/1.398603 Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941 MOORE BCJ, 1995, AUDITORY FREQUENCY S, P407 MOORE BCJ, 1992, J ACOUST SOC AM, V91, P2881, DOI 10.1121/1.402925 SHACKLETON TM, 1994, J ACOUST SOC AM, V95, P3529, DOI 10.1121/1.409970 SHANNON RV, 1990, J ACOUST SOC AM, V88, P741, DOI 10.1121/1.399777 SIMON HJ, 1993, EAR HEARING, V14, P190, DOI 10.1097/00003446-199306000-00006 TOWNSHEND B, 1987, J ACOUST SOC AM, V82, P106, DOI 10.1121/1.395554 TURNER CW, 1982, J SPEECH HEAR RES, V25, P34 TYLER RS, 1983, J ACOUST SOC AM, V74, P1190, DOI 10.1121/1.390043 VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 vanHoesel RJM, 1997, J ACOUST SOC AM, V102, P495, DOI 10.1121/1.419611 Wagener K, 1999, Z AUDIOL, V38, P44 Wagener K, 1999, Z AUDIOL, V38, P4 Wagener K., 1999, Z AUDIOL, V38, P86 WIER CC, 1977, J ACOUST SOC AM, V61, P178, DOI 10.1121/1.381251 WILSON BS, 1997, 8 NIH WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5 Zierhofer C. M., 1995, IEEE Transactions on Rehabilitation Engineering, V3, DOI 10.1109/86.372900 Zwicker E, 1999, PSYCHOACOUSTICS FACT NR 35 TC 22 Z9 22 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 49 EP 57 DI 10.1016/j.heares.2004.06.008 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700008 PM 15464301 ER PT J AU Takemura, K Komeda, M Yagi, M Himeno, C Izumikawa, M Doi, T Kuriyama, H Miller, JM Yamashita, T AF Takemura, K Komeda, M Yagi, M Himeno, C Izumikawa, M Doi, T Kuriyama, H Miller, JM Yamashita, T TI Direct inner ear infusion of dexamethasone attenuates noise-induced trauma in guinea pig SO HEARING RESEARCH LA English DT Article DE steroid; drug delivery system; noise-induced hearing loss; cochlea; guinea pig; osmotic pump; auditory brainstem response ID INDUCED HEARING-LOSS; COCHLEAR BLOOD-FLOW; HAIR CELL LOSS; LASER DOPPLER MEASUREMENTS; NITRIC-OXIDE SYNTHASE; ACOUSTIC TRAUMA; GLUCOCORTICOID RECEPTORS; NEUROTROPHIC FACTOR; LIPID-PEROXIDATION; AMINOGLYCOSIDE OTOTOXICITY AB The protective effect of dexamethasone (DEX) against noise-induced trauma, as reflected in hair cell destruction and elevation in auditory brainstem response (ABR) sensitivity, was assessed in guinea pigs. The animals were administered DEX (1, 10, 100, and 1000 ng/ml) or artificial perilymph (AP) via a mini-osmotic pump directly into scala tympani and, on the fourth day after pump implantation, exposed to 120 dB SPL octave band noise, centered at 4 kHz, for 24 h. Animals receiving DEX demonstrated a dose-dependent reduction in noise-induced outer hair cell loss (significant at 1, 10 and 100 ng/ml DEX animals compared to AP control animals) and a similar attenuation of the noise-induced ABR threshold shifts, observed 7 days following exposure (significant at 100 ng/ml DEX animals compared to AP control animals). These physiological and morphological results indicate that direct infusion of DEX into the perilymphatic space has protective effects against noise-induced trauma in the guinea pig cochlea. (C) 2004 Elsevier B.V. All rights reserved. C1 Kansai Med Univ, Dept Otolaryngol, Moriguchi, Osaka 5708507, Japan. Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Karolinska Inst, Dept Otolaryngol, Stockholm, Sweden. RP Takemura, K (reprint author), Kansai Med Univ, Dept Otolaryngol, Fumizono Cho 10-15, Moriguchi, Osaka 5708507, Japan. EM takemura@takii.kmu.ac.jp CR Attanasio G, 2001, ACTA OTO-LARYNGOL, V121, P465, DOI 10.1080/000164801300366598 BALLARD PL, 1974, ENDOCRINOLOGY, V94, P998 BARNES PJ, 1993, TRENDS PHARMACOL SCI, V14, P436, DOI 10.1016/0165-6147(93)90184-L Baxter J.D., 1979, GLUCOCORTICOID HORMO, P1 BOHNE BA, 1983, HEARING RES, V11, P41, DOI 10.1016/0378-5955(83)90044-8 BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T DeRijk R, 1997, J CLIN ENDOCR METAB, V82, P2182, DOI 10.1210/jc.82.7.2182 Erichsen S, 1996, HEARING RES, V100, P143, DOI 10.1016/0378-5955(96)00105-0 Fechner FP, 1998, J COMP NEUROL, V400, P299, DOI 10.1002/(SICI)1096-9861(19981026)400:3<299::AID-CNE1>3.0.CO;2-3 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUSTAFSSON JA, 1987, ENDOCR REV, V8, P185 HAYNES BF, 1981, ARTHRITIS RHEUM, V24, P501, DOI 10.1002/art.1780240308 Himeno C, 2002, HEARING RES, V167, P61, DOI 10.1016/S0378-5955(02)00345-3 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 HU BH, 1995, HEARING RES, V89, P69, DOI 10.1016/0378-5955(95)00122-5 Itoh A, 1991, Acta Otolaryngol Suppl, V481, P617 Jager W, 2000, EXP BRAIN RES, V134, P426, DOI 10.1007/s002210000470 Kakigi A, 2002, HEARING RES, V166, P54, DOI 10.1016/S0378-5955(01)00412-9 KANZAKI J, 1993, ORL J OTO-RHINO-LARY, V55, P24 KOLLS J, 1994, P SOC EXP BIOL MED, V205, P220 KONISHI T, 1979, HEARING RES, V1, P325, DOI 10.1016/0378-5955(79)90004-2 Kristian T, 1998, STROKE, V29, P705 Lalwani AK, 1996, GENE THER, V3, P588 Lamm K, 1996, Audiol Neurootol, V1, P148 Lefebvre PP, 2002, AUDIOL NEURO-OTOL, V7, P165, DOI 10.1159/000058304 LIBERMAN MC, 1979, ACTA OTO-LARYNGOL, V88, P161, DOI 10.3109/00016487909137156 LIBERMAN MC, 1987, HEARING RES, V26, P65, DOI 10.1016/0378-5955(87)90036-0 LIM DJ, 1971, ARCHIV OTOLARYNGOL, V94, P294 Maass B, 1981, Adv Otorhinolaryngol, V27, P14 Mattson MP, 1996, RESTOR NEUROL NEUROS, V9, P191, DOI 10.3233/RNN-1996-9401 MCCABE BF, 1979, ANN OTO RHINOL LARYN, V88, P585 MCEWEN BS, 1979, GLUCOCORTICOID HORMO, P467 Miller J.H., 2001, NOISE INDUCED HEARIN, P215 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 Mills EJ, 2002, J ALTERN COMPLEM MED, V8, P207, DOI 10.1089/107555302317371514 Nagura M, 1999, EUR J PHARMACOL, V366, P47, DOI 10.1016/S0014-2999(98)00881-4 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X OFFNER FF, 1987, HEARING RES, V29, P117, DOI 10.1016/0378-5955(87)90160-2 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohinata Y, 2003, BRAIN RES, V966, P265, DOI 10.1016/S0006-8993(02)04205-1 Ohinata Y, 2000, HEARING RES, V146, P28, DOI 10.1016/S0378-5955(00)00096-4 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 PACK AK, 1999, ASS RES OT ABS, P150 Parnes LS, 1999, LARYNGOSCOPE, V109, P1, DOI 10.1097/00005537-199907001-00001 PERLMAN H B, 1962, Acta Otolaryngol, V54, P99, DOI 10.3109/00016486209126927 PITOVSKI DZ, 1994, HEARING RES, V77, P216, DOI 10.1016/0378-5955(94)90269-0 Prieskorn DM, 2000, HEARING RES, V140, P212, DOI 10.1016/S0378-5955(99)00193-8 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Pujol R, 1999, ANN NY ACAD SCI, V884, P249, DOI 10.1111/j.1749-6632.1999.tb08646.x QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 QUIRK WS, 1995, AM J OTOL, V16, P322 RADOMSKI MW, 1990, P NATL ACAD SCI USA, V87, P10043, DOI 10.1073/pnas.87.24.10043 RAPHAEL Y, 1991, HEARING RES, V51, P173, DOI 10.1016/0378-5955(91)90034-7 RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 ROBERTSON D, 1983, HEARING RES, V9, P263, DOI 10.1016/0378-5955(83)90031-X ROBERTSON D, 1980, HEARING RES, V3, P167, DOI 10.1016/0378-5955(80)90044-1 Rothwell NJ, 1997, BRIT J PHARMACOL, V121, P841, DOI 10.1038/sj.bjp.0701248 Ruan RS, 1999, NEUROREPORT, V10, P2067, DOI 10.1097/00001756-199907130-00014 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P299, DOI 10.1121/1.392491 SCHEIBE F, 1990, EUR ARCH OTO-RHINO-L, V247, P84 SCHEIBE F, 1992, HEARING RES, V63, P19, DOI 10.1016/0378-5955(92)90069-Y SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Shea JJ, 1996, OTOLARYNG CLIN N AM, V29, P353 Shinohara T, 2002, P NATL ACAD SCI USA, V99, P1657, DOI 10.1073/pnas.032677999 Shirwany NA, 1998, AM J OTOL, V19, P230 Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 Silverstein H, 1998, AM J OTOL, V19, P196 SLEPECKY N, 1986, HEARING RES, V22, P307, DOI 10.1016/0378-5955(86)90107-3 SLEPECKY N, 1981, ARCH OTO-RHINO-LARYN, V230, P273, DOI 10.1007/BF00456329 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 SPOENDLI.H, 1971, ACTA OTO-LARYNGOL, V71, P166, DOI 10.3109/00016487109125346 Suzuki M, 2003, NEUROREPORT, V14, P1951, DOI 10.1097/01.wnr.0000090584.35425.66 Takahashi K, 1996, ACTA OTO-LARYNGOL, V116, P209, DOI 10.3109/00016489609137825 TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Terunuma Tsumoru, 2003, Brain Res Mol Brain Res, V120, P65 THORNE PR, 1987, HEARING RES, V27, P1, DOI 10.1016/0378-5955(87)90021-9 Tolomeo JA, 1997, BIOPHYS J, V73, P2241 Tuor UI, 1997, NEUROSCI BIOBEHAV R, V21, P175, DOI 10.1016/S0149-7634(96)00007-3 TUOR UI, 1993, BRAIN RES, V604, P165, DOI 10.1016/0006-8993(93)90364-S Wilckens T, 1997, IMMUNOL TODAY, V18, P418, DOI 10.1016/S0167-5699(97)01111-0 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YAMASHITA D, 2003, ASS RES OTOLARYNGOL, P174 Yamasoba T, 1998, BRAIN RES, V784, P82, DOI 10.1016/S0006-8993(97)01156-6 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 ZUO J, 1995, ACTA OTO-LARYNGOL, V115, P497, DOI 10.3109/00016489509139355 NR 91 TC 74 Z9 77 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 58 EP 68 DI 10.1016/j.heares.2004.06.003 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700009 PM 15464302 ER PT J AU Yang, WP Henderson, D Hu, BH Nicotera, TM AF Yang, WP Henderson, D Hu, BH Nicotera, TM TI Quantitative analysis of apoptotic and necrotic outer hair cells after exposure to different levels of continuous noise SO HEARING RESEARCH LA English DT Article DE apoptosis; necrosis; outer hair cell; noise; chinchilla ID GUINEA-PIG; CHINCHILLA COCHLEA; INTENSE NOISE; IMPULSE NOISE; CASPASE; NECROSIS; INJURY AB We have reported that by 2 days after noise exposure the size of cochlear lesion was expanding by outer hair cells (OHCs) dying either by apoptosis or necrosis [Hear. Res. 166 (2002) 62]. The current study was designed to compare the prevalence of the two cell death pathways as a function of time after exposure to noises of different levels. Chinchillas were exposed to a narrow band noise at either 104 or 108 dB SPL for I h. At three time points (1, 4 and 30 days) after the noise exposure, the numbers of missing, apoptotic and necrotic CHCs in the cochleas were identified and documented with a combination of TUNEL, caspase-3 and propidium iodide labeling. The subjects exposed to the 108-dB noise showed significantly more apoptotic OHCs than necrotic OHCs in the cochleas examined at days 1 and 4 after the noise exposure. By day 30, apoptotic and necrotic pathologies continued, although in small quantity, with no significant difference in quantity between two types of cell death. The subjects exposed to the 104-dB noise showed a significant difference in the numbers of apoptotic and necrotic OHCs at day I after the noise exposure, whereas the difference became statistically insignificant at day 4 and day 30 after the noise exposure. The results of the study indicate that the early expansion of cochlear lesion is attributed primarily to apoptosis, whereas the later stage of lesion expansion is likely the result of an equal contribution from apoptosis and necrosis. (C) 2004 Elsevier B.V. All rights reserved. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Roswell Pk Canc Inst, Dept Mol & Cellular Biophys, Buffalo, NY 14263 USA. RP Hu, BH (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 137 Cary Hall,3435 Main St, Buffalo, NY 14214 USA. EM bhu@acsu.buffalo.edu CR Bohne B.A., 1976, EFFECTS NOISE HEARIN, P41 Eldadah BA, 2000, J NEUROTRAUM, V17, P811, DOI 10.1089/neu.2000.17.811 FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P81, DOI 10.3109/00016488809107374 HAMERNIK RP, 1974, J ACOUST SOC AM, V55, P117, DOI 10.1121/1.1928141 HAMERNIK RP, 1984, HEARING RES, V13, P229, DOI 10.1016/0378-5955(84)90077-7 Heatwole V M, 1999, Methods Mol Biol, V115, P141 Hu BH, 1997, HEARING RES, V110, P209, DOI 10.1016/S0378-5955(97)00075-0 Hu BH, 2000, ACTA OTO-LARYNGOL, V120, P19, DOI 10.1080/000164800760370774 Hu BH, 2002, HEARING RES, V166, P62, DOI 10.1016/S0378-5955(02)00286-1 Leist M, 1997, J EXP MED, V185, P1481, DOI 10.1084/jem.185.8.1481 MAJNO G, 1995, AM J PATHOL, V146, P3 Nicotera Pierluigi, 1998, Toxicology Letters (Shannon), V102-103, P139, DOI 10.1016/S0378-4274(98)00298-7 Nicotera T., 2001, NOISE INDUCED HEARIN, P99 Nicotera TM, 2003, JARO-J ASSOC RES OTO, V4, P466, DOI 10.1007/s10162-002-3038-2 Pirvola U, 2000, J NEUROSCI, V20, P43 SAUNDERS JC, 1985, J ACOUST SOC AM, V78, P833, DOI 10.1121/1.392915 Shizuki K, 2002, NEUROSCI LETT, V320, P73, DOI 10.1016/S0304-3940(02)00059-9 Takahashi A, 1999, INT J HEMATOL, V70, P226 Thornberry NA, 1998, SCIENCE, V281, P1312, DOI 10.1126/science.281.5381.1312 NR 19 TC 54 Z9 65 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 69 EP 76 DI 10.1016/j.heares.2004.04.015 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700010 PM 15464303 ER PT J AU Okamoto, H Ross, B Kakigi, R Kubo, T Pantev, C AF Okamoto, H Ross, B Kakigi, R Kubo, T Pantev, C TI N1m recovery from decline after exposure to noise with strong spectral contrasts SO HEARING RESEARCH LA English DT Article DE auditory evoked response; habituation; stimulus specific adaptation; lateral inhibition; auditory cortex; MEG ID HUMAN AUDITORY-CORTEX; TEMPORAL INTEGRATION; HABITUATION; RESPONSES; FREQUENCY; ACTIVATION; INTENSITY; HEARING; STIMULI; FIELDS AB Comb-filtered noise (CFN, derived from white noise by suppressing regularly spaced frequency regions) was presented for 3 s followed by two types of test stimuli. One test stimulus (SB) was comprised of spectra centered in the stop-band regions of the CFN and the other test stimulus (PB) of spectra centered in the band pass regions of the CFN. Magnetoencephalographically recorded N1m responses evoked by SB stimuli were decreased relative to the N1m response evoked by PB stimuli. This effect was maximal when the interval between the CFN and test stimuli was short (0.5 s) but was detected at intervals up to 2 s. The results suggest lateral inhibition in the auditory cortex and point to a decay of inhibition lasting on the order of seconds. (C) 2004 Elsevier B.V. All rights reserved. C1 Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, Toronto, ON, Canada. Natl Inst Physiol Sci, Dept Biol Control Syst, Div Sensori Motor Integrat, Okazaki, Aichi, Japan. Osaka Univ, Sch Med, Dept Otorhinolaryngol & Sensory Organ Surg, Osaka, Japan. Univ Munster Hosp, Inst Biomagnet & Biosignalanal, D-48129 Munster, Germany. RP Pantev, C (reprint author), Baycrest Ctr Geriatr Care, Rotman Res Inst Neurosci, Toronto, ON, Canada. EM pantev@uni-muenster.de RI Okamoto, Hidehiko/A-7934-2008 OI Okamoto, Hidehiko/0000-0003-2799-3340 CR Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3 Bullock TH, 1997, P NATL ACAD SCI USA, V94, P1, DOI 10.1073/pnas.94.1.1 BUTLER RA, 1968, J ACOUST SOC AM, V44, P945, DOI 10.1121/1.1911233 Christoffersen GRJ, 1997, PROG NEUROBIOL, V53, P45, DOI 10.1016/S0301-0082(97)00031-2 DAVIS H, 1966, ELECTROEN CLIN NEURO, V21, P105, DOI 10.1016/0013-4694(66)90118-0 Eddins AC, 1999, J SPEECH LANG HEAR R, V42, P516 FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B GOLDSTEI.MH, 1968, J ACOUST SOC AM, V43, P444, DOI 10.1121/1.1910851 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 JOUTSINIEMI SL, 1989, AUDIOLOGY, V28, P325 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 LU ZL, 1992, BRAIN RES, V572, P236, DOI 10.1016/0006-8993(92)90475-O NAATANEN R, 1988, ELECTROEN CLIN NEURO, V69, P523, DOI 10.1016/0013-4694(88)90164-2 Norena A, 2000, HEARING RES, V149, P24, DOI 10.1016/S0378-5955(00)00158-1 Pantev C, 1999, BRAIN RES, V842, P192, DOI 10.1016/S0006-8993(99)01835-1 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 2001, EUR J NEUROSCI, V19, P2337 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 RITTER W, 1968, ELECTROEN CLIN NEURO, V25, P550, DOI 10.1016/0013-4694(68)90234-4 Ross B, 2002, HEARING RES, V165, P68, DOI 10.1016/S0378-5955(02)00285-X SAMS M, 1994, HEARING RES, V75, P67, DOI 10.1016/0378-5955(94)90057-4 THOMPSON RF, 1966, PSYCHOL REV, V73, P16, DOI 10.1037/h0022681 Ulanovsky N, 2003, NAT NEUROSCI, V6, P391, DOI 10.1038/nn1032 Wiegrebe L, 1996, HEARING RES, V100, P171, DOI 10.1016/0378-5955(96)00111-6 ZWICKER E, 1964, J ACOUST SOC AM, V36, P2413, DOI 10.1121/1.1919373 NR 27 TC 21 Z9 21 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 77 EP 86 DI 10.1016/j.heares.2004.04.017 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700011 PM 15464304 ER PT J AU Piatto, VB Bertollo, EMG Sartorato, EL Maniglia, JV AF Piatto, VB Bertollo, EMG Sartorato, EL Maniglia, JV TI Prevalence of the GJB2 mutations and the del(GJB6-D13S1830) mutation in Brazilian patients with deafness SO HEARING RESEARCH LA English DT Article DE hearing loss; molecular analysis; connexin 26; 35delG mutation; del(GJB6-D13S1830) mutation ID CONNEXIN 26 GENE; AUTOSOMAL-RECESSIVE DEAFNESS; NONSYNDROMIC HEARING-LOSS; SENSORINEURAL DEAFNESS; PRELINGUAL DEAFNESS; GREEK POPULATION; 35DELG MUTATION; UNITED-STATES; FREQUENCY; DFNB1 AB Mutations in the GJB2 gene are the most common cause of sensorineural non-syndromic deafness in different populations. One specific mutation, 35delG, has accounted for the majority of the mutations detected in the GJB2 gene in many countries. The aim of this study was to determine the prevalence of GJB2 mutations and the del(GJB6-D13S1830) mutation in non-syndromic deaf Brazilians. The 33 unrelated probands were examined by clinical evaluation to exclude syndromic forms of deafness. Mutation analysis in the GJB2 gene and the testing for the del(GJB6-Dl3S1830) were performed in both the patients and their family members. The 35delG mutation was found in nine of the probands or in 14 of the mutated alleles. The V371 mutation and the del(GJB6-D13S1830) mutation were also found in two patients, both are compound heterozygote with 35delG mutation. These findings strengthen the importance of genetic diagnosis, providing early treatment, and genetic counseling of deaf patients. (C) 2004 Elsevier B.V. All rights reserved. C1 FAMERP, BR-15025390 Sao Paulo, Brazil. UNICAMP, CBMEG, BR-13083970 Sao Paulo, Brazil. RP Piatto, VB (reprint author), FAMERP, Rua Frei Baltazar,415 Boa Vista, BR-15025390 Sao Paulo, Brazil. EM vabp@bol.com.br; eny.goloni@famerp.br; sartor@unicamp.br; diretoriageral@famerp.br RI Piatto, Vania/F-8745-2011; Goloni-Bertollo, Eny/B-8405-2012 CR Ahmad S, 1999, BIOCHEM J, V339, P247, DOI 10.1042/0264-6021:3390247 Antoniadi T, 1999, CLIN GENET, V55, P381 Cohn ES, 1999, AM J MED GENET, V89, P130, DOI 10.1002/(SICI)1096-8628(19990924)89:3<130::AID-AJMG3>3.3.CO;2-D Cohn ES, 1999, PEDIATRICS, V103, P546, DOI 10.1542/peds.103.3.546 Cryns K, 2004, J MED GENET, V41, P147, DOI 10.1136/jmg.2003.013896 del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205 Denoyelle F, 1999, LANCET, V353, P1298, DOI 10.1016/S0140-6736(98)11071-1 Engel-Yeger B, 2002, HEARING RES, V163, P93, DOI 10.1016/S0378-5955(01)00386-0 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Frei K, 2002, EUR J HUM GENET, V10, P427, DOI 10.1038/sj.ejhg.5200826 Gasparini P, 1997, EUR J HUM GENET, V5, P83 Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406 Green GE, 1999, JAMA-J AM MED ASSOC, V281, P2211, DOI 10.1001/jama.281.23.2211 Grifa A, 1999, NAT GENET, V23, P16 Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kumar NM, 1999, NOVART FDN SYMP, V219, P6 Lautermann J, 1999, DEV GENET, V25, P306, DOI 10.1002/(SICI)1520-6408(1999)25:4<306::AID-DVG4>3.0.CO;2-R Lerer I, 2001, Hum Mutat, V18, P460, DOI 10.1002/humu.1222 Liu XZ, 2002, HUM GENET, V111, P394, DOI 10.1007/s00439-002-0811-6 MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504 Marziano NK, 2003, HUM MOL GENET, V12, P805, DOI 10.1093/hmg/ddg076 Mueller RF, 1999, INT J PEDIATR OTORHI, V50, P3, DOI 10.1016/S0165-5876(99)00242-6 Mustapha M, 2001, J Med Genet, V38, pE36, DOI 10.1136/jmg.38.10.e36 Najmabadi Hossein, 2002, Hum Mutat, V19, P572, DOI 10.1002/humu.9033 Nance WE, 2003, MENT RETARD DEV D R, V9, P109, DOI 10.1002/mrdd.10067 Oliveira CA, 2002, CLIN GENET, V61, P354, DOI 10.1034/j.1399-0004.2002.610506.x Oliveira CA, 2004, HUM BIOL, V76, P313, DOI 10.1353/hub.2004.0035 Pallares-Ruiz N, 2002, EUR J HUM GENET, V10, P72, DOI 10.1038/sj/ejhg/5200762 Pampanos A, 2002, INT J PEDIATR OTORHI, V65, P101, DOI 10.1016/S0165-5876(02)00177-5 Pandya A, 2003, GENET MED, V5, P295, DOI 10.1097/01.GIM.0000078026.01140.68 Petit C, 2001, ANNU REV GENET, V35, P589, DOI 10.1146/annurev.genet.35.102401.091224 SANGER F, 1975, J MOL BIOL, V94, P444 Sartorato EL, 2000, CLIN GENET, V58, P339, DOI 10.1034/j.1399-0004.2000.580415.x Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8 Shahin H, 2002, HUM GENET, V110, P284, DOI 10.1007/s00439-001-0674-2 Simoes AM, 1992, J PEDIATR, V68, P254 Sobe T, 2000, HUM GENET, V106, P50, DOI 10.1007/s004390051009 Stevenson VA, 2003, GENET TEST, V7, P151, DOI 10.1089/109065703322146867 Van Camp G, 2002, Acta Otorhinolaryngol Belg, V56, P337 Walch C, 2000, INT J PEDIATR OTORHI, V53, P31, DOI 10.1016/S0165-5876(00)00307-4 Wilcox SA, 2000, HUM GENET, V106, P399, DOI 10.1007/s004390000273 World Health Organization, 1991, REP INF WORK GROUP P WU BL, 2003, AM J MED GENET, V212, P102 Zelante L, 1997, HUM MOL GENET, V6, P1605, DOI 10.1093/hmg/6.9.1605 NR 46 TC 14 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 87 EP 93 DI 10.1016/j.heares.2004.05.007 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700012 ER PT J AU Harding, GW Bohne, BA AF Harding, GW Bohne, BA TI Temporary DPOAE level shifts, ABR threshold shifts and histopathological damage following below-critical-level noise exposures SO HEARING RESEARCH LA English DT Article DE DPOAE; ABR; noise; organ of Corti; histopathology; chinchilla ID PRODUCT OTOACOUSTIC EMISSIONS; SENSORY CELL LOSS; CHINCHILLA-COCHLEA; DISTORTION PRODUCTS; ACOUSTIC TRAUMA; SOUND; DEPENDENCE; AMPLITUDE; HEARING; RABBIT AB DPOAE temporary level shift (TLS) at 2f(1)-f(2) and f(2) -f(1), ABR temporary threshold shift (TTS), and detailed histopathological findings were compared in three groups of chinchillas that were exposed for 24 It to an octave band of noise (OBN) centered at 4 kHz with a sound pressure level (SPL) of 80, 86 or 92 dB (n = 3,4,6). DPOAE levels at 39 frequencies from f(1) = 0.3 to 16 kHz (f(2)/f(1) = 1.23; L-2 and L-1 = 55, 65 and 75 dB, equal and differing by 10 dB) and ABR thresholds at 13 frequencies from 0.5 to 20 kHz were collected pre- and immediately post-exposure. The functional data were converted to pre- minus post-exposure shift and overlaid upon the cytocochleogram of cochlear damage using the frequency-place map for the chinchilla. The magnitude and frequency place of components in the 2f(1) -f(2) TLS patterns were determined and group averages for each OBN SPL and L-1, L-2 combination were calculated. The f(2) -f(1) TLS was also examined in ears with focal lesions equal to or greater than 0.4 mm. The 2f(1) -f(2) TLS (plotted at f(1)) and TTS aligned with the extent and location of damaged supporting cells. The TLS patterns over frequency had two features which were unexpected: (1) a peak at about a half octave above the center of the OBN with a valley just above and below it and (2) a peak (often showing enhancement) at the apical boundary of the supporting-cell damage. The magnitudes of the TLS and TTS generally increased with increasing SPL of the exposure. The peaks of the TLS and TTS, as well as the peaks and valleys of the TLS pattern moved apically as the SPL of the OBN was increased. However, there was little consistency in the pattern relations with differing L1, L-2 combinations. In addition, neither the 2f(1) -f(2) nor f(2)-f(1) TLS for any L-1, L-2 combination reliably detected focal lesions (100% OHC loss) from 0.4 to 1.2 mm in size. Often, the TLS went in the opposite direction from what would be expected at focal lesions. Recovery from TLS and TTS was also examined in seven animals. Both TLS and TTS recovered partially or completely, the magnitude depending upon exposure SPL. (C) 2004 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Harding, GW (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, POB 8115,660 S Euclid, St Louis, MO 63110 USA. EM hardingg@wustl.edu RI Bohne, Barbara/A-9113-2008 OI Bohne, Barbara/0000-0003-3874-7620 CR AHMAD M, 2002, HEARING RES, V175, P82 Avan P, 2003, J ACOUST SOC AM, V113, P430, DOI 10.1121/1.1525285 BOHNE BA, 1990, HEARING RES, V48, P79, DOI 10.1016/0378-5955(90)90200-9 BOHNE BA, 1987, HEARING RES, V29, P251, DOI 10.1016/0378-5955(87)90172-9 BOHNE BA, 1986, J ACOUST SOC AM, V80, P1729, DOI 10.1121/1.394285 BOHNE BA, 1993, HEARING RES, V71, P114, DOI 10.1016/0378-5955(93)90027-X BOHNE BA, 2000, AM J OTOL, V21, P502 BOHNE BA, 1976, ANN OTO RHINOL LARYN, V85, P711 CANLON B, 1995, HEARING RES, V84, P112, DOI 10.1016/0378-5955(95)00020-5 CARDER HM, 1972, J SPEECH HEAR RES, V15, P603 Chang KW, 1996, HEARING RES, V96, P1, DOI 10.1016/0378-5955(95)00225-1 Cianfrone G, 1998, Scand Audiol Suppl, V48, P37 CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1 CODY AR, 1981, J ACOUST SOC AM, V70, P707, DOI 10.1121/1.386906 Davis B, 2004, HEARING RES, V187, P12, DOI 10.1016/S0378-5955(03)00339-3 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 Fahey PF, 2000, J ACOUST SOC AM, V108, P1786, DOI 10.1121/1.1308048 Frank G, 1997, HEARING RES, V113, P57, DOI 10.1016/S0378-5955(97)00131-7 HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4 Harding GW, 2002, HEARING RES, V174, P158, DOI 10.1016/S0378-5955(02)00653-6 Harding GW, 2004, J ACOUST SOC AM, V115, P2207, DOI 10.1121/1.1689961 Howard MA, 2003, J ACOUST SOC AM, V114, P279, DOI 10.1121/1.1577555 Liberman MC, 1982, NEW PERSPECTIVES NOI, P105 Lukashkin AN, 2001, J ACOUST SOC AM, V110, P3097, DOI 10.1121/1.1417525 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 Martinez Cachero JM, 2002, INSULA, V57, P25 Nordmann AS, 2000, HEARING RES, V139, P13, DOI 10.1016/S0378-5955(99)00163-X Puria S, 1996, J ACOUST SOC AM, V99, P500, DOI 10.1121/1.414508 Rajan R, 2001, J NEUROPHYSIOL, V86, P3073 Raveh E, 1998, J OTOLARYNGOL, V27, P354 Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 Wang Y, 2002, JARO, V3, P248, DOI 10.1007/s101620020028 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 Zheng XY, 1997, HEARING RES, V107, P147, DOI 10.1016/S0378-5955(97)00031-2 Zheng XY, 2000, HEARING RES, V143, P14, DOI 10.1016/S0378-5955(99)00217-8 NR 36 TC 11 Z9 12 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 94 EP 108 DI 10.1016/j.heares.2004.03.011 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700013 PM 15464306 ER PT J AU Soeta, Y Hotehama, T Nakagawa, S Tonoike, M Ando, Y AF Soeta, Y Hotehama, T Nakagawa, S Tonoike, M Ando, Y TI Auditory evoked magnetic fields in relation to interaural cross-correlation of band-pass noise SO HEARING RESEARCH LA English DT Article DE magnetoencephalography (MEG); auditory evoked response; N1m; interaural crosscorrelation function ID MASKING-LEVEL DIFFERENCES; BINAURAL INTERACTION; CORRELATION MODEL; SOUND FIELDS; SIGNALS; LATERALIZATION; POTENTIALS; FREQUENCY; TONES AB Auditory evoked magnetic fields of the human brain were analyzed in relation to the magnitude of the inter-aural cross-correlation (IACC). IACC of the stimuli was controlled by mixing diotic bandpass and dichotic, independent bandpass noise in appropriate ratios. The auditory stimuli were binaurally delivered through plastic tubes and earpieces inserted into ear canals of the nine volunteers with normal hearing who took part in this study. All source signals had the same sound pressure level. Auditory evoked fields (AEFs) were recorded using a neuromagnetometer in a magnetically shielded room. Combinations of a reference stimulus (IACC = 1.0) and test stimuli (IACC = 0.2, 0.6, 0.85) were presented alternately at a constant interstimulus interval of 0.5 s and MEGs recorded. The results showed that the N1m latencies were not affected by IACC; however, the peak amplitude of N1m significantly decreased with increasing TACC. (C) 2004 Elsevier B.V. All rights reserved. C1 AIST, Inst Human Sci & Biomed Engn, Ikeda, Osaka 5638577, Japan. Kobe Univ, Grad Sch Sci & Technol, Kobe, Hyogo 6578501, Japan. RP Soeta, Y (reprint author), AIST, Inst Human Sci & Biomed Engn, 1-8-31 Midorigaoka, Ikeda, Osaka 5638577, Japan. EM y.soeta@aist.go.jp CR Ando Y., 1998, ARCHITECTURAL ACOUST ANDO Y, 1986, J ACOUST SOC AM, V80, P833, DOI 10.1121/1.393906 Ando Y., 1991, Acoustics Letters, V15 Ando Y., 1987, Journal of the Acoustical Society of Japan (E), V8 ANDO Y, 1977, J ACOUST SOC AM, V62, P1436, DOI 10.1121/1.381661 BARRON M, 1971, J SOUND VIB, V15, P475, DOI 10.1016/0022-460X(71)90406-8 BLAUERT J, 1986, J ACOUST SOC AM, V80, P533, DOI 10.1121/1.394048 BLAUERT J, 1986, J ACOUST SOC AM, V79, P806, DOI 10.1121/1.393471 Blauert J., 1983, SPATIAL HEARING PSYC COLBURN HS, 1977, J ACOUST SOC AM, V61, P525, DOI 10.1121/1.381294 DAMASKE P, 1972, ACUSTICA, V27, P232 DURLACH NI, 1964, J ACOUST SOC AM, V36, P1613, DOI 10.1121/1.1919254 DURLACH NI, 1986, J ACOUST SOC AM, V79, P1548, DOI 10.1121/1.393681 Jeffress L. A., 1948, J COMP PHYSIOL PSYCH, V61, P468 KAUKORANTA E, 1986, EXP BRAIN RES, V63, P60 KNUUTILA JET, 1993, IEEE T MAGN, V29, P3315, DOI 10.1109/20.281163 KUROZUMI K, 1983, J ACOUST SOC AM, V74, P1726, DOI 10.1121/1.390281 LICKLIDER JCR, 1948, J ACOUST SOC AM, V20, P150, DOI 10.1121/1.1906358 LINDEMANN W, 1986, J ACOUST SOC AM, V80, P1608, DOI 10.1121/1.394325 MCEVOY LK, 1991, EAR HEARING, V12, P389, DOI 10.1097/00003446-199112000-00003 MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z OSMAN E, 1975, J ACOUST SOC AM, V57, P939, DOI 10.1121/1.380537 OSMAN E, 1971, J ACOUST SOC AM, V50, P1494, DOI 10.1121/1.1912803 PALMER AR, 1999, J PHYSL, V417, P722 PANTEV C, 1986, AUDIOLOGY, V25, P54 Saberi K, 1998, NEURON, V21, P789, DOI 10.1016/S0896-6273(00)80595-4 YIN TCT, 1987, J NEUROPHYSIOL, V58, P562 Yvert B, 1998, NEUROREPORT, V9, P1115, DOI 10.1097/00001756-199804200-00029 NR 28 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 109 EP 114 DI 10.1016/j.heares.2004.07.002 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700014 PM 15464307 ER PT J AU Frei, K Ramsebner, R Lucas, T Baumgartner, WD Schoefer, C Wachtler, FJ Kirschhofer, K AF Frei, K Ramsebner, R Lucas, T Baumgartner, WD Schoefer, C Wachtler, FJ Kirschhofer, K TI Screening for monogenetic del(GJB6-D13S1830) and digenic del(GJB6-D13S1830)/GJB2 patterns of inheritance in deaf individuals from Eastern Austria SO HEARING RESEARCH LA English DT Article DE sensorineural deafness; del(GJB6-D13S1830); GJB2; GJB6; Connexin 30; Connexin 26; Austria; mutation ID CONNEXIN 26 GENE; SYNDROMIC HEARING-LOSS; SENSORINEURAL DEAFNESS; DOMINANT DEAFNESS; GAP-JUNCTION; MUTATIONS; GJB2; VARIABILITY; IMPAIRMENT; PREVALENCE AB Genetically caused congenital deafness is a common trait affecting I in 2000 newborn children and is predominantly inherited in an autosomal recessive fashion. Genes such as the gap junction protein beta 2 (GJB2) encoding for Connexin (Cx26) and GJB6 (Cx30) are known to cause sensorineural deafness. Autosomal recessive deafness has been linked both to the monogenetic occurrence of mutated GJB2 or the GJB6 deletion del(GJB6-D13S1830) and digenic GJB2/del(GJB6-D13S1830) inheritance. Monogenetic GJB2 alterations are responsible for 25.5% of deafness in the eastern Austrian population. An additional 9.8% are heterozygous carriers of a single GJB2 mutation which is not responsible for deafness alone. Del(GJB6-D13S1830) and GJB2/ del(GJB6-D13S1830) mutations have been shown to be the second most frequent cause of deafness in different populations. To address the question of the relevance of mutations in GJB6 either as a monogenetic ora digenic GJB2/del(GJB6-D13S1830) cause of deafness in this population, 76 unrelated individuals (33 families and 43 sporadic cases) were screened using PCR strategies. Similar to studies in other hard of hearing populations with similar or lower carrier frequencies of single GJB2 mutations, the presence of del(GJB6-D13S1830) was not detected in any individual within the patient group. Data therefore exclude a digenetic association of del(GJB6-D13S1830) with heterozygous GJB2 mutations as a cause of deafness in a representative sample of the population from Eastern Austria. (C) 2004 Elsevicr B.V. All rights reserved. C1 Med Univ Vienna, Dept Otorhinolaryngol, A-1090 Vienna, Austria. Med Univ Vienna, Dept Histol & Embryol, A-1090 Vienna, Austria. Med Univ Vienna, Dept Clin Pharmacol, A-1090 Vienna, Austria. Krankenhaus Barmherzigen Bruder, Dept Otorhinolaryngol, A-1020 Vienna, Austria. RP Frei, K (reprint author), Med Univ Vienna, Dept Otorhinolaryngol, AKH-8J,Waehringer Gurtel 18-20, A-1090 Vienna, Austria. EM klemens.frei@akh-wien.ac.at CR Abe S, 2000, J MED GENET, V37, P41, DOI 10.1136/jmg.37.1.41 Bolz H, 2004, HEARING RES, V188, P42, DOI 10.1016/S0378-5955(03)00346-0 Cohen M.M., 1995, HEREDITARY HEARING L, P9 del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 del Castillo I, 2003, AM J HUM GENET, V73, P1452, DOI 10.1086/380205 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Denoyelle F, 1998, NATURE, V393, P319, DOI 10.1038/30639 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037 Frei K, 2002, EUR J HUM GENET, V10, P427, DOI 10.1038/sj.ejhg.5200826 Grifa A, 1999, NAT GENET, V23, P16 Günther Barbara, 2003, Hum Mutat, V22, P180, DOI 10.1002/humu.9167 Kelley PM, 1998, AM J HUM GENET, V62, P792, DOI 10.1086/301807 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Lerer I, 2001, Hum Mutat, V18, P460, DOI 10.1002/humu.1222 Marlin S, 2001, ARCH OTOLARYNGOL, V127, P927 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Murgia A, 1999, J MED GENET, V36, P829 Pallares-Ruiz N, 2002, EUR J HUM GENET, V10, P72, DOI 10.1038/sj/ejhg/5200762 Scott DA, 1998, HUM MUTAT, V11, P387, DOI 10.1002/(SICI)1098-1004(1998)11:5<387::AID-HUMU6>3.0.CO;2-8 TEUBNER B, 2003, HUM MOL GENET, V1, P13 Uyguner O, 2003, CLIN GENET, V64, P65, DOI 10.1034/j.1399-0004.2003.00101.x NR 23 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 115 EP 118 DI 10.1016/j.heares.2004.07.001 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700015 PM 15464308 ER PT J AU Valentine, PA Eggermont, JJ AF Valentine, PA Eggermont, JJ TI Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex SO HEARING RESEARCH LA English DT Article DE cat; cortex; single unit; multi unit; spectro-temporal receptive field ID FREQUENCY-MODULATED SOUNDS; NATURAL SOUNDS; COCHLEAR NUCLEUS; CORTICAL FIELDS; NEURONS; INHIBITION; RESPONSES; ORGANIZATION; GRASSFROG; REPRESENTATION AB The frequency-tuning curve is a static representation of the neuron's sensitivity to stimulus frequency. The temporal aspects of the frequency sensitivity can be captured in the spectro-temporal receptive field (STRF), often presented as the average spectrogram of the stimulus preceding a spike but also as the average frequency-dependent post-stimulus time histogram (PSTH). The temporal envelope of the stimulus produces considerable smoothing, and as a consequence the PSTH representation is finer-grained than the spectrogram representation. Here we compare STRFs for 1/s and 20/s single-frequency stimuli with 120/s steady-state multi-frequency stimuli for 87 recording sites in primary auditory cortex of cats. For the 672 estimated STRFs, which for multi-frequency stimuli were mostly obtained at 55 dB SPL, we found lateral inhibition in 17% of the cases, in 32% post-activation suppression, and in 51% only excitation. In 35% of the recordings the excitatory frequency-tuning curves were very similar for single and multi-frequency stimuli, in the remaining 65% the common finding was the emergence of an intensity independent bandwidth for the multi-frequency stimuli. Comparison of the 20/s and 120/s stimuli showed that the resulting increase in inhibition was strongest in the center of he STRF. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Eggermont, JJ (reprint author), Univ Calgary, Dept Physiol & Biophys, Calgary, AB, Canada. EM eggermon@ucalgary.ca CR AERTSEN AMHJ, 1980, BIOL CYBERN, V38, P235, DOI 10.1007/BF00337016 AERTSEN AMHJ, 1981, BIOL CYBERN, V42, P133, DOI 10.1007/BF00336731 ALLMAN J, 1985, ANNU REV NEUROSCI, V8, P407, DOI 10.1146/annurev.ne.08.030185.002203 Barbour DL, 2003, SCIENCE, V299, P1073, DOI 10.1126/science.1080425 Blake DT, 2002, J NEUROPHYSIOL, V88, P3409, DOI 10.1152/jn.00233.2002 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 Brosch M, 2000, CEREB CORTEX, V10, P1155, DOI 10.1093/cercor/10.12.1155 Calhoun BM, 1998, EUR J NEUROSCI, V10, P926, DOI 10.1046/j.1460-9568.1998.00102.x DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 DELGUTTE B, 1990, HEARING RES, V49, P225, DOI 10.1016/0378-5955(90)90106-Y Depireux DA, 2001, J NEUROPHYSIOL, V85, P1220 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 EGGERMONT JJ, 1983, BIOL CYBERN, V47, P103, DOI 10.1007/BF00337084 Eggermont JJ, 1999, J NEUROSCI, V19, P2780 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 EGGERMONT JJ, 1996, AUDIT NEUROSCI, V2, P76 EPPING WJM, 1985, HEARING RES, V18, P223, DOI 10.1016/0378-5955(85)90040-1 Heil P, 1998, CEREB CORTEX, V8, P125, DOI 10.1093/cercor/8.2.125 Jen PHS, 2002, HEARING RES, V168, P139, DOI 10.1016/S0378-5955(02)00369-6 Jiang D, 1996, J NEUROPHYSIOL, V75, P380 Kowalski N, 1996, J NEUROPHYSIOL, V76, P3503 Kral A, 1996, GEN PHYSIOL BIOPHYS, V15, P109 Loftus WC, 2001, J NEUROPHYSIOL, V86, P475 Machens CK, 2004, J NEUROSCI, V24, P1089, DOI 10.1523/JNEUROSCI.4445-03.2004 Miller LM, 2002, J NEUROPHYSIOL, V87, P516 NELKEN I, 1994, HEARING RES, V72, P206, DOI 10.1016/0378-5955(94)90220-8 RHODE WS, 1994, J NEUROPHYSIOL, V71, P493 Rhode WS, 2001, J ACOUST SOC AM, V110, P3140, DOI 10.1121/1.1416198 Robles L, 2001, PHYSIOL REV, V81, P1305 Rutkowski RG, 2002, AUDIOL NEURO-OTOL, V7, P214, DOI 10.1159/000063738 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Schreiner CE, 1994, AUDIT NEUROSCI, V1, P39 Schreiner CE, 2000, ANNU REV NEUROSCI, V23, P501, DOI 10.1146/annurev.neuro.23.1.501 Sen K, 2001, J NEUROPHYSIOL, V86, P1445 Suga N, 1997, J NEUROPHYSIOL, V77, P2098 Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358 Theunissen FE, 2000, J NEUROSCI, V20, P2315 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Tian B, 1998, J NEUROPHYSIOL, V79, P2629 Wehr M, 2003, NATURE, V426, P442, DOI 10.1038/nature02116 NR 41 TC 48 Z9 48 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD OCT PY 2004 VL 196 IS 1-2 BP 119 EP 133 DI 10.1016/j.heares.2004.05.011 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 864BU UT WOS:000224608700016 PM 15464309 ER PT J AU Nagy, I Bodmer, M Brors, D Bodmer, D AF Nagy, I Bodmer, M Brors, D Bodmer, D TI Early gene expression in the organ of Corti exposed to gentamicin SO HEARING RESEARCH LA English DT Article DE DNA microarray; gentamicin; hair cells; organ of corti ID HAIR-CELLS; INNER-EAR; DAMAGE; GENERATION; PROTECTION; NEURONS; CULTURE AB Studies have demonstrated different pathogenetic key factors in gentamicin-induced hair cell death. The production of reactive oxygen species (ROS), as well as apoptosis-related genes, play a critical role. However, a coordinated large-scale investigation of gene expression in the organ of Corti (OC) exposed to gentamicin has not yet been conducted. Here we used DNA microarray technology to compare the expression profile of OC exposed to gentamicin to the expression profile of untreated OC. The OCs of Sprague Dawley rats were dissected and the basal turns were cultured. Two-thirds of the explants were then exposed to 100 muM gentamicin, for 4 and 8 h, while one-third of the explants remained in culture medium alone. Gene expression was analyzed using DNA microarray technology and the dChip software package. Based on the results, the 4-h time-point was chosen for further analysis. In these assays, out of 8800 genes, 12 genes were identified on the basis of differential expression in the OC exposed to gentamicin vs. control OC. The identity of these genes suggests that the response of the OC to the gentamicin challenge involves down-regulation of specific gene families in order to alleviate ROS and N-methyl-D-aspartate (NMDA) receptor-mediated cellular stress. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Zurich Hosp, Clin Otolaryngol Head & Neck Surg, CH-8091 Zurich, Switzerland. Swiss Fed Inst Technol, ETHZ, CH-8092 Zurich, Switzerland. Univ Wurzburg, Dept Otolaryngol Head & Neck Surg, D-97080 Wurzburg, Germany. RP Bodmer, D (reprint author), Univ Zurich Hosp, Clin Otolaryngol Head & Neck Surg, Frauenklin Str 24, CH-8091 Zurich, Switzerland. EM daniel.bodmer@orl.usz.ch CR *AFFYMETRIX, 2003, GEN EUK SMALL SAMPL Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 Battaglia A, 2003, NEUROSCIENCE, V122, P1025, DOI 10.1016/j.neuroscience.2003.08.041 Cheng L, 2001, P NATL ACAD SCI USA, P31 CHOI DW, 1992, J NEUROBIOL, V23, P1261, DOI 10.1002/neu.480230915 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Ding DL, 1999, ANN NY ACAD SCI, V884, P152, DOI 10.1111/j.1749-6632.1999.tb08640.x Eisen MB, 1998, P NATL ACAD SCI USA, V95, P14863, DOI 10.1073/pnas.95.25.14863 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Huang T, 2000, INT J DEV NEUROSCI, V18, P259, DOI 10.1016/S0736-5748(99)00094-5 HUMBERT R, 1989, J BACTERIOL, V171, P1435 Liu YB, 2002, J NEUROCHEM, V80, P780, DOI 10.1046/j.0022-3042.2002.00744.x Nadol JJ, 1981, AMINOGLYCOSIDE OTOTO, P409 PIVOLA U, 2000, J NEUROSCI, V20, P43 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 PULLAN LM, 1992, J NEUROCHEM, V59, P2087 Ryan AF, 2000, P NATL ACAD SCI USA, V97, P6939, DOI 10.1073/pnas.97.13.6939 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Shulman A, 1999, ANN NY ACAD SCI, V884, P433, DOI 10.1111/j.1749-6632.1999.tb08660.x Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 Todt I, 1999, PFLUG ARCH EUR J PHY, V438, P865, DOI 10.1007/s004240051117 VANDEWAT.T, 1974, ANN OTO RHINOL LARYN, V83, P1 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 NR 23 TC 12 Z9 14 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 1 EP 8 DI 10.1016/j.heares.2004.04.010 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100001 PM 15350274 ER PT J AU Yoshino, T Sato, E Nakashima, T Nagashima, W Teranishi, MA Nakayama, A Mori, N Murakami, H Funahashi, H Imai, T AF Yoshino, T Sato, E Nakashima, T Nagashima, W Teranishi, MA Nakayama, A Mori, N Murakami, H Funahashi, H Imai, T TI The immunohistochemical analysis of pendrin in the mouse inner ear SO HEARING RESEARCH LA English DT Article DE Pendred's syndrome; pendrin; immunohistochemical analysis; inner ear; mouse ID SENSORINEURAL HEARING-LOSS; ION-TRANSPORT; GENE PDS; MUTATIONS; DEAFNESS; COCHLEA; NEURONS; COTRANSPORTER; MAINTENANCE; CONNEXINS AB Pendred's syndrome (PS) is an autosomal recessive disorder characterized by deafness and goiter, which are caused by mutations in the Pendred's syndrome gene (PDS). PDS encodes a membrane protein named pendrin that is considered to act as an anion transporter. An expression pattern of the PDS ortholog (Pds) mRNA in the auditory and vestibular systems has been reported in mice. and the localization of pendrin has been reported recently. We generated antipeptide antibodies against human pendrin, and performed immunohistochemical analysis of mouse inner cars. We detected pendrin in the endolymphatic duct and sac, and the utricle. saccule, and external sulcus. In the endolymphatic duct and sac, the expression of pendrin was apparent at the apical membrane. In addition, we detected pendrin in the spiral ligament, Claudius cells, Deiter's cells, and the spiral ganglion of the cochlea. Our results are key to defining the role of pendrin in inner ear development and elucidating the pathogenic mechanisms underlying deafness in PS. (C) 2004 Elsevier B.V. All rights reserved. C1 Nagoya Univ, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. Nagoya Univ, Dept Pathol 1, Showa Ku, Nagoya, Aichi 4668550, Japan. Nagoya Univ, Dept Pathol 2, Showa Ku, Nagoya, Aichi 4668550, Japan. Nagoya Univ, Dept Surg 2, Showa Ku, Nagoya, Aichi 4668550, Japan. RP Yoshino, T (reprint author), Nagoya Univ, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan. EM yoshinot@med.nagoya-u.ac.jp RI Teranishi, Masaaki/I-1956-2012 CR Boettger T, 2002, NATURE, V416, P874, DOI 10.1038/416874a Coucke PJ, 1999, J MED GENET, V36, P475 Coyle B, 1998, HUM MOL GENET, V7, P1105, DOI 10.1093/hmg/7.7.1105 Cremers CWRJ, 1998, INT J PEDIATR OTORHI, V45, P113, DOI 10.1016/S0165-5876(98)00123-2 Cremers CWRJ, 1998, ARCH OTOLARYNGOL, V124, P501 Dallwig R, 1999, PFLUG ARCH EUR J PHY, V437, P289, DOI 10.1007/s004240050782 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Everett LA, 1999, P NATL ACAD SCI USA, V96, P9727, DOI 10.1073/pnas.96.17.9727 Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 FERRARY E, 1998, KIDNEY INT S, V65, P98 Fritzsch B, 1998, AM J HUM GENET, V63, P1263, DOI 10.1086/302126 JOHNSEN T, 1986, ACTA OTO-LARYNGOL, V102, P239, DOI 10.3109/00016488609108673 JOHNSEN T, 1987, J LARYNGOL OTOL, V101, P1187, DOI 10.1017/S0022215100103470 Kikuchi Toshihiko, 2000, Medical Electron Microscopy, V33, P51, DOI 10.1007/s007950070001 KIM YH, 2002, AM J PHYSIOL-RENAL, V283, P744 Lefebvre PP, 2000, BRAIN RES REV, V32, P159 Li XC, 1998, NAT GENET, V18, P215, DOI 10.1038/ng0398-215 Luckermann M, 1997, J NEUROPHYSIOL, V77, P1844 LUNDQUIST PG, 1984, ULTRASTRUCTURAL ATLA, P309 Pendred V, 1896, LANCET, V2, P532 Phelps PD, 1998, CLIN RADIOL, V53, P268, DOI 10.1016/S0009-9260(98)80125-6 Pitovski DZ, 2002, HEARING RES, V171, P51, DOI 10.1016/S0378-5955(02)00352-0 Porra V, 2002, J CLIN ENDOCR METAB, V87, P1700, DOI 10.1210/jc.87.4.1700 Rabionet R, 2000, HUM MUTAT, V16, P190, DOI 10.1002/1098-1004(200009)16:3<190::AID-HUMU2>3.0.CO;2-I Reardon W, 1999, J MED GENET, V36, P595 Royaux IE, 2003, JARO, V4, P394, DOI 10.1007/s10162-002-3052-4 SCHUKNECHT H F, 1980, Annals of Otology Rhinology and Laryngology, V89, P1 Scott DA, 1999, NAT GENET, V21, P440 SELLICK PM, 1974, PFLUG ARCH EUR J PHY, V352, P339, DOI 10.1007/BF00585686 Shibata S, 2004, NEUROSCI RES, V48, P211, DOI 10.1016/j.neures.2003.10.011 Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, P356 Spicer SA, 2000, HEARING RES, V143, P147, DOI 10.1016/S0378-5955(00)00037-X SPICER SS, 1994, HEARING RES, V79, P161, DOI 10.1016/0378-5955(94)90137-6 STEEL KP, 1999, SCIENCE, V27, P1408 STERKERS O, 1988, PHYSIOL REV, V68, P1083 Van Hauwe P, 1998, HUM MOL GENET, V7, P1099, DOI 10.1093/hmg/7.7.1099 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2002, AUDIOL NEURO-OTOL, V7, P199, DOI 10.1159/000063736 NR 40 TC 15 Z9 16 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 9 EP 16 DI 10.1016/j.heares.2004.05.005 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100002 PM 15350275 ER PT J AU Hayashi, H Sone, M Ito, S Wakamatsu, K Kato, M Nakashima, I Nakashima, T AF Hayashi, H Sone, M Ito, S Wakamatsu, K Kato, M Nakashima, I Nakashima, T TI A novel RFP-RET transgenic mouse model with abundant eumelanin in the cochlea SO HEARING RESEARCH LA English DT Article DE cochlea; eumelanin; MT/RFP-RET transgenic mouse ID PIGMENTED GUINEA-PIGS; CHLOROQUINE-TREATED RED; INDUCED HEARING-LOSS; STRIA VASCULARIS; INNER-EAR; ACOUSTIC TRAUMA; TRANSFORMING GENE; ALBINO; NOISE; MELANIN AB We report on the cochlea of a novel metallothionein-I (MT)/RFP-RET transgenic mouse model with severe systemic melanosis. Electron microscopy revealed that these transgenic mice possess abundant quantities of melanin in the intermediate cells of the stria vascularis. High performance liquid chromatography analysis indicated that cochleae of these transgenic mice contained about twice as much eumelanin as cochleae of control C57BL/6 mice and that the amount of pheomelanin was approximately equal in these two strains. Auditory brainstem responses at 2, 4, 8, and 16 kHz were not significantly different between transgenic and control mice. This is the first report on a mouse model of overproduction of cochlear eumelanin, and our results suggest that this transgenic mouse is an excellent model for investigating the effects of overexpression of cochlear eumelanin. In addition, we provide evidence that eumelanin overproduction in the cochlea does not affect normal hearing. (C) 2004 Elsevier B.V. All rights reserved. C1 Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, Nagoya, Aichi 4668550, Japan. Fujita Hlth Univ, Sch Hlth Sci, Toyoake, Aichi 4701192, Japan. Kanazawa Univ, Dept Environm & Prevent Med, Grad Sch Med Sci, Kanazawa, Ishikawa 9208640, Japan. Nagoya Univ, Grad Sch Med, Dept Immunol, Showa Ku, Nagoya, Aichi 4668550, Japan. RP Hayashi, H (reprint author), Nagoya Univ, Grad Sch Med, Dept Otorhinolaryngol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan. EM hideo@med.nagoya.u.ac.jp RI Nakashima, Tsutomu/B-8259-2012 OI Nakashima, Tsutomu/0000-0003-3930-9120 CR BARRENAS ML, 1992, ACTA OTO-LARYNGOL, V112, P50, DOI 10.3109/00016489209100782 Barrenas ML, 2000, AUDIOLOGY, V39, P238 Barrenas ML, 1997, AUDIOLOGY, V36, P187 Bartels S, 2001, HEARING RES, V154, P116, DOI 10.1016/S0378-5955(01)00213-1 BUSTAMANTE J, 1993, PIGM CELL RES, V6, P348, DOI 10.1111/j.1600-0749.1993.tb00612.x CONLEE JW, 1986, HEARING RES, V23, P81, DOI 10.1016/0378-5955(86)90177-2 CONLEE JW, 1991, HEARING RES, V55, P57, DOI 10.1016/0378-5955(91)90092-N CONLEE JW, 1995, ACTA OTO-LARYNGOL, V115, P367, DOI 10.3109/00016489509139331 CRIFO S, 1973, ACTA OTO-LARYNGOL, V75, P38, DOI 10.3109/00016487309139636 DEOL MS, 1970, PROC R SOC SER B-BIO, V175, P201, DOI 10.1098/rspb.1970.0019 GOTTESBERGEORSU.AM, 1986, ACTA HISTOCHEM S, V32, P245 GRATTON MA, 1992, PIGM CELL RES, V5, P30, DOI 10.1111/j.1600-0749.1992.tb00779.x GRENNER J, 1990, ACTA OTO-LARYNGOL, V109, P41, DOI 10.3109/00016489009107413 HOEFFDING V, 1991, HEARING RES, V54, P39, DOI 10.1016/0378-5955(91)90134-U IKEDA K, 1988, HEARING RES, V32, P103, DOI 10.1016/0378-5955(88)90081-0 ITO S, 1998, PIGMENTARY SYSTEM, pCH31 Ito S, 2000, PIGM CELL RES, V13, P103, DOI 10.1034/j.1600-0749.13.s8.19.x IWAMOTO T, 1991, EMBO J, V10, P3167 Kato M, 2001, ONCOGENE, V20, P7536, DOI 10.1038/sj.onc.1204918 LARSSON BS, 1993, PIGM CELL RES, V6, P127, DOI 10.1111/j.1600-0749.1993.tb00591.x LEFERRIERE K, 1974, ANN OTOL RHINO LARYN, V83, P685 PERSAD S, 1983, PHOTOCHEM PHOTOBIOL, V37, P63, DOI 10.1111/j.1751-1097.1983.tb04434.x PETERS TA, 1995, HEARING RES, V85, P169, DOI 10.1016/0378-5955(95)00043-4 PROTA G, 1980, J INVEST DERMATOL, V75, P122, DOI 10.1111/1523-1747.ep12521344 PYE A, 1987, ARCH OTO-RHINO-LARYN, V243, P411, DOI 10.1007/BF00464654 Salceda R, 2000, CELL CALCIUM, V27, P223, DOI 10.1054/ceca.2000.0111 STEEL KP, 1989, DEVELOPMENT, V107, P453 TAKAHASHI M, 1987, MOL CELL BIOL, V7, P1378 TAKAHASHI M, 1985, CELL, V42, P581, DOI 10.1016/0092-8674(85)90115-1 TANAKA Y, 1980, HEARING RES, V2, P431, DOI 10.1016/0378-5955(80)90079-9 Wakamatsu K, 2002, PIGM CELL RES, V15, P225, DOI 10.1034/j.1600-0749.2002.02009.x Witkop Jr CJ, 1983, METABOLIC BASIS INHE, P301 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YANZ JL, 1985, AUDIOLOGY, V24, P260 NR 34 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 35 EP 40 DI 10.1016/j.heares.2004.01.020 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100004 PM 15350277 ER PT J AU Shatz, LF AF Shatz, LF TI The effect of hair bundle shape on hair bundle hydrodynamics of non-mammalian inner ear hair cells for the full frequency range SO HEARING RESEARCH LA English DT Article DE cochlea; hair bundle; hydrodynamics; spheroid; hair cell; tectorial membrane ID ALLIGATOR LIZARD COCHLEA; BOUNDARY-ELEMENT METHOD; MECHANOELECTRICAL-TRANSDUCTION; FREESTANDING STEREOCILIA; HEMISPHEROIDAL PROTUBERANCES; MECHANICAL STIMULATION; SIGNAL TRANSMISSION; SINGULARITY METHOD; BASILAR PAPILLA; MODEL AB The effect of the size and the shape of the hair bundle of a hair cell in the inner ear of non-mammals on its motion for the full range of frequencies is determined thereby extending the results of a previous analysis of hair bundle motion for high and low frequencies [Hear Res. 141 (2000) 39-50]. A hemispheroid is used to represent the hair bundle because it can represent a full range of shapes, from thin, pencil-like shapes to wide, flat, disk-like shapes. Boundary element methods are used to approximate the solution for the hydrodynamics. For physiologically relevant parameters, an excellent match is obtained between the model's predictions and measurements of hair bundle motion in the free-standing region of the basilar papilla of the alligator lizard [Aranyosi, Measuring sound-induced motions of the alligator lizard cochlea. Massachusetts Institute of Technology, PhD Thesis, 2002]. Neither in the model's predictions nor in experimental measurements is sharp tuning observed. The model predicted the low frequency region of neural tuning curves for the alligator lizard and bobtail lizard, but could not predict the sharp tuning or the high frequency region. An element that represents an active mechanism is added to the hair bundle model to predict neural tuning curves, which are sharply tuned, and an excellent match is obtained for all the characteristics of neural tuning curves for the alligator lizard, and for the low and high frequency regions for the bobtail lizard. The model does not predict well the sharp tuning of the shorter hair bundles of the bobtail lizard, possibly because it does not represent tectorial sallets. (C) 2004 Elsevier B.V. All rights reserved. C1 Suffolk Univ, Dept Elect & Comp Engn, Boston, MA 02445 USA. Boston Univ, Hearing Res Ctr, Boston, MA 02115 USA. RP Shatz, LF (reprint author), Suffolk Univ, Dept Elect & Comp Engn, 41 Temple St, Boston, MA 02445 USA. EM shatz@ee.suffolk.edu CR ARANYOSI AJ, 2002, THESIS MIT CAMBRIDGE AUTHIER S, 1995, HEARING RES, V82, P1 Batchelor G., 1967, INTRO FLUID DYNAMICS Benser ME, 1996, J NEUROSCI, V16, P5629 Camalet S, 2000, P NATL ACAD SCI USA, V97, P3183, DOI 10.1073/pnas.97.7.3183 Choe Y, 1998, P NATL ACAD SCI USA, V95, P15321, DOI 10.1073/pnas.95.26.15321 CHWANG AT, 1974, SCHIFFSTECHNIK, V21, P19 CHWANG AT, 1975, J FLUID MECH, V67, P787, DOI 10.1017/S0022112075000614 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 EATOCK RA, 1993, J NEUROSCI, V13, P1767 FREEMAN DM, 1990, HEARING RES, V48, P1, DOI 10.1016/0378-5955(90)90195-U FREEMAN DM, 1990, HEARING RES, V48, P31, DOI 10.1016/0378-5955(90)90197-W FREEMAN DM, 1990, HEARING RES, V48, P17, DOI 10.1016/0378-5955(90)90196-V FREEMAN DM, 1990, HEARING RES, V48, P37, DOI 10.1016/0378-5955(90)90198-X FREEMAN DM, 1988, HEARING RES, V35, P201, DOI 10.1016/0378-5955(88)90118-9 FRISHKOPF LS, 1983, HEARING RES, V12, P393, DOI 10.1016/0378-5955(83)90008-4 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P205 HOLTON T, 1983, J PHYSIOL-LONDON, V345, P241 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HOWARD J, 1986, HEARING RES, V23, P93, DOI 10.1016/0378-5955(86)90178-4 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 KOPPL C, 1988, HEARING RES, V35, P209, DOI 10.1016/0378-5955(88)90119-0 Lamb H., 1945, HYDRODYNAMICS Landau L. D., 1959, FLUID MECH Lewis ER, 1985, VERTEBRATE INNER EAR MANLEY GA, 1988, HEARING RES, V33, P181, DOI 10.1016/0378-5955(88)90031-7 Manley GA, 1997, J ACOUST SOC AM, V102, P1049, DOI 10.1121/1.419858 Manley GA, 2001, J NEUROPHYSIOL, V86, P541 Martin P, 2001, P NATL ACAD SCI USA, V98, P14386, DOI 10.1073/pnas.251530498 MULROY MJ, 1987, HEARING RES, V25, P11, DOI 10.1016/0378-5955(87)90075-X MULROY MJ, 1974, BRAIN BEHAV EVOLUT, V10, P69, DOI 10.1159/000124303 ORMAN S, 1981, SOC NEUR ABSTR, V7, P536 Ricci AJ, 2000, J NEUROSCI, V20, P7131 ROSOWSKI JJ, 1985, HEARING RES, V20, P139, DOI 10.1016/0378-5955(85)90165-0 RUSCH A, 1990, HEARING RES, V48, P247, DOI 10.1016/0378-5955(90)90065-W Shatz LF, 1998, INT J NUMER METH FL, V28, P961 Shatz LF, 1998, PHYS FLUIDS, V10, P2177, DOI 10.1063/1.869739 Shatz LF, 2004, INT J NUMER METH FL, V44, P147, DOI 10.1002/fld.633 Shatz LF, 2004, PHYS FLUIDS, V16, P664, DOI 10.1063/1.1643402 Shatz LF, 2000, HEARING RES, V141, P39, DOI 10.1016/S0378-5955(99)00205-1 STRELIOFF D, 1984, HEARING RES, V15, P19, DOI 10.1016/0378-5955(84)90221-1 VATER M, 1992, J COMP NEUROL, V318, P367, DOI 10.1002/cne.903180403 WEISS TF, 1982, HEARING RES, V7, P353, DOI 10.1016/0378-5955(82)90045-4 WEISS TF, 1976, BRAIN RES, V115, P71, DOI 10.1016/0006-8993(76)90823-4 WEISS TF, 1985, HEARING RES, V20, P157, DOI 10.1016/0378-5955(85)90166-2 Zetes DE, 1997, J ACOUST SOC AM, V101, P3593, DOI 10.1121/1.418320 NR 46 TC 4 Z9 4 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 41 EP 53 DI 10.1016/j.heares.2004.04.002 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100005 PM 15350278 ER PT J AU Irons-Brown, SR Jones, TA AF Irons-Brown, SR Jones, TA TI Effects of selected pharmacological agents on avian auditory and vestibular compound action potentials SO HEARING RESEARCH LA English DT Article DE hearing; balance; cochlea; maculae; gravity receptors; vestibular; post-synaptic receptors; chicken; glutamate; kynurenate; kainate; L-NAME; CNQX; NBQX; DAA; MK-801; GABA; AMPA ID GUINEA-PIG COCHLEA; PULSED LINEAR ACCELERATION; GABA-LIKE IMMUNOREACTIVITY; HAIR CELL TRANSMITTER; WHITE LEGHORN CHICK; KAINIC ACID; RECEPTOR SUBUNITS; EVOKED-POTENTIALS; NITRIC-OXIDE; SUBSTANCE-P AB Glutamate is currently the consensus candidate for the hair cell transmitter in the inner ear of vertebrates. However, other candidate transmitter systems have been proposed and there may be differences in this regard for auditory and vestibular neuroepithelia. In the present study, perilymphatic perfusion was used to deliver prescribed concentrations of ten drugs to the interstitial fluids of the inner ear of hatchling chickens (n = 124). Dose-response curves were obtained for four of these pharmacological agents. The work was carried out in part to distinguish further the neuroepithelial chemical receptors mediating auditory and vestibular compound action potentials (CAPs). Kainic acid (KA) eliminated both auditory and vestibular responses. D-alpha-Amino-adipic acid (DAA) and dizocilpine maleate (MK-801), both NMDA-specific antagonists, failed to alter vestibular CAPs at any concentration. MK-801 significantly and selectively reduced auditory CAPs at concentrations equal to or greater than 1 mM. Similarly, kynurenic acid (4-hydroxyquinoline-2-carboxylic acid, 1 mM), a glutamate antagonist, significantly reduced auditory but not vestibular CAPs. A non-NMDA glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), reduced vestibular CAPs significantly but only at the highest concentration tested (1 mM). In contrast, CNQX reduced auditory responses at concentration as low as 1 muM. The CNQX concentration effective in reducing auditory CAPs by 50% (EC(50)) was approximately 20 muM. Glutamate (1 mM) as well as alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), a glutamate agonist, significantly reduced auditory CAPs (AMPA EC(50) = 100 muM). Bicuculline, a GABA(A) receptor antagonist, and L-NAME, a nitric oxide synthase inhibitor, failed to alter responses from either modality. These findings support the hypothesis that glutamate receptors mediate auditory CAPs in birds. However, the results underscore a remarkable difference in sensitivity of the vestibular neuroepithelium (here gravity receptors) to non-NMDA receptor antagonists. The basis of the vestibular insensitivity to glutamate blockers is unknown but it may reflect differences in receptors themselves, differences in the transmission modes available to vestibular synapses or differences in the access of compounds to vestibular neuroepithelial receptors from the interstitial-perilymphatic fluid spaces. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Missouri, Dept Med Pharmacol & Physiol, Columbia, MO 65212 USA. Univ Missouri, Dept Otolaryngol Head & Neck Surg, Columbia, MO 65212 USA. RP Jones, TA (reprint author), E Carolina Univ, Dept Commun Sci & Disorders, Belk Annex,Greenville & Charles Blvds, Greenville, NC 27858 USA. EM jonesti@mail.ecu.edu CR ANNONI JM, 1984, J NEUROSCI, V4, P2106 Bledsoe Jr S.C., 1988, PHYSL HEARING, P385 BLEDSOE SC, 1981, HEARING RES, V4, P109, DOI 10.1016/0378-5955(81)90040-X BOBBIN RP, 1978, ANN OTO RHINOL LARYN, V87, P185 BOBBIN RP, 1979, EXP BRAIN RES, V34, P389 BOBBIN RP, 1987, HEARING RES, V25, P77, DOI 10.1016/0378-5955(87)90081-5 BROWNBORG HM, 1987, COMP BIOCHEM PHYS A, V88, P391, DOI 10.1016/0300-9629(87)90052-1 COCHRAN SL, 1995, BRAIN RES, V670, P321, DOI 10.1016/0006-8993(94)01357-N COMIS SD, 1979, EXP BRAIN RES, V36, P119 DECHESNE C, 1984, ANN OTO RHINOL LARYN, V93, P163 DEMEMES D, 1995, BRAIN RES, V671, P83, DOI 10.1016/0006-8993(94)01322-9 DEMEMES D, 1990, HEARING RES, V46, P261, DOI 10.1016/0378-5955(90)90007-C Dememes D, 1997, HEARING RES, V114, P252, DOI 10.1016/S0378-5955(97)00174-3 DOI K, 1990, EUR ARCH OTO-RHINO-L, V248, P25, DOI 10.1007/BF00634777 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1982, ACTA OTO-LARYNGOL, V93, P101, DOI 10.3109/00016488209130858 FELIX D, 1985, AUDITORY BIOCH DRUG, V4, P68 Felix H, 2002, ADV OTO-RHINO-LARYNG, V59, P26 Fessenden JD, 1999, J COMP NEUROL, V404, P52 FLOCK A, 1974, NATURE, V249, P142, DOI 10.1038/249142a0 Flores A, 2001, NEUROSCIENCE, V103, P457, DOI 10.1016/S0306-4522(00)00587-X FOSTER AC, 1987, BRIT J PHARMACOL, V91, P403 FUJITA S, 1994, NEUROREPORT, V5, P862, DOI 10.1097/00001756-199404000-00002 GLEICH O, 1990, HEARING RES, V45, P295, DOI 10.1016/0378-5955(90)90128-C Goldberg JM, 1996, J NEUROPHYSIOL, V76, P1942 Goldberg JM, 1996, ANN NY ACAD SCI, V781, P474, DOI 10.1111/j.1749-6632.1996.tb15721.x GUTH PS, 1988, HEARING RES, V33, P223, DOI 10.1016/0378-5955(88)90152-9 Guth PS, 1998, PROG NEUROBIOL, V54, P193, DOI 10.1016/S0301-0082(97)00068-3 GUTH SL, 1984, EXP BRAIN RES, V56, P72 HARPER A, 1995, HEARING RES, V86, P171, DOI 10.1016/0378-5955(95)00068-F HILL AV, 1910, J PHYSIOL-LONDON, V40, pR7 HOLFORD NHG, 1982, PHARMACOL THERAPEUT, V16, P143, DOI 10.1016/0163-7258(82)90051-1 HOUSTON S, 1998, FASEB J*, V12, P138 IRONS SR, 1999, FASEB J*, V13, P474 Irons-Brown SR, 2003, J NEUROSCI METH, V131, P57, DOI 10.1016/S0165-0270(03)00239-5 JENISON GL, 1985, HEARING RES, V20, P261, DOI 10.1016/0378-5955(85)90030-9 Jones SM, 2000, JARO, V1, P232 Jones SM, 1997, J COMP PHYSIOL A, V180, P631, DOI 10.1007/s003590050079 Jones SM, 1999, HEARING RES, V135, P56, DOI 10.1016/S0378-5955(99)00090-8 Jones SM, 2004, HEARING RES, V191, P34, DOI 10.1016/j.heares.2004.01.008 Jones SM, 1996, J VESTIBUL RES-EQUIL, V6, P71 JONES TA, 1992, ELECTROEN CLIN NEURO, V82, P377, DOI 10.1016/0013-4694(92)90007-5 Jones TA, 1998, J VESTIBUL RES-EQUIL, V8, P253 JONES TA, 1992, HEARING RES, V62, P181, DOI 10.1016/0378-5955(92)90184-O JONES TA, 1989, AM J OTOLARYNG, V10, P327, DOI 10.1016/0196-0709(89)90108-7 JONES TA, 1987, HEARING RES, V27, P67, DOI 10.1016/0378-5955(87)90026-8 JORGENSEN JM, 1994, MEDDR DANSK NATURH F, V133, P121 KATAOKA Y, 1994, J PHYSIOL-LONDON, V477, P403 Kataoka Y, 1996, J NEUROPHYSIOL, V76, P1870 KLINKE R, 1977, EXP BRAIN RES, V30, P145 Liang XQ, 1999, CHINESE MED J-PEKING, V112, P129 LITTMAN T, 1989, HEARING RES, V40, P45, DOI 10.1016/0378-5955(89)90098-1 LOPEZ I, 1990, COMP BIOCHEM PHYS B, V95, P375, DOI 10.1016/0305-0491(90)90090-G LOPEZ I, 1988, NEUROSCIENCE, V25, P13 LOPEZ I, 1992, BRAIN RES, V589, P341, DOI 10.1016/0006-8993(92)91297-R LOPEZ I, 1990, BRAIN RES, V530, P170, DOI 10.1016/0006-8993(90)90677-4 Ma JY, 1998, BRIT J PHARMACOL, V124, P756, DOI 10.1038/sj.bjp.0701871 Matsubara A, 1996, J NEUROSCI, V16, P4457 MATSUBARA A, 1995, ACTA OTO-LARYNGOL, P248 MEZA G, 1982, BRAIN RES, V241, P157, DOI 10.1016/0006-8993(82)91238-0 Meza G, 1996, INT J DEV NEUROSCI, V14, P507, DOI 10.1016/0736-5748(95)00099-2 MEZA G, 1987, HEARING RES, V28, P73, DOI 10.1016/0378-5955(87)90155-9 MEZA G, 1985, AUDITORY BIOCH, P80 Nazareth AM, 1998, J VESTIBUL RES-EQUIL, V8, P233 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 Ohmori H, 1996, NEWS PHYSIOL SCI, V11, P161 PANZANELLI P, 1994, BRAIN RES, V662, P293, DOI 10.1016/0006-8993(94)90829-X Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 PRIGIONI I, 1994, NEUROREPORT, V5, P516, DOI 10.1097/00001756-199401120-00038 PRIGIONI I, 1990, HEARING RES, V46, P253, DOI 10.1016/0378-5955(90)90006-B PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 Reng D, 1999, NEUROREPORT, V10, P2137, DOI 10.1097/00001756-199907130-00026 Ruel J, 2000, NEUROPHARMACOLOGY, V39, P1959, DOI 10.1016/S0028-3908(00)00069-1 RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002 Shero M, 1998, NEUROSCI LETT, V257, P81, DOI 10.1016/S0304-3940(98)00821-0 Solum D, 1997, J NEUROSCI, V17, P4744 SOTO E, 1988, BRAIN RES, V462, P104, DOI 10.1016/0006-8993(88)90591-4 SOTO E, 1994, NEUROREPORT, V5, P1963, DOI 10.1097/00001756-199410000-00031 STARR PA, 1991, HEARING RES, V52, P23, DOI 10.1016/0378-5955(91)90185-C Sun H, 2001, J COMP NEUROL, V430, P172, DOI 10.1002/1096-9861(20010205)430:2<172::AID-CNE1023>3.0.CO;2-W Sun H, 2000, J ACOUST SOC AM, V107, P2136, DOI 10.1121/1.428495 Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P34 Takumida M, 2000, ACTA OTO-LARYNGOL, V120, P466 USAMI S, 1987, BRAIN RES, V418, P383, DOI 10.1016/0006-8993(87)90108-9 USAMI S, 1995, NEUROREPORT, V6, P1161, DOI 10.1097/00001756-199505300-00022 USAMI S, 1987, HEARING RES, V30, P19, DOI 10.1016/0378-5955(87)90178-X VALLI P, 1985, BRAIN RES, V330, P1, DOI 10.1016/0006-8993(85)90002-2 VEGA R, 1987, HEARING RES, V29, P163, DOI 10.1016/0378-5955(87)90164-X WEISLEDER P, 1990, ELECTROEN CLIN NEURO, V76, P362, DOI 10.1016/0013-4694(90)90037-K WERSALL J, 1956, Acta Otolaryngol Suppl, V126, P1 WONG EHF, 1986, P NATL ACAD SCI USA, V83, P7104, DOI 10.1073/pnas.83.18.7104 XUE JT, 2002, ASS RES OT ABSTR, V25, P30 YAMAGUCHI K, 1990, J PHYSIOL-LONDON, V420, P185 YAMASHITA M, 1990, EXP BRAIN RES, V80, P475 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 ZHOU N, 1991, HEARING RES, V52, P195, DOI 10.1016/0378-5955(91)90199-J ZUCCA G, 1992, HEARING RES, V63, P52, DOI 10.1016/0378-5955(92)90073-V ZUCCA G, 1993, NEUROREPORT, V4, P403, DOI 10.1097/00001756-199304000-00015 NR 100 TC 2 Z9 2 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 54 EP 66 DI 10.1016/j.heares.2004.02.011 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100006 PM 15350279 ER PT J AU Martini, M Rispoli, G Farinelli, F Fesce, R Rossi, ML AF Martini, M Rispoli, G Farinelli, F Fesce, R Rossi, ML TI Intracellular Ca2+ buffers can dramatically affect Ca2+ conductances in hair cells SO HEARING RESEARCH LA English DT Article DE semicircular canals; hair cells; frog; Ca2+ current kinetics; intracellular buffers ID CALCIUM CURRENTS; SEMICIRCULAR CANALS; CHANNELS; FROG; SUBUNITS AB The effects of endogenous and exogenous Ca2+ buffers on Ca2+ current kinetics have been investigated by patch clamp in hair cells mechanically isolated from frog semicircular canals. This preparation displays at least three different Ca2+ channel types: transient currents flow through a drug-resistant channel ("R1"), while non-inactivating channels sustain a steady, plateau current comprised of a large L component and a small drug-resistant fraction ("R2"). In the perforated-patch condition a large and stable Ca2+ current was recorded, with all three components. In whole-cell, a buffer-free pipette solution did not prevent a complete Ca2+ response. The size of the transient and plateau current fractions were greatly reduced, but the ratio between the two fractions, as well as the activation, inactivation and deactivation kinetics, were substantially unmodified. Current amplitude partially recovered with 5 mM EGTA in the pipette solution. With 50 mM EGTA all the kinetic parameters were slowed down and the transient component, but not the plateau component, markedly increased in size. Response kinetics slowed down even more with 30 mM Cs-BAPTA and the Ca-2divided by. waveform was substantially modified. The transient component was very large and inactivated slowly; the remaining very small plateau fraction deactivated along a slow, single exponential time. Under this condition nifedipine (10 muM) produced a great reduction of the transient current, leaving plateau and deactivation phase unaltered. This suggests that only R2 channels were still active at the end of the test and that the minor remaining transient component flowed through slowly but completely inactivating R1 channels. These results confirm the presence of several channel types in semicircular canal receptors, at difference with cochlear hair cells. and highlight a dramatic alteration of L-type channel behavior when intracellular Ca2+ buffers are sufficiently concentrated and fast to interfere with rapid and local changes in Ca2+ levels. (C) 2004 Elsevier B.V. All rights reserved. C1 Ctr Neurosci, Sez Fisiol & Biofis, Dipartimento Biol, I-44100 Ferrara, Italy. Univ Insubria, Ctr Neurosci, I-21100 Varese, Italy. RP Rossi, ML (reprint author), Ctr Neurosci, Sez Fisiol & Biofis, Dipartimento Biol, Via Luigi Borsari 46, I-44100 Ferrara, Italy. EM rsm@dns.unife.it RI fesce, riccardo/A-6317-2008; Rossi, Maria Lisa/D-4251-2011 CR Bao H, 2003, J NEUROPHYSIOL, V90, P155, DOI 10.1152/jn.00242.2002 Fuchs P, 2002, AUDIOL NEURO-OTOL, V7, P40, DOI 10.1159/000046862 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 Koschak A, 2001, J BIOL CHEM, V276, P22100, DOI 10.1074/jbc.M101469200 Lelli A, 2003, J NEUROSCI, V23, P6894 Liang HY, 2003, NEURON, V39, P951, DOI 10.1016/S0896-6273(03)00560-9 Lumpkin EA, 1998, J NEUROSCI, V18, P6300 Maravall M, 2000, BIOPHYS J, V78, P2655 Martini M, 2000, BIOPHYS J, V78, P1240 Perin P, 2001, HEARING RES, V152, P67, DOI 10.1016/S0378-5955(00)00237-9 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 Rispoli G, 2001, CELL CALCIUM, V30, P131, DOI 10.1054/ceca.2001.0220 RISPOLI G, 2000, NEUROREPORT, V11, P12 Rodriguez-Contreras A, 2001, J PHYSIOL-LONDON, V534, P669, DOI 10.1111/j.1469-7793.2001.00669.x ROSSI ML, 1994, J PHYSIOL-LONDON, V478, P17 Russo G, 2003, PFLUG ARCH EUR J PHY, V446, P189, DOI 10.1007/s00424-003-1050-y Schnee ME, 2003, J PHYSIOL-LONDON, V549, P697, DOI 10.1113/jphysiol.2002.037481 Song HT, 2003, J NEUROPHYSIOL, V89, P1143, DOI 10.1152/jn.00482.2002 SU ZL, 1995, HEARING RES, V87, P62, DOI 10.1016/0378-5955(95)00079-J Waka N, 2003, HISTOL HISTOPATHOL, V18, P1115 Xu WF, 2001, J NEUROSCI, V21, P5944 You YD, 1997, BIOPHYS J, V72, P175 NR 22 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 67 EP 74 DI 10.1016/j.heares.2004.05.009 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100007 PM 15350280 ER PT J AU Hamada, T Iwaki, S Kawano, T AF Hamada, T Iwaki, S Kawano, T TI Speech offsets activate the right parietal cortex SO HEARING RESEARCH LA English DT Article DE speech offsets; human; parietal cortex; dipole; magnetoencephalography ID AUDITORY-CORTEX; DISCRIMINATION; RESPONSES; ATTENTION; SYSTEMS; STIMULI AB Speech offsets, i.e., sudden transitions from continuous speech sound to silence, activated both hemispheres differently. In addition to peak activities in the bilateral temporal cortices at about 120 ms after the offsets, the right parietal cortex was activated later irrespective of the stimulated ear. The result was discussed in the context of auditory attention. (C) 2004 Elsevier B.V. All rights reserved. C1 Natl Inst Adv Ind Sci & Technol, AIST, Kansai Ctr, Ikeda, Osaka 5638577, Japan. Setsunan Univ, Neyagawa, Osaka 5728508, Japan. RP Hamada, T (reprint author), Natl Inst Adv Ind Sci & Technol, AIST, Kansai Ctr, 1-8-31 Midoriga Oka, Ikeda, Osaka 5638577, Japan. EM hamada-takashi@aist.go.jp CR Alho K, 2003, COGNITIVE BRAIN RES, V17, P201, DOI 10.1016/S0926-3410(03)00091-0 Belin P, 1998, J NEUROSCI, V18, P6388 ENDERES T, 2000, MOBILE NETW APPL, V7, P153 FORSS N, 1994, ELECTROEN CLIN NEURO, V92, P510, DOI 10.1016/0168-5597(94)90135-X HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HARI R, 1987, AUDIOLOGY, V26, P31 Kasai K, 1999, NEUROREPORT, V10, P2267, DOI 10.1097/00001756-199908020-00008 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 Nobre AC, 2001, NEUROSCI BIOBEHAV R, V25, P477, DOI 10.1016/S0149-7634(01)00028-8 Pantev C, 1996, EAR HEARING, V17, P255, DOI 10.1097/00003446-199606000-00008 Paus T, 1997, J COGNITIVE NEUROSCI, V9, P392, DOI 10.1162/jocn.1997.9.3.392 Zatorre RJ, 1999, NEUROIMAGE, V10, P544, DOI 10.1006/nimg.1999.0491 NR 12 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 75 EP 78 DI 10.1016/j.heares.2004.04.013 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100008 PM 15350281 ER PT J AU Smittkamp, SE Durham, D AF Smittkamp, SE Durham, D TI Contributions of age, cochlear integrity, and auditory environment to avian cochlear nucleus metabolism SO HEARING RESEARCH LA English DT Article DE aging; auditory; chicken; cytochrome oxidase; metabolism; nucleus magnocellularis ID NERVE ELECTRICAL-ACTIVITY; CONDUCTIVE HEARING-LOSS; BRAIN-STEM; INFERIOR COLLICULUS; AFFERENT INFLUENCES; CYTOCHROME-OXIDASE; CELL-SIZE; ANTIOXIDANT ENZYMES; NEURONAL-ACTIVITY; PROTEIN-SYNTHESIS AB Most commercially raised broiler chickens display progressive cochlear degeneration with age [Hear. Res. 166 (2002) 82]. Recent work examining the effects of age and cochlear degeneration on avian cochlear nucleus (nucleus magnocellularis, NM) metabolism showed that changes in metabolic activity occur with age and cochlear damage [Hear. Res. 175 (2003) 101]. The auditory environment also differed between facilities housing young and adult birds. The relative contributions of age, cochlear degeneration, and auditory environment to these changes in NM metabolism are unknown. Using cytochrome oxidase (CO) histochemistry, NM neuron metabolism is examined in several age groups of birds under varying conditions. When normal cochlear integrity and auditory environment are held constant, CO staining is significantly decreased in adult vs. young birds. When age and auditory environment are held constant, CO staining is significantly decreased in birds with damaged vs. normal cochleae. When age and normal cochlear integrity are held constant, CO staining is significantly decreased in birds living in a quiet vs. noisy environment. All factors examined cause changes in CO staining, which is indicative of NM metabolic activity. Results are discussed in the context of mitochondrial aging, afferent regulation, and auditory deprivation and enrichment. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Kansas, Smith Mental Retardat Res Ctr, Dept Otolaryngol Head & Neck Surg, Ctr Med, Kansas City, KS 66160 USA. Univ Kansas, Med Ctr, Dept Speech & Hearing, Kansas City, KS 66160 USA. RP Durham, D (reprint author), Univ Kansas, Smith Mental Retardat Res Ctr, Dept Otolaryngol Head & Neck Surg, Ctr Med, 3901 Rainbow Blvd, Kansas City, KS 66160 USA. EM ddurham@kumc.edu CR Alladi PA, 2002, NEUROSCIENCE, V114, P577, DOI 10.1016/S0306-4522(02)00319-6 BESS FH, 1996, HEARING DISORDERS, P199 BORN DE, 1991, BRAIN RES, V557, P37, DOI 10.1016/0006-8993(91)90113-A BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Brunk UT, 2002, EUR J BIOCHEM, V269, P1996, DOI 10.1046/j.1432-1033.2002.02869.x Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Calabrese V, 2001, NEUROCHEM RES, V26, P739, DOI 10.1023/A:1010955807739 CANLON B, 1983, HEARING RES, V10, P217, DOI 10.1016/0378-5955(83)90055-2 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 DURHAM D, 1985, J COMP NEUROL, V231, P446, DOI 10.1002/cne.902310404 Durham D, 2002, HEARING RES, V166, P82, DOI 10.1016/S0378-5955(02)00301-5 Fischel-Ghodsian N, 1999, HUM MUTAT, V13, P261, DOI 10.1002/(SICI)1098-1004(1999)13:4<261::AID-HUMU1>3.0.CO;2-W Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V Garcia MM, 2000, HEARING RES, V147, P113, DOI 10.1016/S0378-5955(00)00125-8 HYDE GE, 1990, J COMP NEUROL, V297, P329, DOI 10.1002/cne.902970302 JOHNSSON LG, 1972, ANN OTO RHINOL LARYN, V81, P179 KOERBER KC, 1966, EXP NEUROL, V16, P119, DOI 10.1016/0014-4886(66)90091-4 LIPPE WR, 1991, HEARING RES, V51, P193, DOI 10.1016/0378-5955(91)90036-9 Mei Y, 1999, HEARING RES, V135, P169, DOI 10.1016/S0378-5955(99)00103-3 Mostafapour SP, 2000, J COMP NEUROL, V426, P561, DOI 10.1002/1096-9861(20001030)426:4<561::AID-CNE5>3.0.CO;2-G NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 Park DL, 1998, HEARING RES, V126, P84, DOI 10.1016/S0378-5955(98)00157-9 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6 RICHARDSON BE, 1990, HEARING RES, V46, P53 RUBEL EW, 1990, J NEUROBIOL, V21, P169, DOI 10.1002/neu.480210112 RYAN AF, 1992, HEARING RES, V61, P24, DOI 10.1016/0378-5955(92)90032-I Seidman MD, 2000, AM J OTOL, V21, P161, DOI 10.1016/S0196-0709(00)80003-4 SHARP FR, 1981, BRAIN RES, V230, P87, DOI 10.1016/0006-8993(81)90393-0 SIE KCY, 1992, J COMP NEUROL, V320, P501, DOI 10.1002/cne.903200407 Smittkamp SE, 2003, HEARING RES, V175, P101, DOI 10.1016/S0378-5955(02)00714-1 SMITTKAMP SE, 2002, ARO, V25, P71 Smittkamp SE, 2002, HEARING RES, V170, P139, DOI 10.1016/S0378-5955(02)00486-0 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R TRUNE DR, 1988, HEARING RES, V35, P259, DOI 10.1016/0378-5955(88)90122-0 TRUNE DR, 1988, HEARING RES, V33, P141, DOI 10.1016/0378-5955(88)90027-5 Tucci DL, 2002, JARO, V3, P89, DOI 10.1007/s101620010091 Tucci DL, 2001, HEARING RES, V155, P124, DOI 10.1016/S0378-5955(01)00256-8 Wadhwa S, 1999, INT J DEV NEUROSCI, V17, P239, DOI 10.1016/S0736-5748(99)00005-2 Wei YH, 2002, EXP BIOL MED, V227, P671 Wilkinson BL, 2002, MOL BRAIN RES, V99, P67, DOI 10.1016/S0169-328X(02)00113-4 WILLOTT JF, 1988, EXP NEUROL, V99, P615, DOI 10.1016/0014-4886(88)90178-1 Willott J F, 1996, J Am Acad Audiol, V7, P141 WONGRILEY MTT, 1989, TRENDS NEUROSCI, V12, P94, DOI 10.1016/0166-2236(89)90165-3 NR 45 TC 6 Z9 6 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 79 EP 89 DI 10.1016/j.heares.2004.05.008 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100009 PM 15350282 ER PT J AU McCullough, BJ Tempel, BL AF McCullough, BJ Tempel, BL TI Haplo-insufficiency revealed in deafwaddler mice when tested for hearing loss and ataxia SO HEARING RESEARCH LA English DT Article DE deafwaddler; Atp2b2; PMCA2; hearing loss; deafness; mouse ID HAIR-CELL STEREOCILIA; WRIGGLE-MOUSE-SAGAMI; SYNDROME TYPE 1D; INBRED STRAINS; PMCA2 MUTATION; RAT-BRAIN; CADHERIN; CA2+; AGE; DEAFNESS AB The auditory and vestibular systems rely on the plasma membrane calcium ATPase, isoform 2 (PMCA2) to extrude calcium that enters the stereocilia, during transduction. Mutations in the gene encoding this protein result in recessive sensorineural deafness and ataxia in the deafwaddler mouse. In this study, we report the identification of a new allele of deafwaddler, dfw(3J). This allele contains a 4-nucleotide deletion resulting in a frame-shift and predicted truncation of PMCA2. No protein is detected in dfw(3J) homozygotes. To examine the dependence of auditory and vestibular function on PMCA2 activity, we compared dfw(3J) with another functional null allele, dfw(2J), and the partial loss-of-function allele, dfw. All mice studied were in the good-hearing CBA/CaJ background. Heterozygotes of either functional null allele displayed highly significant hearing loss by auditory-evoked brainstem responses relative to controls (P < 0.0001), particularly at high frequencies (>24 kHz). Ataxia was also apparent in these mice on an accelerating rotarod (P < 0.05). In contrast, +/dfw mice were not measurably different from controls in either behavioral test. dfw/dfw were deaf, but showed less ataxia than dfw(2J)/dfw(2J) or dfw(3J/)dfw(3J) mice. These results demonstrate that hearing loss and ataxia are dependent on gene dosage and PMCA2 dysfunction. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Seattle, WA 98195 USA. Univ Washington, Sch Med, Grad Program Neurobiol & Behav, Seattle, WA 98195 USA. RP Tempel, BL (reprint author), Univ Washington, Sch Med, Virginia Merrill Bloedel Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Box 357923, Seattle, WA 98195 USA. EM bltempel@u.washington.edu CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Bolz H, 2001, NAT GENET, V27, P108 Bryda EC, 2001, GENOMICS, V73, P338, DOI 10.1006/geno.2001.6538 CARAFOLI E, 1994, J NEUROBIOL, V25, P312, DOI 10.1002/neu.480250311 DALLOS P, 1992, J NEUROSCI, V12, P4575 Di Palma F, 2001, NAT GENET, V27, P103 Dodson HC, 2001, J NEUROCYTOL, V30, P281, DOI 10.1023/A:1014489527996 Dumont RA, 2001, J NEUROSCI, V21, P5066 Filoteo AG, 1997, J BIOL CHEM, V272, P23741, DOI 10.1074/jbc.272.38.23741 Furuta H, 1998, HEARING RES, V123, P10, DOI 10.1016/S0378-5955(98)00091-4 Gates GA, 2002, HEARING RES, V163, P53, DOI 10.1016/S0378-5955(01)00377-X Holt JR, 2000, P NATL ACAD SCI USA, V97, P11730, DOI 10.1073/pnas.97.22.11730 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Johnson KR, 2000, GENOMICS, V70, P171, DOI 10.1006/geno.2000.6377 Konrad-Martin D, 2001, HEARING RES, V151, P205, DOI 10.1016/S0378-5955(00)00228-8 Kozel PJ, 1998, J BIOL CHEM, V273, P18693, DOI 10.1074/jbc.273.30.18693 Lane PW, 1987, MOUSE NEWS LETT, V77, P129 Lumpkin EA, 1998, J NEUROSCI, V18, P6300 Mills DM, 1997, J ACOUST SOC AM, V102, P413, DOI 10.1121/1.419763 Nagar B, 1996, NATURE, V380, P360, DOI 10.1038/380360a0 NobenTrauth K, 1997, GENOMICS, V44, P266, DOI 10.1006/geno.1997.4869 Noben-Trauth K, 2003, NAT GENET, V35, P21, DOI 10.1038/ng1226 NORTON SJ, 1996, MIDW M ASS RES OT, P82 Penheiter AR, 2001, HEARING RES, V162, P19, DOI 10.1016/S0378-5955(01)00356-2 Pertz O, 1999, EMBO J, V18, P1738, DOI 10.1093/emboj/18.7.1738 PUJOL R, 1997, MIDW M ASS RES OT, P111 Rozen S, 2000, BIOINFORMATICS METHO, P365, DOI DOI 10.1385/1-59259-192-2:365 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 Sambrook J, 2001, MOL CLONING LAB MANU Schmiedt RA, 2002, J NEUROSCI, V22, P9643 SCHUKNEC.HF, 1974, LARYNGOSCOPE, V84, P1777 STAHL WL, 1992, MOL BRAIN RES, V16, P223, DOI 10.1016/0169-328X(92)90229-5 Street VA, 1998, NAT GENET, V19, P390 Takahashi K, 1999, BIOCHEM BIOPH RES CO, V261, P773, DOI 10.1006/bbrc.1999.1102 Takahashi K, 1999, ACTA OTO-LARYNGOL, V119, P767, DOI 10.1080/00016489950180405 WOOD JD, 2004, IN PRESS J ASS RES O Yamoah EN, 1998, J NEUROSCI, V18, P610 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 Zheng QY, 2001, HEARING RES, V154, P45, DOI 10.1016/S0378-5955(01)00215-5 NR 40 TC 26 Z9 27 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 90 EP 102 DI 10.1016/j.heares.2004.05.003 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100010 PM 15350283 ER PT J AU Ravicz, ME Rosowski, JJ Merchant, SN AF Ravicz, ME Rosowski, JJ Merchant, SN TI Mechanisms of hearing loss resulting from middle-ear fluid SO HEARING RESEARCH LA English DT Article DE middle car; umbo velocity; otitis media; effusion; viscosity; conductive hearing loss ID HUMAN TEMPORAL BONES; ACOUSTIC INPUT IMPEDANCE; DOPPLER VIBROMETER LDV; HUMAN-CADAVER EARS; SOUND-PRESSURE; OTITIS-MEDIA; EFFUSIONS; CHILDREN; STAPES; TYMPANOMETRY AB Fluid in the middle ear, a defining feature of otitis media with effusion (OME), is commonly associated with a 20- to 30-dB conductive hearing loss. The effects and relative importance of various mechanisms leading to conductive hearing loss were investigated in a human temporal bone preparation. Umbo velocity in response to ear-canal sound was measured with a laser vibrometer while saline and silicone fluids of viscosity 5-12,000 cSt were introduced into the middle ear to contact part or all of the tympanic membrane (TM) and fill part or all of the middle ear. At low frequencies, reductions in umbo velocity (DeltaV(U)) of up to 25 dB depended on the percentage of the original middle-ear air space that remained air-filled, which suggests that the primary mechanism in hearing loss at low frequencies is a reduction of the admittance of the middle-ear air space due to displacement of air with fluid. At higher frequencies, DeltaV(U) (of up to 35 dB) depended on the percentage of the TM contacted by fluid, which suggests that the primary mechanism at high frequencies is an increase in tympanic membrane mass by entrained fluid. The viscosity of the fluid had no significant effect on umbo velocity. DeltaV(U) for the fluid-filled middle ear matched hearing losses reported in patients whose middle ear was believed to be completely filled with fluid. The difference between DeltaV(U) for a partly-filled middle ear and hearing losses reported in patients whose middle ear was believed to be incompletely fluid-filled is consistent with the reported effect of middle-ear underpressure (commonly seen in OME) on umbo velocity. Small amounts of air in the middle ear are sufficient to facilitate umbo motion at low frequencies. (C) 2004 Elsevier B.V. All rights reserved. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. MIT, Elect Res Lab, Cambridge, MA 02139 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. Harvard Univ, MIT, Div Hlth Sci & Technol, Cambridge, MA 02139 USA. RP Ravicz, ME (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA. EM mer@epl.meei.harvard.edu CR BENDAVID J, 1981, EAR NOSE THROAT J, V60, P120 Beranek L.L., 1986, ACOUSTICS BERGER EH, 1983, AM IND HYG ASSOC J, V44, P321, DOI 10.1202/0002-8894(1983)044<0321:LAOEAE>2.3.CO;2 Bluestone CD, 2001, OTITIS MEDIA INFANTS BLUESTON.CD, 1973, LARYNGOSCOPE, V83, P594, DOI 10.1288/00005537-197304000-00015 BROWN DT, 1983, INT J PEDIATR OTORHI, V5, P39, DOI 10.1016/S0165-5876(83)80006-8 CUNNINGHAM MJ, 1993, SURGERY EAR TEMPORAL, P205 FRIA TJ, 1985, ARCH OTOLARYNGOL, V111, P10 Gan RZ, 2001, ANN OTO RHINOL LARYN, V110, P478 GATES GA, 1987, ADV OTOLARYNGOL HEAD, V1, P127 Goode RL, 1996, AM J OTOL, V17, P813 GOODHILL V, 1958, Acta Otolaryngol, V49, P38, DOI 10.3109/00016485809134725 Hartley DEH, 2003, HEARING RES, V177, P53, DOI 10.1016/S0378-5955(02)00797-9 Hato N, 2003, AUDIOL NEURO-OTOL, V8, P140, DOI 10.1159/000069475 Huber AM, 2001, LARYNGOSCOPE, V111, P501, DOI 10.1097/00005537-200103000-00022 JERGER J, 1975, HDB CLIN IMPEDANCE A, P149 JOHANSEN H, 1948, ACTA OTOLARYNGOL S, V74, P64 KHANNA SM, 1985, J ACOUST SOC AM, V77, P577, DOI 10.1121/1.391876 LUSCHER E, 1939, ACTA OTOLARYNGOL, V32, P99 LYNCH TJ, 1994, J ACOUST SOC AM, V96, P2184, DOI 10.1121/1.410160 MAJIMA Y, 1988, ANN OTO RHINOL LARYN, V97, P272 MARSH RR, 1985, INT J PEDIATR OTORHI, V9, P115, DOI 10.1016/S0165-5876(85)80011-2 Merchant SN, 1996, HEARING RES, V97, P30 MERCHANT SN, 2003, SURG EAR, P59 MOLLER A R, 1965, Acta Otolaryngol, V60, P129, DOI 10.3109/00016486509126996 Murakami S, 1997, ACTA OTO-LARYNGOL, V117, P390, DOI 10.3109/00016489709113411 NISHIHARA S, 1993, OTOLARYNG HEAD NECK, V109, P899 ONCHI Y, 1961, J ACOUST SOC AM, V33, P794, DOI 10.1121/1.1908801 Puria S, 1998, J ACOUST SOC AM, V104, P3463, DOI 10.1121/1.423930 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 Ravicz ME, 2000, HEARING RES, V150, P215, DOI 10.1016/S0378-5955(00)00200-8 RAVICZ ME, 2000, RECENT DEV AUDITORY, P29, DOI 10.1142/9789812793980_0005 RAVICZ ME, 1996, 19 MIDW M ARO, P57 Rodriguez Jorge J, 1997, HNO, V45, P997, DOI 10.1007/s001060050185 ROSOWSKI JJ, 1995, AM J OTOL, V16, P486 STINSON MR, 1986, PERIPHERAL AUDITORY, P13 STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 van DISHOECK H. A. E., 1944, ACTA OTO LARYNGOL [STOCKHOLM], V32, P99, DOI 10.3109/00016484409119901 VER IL, 1975, J ACOUST SOC AM, V58, P392 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x VONUNGE M, 1994, AM J OTOL, V15, P663 Voss SE, 2000, HEARING RES, V150, P43, DOI 10.1016/S0378-5955(00)00177-5 Wever EG, 1954, PHYSL ACOUSTICS Whittemore KR, 2004, HEARING RES, V187, P85, DOI 10.1016/S0378-5955(03)00332-0 WIEDERHOLD ML, 1980, ANN OTO RHINOL LARYN, V89, P185 YEE AL, 1987, ACTA OTO-LARYNGOL, V104, P261, DOI 10.3109/00016488709107327 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 48 TC 35 Z9 36 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD SEP PY 2004 VL 195 IS 1-2 BP 103 EP 130 DI 10.1016/j.heares.2004.05.010 PG 28 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 856JI UT WOS:000224041100011 PM 15350284 ER PT J AU Runge-Samuelson, CL Abbas, PJ Rubinstein, JT Miller, CA Robinson, BK AF Runge-Samuelson, CL Abbas, PJ Rubinstein, JT Miller, CA Robinson, BK TI Response of the auditory nerve to sinusoidal electrical stimulation: effects of high-rate pulse trains SO HEARING RESEARCH LA English DT Article DE auditory prosthesis; cochlear implant; electric stimulation; sinusoidal; pulse trains; evoked potential; auditory nerve; guinea pig; cat ID COCHLEAR IMPLANTS; NEURONAL RESPONSE; ACTION-POTENTIALS; ETHACRYNIC-ACID; NOISE; FIBER; CAT; ENHANCEMENT; RECORDINGS; KANAMYCIN AB Electrical stimulation of the auditory nerve produces highly synchronized responses. As a consequence, electrical stimulation may result in a narrow dynamic range of hearing and poor temporal representation of an input signal. The electrically evoked compound action potential (ECAP) is an electrophysiologic response used for neural assessment in individuals with auditory prostheses. Because the ECAP arises from the activity of a population of auditory nerve fibers, within- and across-fiber synchrony should be evident in the responses. Due to its clinical relevance and reflection of neural response properties, the ECAP is used in the present study to examine changes in neural synchrony. Empirical and modeled single-fiber data indicate that stimulation with electrical pulses of a sufficiently high rate may induce stochastic neural response behaviors. This study investigated the effects of adding high-rate conditioning pulses (5000 pps) on the ECAP in response to 100 Hz electrical sinusoids. The results showed that high-rate conditioning pulses increased response amplitudes at low sinusoidal levels and decreased the amplitudes at high sinusoidal levels, indicating a decrease in the slope of the ECAP growth functions to sinusoidal stimuli. The results are consistent with a hypothesis that high-rate conditioning pulses increase single-fiber relative spread (RS) in response to sinusoidal stimuli, and the effect is highly dependent on the level of the high-rate conditioning pulses. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Iowa, Dept Speech Pathol & Audiol, Iowa City, IA 52242 USA. Univ Iowa Hosp & Clin, Dept Otolaryngol Head & Neck Surg, Iowa City, IA 52242 USA. Univ Iowa, Dept Physiol & Biophys, Iowa City, IA 52242 USA. RP Runge-Samuelson, CL (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. EM crunge@mcw.edu CR ABBAS PJ, 2000, N01DC92106 BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 Chatterjee M, 2001, JARO, V2, P159, DOI 10.1007/s101620010079 Chi S. L., 2001, THESIS U IOWA IOWA C Dynes SBC, 1996, THESIS MIT CAMBRIDGE Hartmann R., 1995, Annals of Otology Rhinology and Laryngology, V104, P113 HARTMANN R, 1994, ACTA OTO-LARYNGOL, V114, P495, DOI 10.3109/00016489409126093 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Hong RS, 2003, OTOL NEUROTOL, V24, P590, DOI 10.1097/00129492-200307000-00010 Kiang NYS, 1965, RES MONOGRAPHS, V35 LITVAK L, 2001, 2001 C IMPL AUD PROS Litvak L, 2001, J ACOUST SOC AM, V110, P368, DOI 10.1121/1.1375140 Matsuoka AJ, 2000, HEARING RES, V149, P115, DOI 10.1016/S0378-5955(00)00172-6 Matsuoka AJ, 2001, IEEE T BIO-MED ENG, V48, P416, DOI 10.1109/10.915706 Matsuoka AJ, 2000, HEARING RES, V149, P129, DOI 10.1016/S0378-5955(00)00173-8 Miller CA, 1998, HEARING RES, V119, P142, DOI 10.1016/S0378-5955(98)00046-X Miller CA, 1999, HEARING RES, V135, P1, DOI 10.1016/S0378-5955(99)00081-7 Miller CA, 2001, JARO, V2, P216 Morse RP, 1996, NAT MED, V2, P928, DOI 10.1038/nm0896-928 Parnas BR, 1996, IEEE T BIO-MED ENG, V43, P313, DOI 10.1109/10.486289 RUBINSTEIN JT, 2000, N01DC2106 RUBINSTEIN JT, 2000, ANN OTOL RHINOL S191 Rubinstein JT, 2003, ANN OTO RHINOL LARYN, V112, P14 Rubinstein JT, 1999, HEARING RES, V127, P108, DOI 10.1016/S0378-5955(98)00185-3 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 VANDENHONERT C, 1987, HEARING RES, V29, P195, DOI 10.1016/0378-5955(87)90167-5 Verveen A. A., 1961, FLUCTUATION EXCITABI WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 WILSON BS, 1997, N01DC52103 XU SA, 1993, HEARING RES, V70, P205, DOI 10.1016/0378-5955(93)90159-X NR 31 TC 8 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 1 EP 13 DI 10.1016/j.heares.2004.03.020 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400001 PM 15276671 ER PT J AU Hafidi, A Decourt, B MacLennan, AJ AF Hafidi, A Decourt, B MacLennan, AJ TI CNTFR alpha and CNTF expressions in the auditory brainstem: light and electron microscopy study SO HEARING RESEARCH LA English DT Article DE CNTFR alpha; CNTF; development; cochlear nucleus; superior olivary complex; inferior colliculus; spiral ganglion ID CILIARY NEUROTROPHIC FACTOR; FACTOR MESSENGER-RNA; ADULT-RAT BRAIN; LATERAL SUPERIOR OLIVE; CENTRAL-NERVOUS-SYSTEM; RECEPTOR-ALPHA; REGIONAL DISTRIBUTION; COCHLEAR NUCLEUS; CELL-LINES; IN-VITRO AB CNTF receptor alpha (CNTFRalpha) is involved in the development, the maintenance and the regeneration of a variety of brain structures. However, its in vivo distribution has not been determined in the auditory system. CNTFRalpha expression was studied in developing and adult rat brainstem auditory nuclei using immunohistochemistry. At birth, the CNTFRalpha immunolabeling was clearly present in somata of the external nucleus of the inferior colliculus but was diffuse throughout brainstem auditory nuclei. The labeling was present in most brainstem auditory nuclei by post-natal day (PND) 6. The intensity of the staining subsequently increased to its highest level at PND21 and decreased to an adult-like appearance by the fourth post-natal week. In adult, CNTFRalpha labeling occurred in most neurons of the cochlear nucleus (CN), the lateral superior olive (LSO), the medial superior olive (MSO), and the medial nucleus of the trapezoid body (MNTB). CNTFRalpha labeling first appeared in the central nucleus of the inferior colliculus (IC) by the end of the fourth week. There was a general increase in the expression of CNTFRalpha that begins prior to the onset of hearing and reaches its highest level after this important developmental stage. Ultrastructural analysis in the adult ventral CN revealed the presence of CNTFR in post-synaptic sites. The presence of CNTF has been investigated in the adult using both Western blot and immunohistochemistry. Western blot showed the presence of CNTF in both peripheral and central auditory structures. The CNTF label was generally localized to the somatic compartment, in axons and as puncta surrounding neuronal cell bodies and dendrites. Differential CNTF labeling was observed between the different auditory nuclei. CNTF staining is present in neurons of the CN, the MNTB and the LSO, while it is restricted to axons and puncta surrounding neuronal somata in the IC. The clear presence of CNTFRalpha at post-synaptic terminals and that of its ligand the CNTF in axons and puncta surrounding neuronal cell bodies suggest an anterograde mode of action for CNTF in the central auditory system. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Bordeaux 2, Lab Biol Mol & Cellulaire Audit, Hop Pellegrin, F-33076 Bordeaux, France. Univ Florida, Coll Med, Dept Neurosci, Inst Brain, Gainesville, FL 32610 USA. RP Hafidi, A (reprint author), Univ Bordeaux 2, Lab Biol Mol & Cellulaire Audit, Hop Pellegrin, EA3665, F-33076 Bordeaux, France. EM aziz.hafidi@univ-bpclermont.fr CR ADLER R, 1979, SCIENCE, V204, P1434, DOI 10.1126/science.451576 BIANCHI LM, 1993, DEV BIOL, V159, P353, DOI 10.1006/dbio.1993.1247 BLATCHLEY BJ, 1987, DEV BRAIN RES, V32, P75, DOI 10.1016/0165-3806(87)90140-4 Davis S, 1993, CURR OPIN CELL BIOL, V5, P281, DOI 10.1016/0955-0674(93)90117-9 DECHIARA TM, 1995, CELL, V83, P313, DOI 10.1016/0092-8674(95)90172-8 DOBREA GM, 1992, DEV BRAIN RES, V66, P209, DOI 10.1016/0165-3806(92)90082-8 Elson GCA, 2000, NAT NEUROSCI, V3, P867 FRIAUF E, 1990, NEUROSCI LETT, V120, P58, DOI 10.1016/0304-3940(90)90167-8 Guo X, 1999, J NEUROSCI, V19, P2113 Guthrie KM, 1997, J COMP NEUROL, V386, P137 Hafidi A, 1996, J COMP NEUROL, V367, P454 Hafidi Aziz, 2003, Brain Res Dev Brain Res, V143, P167 Hafidi A, 1997, NEUROSCIENCE, V81, P427, DOI 10.1016/S0306-4522(97)00140-1 Hafidi A, 1999, INT J DEV NEUROSCI, V17, P285, DOI 10.1016/S0736-5748(99)00043-X HAFIDI A, 1994, NEUROSCIENCE, V60, P503, DOI 10.1016/0306-4522(94)90261-5 HELLER S, 1995, DEVELOPMENT, V121, P2681 HENDERSON JT, 1994, MOL BRAIN RES, V22, P151, DOI 10.1016/0169-328X(94)90043-4 HENKEL CK, 1991, J COMP NEUROL, V313, P259, DOI 10.1002/cne.903130206 Hokfelt T, 2001, J INTERN MED, V249, P27, DOI 10.1046/j.0954-6820.2000.00773.x HUBER J, 1993, EUR J BIOCHEM, V218, P1031, DOI 10.1111/j.1432-1033.1993.tb18462.x Inoue M, 1996, MOL NEUROBIOL, V12, P195, DOI 10.1007/BF02755588 IP FCF, 1995, J NEUROCHEM, V65, P2393 IP NY, 1993, NEURON, V10, P89, DOI 10.1016/0896-6273(93)90245-M Ip NY, 1996, ANNU REV NEUROSCI, V19, P491 IP NY, 1993, EUR J NEUROSCI, V5, P25, DOI 10.1111/j.1460-9568.1993.tb00201.x Kamiguchi H, 1995, NEUROCHEM RES, V20, P1187, DOI 10.1007/BF00995382 Kirsch M, 1997, J NEUROCHEM, V68, P979 KISHIMOTO T, 1994, CELL, V76, P253, DOI 10.1016/0092-8674(94)90333-6 Kordower JH, 1997, J COMP NEUROL, V377, P365, DOI 10.1002/(SICI)1096-9861(19970120)377:3<365::AID-CNE5>3.0.CO;2-0 Lee MY, 1997, NEUROSCIENCE, V77, P233, DOI 10.1016/S0306-4522(96)00476-9 Lee MY, 1997, J NEUROSCI, V17, P1137 Lelievre E, 2001, J BIOL CHEM, V276, P22476, DOI 10.1074/jbc.M101681200 LINDSAY RM, 1995, NATURE, V373, P289, DOI 10.1038/373289a0 LO DC, 1993, P NATL ACAD SCI USA, V90, P2557, DOI 10.1073/pnas.90.7.2557 MacLennan AJ, 1996, J NEUROSCI, V16, P621 MACLENNAN AJ, 1994, MOL BRAIN RES, V25, P251, DOI 10.1016/0169-328X(94)90160-0 MASU Y, 1993, NATURE, V365, P27, DOI 10.1038/365027a0 MITSUMOTO H, 1994, SCIENCE, V265, P1107, DOI 10.1126/science.8066451 Oliver DL, 1992, MAMMALIAN AUDITORY P, P168 Oyesiku NM, 1997, J NEUROBIOL, V32, P251, DOI 10.1002/(SICI)1097-4695(199703)32:3<251::AID-NEU1>3.0.CO;2-6 PATTERSON PH, 1993, CELL, V72, P123, DOI 10.1016/S0092-8674(05)80032-7 Plun-Favreau H, 2001, EMBO J, V20, P1692, DOI 10.1093/emboj/20.7.1692 RICHARDSON PM, 1994, PHARMACOL THERAPEUT, V63, P187, DOI 10.1016/0163-7258(94)90045-0 RIEDEL E, 1995, J COMP NEUROL, V354, P353 RUDGE JS, 1992, EUR J NEUROSCI, V4, P459, DOI 10.1111/j.1460-9568.1992.tb00896.x SANES DH, 1991, J NEUROBIOL, V22, P837, DOI 10.1002/neu.480220805 SANES DH, 1992, DEV BRAIN RES, V67, P47, DOI 10.1016/0165-3806(92)90024-Q SCHWEITZER L, 1985, NEUROSCIENCE, V16, P969, DOI 10.1016/0306-4522(85)90109-5 SENDTNER M, 1994, J NEUROBIOL, V25, P1436, DOI 10.1002/neu.480251110 SENIUKTATTON NA, 1995, J NEUROSCI RES, V41, P663, DOI 10.1002/jnr.490410513 SQUINTO SP, 1990, NEURON, V5, P757, DOI 10.1016/0896-6273(90)90334-C STAECKER H, 1995, NEUROREPORT, V6, P1533 STAHL N, 1994, J NEUROBIOL, V25, P1454, DOI 10.1002/neu.480251111 STOCKLI KA, 1991, J CELL BIOL, V115, P447, DOI 10.1083/jcb.115.2.447 STOOP R, 1995, SCIENCE, V267, P695, DOI 10.1126/science.7839148 Tierney TS, 1997, J COMP NEUROL, V378, P295, DOI 10.1002/(SICI)1096-9861(19970210)378:2<295::AID-CNE11>3.0.CO;2-R UNSICKER K, 1992, DEV BRAIN RES, V65, P285, DOI 10.1016/0165-3806(92)90191-X von Bartheld CS, 2001, MOL NEUROBIOL, V24, P1, DOI 10.1385/MN:24:1-3:001 Watanabe D, 1996, EUR J NEUROSCI, V8, P1630, DOI 10.1111/j.1460-9568.1996.tb01307.x WEN R, 1995, J NEUROSCI, V15, P7377 Zurn AD, 1996, J NEUROSCI RES, V44, P133, DOI 10.1002/(SICI)1097-4547(19960415)44:2<133::AID-JNR5>3.0.CO;2-E NR 61 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 14 EP 24 DI 10.1016/j.heares.2004.04.004 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400002 PM 15276672 ER PT J AU Pedemonte, M Drexler, DG Velluti, RA AF Pedemonte, M Drexler, DG Velluti, RA TI Cochlear microphonic changes after noise exposure and gentamicin administration during sleep and waking SO HEARING RESEARCH LA English DT Article DE cochlear microphonic; sleep wakefulness; gentamicin white noise exposure; efferent system; olivo-cochlear bundle ID AUDITORY EVOKED-POTENTIALS; VISUAL-ATTENTION; NEURAL CONTROL; GUINEA-PIGS; HAIR-CELLS; NERVE; SUPPRESSION; STIMULATION; MODULATION; PHYSIOLOGY AB These experiments were designed to investigate the effect of noise, sleep, and gentamicin on the cochlear microphonic (CM) of the guinea pigs. Are the changes observed due to intrinsic cochlear phenomena or to efferent system actions? To answer this question, noise exposure together with efferent system blockade by gentamicin administration was performed. In the normal (non-treated) animal, noise exposure decreased both variability and amplitude of the tone evoked CM in about the first 10 min while the physiological modulation of slow wave sleep increasing the CM is not present. Following administration of gentamicin, noise no longer affect the CM in about the first 10 min, although it produces amplitude and variability increments. The influence of slow wave sleep on the CM is not altered. Thus, gentamicin does not block the CM sleep/wakefulness related shifts. The data were discussed in terms of the influence of gentamicin on the olivo-cochlear bundle. It was hypothesized that the effects of noise on the CM is a result of both peripheral and central influences. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Repbul, Fac Med, Dept Fisiol, Montevideo 11800, Uruguay. RP Velluti, RA (reprint author), Univ Repbul, Fac Med, Dept Fisiol, Av Gral Flores 2125, Montevideo 11800, Uruguay. EM rvelluti@fmed.edu.uy CR ARAN JM, 1995, BRIT J AUDIOL, V28, P167 Avan P, 1996, EXP BRAIN RES, V109, P9 BUNO W, 1966, PHYSIOL BEHAV, V1, P23, DOI 10.1016/0031-9384(66)90038-2 CAMPBELL SS, 1984, NEUROSCI BIOBEHAV R, V8, P269, DOI 10.1016/0149-7634(84)90054-X DAIGNEAU.EA, 1970, TOXICOL APPL PHARM, V17, P223, DOI 10.1016/0041-008X(70)90146-8 Desmedt J.E., 1975, HDB SENSORY PHYSL, P219 FROEHLICH P, 1993, HEARING RES, V66, P1, DOI 10.1016/0378-5955(93)90254-X GALAMBOS R, 1956, J NEUROPHYSIOL, V19, P424 GLASS L, 1988, CLOCKS CHAOS RHYTHMS, P48 GUINAN JJ, 1996, COCHLEA, P455 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 HUFFMAN RF, 1990, BRAIN RES REV, V15, P295, DOI 10.1016/0165-0173(90)90005-9 Khalfa S, 2001, NEUROSCIENCE, V104, P347, DOI 10.1016/S0306-4522(01)00072-0 Maison S, 2001, PSYCHOPHYSIOLOGY, V38, P35, DOI 10.1017/S0048577201990109 OATMAN LC, 1971, EXP NEUROL, V32, P341, DOI 10.1016/0014-4886(71)90003-3 OATMAN LC, 1976, EXP NEUROL, V51, P41, DOI 10.1016/0014-4886(76)90052-2 OATMAN LC, 1977, EXP NEUROL, V57, P200, DOI 10.1016/0014-4886(77)90057-7 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 Pedemonte M., 1996, NEUROSCI LETT, V223, P1 Robles L, 2001, PHYSIOL REV, V81, P1305 SCHMIEDT RA, 1984, J ACOUST SOC AM, V76, P1293, DOI 10.1121/1.391446 SIEGEL JH, 1982, HEARING RES, V6, P171, DOI 10.1016/0378-5955(82)90052-1 SMITH DW, 1994, BRAIN RES, V652, P213 Spangler K., 1991, NEUROBIOLOGY HEARING, P27 VELLUTI R, 1986, ELECTROEN CLIN NEURO, V64, P556, DOI 10.1016/0013-4694(86)90194-X Velluti R, 1980, Acta Neurol Latinoam, V26, P129 VELLUTI R, 1989, HEARING RES, V39, P203, DOI 10.1016/0378-5955(89)90091-9 Velluti RA, 1997, J SLEEP RES, V6, P61 Velluti RA, 2002, CELL MOL NEUROBIOL, V22, P501, DOI 10.1023/A:1021956401616 Warr W. B., 1992, MAMMALIAN AUDITORY P, P410 Whithnell RH, 2001, EAR HEARING, V22, P75 Xiao ZJ, 2002, NAT NEUROSCI, V5, P57, DOI 10.1038/nn786 Yoshida N, 1999, J NEUROPHYSIOL, V82, P3168 NR 33 TC 3 Z9 3 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 25 EP 30 DI 10.1016/j.heares.2004.03.008 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400003 PM 15276673 ER PT J AU Schwartz, DA Purves, D AF Schwartz, DA Purves, D TI Pitch is determined by naturally occurring periodic sounds SO HEARING RESEARCH LA English DT Article DE pitch; auditory; perception; probability; speech; psychoacoustics ID HUMAN AUDITORY-CORTEX; COMPLEX TONES; VIRTUAL-PITCH; PERCEPTION; IDENTIFICATION; HARMONICS; REPRESENTATION; DISCRIMINATION; AMBIGUITY; DOMINANCE AB The phenomenology of pitch has been difficult to rationalize and remains the subject of much debate. Here we test the hypothesis that audition generates pitch percepts by relating inherently ambiguous sound stimuli to their probable sources in the human auditory environment. A database of speech sounds, the principal source of periodic sound energy for human listeners, was compiled and the dominant periodicity of each speech sound determined. A set of synthetic test stimuli were used to assess whether the major pitch phenomena described in the literature could be explained by the probabilistic relationship between the stimuli and their probable sources (i.e., speech sounds). The phenomena tested included the perception of the missing fundamental, the pitchshift of the residue, spectral dominance and the perception of pitch strength. In each case, the conditional probability distribution of speech sound periodicities accurately predicted the pitches normally heard in response to the test stimuli. We conclude from these findings that pitch entails an auditory process that relates inevitably ambiguous sound stimuli to their probable natural sources. (C) 2004 Elsevier B.V. All rights reserved. C1 Duke Univ, Ctr Cognit Neurosci, Durham, NC 27708 USA. Duke Univ, Dept Neurobiol, Durham, NC 27708 USA. RP Schwartz, DA (reprint author), Duke Univ, Ctr Cognit Neurosci, Box 90999, Durham, NC 27708 USA. EM schwartz@neuro.duke.edu CR ARSCH R, 1999, PSYCHOL MUSIC Bernstein JG, 2003, J ACOUST SOC AM, V113, P3323, DOI 10.1121/1.1572146 Boersma P., 1993, P I PHONETIC SCI, V17, P97 BOERSMA P, 2003, PRAAT 4 1 DOING PHON Cansino S, 2003, HUM BRAIN MAPP, V20, P71, DOI 10.1002/hbm.10132 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1717 Cariani PA, 1996, J NEUROPHYSIOL, V76, P1698 COOK P, 1999, MUSIC COGNITION COMP, P195 Dai HP, 2000, J ACOUST SOC AM, V107, P953, DOI 10.1121/1.428276 de Boer E, 1956, THESIS U AMSTERDAM FASTL H, 1979, HEARING RES, V1, P293, DOI 10.1016/0378-5955(79)90002-9 Fisher W.M., 1986, P DARPA SPEECH REC W FLANAGAN JL, 1960, J ACOUST SOC AM, V32, P1308, DOI 10.1121/1.1907900 Fletcher H, 1924, PHYS REV, V23, P427, DOI 10.1103/PhysRev.23.427 Fromkin V., 1998, INTRO LANGUAGE Fujioka T, 2003, EUR J NEUROSCI, V18, P432, DOI 10.1046/j.1460-9568.2003.02769.x Garofolo J., 1990, DARPA TIMIT ACOUSTIC GERSON A, 1978, J ACOUST SOC AM, V63, P498, DOI 10.1121/1.381750 GOLDSTEI.JL, 1973, J ACOUST SOC AM, V54, P1496, DOI 10.1121/1.1914448 GOLDSTEIN JL, 2000, ENCY PSYCHOL GORDON C, 1992, B AM MATH SOC, V27, P134, DOI 10.1090/S0273-0979-1992-00289-6 HALL JW, 1981, J ACOUST SOC AM, V69, P509, DOI 10.1121/1.385480 HOUTSMA AJM, 1990, J ACOUST SOC AM, V87, P304, DOI 10.1121/1.399297 Huron D, 2001, MUSIC PERCEPT, V19, P1, DOI 10.1525/mp.2001.19.1.1 Jarvelainen H, 2002, J NEW MUSIC RES, V31, P311, DOI 10.1076/jnmr.31.4.311.14167 Lamel L., 1986, P DARPA SPEECH REC W Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LICKLIDER JCR, 1954, J ACOUST SOC AM, V26, P945, DOI 10.1121/1.1928005 Lieberman P., 1988, SPEECH PHYSL SPEECH MEDDIS R, 1991, J ACOUST SOC AM, V89, P2866, DOI 10.1121/1.400725 MOORE B J, 1982, INTRO PSYCHOL HEARIN MOORE BCJ, 1973, Q J EXP PSYCHOL, V25, P451, DOI 10.1080/14640747308400369 Moore BCJ, 1993, HUMAN PSYCHOPHYSICS MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1853, DOI 10.1121/1.391936 PIERCE J, 2001, MUSIC COGNITION COMP PIERCE JR, 1991, J ACOUST SOC AM, V90, P1889, DOI 10.1121/1.401667 Plomp R, 1976, ASPECTS TONE SENSATI Plomp R., 2002, INTELLIGENT EAR NATU PLOMP R, 1967, J ACOUST SOC AM, V41, P1526, DOI 10.1121/1.1910515 Purves D., 2003, WHY WE SEE WHAT WE D Purves D, 2004, PSYCHOL REV, V111, P142, DOI 10.1037/0033-295X.111.1.142 Rao R., 2002, PROBABILISTIC MODELS RISTAMA RJ, 1970, FREQUENCY ANAL PERIO, P250 RITSMA RJ, 1967, J ACOUST SOC AM, V42, P191, DOI 10.1121/1.1910550 Rossing T. D., 2002, SCI SOUND SCHOUTEN J. F., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1418, DOI 10.1121/1.1918360 SCHOUTEN JF, 1938, P K NED AKAD WETENSC, V34, P1086 Schouten JF, 1940, P K NED AKAD WETENSC, V43, P356 Schwartz DA, 2003, J NEUROSCI, V23, P7160 Seebeck A., 1841, ANN PHYS CHEM, V53, P417 SMOORENB.GF, 1970, J ACOUST SOC AM, V48, P924, DOI 10.1121/1.1912232 Stevens K.N., 1999, ACOUSTIC PHONETICS Tarantola A., 1987, INVERSE PROBLEM THEO TERHARDT E, 1974, J ACOUST SOC AM, V55, P1061, DOI 10.1121/1.1914648 TERHARDT E, 1986, ACUSTICA, V61, P57 TERHARDT E, 1982, J ACOUST SOC AM, V71, P671, DOI 10.1121/1.387543 TERHARDT E, 1982, J ACOUST SOC AM, V71, P679, DOI 10.1121/1.387544 Yost W.A., 2000, FUNDAMENTALS HEARING Zucker S, 2003, MON NOT R ASTRON SOC, V342, P1291, DOI 10.1046/j.1365-8711.2003.06633.x NR 59 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 31 EP 46 DI 10.1016/j.heares.2004.01.019 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400004 PM 15276674 ER PT J AU Gleich, O Weiss, M Strutz, E AF Gleich, O Weiss, M Strutz, E TI Age-dependent changes in the lateral superior olive of the gerbil (Meriones unguiculatus) SO HEARING RESEARCH LA English DT Article DE binaural hearing; aging; GABA; glycine; olivary complex; sound localization ID AUDITORY BRAIN-STEM; COCHLEAR-NUCLEUS; GLYCINE IMMUNOREACTIVITY; INFERIOR COLLICULUS; TRAPEZOID BODY; MEDIAL NUCLEUS; GABA IMMUNOREACTIVITY; MONGOLIAN GERBIL; FISCHER-344 RAT; RHESUS-MONKEY AB Data from humans and animal models provide evidence for an age-dependent impairment in the ability to localize sound. The lateral superior olive (LSO) in the ascending auditory pathway is one important center involved in processing of binaural auditory stimuli. To identify potential age-dependent changes we characterized the LSO in young (< 15 months) and old ( greater than or equal to 3 years) gerbils with a special emphasis on the expression of GABA- and glycine-like immuno-reactivity. The dimensions of the LSO, as well as the number and density of glycine- and GABA-immuno-reactive neurons, were not significantly different between young and old gerbils. The size of glycine- and GABA-immuno-reactive neurons was significantly reduced in the high-frequency (medial) limb of the LSO. Over all, age-dependent changes in the LSO of the gerbil were small. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Regensburg, ENT Dept, D-93042 Regensburg, Germany. RP Gleich, O (reprint author), Univ Regensburg, ENT Dept, Franz Josef Strauss Allee 11, D-93042 Regensburg, Germany. EM otto.gleich@klinik.uni-regensburg.de CR Abel SM, 2000, J ACOUST SOC AM, V108, P743, DOI 10.1121/1.429607 Babkoff H, 2002, HEARING RES, V165, P117, DOI 10.1016/S0378-5955(02)00292-7 BROWN CH, 1984, EXP AGING RES, V10, P35 CASEY M A, 1987, Society for Neuroscience Abstracts, V13, P328 CASEY MA, 1982, NEUROBIOL AGING, V3, P187, DOI 10.1016/0197-4580(82)90039-2 CASEY MA, 1990, NEUROBIOL AGING, V11, P391, DOI 10.1016/0197-4580(90)90004-J CASPARY DM, 1995, EXP GERONTOL, V30, P349, DOI 10.1016/0531-5565(94)00052-5 CHEAL M, 1986, EXP AGING RES, V12, P3 CZIBULKA A, 1991, HEARING RES, V52, P43, DOI 10.1016/0378-5955(91)90186-D DAVIS AC, 1997, SCOTTBROWNS OTOLARYN FINLAYSON PG, 1995, HEARING RES, V87, P84, DOI 10.1016/0378-5955(95)00081-E FINLAYSON PG, 1993, NEUROBIOL AGING, V14, P127, DOI 10.1016/0197-4580(93)90088-S Finlayson PG, 2002, JARO, V3, P321, DOI 10.1007/s101620020038 Gleich O, 2002, HEARING RES, V164, P166, DOI 10.1016/S0378-5955(01)00430-0 Gleich O, 2000, J COMP NEUROL, V428, P609, DOI 10.1002/1096-9861(20001225)428:4<609::AID-CNE2>3.0.CO;2-F Gleich O, 1998, CELL TISSUE RES, V293, P207, DOI 10.1007/s004410051113 GLENDENNING KK, 1985, J COMP NEUROL, V232, P261, DOI 10.1002/cne.902320210 Hamann I, 2002, HEARING RES, V171, P82, DOI 10.1016/S0378-5955(02)00454-9 HARRISON JM, 1983, EXP AGING RES, V9, P35 HARRISON JM, 1981, EXP AGING RES, V9, P35 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 HENKEL CK, 1995, J COMP NEUROL, V354, P470, DOI 10.1002/cne.903540313 HERMAN GE, 1977, J GERONTOL, V32, P187 Irvine Dexter R. F., 1992, V2, P153 Korada S, 1999, J COMP NEUROL, V409, P664, DOI 10.1002/(SICI)1096-9861(19990712)409:4<664::AID-CNE10>3.0.CO;2-S Krenning J, 1998, LARYNGOSCOPE, V108, P26, DOI 10.1097/00005537-199801000-00005 MARTIN DR, 1991, AM J OTOL, V12, P365 MILBRANDT JC, 1995, NEUROSCIENCE, V67, P713, DOI 10.1016/0306-4522(95)00082-T MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOORE JK, 1987, J COMP NEUROL, V260, P157, DOI 10.1002/cne.902600202 Mulders WHAM, 2004, HEARING RES, V187, P122, DOI 10.1016/S0378-5955(03)00308-3 ONeill WE, 1997, HEARING RES, V112, P158, DOI 10.1016/S0378-5955(97)00116-0 OSTAPOFF EM, 1989, HEARING RES, V37, P141, DOI 10.1016/0378-5955(89)90036-1 Peters A, 1996, J NEUROPATH EXP NEUR, V55, P861 Peters A, 2002, J COMP NEUROL, V442, P277, DOI 10.1002/cne.10099 PEYRET D, 1986, HEARING RES, V23, P115, DOI 10.1016/0378-5955(86)90008-0 PEYRET D, 1987, ACTA OTO-LARYNGOL, V104, P71, DOI 10.3109/00016488709109049 Riemann R, 1998, ORL J OTO-RHINO-LARY, V60, P278, DOI 10.1159/000027610 ROBERTS RC, 1987, J COMP NEUROL, V258, P267, DOI 10.1002/cne.902580207 SAINTMARIE RL, 1989, J COMP NEUROL, V279, P382 Sloane JA, 2003, J NEUROCHEM, V84, P157, DOI 10.1046/j.1471-4159.2003.01541.x Strouse A, 1998, J ACOUST SOC AM, V104, P2385, DOI 10.1121/1.423748 THOMPSON GC, 1985, BRAIN RES, V339, P119, DOI 10.1016/0006-8993(85)90628-6 VATER M, 1995, J COMP NEUROL, V358, P155, DOI 10.1002/cne.903580202 WENTHOLD RJ, 1987, NEUROSCIENCE, V22, P897, DOI 10.1016/0306-4522(87)92968-X Willott JF, 1997, J COMP NEUROL, V385, P405 Wynne B, 1995, J CHEM NEUROANAT, V9, P289, DOI 10.1016/0891-0618(95)00095-X NR 47 TC 6 Z9 8 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 47 EP 59 DI 10.1016/j.heares.2004.03.016 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400005 PM 15276675 ER PT J AU Karlidag, T Kaygusuz, I Keles, E Yalcin, S Serhatlioglu, SS Acik, Y Ozturk, L AF Karlidag, T Kaygusuz, I Keles, E Yalcin, S Serhatlioglu, SS Acik, Y Ozturk, L TI Hearing in workers exposed to low-dose radiation for a long period SO HEARING RESEARCH LA English DT Article DE high-frequency audiometry; hearing loss; radiation ID X-RAY-IRRADIATION; EARLY DEGENERATIVE CHANGES; NASOPHARYNGEAL CARCINOMA; GUINEA PIG; INNER EAR; RADIOTHERAPY; POSTIRRADIATION; THERAPY AB The aim of the present study was to evaluate changes in hearing thresholds with standard and high frequency audiometry in workers exposed to low-dose ionizing radiation for a long period. A total of 57 (49 male and 8 female) technical staff working in radiology-related jobs who were exposed to occupational radiation were included in the study. The control group consisted of 32 (27 male and 5 female) volunteer subjects with normal hearing. The symptoms like tinnitus, vertigo, weakness and lack of appetite were evaluated. A standard ascending/descending method was applied to the subjects of the study and the control groups in order to determine their hearing thresholds at eleven different frequencies between 250 and 16 000 Hz. In the study group, the working duration of subjects ranged from 4 to 23 years, and the percentage of tinnitus, weakness, vertigo and lack of appetite were 47%, 28%, 24% and 17%, respectively. It was observed that pure tone hearing thresholds were markedly increased for 4000, 6000, 8000, 14 000 and 16 000 Hz frequencies in the study group compared to the control group (p < 0.01). Levels of static compliance and middle ear pressures of the study group were similar to the control group. Tinnitus, vertigo and hearing loss in high frequencies were observed in the subjects exposed to the radiation for a long period. Subjects under high risk should be evaluated periodically. We suggest that the use of standard and high frequency audiometry together could be beneficial in the evaluation of these subjects. (C) 2004 Elsevier B.V. All rights reserved. C1 Firat Univ, Fac Med, Dept Otorhinolaryngol, TR-23119 Elazig, Turkey. Firat Univ, Fac Med, Dept Radiodiagnost, TR-23119 Elazig, Turkey. Firat Univ, Fac Med, Dept Publ Hlth, TR-23119 Elazig, Turkey. RP Karlidag, T (reprint author), Firat Univ, Fac Med, Dept Otorhinolaryngol, TR-23119 Elazig, Turkey. EM turgut_karlidag@yahoo.com CR ANTEUNIS LJC, 1994, AM J SURG, V168, P408, DOI 10.1016/S0002-9610(05)80086-8 BOHNE BA, 1985, LARYNGOSCOPE, V95, P818 GABRIELE P, 1992, RADIOTHER ONCOL, V25, P25, DOI 10.1016/0167-8140(92)90191-V GRAU C, 1991, INT J RADIAT ONCOL, V21, P723 Grau C, 1996, INT J RADIAT ONCOL, V36, P515, DOI 10.1016/S0360-3016(96)00346-X HALL HI, 1994, HDB CLIN AUDIOLOGY, P283 Hoistad DL, 1998, OTOLARYNG HEAD NECK, V118, P825, DOI 10.1016/S0194-5998(98)70276-1 Honore HB, 2002, RADIOTHER ONCOL, V65, P9, DOI 10.1016/S0167-8140(02)00173-1 Johannesen TB, 2002, INT J RADIAT ONCOL, V53, P86, DOI 10.1016/S0360-3016(01)02810-3 Kashiwamura M, 2001, AURIS NASUS LARYNX, V28, pS111, DOI 10.1016/S0385-8146(01)00076-1 Kwong DLW, 1996, INT J RADIAT ONCOL, V36, P281, DOI 10.1016/S0360-3016(96)00302-1 LAU SK, 1992, J LARYNGOL OTOL, V106, P887, DOI 10.1017/S002221510012119X MOORE MJ, 1984, OTOLARYNG CLIN N AM, V17, P389 MORETTI JA, 1976, LARYNGOSCOPE, V86, P598, DOI 10.1288/00005537-197604000-00018 ONEILL JV, 1979, OTOLARYNG HEAD NECK, V87, P359 SATALOFF RT, 1994, AM J OTOL, V15, P772 SCHOT LJ, 1992, EUR ARCH OTO-RHINO-L, V249, P305 Singh I P, 1991, Clin Oncol (R Coll Radiol), V3, P217, DOI 10.1016/S0936-6555(05)81205-1 TOKIMOTO T, 1985, ACTA OTO-LARYNGOL, V100, P266, DOI 10.3109/00016488509104789 WINTHER FO, 1969, ACTA OTO-LARYNGOL, V67, P262, DOI 10.3109/00016486909125450 WINTHER FO, 1969, ACTA OTO-LARYNGOL, V68, P514, DOI 10.3109/00016486909121592 YAMAMOTO M, 1979, NIHON JIBIRINSYOU, V72, P979 YOUNG YH, 1995, ARCH OTOLARYNGOL, V121, P765 Young YH, 2001, ANN OTO RHINOL LARYN, V110, P904 Young YH, 1999, J LARYNGOL OTOL, V113, P815 NR 25 TC 0 Z9 0 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 60 EP 64 DI 10.1016/j.heares.2004.04.011 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400006 PM 15276676 ER PT J AU Ignatova, EG Thalmann, I Xu, BG Ornitz, DM Thalmann, R AF Ignatova, EG Thalmann, I Xu, BG Ornitz, DM Thalmann, R TI Molecular mechanisms underlying ectopic otoconia-like particles in the endolymphatic sac of embryonic mice SO HEARING RESEARCH LA English DT Article DE endolympbatic sac; otoconia; otoconin-90 ID GUINEA-PIG; INNER-EAR; MUTATIONS; AGENESIS; PROTEIN; DUCT; FLOW; RAT AB Otoconin-90, the principal otoconial matrix protein, provided a too] to investigate the molecular mechanism of otoconial morphogenesis. The endolymphatic sac of the embryonic chick and guinea pig contain otoconia. Here, we show that the embryonic mouse transiently expresses ectopic otoconia in the endolymphatic sac. Massive precipitate of otoconin-90-positive material is detectable in the lumen of the endolymphatic sac between embryonic day 14.5 and 17.5 with frequent accretion into more heavily staining otoconia-like particles. Otoconin-90 was also localized at the surface and the interior of epithelial cells lining the endolymphatic sac as well as incorporated into free floating cells. In contrast, in situ hybridization failed to detect mRNA in the endolymphatic duct and sac, even though the adjacent nonsensory vestibular structures are heavily stained. Because of ample expression of otoconin-90 protein in the absence of the corresponding mRNA, we conclude that the luminal otoconin-90 is imported via longitudinal flow from the vestibular compartments, where both mRNA and protein are strongly expressed. Because of absence of mRNA, the expression of the corresponding protein by the epithelia lining the endolymphatic sac can only be explained by a resorptive process, as previously proposed on the basis of the movement of luminal macromolecules. The data do not support the previous hypothesis that the transient expression of otoconia-like particles of the endolymphatic sac represents a vestigial phenomenon from the amphibian stage, since amphibia express ample mRNA encoding otoconin-22 in the endolymphatic sac system. (C) 2004 Elsevier B.V. All rights reserved. C1 Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. Washington Univ, Sch Med, Dept Mol Biol & Pharmacol, St Louis, MO 63110 USA. RP Thalmann, R (reprint author), Washington Univ, Sch Med, Dept Otolaryngol, 660 S Euclid Ave,POB 8115, St Louis, MO 63110 USA. EM thalmannr@msnotes.wustl.edu CR Anniko M, 1980, Am J Otolaryngol, V1, P400, DOI 10.1016/S0196-0709(80)80021-4 BALSAMO G, 1969, EXPERIENTIA, V25, P292, DOI 10.1007/BF02034402 Dempster W. T., 1930, J MORPHOL, V50, P7 Epley JM, 2001, ANN NY ACAD SCI, V942, P179 ERWALL C, 1988, HEARING RES, V36, P277, DOI 10.1016/0378-5955(88)90068-8 ERWAY L, 1986, SCANNING ELECTRON MI, V4, P1681 FRIBERG U, 1986, ACTA OTO-LARYNGOL, V101, P172, DOI 10.3109/00016488609132825 GUARDABASSI A, 1960, Z ZELLFORSCH MIK ANA, V51, P278 Guild SR, 1927, AM J ANAT, V39, P57, DOI 10.1002/aja.1000390103 Harada Y, 1998, ACTA OTO-LARYNGOL, V118, P74 HULTCRANTZ M, 1990, ACTA OTO-LARYNGOL, V110, P56, DOI 10.3109/00016489009122515 Hurle B, 2003, HUM MOL GENET, V12, P777, DOI 10.1093/hmg/ddg087 IGNATOV EG, 2002, 25 MIDW RES M ASS RE, P93 IMOTO T, 1983, ACTA OTO-LARYNGOL, V96, P227, DOI 10.3109/00016488309132895 Lim D J, 1980, Birth Defects Orig Artic Ser, V16, P111 Lins U, 2000, J STRUCT BIOL, V131, P67, DOI 10.1006/jsbi.2000.4260 LINS U, UNPUB OTOCONIA VERTI LUNDQUIST PG, 1964, ACTA OTOLARYNGOL S, V188, P195 MANNI JJ, 1987, HEARING RES, V26, P229, DOI 10.1016/0378-5955(87)90059-1 Ornitz DM, 1998, HEARING RES, V122, P60, DOI 10.1016/S0378-5955(98)00080-X Paffenholz R, 2004, GENE DEV, V18, P486, DOI 10.1101/gad.1172504 PARNES LS, 1992, LARYNGOSCOPE, V102, P988 POTE KG, 1991, COMP BIOCHEM PHYS B, V98, P287, DOI 10.1016/0305-0491(91)90181-C RASKANDERSEN H, 1999, HEARING RES, V149, P46 RASKANDERSEN H, 1981, ANN NY ACAD SCI, V374, P11, DOI 10.1111/j.1749-6632.1981.tb30855.x RUDERT H, 1969, ARCH KLIN EXP OHR, V193, P138, DOI 10.1007/BF00401702 SALAMAT MS, 1980, ANN OTO RHINOL LARYN, V89, P229 SALT AN, 2001, PHYSL EAR, P333 Salt AN, 1989, MENIERES DIS, P69 Salt AN, 1997, HEARING RES, V107, P29, DOI 10.1016/S0378-5955(97)00018-X Salt AN, 2000, HEARING RES, V149, P46, DOI 10.1016/S0378-5955(00)00160-X SUZUKI H, 1995, HEARING RES, V90, P212, DOI 10.1016/0378-5955(95)00168-7 TAKUMIDA M, 1989, HEARING RES, V40, P1, DOI 10.1016/0378-5955(89)90094-4 Takumida M, 1991, Acta Otolaryngol Suppl, V481, P129 Thalmann R, 2001, ANN NY ACAD SCI, V942, P162 VASQUEZ C. S., 1955, ANN OTOL RHINOL AND LARYNGOL, V64, P1019 VEENHOF BB, 1969, DEV OTOCONIA MICE Verpy E, 1999, P NATL ACAD SCI USA, V96, P529, DOI 10.1073/pnas.96.2.529 WANG DL, 1990, NEURAL COMPUT, V2, P95 Yamane H, 1984, Acta Otolaryngol Suppl, V406, P263 NR 40 TC 5 Z9 5 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 65 EP 72 DI 10.1016/j.heares.2004.03.019 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400007 PM 15276677 ER PT J AU Reyes, SA Salvi, RJ Burkard, RF Coad, ML Wack, DS Galantowicz, PJ Lockwood, AH AF Reyes, SA Salvi, RJ Burkard, RF Coad, ML Wack, DS Galantowicz, PJ Lockwood, AH TI PET imaging of the 40 Hz auditory steady state response SO HEARING RESEARCH LA English DT Article DE steady-state auditory evoked potentials; positron emission tomography; auditory cortex; frontal cortex; thalamus; auditory pathways ID POSITRON-EMISSION-TOMOGRAPHY; AMPLITUDE-MODULATED TONES; TONOTOPIC ORGANIZATION; VOLUME MEASUREMENT; CORTEX; BRAIN; ACTIVATION; OSCILLATIONS; CONNECTIONS; ANATOMY AB The auditory steady state response (aSSR) is an oscillatory electrical potential recorded from the scalp induced by amplitudemodulated (AM) or click/tone burst stimuli. Its clinical utility has been limited by uncertainty regarding the specific areas of the brain involved in its generation. To identify the generators of the aSSR, O-15-water PET imaging was used to locate the regions of the brain activated by a steady 1 kHz pure tone, the same tone amplitude modulated (AM) at 40 Hz and the specific regions of the brain responsive to the AM component of the stimulus relative to the continuous tone. The continuous tone produced four clusters of activation. The boundaries of these activated clusters extended to include regions in left primary auditory cortex, right non-primary auditory cortex, left thalamus, and left cingulate. The AM tone produced three clusters of activation. The boundaries of these activated clusters extended to include primary auditory cortex bilaterally, left medial geniculate and right middle frontal gyrus. Two regions were specifically responsive to the AM component of the stimulus. These activated clusters extended to include the right anterior cingulate near frontal cortex and right auditory cortex. We conclude that cortical sites, including areas outside primary auditory cortex, are involved in generating the aSSR: There was an unexpected difference between morning and afternoon session scans that may reflect a pre- versus post-prandial state. These results support the hypothesis that a distributed resonating circuit mediates the generation of the aSSR. (C) 2004 Published by Elsevier B.V. C1 Univ Buffalo, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. Univ Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. Univ Buffalo, Sch Med & Biomed Sci, Buffalo, NY 14214 USA. Vet Adm, Western New York Healthcare Syst, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA. Univ Buffalo, Dept Otolaryngol, Buffalo, NY 14214 USA. Univ Buffalo, Dept Neurol, Buffalo, NY 14214 USA. Univ Buffalo, Ctr Positron Emiss Tomog, Buffalo, NY 14214 USA. Univ Buffalo, Dept Nucl Med, Buffalo, NY 14214 USA. RP Lockwood, AH (reprint author), Univ Buffalo, Dept Commun Disorders & Sci, Buffalo, NY 14214 USA. EM ahl@buffalo.edu CR Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7 Benedict RHB, 1998, NEUROREPORT, V9, P121, DOI 10.1097/00001756-199801050-00024 Del Parigi A, 2002, ANN NY ACAD SCI, V967, P389 Frackowiak RSJ, 1997, HUMAN BRAIN FUNCTION Genovese CR, 2002, NEUROIMAGE, V15, P870, DOI 10.1006/nimg.2001.1037 Giraud AL, 2000, J NEUROPHYSIOL, V84, P1588 GRAY CM, 1989, P NATL ACAD SCI USA, V86, P1698, DOI 10.1073/pnas.86.5.1698 Griffiths TD, 2000, NEUROREPORT, V11, P919, DOI 10.1097/00001756-200004070-00004 Gutschalk A, 1999, CLIN NEUROPHYSIOL, V110, P856, DOI 10.1016/S1388-2457(99)00019-X Hackett TA, 1999, BRAIN RES, V817, P45, DOI 10.1016/S0006-8993(98)01182-2 HARI R, 1989, J ACOUST SOC AM, V86, P1033, DOI 10.1121/1.398093 Harms MP, 2002, J NEUROPHYSIOL, V88, P1433, DOI 10.1152/jn.00156.2002 John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 Kaas JH, 2000, P NATL ACAD SCI USA, V97, P11793, DOI 10.1073/pnas.97.22.11793 Kiren T, 1994, Acta Otolaryngol Suppl, V511, P28 Kuwada Shigeyuki, 2002, J Am Acad Audiol, V13, P188 LAUTER JL, 1985, HEARING RES, V20, P199, DOI 10.1016/0378-5955(85)90024-3 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Llinas RR, 1999, P NATL ACAD SCI USA, V96, P15222, DOI 10.1073/pnas.96.26.15222 Lockwood AH, 1999, CEREB CORTEX, V9, P65, DOI 10.1093/cercor/9.1.65 MAKELA JP, 1990, HEARING RES, V45, P41, DOI 10.1016/0378-5955(90)90181-N Muller BW, 2002, NEUROIMAGE, V17, P231, DOI 10.1006/nimg.2002.1176 Nolf EX, 2003, EUR J NUCL MED S2, V30, pS246 PANDYA DN, 1995, REV NEUROL, V151, P486 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Pastor MA, 2002, J NEUROSCI, V22, P10501 Pedroarena C, 1997, P NATL ACAD SCI USA, V94, P724, DOI 10.1073/pnas.94.2.724 Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 Price CJ, 1997, NEUROIMAGE, V5, P261, DOI 10.1006/nimg.1997.0269 Rademacher J, 2001, NEUROIMAGE, V13, P669, DOI 10.1006/nimg.2000.0714 Reyes SA, 2002, HEARING RES, V171, P43, DOI 10.1016/S0378-5955(02)00346-5 RIBARY U, 1991, P NATL ACAD SCI USA, V88, P11037, DOI 10.1073/pnas.88.24.11037 Rickards F.W., 1984, EVOKED POTENTIAL, VII, P163 Romanski LM, 1997, J COMP NEUROL, V379, P313 Ross B, 2000, J ACOUST SOC AM, V108, P679, DOI 10.1121/1.429600 Salvi RJ, 2002, HEARING RES, V170, P96, DOI 10.1016/S0378-5955(02)00386-6 Santarelli R, 1999, Scand Audiol Suppl, V51, P23 Small DM, 2001, BRAIN, V124, P1720, DOI 10.1093/brain/124.9.1720 SPYDELL JD, 1985, ELECTROEN CLIN NEURO, V62, P193, DOI 10.1016/0168-5597(85)90014-0 Talairach J., 1988, COPLANAR STEREOTAXIC Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3 NR 41 TC 13 Z9 15 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 73 EP 80 DI 10.1016/j.heares.2004.04.001 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400008 PM 15276678 ER PT J AU Frei, K Ramsebner, R Hamader, G Lucas, T Schoefer, C Baumgartner, WD Wachtler, FJ Kirschhofer, K AF Frei, K Ramsebner, R Hamader, G Lucas, T Schoefer, C Baumgartner, WD Wachtler, FJ Kirschhofer, K TI Lack of association between Connexin 31 (GJB3) alterations and sensorineural deafness in Austria SO HEARING RESEARCH LA English DT Article DE sensorineural deafness; Connexin 31; Connexin 26; Austria; mutation ID AUTOSOMAL-DOMINANT DEAFNESS; HEARING IMPAIRMENT; KCNQ4 GENE; MUTATIONS; DFNA2; FAMILIES; REGION; FREQUENCY; LOCUS; R32W AB Mutations in the gap junction protein beta 3 (GJB3) gene encoding Connexin 31 (Cx31) are known to cause autosomal inherited sensorineural deafness, erythrokeratodermia and neuropathy. The role of Cx31 mutations has not been described in familial cases of non-syndromic hearing impairment (NSHI) in central European populations. To identify mutations in the Austrian population, highly selected familial (n = 24) and sporadic (n = 21) cases of isolated NSHI were screened by analysis of the complete coding sequence of Cx31, after exclusion of a common Cx26 causing deafness. Three different variations occurring in a total of 37% of all cases were identified. A C94T (R32W) missense mutation was seen in 4.4% of cases and two silent alterations C357T and C798T were detected in 8.9% and 24.4% of cases exclusively in a heterozygous pattern. No correlation between Cx31 alterations and deafness was found. To investigate the role of heterozygous Cx31 variations for a possibly combination allelic disease inheritance with Cx26 mutations as shown for Connexin 30 and Connexin 26, patients with Cx26 variations were tested. Our data suggest that Cx31 alterations are common but have no or a low genetic relevance in the Austrian hearing impaired population with or without Cx26 alterations. (C) 2004 Elsevier B.V. All rights reserved. C1 Univ Vienna, Dept Otorhinolaryngol, Univ Hosp Vienna, A-1090 Vienna, Austria. Univ Vienna, Dept Histol & Embryol, A-1090 Vienna, Austria. Univ Vienna, Dept Clin Pharmacol, A-1090 Vienna, Austria. Krankenhaus Barmherzigen Bruder, Dept Otorhinolaryngol, A-1090 Vienna, Austria. RP Frei, K (reprint author), Univ Vienna, Dept Otorhinolaryngol, Univ Hosp Vienna, AKH-8J Waehringer,Gurtel 18-20, A-1090 Vienna, Austria. EM klemens.frei@akh-wien.ac.at CR Casano RAMS, 1998, AM J MED GENET, V79, P388, DOI 10.1002/(SICI)1096-8628(19981012)79:5<388::AID-AJMG11>3.0.CO;2-N Cohen M.M., 1995, HEREDITARY HEARING L, P9 COUCKE P, 1994, NEW ENGL J MED, V331, P425, DOI 10.1056/NEJM199408183310702 Coucke PJ, 1999, HUM MOL GENET, V8, P1321, DOI 10.1093/hmg/8.7.1321 del Castillo I, 2002, NEW ENGL J MED, V346, P243, DOI 10.1056/NEJMoa012052 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 Ensink RJH, 2000, EUR ARCH OTO-RHINO-L, V257, P62, DOI 10.1007/PL00007511 Estivill X, 1998, LANCET, V351, P394, DOI 10.1016/S0140-6736(97)11124-2 Fortnum H, 1997, BRIT J AUDIOL, V31, P409, DOI 10.3109/03005364000000037 FREI K, 2003, UNPUB Frei K, 2002, EUR J HUM GENET, V10, P427, DOI 10.1038/sj.ejhg.5200826 Gasparini P, 2000, EUR J HUM GENET, V8, P19, DOI 10.1038/sj.ejhg.5200406 Grifa A, 1999, NAT GENET, V23, P16 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 Kelsell DP, 2000, EUR J HUM GENET, V8, P141, DOI 10.1038/sj.ejhg.5200407 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 Liu XZ, 2000, HUM MOL GENET, V9, P63, DOI 10.1093/hmg/9.1.63 Liu YH, 2001, J COMPUT NEUROSCI, V10, P25, DOI 10.1023/A:1008916026143 Lopez-Bigas N, 2001, EUR J HUM GENET, V9, P70 López-Bigas N, 2000, Hum Mutat, V15, P481, DOI 10.1002/(SICI)1098-1004(200005)15:5<481::AID-HUMU15>3.0.CO;2-7 Lopez-Bigas N, 2001, HUM MOL GENET, V10, P947, DOI 10.1093/hmg/10.9.947 Mhatre AN, 2003, CLIN GENET, V63, P154, DOI 10.1034/j.1399-0004.2003.00031.x MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x Rouan F, 2003, EXP DERMATOL, V12, P191, DOI 10.1034/j.1600-0625.2003.120210.x Stern RE, 2002, ACTA OTO-LARYNGOL, V122, P730, DOI 10.1080/003655402/000028059 Talebizadeh Z, 1999, HUM MUTAT, V14, P493, DOI 10.1002/(SICI)1098-1004(199912)14:6<493::AID-HUMU8>3.0.CO;2-P Van Hauwe P, 2000, AM J MED GENET, V93, P184, DOI 10.1002/1096-8628(20000731)93:3<184::AID-AJMG4>3.0.CO;2-5 Van Hauwe P, 1999, NAT GENET, V21, P263 Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845 NR 29 TC 7 Z9 7 PU ELSEVIER SCIENCE BV PI AMSTERDAM PA PO BOX 211, 1000 AE AMSTERDAM, NETHERLANDS SN 0378-5955 J9 HEARING RES JI Hear. Res. PD AUG PY 2004 VL 194 IS 1-2 BP 81 EP 86 DI 10.1016/j.heares.2004.03.007 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 846HL UT WOS:000223306400009 PM 15276679 ER EF