FN Thomson Reuters Web of Science™ VR 1.0 PT J AU Smoorenburg, GF Willeboer, C van Dijk, JE AF Smoorenburg, GF Willeboer, C van Dijk, JE TI Speech perception in nucleus C124M cochlear implant users with processor settings based on electrically evoked compound action potential thresholds SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear implants; compound action potentials; processor fitting; speech perception ID NERVE ACTION-POTENTIALS; PHONEME RECOGNITION; LISTENERS; EAP AB Adjusting the speech processor of a cochlear implant, per electrode, to the individual's response is a laborious task that may interfere with a user-friendly start of implant-mediated hearing, particularly in children. This research concerns the possibility of processor adjustment based on a profile derived from measurements of the electrically evoked compound action potential (ECAP) thresholds across the electrode array, followed by adjustment of the overall level of the profile to the hearing threshold and maximum comfortable loudness level using live voice. The results for CVC word lists show that speech perception is quite insensitive to the threshold setting of the speech processor. On average, the speech score does not decrease by more than 10% when, with the new method, the threshold setting comes out so much lower that the dynamic range has doubled. In contrast, the speech score appears to be sensitive to an increase of the maximum high-frequency stimulation settings for the basal electrodes, resulting in lower scores at these higher settings. The correlation between the overall ECAP thresholds and conventionally measured subjective thresholds is weak (r = 0.64). However, the correlation between the slopes of these threshold curves is satisfactory (r = 0.82). The correlation between the ECAP thresholds and the maximum stimulation levels is poor, both with respect to overall level and slope (r = 0.39 and 0.36, respectively). Applicability of the ECAP threshold in processor adjustment could not be demonstrated in this study. Prediction of the most critical factor in speech perception, the slope of the maximum stimulation curve, from the ECAP thresholds is poor. However, considering habituation to the initial processor setting of at least 6 months, the small decrease in the CVC scores with the new setting suggests that a more user-friendly adjustment procedure can be developed. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, NL-3508 GA Utrecht, Netherlands. RP Smoorenburg, GF (reprint author), Univ Utrecht, Med Ctr, Dept Otorhinolaryngol, Locat AZU F-02-504,POB 85500, NL-3508 GA Utrecht, Netherlands. RI Imhof, Margarete/F-8471-2011 CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 BOSMAN AJ, 1989, SPEECH PERCEPTION HE, pCH3 Brown CJ, 1998, AM J OTOL, V19, P320 Brown CJ, 1996, J SPEECH HEAR RES, V39, P453 Brown CJ, 2000, EAR HEARING, V21, P151, DOI 10.1097/00003446-200004000-00009 BROWN CJ, 1990, J ACOUST SOC AM, V88, P2205, DOI 10.1121/1.400117 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Fu QJ, 2000, EAR HEARING, V21, P227, DOI 10.1097/00003446-200006000-00006 Fu QJ, 1998, J ACOUST SOC AM, V104, P2570, DOI 10.1121/1.423912 Hughes ML, 2000, EAR HEARING, V21, P164, DOI 10.1097/00003446-200004000-00010 Lai WK, 1999, NRT COOKBOOK GUIDELI SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X Zeng FG, 1999, EAR HEARING, V20, P60, DOI 10.1097/00003446-199902000-00006 NR 13 TC 60 Z9 69 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2002 VL 7 IS 6 BP 335 EP 347 DI 10.1159/000066154 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 612ZR UT WOS:000179105800003 PM 12401965 ER PT J AU Kim, SH Frisina, DR Frisina, RD AF Kim, SH Frisina, DR Frisina, RD TI Effects of age on contralateral suppression of distortion product otoacoustic emissions in human listeners with normal hearing SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE medial olivocochlear system; contralateral suppression; presbycusis; distortion product otoacoustic emissions; auditory efferents; deafness; outer hair cells; cochlea ID COCHLEAR MICROMECHANICAL PROPERTIES; MEDIAL OLIVOCOCHLEAR SYSTEM; AUDITORY-NERVE FIBERS; ELECTRICAL-STIMULATION; ACOUSTIC STIMULATION; FUNCTIONAL MATURATION; EFFERENT SYSTEM; HUMAN EAR; NEURONS; NOISE AB The auditory efferent system presumably plays a role in enhancing signals in noise and, in particular, speech perception in background noise. This study measured the age-related changes of the medial olivocochlear (MOC) system by comparing distortion product otoacoustic emissions (DPOAEs) with and without contralateral white noise stimulation. Otoacoustic emissions were typically reduced in level (magnitude) when white noise was presented to the contralateral ear. This contralateral suppression (CS) is attributed to activation of the MOC system, which has an inhibitory effect on the outer hair cell (OHC) system. By studying CS on cochlear output in human listeners of different ages, it is possible to describe aging effects on the MOC system. Human subjects were young adult, middle aged and old (n = 10/group). All subjects had normal hearing and middle-ear function based upon standard audiometric criteria. The present study recorded 2f(1)-f(2) DPOAE-grams in response to moderate primary tones (L1 = 75, L2 = 65 dB SPL), from 1 to 6.3 kHz. The principal findings were that DPOAE levels were smaller in the old compared to the young group and that CS declined with age for the middle-aged and old groups. In addition, CS in the 1- to 2-kHz range was greater than in the 4- to 6-kHz range for all ages, but especially for the old group. These findings suggest that a functional decline of the MOC system with age precedes OHC degeneration. Moreover, the MOC system maintains better function in the 1- to 2-kHz range than in the 4- to 6-kHz range as a function of age. Copyright (C) 2002 S, Karger AG, Basel. C1 Univ Rochester, Sch Med & Dent, Otolaryngol Div Assoc Chair, Dept Surg, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Neurobiol & Anat, Rochester, NY 14642 USA. Univ Rochester, Sch Med & Dent, Dept Biomed Engn, Rochester, NY 14642 USA. Rochester Inst Technol, Natl Tech Inst Deaf, Int Ctr Hearing & Speech Res, Rochester, NY 14623 USA. RP Frisina, RD (reprint author), Univ Rochester, Sch Med & Dent, Otolaryngol Div Assoc Chair, Dept Surg, 601 Elmwood Ave, Rochester, NY 14642 USA. CR ABDALA C, 1998, ASS RES OTOLARYNGOL, V21, P152 Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 Avan P, 1996, EXP BRAIN RES, V109, P9 CASTOR X, 1994, HEARING RES, V77, P1, DOI 10.1016/0378-5955(94)90248-8 Dorn Patricia A., 1998, Journal of the Acoustical Society of America, V104, P964, DOI 10.1121/1.423339 FEX J, 1959, Acta Otolaryngol, V50, P540, DOI 10.3109/00016485909129230 Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183 Frisina D. R., 2001, FUNCTIONAL NEUROBIOL, P565 Frisina DR, 1997, HEARING RES, V106, P95, DOI 10.1016/S0378-5955(97)00006-3 Frisina R. D., 2001, FUNCTIONAL NEUROBIOL, P531, DOI 10.1016/B978-012351830-9/50039-1 Frisina RD, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P339, DOI 10.1201/9781420038736.ch24 GASKILL SA, 1990, J ACOUST SOC AM, V88, P821, DOI 10.1121/1.399732 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 Giraud AL, 1997, NEUROREPORT, V8, P1779 GUINAN JJ, 1984, J COMP NEUROL, V226, P21, DOI 10.1002/cne.902260103 GUINAN JJ, 1988, HEARING RES, V37, P29, DOI 10.1016/0378-5955(88)90075-5 GUINAN JJ, 1988, HEARING RES, V33, P97, DOI 10.1016/0378-5955(88)90023-8 He NJ, 1996, J ACOUST SOC AM, V99, P1002, DOI 10.1121/1.414629 ISHII D, 1966, ACTA OTOLARYNGOL, V66, P282 Ison Jr, 2001, HANDBOOK OF MOUSE AUDITORY RESEARCH: FROM BEHAVIOR TO MOLECULAR BIOLOGY, P381 JOHNSTONE BM, 1986, HEARING RES, V22, P147, DOI 10.1016/0378-5955(86)90090-0 KUJAWA SG, 1993, HEARING RES, V68, P97, DOI 10.1016/0378-5955(93)90068-C Kujawa SG, 2001, JARO, V2, P268, DOI 10.1007/s101620010047 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LONSBURYMARTIN BL, 2001, PHYSL EAR, P443 Maison S, 1997, HEARING RES, V113, P89, DOI 10.1016/S0378-5955(97)00136-6 Micheyl C, 1996, J ACOUST SOC AM, V99, P1604, DOI 10.1121/1.414734 MORLET T, 1993, ACTA OTO-LARYNGOL, V113, P271, DOI 10.3109/00016489309135808 MOULIN A, 1993, HEARING RES, V65, P193, DOI 10.1016/0378-5955(93)90213-K NIELSON LH, 1992, P 1 INT C WURZB SEPT PUEL JL, 1990, J ACOUST SOC AM, V87, P1630, DOI 10.1121/1.399410 PUJOL R, 2001, PHYSL EAR, P515 RAJAN R, 1990, BRAIN RES, V506, P192, DOI 10.1016/0006-8993(90)91251-B RYAN S, 1994, ACTA OTO-LARYNGOL, V114, P485, DOI 10.3109/00016489409126091 SCHMIEDT RA, 1993, SENSORY RESEARCH MULTIMODAL PERSPECTIVES, P91 Schmiedt RA, 1996, HEARING RES, V102, P125, DOI 10.1016/S0378-5955(96)00154-2 Silman S., 1984, ACOUSTIC REFLEX BASI Snell KB, 2000, J ACOUST SOC AM, V107, P1615, DOI 10.1121/1.428446 STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351 Strouse A L, 1996, J Am Acad Audiol, V7, P339 Williams TM, 1999, J MOL DIAGN, V1, P5 Veuillet E, 1996, HEARING RES, V93, P128, DOI 10.1016/0378-5955(95)00212-X VEUILLET E, 1992, HEARING RES, V61, P47, DOI 10.1016/0378-5955(92)90035-L VEUILLET E, 1991, J NEUROPHYSIOL, V65, P724 Walsh EJ, 1998, J NEUROSCI, V18, P3859 Walton JP, 1998, J NEUROSCI, V18, P2764 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 Williams DM, 1997, HEARING RES, V104, P127, DOI 10.1016/S0378-5955(96)00189-X WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 NR 51 TC 70 Z9 73 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2002 VL 7 IS 6 BP 348 EP 357 DI 10.1159/000066159 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 612ZR UT WOS:000179105800004 PM 12401966 ER PT J AU Norena, A Micheyl, C Chery-Croze, S Collet, L AF Norena, A Micheyl, C Chery-Croze, S Collet, L TI Psychoacoustic characterization of the tinnitus spectrum: Implications for the underlying mechanisms of tinnitus SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tinnitus; phantom perception; pitch; plasticity; central reorganization; hearing loss ID PRIMARY AUDITORY-CORTEX; HEARING-LOSS; PLASTICITY; DISCRIMINATION; PERCEPTION; REPRESENTATION; MODEL; CATS AB In this study, an original psychometric procedure was used in order to characterize in more detail than in previous studies the different perceptual components of tinnitus, i.e. auditory sensations which are perceived in the absence of a corresponding external acoustic stimulus. Ten subjects with chronic tinnitus were asked to rate on a numeric scale the contribution of elementary pitch sensations evoked by isolated frequency components to their overall tinnitus sensation. The resulting 'internal tinnitus spectra', which represented the estimated perceptual contribution to the tinnitus sensation as a function of frequency over a large range of frequencies, were found to occupy a wide frequency range corresponding largely to that at which hearing thresholds were abnormally elevated. In most cases, they exhibited a broad peak failing within the hearing loss range. This pattern of result suggests that in subjects with high-frequency hearing loss, tinnitus sensations, when present, resemble those evoked by high-frequency noise bands with, in some cases, a superimposed tonal-like pitch. These results confirm and extend earlier results in the literature and agree with the patients' reports; their practical implications for the design of future studies on tinnitus and theoretical implications for the understanding of the neurophysiological mechanisms underlying tinnitus are discussed. The results of an additional experiment showed that the internal tinnitus spectrum could be altered by perceptual training in a fine frequency discrimination task with tones in the frequency range of the main peak of the tinnitus spectrum. Copyright (C) 2002 S. arger AG,Basel. C1 Hop Edouard Herriot, CNRS, UMR 5020, Lab Neurosci & Syst Sensoriels, F-69437 Lyon, France. RP Norena, A (reprint author), Univ Calgary, Dept Psychol, Behav Neurosci Res Grp, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada. CR BASKILL JL, 1999, P 6 INT TINN SEM CAM, P424 BROWN SC, 1990, OLDER AM TINNITUS DE BURNS EM, 1984, AUDIOLOGY, V23, P426 Cazals Y, 1983, Rev Laryngol Otol Rhinol (Bord), V104, P433 CHERYCROZE S, 1993, ACTA OTO-LARYNGOL, V113, P285, DOI 10.3109/00016489309135810 COLES RRA, 1995, P 5 INT TINN SEM POR, P249 DOETSCH GS, 1998, NEUROREPORT, V8, P29 Eggermont JJ, 2000, HEARING RES, V142, P89, DOI 10.1016/S0378-5955(00)00024-1 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z EGGERMONT JJ, 1999, P 6 INT TINN SEM LON, P146 Fabijanska A., 1999, P 6 INT TINN SEM, P569 Gerken GM, 1996, HEARING RES, V97, P75 GOODWIN JT, 1980, EAR HEARING, V1, P148 GRAHAM JT, 1962, ARCHIV OTOLARYNGOL, V75, P162 HAZELL JWP, 1987, P 3 INT TINN SEM MUN, P121 Henneberger P K, 1999, Int J Occup Environ Health, V5, P1 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1991, P 4 INT TINN SEM BOR, P309 Jeanmonod D, 1996, BRAIN, V119, P363, DOI 10.1093/brain/119.2.363 Kimura M, 1999, HEARING RES, V135, P146, DOI 10.1016/S0378-5955(99)00104-5 KOMIYA H, 1999, P 6 INT TINN SEM CAM, P455 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 MATSUHIRA T, 1995, P 5 INT TINN SEM POR, P171 McDermott HJ, 1998, J ACOUST SOC AM, V104, P2314, DOI 10.1121/1.423744 MEIKLE MB, 1991, P 4 INT TINN SEM BOR, P231 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 MOORE B C J, 1985, British Journal of Audiology, V19, P175, DOI 10.3109/03005368509078972 Moore BCJ, 2000, BRIT J AUDIOL, V34, P205 MULNICKEL W, 1998, P NATL ACAD SCI USA, V95, P10340 Murray N., 1986, Australian Journal of Audiology, V8 NORTON SJ, 1990, EAR HEARING, V11, P159, DOI 10.1097/00003446-199004000-00011 PENNER MJ, 1992, J SPEECH HEAR RES, V35, P694 PENNER MJ, 1983, J SPEECH HEAR RES, V29, P400 PENNER MJ, 1993, J SPEECH HEAR RES, V36, P1300 Pilgramm M, 1999, P 6 INT TINN SEM CAM, P64 PONS TP, 1991, SCIENCE, V252, P1857, DOI 10.1126/science.1843843 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 Ramachandran VS, 1998, BRAIN, V121, P1603, DOI 10.1093/brain/121.9.1603 Ramachandran VS, 1991, SCIENCE, V252, P1857 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 RECANZONE GH, 1993, J NEUROSCI, V13, P87 SALVI RJ, 1995, P 5 INT TINN SEM 199, P457 Thai-Van H, 2002, BRAIN, V125, P524, DOI 10.1093/brain/awf044 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 TONNDORF J, 1980, ANN OTO RHINOL LARYN, V89, P353 TYLER RS, 1991, P 4 INT TINN SEM, P17 Tyler R S, 1983, Br J Audiol, V17, P101, DOI 10.3109/03005368309078916 Vernon J, 1988, TINNITUS PATHOPHYSIO, P36 VERNON J, 1990, AM J OTOLARYNG, V11, P44, DOI 10.1016/0196-0709(90)90169-V NR 50 TC 143 Z9 145 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2002 VL 7 IS 6 BP 358 EP 369 DI 10.1159/000066156 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 612ZR UT WOS:000179105800005 PM 12401967 ER PT J AU Sanchez, TG Guerra, GCY Lorenzi, MC Brandao, AL Bento, RF AF Sanchez, TG Guerra, GCY Lorenzi, MC Brandao, AL Bento, RF TI The influence of voluntary muscle contractions upon the onset and modulation of tinnitus SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tinnitus; muscle contraction; auditory system; somatosensory system; craniomandibular disorder ID DORSAL COCHLEAR NUCLEUS; NERVE AB Objective: To evaluate the frequency of tinnitus onset (in normal subjects) and modulation (in tinnitus patients) during muscle contractions, estimating possible risk factors. Material and Method. This case-control study enrolled 121 tinnitus patients and 100 healthy volunteers who underwent medical history, ENT examination and 16 maneuvers of muscular contraction (head, neck and limbs). Modulation data were compared between patients with and without normal audiometry, well-defined diagnosis and symptoms of craniomandibular disorders. Results:The ability to modulate tinnitus (65.3%) was significantly higher than that to originate tinnitus (14.0%). The head and neck musculature was significantly more efficient than that of the limbs. Audiometric pattern, well-defined etiology and symptoms of craniomandibular disorders showed no relation to tinnitus modulation. Conclusions: Somatic modulation is a characteristic aspect of tinnitus. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Sao Paulo, Sch Med, Dept Otorhinolaryngol, BR-05469900 Sao Paulo, SP, Brazil. RP Sanchez, TG (reprint author), Univ Sao Paulo, Sch Med, Dept Otorhinolaryngol, Ave Padre Pereira De Andrade 545-1744, BR-05469900 Sao Paulo, SP, Brazil. CR BARNEA G, 1990, AUDIOLOGY, V29, P36 Dawson-Saunders BT, 1994, BASIC CLIN BIOSTATIS HOTTA T, 1963, EXP NEUROL, V8, P1, DOI 10.1016/0014-4886(63)90003-7 House P R, 1981, Ciba Found Symp, V85, P193 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 LEVINE RA, 2001, MIDW RES M ASS RES O Levine RA, 1999, AM J OTOLARYNG, V20, P351, DOI 10.1016/S0196-0709(99)90074-1 Levine RA, 1999, P 6 INT TINN SEM CAM, P193 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 MOLLER AR, 1992, LARYNGOSCOPE, V102, P187 REED GF, 1960, ARCH OTOLARYNGOL, V71, P74 Rubinstein B, 1993, Swed Dent J Suppl, V95, P1 THOMPSON RF, 1963, J NEUROPHYSIOL, V26, P365 Wright DD, 1996, J COMP NEUROL, V365, P159, DOI 10.1002/(SICI)1096-9861(19960129)365:1<159::AID-CNE12>3.0.CO;2-L YOUNG ED, 1995, J NEUROPHYSIOL, V73, P743 YOUNG ED, 1980, BRAIN RES, V200, P23, DOI 10.1016/0006-8993(80)91091-4 NR 17 TC 38 Z9 43 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2002 VL 7 IS 6 BP 370 EP 375 DI 10.1159/000066155 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 612ZR UT WOS:000179105800006 PM 12401968 ER PT J AU Zheng, J Long, KB Robison, DE He, DZZ Cheng, J Dallos, P Madison, LD AF Zheng, J Long, KB Robison, DE He, DZZ Cheng, J Dallos, P Madison, LD TI Identification of differentially expressed cDNA clones from gerbil cochlear outer hair cells SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE prestin; outer hair cells (OHC); inner hair cells (IHC); OHC-specific genes; nonsyndromic deafness loci; subtracted library; oncomodulin; Kir7.1; COLIA2 ID NUCLEAR-PROTEIN; SUBTRACTIVE HYBRIDIZATION; MECHANICAL RESPONSES; MOTILE RESPONSE; GENE-EXPRESSION; ISOLATED INNER; MESSENGER-RNA; POTASSIUM; COLLAGEN; LIBRARY AB In order to identify genes that are associated with outer hair cell(OHC)-specific function, a plasmid library enriched with OHC-specific gene products was constructed using single cell-type-specific complementary DNA (cDNA) and a PCR subtractive hybridization strategy. As a first step, we created separate OHC and inner hair cell (IHC) cDNA pools from individually collected cells using a nonspecific reverse transcription polymerase chain reaction. Next, the OHC cDNA was subtracted against IHC cDNA using a PCR-based subtractive technique. IHCs and OHCs share many common features, making IHC cDNA an ideal 'driver' to 'subtract away' common hair cell gene products and enrich differentially expressed cDNAs, including OHC-specific genes. The subtracted OHC cDNAs were then cloned to generate an OHC-IHC subtracted cDNA plasmid library. Finally, a differential screening procedure was performed, resulting in 477 differentially positive clones. After analysis of these 477 clones, 50 known genes were identified, including two previously known OHC-specific proteins: oncomodulin and the recently described motor protein prestin. An additional 84 novel clones were also found. As this library of cDNA fragments represents differentially expressed genes in OHCs, it can be used as starting material for isolation and characterization of a complete set of OHC gene products, an important step in investigating normal and abnormal cochlear function. Copyright (C) 2002 S. Karger AG, Basel. C1 Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Hugh Knowles Ctr, Evanston, IL 60208 USA. Northwestern Univ, Sch Med, Dept Med, Ctr Endocrinol Metab & Mol Med, Chicago, IL 60611 USA. Boys Town Natl Res Hosp, Hair Cell Biophys Lab, Omaha, NE 68131 USA. RP Zheng, J (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Hugh Knowles Ctr, Frances Searle Bldg,2299 N Campus Dr, Evanston, IL 60208 USA. CR Agerman K, 1999, ANN NY ACAD SCI, V884, P131 ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Barath P, 1999, EXP CELL RES, V248, P583, DOI 10.1006/excr.1999.4432 Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 BREWER LM, 1985, DEV BIOL, V112, P49, DOI 10.1016/0012-1606(85)90117-4 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 Davies-Adetugbo AA, 1998, TROP MED INT HEALTH, V3, P9, DOI 10.1046/j.1365-3156.1998.00162.x Diatchenko L, 1996, P NATL ACAD SCI USA, V93, P6025, DOI 10.1073/pnas.93.12.6025 DULON D, 1991, HEARING RES, V52, P225, DOI 10.1016/0378-5955(91)90202-K Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 FICKETT JW, 1982, NUCLEIC ACIDS RES, V10, P5303, DOI 10.1093/nar/10.17.5303 Francki A, 1999, J BIOL CHEM, V274, P32145, DOI 10.1074/jbc.274.45.32145 FukunagaJohnson N, 1996, ANTICANCER RES, V16, P1085 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V261, P251, DOI 10.1098/rspb.1995.0145 Goodman MB, 1996, BIOPHYS J, V71, P430 Greene CC, 2001, AM J HUM GENET, V68, P254, DOI 10.1086/316925 Harter C, 1999, DNA CELL BIOL, V18, P1, DOI 10.1089/104454999315574 He DZZ, 2000, HEARING RES, V145, P156, DOI 10.1016/S0378-5955(00)00084-8 KHETARPAL U, 1994, HEARING RES, V79, P59, DOI 10.1016/0378-5955(94)90127-9 Krapivinsky G, 1998, NEURON, V20, P995, DOI 10.1016/S0896-6273(00)80480-8 Labrador JP, 2001, EMBO REP, V2, P446, DOI 10.1093/embo-reports/kve094 Marcotti W, 1999, PFLUG ARCH EUR J PHY, V439, P113, DOI 10.1007/s004240051134 Mohan RR, 2001, EXP EYE RES, V72, P87, DOI 10.1006/exer.2000.0932 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 Mutai H, 2000, BIOCHEM BIOPH RES CO, V274, P427, DOI 10.1006/bbrc.2000.3133 Nagase T, 1996, DNA Res, V3, P321, DOI 10.1093/dnares/3.5.321 Nagase T, 1996, DNA RES, V3, P341, DOI 10.1093/dnares/3.5.341 Pantelias AA, 2001, HEARING RES, V156, P81, DOI 10.1016/S0378-5955(01)00269-6 PEARSON WR, 1988, P NATL ACAD SCI USA, V85, P2444, DOI 10.1073/pnas.85.8.2444 Peterfy M, 2001, NAT GENET, V27, P121 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RIEDNER ED, 1980, ARCH OTOLARYNGOL, V106, P737 ROBERTSON NG, 1994, GENOMICS, V23, P42, DOI 10.1006/geno.1994.1457 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 RYAN AF, 1993, ARCH OTOLARYNGOL, V119, P1217 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X Skvorak AB, 1999, HUM MOL GENET, V8, P439, DOI 10.1093/hmg/8.3.439 Skvorak AB, 1997, GENOMICS, V46, P191, DOI 10.1006/geno.1997.5026 Slepecky N. B., 1996, COCHLEA, P44 SPOENDLI.H, 1969, ACTA OTO-LARYNGOL, V67, P239, DOI 10.3109/00016486909125448 Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Sun WY, 2001, BIOCHEM BIOPH RES CO, V280, P1048, DOI 10.1006/bbrc.2000.4244 Thalmann R, 1997, ACTA OTO-LARYNGOL, V117, P265, DOI 10.3109/00016489709117784 VANCAMP G, 2000, HEREDITARY HEARING L WANG Z, 1991, P NATL ACAD SCI USA, V88, P11505, DOI 10.1073/pnas.88.24.11505 WARR WB, 1992, MAMMALIAN AUDITORY P, P43 Xiao SX, 2001, NAT GENET, V27, P201, DOI 10.1038/84848 ZAJIC G, 1987, HEARING RES, V26, P249, DOI 10.1016/0378-5955(87)90061-X ZAJIC G, 1993, HEARING RES, V66, P53, DOI 10.1016/0378-5955(93)90259-4 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 53 TC 9 Z9 10 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2002 VL 7 IS 5 BP 277 EP 288 DI 10.1159/000064443 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 596PN UT WOS:000178173400002 PM 12232497 ER PT J AU Kanzaki, S Beyer, LA Canlon, B Meixner, WM Raphael, Y AF Kanzaki, S Beyer, LA Canlon, B Meixner, WM Raphael, Y TI The cytocaud: A hair cell pathology in the waltzing guinea pig SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE guinea pig; hereditary disease; actin; cytocaud; vestibular hair cells; transmission electron microscopy; immunocytochemistry ID POSTNATAL-DEVELOPMENT; INNER-EAR; ACTIN; EXPRESSION; CYTOSKELETON; DEAFNESS; MICE AB The waltzing guinea pig displays severe inner ear dysfunction that involves both an auditory and a vestibular manifestation. The aim of this study was to characterize a pathological tail-like extension of the vestibular hair cells, the cytocaud. Our data suggest that nearly all type I hair cells in the waltzing guinea pig have cytocauds, which appear as membrane-bound tails containing mitochondria and cytoplasm that proceed in a basal direction toward the basement membrane. The extensions either attach to the basement membrane or penetrate it, and further proceed into the extracellular matrix. A core made of a thick and long (30 mum) actin-rich structure supports the slender long process. The actin core has crosslinks that are periodically placed along the length of the cytocaud. Our data suggest that the cytocauds in vestibular hair cells of the waltzing guinea pig are highly organized structures associated with a failure to detach from the basement membrane. Copyright (C) 2002 S. Karger AG, Basel. C1 KHRI, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Dev & Cell Biol, Ann Arbor, MI 48109 USA. Keio Univ, Dept Otolaryngol, Tokyo 160, Japan. Karolinska Inst, Dept Physiol & Pharmacol, Stockholm, Sweden. RP Raphael, Y (reprint author), KHRI, MSRB-3,Room 9303,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. RI Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 CR ANNIKO M, 1983, AM J OTOLARYNG, V4, P151, DOI 10.1016/S0196-0709(83)80037-4 Avraham KB, 1997, HUM MOL GENET, V6, P1225, DOI 10.1093/hmg/6.8.1225 Beyer LA, 2000, J NEUROCYTOL, V29, P227, DOI 10.1023/A:1026515619443 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 Cosgrove D, 1996, HEARING RES, V100, P21, DOI 10.1016/0378-5955(96)00114-1 Cosgrove D, 1997, HEARING RES, V105, P159, DOI 10.1016/S0378-5955(96)00203-1 ERNSTSON S, 1970, ACTA OTO-LARYNGOL, V69, P358, DOI 10.3109/00016487009123377 ERNSTSON S, 1969, ACTA OTO-LARYNGOL, V67, P521, DOI 10.3109/00016486909125480 Flock A, 1979, Adv Otorhinolaryngol, V25, P12 Guild GM, 1997, J CELL BIOL, V138, P783, DOI 10.1083/jcb.138.4.783 Hall A, 2000, PHILOS T R SOC B, V355, P965 IBSEN LH, 1929, ANAT REC, V44, P294 Rodgers KD, 2001, HEARING RES, V158, P39, DOI 10.1016/S0378-5955(01)00283-0 Slepecky N. B., 1996, COCHLEA, P44 SMITH RS, 1973, CAN J PHYSIOL PHARM, V51, P798 SOBIN A, 1982, ARCH OTO-RHINO-LARYN, V236, P1, DOI 10.1007/BF00464051 SOBIN A, 1981, ACTA OTO-LARYNGOL, V91, P247, DOI 10.3109/00016488109138505 Sobin A, 1983, Acta Otolaryngol Suppl, V396, P1 SOBIN A, 1983, ACTA OTO-LARYNGOL, V96, P407, DOI 10.3109/00016488309132726 SOBUE K, 1993, NEUROSCI RES, V18, P91, DOI 10.1016/0168-0102(93)90012-F Steel KP, 1996, CURR OPIN NEUROBIOL, V6, P520, DOI 10.1016/S0959-4388(96)80059-6 NR 21 TC 10 Z9 10 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2002 VL 7 IS 5 BP 289 EP 297 DI 10.1159/000064447 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 596PN UT WOS:000178173400003 PM 12232498 ER PT J AU Popper, P Ishiyama, A Lopez, I Wackym, PA AF Popper, P Ishiyama, A Lopez, I Wackym, PA TI Calcitonin gene-related peptide and choline acetyltransferase colocalization in the human vestibular periphery SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE calcitonin gene-related peptide; choline acetyltransferase; efferent; human; vestibulum ID SUBUNIT MESSENGER-RNA; EFFERENT NEURONS; END-ORGANS; RECEPTOR FUNCTION; ACETYLCHOLINE; RAT; IMMUNOREACTIVITY; EXPRESSION; SYSTEM; LOCALIZATION AB Within the vestibular system, calcitonin gene-related peptide (CGRP) has been localized in the efferent terminals and their brainstem neuronal cell bodies in several animal models. Presently, very few studies have verified these findings in the vestibular system in adult primates or humans. CGRP immunoreactivity (CGRPi) and its colocalization with choline acetyltransferase immunoreactivity (ChATi) in human vestibular end organs and Scarpa's ganglion were studied using polyclonal antibodies against CGRP and ChAT, at the light-microscopic level. The CGRPi axons ramified to produce numerous CGRPi terminals throughout the neurosensory epithelium of the maculae and cristae, primarily in the basal and midbasal areas. Numerous CGRPi efferent terminals made contact with both type 11 vestibular hair cells and the afferent chalices surrounding type I vestibular hair cells. All CGRP immunoreactive fibers also exhibited ChATi. As in the animal models, no CGRPi was found within Scarpa's ganglion. This study provides evidence for CGRPi in the human vestibular periphery and validates the biomedical relevance of the current animal models. Copyright (C) 2002 S Karger AG, Basel. C1 Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, Milwaukee, WI 53226 USA. Univ Calif Los Angeles, Sch Med, Div Head & Neck Surg, Los Angeles, CA 90024 USA. RP Wackym, PA (reprint author), Med Coll Wisconsin, Dept Otolaryngol & Commun Sci, 9200 W Wisconsin Ave, Milwaukee, WI 53226 USA. CR ADAMS JC, 1987, BRAIN RES, V419, P347, DOI 10.1016/0006-8993(87)90606-8 AMARA SG, 1982, NATURE, V298, P240, DOI 10.1038/298240a0 Anderson AD, 1997, BRAIN RES, V778, P409, DOI 10.1016/S0006-8993(97)01121-9 Brichta AM, 1996, ANN NY ACAD SCI, V781, P183, DOI 10.1111/j.1749-6632.1996.tb15701.x Bridgeman D, 1996, J VESTIBUL RES-EQUIL, V6, P203 DECHESNE C, 1984, NEUROSCIENCE, V11, P893, DOI 10.1016/0306-4522(84)90200-8 Dememes D, 1998, DEV BRAIN RES, V108, P59, DOI 10.1016/S0165-3806(98)00030-3 DICKMAN JD, 1993, NEUROSCIENCE, V57, P1097, DOI 10.1016/0306-4522(93)90052-H Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 FONTAINE B, 1987, J CELL BIOL, V105, P1337, DOI 10.1083/jcb.105.3.1337 HIGGINS LS, 1988, J CELL BIOL, V107, P1157, DOI 10.1083/jcb.107.3.1157 ISHIYAMA A, 1994, OTOLARYNG HEAD NECK, V111, P385 ISHIYAMA A, 1994, CELL BIOL INT, V18, P979, DOI 10.1006/cbir.1994.1019 Marco RAW, 1996, HEARING RES, V97, P95 OHNO K, 1991, BRAIN RES, V566, P103, DOI 10.1016/0006-8993(91)91686-U PERACHIO AA, 1989, EXP BRAIN RES, V78, P315 Romano SJ, 1997, J NEUROBIOL, V32, P69, DOI 10.1002/(SICI)1097-4695(199701)32:1<69::AID-NEU7>3.0.CO;2-C Scarfone E, 1996, NEUROSCIENCE, V75, P587, DOI 10.1016/0306-4522(96)00243-6 Schuknecht HF, 1993, PATHOLOGY EAR SCHWARZ DWF, 1986, EXP BRAIN RES, V64, P19 SEWELL WF, 1991, J NEUROPHYSIOL, V65, P1158 Tanaka M, 1989, Acta Otolaryngol Suppl, V468, P31 TANAKA M, 1988, BRAIN RES, V447, P175, DOI 10.1016/0006-8993(88)90981-X Usami S, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P160 VIJAYARAGHAVAN S, 1990, J NEUROSCI, V10, P3255 WACKYM PA, 1995, CELL BIOL INT, V19, P291, DOI 10.1006/cbir.1995.1071 WACKYM PA, 1991, OTOLARYNG HEAD NECK, V105, P493 WACKYM PA, 1993, ACTA OTO-LARYNGOL, V113, P601, DOI 10.3109/00016489309135871 WACKYM PA, 1990, LARYNGOSCOPE, V100, P447 WARD PH, 1964, T AM ACAD OPHTHALMOL, V68, P3 Yamashita H, 1993, Acta Otolaryngol Suppl, V503, P166 NR 31 TC 9 Z9 11 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2002 VL 7 IS 5 BP 298 EP 302 DI 10.1159/000064445 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 596PN UT WOS:000178173400004 PM 12232499 ER PT J AU Clementz, BA Barber, SK Dzau, JR AF Clementz, BA Barber, SK Dzau, JR TI Knowledge of stimulus repetition affects the magnitude and spatial distribution of low-frequency event-related brain potentials SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE stimulus expectancy; event-related brain potential; sensory gating; P-50 point; gamma band; theta wave; rate effect ID AUDITORY-EVOKED RESPONSE; SELECTIVE ATTENTION; P50 SUPPRESSION; SCHIZOPHRENIA; STIMULATION; COMPONENTS; MANIPULATIONS; MULTICHANNEL; LOCALIZATION; INDICATORS AB Rate effects are defined as a reduction in amplitude of an evoked brain response with increasing stimulus frequency. In auditory paired-stimulus paradigms, a smaller amplitude evoked response to the second stimulus at a latency of 50 ms has been proposed to index a preattentive sensory gating mechanism. The present study investigated the possibility that expectancy and/or attentional biases could alter evoked potentials associated with rate effects. EEG data were recorded from 30 channels while subjects received 240 trials of 1, 2 or 3 click stimuli (with successive stimuli being separated by 500-ms intervals). Half of the subjects knew (blocked condition) and half of the subjects did not know (mixed condition) how many stimuli they would receive on a given trial. Subjects in the blocked condition had a significantly larger rate effect than subjects in the mixed condition. This effect was present only for low-frequency components of the event-related brain potential (ERP; below 10 Hz) and occurred from 30 to 60, 90 to 160 and 190 to 260 ms after stimulus presentation (P-1-N-1-P-2 complex). Mixed condition subjects also had larger contributions to their ERPs from temporal channels. These results suggest that the rate effect can be significantly altered by expectancy, and they are inconsistent with the thesis that ERPs near 50 ms in a paired-stimulus paradigm solely index a preattentive sensory gating mechanism. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Calif San Diego, Dept Psychol, San Diego, CA 92103 USA. RP Clementz, BA (reprint author), Univ Georgia, Dept Psychol, Psychol Bldg, Athens, GA 30602 USA. CR ADLER LE, 1992, BIOL PSYCHIAT, V32, P607, DOI 10.1016/0006-3223(92)90073-9 Basar E, 2000, INT J PSYCHOPHYSIOL, V35, P95, DOI 10.1016/S0167-8760(99)00047-1 Blumenfeld LD, 2001, CLIN NEUROPHYSIOL, V112, P1650, DOI 10.1016/S1388-2457(01)00604-6 BUCHSBAUM MS, 1977, SCHIZOPHRENIA BULL, V3, P93 CACACE AT, 1990, ELECTROEN CLIN NEURO, V77, P6, DOI 10.1016/0168-5597(90)90012-3 Cardenas VA, 1997, BIOL PSYCHIAT, V41, P891, DOI 10.1016/S0006-3223(96)00186-2 CARDENAS VA, 1995, J MED ENG TECHNOL, V19, P88, DOI 10.3109/03091909509030282 Clementz BA, 2001, EXP BRAIN RES, V139, P377, DOI 10.1007/s002210100744 Clementz BA, 1998, PSYCHOPHYSIOLOGY, V35, P648, DOI 10.1017/S004857729898060X Erwin RJ, 1998, SCHIZOPHR RES, V33, P157, DOI 10.1016/S0920-9964(98)00075-9 FREEDMAN R, 1991, SCHIZOPHR RES, V4, P233, DOI 10.1016/0920-9964(91)90035-P FRUHSTOR.H, 1970, ELECTROEN CLIN NEURO, V28, P153, DOI 10.1016/0013-4694(70)90183-5 Grey W.W, 1953, LIVING BRAIN GUTERMAN Y, 1992, INT J PSYCHOPHYSIOL, V12, P197, DOI 10.1016/0167-8760(92)90011-Y Guyton A. C, 1976, ORGAN PHYSL STRUCTUR JERGER K, 1992, BIOL PSYCHIAT, V31, P365, DOI 10.1016/0006-3223(92)90230-W LINDEN RD, 1987, ELECTROEN CLIN NEURO, V66, P145 Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 MCCALLUM WC, 1983, PSYCHOPHYSIOLOGY, V20, P1, DOI 10.1111/j.1469-8986.1983.tb00891.x NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAGAMOTO HT, 1989, BIOL PSYCHIAT, V25, P549, DOI 10.1016/0006-3223(89)90215-1 PANTEV C, 1993, ELECTROEN CLIN NEURO, V88, P389, DOI 10.1016/0168-5597(93)90015-H Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789 Robinson DL, 1999, CLIN NEUROPHYSIOL, V110, P1427, DOI 10.1016/S1388-2457(99)00078-4 SCHAFER EWP, 1981, ELECTROEN CLIN NEURO, V52, P9, DOI 10.1016/0013-4694(81)90183-8 SCHAFER EWP, 1973, SCIENCE, V181, P175, DOI 10.1126/science.181.4095.175 Shelley AM, 1999, SCHIZOPHR RES, V37, P65, DOI 10.1016/S0920-9964(98)00138-8 Srinivasan R, 1998, BEHAV RES METH INS C, V30, P8, DOI 10.3758/BF03209412 WALDO MC, 1986, PSYCHIAT RES, V19, P233, DOI 10.1016/0165-1781(86)90102-2 White PM, 1997, PSYCHOPHYSIOLOGY, V34, P703, DOI 10.1111/j.1469-8986.1997.tb02145.x WOLDORFF MG, 1991, ELECTROEN CLIN NEURO, V79, P170, DOI 10.1016/0013-4694(91)90136-R WOLDORFF MG, 1993, P NATL ACAD SCI USA, V90, P8722, DOI 10.1073/pnas.90.18.8722 Yvert B, 2001, CEREB CORTEX, V11, P411, DOI 10.1093/cercor/11.5.411 NR 33 TC 22 Z9 22 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2002 VL 7 IS 5 BP 303 EP 314 DI 10.1159/000064444 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 596PN UT WOS:000178173400005 PM 12232500 ER PT J AU Sun, W Chen, L Salvi, RJ AF Sun, W Chen, L Salvi, RJ TI Acoustic modulation of electrically evoked otoacoustic emission in chickens SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE electrically evoked otoacoustic emission; chickens; hair cells; suppression; enhancement ID OUTER HAIR-CELLS; MECHANOELECTRICAL TRANSDUCTION; MECHANICAL-PROPERTIES; COCHLEAR AMPLIFIER; ADULT CHICKENS; MEMBRANE; BUNDLE; INNER; ENHANCEMENT; ADAPTATION AB Electrically evoked otoacoustic emissions (EEOAEs) can be elicited from the chicken inner ear. Since lesion studies implicate hair cells are the source of EEOAEs, we hypothesized that acoustic stimuli would modulate EEOAE amplitude at cochlear locations where the acoustic and electrical stimuli overlap. To assess this interaction, EEOAEs were measured as the frequency and amplitude of the acoustic stimuli were varied. EEOAEs, evoked by AC current (3-250 muA rms) delivered to the round window had a broad band pass response (1-6 kHz) with a peak between 3 and 4 kHz and maximum amplitude of 27 dB SPL. EEOAE suppression/enhancement tuning curves were measured at 2, 3, 4 and 6 kHz by varying the frequency of a 70 dB SPL tone and measuring the change in EEOAE amplitude. EEOAE tuning curves were characterized by a tip; a narrow range of frequencies where EEOAE amplitude was suppressed by as much as 5 dB, and by sidebands, a range of frequencies above and below the tip where EEOAE amplitude was enhanced by as much as 1.5 dB. The best suppression frequency, or characteristic frequency, was close to the frequency of the EEOAE elicited by the 3- or 4-kHz electric stimulus. However, the characteristic frequency was displaced towards higher frequencies for the 2-kHz electric stimulus, and towards lower frequencies for the 6-kHz electric stimulus. EEOAE suppression increased approximately linearly with acoustic level. These results suggest that EEOAEs evoked by round window stimulation are predominantly generated by hair cells near the 3- to 4-kHz region of the cochlea. Copyright (C) 2002 S. Karger AG, Basel. C1 SUNY Buffalo, Hearing Res Lab, Buffalo, NY 14214 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Hearing Res Lab, 215 Parker Hall, Buffalo, NY 14214 USA. RI Chen, Lin/N-8327-2013 OI Chen, Lin/0000-0002-5847-2989 CR ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 BRIX J, 1994, HEARING RES, V76, P147, DOI 10.1016/0378-5955(94)90096-5 BRIX J, 1994, HEARING RES, V75, P244, DOI 10.1016/0378-5955(94)90075-2 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Burkard R, 1996, Audiol Neurootol, V1, P197 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 CHEN L, 1997, ABSTR ASS RES OTOLAR, V20, P487 Chen L, 2001, HEARING RES, V161, P54, DOI 10.1016/S0378-5955(01)00353-7 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 DALLOS P, 1992, J NEUROSCI, V12, P4575 DENK W, 1989, P NATL ACAD SCI USA, V86, P5371, DOI 10.1073/pnas.86.14.5371 Eddins AC, 1999, HEARING RES, V127, P119 FROYMOVICH O, 1995, J ACOUST SOC AM, V97, P3021, DOI 10.1121/1.411867 HE D, 2001, ASS RES OTOLARYNGOL, V23, P109 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HUANG GJ, 1994, P NATL ACAD SCI USA, V91, P12268, DOI 10.1073/pnas.91.25.12268 HUBBARD AE, 1983, SCIENCE, V222, P510, DOI 10.1126/science.6623090 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 KETTEMBEIL S, 1995, HEARING RES, V86, P47, DOI 10.1016/0378-5955(95)00053-7 KOPPL C, 1993, HEARING RES, V71, P157, DOI 10.1016/0378-5955(93)90031-U Manley GA, 2001, P NATL ACAD SCI USA, V98, P2826, DOI 10.1073/pnas.041604998 Martin P, 1999, P NATL ACAD SCI USA, V96, P14306, DOI 10.1073/pnas.96.25.14306 MENSH BD, 1993, HEARING RES, V70, P65, DOI 10.1016/0378-5955(93)90052-3 Nakajima HH, 2000, J ACOUST SOC AM, V107, P2603, DOI 10.1121/1.428647 NORTON SJ, 1990, ABSTR ASS RES OTOLAR, V11, P62 Nuttall AL, 2001, HEARING RES, V152, P77, DOI 10.1016/S0378-5955(00)00238-0 NUTTALL AL, 1995, ACTIVE HEARING, P283 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 OHLMS LA, 1991, OTOLARYNG HEAD NECK, V104, P159 Ren TY, 1995, HEARING RES, V92, P178, DOI 10.1016/0378-5955(95)00217-0 Ren TY, 1998, HEARING RES, V120, P7, DOI 10.1016/S0378-5955(98)00045-8 Reyes S, 2001, HEARING RES, V158, P139, DOI 10.1016/S0378-5955(01)00309-4 Ricci AJ, 2000, J NEUROSCI, V20, P7131 SALVI RJ, 1992, J COMP PHYSIOL A, V170, P227 SAUNDERS SS, 1993, J ACOUST SOC AM, V94, P83, DOI 10.1121/1.406945 Souter M, 1995, HEARING RES, V91, P43, DOI 10.1016/0378-5955(95)00163-8 Sun W, 2000, HEARING RES, V150, P137, DOI 10.1016/S0378-5955(00)00195-7 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Trautwein P, 1996, Audiol Neurootol, V1, P86 van Dijk P, 2001, HEARING RES, V153, P14, DOI 10.1016/S0378-5955(00)00251-3 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WIT HP, 1989, HEARING RES, V41, P199, DOI 10.1016/0378-5955(89)90011-7 Xue SW, 1995, HEARING RES, V91, P93, DOI 10.1016/0378-5955(95)00175-1 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 46 TC 1 Z9 2 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2002 VL 7 IS 4 BP 206 EP 213 DI 10.1159/000063737 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576BE UT WOS:000176982300002 PM 12097720 ER PT J AU Rutkowski, RG Shackleton, TM Schnupp, JWH Wallace, MN Palmer, AR AF Rutkowski, RG Shackleton, TM Schnupp, JWH Wallace, MN Palmer, AR TI Spectrotemporal receptive field properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory cortex; spectrotemporal receptive field; reverse correlation ID RESPONSE PROPERTIES; CORTICAL-NEURONS; FUNCTIONAL TOPOGRAPHY; AMPLITUDE-MODULATION; INFERIOR COLLICULUS; REVERSE-CORRELATION; TONE INTENSITY; DISCHARGE RATE; CAT; ORGANIZATION AB We report the spectrotemporal response properties of single units in the primary (A1) and dorsocaudal (DC) fields, and the ventrorostral belt of the urethane-anaesthetised guinea pig auditory cortex. Using reverse correlation analysis, spectrotemporal receptive fields (STRFs) were constructed and subsequently classified according to a novel qualitative scheme that was based on the duration and bandwidth of excitatory and inhibitory regions within the STRF. The STRFs of units in both A1 and DC showed either broad-band (greater than or equal to1 octave) or narrow-band (<1 octave) excitatory and inhibitory regions occurring either alone or together. The excitatory regions were of short duration (lasting for <50 ms) or more sustained (up to about 100 ms) and inhibitory areas either followed excitation or were located as inhibitory sidebands along the high- and low-frequency edges of the excitatory regions. Inhibitory areas that followed excitatory regions were found to be either short lasting (10-20 ms) or longer lasting (up to 200 ms or more). The STRFs recorded from each cortical area indicated temporal response properties consistent with those shown by traditional peristimulus time histogram analysis. Overall, fields A1 and DC showed no significant differences in the distribution of STRF types. Thus, it appears that both fields display similar spectrotemporal sensitivities to auditory stimuli and therefore, appear to process such stimuli in a parallel fashion. Single units recorded in the ventrorostral belt area showed STRF types similar to those recorded in A1 and DC. However, the proportions of STRF types were significantly different, suggesting a difference in spectrotemporal processing between the ventrorostral belt and the core areas. Copyright (C) 2002 S. Karger AG, Basel. C1 MRC, Inst Hearing Res, Nottingham, England. Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP Rutkowski, RG (reprint author), Univ Calif Irvine, Ctr Neurobiol Learning & Memory, Dept Neurobiol & Behav, Bonney Res Lab 212, Irvine, CA 92697 USA. CR AERTSEN AMHJ, 1980, BIOL CYBERN, V38, P235, DOI 10.1007/BF00337016 BULLOCK DC, 1988, MED BIOL ENG COMPUT, V26, P669, DOI 10.1007/BF02447511 Capsius B, 1996, HEARING RES, V96, P59, DOI 10.1016/0378-5955(96)00038-X CASPARY DM, 1994, J NEUROPHYSIOL, V72, P2124 Chen QC, 2000, HEARING RES, V150, P161, DOI 10.1016/S0378-5955(00)00197-0 COX CL, 1992, BRAIN RES BULL, V28, P401, DOI 10.1016/0361-9230(92)90039-Z De Ribaupierre F, 1972, Brain Res, V48, P185, DOI 10.1016/0006-8993(72)90178-3 DEBOER E, 1968, IEEE T BIO-MED ENG, VBM15, P169, DOI 10.1109/TBME.1968.4502561 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 deCharms RC, 1996, NATURE, V381, P610, DOI 10.1038/381610a0 EGGERMONT JJ, 1983, Q REV BIOPHYS, V16, P341 Heil P, 2001, J NEUROSCI, V21, P7404 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X HELLWEG FC, 1977, EXP BRAIN RES, V29, P467 IMIG TJ, 1983, ANNU REV NEUROSCI, V6, P95, DOI 10.1146/annurev.ne.06.030183.000523 KELLY JB, 1988, J NEUROPHYSIOL, V59, P1756 Klein DJ, 2000, J COMPUT NEUROSCI, V9, P85, DOI 10.1023/A:1008990412183 MOREL A, 1992, J COMP NEUROL, V318, P27, DOI 10.1002/cne.903180104 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 Palombi PS, 1996, J NEUROPHYSIOL, V75, P2211 PANDYA DN, 1995, REV NEUROL, V151, P486 PFINGST BE, 1981, J NEUROPHYSIOL, V45, P16 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 Phillips DP, 1998, BEHAV BRAIN RES, V93, P33, DOI 10.1016/S0166-4328(97)00139-3 PRIETO JJ, 1994, J COMP NEUROL, V344, P383, DOI 10.1002/cne.903440305 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker J P, 1997, Acta Otolaryngol Suppl, V532, P34 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 REALE RA, 1986, J NEUROPHYSIOL, V56, P663 REALE RA, 1990, J NEUROPHYSIOL, V64, P1247 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 REDIES H, 1989, J COMP NEUROL, V282, P489, DOI 10.1002/cne.902820403 Rutkowski RG, 2000, EUR J NEUROSCI, V12, P129 Rutkowski RG, 2000, HEARING RES, V145, P177, DOI 10.1016/S0378-5955(00)00087-3 Schnupp JWH, 2001, NATURE, V414, P200, DOI 10.1038/35102568 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 Suga N, 1988, AUDITORY FUNCTION NE, P679 Sutter ML, 1999, J NEUROPHYSIOL, V82, P2358 Theunissen FE, 2000, J NEUROSCI, V20, P2315 Tian B, 2001, SCIENCE, V292, P290, DOI 10.1126/science.1058911 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 Wallace MN, 2000, EXP BRAIN RES, V132, P445, DOI 10.1007/s002210000362 Wallace MN, 1999, NEUROREPORT, V10, P2095, DOI 10.1097/00001756-199907130-00019 Wang J, 2000, NEUROREPORT, V11, P1137, DOI 10.1097/00001756-200004070-00045 YANG LC, 1992, J NEUROPHYSIOL, V68, P1760 NR 49 TC 25 Z9 25 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2002 VL 7 IS 4 BP 214 EP 227 DI 10.1159/000063738 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576BE UT WOS:000176982300003 PM 12097721 ER PT J AU Henkin, Y Kishon-Rabin, L Gadoth, N Pratt, H AF Henkin, Y Kishon-Rabin, L Gadoth, N Pratt, H TI Auditory event-related potentials during phonetic and semantic processing in children SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory event-related potentials; linguistic processing; phonetic processing; semantic processing; late negativity; speech perception models; speech acoustics; children ID SPOKEN WORDS; MISMATCH NEGATIVITY; EVOKED-POTENTIALS; SPEECH; ACTIVATION; DISCRIMINATION; RECOGNITION; PERCEPTION; SENTENCES; STIMULI AB This study was designed to follow the time course of different levels of linguistic processing using auditory event-related potentials (AERPs). A hierarchical set of acoustically controlled stimuli was used to elicit AERPs in 20 normal children who performed discrimination tasks involving pure tones, phonetic 'easy' and 'difficult' stimuli and semantic stimuli. Results show that (1) AERP latencies were similar for phonetic 'easy' and 'difficult' stimuli, (2) prolonged P-2, N-2 and P-3 latencies characterized semantic processing compared to phonetic processing, (3) a late negativity was elicited during semantic processing only, (4) P-3 amplitudes were larger over the left compared to right scalp during linguistic processing (phonetic and semantic) but were similar during nonlinguistic processing (pure tones) and (5) reaction time was found to be longest for semantic processing whereas performance accuracy was found to be an insensitive measure. These results provide insight into brain processes underlying the perception of speech. Furthermore, they support a dual model of speech perception that includes parallel and serial processing. Copyright (C) 2002 S. Karger AG, Basel. C1 Tel Aviv Univ, Sackler Fac Med, Dept Commun Disorders, Sch Hlth Profess, IL-69978 Tel Aviv, Israel. Sapir Med Ctr, Dept Neurol, Kefar Sava, Israel. Technion Israel Inst Technol, Evoked Potentials Lab, Haifa, Israel. RP Henkin, Y (reprint author), Chaim Sheba Med Ctr, Dept Commun Disorders, IL-52621 Tel Hashomer, Israel. CR AHONNISKA J, 1993, BRAIN LANG, V45, P127, DOI 10.1006/brln.1993.1039 ATTIAS J, 1992, BRAIN LANG, V43, P230, DOI 10.1016/0093-934X(92)90129-3 ATTIAS J, 1990, ELECTROEN CLIN NEURO, V77, P127, DOI 10.1016/0168-5597(90)90026-A BENTIN S, 1984, ANN NY ACAD SCI, V425, P166, DOI 10.1111/j.1749-6632.1984.tb23528.x Boothroyd A, 1997, SCAND AUDIOL, V26, P9 BOOTHROYD A, 1984, J SPEECH HEAR RES, V27, P134 CONNOLLY JF, 1992, BRAIN LANG, V43, P1, DOI 10.1016/0093-934X(92)90018-A CONNOLLY JF, 1990, BRAIN LANG, V39, P302, DOI 10.1016/0093-934X(90)90016-A CURRAN T, 1993, ELECTROEN CLIN NEURO, V88, P188, DOI 10.1016/0168-5597(93)90004-9 DEMONET JF, 1992, BRAIN, V115, P1753, DOI 10.1093/brain/115.6.1753 DONCHIN E, 1975, ELECTROEN CLIN NEURO, V38, P51, DOI 10.1016/0013-4694(75)90210-2 FITZGERALD PG, 1984, ANN NY ACAD SCI, V425, P199, DOI 10.1111/j.1749-6632.1984.tb23533.x Forster K. I., 1976, NEW APPROACHES LANGU GATEHOUSE S J G, 1990, British Journal of Audiology, V24, P63, DOI 10.3109/03005369009077843 HENKIN Y, 1999, 16 INT EV RESP AUD S HILLYARD SA, 1983, ANNU REV PSYCHOL, V34, P33, DOI 10.1146/annurev.ps.34.020183.000341 Hillyard S. A., 1987, HDB PHYSL 1, VV, P519 Iverson P, 1998, SPEECH COMMUN, V26, P45, DOI 10.1016/S0167-6393(98)00049-1 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 Kayser J, 1998, PSYCHOPHYSIOLOGY, V35, P576, DOI 10.1017/S0048577298970214 Kent RD, 1998, FOLIA PHONIATR LOGO, V50, P291, DOI 10.1159/000021471 KISHONRABIN L, 1999, J ISR SPEECH LANG HE, V21, P99 KISHONRABIN L, 1999, COCHLEAR IMPLANTS, P212 Kutas M, 1997, COGNITIVE NEUROSCIEN, P197 LAWSON EA, 1981, BIOL PSYCHOL, V13, P281, DOI 10.1016/0301-0511(81)90043-0 LOVRICH D, 1988, ELECTROEN CLIN NEURO, V71, P40, DOI 10.1016/0168-5597(88)90018-4 Lovrich D, 1996, J CLIN EXP NEUROPSYC, V18, P161, DOI 10.1080/01688639608408272 Luce PA, 1998, EAR HEARING, V19, P1, DOI 10.1097/00003446-199802000-00001 MarslenWilson W, 1996, J EXP PSYCHOL HUMAN, V22, P1376 MCCALLUM WC, 1984, ELECTROEN CLIN NEURO, V59, P477, DOI 10.1016/0168-5597(84)90006-6 MEADOR KJ, 1987, INT J NEUROSCI, V35, P175, DOI 10.3109/00207458708987125 MENDEL LL, 1997, AUDIOLOGIC EVALUATIO, P1 MORTON J, 1969, PSYCHOL REV, V76, P165, DOI 10.1037/h0027366 Moss HE, 1997, LANG COGNITIVE PROC, V12, P695 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NEVILLE HJ, 1982, BRAIN LANG, V16, P300, DOI 10.1016/0093-934X(82)90088-8 NOVICK B, 1985, NEUROPSYCHOLOGIA, V23, P87, DOI 10.1016/0028-3932(85)90047-8 OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4 Picton TW, 1988, HDB ELECTROENCEPHALO, V3, P361 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Pratt R L, 1981, Br J Audiol, V15, P253, DOI 10.3109/03005368109081445 PUTTERKATZ H, 1999, 16 INT EV RESP AUD S Whiting KA, 1998, EAR HEARING, V19, P218, DOI 10.1097/00003446-199806000-00005 WOODWARD SH, 1990, BRAIN LANG, V38, P488, DOI 10.1016/0093-934X(90)90133-2 Zattore R. J., 1992, SCIENCE, V256, P846 NR 46 TC 12 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2002 VL 7 IS 4 BP 228 EP 239 DI 10.1159/000063739 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576BE UT WOS:000176982300004 PM 12097722 ER PT J AU Thurner, S Mittermaier, C Ehrenberger, K AF Thurner, S Mittermaier, C Ehrenberger, K TI Change of complexity patterns in human posture during aging SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE complex systems; aging; balance system; multifractal; wavelet analysis; scaling exponents; 1/f noise; stochastic resonance ID STOCHASTIC RESONANCE; NOISE; SYSTEM; WAVELET AB Human posture is a prototypical example of a complex control system. The joint output of several physiological - most likely nonlinearly interacting - processes leads to correctional movements which enable us to stand upright. These correctional body movements reflect some features of the underlying control mechanisms. We analyze the movements of quietly standing persons by means of various types of fractal measures, which are designed to capture 'degrees of complexity'. We observe changes of these fractal measures as a function of age and show that aging goes hand in hand with a decrease of complexity in movement patterns towards more regular movements. We try to explain these results in a stochastic resonance framework. We conjecture that the reduction of posture complexity is linked to deteriorated balance performance and argue that clinical treatment of age-related balance problems should focus on regaining this complexity therapeutically. We line out two possible starting points for actual therapy. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Vienna, Dept Otorhinolaryngol, A-1090 Vienna, Austria. Univ Vienna, Inst Math, A-1090 Vienna, Austria. Univ Vienna, Dept Phys Med, A-1090 Vienna, Austria. RP Thurner, S (reprint author), Univ Vienna, HNO, AKH Wien, Wahringer Gurtel 18-20, A-1090 Vienna, Austria. CR BASSINGTHWAIGHT.JB, 1994, FRACTAL PHYSL CHOW CC, 1995, PHYS REV E, V52, P970 Collins JJ, 1999, NATURE, V402, P241, DOI 10.1038/46179 COLLINS JJ, 1993, EXP BRAIN RES, V95, P308 COLLINS JJ, 1994, PHYS REV LETT, V73, P764, DOI 10.1103/PhysRevLett.73.764 Daubechies I., 1992, 10 LECT WAVELETS Duarte M, 2000, NEUROSCI LETT, V283, P173, DOI 10.1016/S0304-3940(00)00960-5 Hidaka I, 2000, PHYS REV LETT, V85, P3740, DOI 10.1103/PhysRevLett.85.3740 Jaramillo F, 1998, NAT NEUROSCI, V1, P384, DOI 10.1038/1597 Marrone A, 1999, PHYS REV E, V60, P1088, DOI 10.1103/PhysRevE.60.1088 Massion Jean, 1994, Current Opinion in Neurobiology, V4, P877, DOI 10.1016/0959-4388(94)90137-6 MUNSAT TL, 1984, CLIN NEUROLOGY AGING Newell KM, 1993, GAIT POSTURE, V4, P225 Nozaki D, 1999, PHYS REV LETT, V82, P2402, DOI 10.1103/PhysRevLett.82.2402 Saermark K, 2000, FRACTALS, V8, P315, DOI 10.1142/S0218348X00000470 SHINBROT T, 1993, NATURE, V363, P411, DOI 10.1038/363411a0 Thurner S, 1998, PHYS REV LETT, V80, P1544, DOI 10.1103/PhysRevLett.80.1544 Thurner S, 1997, FRACTALS, V5, P565, DOI 10.1142/S0218348X97000462 Thurner S, 2000, PHYS REV E, V62, P4018, DOI 10.1103/PhysRevE.62.4018 Thurner S, 1998, PHYS REV LETT, V81, P5688, DOI 10.1103/PhysRevLett.81.5688 WIESENFELD K, 1995, NATURE, V373, P33, DOI 10.1038/373033a0 Zeng FG, 2000, BRAIN RES, V869, P251, DOI 10.1016/S0006-8993(00)02475-6 NR 22 TC 28 Z9 28 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2002 VL 7 IS 4 BP 240 EP 248 DI 10.1159/000063740 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 576BE UT WOS:000176982300005 PM 12097723 ER PT J AU Ryan, AF AF Ryan, AF TI Molecular studies of hair cell development and survival SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE inner ear development; hair cell; transcription factor; mouse ID TRANSCRIPTION FACTOR; BRN-3 FAMILY; GENE; DIFFERENTIATION; EXPRESSION; NEURONS; DOMAIN AB The development of hair cells in both the auditory and vestibular sensory epithelia is a complex process that involves the coordinated expression of many regulatory proteins. Among these is the POU-domain transcription factor Brn-3.1. This factor is expressed in hair cell precursors immediately after commitment to the hair cell fate, and continues throughout life. Deletion of this factor in mice leads to failure of hair cell differentiation during development, and to the death of a majority of the undifferentiated cells. Normal expression of Brn-3.1 is required for adult hair cell survival as well, since a mutation in this gene causes dominant, late-onset, inherited hearing loss in humans. The timing of the onset of Brn3.1 expression suggests that factors regulating its expression may be involved in fate determination of hair cells. Moreover, genes that are themselves directly regulated by Brn-3.1 appear to play critical roles in hair cell development and survival. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Calif San Diego, Sch Med, La Jolla, CA 92093 USA. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, La Jolla, CA 92093 USA. CR Bermingham NA, 1999, SCIENCE, V284, P1837, DOI 10.1126/science.284.5421.1837 Duggan A, 1998, DEVELOPMENT, V125, P4107 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 GEIRE A, 1974, COLD SPRING HARB SYM, V38, P951 GERRERO MR, 1993, P NATL ACAD SCI USA, V90, P10841, DOI 10.1073/pnas.90.22.10841 JORGENSEN JM, 1987, MECHANOSENSORY SYSTE, P115 Keithley EM, 1999, HEARING RES, V134, P71, DOI 10.1016/S0378-5955(99)00070-2 Lanford PJ, 1999, NAT GENET, V21, P289 McEvilly RJ, 1996, NATURE, V384, P574, DOI 10.1038/384574a0 NINKINA NN, 1993, NUCLEIC ACIDS RES, V21, P3175, DOI 10.1093/nar/21.14.3175 RYAN AF, 1991, ANN NY ACAD SCI, V630, P129, DOI 10.1111/j.1749-6632.1991.tb19581.x Ryan AF, 1997, SEMIN CELL DEV BIOL, V8, P249, DOI 10.1006/scdb.1997.0146 THEIL T, 1993, NUCLEIC ACIDS RES, V21, P5921, DOI 10.1093/nar/21.25.5921 THEIL T, 1994, CYTOGENET CELL GENET, V66, P267, DOI 10.1159/000133709 TURNER EE, 1994, NEURON, V12, P205, DOI 10.1016/0896-6273(94)90164-3 Vahava O, 1998, SCIENCE, V279, P1950, DOI 10.1126/science.279.5358.1950 Xiang MQ, 1997, P NATL ACAD SCI USA, V94, P9445, DOI 10.1073/pnas.94.17.9445 Xiang MQ, 1998, DEVELOPMENT, V125, P3935 NR 18 TC 5 Z9 5 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 138 EP 140 DI 10.1159/000058298 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100002 PM 12053133 ER PT J AU Forge, A Becker, D Casalotti, S Edwards, J Marziano, N Nickel, R AF Forge, A Becker, D Casalotti, S Edwards, J Marziano, N Nickel, R TI Connexins and gap junctions in the inner ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE connexins; gap junctions; cochlea; vestibular system; supporting cells; stria vascularis; endocochlear potential; hreditary hearing loss ID STRIA VASCULARIS; INTERCELLULAR COMMUNICATION; SUPPORTING CELLS; RAT COCHLEA; HELA-CELLS; EXPRESSION; MUTATIONS; DEAFNESS; CHANNELS; ORGAN AB Mutations in the genes for three different isotypes of the gap junction channel protein connexin are associated with deafness. This indicates an important role for gap junctions in auditory function and provides an opportunity to explore structure-function relationships in the connexin molecule. We have been examining the distribution of gap junctions and the pattern of connexin expression in the mature inner ear and during development, and the effect of specific mutations on the processing and functionality of the expressed connexin proteins in an in vitro system. Copyright (C) 2002 S. Karger AG, Basel. C1 UCL, UCL Ctr Auditory Res, Inst Laryngol & Otol, London WC1X 8EE, England. UCL, Dept Anat & Dev Biol, London WC1X 8EE, England. UCL, Dept Physiol, London WC1X 8EE, England. RP Forge, A (reprint author), UCL, UCL Ctr Auditory Res, Inst Laryngol & Otol, 330-332,Grays Inn Rd, London WC1X 8EE, England. EM a.forge@ucl.ac.uk CR ADAMS J, 2000, ARO ABSTR, P442 CARLISLE L, 1990, CELL TISSUE RES, V262, P329, DOI 10.1007/BF00309888 COUTINHO P, 2001, ARO ABSTR, P81 Denoyelle F, 1997, HUM MOL GENET, V6, P2173, DOI 10.1093/hmg/6.12.2173 EDWARDS J, 2000, ARO ABSTR, P219 EDWARDS J, 2001, ARO ABSTR, P533 ELFGANG C, 1995, J CELL BIOL, V129, P805, DOI 10.1083/jcb.129.3.805 Falk MM, 2000, J CELL SCI, V113, P4109 Forge A, 1999, NOVART FDN SYMP, V219, P134 FORGE A, 1986, BASIC APPLIED ASPECT, P55 FORGE A, 1984, HEARING RES, V13, P189, DOI 10.1016/0378-5955(84)90108-4 George CH, 1998, BIOCHEM BIOPH RES CO, V247, P785, DOI 10.1006/bbrc.1998.8835 GOLIGER JA, 1995, MOL BIOL CELL, V6, P1491 Grifa A, 1999, NAT GENET, V23, P16 Heller S, 1998, P NATL ACAD SCI USA, V95, P11400, DOI 10.1073/pnas.95.19.11400 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIKUCHI T, 1995, ANAT EMBRYOL, V191, P101, DOI 10.1007/BF00186783 Kikuchi T, 2000, BRAIN RES REV, V32, P163, DOI 10.1016/S0165-0173(99)00076-4 Kumar NM, 1996, CELL, V84, P381, DOI 10.1016/S0092-8674(00)81282-9 Kumar NM, 1999, NOVART FDN SYMP, V219, P6 Lautermann J, 1998, CELL TISSUE RES, V294, P415, DOI 10.1007/s004410051192 Martin PEM, 1999, HUM MOL GENET, V8, P2369, DOI 10.1093/hmg/8.13.2369 MCDOWELL B, 1989, HEARING RES, V40, P221, DOI 10.1016/0378-5955(89)90163-9 SANTOS-SACCHI J, 1991, HEARING RES, V52, P89, DOI 10.1016/0378-5955(91)90190-K Souter M, 1998, HEARING RES, V119, P81, DOI 10.1016/S0378-5955(98)00042-2 STEEL KP, 1989, DEVELOPMENT, V107, P453 Wangemann P., 1996, COCHLEA, P130 Warchol ME, 1996, J NEUROSCI, V16, P5466 Xia AP, 2000, NEUROREPORT, V11, P2449, DOI 10.1097/00001756-200008030-00022 Xia JH, 1998, NAT GENET, V20, P370, DOI 10.1038/3845 Zhao HB, 2000, J MEMBRANE BIOL, V175, P17, DOI 10.1007/s002320001051 NR 31 TC 20 Z9 26 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 141 EP 145 DI 10.1159/000058299 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100003 PM 12053134 ER PT J AU Lalwani, AK Jero, J Mhatre, AN AF Lalwani, AK Jero, J Mhatre, AN TI Current issues in cochlear gene transfer SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE cochlear gene therapy; viral vectors; osmotic minipump; microinjection; round window membrane ID GUINEA-PIG COCHLEA; ADENOASSOCIATED VIRUS; TRANSGENE EXPRESSION; IN-VIVO; LENTIVIRAL VECTOR; CELLS; TRANSDUCTION; DELIVERY; THERAPY; MOUSE AB Cochlear gene therapy represents a potential experimental and therapeutic tool to understand and treat deafness. In designing cochlear gene transfer studies, the chosen route of delivery of vector and the choice of gene therapy vector have to be given careful consideration. Several different routes of delivery have been tested in our laboratory including infusion with osmotic mini-pump, direct microinjection into the cochlea and application of vector-transgene complex-soaked Gelfoam into the direct contact with the round window membrane. In our experience, the latter is an easy, safe and atraumatic technique to deliver gene into the cochlea. A number of different gene transfer vectors have been investigated in vivo for their efficacy, utility and safety in intracochlear gene transfer. Vectors successfully studied include cationic liposomes, adeno-associated virus, adenovirus, lentivirus, herpes simplex virus and vaccinia virus. While the viral vectors offer clear experimental advantages, human gene therapy in the future will likely utilize nonviral vectors to maximize safety. Finally, safety issues regarding dissemination of gene transfer vectors beyond the target cochlea will need to be adequately addressed. Copyright (C) 2002 S. KargerAG, Basel. C1 Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Epstein Labs, Lab Mol Otol, San Francisco, CA 94143 USA. Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Div Otol Neurotol & Skull Base Surg, San Francisco, CA 94143 USA. Univ Helsinki, Cent Hosp, Dept Otolaryngol, FIN-00290 Helsinki, Finland. RP Lalwani, AK (reprint author), Univ Calif San Francisco, Dept Otolaryngol Head & Neck Surg, Epstein Labs, Lab Mol Otol, 533 Parnassus Ave,U490A, San Francisco, CA 94143 USA. CR Carvalho GJ, 1999, AM J OTOL, V20, P87 DAVIES E, 1994, AM J OTOL, V15, P757 Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3 Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545 Jero J, 2001, HEARING RES, V151, P106, DOI 10.1016/S0378-5955(00)00216-1 Jero J, 2001, HUM GENE THER, V12, P539, DOI 10.1089/104303401300042465 Kho ST, 2000, MOL THER, V2, P368, DOI 10.1006/mthe.2000.0129 Kho ST, 2000, EUR ARCH OTO-RHINO-L, V257, P469, DOI 10.1007/s004050000280 Komeda M, 1999, HEARING RES, V131, P1, DOI 10.1016/S0378-5955(99)00006-4 Lalwani AK, 1998, AM J OTOL, V19, P390 Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573 Lalwani AK, 1997, HEARING RES, V114, P139, DOI 10.1016/S0378-5955(97)00151-2 Lalwani AK, 1996, GENE THER, V3, P588 MUZYCZKA N, 1992, CURR TOP MICROBIOL, V158, P97 Naldini L, 1996, SCIENCE, V272, P263, DOI 10.1126/science.272.5259.263 Naldini L, 1996, P NATL ACAD SCI USA, V93, P11382, DOI 10.1073/pnas.93.21.11382 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Wareing M, 1999, HEARING RES, V128, P61, DOI 10.1016/S0378-5955(98)00196-8 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526 NR 20 TC 26 Z9 31 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 146 EP 151 DI 10.1159/000058300 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100004 PM 12053135 ER PT J AU Altschuler, RA Fairfield, D Cho, Y Leonova, E Benjamin, IJ Miller, JM Lomax, MI AF Altschuler, RA Fairfield, D Cho, Y Leonova, E Benjamin, IJ Miller, JM Lomax, MI TI Stress pathways in the rat cochlea and potential for protection from acquired deafness SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE heat shock proteins; noise; cochlea; inner ear; stress; neurotrophic factors; gene arrays ID INDUCED HEARING-LOSS; NEUROTROPHIC FACTOR; CHAPERONE FUNCTION; GROWTH-FACTOR; NOISE; GDNF; EXPRESSION; ISCHEMIA; SYSTEMS; NEURONS AB Noise overstimulation will induce or influence intracellular molecular pathways in the cochlea. One of these is the 'classical' stress response pathway involving heat shock proteins. Hsp70 is induced in the cochlea by a wide variety of stresses including noise, hyperthermia and ototoxic drugs. When a stress that induces Hsp70 is applied to the cochlea, there is protection from a subsequent noise that would normally cause a permanent hearing loss. An upstream regulator of heat shock protein transcription, heat shock factor 1, is expressed in the cochlea and activated by stress. Mice lacking this heat shock factor have reduced recovery from noise-induced hearing loss. The same noise exposure that induces Hsp70 also increases the level of glial cell line-derived neurotrophic factor in the cochlea. Moreover, when this neurotrophic factor is applied into the perilymph of scala tympani prior to a noise exposure there is a significant reduction in hair cell loss and hearing loss. With the potential for activation of multiple pathways in the response to noise, gene microarrays can be useful to examine global gene expression. Initial studies examined differential gene expression immediately following a mild noise exposure (from which there is complete recovery) versus an intense noise (giving profound permanent deafness). Differential expression of several immediate early genes was found following the intense but not the mild noise exposure. Copyright (C) 2002 S. KargerAG, Basel. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. Univ Michigan, Dept Cell & Dev Biol, Ann Arbor, MI 48109 USA. Univ Texas, SW Med Ctr, Dept Internal Med, Dallas, TX 75235 USA. Univ Texas, SW Med Ctr, Div Cell & Mol Biol, Dallas, TX 75235 USA. RP Altschuler, RA (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann, Ann Arbor, MI 48109 USA. CR Akins PT, 1996, STROKE, V27, P1682 Altschuler R. A., 1999, COCHLEAR PHARM NOISE, P98 Beere HM, 2000, NAT CELL BIOL, V2, P469 CHO Y, IN PRESS JARO DESCHENSE CJ, 1992, HEARING RES, V59, P195 FAIRFIELD DA, UNPUB MOL BRAIN RES HENDERSON D, 1995, OCCUP MED, V10, P513 Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007 Kopke R, 1999, ANN NY ACAD SCI, V884, P171, DOI 10.1111/j.1749-6632.1999.tb08641.x Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 LEONOVA EV, IN PRESS HEAR RES LIM HH, 1993, HEARING RES, V69, P146 LOMAX MI, 2001, NOISE HEAR, V11, P19 MILBRANDT J, 1988, NEURON, V1, P183, DOI 10.1016/0896-6273(88)90138-9 MILLER JM, 1998, RECENT ADV INNER EAR MITCHELL A, UNPUB HEAR RES Morimoto RI, 1998, GENE DEV, V12, P3788, DOI 10.1101/gad.12.24.3788 MYERS MW, 1992, LARYNGOSCOPE, V102, P981 Nam YJ, 2000, HEARING RES, V146, P1, DOI 10.1016/S0378-5955(00)00072-1 O'Donovan KJ, 1999, TRENDS NEUROSCI, V22, P167, DOI 10.1016/S0166-2236(98)01343-5 OH SH, IN PRESS ACTA OTOLAR Ohtsuka K, 2000, INT J HYPERTHER, V16, P231 Pirvola U, 2000, J NEUROSCI, V20, P43 Rogalla T, 1999, J BIOL CHEM, V274, P18947, DOI 10.1074/jbc.274.27.18947 SCHAFER C, 1999, AM J PHYSIOL, V277, P1032 Shoji F, 2000, HEARING RES, V142, P41, DOI 10.1016/S0378-5955(00)00007-1 STOVER T, IN PRESS HEAR RES TOMAC A, 1995, NATURE, V373, P335, DOI 10.1038/373335a0 Xiao XZ, 1999, EMBO J, V18, P5943, DOI 10.1093/emboj/18.21.5943 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Yoshida N, 1999, J NEUROSCI, V19, P10116 NR 31 TC 16 Z9 17 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 152 EP 156 DI 10.1159/000058301 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100005 PM 12053136 ER PT J AU Holt, JR AF Holt, JR TI Viral-mediated gene transfer to study the molecular physiology of the mammalian inner ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE cochlea; utricle; vestibular; adenovirus; hair cell; mechanotransduction ID CELLS IN-VIVO; GUINEA-PIG; HAIR-CELLS; TRANSGENE EXPRESSION; COCHLEA; VECTOR; ADENOVIRUS; TRANSDUCTION; HSV-1; VIRUS AB Several classes of viral vectors including adenovirus, adeno-associated virus, herpes simplex virus, lentivirus and vaccinia virus have been reported to infect cells of the inner ears of mammals and may be useful for protein manipulation and therapeutic purposes. We have screened a few of these for use as vectors to mediate gene transfer into the sensory hair cells of organotypic cultures from the neonatal mouse cochlea and utricle. Recombinant, replication-deficient adenovirus has emerged as a useful vector for several reasons: ease of vector generation at high titer; efficient hair cell specific infection; robust expression of reporter genes and minimal toxicity. Previously, we characterized adenovirus infected hair cells using a vector that carried the gene for green fluorescent protein (GFP). We screened GFP-positive cells electrophysiologically and found that although hair cells survive adenoviral vector infection, their mechanosensitivity was compromised. Until recently this has limited the scope of adenovirus application to the problems of inner ear physiology and pathophysiology. However, a modified adenoviral vector, now available, has been reported to have reduced ototoxicity in vivo. The modifications include the deletion of the adenoviral genes E1, E3, the viral polymerase, and the preterminal protein. We are currently working to characterize viral-mediated gene transfer into hair cells of the cultured mouse utricle using this new modified adenoviral vector. We have found that hair cells infected with the modified vector have intact hair bundles and robust mechanotransduction. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Virginia, Sch Med, Dept Neurosci, Charlottesville, VA 22908 USA. Univ Virginia, Sch Med, Dept Otolaryngol, Charlottesville, VA 22908 USA. RP Holt, JR (reprint author), Univ Virginia, Sch Med, Dept Neurosci, Charlottesville, VA 22908 USA. CR Amalfitano A, 1998, J VIROL, V72, P926 Dazert S, 2001, HEARING RES, V151, P30, DOI 10.1016/S0378-5955(00)00189-1 Dazert S, 1997, INT J DEV NEUROSCI, V15, P595, DOI 10.1016/S0736-5748(96)00114-1 Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3 Geschwind MD, 1996, HUM GENE THER, V7, P173, DOI 10.1089/hum.1996.7.2-173 Han JJ, 1999, HUM GENE THER, V10, P1867, DOI 10.1089/10430349950017545 Holt JR, 1999, J NEUROPHYSIOL, V81, P1881 Holt JR, 1997, J NEUROSCI, V17, P8739 Lalwani AK, 1997, HEARING RES, V114, P139, DOI 10.1016/S0378-5955(97)00151-2 Lalwani AK, 1996, GENE THER, V3, P588 LUEBKE AE, 2000, MOL THER, V1, pS80 Luebke AE, 2001, GENE THER, V8, P789, DOI 10.1038/sj.gt.3301445 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X Yamasoba T, 1999, HUM GENE THER, V10, P769, DOI 10.1089/10430349950018526 NR 14 TC 19 Z9 24 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 157 EP 160 DI 10.1159/000058302 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100006 PM 12053137 ER PT J AU Kanzaki, S Kawamoto, K Oh, SH Stover, T Suzuki, M Ishimoto, S Yagi, M Miller, JM Lomax, MI Raphael, Y AF Kanzaki, S Kawamoto, K Oh, SH Stover, T Suzuki, M Ishimoto, S Yagi, M Miller, JM Lomax, MI Raphael, Y TI From gene identification to gene therapy SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE inner ear; hair cell regeneration; gene profiling; gene therapy; adenovirus; ototoxicity; acoustic trauma; glial cell line-derived neurotrophic factor ID HAIR CELL LOSS; SPIRAL GANGLION NEURONS; CHICK BASILAR PAPILLA; EAR SENSORY EPITHELIA; MAMMALIAN INNER-EAR; NEUROTROPHIC FACTOR; GDNF; EXPRESSION; COCHLEAR; REGENERATION AB Inner ear disease due to hair cell loss is common, and no restorative treatments for the balance and hearing impairment are currently available. To develop clinical means for enhancing protection and regeneration in the inner ear, it is necessary to understand the molecular basis for hereditary and acquired deafness and vestibular disorders. One approach is to identify and characterize genes that regulate protection or repair in other systems. For that purpose, we have used the differential display assay and compared gene expression between normal and acoustically traumatized inner ears of chicks. Several chick cDNAs that were identified are considered as candidates for roles in the reparative process that follows trauma in the basilar papilla. The mammalian vestibular epithelium has a limited regenerative capability. To identify genes that may participate in the regenerative response, we have used gene arrays profiling, comparing normal to drug-traumatized vestibular epithelia. We identified several genes that are differentially expressed in traumatized vestibular epithelium, including several insulin-like growth factor-I binding proteins. To use this molecular knowledge for enhancing protection and repair in the organ of Corti, it is necessary to overexpress the genes of choice in the inner ear. Using viral-mediated gene transfer, we overexpressed transgenic glial cell line-derived neurotrophic factor and demonstrated a robust protective effect against acoustic and ototoxic inner ear trauma. Future identification of the genes that are important for protection and regeneration, along with improved gene transfer technology, will allow the use of gene therapy for treating hereditary and environmental inner ear disease. Copyright (C) 2002 S. KargerAG, Basel. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. RP Raphael, Y (reprint author), Univ Michigan, Kresge Hearing Res Inst, MSRB 3,Room 9303,1150 W Med Ctr Dr, Ann Arbor, MI 48109 USA. RI Oh, Seung Ha/J-5540-2012; Kanzaki, Sho/B-3100-2014 OI Kanzaki, Sho/0000-0001-9056-0850 CR Adler HJ, 1999, GENOMICS, V56, P59, DOI 10.1006/geno.1998.5672 Adler HJ, 1996, NEUROSCI LETT, V205, P17, DOI 10.1016/0304-3940(96)12367-3 Derby ML, 1999, HEARING RES, V134, P1, DOI 10.1016/S0378-5955(99)00045-3 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5 Hegarty JL, 1997, J NEUROSCI, V17, P1959 Holt JR, 1999, J NEUROPHYSIOL, V81, P1881 Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007 Lalwani AK, 1998, GENE THER, V5, P277, DOI 10.1038/sj.gt.3300573 LIN LFH, 1993, SCIENCE, V260, P1130, DOI 10.1126/science.8493557 LIN LFH, 1994, J NEUROCHEM, V63, P758 Lomax MI, 2000, HEARING RES, V147, P293, DOI 10.1016/S0378-5955(00)00139-8 Lopez I, 1997, INT J DEV NEUROSCI, V15, P447, DOI 10.1016/S0736-5748(96)00103-7 Oesterle EC, 1999, J NEUROCYTOL, V28, P877, DOI 10.1023/A:1007074222659 PRIESKORN D, 1999, MIDW M ASS RES OT ST Roberson DW, 1996, AUDIT NEUROSCI, V2, P195 Shoji F, 2000, HEARING RES, V146, P134, DOI 10.1016/S0378-5955(00)00106-4 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 Stone JS, 1998, CURR OPIN NEUROL, V11, P17, DOI 10.1097/00019052-199802000-00004 Stover T, 2000, MOL BRAIN RES, V76, P25, DOI 10.1016/S0169-328X(99)00328-9 Stover T, 2000, GENE THER, V7, P377, DOI 10.1038/sj.gt.3301108 Stover T, 1999, HEARING RES, V136, P124, DOI 10.1016/S0378-5955(99)00115-X Suzuki M, 2000, GENE THER, V7, P1046, DOI 10.1038/sj.gt.3301180 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Yagi M, 2000, JARO, V1, P315, DOI 10.1007/s101620010011 Yagi M, 1999, HUM GENE THER, V10, P813, DOI 10.1089/10430349950018562 NR 26 TC 12 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 161 EP 164 DI 10.1159/000058303 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100007 PM 12053138 ER PT J AU Lefebvre, PP Malgrange, B Lallemend, F Staecker, H Moonen, G Van De Water, TR AF Lefebvre, PP Malgrange, B Lallemend, F Staecker, H Moonen, G Van De Water, TR TI Mechanisms of cell death in the injured auditory system: Otoprotective strategies SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE apoptosis; auditory system; reactive oxygen species; caspase; calpain; cisplatin; trophic factor withdrawal ID NERVE GROWTH-FACTOR; CISPLATIN-INDUCED DAMAGE; NEURONAL APOPTOSIS; NEUROTROPHIC FACTOR; ANTIOXIDANT SYSTEM; HAIR-CELLS; PROTECTION; OTOTOXICITY; INHIBITORS; PROTEASE AB Oxidative stress insults such as neurotrophin withdrawal, sound trauma, hypoxia/ischemia, ototoxic antibiotics, and chemotherapeutic agents have been shown to induce apoptosis of both auditory hair cells and neurons. In this paper, we review some components of the apoptotic pathways leading to the death of hair cells and auditory induced by growth factor withdrawal or cisplatin intoxication: (1) reactive oxygen species and free radicals are formed as by-products of several metabolic pathways and these molecules can themselves cause cell damage by reacting with cellular proteins; (2) activation of caspases, and (3) activation of calpain. These mechanisms have several different points at which inhibitors could be targeted to protect cells from programmed cell death, including the prevention of oxidative stress-induced apoptosis and the activation of caspases and calpains. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Liege, Dept Otolaryngol, B-4000 Liege, Belgium. Univ Liege, Ctr Cellular & Mol Neurobiol, B-4000 Liege, Belgium. Univ Maryland, Dept Otolaryngol, Baltimore, MD 21201 USA. Univ Miami, Sch Med, Dept Otolaryngol, Miami, FL 33136 USA. RP Van De Water, TR (reprint author), Univ Miami, Ear Inst, 1600 NW 10th Ave,RMSB 3160, Miami, FL 33136 USA. CR Barinaga M, 1998, SCIENCE, V280, P32, DOI 10.1126/science.280.5360.32 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Carafoli E, 1998, BIOCHEM BIOPH RES CO, V247, P193, DOI 10.1006/bbrc.1998.8378 COMIS SD, 1986, J LARYNGOL OTOL, V100, P1375, DOI 10.1017/S0022215100101161 Dugan LL, 1997, P NATL ACAD SCI USA, V94, P4086, DOI 10.1073/pnas.94.8.4086 Ford MS, 1997, HEARING RES, V111, P143, DOI 10.1016/S0378-5955(97)00103-2 Fraser A, 1996, CURR OPIN NEUROBIOL, V6, P71, DOI 10.1016/S0959-4388(96)80011-0 Gabaizadeh R, 1997, MOL BRAIN RES, V50, P71, DOI 10.1016/S0169-328X(97)00173-3 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 Garrido JJ, 1998, J NEUROCHEM, V70, P2336 Gorman A.M., 1998, NEUROREPORT, V9, P49 Haviv R, 1997, J NEUROSCI RES, V50, P69, DOI 10.1002/(SICI)1097-4547(19971001)50:1<69::AID-JNR8>3.0.CO;2-J Keller JN, 1998, J NEUROSCI, V18, P687 Kew JNC, 1996, NEUROSCIENCE, V70, P329, DOI 10.1016/0306-4522(95)00365-7 Kopke RD, 1997, AM J OTOL, V18, P559 Kruman I, 1997, J NEUROSCI, V17, P5089 LAURELL G, 1995, HEARING RES, V87, P16, DOI 10.1016/0378-5955(95)00074-E Lautermann J, 1997, HEARING RES, V114, P75, DOI 10.1016/S0378-5955(97)00154-8 Liu W, 1998, NEUROREPORT, V9, P2609, DOI 10.1097/00001756-199808030-00034 McCarthy MJ, 1997, J CELL SCI, V110, P2165 MEHDI S, 1991, TRENDS BIOCHEM SCI, V16, P150, DOI 10.1016/0968-0004(91)90058-4 Nath R, 1996, NEUROREPORT, V8, P249, DOI 10.1097/00001756-199612200-00050 Nath R, 1998, J NEUROCHEM, V71, P186 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 Schulz JB, 1997, J NEUROCHEM, V69, P2075 Sorimachi H, 1997, BIOCHEM J, V328, P721 Staecker H, 1998, OTOLARYNG HEAD NECK, V119, P7, DOI 10.1016/S0194-5998(98)70194-9 THORNBERRY NA, 1998, SCIENCE, V281, P1213 VILLA P, 1997, TIBS, V22, P328 NR 30 TC 49 Z9 59 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 165 EP 170 DI 10.1159/000058304 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100008 PM 12053139 ER PT J AU Wu, WJ Sha, SH Schacht, J AF Wu, WJ Sha, SH Schacht, J TI Recent advances in understanding aminoglycoside ototoxicity and its prevention SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE gentamicin; kanamycin; reactive oxygen species; antioxidants; protection ID FREE-RADICALS; HAIR-CELLS; COCHLEAR CULTURES; IRON CHELATORS; GENTAMICIN; TOXICITY; ATTENUATION; NEOMYCIN; BASAL AB Studies over the last decade have left little doubt that reactive oxygen species (ROS) participate in the cellular events leading to aminoglycoside-induced hearing loss. The evidence ranges from the demonstration of aminoglycoside-mediated ROS formation in vitro to the prevention of oxotoxicity by antioxidants in guinea pig in vivo. Here we review a hypothesis of the mechanism of toxicity, discuss possible causes underlying the gradient in base-to-apex sensitivity of outer hair cells, and present recent results on the adult mouse as a new animal model of aminoglycoside ototoxicity and its prevention. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR Barber D A, 1994, Am Pharm, VNS34, P26 BROUET G, 1959, Rev Tuberc Pneumol (Paris), V23, P949 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Conlon BJ, 1998, LARYNGOSCOPE, V108, P284, DOI 10.1097/00005537-199802000-00023 Conlon BJ, 1999, HEARING RES, V128, P40, DOI 10.1016/S0378-5955(98)00195-6 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357 HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 JEZOWSKABOJCZUK M, 2001, IN PRESS CHEM RES TO KNIGHT JA, 1995, ANN CLIN LAB SCI, V25, P111 LERNER SA, 1986, AM J MED, V80, P98, DOI 10.1016/0002-9343(86)90486-9 MOORE RD, 1984, J INFECT DIS, V149, P23 Priuska EM, 1998, INORG CHIM ACTA, V273, P85, DOI 10.1016/S0020-1693(97)05942-2 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E SCHACHT J, 1979, ARCH OTO-RHINO-LARYN, V224, P129, DOI 10.1007/BF00455236 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2001, HEARING RES, V155, P1, DOI 10.1016/S0378-5955(01)00224-6 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 WU WJ, 2001, IN PRESS HEAR RES NR 23 TC 68 Z9 79 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 171 EP 174 DI 10.1159/000058305 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100009 PM 12053140 ER PT J AU Miller, JM Miller, AL Yamagata, T Bredberg, G Altschuler, RA AF Miller, JM Miller, AL Yamagata, T Bredberg, G Altschuler, RA TI Protection and regrowth of the auditory nerve after deafness: Neurotrophins, antioxidants and depolarization are effective in vivo SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE deafness; cochlear prosthesis; auditory nerve; neurotrophin; antioxidants; intracellular calcium; cell death; guinea pig ID SPIRAL GANGLION NEURONS; GUINEA-PIG; ELECTRICAL-STIMULATION; CELL SURVIVAL; NOISE-TRAUMA; DEGENERATION; COCHLEA; REPAIR AB Deafness, with loss of sensory (hair) cells, results in progressive pathophysiological changes ending in the degeneration of most auditory nerve neurons. It is now possible to consider these events in the broader context of anti-apoptotic survival factors in the peripheral and central nervous system. One consequence of deafferentation of a neuron is the loss of neurotrophins that can lead to a change in oxidative state (formation of free radicals), changes in intracellular Ca2+, and an up-regulation of apoptotic genes. Interventions that can modify availability of neurotrophins, [Ca2+](l), and/or free radical formation or their destructive effects, may preserve the auditory nerve. Some interventions (neurotrophins) may also lead to a regrowth of neurites. Studies in this area are of basic value and also of immediate clinical interest for the application of the cochlear prosthesis to the severe and profoundly deaf, since the benefits of this prosthesis are directly dependent on auditory nerve survival and the proximity of stimulating electrode to neuron. We, and others, have found that auditory nerve degeneration can be prevented by chronic electrical stimulation. We have demonstrated in vivo that this effect can be blocked by tetrodotoxin, thus indicating that propagated action potentials are a necessary condition, and by verapamil (Ca2+ channel blocker), supporting in vitro studies by others, indicating that L-type Ca2+ channels are necessary for stimulation-induced rescue of the deafferented auditory nerve. The intensities of electrical stimulation required for rescue are at levels sufficient to express the intermediate-early gene c-fos which can initiate transcription of anti-apoptotic genes and pathways, and up-regulate expression of neurotrophins that may act in an autocrine manner to protect the nerve from death. We, and others, have found that chronic local delivery (osmotic pump and microcannulation of the inner ear fluid spaces) of individual neurotrophins and cocktails of factors can also enhance survival of the deafferented nerve, and some can also initiate a regrowth of degenerated peripheral processes of the nerve into the region of the destroyed sensory epitheliae. Recently, we have shown that this rescue can occur with delayed intervention, after degeneration of some neurons has begun, more closely mimicking the human clinical situation. Finally, we have shown that interventions with antioxidants may also be effective in preventing pathophysiological changes of the auditory nerve following deafness. These studies in the auditory periphery support the' neurotrophic factor hypothesis' as proposed as a general mechanism underlying neurodegenerative and age-related pathology of the central nervous system. Additional animal studies can yield a rational scientific basis to justify human trials, with a goal to maintain auditory cell survival and initiate and direct fiber growth to the next generation of prosthesis. Intimate contact between electrode and a dense population of auditory neurons should greatly enhance the benefits of these devices for the profoundly deaf. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Michigan, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Karolinska Inst, Inst Hearing & Commun Res, S-10521 Stockholm, Sweden. Karolinska Inst, Huddinge Hosp, Dept Cochlear Implant, S-10401 Stockholm, Sweden. RP Miller, JM (reprint author), Univ Michigan, Kresge Hearing Res Inst, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR CHO Y, 1998, ASS RES OT ABSTR, V21, P636 Dodson HC, 1997, J NEUROCYTOL, V26, P541, DOI 10.1023/A:1015434524040 Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 ESTUS S, 1998, NEUROPROTECTIVE SIGN GANTZ BJ, 1993, ADV OTO-RHINO-LARYNG, V48, P153 GANTZ BJ, 1993, ANN OTO RHINOL LARYN, V102, P909 HANSEN MR, 1997, MIDW M ARO ST PET BE HARTSHORN DO, 1991, OTOLARYNG HEAD NECK, V104, P311 Hegarty JL, 1997, J NEUROSCI, V17, P1959 JOHNSON EM, 1992, EXP NEUROL, V115, P163, DOI 10.1016/0014-4886(92)90242-I JYUNG RW, 1989, OTOLARYNG HEAD NECK, V101, P670 LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LEAKEJONES PA, 1982, HEARING RES, V8, P225, DOI 10.1016/0378-5955(82)90076-4 LOUSTEAU RJ, 1987, LARYNGOSCOPE, V97, P836 MARSH MA, 1992, AM J OTOL, V13, P241 MATTHESS G, 1994, CHEM PLANT PROT, V9, P191 MATTSON MP, 1997, NEUROPROTECTIVE SIGN MATTSON MP, 1994, J NEUROTRAUM, V11, P3, DOI 10.1089/neu.1994.11.3 MILLER CA, 1994, HEARING RES, V78, P11, DOI 10.1016/0378-5955(94)90039-6 Miller JM, 1997, INT J DEV NEUROSCI, V15, P631, DOI 10.1016/S0736-5748(96)00117-7 NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T PFINGST BE, 1981, ACTA OTO-LARYNGOL, V92, P1, DOI 10.3109/00016488109133232 PFINGST BE, 1985, COCHLEAR IMPLANTS, P305 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Puel JL, 1997, ACTA OTO-LARYNGOL, V117, P214, DOI 10.3109/00016489709117773 SHEPHERD RK, 1993, HEARING RES, V66, P108, DOI 10.1016/0378-5955(93)90265-3 SIESJO BK, 1989, J CEREBR BLOOD F MET, V9, P127 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPRINGER JE, 1998, NEUROPROTECTIVE SIGN Staecker H, 1996, NEUROREPORT, V7, P889, DOI 10.1097/00001756-199603220-00011 Strominger RN, 1995, HEARING RES, V92, P52, DOI 10.1016/0378-5955(95)00196-4 VandeWater TR, 1996, CIBA F SYMP, V196, P149 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 WEST BA, 1973, ARCH OTOLARYNGOL, V98, P32 YAMAGATA T, 2001, MIDW M ARO ST PET BE, P252 Ylikoski J, 1998, HEARING RES, V124, P17, DOI 10.1016/S0378-5955(98)00095-1 Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127 NR 37 TC 25 Z9 26 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 175 EP 179 DI 10.1159/000058306 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100010 PM 12053141 ER PT J AU Thorne, PR Munoz, DJB Nikolic, P Mander, L Jagger, DJ Greenwood, D Vlajkovic, S Housley, GD AF Thorne, PR Munoz, DJB Nikolic, P Mander, L Jagger, DJ Greenwood, D Vlajkovic, S Housley, GD TI Potential role of purinergic signalling in cochlear pathology SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE adenosine 5 '-triphosphate; ectonucleotidase; cochlear blood flow; P2X receptor; P2Y receptor; apoptosis; necrosis; P2z receptor; excitotoxicity; hearing ID GATED ION-CHANNEL; EXTRACELLULAR ATP; ADENOSINE-TRIPHOSPHATE; MEDIATED CYTOTOXICITY; P2X RECEPTORS; P-2Z RECEPTOR; CELL-DEATH; RAT; NUCLEOTIDES; EXPRESSION AB Adenosine triphosphate (ATP) is a major intercellular signalling molecule that is involved in neurotransmission in the central and autonomic nervous systems, regulation of blood flow, and neuroendocrine function. It is also a key signalling molecule involved in normal cochlear homoeostasis, regulating hearing sensitivity, controlling vascular tone and acting as a candidate neurotransmitter at the hair cell afferent synapses. It has also been established that extracellular ATP mediates some pathological processes such as inflammation, apoptosis and cell proliferation. Evidence for a profound influence of extracellular ATP on normal cochlear function offers the tantalising possibility that extracellular purine nucleotides may play a role in disease processes in the inner ear. This review draws on the current understanding of the pathophysiological role of extracellular ATP in tissues, and the evidence for the functional expression of purinergic signalling elements in the inner ear, to speculate on the potential role of purine nucleotides in cochlear pathology. Copyright (C) 2002 S. KargerAG, Basel. C1 Univ Auckland, Fac Med & Hlth Sci, Discipline Audiol, Auckland 1, New Zealand. RP Thorne, PR (reprint author), Univ Auckland, Fac Med & Hlth Sci, Discipline Audiol, Private Bag 92019, Auckland 1, New Zealand. CR Abbracchio MP, 1998, JPN J PHARMACOL, V78, P113, DOI 10.1254/jjp.78.113 Bobbin RP, 1997, HEARING RES, V113, P155, DOI 10.1016/S0378-5955(97)00140-8 Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 Burnstock G, 1997, NEUROPHARMACOLOGY, V36, P1127, DOI 10.1016/S0028-3908(97)00125-1 Chow SC, 1997, NEUROPHARMACOLOGY, V36, P1149, DOI 10.1016/S0028-3908(97)00123-8 Coutinho-Silva R, 1999, AM J PHYSIOL-CELL PH, V276, pC1139 DEVAL D, 2000, THESIS U AUCKLAND AU Di Virgilio F, 1998, CELL DEATH DIFFER, V5, P191 DIVIRGILIO F, 1990, IMMUNOL TODAY, V11, P274, DOI 10.1016/0167-5699(90)90111-L Ferrari D, 1999, FEBS LETT, V447, P71, DOI 10.1016/S0014-5793(99)00270-7 Ferrari D, 1997, NEUROPHARMACOLOGY, V36, P1295, DOI 10.1016/S0028-3908(97)00137-8 Goepfert C, 2000, MOL MED, V6, P591 GORDON JL, 1986, BIOCHEM J, V233, P309 GREENWOOD D, 1999, P PHYSL SOC NZ, V18, pP55 Harada H, 2000, KIDNEY INT, V57, P949, DOI 10.1046/j.1523-1755.2000.00911.x HOUSLEY GD, 1999, P PHYSL SOC NZ, V18, pP54 Housley GD, 2000, J AUTONOM NERV SYST, V81, P139, DOI 10.1016/S0165-1838(00)00116-8 Housley GD, 2002, AUDIOL NEURO-OTOL, V7, P55, DOI 10.1159/000046865 Housley GD, 1999, J NEUROSCI, V19, P8377 HUANG NN, 1989, P NATL ACAD SCI USA, V86, P7904, DOI 10.1073/pnas.86.20.7904 Humphreys BD, 2000, J BIOL CHEM, V275, P26792 Jiang LH, 2000, MOL PHARMACOL, V58, P82 Khakh BS, 2001, PHARMACOL REV, V53, P107 MANDER LM, 2001, THESIS U AUCKLAND AU Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10 NEARY JT, 1992, PROG BRAIN RES, V94, P145 Neary JT, 1996, TRENDS NEUROSCI, V19, P13, DOI 10.1016/0166-2236(96)81861-3 Ren TY, 1997, HEARING RES, V112, P87, DOI 10.1016/S0378-5955(97)00109-3 Salih SG, 1999, NEUROREPORT, V10, P2579, DOI 10.1097/00001756-199908200-00026 Schulze-Lohoff E, 1998, AM J PHYSIOL-RENAL, V275, pF962 Surprenant A, 1996, SCIENCE, V272, P735, DOI 10.1126/science.272.5262.735 Thorn JA, 1996, GEN PHARMACOL, V27, P613, DOI 10.1016/0306-3623(95)02053-5 THORNE PR, 2000, DRUG DEVELOP RES, V50, P99 Vlajkovic SM, 1999, MOL BRAIN RES, V73, P85, DOI 10.1016/S0169-328X(99)00244-2 Vlajkovic SM, 1998, NEUROREPORT, V9, P1559 WEHNER N, 1996, THESIS U AUCKLAND AU ZANOVELLO P, 1990, J IMMUNOL, V145, P1545 Zimmermann H, 1999, NAT MED, V5, P987, DOI 10.1038/12419 Zimmermann H, 2000, ECTO ATPASES RELATED, P1 Zimmermann H, 1999, TRENDS PHARMACOL SCI, V20, P231, DOI 10.1016/S0165-6147(99)01293-6 Zoeteweij JP, 1996, HEPATOLOGY, V23, P858, DOI 10.1002/hep.510230429 NR 42 TC 17 Z9 19 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 180 EP 184 DI 10.1159/000058307 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100011 PM 12053142 ER PT J AU Usami, S Koda, E Tsukamoto, K Otsuka, A Yuge, I Asamura, K Abe, S Akita, J Namba, A AF Usami, S Koda, E Tsukamoto, K Otsuka, A Yuge, I Asamura, K Abe, S Akita, J Namba, A TI Molecular diagnosis of deafness: Impact of gene identification SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE gene; deafness; GJB2 (connexin 26); PDS; mitochondria ID SENSORINEURAL HEARING-LOSS; ENLARGED VESTIBULAR AQUEDUCT; MITOCHONDRIAL MUTATION; PENDRED-SYNDROME; COCHLEAR IMPLANTATION; A1555G MUTATION; PDS; JAPANESE; CHILDREN; FEATURES AB Recent progress in identifying genes responsible for hearing loss enables the ENT clinician to apply molecular diagnosis by genetic testing. This article focuses on three genes, which are prevalent and therefore commonly encountered in the clinic. GJB2 (connexin 26) is currently recognized as the most prevalent gene responsible for congenital hearing loss in many countries. A series of reports revealed that different combinations of GJ82 mutations exist in different ethnic populations, indicating that ethnic background should be considered when performing genetic testing. GJB2 mutations will be of particular interest in combination with universal infant hearing screening programs, because it has been shown that early identification of hearing loss and early intervention are crucial for language development. Progress in genetic analysis has changed the concept of diseases. The present review introduces the example of two historically distinct categories of disease, Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct, which are currently considered to be a continuum of diseases caused by the same gene, PDS. This review also emphasizes that some hearing impairment can be prevented. The 1555A-->G mitochondrial mutation, the most prevalent mitochondrial mutation found in the hearing-impaired population, was found in approximately 3% of the outpatients. The 1555A-->G mutation is known to be associated with a susceptibility to aminoglycoside antibiotics. There may be a considerably large high-risk population and to avoid possible side effects in this group, a rapid mass screening system and careful counseling are recommended. Copyright (C) 2002 S. Karger AG, Basel. C1 Shinshu Univ, Sch Med, Dept Otorhinolaryngol, Matsumoto, Nagano 3908621, Japan. Hirosaki Univ, Sch Med, Dept Otorhinolaryngol, Hirosaki, Aomori 036, Japan. RP Usami, S (reprint author), Shinshu Univ, Sch Med, Dept Otorhinolaryngol, 3-1-1 Asahi, Matsumoto, Nagano 3908621, Japan. CR Abe S, 2000, J MED GENET, V37, P41, DOI 10.1136/jmg.37.1.41 Abe S, 1998, EUR J HUM GENET, V6, P563 Abe S, 1999, AM J MED GENET, V82, P322, DOI 10.1002/(SICI)1096-8628(19990212)82:4<322::AID-AJMG9>3.3.CO;2-S Abe S, 1997, ANN OTO RHINOL LARYN, V106, P1063 Bent JP, 1999, LARYNGOSCOPE, V109, P1019, DOI 10.1097/00005537-199907000-00001 Estivill X, 1998, AM J HUM GENET, V62, P27, DOI 10.1086/301676 Everett LA, 1999, HUM MOL GENET, V8, P1883, DOI 10.1093/hmg/8.10.1883 Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411 Everett LA, 2001, HUM MOL GENET, V10, P153, DOI 10.1093/hmg/10.2.153 Griffith AJ, 1996, LARYNGOSCOPE, V106, P960, DOI 10.1097/00005537-199608000-00009 Hutchin TP, 1997, GENETICS, V145, P771 Kelsell DP, 2001, AM J HUM GENET, V68, P559, DOI 10.1086/318803 Kelsell DP, 1997, NATURE, V387, P80, DOI 10.1038/387080a0 KIMBERLING WJ, 1999, NOVEL FINDINGS GENE, P21 MAFEE MF, 1992, AM J NEURORADIOL, V13, P805 MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504 MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x PREZANT TR, 1993, NAT GENET, V4, P289, DOI 10.1038/ng0793-289 Scott DA, 1999, NAT GENET, V21, P440 Scott DA, 2000, AM J PHYSIOL-CELL PH, V278, pC207 Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Steel KP, 1999, TRENDS GENET, V15, P207, DOI 10.1016/S0168-9525(99)01753-9 Tono T, 1998, AM J OTOL, V19, P754 Tono T, 2001, ORL J OTO-RHINO-LARY, V63, P25, DOI 10.1159/000055702 Tsuiki T, 1997, ANN OTO RHINOL LARYN, V106, P643 URMAN SM, 1990, RADIOGRAPHICS, V10, P823 Usami S, 1998, ORL J OTO-RHINO-LARY, V60, P164, DOI 10.1159/000027590 Usami S, 1999, J HUM GENET, V44, P304, DOI 10.1007/s100380050165 Usami S, 1997, LARYNGOSCOPE, V107, P483, DOI 10.1097/00005537-199704000-00011 Usami S, 1999, HUM GENET, V104, P188, DOI 10.1007/s004390050933 USAMI S, 2000, ADV OTORHINOLARYNGOL, V56, P221 Usami S, 2000, J MED GENET, V37, P38, DOI 10.1136/jmg.37.1.38 Willems PJ, 2000, NEW ENGL J MED, V342, P1101, DOI 10.1056/NEJM200004133421506 Yoshinaga-Itano C, 1998, PEDIATRICS, V102, P1161, DOI 10.1542/peds.102.5.1161 NR 34 TC 7 Z9 8 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 185 EP 190 DI 10.1159/000058308 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100012 PM 12053143 ER PT J AU Scheich, H Breindl, A AF Scheich, H Breindl, A TI An animal model of auditory cortex prostheses SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Auditory Function and Dysfunction - Molecular and Physiological Mechanisms Symposium CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE auditory cortex; electrical stimulation; neural prostheses; discrimination learning; Mongolian gerbil ID GERBIL MERIONES-UNGUICULATUS; FUNCTIONAL-ORGANIZATION; DISCRIMINATION; CONNECTIONS; STIMULATION; BLIND; PULSE AB Experiments aimed at rehabilitating deaf and blind patients with cortical prostheses were first conducted decades ago, but epicortical electrodes allowed only crude information transfer. Here we report that in Mongolian gerbils with electrodes implanted in input layers of the primary auditory cortex, spatial, temporal and spatiotemporal variations in intracortical stimulation all lead to perceptual differences as evidenced by discrimination training. For some stimulus regimes discrimination learning was as fast as with intracochlear stimulation in this animal. Intracortical stimulation induced field potentials and 2-deoxyglucose labeling patterns in primary auditory cortex similar to those induced by auditory click or tone stimuli, respectively. Given the common organization principles of neocortical areas, these results are presumably also of significance to prostheses interfacing with visual cortex. Copyright (C) 2002 S. Karger AG, Basel. C1 Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. RP Scheich, H (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. CR BRINDLEY GS, 1968, J PHYSIOL-LONDON, V196, P479 Budinger E, 2000, EUR J NEUROSCI, V12, P2425, DOI 10.1046/j.1460-9568.2000.00142.x Budinger E, 2000, EUR J NEUROSCI, V12, P2452, DOI 10.1046/j.1460-9568.2000.00143.x DOBELLE WH, 1973, ANN OTO RHINOL LARYN, V82, P445 DOBELLE WH, 1974, J PHYSIOL-LONDON, V243, P553 Kadner A, 2000, AUDIOL NEURO-OTOL, V5, P23, DOI 10.1159/000013862 Ohl FW, 2001, NATURE, V412, P733, DOI 10.1038/35089076 PFINGST BE, 2001, NEURAL PROSTHESES RE, P3 SCHEICH H, 1993, EUR J NEUROSCI, V5, P898, DOI 10.1111/j.1460-9568.1993.tb00941.x Schmidt EM, 1996, BRAIN, V119, P507, DOI 10.1093/brain/119.2.507 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x Wang X, 1999, RESTOR NEUROL NEUROS, V14, P201 Wang X, 2001, AUDIOL NEURO-OTOL, V6, P28, DOI 10.1159/000046806 NR 13 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2002 VL 7 IS 3 BP 191 EP 194 DI 10.1159/000058309 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 566BZ UT WOS:000176408100013 PM 12053144 ER PT J AU Lee, JH Marcus, DC AF Lee, JH Marcus, DC TI Nongenomic effects of corticosteroids on ion transport by stria vascularis SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE voltage-sensitive vibrating probe; strial marginal cells; inner ear; cochlea; gerbil; prednisolone; hydrocortisone; dexamethasone; aldosterone; nongenomic effect ID MARGINAL CELLS; INNER-EAR; GLUCOCORTICOID RECEPTOR; AUTOIMMUNE MOUSE; PROTEIN-BINDING; APICAL MEMBRANE; GERBIL COCHLEA; HEARING-LOSS; PREDNISOLONE; ALDOSTERONE AB Stria vascularis electrogenically secretes potassium into endolymph and this secretion is known to be under acute control of several hormone receptors including purinergic, adrenergic and muscarinic receptors. Recently, chronic application of glucocorticosteroid hormones in autoimmune mice was reported to restore both hearing and normal strial morphology. The purpose of this study was to investigate the acute nongenomic effects of glucocorticoids and mineralocorticoid on the short circuit current (I-sc,I-probe) across isolated stria vascularis of gerbils using the voltage-sensitive vibrating probe. Application of prednisolone (0.1-30 muM) caused an increase of I-sc,I-probe in a dose-dependent manner with an EC50 of 1.1 +/- 0.2 muM (n = 5). Hydrocortisone (10 muM, n = 5) and dexamethasone (10 muM, n = 5) also increased I-sc,I-probe, but the response was transient and the response rate was faster than for prednisolone. By contrast, aldosterone (10 muM, n = 6) caused a transient decrease Of I-sc,I-probe within seconds. These results suggest that prednisolone increased secretion of K+ via a nongenomic mechanism in the range of therapeutic plasma concentrations and that this stimulatory effect of glucocorticoids is specific since the mineralocorticoid aldosterone caused a distinctly different response. Copyright (C) 2002 S. Karger AG, Basel. C1 Kansas State Univ, Dept Anat & Physiol, Manhattan, KS 66506 USA. RP Marcus, DC (reprint author), Kansas State Univ, Dept Anat & Physiol, 126 Coles Hall,1600 Denison Ave, Manhattan, KS 66506 USA. CR BERGREM H, 1983, EUR J CLIN PHARMACOL, V24, P415, DOI 10.1007/BF00610064 BRAAT MCP, 1992, J PHARMACOL EXP THER, V262, P509 Christ M, 1999, CIRCULATION, V99, P1485 CURTIS LM, 1993, EUR ARCH OTO-RHINO-L, V250, P265 ELMERNISSI G, 1983, PFLUG ARCH EUR J PHY, V399, P147 Falkenstein E, 2000, KIDNEY INT, V57, P1390, DOI 10.1046/j.1523-1755.2000.00980.x FERRY JJ, 1987, BIOPHARM DRUG DISPOS, V8, P261, DOI 10.1002/bdd.2510080307 FREY BM, 1985, J CLIN ENDOCR METAB, V60, P361 FREY BM, 1990, CLIN PHARMACOKINET, V19, P126 FREY FJ, 1987, ENDOCR REV, V8, P453 Hughes GB, 1996, OTOLARYNG CLIN N AM, V29, P393 Hughes G B, 1988, Laryngoscope, V98, P251 JUSKO WJ, 1980, THER DRUG MONIT, V2, P169, DOI 10.1097/00007691-198004000-00011 Lee JH, 2001, HEARING RES, V158, P123, DOI 10.1016/S0378-5955(01)00316-1 Marcus Daniel C., 1996, Keio Journal of Medicine, V45, P301 MARCUS DC, 1994, BIOPHYS J, V66, P1939 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 MARCUS DC, 2001, CELL PHYSL SOURCE BO, P775, DOI 10.1016/B978-012656976-6/50138-4 MARVER D, 1983, MINER ELECTROL METAB, V9, P1 NAKAZAWA K, 1995, J HISTOCHEM CYTOCHEM, V43, P981 Norman AW, 1997, HORMONES, 2ND EDITION, P1, DOI 10.1016/B978-012521441-4/50002-X NORMAN AW, 1997, HORMONES, P281, DOI 10.1016/B978-012521441-4/50011-0 PITOVSKI DZ, 1993, BRAIN RES, V601, P273, DOI 10.1016/0006-8993(93)91720-D RAREY KE, 1993, HEARING RES, V64, P205, DOI 10.1016/0378-5955(93)90007-N SCHULTE BA, 1989, J HISTOCHEM CYTOCHEM, V37, P127 Selye H, 1942, ENDOCRINOLOGY, V30, P437 Shen ZJ, 1997, AUDIT NEUROSCI, V3, P215 SUNOSE H, 1994, HEARING RES, V80, P86, DOI 10.1016/0378-5955(94)90012-4 TAKEUCHI S, 1992, HEARING RES, V61, P86, DOI 10.1016/0378-5955(92)90039-P TENCATE WJF, 1993, LARYNGOSCOPE, V103, P865 Trune DR, 1999, HEARING RES, V137, P160, DOI 10.1016/S0378-5955(99)00147-1 Trune DR, 2000, LARYNGOSCOPE, V110, P1902, DOI 10.1097/00005537-200011000-00025 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wehling M, 1997, ANNU REV PHYSIOL, V59, P365, DOI 10.1146/annurev.physiol.59.1.365 Winter DC, 1999, J MEMBRANE BIOL, V170, P17 Wobig RJ, 1999, OTOLARYNG HEAD NECK, V121, P344, DOI 10.1016/S0194-5998(99)70218-4 Wyckoff MH, 2001, J BIOL CHEM, V276, P27071, DOI 10.1074/jbc.M100312200 Yao XF, 1996, ACTA OTO-LARYNGOL, V116, P493, DOI 10.3109/00016489609137879 NR 39 TC 24 Z9 25 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2002 VL 7 IS 2 BP 100 EP 106 DI 10.1159/000057657 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 551LQ UT WOS:000175563500002 PM 12006737 ER PT J AU Lucertini, M Verde, P De Santis, S AF Lucertini, M Verde, P De Santis, S TI Human auditory steady-state responses during repeated exposure to hypobaric hypoxia SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory evoked potentials; steady-state responses; hypoxia; anoxia; hypobarism; hearing; humans ID STEM EVOKED-RESPONSE; MIDDLE-LATENCY; REACTION-TIME; P300 LATENCY; POTENTIALS; HYPOXEMIA AB This study was aimed at evaluating the time course of auditory steady-state response (SSR) variations during two consecutive exposures to hypobaric hypoxia. Six normal subjects were examined in a hypobaric chamber at ground level. Then, they climbed to a simulated altitude of 17000 ft (5182 m), where SSRs were recorded after 6, 12, 18, 24 and 30 min. Thereafter, they breathed 100% O-2 and SSRs were recorded after 2 min of reoxygenation. A second exposure to hypoxia followed, with SSR recordings after 6 and 12 min. Finally, the subjects returned to ground level for recovery recording. A phase shift of SSR sinus wave was observed at the beginning of both exposures to hypoxia, although in the first recording (i.e. at 6 min) during the first exposure,the result was not statistically significant. A slight SSR phase shift was still detectable on return to ground level. The central acoustic pathway involved in SSR genesis was probably the area which was found to be most sensitive to hypoxia, compared to other parts of the auditory apparatus (e.g. the cochlea). This data could suggest an impairment of compensation mechanisms when consecutive exposures to hypoxia are performed. Copyright (C) 2002 S, Karger AG, Basel. C1 Italian AF, RMAS, Prat Mare AFB, CSV,Aerosp Med Dept, I-00040 Pomezia, Italy. RP Lucertini, M (reprint author), Italian AF, RMAS, Prat Mare AFB, CSV,Aerosp Med Dept, I-00040 Pomezia, Italy. CR Bouchet P, 1997, AVIAT SPACE ENVIR MD, V68, P699 CARLILE S, 1992, ACTA OTO-LARYNGOL, V112, P939, DOI 10.3109/00016489209137494 COLIN F, 1978, ARCH INT PHYSIOL BIO, V86, P677, DOI 10.3109/13813457809055940 CONNETT RJ, 1990, J APPL PHYSIOL, V68, P833 DEECKE L, 1973, AEROSPACE MED, V10, P1106 FOWLER B, 1992, AVIAT SPACE ENVIR MD, V63, P976 FOWLER B, 1995, AVIAT SPACE ENVIR MD, V66, P645 FREEMAN S, 1991, ELECTROEN CLIN NEURO, V78, P284, DOI 10.1016/0013-4694(91)90182-4 GAFNI M, 1976, ACTA OTO-LARYNGOL, V82, P354, DOI 10.3109/00016487609120919 GALAMBOS R, 1981, P NATL ACAD SCI-BIOL, V78, P2643, DOI 10.1073/pnas.78.4.2643 HOLMSTROM FMG, 1971, AEROSPACE MED, P56 KIDA M, 1993, J APPL PHYSIOL, V74, P1735 KRAUS N, 1988, EAR HEARING, V9, P159, DOI 10.1097/00003446-198808000-00001 LUCERTINI M, 1993, AUDIOLOGY, V32, P356 MCPHERSON RW, 1986, STROKE, V17, P30 MOSKO SS, 1981, ELECTROEN CLIN NEURO, V51, P477, DOI 10.1016/0013-4694(81)90224-8 Sheffield PJ, 1996, FUNDAMENTALS AEROSPA, P69 SOHMER H, 1986, ELECTROEN CLIN NEURO, V64, P334, DOI 10.1016/0013-4694(86)90157-4 SOHMER H, 1989, HEARING RES, V40, P87, DOI 10.1016/0378-5955(89)90102-0 SOHMER H, 1982, ELECTROEN CLIN NEURO, V53, P506, DOI 10.1016/0013-4694(82)90063-3 SOHMER H, 1986, ELECTROEN CLIN NEURO, V64, P328, DOI 10.1016/0013-4694(86)90156-2 URBANI L, 1994, HEARING RES, V76, P73, DOI 10.1016/0378-5955(94)90089-2 NR 22 TC 3 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2002 VL 7 IS 2 BP 107 EP 113 DI 10.1159/000057658 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 551LQ UT WOS:000175563500003 PM 12006738 ER PT J AU Blamey, P Sarant, J AF Blamey, P Sarant, J TI Speech perception and language criteria for paediatric cochlear implant candidature SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear implantation, children; deafness children; criteria for implant selection, language and speech; perception ID HEARING-LOSS; CHILDREN AB Existing criteria for cochlear implantation of children with impaired hearing aim to select children who will eventually achieve better speech perception scores with an implant than with a hearing aid. It is difficult to predict the eventual outcomes with hearing aid and implant because speech perception scores typically increase with age, and because the distribution of scores for implant and hearing aid users overlap considerably at all ages. This paper shows how speech perception scores can be combined with spoken language measures to arrive at an objective criterion for implant selection. The method also allows estimation of the likely increase in speech perception score within a few months of implantation and estimation of the probability that the child will perform better with the implant than the hearing aid. The criteria were based on data from 135 evaluations of 50 children using cochlear implants with monosyllabic words, open-set sentences, the Clinical Evaluation of Language Fundamentals, and the Peabody Picture Vocabulary Test. Data from 114 evaluations of 43 children using hearing aids were used to illustrate the sensitivity of the criteria. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Melbourne, Dept Otolaryngol, Melbourne, Vic 3002, Australia. Bion Ear Inst, Melbourne, Vic, Australia. RP Blamey, P (reprint author), Univ Melbourne, Dept Otolaryngol, 384-388 Albert St, Melbourne, Vic 3002, Australia. CR Battmer R D, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P185 BENCH J, 1987, Australian Journal of Audiology, V9, P39 Bench J., 1979, SPEECH HEARING TESTS Blamey PJ, 2001, J SPEECH LANG HEAR R, V44, P264, DOI 10.1044/1092-4388(2001/022) Blamey P, 1996, Audiol Neurootol, V1, P293 BOOTHROYD A, 1994, VOLTA REV, V96, P151 Clark G., 1987, ADV OTORHINOLARYNGOL, V38, P1 Dowell R. C., 1995, Annals of Otology Rhinology and Laryngology, V104, P324 DOWELL RC, 1997, COCHLEAR IMPLANTS, P297 Dunn L. M., 1981, PEABODY PICTURE VOCA Dunn L. M., 1997, PEABODY PICTURE VOCA, V3rd HOLLOW R, 1997, COCHLEAR IMPLANTS 16, P297 Knutson J F, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P100 MCDERMOTT HJ, 1992, J ACOUST SOC AM, V91, P3367, DOI 10.1121/1.402826 PETERSON GE, 1962, J SPEECH HEAR DISORD, V27, P62 Pyman B, 2000, AM J OTOL, V21, P57, DOI 10.1016/S0196-0709(00)80113-1 RANCE G, 1993, ADV OTO-RHINO-LARYNG, V48, P44 Rubinstein JT, 1999, AM J OTOL, V20, P445 Sarant JZ, 2001, EAR HEARING, V22, P18, DOI 10.1097/00003446-200102000-00003 SARANT JZ, 1994, EAR HEARING, V15, P400, DOI 10.1097/00003446-199410000-00007 Semel E, 1995, CLIN EVALUATION LANG, V3rd Tyler R S, 2000, Ann Otol Rhinol Laryngol Suppl, V185, P82 Wiig E. H., 1992, CLIN EVALUATION LANG NR 23 TC 9 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2002 VL 7 IS 2 BP 114 EP 121 DI 10.1159/000057659 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 551LQ UT WOS:000175563500004 PM 12006739 ER PT J AU Mrena, R Savolainen, S Kuokkanen, JT Ylikoski, J AF Mrena, R Savolainen, S Kuokkanen, JT Ylikoski, J TI Characteristics of tinnitus induced by acute acoustic trauma: A long-term follow-up SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE acoustic trauma; handicap; military service; Tinnitus Handicap Questionnaire; tinnitus ID OCCUPATIONAL HEARING-LOSS; HANDICAP; SEVERITY; LOUDNESS; PITCH; NOISE AB We investigated the prevalence, characteristics and subjective perceived handicap caused by long-term tinnitus induced by acute acoustic trauma (AAT) in 418 former military conscripts. They had been treated between 1984 and 1989 because of AAT from exposure to impulse noise caused by firearm shooting. All 418 patients reported tinnitus after the AAT. At discharge from the military service, 122 (29%) still reported tinnitus. In 1999, of these 122 patients, 101 were reached and 66 still had tinnitus. The Tinnitus Handicap Questionnaire demonstrated various difficulties in life because of tinnitus, not attributable only to tinnitus loudness. Psychological factors also seem to play an important role. The effects of AAT and possible compensation have been evaluated so far mostly by audiometric findings, but in some cases tinnitus may be an even more serious threat to life satisfaction than mild hearing impairment. Copyright (C) 2002 S. Karger AG, Basel. C1 Cent Hosp Cent Finland, Jyvaskyla, Finland. Cent Mil Hosp, Helsinki, Finland. Univ Helsinki, Dept ORL, Helsinki, Finland. Inst Mil Med, Helsinki, Finland. RP Mrena, R (reprint author), Knk Os 14,Keski Suomen Keskussairaala, FIN-40620 Jyvaskyla, Finland. CR ALBERTI PW, 1987, J OTOLARYNGOL, V16, P34 ALSTER J, 1993, BIOL PSYCHIAT, V34, P84, DOI 10.1016/0006-3223(93)90260-K AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 AXELSSON A, 1985, British Journal of Audiology, V19, P271, DOI 10.3109/03005368509078983 CAHANI M, 1983, AUDIOLOGY, V22, P357 CHERMAK GD, 1987, SCAND AUDIOL, V16, P67, DOI 10.3109/01050398709042158 Daniell WE, 1998, AM J IND MED, V33, P529, DOI 10.1002/(SICI)1097-0274(199806)33:6<529::AID-AJIM2>3.0.CO;2-L ERLANDSSON SI, 1992, AUDIOLOGY, V31, P168 GLORIG A, 1987, ANN M AM AC OT HEAD GOODWIN PE, 1980, ACTA OTO-LARYNGOL, V90, P353, DOI 10.3109/00016488009131736 HALLBERG LRM, 1993, BRIT J AUDIOL, V27, P19, DOI 10.3109/03005369309077885 Hart C W, 1999, Int Tinnitus J, V5, P63 Hazell J. W., 1981, J LAR OTOL S, V4, P39 Henry J A, 2000, J Am Acad Audiol, V11, P138 Hinchcliffe R, 1983, Adv Otorhinolaryngol, V29, P163 JAKES SC, 1986, AUDIOLOGY, V25, P92 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Jastreboff PJ, 1996, AM J OTOL, V17, P236 Jayne TR, 1993, MED LEGAL EVALUATION, P222 KUK FK, 1990, EAR HEARING, V11, P434, DOI 10.1097/00003446-199012000-00005 MAN A, 1981, AUDIOLOGY, V20, P72 MCSHANE DP, 1988, CLIN OTOLARYNGOL, V13, P323, DOI 10.1111/j.1365-2273.1988.tb00760.x Meikle M, 1984, J Laryngol Otol Suppl, V9, P17 MEIKLE MB, 1995, OREGON TINNITUS DATA MEIKLE MB, 1984, OTOLARYNG HEAD NECK, V92, P689 MELINEK M, 1976, ISRAEL J MED SCI, V12, P560 Moller A R, 2000, J Am Acad Audiol, V11, P115 NEUBERGER M, 1992, AUDIOLOGY, V31, P45 Newman CW, 1996, ARCH OTOLARYNGOL, V122, P143 NEWMAN CW, 1994, AUDIOLOGY, V33, P47 PENNER MJ, 1994, EAR HEARING, V15, P416, DOI 10.1097/00003446-199412000-00002 SALMIVALLI A, 1967, ACTA OTOLARYNGOL S S, V222, P1 Seabra J C, 1999, Int Tinnitus J, V5, P53 STOUFFER JL, 1990, J SPEECH HEAR DISORD, V55, P439 Temmel AFP, 1999, WIEN KLIN WOCHENSCHR, V111, P891 YLIKOSKI ME, 1994, SCAND J WORK ENV HEA, V20, P93 NR 36 TC 37 Z9 40 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2002 VL 7 IS 2 BP 122 EP 130 DI 10.1159/000057660 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 551LQ UT WOS:000175563500005 PM 12006740 ER PT J AU Ashmore, JF Chambard, JM Richmond, S AF Ashmore, JF Chambard, JM Richmond, S TI Cochlear transduction: From models to molecules and back again SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE hearing; cochlea; hair cells; transporters; molecular motors; genomics ID OUTER HAIR-CELLS; GLUCOSE-TRANSPORTER; MOTOR PROTEIN; PRESTIN; CANDIDATE; DYNAMICS AB The strides made over the last few years towards understanding many details of cochlear function still leave a number of issues unresolved. Integrating the information from molecular, genetic and, increasingly, genomic sources requires models that provide close matching between data and theory. For both theoretical and experimental reasons, the difficult area in cochlear physiology has been to understand how sensory transduction operates at the basal end of the mammalian cochlea. The identification of candidate motor proteins in outer hair cells (OHCs) draws attention to the question of whether we understand cochlear tuning. Nevertheless, the association of the cloned motor protein 'prestin' with an anion transporter superfamily provides clues about the molecular nature of the OHC motor in the basolateral membrane, the utilisation of chloride in hair cells and the long-term stability of small basal turn cochlear hair cells. Copyright (C) 2002 S. Karger AG, Basel. C1 UCL, Dept Physiol, London WC1E 6BT, England. RP Ashmore, JF (reprint author), UCL, Dept Physiol, Gower St, London WC1E 6BT, England. EM j.ashmore@ucl.ac.uk CR Dwyer DS, 2001, PROTEINS, V42, P531, DOI 10.1002/1097-0134(20010301)42:4<531::AID-PROT110>3.0.CO;2-9 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 Geleoc GSG, 1999, NAT NEUROSCI, V2, P713 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 Kolston PJ, 1999, P NATL ACAD SCI USA, V96, P3676, DOI 10.1073/pnas.96.7.3676 Lohi H, 2000, GENOMICS, V70, P102, DOI 10.1006/geno.2000.6355 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 NAKAZAWA K, 1995, HEARING RES, V82, P93 Nobili R, 1996, J ACOUST SOC AM, V99, P2244, DOI 10.1121/1.415412 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 Ricci AJ, 2000, J NEUROSCI, V20, P7131 Wadiche JI, 1998, J NEUROSCI, V18, P7650 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 NR 13 TC 4 Z9 4 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 6 EP 8 DI 10.1159/000046854 PG 3 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800002 PM 11914517 ER PT J AU Zheng, J Madison, LD Oliver, D Fakler, B Dallos, P AF Zheng, J Madison, LD Oliver, D Fakler, B Dallos, P TI Prestin, the motor protein of outer hair cells SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE prestin; outer hair cell; electromotility; motor protein; anion transporter ID SULFATE-TRANSPORTER GENE; GUINEA-PIG COCHLEA; MECHANICAL RESPONSES; PENDRED SYNDROME; SHAPE CHANGES; MOTILITY; SALICYLATE; MUTATIONS; CANDIDATE; ELECTROMOTILITY AB Prestin is a gene recently cloned from mammalian cochlear outer hair cells (OHC) using a single cell type, outer minus inner hair cell, specific suppressive subtractive hybridization procedure. The localization and gene expression profile of the prestin protein fits the pattern of OHC's development of electromotility. When prestin is abundantly expressed in normally nonmotile kidney cells, nonlinear capacitance and motility that are normally only seen in OHCs can be recorded. Furthermore, both nonlinear capacitance and motility can be reduced by salicylate, a well-known inhibitor of electromotility. These data suggest that prestin is the motor protein of OHCs. Amino acid sequence and gene structure analysis indicate that prestin is the fifth member of a newly discovered anion transport family (SLC26) that includes PDS, DRA and DTDST, which are chloride-iodide transporters, Cl-/HCO3- exchangers or sulfate transporters. Prestin shares overall structure similarity with this anion transporter family. Recently, intracellular anions (chloride or bicarbonate) were found to be essential for OHC electromotility and prestin's function. Copyright (C) 2002 S. Karger AG, Basel. C1 Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Evanston, IL 60208 USA. RP Zheng, J (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, Auditory Physiol Lab, Frances Searle Bldg,2299 N Campus Dr, Evanston, IL 60208 USA. RI Oliver, Dominik/F-5845-2013 CR Aravind L, 2000, CURR BIOL, V10, pR53, DOI 10.1016/S0960-9822(00)00335-3 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ASHMORE JF, 1992, SOC GEN PHY, V47, P395 ASHMORE JF, 1988, MECH HEARING, P107 Belyantseva IA, 2000, J NEUROSCI, V20, part. no. BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 DALLOS P, 1992, J NEUROSCI, V12, P4575 DALLOS P, 1978, J NEUROPHYSIOL, V41, P365 DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 Everett LA, 1997, NAT GENET, V17, P411, DOI 10.1038/ng1297-411 FORGE A, 1991, CELL TISSUE RES, V265, P473, DOI 10.1007/BF00340870 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 Geleoc GSG, 1999, NAT NEUROSCI, V2, P713 HASTBACKA J, 1994, CELL, V78, P1073, DOI 10.1016/0092-8674(94)90281-X Hastbacka J, 1996, AM J HUM GENET, V58, P255 Holley M. C., 1996, COCHLEA, P386 HOLLEY MC, 1988, PROC R SOC SER B-BIO, V232, P413, DOI 10.1098/rspb.1988.0004 HUANG GJ, 1993, BIOPHYS J, V65, P2228 HUDSPETH AJ, 1989, NATURE, V341, P397, DOI 10.1038/341397a0 KACHAR B, 1986, NATURE, V322, P365, DOI 10.1038/322365a0 Kakehata S, 1996, J NEUROSCI, V16, P4881 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 KALINEC F, 1993, NEUROSCI LETT, V157, P231, DOI 10.1016/0304-3940(93)90744-6 Kere J, 1999, AM J PHYSIOL-GASTR L, V276, pG7 KNIPPER M, 1995, HEARING RES, V86, P100, DOI 10.1016/0378-5955(95)00060-H Lohi H, 2000, GENOMICS, V70, P102, DOI 10.1006/geno.2000.6355 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 RYAN A, 1975, NATURE, V253, P44, DOI 10.1038/253044a0 SANTOS-SACCHI J, 1991, J NEUROSCI, V11, P3096 Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 Scott DA, 1999, NAT GENET, V21, P440 SHEHATA WE, 1991, ACTA OTO-LARYNGOL, V111, P707, DOI 10.3109/00016489109138403 Soleimani M, 2001, AM J PHYSIOL-RENAL, V280, pF356 SupertiFurga A, 1996, NAT GENET, V12, P100, DOI 10.1038/ng0196-100 TUNSTALL MJ, 1995, J PHYSIOL-LONDON, V485, P739 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 Zheng J, 2001, NEUROREPORT, V12, P1929, DOI 10.1097/00001756-200107030-00032 NR 40 TC 36 Z9 43 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 9 EP 12 DI 10.1159/000046855 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800003 PM 11914518 ER PT J AU Gummer, AW Meyer, J Frank, G Scherer, MP Preyer, S AF Gummer, AW Meyer, J Frank, G Scherer, MP Preyer, S TI Mechanical transduction in outer hair cells SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE cochlea; outer hair cell; stereocilla; mechanoelectrical transduction; electromechanical transduction; tectorial membrane ID GUINEA-PIG COCHLEA; TECTORIAL MEMBRANE; MAMMALIAN COCHLEA; FORCE GENERATION; BASILAR-MEMBRANE; SHAPE CHANGES; CROSS-LINKS; INNER-EAR; TIP LINKS; CHANNELS AB The outer hair cells are responsible for the exquisite sensitivity, frequency selectivity and dynamic range of the cochlea. These cells are part of a mechanical feedback system involving the basilar membrane and tectorial membrane. Transverse displacement of the basilar membrane results in relative motion between the tectorial membrane and the reticular lamina, causing deflection of the stereocilia and modulation of the open probability of their transduction channels. The resulting current causes a change of membrane potential, which in turn produces mechanical force, that is fed back into the motion of the basilar membrane. Experiments were conducted to address mechanical transduction mechanisms in both the stereocilia and the basolateral cell membrane, as well as modes of coupling of the outer hair cell force to the organ of Corti. Copyright (C) 2002 S. Karger AG, Basel. C1 Dept Otolaryngol, Sect Physiol Acoust & Commun, Dept Otolaryngol, D-72076 Tubingen, Germany. RP Gummer, AW (reprint author), Dept Otolaryngol, Sect Physiol Acoust & Commun, Dept Otolaryngol, Silcherstr 5, D-72076 Tubingen, Germany. RI Frank, Gerhard/E-7145-2010 CR ALLEN JB, 1992, PHYS TODAY, V45, P40, DOI 10.1063/1.881349 ALLEN JB, 1980, J ACOUST SOC AM, V68, P1660, DOI 10.1121/1.385198 ALLEN JB, 1993, J ACOUST SOC AM, V94, P809, DOI 10.1121/1.408182 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Ashmore JF, 2000, P NATL ACAD SCI USA, V97, P11759, DOI 10.1073/pnas.97.22.11759 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X Belyantseva IA, 2000, J NEUROSCI, V20, part. no. BROWN AM, 1992, P ROY SOC B-BIOL SCI, V250, P29, DOI 10.1098/rspb.1992.0126 BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 Cooper N. P., 1999, RECENT DEV AUDITORY, P109 COREY DP, 1979, BIOPHYS J, V26, P499 COREY DP, 1983, J NEUROSCI, V3, P962 DALLOS P, 1993, J NEUROPHYSIOL, V70, P299 DALLOS P, 1991, NATURE, V350, P155, DOI 10.1038/350155a0 DALLOS P, 1995, SCIENCE, V268, P1420, DOI 10.1126/science.7770765 DAVIS H, 1965, COLD SPRING HARB SYM, V30, P180 Denk W, 1995, NEURON, V15, P1311, DOI 10.1016/0896-6273(95)90010-1 Evans B.N., 1989, COCHLEAR MECHANISMS, P205 Frank G, 1999, P NATL ACAD SCI USA, V96, P4420, DOI 10.1073/pnas.96.8.4420 Fridberger A, 1998, P NATL ACAD SCI USA, V95, P7127, DOI 10.1073/pnas.95.12.7127 FURNESS DN, 1985, HEARING RES, V18, P177, DOI 10.1016/0378-5955(85)90010-3 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 HACKNEY CM, 1995, AM J PHYSIOL-CELL PH, V268, pC1 Hemmert W, 2000, BIOPHYS J, V78, P2285 HOLLEY MC, 1992, J CELL SCI, V102, P569 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HUDSPETH AJ, 1979, P NATL ACAD SCI USA, V76, P1506, DOI 10.1073/pnas.76.3.1506 HUDSPETH AJ, 1982, J NEUROSCI, V2, P1 Hudspeth AJ, 1997, CURR OPIN NEUROBIOL, V7, P480, DOI 10.1016/S0959-4388(97)80026-8 IWASA KH, 1994, J ACOUST SOC AM, V96, P2216, DOI 10.1121/1.410094 Iwasa KH, 1997, BIOPHYS J, V73, P546 JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9 Kachar B, 2000, P NATL ACAD SCI USA, V97, P13336, DOI 10.1073/pnas.97.24.13336 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 Ludwig J, 2001, P NATL ACAD SCI USA, V98, P4178, DOI 10.1073/pnas.071613498 LUMPKIN EA, 1995, P NATL ACAD SCI USA, V92, P10297, DOI 10.1073/pnas.92.22.10297 MAMMANO F, 1993, J ACOUST SOC AM, V93, P3320, DOI 10.1121/1.405716 MARKIN VS, 1995, BIOPHYS J, V69, P138 Marquis RE, 1997, P NATL ACAD SCI USA, V94, P11923, DOI 10.1073/pnas.94.22.11923 Meyer J, 1998, J NEUROSCI, V18, P6748 MOUNTAIN DC, 1994, J ACOUST SOC AM, V95, P350, DOI 10.1121/1.408273 NEELY ST, 1986, J ACOUST SOC AM, V79, P1472, DOI 10.1121/1.393674 Nilsen KE, 1999, NAT NEUROSCI, V2, P642 Oghalai JS, 2000, SCIENCE, V287, P658, DOI 10.1126/science.287.5453.658 Oghalai JS, 1998, J NEUROSCI, V18, P48 Oliver D, 2001, SCIENCE, V292, P2340, DOI 10.1126/science.1060939 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 PICKLES JO, 1984, HEARING RES, V15, P103, DOI 10.1016/0378-5955(84)90041-8 Preyer S, 1996, AUDIT NEUROSCI, V2, P145 PREYER S, 1995, HEARING RES, V89, P187, DOI 10.1016/0378-5955(95)00136-5 Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660 Santos-Sacchi J, 2001, J PHYSIOL-LONDON, V531, P661, DOI 10.1111/j.1469-7793.2001.0661h.x SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 Souter M, 1995, HEARING RES, V91, P43, DOI 10.1016/0378-5955(95)00163-8 Tolomeo JA, 1996, BIOPHYS J, V71, P421 YATES GK, 1992, TRENDS NEUROSCI, V15, P57, DOI 10.1016/0166-2236(92)90027-6 Yates GK, 1998, J NEUROSCI, V18, P1996 Zhao HB, 1999, NATURE, V399, P359 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 Zheng J, 2000, NATURE, V405, P149, DOI 10.1038/35012009 ZWISLOCKI JJ, 1989, HEARING RES, V42, P211, DOI 10.1016/0378-5955(89)90146-9 ZWISLOCKI JJ, 1979, SCIENCE, V204, P639, DOI 10.1126/science.432671 ZWISLOCKI JJ, 1980, J ACOUST SOC AM, V67, P1679 ZWISLOCKI JJ, 1986, HEARING RES, V22, P155, DOI 10.1016/0378-5955(86)90091-2 NR 67 TC 5 Z9 5 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 13 EP 16 DI 10.1159/000046856 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800004 PM 11914519 ER PT J AU Patuzzi, R AF Patuzzi, R TI Non-linear aspects of outer hair cell transduction and the temporary threshold shifts after acoustic trauma SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE acoustic trauma; temporary threshold shift; outer hair cell; mechanoelectrical transduction; non-linearity ID GUINEA-PIG COCHLEA; LOUD SOUND; MECHANOELECTRICAL TRANSDUCTION; RECEPTOR CURRENT; HEARING-LOSS; TIP LINKS; CHANNELS; INACTIVATION AB The 200-Hz cochlear microphonic potential (CM) and the compound action potential (CAP) of the auditory nerve evoked by tone-bursts were recorded in the basal turn of the cochlea of anaesthetised guinea pigs, before and after exposure to traumatic high-frequency tones that produce a temporary threshold shift (TTS) in this cochlear region. The drop in CM and the TTS were highly correlated, suggesting that it is the disruption of the outer hair cells generating the CM that causes the TTS. The previously measured rise in endocochlear potential and drop in organ of Corti K+ levels suggest that the TTS is due to a temporary closure of outer hair cell mechanoelectrical transduction (MET) channels, which produces a drop in the mechanical sensitivity of the organ of Corti, due to disruption of the active process provided by outer hair cells. The time course of the onset and recovery of TTS is consistent with a kinetic folding and refolding of MET channels over a time course of hours and days. Mathematical modelling of this putative channel folding suggests that TTS recovery may be accelerated by the presentation of additional sounds during the recovery period. We present electrophysiological data (CM and CAP measurements) showing that this accelerated recovery occurs. Using two-tone complexes (phase-locked 5- and 10-kHz traumatic tones, and 10-kHz traumatic tones with 25-Hz bias tones), we also show that the mechanisms producing TTS are non-linear and asymmetric, and that the greatest 'trauma' occurs when the hair bundles of outer hair cells are deflected away from the basal body of these cells (i.e. in the direction normally causing hyperpolarisation of the cell membrane potential). Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Western Australia, Auditory Lab, Nedlands, WA 6009, Australia. RP Patuzzi, R (reprint author), Univ Western Australia, Auditory Lab, 35 Stirling Highway, Nedlands, WA 6009, Australia. CR CODY AR, 1988, HEARING RES, V35, P59, DOI 10.1016/0378-5955(88)90040-8 CODY AR, 1982, HEARING RES, V6, P291, DOI 10.1016/0378-5955(82)90061-2 COREY DP, 1983, J NEUROSCI, V3, P962 Creiton T.E., 1994, MECHANISMS PROTEIN F, P1 GOULIOS H, 1983, HEARING RES, V11, P237 HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HOLTON T, 1986, J PHYSIOL-LONDON, V375, P195 JOHNSTONE BM, 1989, J PHYSIOL-LONDON, V408, P77 Kros CJ, 1996, COCHLEA, P318 Patuzzi R, 1998, HEARING RES, V125, P1, DOI 10.1016/S0378-5955(98)00125-7 Patuzzi R, 1998, HEARING RES, V125, P39, DOI 10.1016/S0378-5955(98)00127-0 PATUZZI R, 1984, HEARING RES, V13, P99, DOI 10.1016/0378-5955(84)90100-X Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 PATUZZI RB, 1989, HEARING RES, V42, P47, DOI 10.1016/0378-5955(89)90117-2 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 Patuzzi RB, 1999, HEARING RES, V133, P155, DOI 10.1016/S0378-5955(99)00067-2 PATUZZI RB, 2001, UNPBU HAIR DOG EFFEC PICKLES JO, 1987, HEARING RES, V25, P173, DOI 10.1016/0378-5955(87)90089-X RAJAN R, 1990, P MAMM AUD TACT SYST, P81 WEISS DS, 1992, J PHYSIOL-LONDON, V453, P279 Zhao YD, 1996, P NATL ACAD SCI USA, V93, P15469, DOI 10.1073/pnas.93.26.15469 NR 21 TC 10 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 17 EP 20 DI 10.1159/000046857 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800005 PM 11914520 ER PT J AU Nuttall, AL Ren, TY de Boer, E Zheng, JF Parthasarathi, A Grosh, K Guo, MH Dolan, D AF Nuttall, AL Ren, TY de Boer, E Zheng, JF Parthasarathi, A Grosh, K Guo, MH Dolan, D TI In vivo micromechanical measurements of the organ of corti in the basal cochlear turn SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE basilar membrane; laser Doppler velocimetry; laser feedback interferometry; guinea pig; gerbil ID GUINEA-PIG COCHLEA; BASILAR-MEMBRANE VIBRATION; TEMPORAL REPRESENTATION; DISTORTION PRODUCTS; MOTION; INTERFEROMETRY; RESPONSES; TONE; NONLINEARITY; HEMICOCHLEA AB Cochlear mechanical measurements of organ of Corti motion are generally accomplished in the apical or basal turn as in vivo or in vitro studies. In the apex it is possible to observe and measure tectorial membrane vibration as well as vibrations of structures such as the reticular lamina or the basilar membrane (BM). However, compared to the basal turn, cochlear amplification and nonlinearity are not strong in the apex. Basal turn studies have typically been limited to point location measurements of the BM but improved technology for laser interferometry is now making possible the spatial mapping of BM motion. The 'complexity' of BM motion in the radial direction (particularly the phase variation) is important to new models of cochlear wave amplification. In future work it may be possible to learn about vibration of structures within the organ of Corti. Copyright (C) 2002 S. Karger AG, Basel. C1 Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, Portland, OR 97201 USA. Univ Michigan, Dept Otolaryngol, Kresge Hearing Res Inst, Ann Arbor, MI 48109 USA. Univ Amsterdam, Acad Med Ctr, NL-1105 AZ Amsterdam, Netherlands. Chinese Peoples Liberat Army Gen Hosp, Dept Otolaryngol, Beijing, Peoples R China. First Mil Med Univ, Zhujiang Hosp, Dept Otolaryngol, Guangzhou, Peoples R China. Bose Corp, Framingham, MA USA. RP Nuttall, AL (reprint author), Oregon Hlth Sci Univ, Oregon Hearing Res Ctr, Dept Otolaryngol Head & Neck Surg, 3181 SW Sam Jackson Pk Rd,NRC04, Portland, OR 97201 USA. CR ALLEN JB, 1992, J ACOUST SOC AM, V92, P178, DOI 10.1121/1.404281 Cooper NP, 1997, J NEUROPHYSIOL, V78, P261 Cooper NP, 1999, J ACOUST SOC AM, V106, pL59, DOI 10.1121/1.428147 COOPER NP, 1995, HEARING RES, V82, P225, DOI 10.1016/0378-5955(94)00180-X COOPER NP, 1999, S REC DEV AUD MECH S DALLOS P, 1992, J NEUROSCI, V12, P4575 Dallos P, 1991, Curr Opin Neurobiol, V1, P215, DOI 10.1016/0959-4388(91)90081-H de Boer E, 2000, J ACOUST SOC AM, V107, P1497, DOI 10.1121/1.428436 de Boer E, 1999, J ACOUST SOC AM, V105, P3410, DOI 10.1121/1.424669 GUMMER AW, 1997, EAR NOSE THROAT J, V76, P162 GUMMER AW, 1997, EAR NOSE THROAT J, V76, P160 Gummer A W, 1997, Ear Nose Throat J, V76, P151 Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 He DZZ, 2000, JARO-J ASSOC RES OTO, V1, P64, DOI 10.1007/s101620010006 Hemmert W, 2000, BIOPHYS J, V78, P2285 Hu XT, 1999, J NEUROPHYSIOL, V82, P2798 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 Khanna SM, 1998, HEARING RES, V116, P71, DOI 10.1016/S0378-5955(97)00200-1 Khanna SM, 1999, HEARING RES, V132, P15, DOI 10.1016/S0378-5955(99)00027-1 KHANNA SM, 1996, COHERENCE DOMAIN MET, P65 Khanna SM, 1999, HEARING RES, V135, P89, DOI 10.1016/S0378-5955(99)00095-7 MAMMANO F, 1993, NATURE, V365, P838, DOI 10.1038/365838a0 Murugasu E, 1996, J NEUROSCI, V16, P325 Nilsen KE, 2000, P NATL ACAD SCI USA, V97, P11751, DOI 10.1073/pnas.97.22.11751 Nilsen KE, 1999, NAT NEUROSCI, V2, P642 Nuttall AL, 1999, HEARING RES, V131, P39, DOI 10.1016/S0378-5955(99)00009-X Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 NUTTALL AL, 1991, HEARING RES, V51, P203, DOI 10.1016/0378-5955(91)90037-A Olson ES, 1999, NATURE, V402, P526, DOI 10.1038/990092 OLSON ES, 1999, USE INTRACOCHLEAR PR Ovryn B, 1999, APPL OPTICS, V38, P1959, DOI 10.1364/AO.38.001959 PARTHASARATHI AA, 2000, ASS RES OTOLARYNGOL REN T, 2001, ASS RES OTOLARYNGOL Ren TY, 2001, HEARING RES, V151, P48, DOI 10.1016/S0378-5955(00)00211-2 Ren TY, 2001, J ACOUST SOC AM, V109, P826, DOI 10.1121/1.1337957 Rhode WS, 2000, J ACOUST SOC AM, V107, P3317, DOI 10.1121/1.429404 Richter CP, 1998, J NEUROPHYSIOL, V79, P2255 Ruggero M.A., 1989, COCHLEAR MECH STRUCT, P259 Russell IJ, 1997, P NATL ACAD SCI USA, V94, P2660, DOI 10.1073/pnas.94.6.2660 Russell IJ, 1997, J ACOUST SOC AM, V102, P1734, DOI 10.1121/1.420083 ULFENDAHL M, 1989, HEARING RES, V40, P55, DOI 10.1016/0378-5955(89)90099-3 ULFENDAHL M, 1995, NEUROREPORT, V6, P1157, DOI 10.1097/00001756-199505300-00021 XUE SW, 1995, J ACOUST SOC AM, V97, P3030, DOI 10.1121/1.413103 NR 43 TC 3 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 21 EP 26 DI 10.1159/000046858 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800006 PM 11914521 ER PT J AU Ulfendahl, M de Monvel, JB Le Calvez, S AF Ulfendahl, M de Monvel, JB Le Calvez, S TI Exploring the living cochlea using confocal microscopy SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE cochlea; confocal microscopy; deconvolution; organ of corti ID HEARING ORGAN; POTENTIALS; RESPONSES; CELLS; CORTI AB To obtain a more integrated view of the cellular behaviour of the cochlea it is essential to observe not only wider regions of the exposed turns but also to visualize structures below the reticular lamina. Using confocal microscopy and in vitro preparations of guinea pig and mouse inner ears, cellular structures within the intact organ of Corti can be visualized at high resolution. The approach thus offers a means to investigate detailed cellular events, e.g. structural reorganization following acoustic overstimulation. Confocal microscope images, although sharper than images acquired using regular light microscopy, are still subject to problems related to light scattering within the optical system and low signal-to-noise ratio. Significant image restoration can, however, be obtained by applying a combination of wavelet denoising techniques and deconvolution algorithms. Future work will focus both on more dynamical cellular events and on new in vivo models where the inner ear is visualized at a better functional state. Copyright (C) 2002 S. Karger AG, Basel. C1 Karolinska Inst, Inst Hearing & Commun Res, Stockholm, Sweden. Karolinska Inst, Dept Clin Neurosci, Stockholm, Sweden. Univ Helsinki, Inst Biotechnol, Helsinki, Finland. RP Ulfendahl, M (reprint author), Karolinska Hosp, Inst Hearing & Commun Res, Bldg M9,ENT, SE-17176 Stockholm, Sweden. CR Bekesy G., 1960, EXPT HEARING BRUNDIN L, 1992, HEARING RES, V58, P175, DOI 10.1016/0378-5955(92)90126-8 de Monvel JB, 2001, BIOPHYS J, V80, P2455 Flock A, 1999, J NEUROSCI, V19, P4498 Flock A, 1998, NEUROSCIENCE, V83, P215, DOI 10.1016/S0306-4522(97)00335-7 Fridberger A, 1997, ACTA PHYSIOL SCAND, V161, P239, DOI 10.1046/j.1365-201X.1997.00214.x Le Calvez S, 2000, J NEUROCYTOL, V29, P645, DOI 10.1023/A:1010831303845 Mallat S., 1999, WAVELET TOUR SIGNAL REUTER G, 1990, HEARING RES, V43, P219, DOI 10.1016/0378-5955(90)90230-M TONNDORF J, 1977, ACTA OTO-LARYNGOL, V83, P113, DOI 10.3109/00016487709128820 Ulfendahl M, 2000, NEUROIMAGE, V12, P307, DOI 10.1006/nimg.2000.0617 Ulfendahl M, 2001, HEARING RES, V151, P41, DOI 10.1016/S0378-5955(00)00208-2 Ulfendahl M, 1997, PROG NEUROBIOL, V53, P331, DOI 10.1016/S0301-0082(97)00040-3 WILLEMIN JF, 1988, J ACOUST SOC AM, V83, P187 NR 14 TC 4 Z9 4 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 27 EP 30 DI 10.1159/000046859 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800007 PM 11914522 ER PT J AU Eatock, RA Hurley, KM Vollrath, MA AF Eatock, RA Hurley, KM Vollrath, MA TI Mechanoelectrical and voltage-gated ion channels in mammalian vestibular hair cells SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE vestibular organ; hair cell; utricle; mechanoelectrical transduction; adaptation; receptor potential; calyx terminal ID PERIPHERAL INNERVATION PATTERNS; MOUSE UTRICLE; MEMBRANE-PROPERTIES; TRANSDUCER ADAPTATION; DISCHARGE PROPERTIES; SEMICIRCULAR CANALS; POTASSIUM CURRENTS; DOMINANT DEAFNESS; DELAYED RECTIFIER; RANA-CATESBEIANA AB Mammalian vestibular afferents respond robustly to head movements at low frequencies and provide input to reflexes that control eye, head and body position. Vestibular organs have distinctive regions and hair cells: Type 11 cells receive bouton afferent endings and type I cells receive large calyx afferent endings. In the rodent utricle, type 11 cells are broadly tuned to frequencies between 10 and 30 Hz. Other recent data suggest that otolith organs function in this frequency range, which is higher than previously imagined. Some of the tuning derives from adaptation of the transducer current, which is best fitted with a double exponential decay with time constants of similar to4 and 40 ms. Further tuning is provided by basolateral conductances, principally outwardly rectifying, voltage-gated K+ conductances. The kinetics of the K+ currents tend to vary with location in the sensory epithelium and therefore may contribute to regional variation in afferent physiology. Type I hair cells have a large, negatively activating K+ conductance, g(K,L), that confers a very low input resistance and therefore attenuates the receptor potential. This may reduce nonlinearity in the receptor potential, a possibly useful feature for the motor reflexes served by the vestibular system, On the other hand, the small receptor potentials together with unusually negative resting potentials are hard to reconcile with calcium-mediated quantal transmission. This problem may be overcome by factors that inhibit g(K,L)'s activation at resting potential. Also, the calyx may support nonquantal transmission. Copyright (C) 2002 S. Karger AG, Basel. C1 Baylor Coll Med, Bobby R Alford Dept Otorhinolaryngol & Commun Sci, Houston, TX 77005 USA. RP Eatock, RA (reprint author), Baylor Coll Med, Dept Otolaryngol, 1 Baylor Plaza, Houston, TX 77005 USA. RI Eatock, Ruth/F-6404-2013 CR Angelaki DE, 1998, J NEUROPHYSIOL, V80, P680 Armstrong CE, 1998, J NEUROSCI, V18, P2962 ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 ASSAD JA, 1992, J NEUROSCI, V12, P3291 BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182 Chen JWY, 2000, J NEUROPHYSIOL, V84, P139 CORREIA MJ, 1989, J NEUROPHYSIOL, V62, P924 CORREIA MJ, 1990, NEUROSCI LETT, V116, P106, DOI 10.1016/0304-3940(90)90394-O Eatock RA, 2000, ANNU REV NEUROSCI, V23, P285, DOI 10.1146/annurev.neuro.23.1.285 Eatock RA, 1998, OTOLARYNG HEAD NECK, V119, P172, DOI 10.1016/S0194-5998(98)70052-X EATOCK RA, 1987, J NEUROSCI, V7, P2821 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P996 Fettiplace R, 2001, TRENDS NEUROSCI, V24, P169, DOI 10.1016/S0166-2236(00)01740-9 Goldberg JM, 1996, J NEUROPHYSIOL, V76, P1942 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P781 GOLDBERG JM, 1990, J NEUROPHYSIOL, V63, P791 Goodman MB, 1996, J PHYSIOL-LONDON, V497, P395 Holt JR, 1997, J NEUROSCI, V17, P8739 Holt JR, 1999, ANN NY ACAD SCI, V871, P15, DOI 10.1111/j.1749-6632.1999.tb09172.x HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOWARD J, 1987, P NATL ACAD SCI USA, V84, P3064, DOI 10.1073/pnas.84.9.3064 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P275 HUDSPETH AJ, 1988, J PHYSIOL-LONDON, V400, P237 Hudspeth AJ, 2000, P NATL ACAD SCI USA, V97, P11765, DOI 10.1073/pnas.97.22.11765 Hullar TE, 1999, J NEUROPHYSIOL, V82, P2000 Kharkovets T, 2000, P NATL ACAD SCI USA, V97, P4333, DOI 10.1073/pnas.97.8.4333 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 LANG DG, 1989, J NEUROPHYSIOL, V62, P935 Lysakowski A, 1997, J COMP NEUROL, V389, P419, DOI 10.1002/(SICI)1096-9861(19971222)389:3<419::AID-CNE5>3.0.CO;2-3 Lysakowski A, 2000, J COMP NEUROL, V427, P508, DOI 10.1002/1096-9861(20001127)427:4<508::AID-CNE2>3.0.CO;2-L Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x Masetto S, 2000, J NEUROPHYSIOL, V83, P2740 RENNIE KJ, 1994, J NEUROPHYSIOL, V71, P317 Ricci AJ, 1996, PFLUG ARCH EUR J PHY, V432, P34, DOI 10.1007/s004240050102 Ricci AJ, 1998, J NEUROSCI, V18, P8261 Rusch A, 1998, J NEUROSCI, V18, P7487 Rusch A, 1996, J NEUROPHYSIOL, V76, P995 SCHESSEL DA, 1991, BRAIN RES, V544, P1, DOI 10.1016/0006-8993(91)90879-Z Wersall J., 1974, P123 Wu YC, 1999, J NEUROPHYSIOL, V82, P2171 NR 40 TC 14 Z9 14 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 31 EP 35 DI 10.1159/000046860 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800008 PM 11914523 ER PT J AU Pickles, JO Chir, B AF Pickles, JO Chir, B TI Roles of fibroblast growth factors in the inner ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE fibroblast growth factor; fibroblast growth factor receptor; otocyst; cochlea; development; repair; hair cells ID GANGLION-CELLS; IN-VITRO; INDUCTION; COCHLEA; INT-2; PROTOONCOGENE; FGF-1 AB The basic biology of the fibroblast growth factor (FGF) receptors and their splice variants is first reviewed, followed by a review of the known roles of FGFs in the inner ear. They include induction of the otocyst by FGF19, followed by FGF3 in further development of the otocyst. In later development, FGF3 or FGF10 acting on FGF receptor 2b is likely to be involved in development of the walls of the cochlear spaces, while FGF receptor 3 is involved in differentiation of the pillar cells of the organ of Corti. FGF1 and FGF2 act as trophic factors for the developing cochlear nerve fibres. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Queensland, Dept Physiol & Pharmacol, Vis Touch & Hearing Res Ctr, St Lucia, Qld 4072, Australia. RP Pickles, JO (reprint author), Univ Queensland, Dept Physiol & Pharmacol, Vis Touch & Hearing Res Ctr, St Lucia, Qld 4072, Australia. CR Aletsee C, 2000, HNO, V48, P457, DOI 10.1007/s001060050597 BERMINGHAMMCDON.O, 1998, ASS RES OT ABSTR, V21, P167 Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 Frenz DA, 1998, GROWTH FACTORS, V15, P173 Hossain WA, 2000, J NEUROSCI RES, V62, P40, DOI 10.1002/1097-4547(20001001)62:1<40::AID-JNR5>3.0.CO;2-L Ladher RK, 2000, SCIENCE, V290, P1965, DOI 10.1126/science.290.5498.1965 LIM DJ, 1990, ACTA OTO-LARYNGOL, V110, P224, DOI 10.3109/00016489009122541 MACARTHUR CA, 1995, DEVELOPMENT, V121, P3603 MANSOUR SL, 1993, DEVELOPMENT, V117, P13 Oesterle EC, 2000, J COMP NEUROL, V424, P307, DOI 10.1002/1096-9861(20000821)424:2<307::AID-CNE9>3.0.CO;2-M Ornitz DM, 1996, J BIOL CHEM, V271, P15292 Pickles JO, 2001, HEARING RES, V155, P54, DOI 10.1016/S0378-5955(01)00247-7 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 Pirvola U, 2000, J NEUROSCI, V20, P6125 REPRESA J, 1991, NATURE, V353, P561, DOI 10.1038/353561a0 Vendrell V, 2000, DEVELOPMENT, V127, P2011 WILKINSON DG, 1989, DEVELOPMENT, V105, P131 Xu XL, 1998, DEVELOPMENT, V125, P753 NR 19 TC 12 Z9 14 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 36 EP 39 DI 10.1159/000046861 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800009 PM 11914524 ER PT J AU Fuchs, P AF Fuchs, P TI The synaptic physiology of cochlear hair cells SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE cochlea; vestibule; hair cells; voltage-gated calcium channels; calcium-activated potassium channels; nicotinic receptors; afferent synapse; efferent synapse ID ACTIVATED POTASSIUM CHANNELS; CA2+-ACTIVATED K+ CHANNELS; GUINEA-PIG COCHLEA; CA2+ CHANNELS; ACETYLCHOLINE-RECEPTOR; CHOLINERGIC INHIBITION; SMALL-CONDUCTANCE; CHICKENS COCHLEA; SPLICE VARIANTS; TURTLE COCHLEA AB Mechanosensory hair cells of the vertebrate inner ear are so-called 'short' receptors that communicate to the central nervous system by way of chemical synapses with afferent neurons. In turn, hair cells are the targets of olivocochlear fibers that carry efferent inhibitory feedback from the brain. These synaptic activities contribute to, or modulate the hair cell's receptor potentials through the gating of associated ion channels. Thus for example, voltage-gated calcium channels open to trigger vesicle fusion and release of transmitter by entry of extracellular calcium. The inward calcium current also depolarizes the membrane and could lead to generation of 'all-or-none' action potentials. However, regenerative depolarization is prevented in most hair cells by prominent voltage-gated potassium conductances that rapidly repolarize the membrane. The magnitude and speed of these delayed potassium conductances determine the size and shape of the resulting receptor potential, and subsequent transmitter release, produced by sound. Efferent feedback is provided by the release of acetylcholine from olivocochlear nerve fibers onto outer hair cells in the mammalian cochlea. The hair cell's ACh receptors are ligand-gated cation channels related to the nicotinic receptors of nerve and muscle. Calcium influx through the ACh receptors activates nearby calcium-gated potassium channels, resulting in hyperpolarization and inhibition of the hair cell. Calcium influx during efferent inhibition is regulated by a 'synaptic cistern' that also may act as a calcium store that is triggered by ACh under some conditions. Copyright (C) 2002 S. Karger AG, Basel. C1 Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, Baltimore, MD 21205 USA. RP Fuchs, P (reprint author), Johns Hopkins Univ, Sch Med, Ctr Hearing & Balance, Dept Otolaryngol Head & Neck Surg, 521 Traylor Bldg,720 Rutland Ave, Baltimore, MD 21205 USA. CR ART JJ, 1987, J PHYSIOL-LONDON, V385, P207 ART JJ, 1985, J PHYSIOL-LONDON, V360, P397 ART JJ, 1995, J GEN PHYSIOL, V105, P49, DOI 10.1085/jgp.105.1.49 Blanchet C, 1996, J NEUROSCI, V16, P2574 BOBBIN RP, 1990, HEARING RES, V46, P277, DOI 10.1016/0378-5955(90)90009-E Dulon D, 1998, EUR J NEUROSCI, V10, P907, DOI 10.1046/j.1460-9568.1998.00098.x ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 FUCHS PA, 1992, P ROY SOC B-BIOL SCI, V248, P35, DOI 10.1098/rspb.1992.0039 FUCHS PA, 1990, P ROY SOC B-BIOL SCI, V241, P122, DOI 10.1098/rspb.1990.0075 FUCHS PA, 1992, J NEUROSCI, V12, P800 Glowatzki E, 2000, SCIENCE, V288, P2366, DOI 10.1126/science.288.5475.2366 Hiel H, 2000, BRAIN RES, V858, P215, DOI 10.1016/S0006-8993(00)01947-8 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 Jiang GJ, 1997, P ROY SOC B-BIOL SCI, V264, P731 Jones EMC, 1998, P ROY SOC B-BIOL SCI, V265, P685 Jones EMC, 1999, ANN NY ACAD SCI, V868, P379, DOI 10.1111/j.1749-6632.1999.tb11299.x KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 Kollmar R, 1997, P NATL ACAD SCI USA, V94, P14883, DOI 10.1073/pnas.94.26.14883 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 Lenzi D, 1999, J NEUROSCI, V19, P119 Lustig LR, 2001, GENOMICS, V73, P272, DOI 10.1006/geno.2000.6503 MARTIN AR, 1992, P ROY SOC B-BIOL SCI, V250, P71, DOI 10.1098/rspb.1992.0132 Moraru II, 1999, J GEN PHYSIOL, V113, P837, DOI 10.1085/jgp.113.6.837 Navaratnam DS, 1997, NEURON, V19, P1077, DOI 10.1016/S0896-6273(00)80398-0 Oliver D, 2000, NEURON, V26, P595, DOI 10.1016/S0896-6273(00)81197-6 Platzer J, 2000, CELL, V102, P89, DOI 10.1016/S0092-8674(00)00013-1 Prigioni I, 1992, J Vestib Res, V2, P31 Ramanathan K, 1999, SCIENCE, V283, P215, DOI 10.1126/science.283.5399.215 Ramanathan K, 2000, J NEUROSCI, V20, P1675 ROBERTS WM, 1990, J NEUROSCI, V10, P3664 ROBERTSON D, 1979, PFLUG ARCH EUR J PHY, V380, P7, DOI 10.1007/BF00582605 Rosenblatt KP, 1997, NEURON, V19, P1061, DOI 10.1016/S0896-6273(00)80397-9 Rusch A, 1998, P NATL ACAD SCI USA, V95, P15758, DOI 10.1073/pnas.95.26.15758 SHIGEMOTO T, 1991, J PHYSIOL-LONDON, V442, P669 SIEGEL JH, 1987, HEARING RES, V28, P131, DOI 10.1016/0378-5955(87)90044-X Spitzer NC, 1998, J NEUROBIOL, V37, P190, DOI 10.1002/(SICI)1097-4695(199810)37:1<190::AID-NEU14>3.0.CO;2-I Taylor CW, 1998, BBA-MOL CELL BIOL L, V1436, P19, DOI 10.1016/S0005-2760(98)00122-2 YOSHIDA N, 1994, BRAIN RES, V644, P90, DOI 10.1016/0006-8993(94)90351-4 Yuhas WA, 1999, J COMP PHYSIOL A, V185, P455, DOI 10.1007/s003590050406 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 ZIDANIC M, 1995, BIOPHYS J, V68, P1323 NR 45 TC 34 Z9 37 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 40 EP 44 DI 10.1159/000046862 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800010 PM 11914525 ER PT J AU Wenthold, RJ Safieddine, S Ly, CD Wang, YX Lee, HK Wang, CY Kachar, B Petralia, RS AF Wenthold, RJ Safieddine, S Ly, CD Wang, YX Lee, HK Wang, CY Kachar, B Petralia, RS TI Vesicle targeting in hair cells SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE synapse; soluble-N-ethylmaleimide-sensitive fusion; protein receptor; hair cell; endosome ID MEMBRANE-FUSION; RIBBON SYNAPSES; SNARE COMPLEX; TRAFFICKING; PERSPECTIVES; PROTEINS; POLARITY AB The mammalian hair cell has two distinct plasma membrane domains separated by tight junctions, the apical domain which contains the stereocilia and the basolateral domain which contains the presynaptic region. Little is known concerning the mechanisms that regulate vesicle trafficking to these two domains. Using SNAP 25 and syntaxin as baits, we carried out a yeast two-hybrid screen of the organ of Corti. We identified a novel syntaxin interacting protein, ocsyn, that is enriched in inner hair cells and concentrated at the apical pole. Our results are consistent with ocsyn playing a role in vesicle trafficking to the apical membrane of the hair cell. Copyright (C) 2002 S. Karger AG, Basel. C1 NIDCD, Neurochem Lab, NIH, Bethesda, MD 20892 USA. NIDCD, Cell Biol Lab, NIH, Bethesda, MD 20892 USA. RP Wenthold, RJ (reprint author), NIDCD, Neurochem Lab, NIH, Bldg 50,Room 4140, Bethesda, MD 20892 USA. CR Buckley KM, 2000, J PHYSIOL-LONDON, V525, P11, DOI 10.1111/j.1469-7793.2000.t01-2-00011.x Fernandez-Chacon R, 1999, ANNU REV PHYSIOL, V61, P753, DOI 10.1146/annurev.physiol.61.1.753 Hannah MJ, 1999, ANNU REV CELL DEV BI, V15, P733, DOI 10.1146/annurev.cellbio.15.1.733 Jahn R, 1999, ANNU REV BIOCHEM, V68, P863, DOI 10.1146/annurev.biochem.68.1.863 Kachar B, 1997, HEARING RES, V107, P102, DOI 10.1016/S0378-5955(97)00027-0 Lin RC, 2000, ANNU REV CELL DEV BI, V16, P19, DOI 10.1146/annurev.cellbio.16.1.19 Mellman I, 1996, ANNU REV CELL DEV BI, V12, P575, DOI 10.1146/annurev.cellbio.12.1.575 Morgans CW, 1996, J NEUROSCI, V16, P6713 Prekeris R, 1999, MOL BIOL CELL, V10, P3891 Roche PA, 1999, IMMUNITY, V11, P391, DOI 10.1016/S1074-7613(00)80114-4 Rothman JE, 1996, SCIENCE, V272, P227, DOI 10.1126/science.272.5259.227 Safieddine S, 1999, EUR J NEUROSCI, V11, P803, DOI 10.1046/j.1460-9568.1999.00487.x SEWELL WF, 1996, COCHLEA Steel KP, 2001, NAT GENET, V27, P143, DOI 10.1038/84758 Teasdale RD, 1996, ANNU REV CELL DEV BI, V12, P27, DOI 10.1146/annurev.cellbio.12.1.27 van Ijzendoorn SCD, 2000, J CELL PHYSIOL, V184, P151, DOI 10.1002/1097-4652(200008)184:2<151::AID-JCP2>3.0.CO;2-R von Gersdorff H, 2001, NEURON, V29, P7, DOI 10.1016/S0896-6273(01)00175-1 Wagner HJ, 1997, CELL TISSUE RES, V287, P435, DOI 10.1007/s004410050768 Yang B, 1999, J BIOL CHEM, V274, P5649, DOI 10.1074/jbc.274.9.5649 Yeaman C, 1999, PHYSIOL REV, V79, P73 Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 NR 21 TC 6 Z9 6 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 45 EP 48 DI 10.1159/000046863 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800011 PM 11914526 ER PT J AU Puel, JL Ruel, J Guitton, M Wang, J Pujol, R AF Puel, JL Ruel, J Guitton, M Wang, J Pujol, R TI The inner hair cell synaptic complex: Physiology, pharmacology and new therapeutic strategies SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE glutamate; dopamine; lateral olivocochlear system; tonic inhibition; synaptic transmission; excitotoxicity; cochlea ID GUINEA-PIG COCHLEA; AUDITORY-NERVE RESPONSE; GLUTAMATE RECEPTORS; EXCITOTOXIC INJURY; AFFERENT SYNAPSES; DE-EFFERENTATION; AMPA; SUBUNITS; REGENERATION; EXPRESSION AB Within the cochlea, the sensory inner hair cells (IHCs), which transduce mechanical displacement of the basilar membrane into neural activity, release glutamate to act on postsynaptic receptor channels located on dendrites of primary auditory neurons. In turn the activity of the postsynaptic auditory dendrites is modulated by a variety of lateral efferent neurotransmitters. This presentation reviews the most recent findings obtained at the IHC synaptic complex with an original technique, namely coupling auditory nerve single unit recordings with multibarrel intracochlear perfusions. Two types of results are emphasized: (1) in physiological conditions, the activity of auditory nerve fibers involves AMPA, but not kainate or NMIDA receptors, and (2) this activity is tonically modulated by dopamine, one of the lateral efferent neurotransmitters. With the increasing knowledge of molecular mechanisms involved at the first synaptic complex in the cochlea, it is now possible to envisage local treatments for spiral ganglion neurons. These treatments, available experimentally, may be used in the near future: either to protect spiral ganglion neurons against excitotoxic injury (traumatic and/or ischemic sudden deafness), or to prevent excitotoxic-induced hyperexcitability (probably the starting point of most posttraumatic tinnitus), or to delay neuronal death (neural presbycusis). Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Montpellier 1, INSERM UMR 254, Lab Neurobiol Audit Plast Synapt, F-34090 Montpellier, France. RP Pujol, R (reprint author), Univ Montpellier 1, INSERM UMR 254, Lab Neurobiol Audit Plast Synapt, 71 Rue Navacelles, F-34090 Montpellier, France. CR Bleakman D, 1996, NEUROPHARMACOLOGY, V35, P1689, DOI 10.1016/S0028-3908(96)00156-6 BOULTER J, 1990, SCIENCE, V249, P1033, DOI 10.1126/science.2168579 dAldin CG, 1997, INT J DEV NEUROSCI, V15, P619, DOI 10.1016/S0736-5748(96)00116-5 EYBALIN M, 1995, ACTIVE HEARING, P73 EYBALIN M, 1993, PHYSIOL REV, V73, P309 FELIX D, 1990, EUR ARCH OTO-RHINO-L, V248, P1, DOI 10.1007/BF00634769 KEINANEN K, 1990, SCIENCE, V249, P556, DOI 10.1126/science.2166337 LIBERMAN MC, 1980, HEARING RES, V3, P189, DOI 10.1016/0378-5955(80)90046-5 LIBERMAN MC, 1978, J ACOUST SOC AM, V63, P442, DOI 10.1121/1.381736 LIBERMAN MC, 1990, HEARING RES, V49, P209, DOI 10.1016/0378-5955(90)90105-X Matsubara A, 1996, J NEUROSCI, V16, P4457 Missale C, 1998, PHYSIOL REV, V78, P189 NAKAGAWA T, 1991, J NEUROPHYSIOL, V65, P715 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 PATNEAU DK, 1991, NEURON, V6, P785, DOI 10.1016/0896-6273(91)90175-Y Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 PUJOL R, 1997, SPRINGER HDB AUDITOR, V12, P146 Pujol R, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P100 Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Ruel J, 2000, NEUROPHARMACOLOGY, V39, P1959, DOI 10.1016/S0028-3908(00)00069-1 RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002 SAFIEDDINE S, 1992, EUR J NEUROSCI, V4, P981, DOI 10.1111/j.1460-9568.1992.tb00124.x USAMI S, 1995, NEUROREPORT, V6, P1161, DOI 10.1097/00001756-199505300-00022 Zheng XY, 1999, J COMP NEUROL, V406, P72 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 NR 27 TC 38 Z9 47 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 49 EP 54 DI 10.1159/000046864 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800012 PM 11914527 ER PT J AU Housley, GD Jagger, DJ Greenwood, D Raybould, NP Salih, SG Jarlebark, LE Vlajkovic, SM Kanjhan, R Nikolic, P Munoz, DJM Thorne, PR AF Housley, GD Jagger, DJ Greenwood, D Raybould, NP Salih, SG Jarlebark, LE Vlajkovic, SM Kanjhan, R Nikolic, P Munoz, DJM Thorne, PR TI Purinergic regulation of sound transduction and auditory neurotransmission SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE cochlea; hair cells; spiral ganglion neurons; adenosine 5 '-triphosphate; P2X receptor; P2Y receptor; endocochlear potential; afferent synapse ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; P2X(2) RECEPTOR SUBUNIT; 5'-TRIPHOSPHATE-GATED ION-CHANNEL; INNER-EAR; EXTRACELLULAR ATP; SUPPORTING CELLS; POTASSIUM CURRENT; EPITHELIAL-CELLS; MARGINAL CELLS AB In the cochlea, extracellular ATP influences the endocochlear potential, micromechanics, and neurotransmission via P2 receptors. Evidence for this arises from studies demonstrating widespread expression of ATP-gated ion channels (assembled from P2X receptor subunits) and G protein-coupled receptors (P2Y receptors). P2X(2) receptor subunits are localized to the luminal membranes of epithelial cells and hair cells lining scala media. These ion channels provide a shunt pathway for K+ ion egress. Thus, when noise exposure elevates ATP levels in this cochlear compartment, the K+ conductance through P2X receptors reduces the endocochlear potential. ATP-mediated K+ efflux from scala media is complemented by a P2Y receptor G protein-coupled pathway that provides coincident reduction of K+ transport into scala media from the stria vascularis when autocrine or paracrine ATP signalling is invoked. This purinergic signalling likely provides a basis for a reactive homoeostatic regulatory mechanism limiting cochlear sensitivity under stressor conditions. Elevation of ATP in the perilymphatic compartment under such conditions is also likely to invoke purinergic receptor-mediated changes in supporting cell micromechanics, mediated by Ca2+ influx and gating of Ca2+ stores. Independent of these humoral actions, ATP can be classified as a putative auditory neurotransmitter based on the localization of P2X receptors at the spiral ganglion neuron-hair cell synapse, and functional verification of ATP-gated currents in spiral ganglion neurons in situ. Expression of P2X receptors by type 11 spiral ganglion neurons supports a role for ATP as a transmitter encoding the dynamic state of the cochlear amplifier. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Auckland, Fac Med & Hlth Sci, Div Physiol, Mol Physiol Lab, Auckland 1, New Zealand. RP Housley, GD (reprint author), Univ Auckland, Fac Med & Hlth Sci, Div Physiol, Mol Physiol Lab, Private Bag 92019, Auckland 1, New Zealand. CR ASAKUMA S, 1978, HEARING RES, V1, P25, DOI 10.1016/0378-5955(78)90005-9 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 Bobbin RP, 2001, HEARING RES, V156, P10, DOI 10.1016/S0378-5955(01)00261-1 Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 Chen C, 1998, BRIT J PHARMACOL, V124, P337, DOI 10.1038/sj.bjp.0701848 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 CHESSELL IP, 2001, PURINERGIC PYRIMIDIN, V1, P47 Delpire E, 1999, NAT GENET, V22, P192, DOI 10.1038/9713 Dulon D., 1995, ACTIVE HEARING, P195 DULON D, 1993, CELL CALCIUM, V14, P245, DOI 10.1016/0143-4160(93)90071-D Elgoyhen AB, 2001, P NATL ACAD SCI USA, V98, P3501, DOI 10.1073/pnas.051622798 Fechner FP, 2001, J COMP NEUROL, V429, P289, DOI 10.1002/1096-9861(20000108)429:2<289::AID-CNE9>3.0.CO;2-Z GORDON JL, 1986, BIOCHEM J, V233, P309 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 HOUSLEY GD, 2001, P 34 IUPS WORLD C, P2478 Housley GD, 1999, J NEUROSCI, V19, P8377 Housley GD, 1998, J COMP NEUROL, V393, P403 Jagger DJ, 2000, J NEUROSCI METH, V104, P77, DOI 10.1016/S0165-0270(00)00322-8 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 Jentsch TJ, 2000, NAT REV NEUROSCI, V1, P21, DOI 10.1038/35036198 JOHNSTON.BM, 1966, J ACOUST SOC AM, V40, P1398, DOI 10.1121/1.1910239 Khakh BS, 2001, PHARMACOL REV, V53, P107 Khakh BS, 2001, NAT REV NEUROSCI, V2, P165, DOI 10.1038/35058521 King M, 1998, NEUROREPORT, V9, P2467, DOI 10.1097/00001756-199808030-00008 Kros CJ, 1998, NATURE, V394, P281, DOI 10.1038/28401 Kubisch C, 1999, CELL, V96, P437, DOI 10.1016/S0092-8674(00)80556-5 Lagostena L., 2001, Cell Calcium, V29, P191, DOI 10.1054/ceca.2000.0183 LIU J, 1995, AUDIT NEUROSCI, V1, P331 Marcotti W, 1999, J PHYSIOL-LONDON, V520, P653, DOI 10.1111/j.1469-7793.1999.00653.x Marcus DC, 2001, AM J PHYSIOL-CELL PH, V281, pC282 Marcus DC, 1998, HEARING RES, V115, P82, DOI 10.1016/S0378-5955(97)00180-9 Marcus DC, 1999, HEARING RES, V134, P48, DOI 10.1016/S0378-5955(99)00074-X Matsunobu T, 2000, J COMP NEUROL, V423, P452 Munoz DJB, 2001, ACTA OTO-LARYNGOL, V121, P10 Nikolic P, 2001, Brain Res Dev Brain Res, V126, P173 Ottersen OP, 1998, PROG NEUROBIOL, V54, P127, DOI 10.1016/S0301-0082(97)00054-3 Raybould NP, 2001, JARO-J ASSOC RES OTO, V2, P362, DOI 10.1007/s101620010087 ROBERTSON D, 2001, AUDIOL NEURO-OTOL, V7, P62 Salih SG, 1999, NEUROREPORT, V10, P2579, DOI 10.1097/00001756-199908200-00026 Salih SG, 1998, NEUROREPORT, V9, P279, DOI 10.1097/00001756-199801260-00019 Surprenant A, 1996, SCIENCE, V272, P735, DOI 10.1126/science.272.5262.735 Taschenberger H, 1999, J NEUROSCI, V19, P3353 THORNE PR, 2002, IN PRESS AUDIOL NEUR Vetter DE, 1999, NEURON, V23, P93, DOI 10.1016/S0896-6273(00)80756-4 Vetter DE, 1996, NEURON, V17, P1251, DOI 10.1016/S0896-6273(00)80255-X WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 Xiang ZH, 1999, HEARING RES, V128, P190, DOI 10.1016/S0378-5955(98)00208-1 NR 48 TC 50 Z9 57 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 55 EP 61 DI 10.1159/000046865 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800013 PM 11914528 ER PT J AU Robertson, D Paki, B AF Robertson, D Paki, B TI A role for purinergic receptors at the inner hair cell-afferent synapse? SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT Symposium on Auditory Function and Dysfunction: Molecular and Physiological Mechanisms CY AUG, 2001 CL AUCKLAND, NEW ZEALAND DE suramin; PPADS; adenosine 5 '-triphosphate analogues; purinergic receptors; compound action potential; summating potential; single afferent neurons; spiral ganglion; spontaneous activity; tuning curves ID 5'-TRIPHOSPHATE-GATED ION-CHANNEL; GUINEA-PIG COCHLEA; AUDITORY-NERVE; ADENOSINE 5'-TRIPHOSPHATE; SPIRAL GANGLION; ATP; EXPRESSION; NEURONS; EAR; SUBUNIT AB Previously published evidence is reviewed for a functional role of ATP and its receptors at the chemical synapse between the mammalian inner hair cell and the primary afferent dendrites of the VIIIth nerve. New findings are also presented, both from gross cochlear potentials and single neurone recordings during intracochlear perfusion of ATP-receptor antagonists and agonists. Both the previous and present results are consistent with the notion that endogenous ATP may act to regulate the excitability of the primary afferent dendrite, possibly acting on P2X(2) receptors. Copyright (C) 2002 S. Karger AG, Basel. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6009, Australia. RP Robertson, D (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Stirling Highway, Nedlands, WA 6009, Australia. CR Brandle U, 1999, NEUROSCI LETT, V273, P105, DOI 10.1016/S0304-3940(99)00648-5 Burnstock G, 1999, BRAIN RES BULL, V50, P355, DOI 10.1016/S0361-9230(99)00103-3 Chen C, 2000, J NEUROPHYSIOL, V83, P1502 Chen C, 1998, HEARING RES, V118, P47, DOI 10.1016/S0378-5955(98)00019-7 Housley GD, 1998, MOL NEUROBIOL, V16, P21, DOI 10.1007/BF02740601 Housley GD, 1999, J NEUROSCI, V19, P8377 Housley GD, 1998, J COMP NEUROL, V393, P403 Housley GD, 2000, CLIN EXP PHARMACOL P, V27, P575, DOI 10.1046/j.1440-1681.2000.03314.x Jagger DJ, 2000, J NEUROSCI METH, V104, P77, DOI 10.1016/S0165-0270(00)00322-8 Jarlebark LE, 2000, J COMP NEUROL, V421, P289, DOI 10.1002/(SICI)1096-9861(20000605)421:3<289::AID-CNE1>3.0.CO;2-0 King M, 1998, NEUROREPORT, V9, P2467, DOI 10.1097/00001756-199808030-00008 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 Lambrecht G, 2000, N-S ARCH PHARMACOL, V362, P340, DOI 10.1007/s002100000312 LIBERMAN MC, 1982, SCIENCE, V216, P1239, DOI 10.1126/science.7079757 Munoz DJB, 1999, HEARING RES, V138, P56, DOI 10.1016/S0378-5955(99)00151-3 Nikolic P, 2001, Brain Res Dev Brain Res, V126, P173 ROBERTSON D, 1979, PFLUG ARCH EUR J PHY, V380, P7, DOI 10.1007/BF00582605 ROBERTSON D, 1984, HEARING RES, V15, P113, DOI 10.1016/0378-5955(84)90042-X Ruel J, 1999, J PHYSIOL-LONDON, V518, P667, DOI 10.1111/j.1469-7793.1999.0667p.x Salih SG, 1999, NEUROREPORT, V10, P2579, DOI 10.1097/00001756-199908200-00026 Salih SG, 1998, NEUROREPORT, V9, P279, DOI 10.1097/00001756-199801260-00019 Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E Zhang SY, 1999, J NEUROPHYSIOL, V82, P3307 ZIMMERMANN H, 1994, TRENDS NEUROSCI, V17, P420, DOI 10.1016/0166-2236(94)90016-7 NR 26 TC 11 Z9 11 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2002 VL 7 IS 1 BP 62 EP 67 DI 10.1159/000046866 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 535PL UT WOS:000174652800014 PM 11914529 ER PT J AU Ponton, CW Eggermont, JJ AF Ponton, CW Eggermont, JJ TI Of kittens and kids: Altered cortical maturation following profound deafness and cochlear implant use SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE evoked potentials; auditory cortex; maturation; cochlear implant; deafness ID PRIMARY AUDITORY-CORTEX; MIDDLE-LATENCY RESPONSE; EVOKED-POTENTIALS; MISMATCH NEGATIVITY; CAT; CHILDREN; NUCLEUS; SYSTEM; COMPONENTS; PLASTICITY AB Profoundly deaf children who use a cochlear implant (CI) provide a unique opportunity to investigate the effects of auditory sensory deprivation on the maturing human central nervous system. Previous results suggest that children fitted with a Cl show evidence of altered auditory cortical maturation, based on evoked potentials. This altered maturation was characterized by both latency delays and morphological changes in the cortical auditory evoked potentials (AEPs). Based on prolonged P-1 latencies compared to age-matched normal-hearing (NH) peers, these data suggested a delayed maturation nearly equivalent to the period of deafness. However, rates of maturation for this AEP peak were essentially the same in NH and CI children. This suggests that, given enough time, the AEPs of CI children would assume the characteristic morphology found in older NH teens and NH adults. However, the data also indicated a substantial alteration of the typical set of obligatory P-1-N-1b-P-2 peaks, specifically related to the absence of the N-1 potential. Recent analyses of more extensive sets of longitudinal and cross-sectional data indicate that even after many years of implant use, the AEPs of CI users in their late teens remain very different from those of their NH peers. The P-1 peak latency remains prolonged and P-1 amplitude remains much larger in CI users than in age-matched NH teens. These findings suggested that age-related changes in the P-1 peak are completed by 12 years of age. In addition, the normal N-1b peak fails to emerge in virtually all of the CI children tested in our laboratory. A major new interpretation of the abnormal maturation of AEP waveforms in CI children is presented. It is based on direct evidence showing that a persistent immaturity of the superficial layer axons has persistent negative effects on the generation of the N-1b and, consequently, on the morphology of the AEPs. A comparison of scalp-recorded AEPs from implanted children with local field potentials measured from the cortical surface in deaf white kittens suggests the effects of deafness and CI use are similar across these mammalian species. For both species, a period of profound deafness followed by CI stimulation reveals a substantial immaturity in cortical activation even after a period of electrical stimulation by the CI. Copyright (C) 2002 S. Karger AG, Basel. C1 Neuroscan Labs, El Paso, TX 79912 USA. Univ Calgary, Dept Phys & Biophys, Dept Psychol, Calgary, AB, Canada. Univ Calgary, Dept Psychol, Calgary, AB T2N 1N4, Canada. RP Ponton, CW (reprint author), Neuroscan Labs, 5700 Cromo Dr, El Paso, TX 79912 USA. CR BUCHWALD JS, 1991, ELECTROEN CLIN NEURO, V80, P303, DOI 10.1016/0168-5597(91)90114-D BUSBY PA, 1992, AUDIOLOGY, V31, P95 CAULLER LJ, 1991, EXP BRAIN RES, V84, P607 COURCHESNE E, 1978, ELECTROEN CLIN NEURO, V45, P468, DOI 10.1016/0013-4694(78)90291-2 Courchesne E, 1990, EVENT RELATED BRAIN, P210 CREUTZFE.OD, 1966, ELECTROEN CLIN NEURO, V20, P1, DOI 10.1016/0013-4694(66)90136-2 CSEPE V, 1995, EAR HEARING, V16, P91 EDDINGTON D K, 1978, Annals of Otology Rhinology and Laryngology, V87, P5 EGGERMONT JJ, 2002, IN PRESS AUDIOL NEUR EGGERMONT JJ, 1995, NEUROREPORT, V6, P2121, DOI 10.1097/00001756-199511000-00006 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 EGGERMONT JJ, 1992, HEARING RES, V61, P1, DOI 10.1016/0378-5955(92)90029-M ERWIN R, 1986, ELECTROEN CLIN NEURO, V65, P383, DOI 10.1016/0168-5597(86)90017-1 ERWIN RJ, 1986, ELECTROEN CLIN NEURO, V64, P417, DOI 10.1016/0013-4694(86)90075-1 Geers AE, 1997, OTOLARYNG HEAD NECK, V117, P150, DOI 10.1016/S0194-5998(97)70167-0 GEERS AE, 1991, AM J OTOL, V12, P116 GRAYBIEL AM, 1973, BRAIN RES, V49, P229, DOI 10.1016/0006-8993(73)90420-4 GRINVALD A, 1988, PHYSIOL REV, V68, P1285 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 IMIG TJ, 1978, J COMP NEUROL, V182, P637, DOI 10.1002/cne.901820406 JAVITT DC, 1994, BRAIN RES, V667, P192, DOI 10.1016/0006-8993(94)91496-6 Juliano SL, 1998, SCIENCE, V279, P1653, DOI 10.1126/science.279.5357.1653 KAGA K, 1980, ELECTROEN CLIN NEURO, V50, P254, DOI 10.1016/0013-4694(80)90153-4 Kandel E. R., 1991, PRINCIPLES NEURAL SC Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 KNIGHT RT, 1980, ELECTROEN CLIN NEURO, V50, P112, DOI 10.1016/0013-4694(80)90328-4 KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4 Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Makela JP, 1996, EXP BRAIN RES, V110, P446 KRAUS N, 1993, EAR HEARING, V14, P36, DOI 10.1097/00003446-199302000-00006 MITZDORF U, 1985, PHYSIOL REV, V65, P37 MOORE JK, 2001, J ASS RES OTOLARYNGO PANDYA DN, 1993, EXP NEUROL, V119, P220, DOI 10.1006/exnr.1993.1024 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 Ponton C W, 1999, Scand Audiol Suppl, V51, P13 PONTON CW, 1993, ELECTROEN CLIN NEURO, V88, P478, DOI 10.1016/0168-5597(93)90037-P Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 PONTON CW, IN PRESS CLIN NEUROP Ponton CW, 1996, EAR HEARING, V17, P430, DOI 10.1097/00003446-199610000-00009 Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 REESE NB, 1995, BRAIN RES BULL, V37, P257, DOI 10.1016/0361-9230(95)00002-V REITE M, 1988, ELECTROEN CLIN NEURO, V70, P490, DOI 10.1016/0013-4694(88)90147-2 RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2 ROBBINS AM, 1999, OTOL RHINOL LARYNG S, V177, P113 ROBERTSON RT, 1987, NEUROSCI LETT, V75, P259, DOI 10.1016/0304-3940(87)90531-3 SCHERG M, 1986, ELECTROEN CLIN NEURO, V65, P344, DOI 10.1016/0168-5597(86)90014-6 SHANNON RV, 1990, J ACOUST SOC AM, V87, P905, DOI 10.1121/1.398902 Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Skinner J., 1977, ATTENTION VOLUNTARY, P30 SUZUKI T, 1987, AUDIOLOGY, V26, P312 Svirsky MA, 2000, PSYCHOL SCI, V11, P153, DOI 10.1111/1467-9280.00231 Svirsky M A, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P104 TIMNEY B, 1979, DEV NEUROBIOLOGY VIS, P149 Vaughan H., 1988, HUMAN EVENT RELATED, P45 WEINBERGER NM, 1998, TRENDS COGN SCI, V2, P272 WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 Yingling C. D., 1977, ATTENTION VOLUNTARY, P70 NR 62 TC 92 Z9 98 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2001 VL 6 IS 6 BP 363 EP 380 DI 10.1159/000046846 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 527HC UT WOS:000174179800005 PM 11847464 ER PT J AU Giraud, AL Truy, E Frackowiak, R AF Giraud, AL Truy, E Frackowiak, R TI Imaging plasticity in cochlear implant patients SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE brain imaging; PET; MRI; language; cross-modal plasticity ID POSITRON-EMISSION-TOMOGRAPHY; PERIPHERAL VISUAL SPACE; MOVEMENT DETECTION TASK; CEREBRAL BLOOD-FLOW; ELECTRICAL-STIMULATION; AUDITORY-CORTEX; CORTICAL ACTIVATION; DEAF SUBJECTS; ATTENTION; USERS AB Auditory re-afferentation by cochlear implants (CI) offers a unique opportunity to study directly from within the auditory modality plastic changes taking place at organisational levels up to the supra- or polymodal level. These plastic changes resulting from deafness and chronic electrical stimulation can be studied using modern neuroimaging techniques. In this paper, we review the available techniques and the experimental approaches to human studies of plasticity, we discuss the different forms of plasticity that are associated with cochlear implantation and we point to the interest of imaging studies for providing a prognosis of functional outcome after implantation. Copyright (C) 2002 S. Karger G, Basel. C1 Univ Frankfurt, Dept Physiol, Frankfurt, Germany. Univ Frankfurt, Dept Neurol, Frankfurt, Germany. Hop Edouard Herriot, Dept ORL, Lyon, France. Hop Edouard Herriot, CNRS, UMR 5020, Lyon, France. Wellcome, Dept Imaging Neurosci, Funct Imaging Lab, London, England. RP Giraud, AL (reprint author), Univ Frankfurt, Physiol Inst 3, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. RI Frackowiak, Richard/I-1809-2013; Frackowiak, Richard/H-4383-2011 OI Frackowiak, Richard/0000-0002-3151-822X CR Bavelier D, 2000, J NEUROSCI, V20, P1 Benedict RHB, 1998, NEUROREPORT, V9, P121, DOI 10.1097/00001756-199801050-00024 Berthezene Y, 1997, INVEST RADIOL, V32, P297, DOI 10.1097/00004424-199705000-00007 BEVERSDORF D, 1995, PSYCHIAT RES-NEUROIM, V61, P181, DOI 10.1016/0925-4927(95)02630-G BUECHEL C, 1999, SCIENCE, V283, P1538 Buffalo EA, 1999, LEARN MEMORY, V6, P572, DOI 10.1101/lm.6.6.572 Capaday C, 2000, EXP BRAIN RES, V133, P552, DOI 10.1007/s002210000477 CATALANAHUMADA M, 1993, BRAIN RES, V623, P287, DOI 10.1016/0006-8993(93)91439-Y Coull JT, 1998, J NEUROSCI, V18, P7426 Duong TQ, 2000, MAGNET RESON MED, V44, P231, DOI 10.1002/1522-2594(200008)44:2<231::AID-MRM10>3.3.CO;2-K EDDINGTON DK, 1999, ABSTR ARO Friston KJ, 1999, NEUROIMAGE, V10, P1, DOI 10.1006/nimg.1999.0439 Fujiki Nobuya, 1999, Auris Nasus Larynx, V26, P229, DOI 10.1016/S0385-8146(99)00009-7 Fujiki N, 1998, ACTA OTO-LARYNGOL, V118, P797, DOI 10.1080/00016489850182468 GIARD MH, 1994, HEARING RES, V33, P353 GIRAUD AL, 2001, BRAIN, V124, P101 Giraud AL, 2001, NEURON, V30, P657, DOI 10.1016/S0896-6273(01)00318-X Giraud AL, 2001, J COGNITIVE NEUROSCI, V13, P754, DOI 10.1162/08989290152541421 Giraud AL, 2000, BRAIN, V123, P1391, DOI 10.1093/brain/123.7.1391 Giraud AL, 1997, NEUROREPORT, V8, P1779 Hari R, 1997, ADV OTO-RHINO-LARYNG, V52, P15 HERZOG H, 1991, J COMPUT ASSIST TOMO, V15, P369, DOI 10.1097/00004728-199105000-00005 Hofmann E, 1999, AM J NEURORADIOL, V20, P1970 JOHNSRUDE IS, 2002, IN PRESS AUDIOL NEUR Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kral A, 2001, AUDIOL NEURO-OTOL, V6, P346, DOI 10.1159/000046845 Lazeyras F, 2001, NEUROIMAGE, V13, pS905 Lee DS, 2001, NATURE, V409, P149, DOI 10.1038/35051653 LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 McDermott KB, 1999, MEMORY, V7, P661 McIntosh AR, 1998, J NEUROPHYSIOL, V80, P2790 Menon RS, 1997, J NEUROPHYSIOL, V77, P2780 Mummery CJ, 1998, J COGNITIVE NEUROSCI, V10, P766, DOI 10.1162/089892998563059 Nagase S, 2000, HEARING RES, V147, P242, DOI 10.1016/S0378-5955(00)00134-9 Naito Y, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P60 Naito Y, 2000, HEARING RES, V143, P139, DOI 10.1016/S0378-5955(00)00035-6 Naito Y, 1997, ACTA OTO-LARYNGOL, V117, P490, DOI 10.3109/00016489709113426 NAITO Y, 1995, COGNITIVE BRAIN RES, V2, P207, DOI 10.1016/0926-6410(95)90009-8 NEVILLE HJ, 1987, BRAIN RES, V405, P284, DOI 10.1016/0006-8993(87)90297-6 NEVILLE HJ, 1987, BRAIN RES, V405, P268, DOI 10.1016/0006-8993(87)90296-4 NEVILLE HJ, 1987, BRAIN RES, V405, P253, DOI 10.1016/0006-8993(87)90295-2 Nishimura H, 2000, NEUROREPORT, V11, P811, DOI 10.1097/00001756-200003200-00031 Nishimura H, 1999, NATURE, V397, P116, DOI 10.1038/16376 Obler R, 1999, MAGNET RESON MED, V42, P371, DOI 10.1002/(SICI)1522-2594(199908)42:2<371::AID-MRM19>3.0.CO;2-3 Okazawa H, 1996, BRAIN, V119, P1297, DOI 10.1093/brain/119.4.1297 OLeary DS, 1996, BRAIN LANG, V53, P20, DOI 10.1006/brln.1996.0034 PELIZZONE M, 1991, ACTA OTO-LARYNGOL, V111, P263, DOI 10.3109/00016489109137385 Petitto LA, 2000, P NATL ACAD SCI USA, V97, P13961, DOI 10.1073/pnas.97.25.13961 Poldrack RA, 2000, NEUROIMAGE, V12, P1, DOI 10.1006/nimg.2000.0596 PONTON CW, 1993, ELECTROEN CLIN NEURO, V88, P478, DOI 10.1016/0168-5597(93)90037-P Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 Rettenbach R, 1999, J COGNITIVE NEUROSCI, V11, P560, DOI 10.1162/089892999563616 Roder B, 1999, NATURE, V400, P162, DOI 10.1038/22106 Rombouts SARB, 1999, HIPPOCAMPUS, V9, P637, DOI 10.1002/(SICI)1098-1063(1999)9:6<637::AID-HIPO4>3.0.CO;2-V ITO J, 1993, ANN OTO RHINOL LARYN, V102, P797 Suarez H, 1999, ACTA OTO-LARYNGOL, V119, P239 Teissl C, 1999, J MAGN RESON IMAGING, V9, P26, DOI 10.1002/(SICI)1522-2586(199901)9:1<26::AID-JMRI4>3.0.CO;2-H TRUY E, 1995, HEARING RES, V86, P34, DOI 10.1016/0378-5955(95)00052-6 Tyler RS, 1997, OTOLARYNG HEAD NECK, V117, P180, DOI 10.1016/S0194-5998(97)70172-4 Weber B P, 1999, Ann Otol Rhinol Laryngol Suppl, V177, P22 Weeks R, 2000, J NEUROSCI, V20, P2664 Wong D, 1999, HEARING RES, V132, P34, DOI 10.1016/S0378-5955(99)00028-3 YOUNG JP, 1998, NEUROIMAGE 2, V7, pS384 NR 64 TC 44 Z9 45 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2001 VL 6 IS 6 BP 381 EP 393 DI 10.1159/000046847 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 527HC UT WOS:000174179800006 PM 11847465 ER PT J AU Praetorius, M Limberger, A Muller, M Lehner, R Schick, B Zenner, HP Plinkert, P Knipper, M AF Praetorius, M Limberger, A Muller, M Lehner, R Schick, B Zenner, HP Plinkert, P Knipper, M TI A novel microperfusion system for the long-term local supply of drugs to the inner ear: Implantation and function in the rat model SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlea; microperfusion system; inner ear therapy; drug delivery ID ROUND WINDOW MEMBRANE; GUINEA-PIG; COCHLEA; PERMEABILITY; INFUSION AB Local therapy is practiced for middle and inner ear diseases but is usually restricted to cases of ear drum perforation or repeated invasive intratympanic drug application. Perfusion of drugs on the round window or through the scalae of animals using a pump system suggests that the chronic local drug treatment might also be feasible in humans. However, drug delivery systems that are currently on the market involve repeated reimplantation if they are to be used for long-term drug supply. A bone-anchored, totally implantable micro-drug delivery system (MDS) for patient-controlled drug supply has been developed [Lehner et al., 1997]. In this study, we show the first successful long-term in vivo test of the MDS micro-pump in rats. The process of implantation and first functional tests will be described. The biomaterial used to manufacture the delivery system did not cause any inflammation reaction in any of the 9 animals successfully implanted. After activation of the micro-pump, the drug reservoir and port was found to be fluid-tight. Bolus applications of tetrodotoxin (TTX) to the round window induced a transient decrease of evoked brainstem responses. In 2 animals which carried the MDS for more than 8 months the proper functioning of the pumping device was examined in a 2-3 week interval over a 3 month period. The MDS can be autoclaved even after long-term implantation and can then be reused for subsequent implantations. Designed for life-long implantation in humans, the demonstration of an effective longterm drug supply to the inner ear using the MDS provides an encouraging first step towards future long-term drug treatment of the inner ear in humans. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Tubingen, THRC, D-72076 Tubingen, Germany. Univ Homburg, Hosp Saarland, Dept Otorhinolaryngol, Homburg, Germany. RP Knipper, M (reprint author), Univ Tubingen, THRC, Rontgenweg 11, D-72076 Tubingen, Germany. CR BROWN JN, 1993, HEARING RES, V70, P167, DOI 10.1016/0378-5955(93)90155-T Ernfors P, 1996, NAT MED, V2, P463, DOI 10.1038/nm0496-463 Goycoolea MV, 1997, MICROSC RES TECHNIQ, V36, P201, DOI 10.1002/(SICI)1097-0029(19970201)36:3<201::AID-JEMT8>3.0.CO;2-R HONRUBIA V, 1965, Acta Otolaryngol, V60, P105, DOI 10.3109/00016486509126993 IGARASHI Y, 1985, ARCH OTO-RHINO-LARYN, V242, P167, DOI 10.1007/BF00454417 Iguchi H, 1998, ORL J OTO-RHINO-LARY, V60, P181, DOI 10.1159/000027591 Juhn S K, 1989, Acta Otolaryngol Suppl, V457, P43 JUNG W, 1971, ARCH KLIN EXP OHR, V199, P473 Keithley EM, 1998, NEUROREPORT, V9, P2183, DOI 10.1097/00001756-199807130-00007 KINGMA GG, 1992, J NEUROSCI METH, V45, P127, DOI 10.1016/0165-0270(92)90050-N Knipper M, 1997, NEUROCHEM INT, V31, P659, DOI 10.1016/S0197-0186(97)00009-0 Knipper M, 1997, HNO, V45, P181 Konishi T, 1966, Acta Otolaryngol, V62, P393, DOI 10.3109/00016486609119584 KUIJPERS W, 1969, ACTA OTOLARYNGOL STO, V67, P202 Lehner R, 1997, Ear Nose Throat J, V76, P567 LUNDMAN LA, 1987, ACTA OTO-LARYNGOL, V104, P472, DOI 10.3109/00016488709128277 MORI N, 1986, ACTA OTO-LARYNGOL, V101, P217, DOI 10.3109/00016488609132830 MORIZONO T, 1987, REC ADV OT MED P 4 I, P1 NUTTALL AL, 1977, ACTA OTO-LARYNGOL, V83, P393, DOI 10.3109/00016487709128863 Oestreicher E, 2000, EUR J NEUROSCI, V12, P1584, DOI 10.1046/j.1460-9568.2000.00049.x PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 RYAN AF, 1987, J COMP NEUROL, V255, P606, DOI 10.1002/cne.902550411 SCHACHERN PA, 1987, ARCH OTOLARYNGOL, V113, P625 SCHNIEDE.EA, 1974, ANN OTO RHINOL LARYN, V83, P76 STAECKER H, 1997, OTOLARYNGOL HEAD NEC, V119, P7 TASAKI I, 1952, J NEUROPHYSIOL, V15, P497 THEEUWES F, 1976, ANN BIOMED ENG, V4, P343, DOI 10.1007/BF02584524 NR 27 TC 19 Z9 19 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2001 VL 6 IS 5 BP 250 EP 258 DI 10.1159/000046130 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 503EJ UT WOS:000172785400002 PM 11729327 ER PT J AU Arbusow, V Theil, D Strupp, M Mascolo, A Brandt, T AF Arbusow, V Theil, D Strupp, M Mascolo, A Brandt, T TI HSV-1 not only in human vestibular ganglia but also in the vestibular labyrinth SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE vestibular neuritis; herpes simplex virus type 1; vestibular ganglia; labyrinth; benign paroxysmal positional vertigo ID HERPES-SIMPLEX VIRUS; HUMAN GENICULATE; TYPE-1; PALSY; FLUID; DNA AB Reactivation of herpes simplex virus type 1 (HSV-1) in the vestibular ganglion (VG) is the suspected cause of vestibular neuritis (VN). Recent studies reported the presence of HSV-1 DNA not only in human VGs but also in vestibular nuclei, a finding that indicates the possibility of viral migration to the human vestibular labyrinth. Distribution of HSV-1 DNA was determined in geniculate ganglia, VGs, semicircular canals, and macula organs of 21 randomly obtained human temporal bones by nested PCR. Viral DNA was detected in 48% of the labyrinths, 62% of the VGs, and 57% of the geniculate ganglia. The potential significance of this finding is twofold: (1) Inflammation in VN could also involve the labyrinth and thereby cause acute unilateral vestibular deafferentation. (2) As benign paroxysmal positional vertigo often occurs in patients who have had VN, it could also be a sequel of viral labyrinthitis. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Munich, Klinikum Grosshadern, Dept Neurol, D-81377 Munich, Germany. Univ Pavia, Dept Neurol, I-27100 Pavia, Italy. RP Arbusow, V (reprint author), Univ Munich, Klinikum Grosshadern, Dept Neurol, Marchioninistr 15, D-81377 Munich, Germany. CR Adour KK, 1996, ANN OTO RHINOL LARYN, V105, P371 Arbusow V, 2000, NEUROLOGY, V55, P880 Arbusow V, 1999, ANN NEUROL, V46, P416, DOI 10.1002/1531-8249(199909)46:3<416::AID-ANA20>3.0.CO;2-W AURELIUS E, 1991, LANCET, V337, P189, DOI 10.1016/0140-6736(91)92155-U BERGSTRO.B, 1973, ACTA OTO-LARYNGOL, V76, P162, DOI 10.3109/00016487309121495 Büchele W, 1988, Adv Otorhinolaryngol, V42, P157 Furuta Y, 1993, Acta Otolaryngol Suppl, V503, P85 Murakami S, 1996, ANN INTERN MED, V124, P27 SCHUKNECHT HF, 1981, ANN OTO RHINOL LARYN, V90, P1 Schulz P, 1998, NEUROSCI LETT, V252, P139, DOI 10.1016/S0304-3940(98)00573-4 Sekitani T, 1993, Acta Otolaryngol Suppl, V503, P9 Silvoniemi P, 1988, Acta Otolaryngol Suppl, V453, P1 Strupp M, 2001, CURR OPIN NEUROL, V14, P11, DOI 10.1097/00019052-200102000-00003 WHITLEY RJ, 1988, AM J MED, V85, P61 NR 14 TC 32 Z9 33 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2001 VL 6 IS 5 BP 259 EP 262 DI 10.1159/000046131 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 503EJ UT WOS:000172785400003 PM 11729328 ER PT J AU Lutkenhoner, B Lammertmann, C Knecht, S AF Lutkenhoner, B Lammertmann, C Knecht, S TI Latency of auditory evoked field deflection N100m ruled by pitch or spectrum? SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE magnetoencephalography; MEG; auditory evoked field; AEF; pitch; missing fundamental; N100m ID HARMONIC COMPLEX TONES; NEUROMAGNETIC EVIDENCE; SENSORY MEMORY; TONOTOPIC ORGANIZATION; TEMPORAL INTEGRATION; RESPONSE LATENCIES; MAGNETIC-FIELDS; SINGLE NEURONS; MACAQUE MONKEY; CORTEX NEURONS AB The auditory evoked field (AEF) in response to pure tones of 250 and 1000 Hz and a complex tone with a periodicity of 4 ms (composed of the frequencies 1000, 1250, 1500, 1750, and 2000 Hz), corresponding to a pitch of 250 Hz, was recorded with a 37-channel neuromagnetometer system. The intensity was 60 dB sensation level (SL). Two different stimulus durations were examined in 12 subjects: 500 ms (long tones) and 100 ms (short tones). The stimulus onset asynchrony (SOA) was uniformly distributed between 3 and 4 s for the long tones and between 0.8 and 1.2 s for the short tones. Each subject was investigated four times, to assess the intraindividual variability. The mean latency of the AEF deflection N100m turned out to be similar for the long and the short tones: about 98 and 87 ms for the pure tones of 250 Hz and 1000 Hz, respectively, and 95 ms for the complex tone with a pitch of 250 Hz. However, a great interindividual variability was observed, exhibiting no consistent relationship between the N100m latencies for the three different tones, except that the response to the pure tone of 1000 Hz generally occurred earlier. In conclusion, this study does not support the proposal that the N100m latency represents a code for pitch, although a low pitch appears to be a factor favoring a longer N100m latency. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Clin Munster, Inst Expt Audiol, D-48129 Munster, Germany. Univ Clin Munster, Dept Neurol, D-48129 Munster, Germany. RP Lutkenhoner, B (reprint author), Univ Clin Munster, Inst Expt Audiol, Kardinal Von Galen Ring 10, D-48129 Munster, Germany. EM Lutkenh@uni-muenster.de CR Biermann S, 2000, J NEUROPHYSIOL, V84, P2426 Budd TW, 1998, INT J PSYCHOPHYSIOL, V31, P51, DOI 10.1016/S0167-8760(98)00040-3 Crottaz-Herbette S, 2000, CLIN NEUROPHYSIOL, V111, P1759, DOI 10.1016/S1388-2457(00)00422-3 Fishman YI, 1998, BRAIN RES, V786, P18, DOI 10.1016/S0006-8993(97)01423-6 FORSS N, 1993, HEARING RES, V68, P89, DOI 10.1016/0378-5955(93)90067-B Hartmann W. M., 1998, SIGNALS SOUND SENSAT Langner G, 1997, J COMP PHYSIOL A, V181, P665, DOI 10.1007/s003590050148 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F Loveless N, 1996, EVOKED POTENTIAL, V100, P220, DOI 10.1016/0168-5597(95)00271-5 LU ZL, 1992, BRAIN RES, V572, P236, DOI 10.1016/0006-8993(92)90475-O LUTKENHONER B, 1992, INT CONGR SER, V988, P143 LUTKENHONER B, 2001, PHYSL PSYCHOPHYSICAL, P129 Lutkenhoner B, 1998, IEEE T BIO-MED ENG, V45, P572, DOI 10.1109/10.668747 Lutkenhoner B, 1997, ELECTROEN CLIN NEURO, V102, P326, DOI 10.1016/S0013-4694(96)96590-6 LUTKENHONER B, 1994, NATO ADV SCI INST SE, V271, P259 Lutkenhoner B, 1999, RECENT ADV BIOMAGNET, P256 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x Mendelson JR, 1997, J COMP PHYSIOL A, V181, P615, DOI 10.1007/s003590050145 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 Moran John E., 1993, Brain Topography, V5, P229, DOI 10.1007/BF01128990 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Pantev C, 1996, HEARING RES, V100, P164, DOI 10.1016/0378-5955(96)00124-4 PHILLIPS DP, 1985, HEARING RES, V19, P253, DOI 10.1016/0378-5955(85)90145-5 Phillips DP, 1998, BEHAV BRAIN RES, V93, P33, DOI 10.1016/S0166-4328(97)00139-3 Press W. H., 1992, ART SCI COMPUTING Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Roberts TPL, 1998, NEUROREPORT, V9, P3265, DOI 10.1097/00001756-199810050-00024 Roberts TPL, 2000, J CLIN NEUROPHYSIOL, V17, P114, DOI 10.1097/00004691-200003000-00002 Roberts TPL, 1996, NEUROREPORT, V7, P1138, DOI 10.1097/00001756-199604260-00007 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 Schreiner CE, 1998, AUDIOL NEURO-OTOL, V3, P104, DOI 10.1159/000013785 SCHWARZ DWF, 1987, J OTOLARYNGOL, V16, P316 SCHWARZ DWF, 1990, J NEUROPHYSIOL, V64, P282 Steinschneider M, 1998, J ACOUST SOC AM, V104, P2935, DOI 10.1121/1.423877 Talavage TM, 2000, HEARING RES, V150, P225, DOI 10.1016/S0378-5955(00)00203-3 Wessinger CM, 2001, J COGNITIVE NEUROSCI, V13, P1, DOI 10.1162/089892901564108 NR 39 TC 21 Z9 21 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2001 VL 6 IS 5 BP 263 EP 278 DI 10.1159/000046132 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 503EJ UT WOS:000172785400004 PM 11729329 ER PT J AU Savio, G Cardenas, J Abalo, MP Gonzalez, A Valdes, J AF Savio, G Cardenas, J Abalo, MP Gonzalez, A Valdes, J TI The low and high frequency auditory steady state responses mature at different rates SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE multiple-frequency stimulation; objective audiometry; frequency-specific audiometry ID BRAIN-STEM RESPONSES; EVOKED-POTENTIALS; MODULATED TONES; NORMAL-HEARING; INFANTS; THRESHOLDS; AUDIOMETRY; LATENCY; HZ AB The age-related changes in the fast rate (70-110 Hz) auditory steady state response elicited by multiple-frequency tones (MSSR) that were amplitude-modulated (AM) are reported here. The MSSR was recorded in a sample of 64 well babies distributed into three age groups: 0-29 days (n = 25); 1-6 months (n = 26); 7-12 months (n = 13). Four simultaneously presented AM tones (0.5, 1, 2 and 4 kHz) were delivered monaurally through TDH 49 earphones, at different intensities (between 90 and 30 dB SPL). Clear developmental changes were found between birth and 12 months of age in response threshold, amplitude and detectability. Statistical analysis revealed that these changes occurred at different rates for low- and high-frequency responses. Nonetheless adult-like hearing thresholds were estimated reasonably well in most newborns and well babies, for all frequencies tested. Therefore the MSSR technique could be useful for objective frequency-specific audiometry beginning at birth. Copyright (C) 2001 S. Karger AG, Basel. C1 Cuban Neurosci Ctr, Phono Audiol Dept, Havana, Cuba. RP Abalo, MP (reprint author), Cuban Neurosci Ctr, Phono Audiol Dept, Ave 25 Esq,158 Playa,POB 6412-6414, Havana, Cuba. CR American National Standards Institute (ANSI), 1999, S311999 ANSI Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7 Brienesse P, 1997, PEDIATR RES, V42, P478, DOI 10.1203/00006450-199710000-00009 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 DOBIE RA, 1989, EAR HEARING, V10, P2 DURIEUXSMITH A, 1994, EAR HEARING, V1, P20 HARRIS DM, 1984, SCIENCE, V225, P741, DOI 10.1126/science.6463651 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 HECOX K, 1975, INFANT PERCEPTION SE, V2, P151 Hepper PG, 1994, ARCH DIS CHILD, V71, P81 Herdman AT, 2001, SCAND AUDIOL, V30, P41, DOI 10.1080/010503901750069563 HOGBEN N, 1999, 16 INT EV RESP AUD S John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 John MS, 2001, AUDIOL NEURO-OTOL, V6, P12, DOI 10.1159/000046805 John MS, 1998, AUDIOLOGY, V37, P59 KAGA K, 1980, ARCH OTOLARYNGOL, V106, P564 KLEIN AJ, 1984, HEARING RES, V16, P291, DOI 10.1016/0378-5955(84)90118-7 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 LINS OG, 1995, J ACOUST SOC AM, V97, P3051, DOI 10.1121/1.411869 Mardia KV, 1979, MULTIVARIATE ANAL Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MOCHIZUKI Y, 1983, PROG NEUROBIOL, V20, P273, DOI 10.1016/0301-0082(83)90005-9 Perez-Abalo MC, 2001, EAR HEARING, V22, P200, DOI 10.1097/00003446-200106000-00004 Picton T W, 1998, J Am Acad Audiol, V9, P315 PICTON TW, 1994, INT J PEDIATR OTORHI, V28, P93, DOI 10.1016/0165-5876(94)90001-9 PICTON TW, 1987, ELECTROEN CLIN NEURO, V68, P119, DOI 10.1016/0168-5597(87)90039-6 Picton T.W., 1992, ELECTRODIAGNOSIS CLI, P537 Pujol R, 1991, Acta Otolaryngol Suppl, V482, P7 PUJOL R, 1990, SEMIN PERINATOL, V14, P275 RICKARDS FW, 1994, BRIT J AUDIOL, V28, P327, DOI 10.3109/03005369409077316 Romand R., 1983, DEV AUDITORY VESTIBU, P47 Rubel E.W., 1978, HDB SENSORY PHYSL, V9, P135 RUBEL EW, 1983, SCIENCE, V219, P512, DOI 10.1126/science.6823549 SALAMY A, 1984, J CLIN NEUROPHYSIOL, V1, P293, DOI 10.1097/00004691-198407000-00003 SALAMY A, 1976, ELECTROEN CLIN NEURO, V40, P418, DOI 10.1016/0013-4694(76)90193-0 *SAS I INC, 1985, SAS LANG GUID PERS C SAVIO G, 1995, ELECTROAUDIOMETRIA M SAVIO G, 1997, ACTA OTORRINOLARINGO, V25, P87 STAPELLS DR, 2000, P INT C SOUND FDN EA, P13 STAPELLS DR, 1995, EAR HEARING, V16, P361, DOI 10.1097/00003446-199508000-00003 STAPELLS DR, 1988, ELECTROEN CLIN NEURO, V71, P289, DOI 10.1016/0168-5597(88)90029-9 STAPELLS DR, 1982, J ACOUST SOC AM, V72, P74, DOI 10.1121/1.388026 TEAS DC, 1982, HEARING RES, V7, P19, DOI 10.1016/0378-5955(82)90080-6 Valdes JL, 1997, EAR HEARING, V18, P420, DOI 10.1097/00003446-199710000-00007 YAMADA O, 1983, ARCH OTOLARYNGOL, V109, P79 NR 46 TC 33 Z9 39 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2001 VL 6 IS 5 BP 279 EP 287 DI 10.1159/000046133 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 503EJ UT WOS:000172785400005 PM 11729330 ER PT J AU Szagun, G AF Szagun, G TI Language acquisition in young German-speaking children with cochlear implants: Individual differences and implications for conceptions of a 'sensitive phase' SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE children with cochlear implants; language acquisition; acquisition of grammar; vocabulary; sensitive phase ID SPEECH; MORPHOLOGY AB The acquisition of language was studied longitudinally in a sample of 22 German-speaking children with cochlear implants (mean implantation age 29 months) and a control group of 22 normally hearing children. Spontaneous speech samples were collected over 27-36 months, starting at the the one-word stage. Results indicate that grammatical progress as measured by mean length of utterance was slower for cochlear-implanted children. However, there were substantial individual differences in the cochlear-implanted group. While 10 cochlear-implanted children progressed at pace with normally hearing children, 12 cochlear-implanted children remained well behind. Cochlear-implanted children who showed fast progress at an early stage continued to make fast progress as time went on, and those who showed slow progress early on continued to progress slowly. Pre-operative hearing was a better predictor of subsequent linguistic growth than age at implantation. Increases in vocabulary were associated with grammatical progress in both groups. Copyright (C) 2001 S. Karger AG, Basel. C1 Carl von Ossietzky Univ Oldenburg, Inst Kognit Forsch, FB Psychol 5, D-26111 Oldenburg, Germany. RP Szagun, G (reprint author), Carl von Ossietzky Univ Oldenburg, Inst Kognit Forsch, FB Psychol 5, Gebaude A6,Postfach 2503, D-26111 Oldenburg, Germany. EM gisela.szagun@uni-oldenburg.de CR Bates E., 1988, 1 WORDS GRAMMAR INDI Bates E., 1992, HDB NEUROPSYCHOLOGY, V6, P69 Bates E, 1999, CARN S COGN, P29 BERTRAM B, 1991, REHABILITATION CHILD, P63 Boothroyd A., 1991, EAR HEARING S, V12, P81, DOI 10.1097/00003446-199108001-00010 Brown R., 1973, 1 LANGUAGE EARLY STA Chomsky N., 1972, LANGUAGE MIND FENSON L, 1994, MONOGR SOC RES CHILD, V59, pR5 FryaufBertschy H, 1997, J SPEECH LANG HEAR R, V40, P183 Johnson Jacqueline S., 1993, P248 KUHL PK, 1981, J ACOUST SOC AM, V70, P340, DOI 10.1121/1.386782 LENNEBER E, 1967, BIOL FDN LANGUAGE Locke JL, 1997, BRAIN LANG, V58, P265, DOI 10.1006/brln.1997.1791 MacWhinney B., 1995, CHILDES PROJECT TOOL OYAMA S, 1979, MERRILL PALMER QUART, V25, P83 PLUNKETT K, 1993, COGNITION, V48, P21, DOI 10.1016/0010-0277(93)90057-3 SARIMSKI K, 1987, ORDINALSKALEN SENSOM Saussure Ferdinand de, 1955, COURS LINGUISTIQUE G Serry TA, 1999, J SPEECH LANG HEAR R, V42, P141 SNIJDERS T, 1996, SON R 2 1 2 7 SNIJDE Spencer LJ, 1998, EAR HEARING, V19, P310, DOI 10.1097/00003446-199808000-00006 SZAGUN G, 1999, RULES TRANSCRIBING A SZAGUN G, 1998, SPRACHE STIMME GEHOR, V0022 Szagun G, 2000, AUDIOL NEURO-OTOL, V5, P39, DOI 10.1159/000013864 Tomblin JB, 1999, J SPEECH LANG HEAR R, V42, P497 TYEMURRAY N, 1995, J SPEECH HEAR RES, V38, P327 Tyler R. S., 1993, COCHLEAR IMPLANTS AU NR 27 TC 31 Z9 31 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2001 VL 6 IS 5 BP 288 EP 297 DI 10.1159/000046134 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 503EJ UT WOS:000172785400006 PM 11729331 ER PT J AU Oertel, D Fujino, K AF Oertel, D Fujino, K TI Role of biophysical specialization in cholinergic modulation in neurons of the ventral cochlear nuclei SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiol Sci DE auditory pathway; cochlear nuclei; ion channels; acetylcholine; noise ID CROSSED OLIVOCOCHLEAR BUNDLE; AUDITORY-NERVE RESPONSE; CATION CURRENT I(H); OCTOPUS CELLS; ELECTRICAL-STIMULATION; DISCHARGE PATTERNS; EFFERENT NEURONS; OUTWARD CURRENTS; STELLATE CELLS; TIME-COURSE AB In contacting arrays of different types of neurons whose axons have differing targets in the brain stem, the auditory pathway is subdivided into parallel ascending pathways, each of which carries a different type of information. Several distinct arrays of neurons in the ventral cochlear nuclei have anatomical and biophysical specializations which enable them to extract differing facets of acoustic information and to convey it up the auditory pathway. T stellate cells have higher input resistances and have lower firing thresholds than bushy or octopus cells, enabling their firing to be modulated by small currents. Cholinergic currents, driven by neurons in the ventral nucleus of the trapezoid body that are likely to include medial olivocochlear efferents, excite T stellate cells, but have subtle effects on the firing of bushy cells, and have no detectable influence on octopus cells and D stellate cells. We suggest that cholinergic excitation of T stellate cells contributes toward shifting their acoustic dynamic ranges and increasing the encoding of spectral peaks in noisy conditions and in awake animals. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Wisconsin, Sch Med, Dept Physiol, Madison, WI 53706 USA. RP Oertel, D (reprint author), Univ Wisconsin, Sch Med, Dept Physiol, 1300 Univ Ave, Madison, WI 53706 USA. EM oertel@physiology.wisc.edu CR Bal R, 2000, J NEUROPHYSIOL, V84, P806 BAL R, 2001, IN PRESS J NEUROPHYS BANKS MI, 1993, J NEUROPHYSIOL, V70, P1420 BLACKBURN CC, 1990, J NEUROPHYSIOL, V63, P1191 BLACKBURN CC, 1989, J NEUROPHYSIOL, V62, P1303 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 CANT NB, 1982, J COMP NEUROL, V212, P313, DOI 10.1002/cne.902120308 Feliciano M. E., 1995, AUDIT NEUROSCI, V1, P287 Ferragamo MJ, 1998, J NEUROPHYSIOL, V79, P51 FRISINA RD, 1990, HEARING RES, V44, P99, DOI 10.1016/0378-5955(90)90074-Y Fujino K, 2001, J NEUROSCI, V21, P7372 Gardner SM, 1999, J NEUROSCI, V19, P8721 Gardner SM, 2001, J NEUROSCI, V21, P7428 GODFREY DA, 1975, J COMP NEUROL, V162, P247, DOI 10.1002/cne.901620206 GOLDING NL, 1995, J NEUROSCI, V15, P3138 Golding NL, 1999, J NEUROSCI, V19, P2897 Guinan Jr J.J., 1996, COCHLEA, P435 Hienz RD, 1998, HEARING RES, V116, P10, DOI 10.1016/S0378-5955(97)00197-4 Isaacson JS, 1996, J NEUROPHYSIOL, V76, P1566 KAWASE T, 1993, J NEUROPHYSIOL, V70, P2533 LIBERMAN MC, 1986, HEARING RES, V24, P17, DOI 10.1016/0378-5955(86)90003-1 LIBERMAN MC, 1988, J NEUROPHYSIOL, V60, P1779 MANIS PB, 1991, J NEUROSCI, V11, P2865 MAY BJ, 1992, J NEUROPHYSIOL, V68, P1589 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Oertel D, 2000, P NATL ACAD SCI USA, V97, P11773, DOI 10.1073/pnas.97.22.11773 Oertel D, 1991, Curr Opin Neurobiol, V1, P221, DOI 10.1016/0959-4388(91)90082-I RAMAN IM, 1992, NEURON, V9, P173, DOI 10.1016/0896-6273(92)90232-3 Rathouz M, 1998, J NEUROPHYSIOL, V80, P2824 RHODE WS, 1986, J NEUROPHYSIOL, V56, P261 ROBERTSON D, 1985, HEARING RES, V20, P63, DOI 10.1016/0378-5955(85)90059-0 RYUGO DK, 1981, BRAIN RES, V210, P342, DOI 10.1016/0006-8993(81)90907-0 SHERRIFF FE, 1994, NEUROSCIENCE, V58, P627, DOI 10.1016/0306-4522(94)90086-8 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SMITH PH, 1989, J COMP NEUROL, V282, P595, DOI 10.1002/cne.902820410 SMITH PH, 1993, NATO ADV SCI INST SE, V239, P349 THOMPSON AM, 1991, J COMP NEUROL, V303, P267, DOI 10.1002/cne.903030209 WINSLOW RL, 1988, HEARING RES, V35, P165, DOI 10.1016/0378-5955(88)90116-5 WINSLOW RL, 1987, J NEUROPHYSIOL, V57, P1002 Yao WP, 1999, HEARING RES, V128, P97, DOI 10.1016/S0378-5955(98)00199-3 Yao WP, 1996, AUDIT NEUROSCI, V2, P241 NR 41 TC 12 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 161 EP 166 DI 10.1159/000046825 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100002 PM 11694720 ER PT J AU Heil, P AF Heil, P TI Representation of sound onsets in the auditory system SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci DE auditory cortex; transient; temporal coding; temporal envelope; latency ID NEURAL REPRESENTATION; MODULATED STIMULI; POSTERIOR FIELD; SINGLE NEURONS; TONE INTENSITY; CORTEX; CAT; RESPONSES; AMPLITUDE; LEVEL AB Sound onsets constitute particularly salient and behaviorally relevant transients and elicit vigorous responses from most auditory neurons. Here I show that response latency, precision of response timing, and response magnitude depend on dynamic properties of the stimulus envelope at onset. The joint consideration of these response parameters, and of the stimulus and neuronal properties on which they depend, suggests a point-by-point sampling, or tracking, mechanism for the onset envelope. This mechanism is characterized by an automatically adjusted sampling rate and precision of spike timing, so that it should be rather robust against changes in the dynamics of the envelope, brought about for example by changes in a signal's sound pressure level. There will be a one-to-one relationship between stimulus onset and the evoked spatiotemporal response pattern. That pattern involves both the tonotopic and the isofrequency axes of cortical maps. Such a mechanism could provide a temporal resolution of the time course of the onset envelope which is likely orders of magnitude higher than that inferred from the phase-locking capabilities of neurons in cortical fields to periodic signals and could contribute to the instantaneous coding of transients. Copyright (C) 2001 S. Karger AG, Basel. C1 Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. RP Heil, P (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. CR Biermann S, 2000, J NEUROPHYSIOL, V84, P2426 BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1138 DRULLMAN R, 1994, J ACOUST SOC AM, V95, P1053, DOI 10.1121/1.408467 EGGERMONT JJ, 1993, HEARING RES, V65, P75 Fishbach A, 2001, J NEUROPHYSIOL, V85, P2303 GOOLER DM, 1992, J NEUROPHYSIOL, V67, P1 Greenberg S, 1996, PRINCIPLES EXPT PHON, P362 GREY JM, 1978, J ACOUST SOC AM, V63, P1493, DOI 10.1121/1.381843 HALL JC, 1991, J NEUROPHYSIOL, V66, P955 Heil P, 1996, NEUROREPORT, V7, P3073, DOI 10.1097/00001756-199611250-00056 Heil P, 1998, CEREB CORTEX, V8, P125, DOI 10.1093/cercor/8.2.125 Heil P, 1998, J NEUROPHYSIOL, V79, P3041 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X Heil P, 1998, BEHAV BRAIN RES, V95, P233, DOI 10.1016/S0166-4328(98)00044-8 HEIL P, 2001, IN PRESS COMPUTATION HEIL P, 2001, ABSTA ASS RES OTOLAR, V24, P367 Heil P, 1997, J NEUROPHYSIOL, V77, P2642 Heil P, 1997, J NEUROPHYSIOL, V78, P2438 KRAHE R, 1993, J COMP PHYSIOL A, V173, P425 KRISHNA BS, 2001, ABSTR ASS RES OT, V24, P366 KRUMHANSL CL, 1992, J EXP PSYCHOL HUMAN, V18, P739, DOI 10.1037//0096-1523.18.3.739 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F PANTEV C, 1989, ELECTROEN CLIN NEURO, V72, P225, DOI 10.1016/0013-4694(89)90247-2 Paquette C, 1997, CORTEX, V33, P689, DOI 10.1016/S0010-9452(08)70726-3 PHILLIPS DP, 1988, J NEUROPHYSIOL, V59, P1524 PHILLIPS DP, 1995, J NEUROPHYSIOL, V73, P674 PHILLIPS DP, 1990, BEHAV BRAIN RES, V37, P197, DOI 10.1016/0166-4328(90)90132-X PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 PHILLIPS DP, 1993, ANN NY ACAD SCI, V682, P104, DOI 10.1111/j.1749-6632.1993.tb22963.x Phillips DP, 1999, J ACOUST SOC AM, V105, P2731, DOI 10.1121/1.426891 PITT MA, 1992, J EXP PSYCHOL HUMAN, V18, P728, DOI 10.1037//0096-1523.18.3.728 PLOMP R, 1971, 7 INT C AC BUD, P387 SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SEMPLE MN, 1993, J NEUROPHYSIOL, V69, P449 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SUGA N, 1971, J PHYSIOL-LONDON, V217, P159 SUGA N, 1977, SCIENCE, V196, P64, DOI 10.1126/science.190681 NR 39 TC 15 Z9 16 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 167 EP 172 DI 10.1159/000046826 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100003 PM 11694721 ER PT J AU Brugge, JF Reale, RA Jenison, RL Schnupp, J AF Brugge, JF Reale, RA Jenison, RL Schnupp, J TI Auditory cortical spatial receptive fields SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci DE auditory cortex; directional hearing; sound localization ID TEMPORAL CHARACTERISTICS; NEURONS; CORTEX; CAT; SENSITIVITY; SOUND; SELECTIVITY; GRASSFROG; DIRECTION; MIDBRAIN AB Neurons in the primary auditory cortex (Al) of anesthetized cats were studied for their sensitivity to directions of transient sounds in virtual acoustic space under a variety of conditions. An effective transient sound evokes a single spike or short burst of spikes with a precisely timed onset. The aggregate of effective directions forms a spatial receptive field. Typically, spatial receptive fields are large, often occupying a quadrant or more of acoustic space. Within the receptive field onset latency varies systematically with direction thereby providing information about source direction. This receptive field structure is highly robust, remaining relatively stable under conditions of competing sounds. Maximum likelihood analysis suggests that psychophysical spatial acuity can be achieved with a relatively small ensemble of Al neurons with broad receptive fields having response gradients of latency. Using reverse correlation and white-noise analysis receptive fields were mapped in space and time. This analysis revealed that spatial receptive fields of Al neurons need not be static but may exhibit marked temporal dynamics. This suggests a sensitivity for direction and speed of moving sound sources. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Wisconsin, Waisman Ctr 627, Madison, WI 53705 USA. Univ Wisconsin, Dept Physiol, Madison, WI 53705 USA. Univ Wisconsin, Dept Psychol, Madison, WI 53705 USA. Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP Brugge, JF (reprint author), Univ Wisconsin, Waisman Ctr 627, Madison, WI 53705 USA. RI schnupp, jan/A-3006-2012 CR BRUGGE JF, 1996, BINAURAL SPATIAL HEA, P447 Brugge JF, 1998, J NEUROPHYSIOL, V80, P2417 Brugge JF, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P373, DOI 10.1007/978-1-4419-8712-9_34 Brugge JF, 1996, J NEUROSCI, V16, P4420 deCharms RC, 1998, SCIENCE, V280, P1439, DOI 10.1126/science.280.5368.1439 EPPING WJM, 1986, HEARING RES, V24, P37, DOI 10.1016/0378-5955(86)90004-3 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Jenison RL, 1996, NEURAL COMPUT, V8, P115, DOI 10.1162/neco.1996.8.1.115 Jenison RL, 1998, J NEUROPHYSIOL, V80, P2645 JENISON RL, 2001, ARO ABSTR JENISON RL, 1997, CENTRAL AUDITORY PRO, P149 JENISON RL, 2001, IN PRESS NEUROCOMP JENJISON RL, 2001, J NEUROSCI, V21, P4408 MCILWAIN JT, 1976, INT REV PHYSL, P242 MELSSEN WJ, 1992, HEARING RES, V60, P178, DOI 10.1016/0378-5955(92)90020-N MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MUSICANT AD, 1990, J ACOUST SOC AM, V87, P757, DOI 10.1121/1.399545 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 REALE RA, 1997, CENTRAL AUDITORY PRO, P149 Reale RA, 2000, J NEUROPHYSIOL, V84, P435 REALE RA, 1996, VIRTUAL AUDITORY SPA, P153 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 NR 22 TC 19 Z9 19 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 173 EP 177 DI 10.1159/000046827 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100004 PM 11694722 ER PT J AU Recanzone, GH AF Recanzone, GH TI Spatial processing in the primate auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci DE sound localization; cerebral cortex; macaque; human; physiology ID SOUND-SOURCE LOCATION; SUPERIOR COLLICULUS; RESPONSE PROPERTIES; SINGLE NEURONS; MACAQUE MONKEY; LOCALIZATION; CAT; SENSITIVITY; FREQUENCY; LESIONS AB Spatial localization of auditory stimuli is dependent on the cerebral cortex, yet it remains unclear how cortical activity gives rise to spatial percepts. It has recently been proposed that spatial information is processed serially within the primate auditory cortex, initially in the primary auditory cortex (Al) through the auditory areas caudal to Al, particularly the caudomedial (CM) and caudolateral fields, and onward to the parietal lobe. The activity of single neurons in Al and CM supports this hypothesis, where a greater percentage of CM neurons are sensitive to the spatial location of acoustic stimuli than Al neurons, and the spatial sensitivity of CM neurons extends across a broader range of the stimulus spectrum compared to Al neurons. Further, populations of CM neurons are better able to predict sound localization ability than are populations of Al neurons. We have recently explored the effects of stimulus intensity on both sound localization performance and the spatial sensitivity of auditory cortical neurons. The preliminary results of these experiments again indicate that spatial information is serially processed between Al and the caudal fields. The effects of visual stimulation on auditory localization have also been investigated. Under the appropriate circumstances, visual stimuli can 'capture' the spatial location of auditory stimuli in both humans and monkeys. This perceptual illusion suggests that there is a plastic shift in auditory spatial perception. Where the representation of this shift resides is unknown, although two likely candidates are the multimodal regions of the parietal lobe and the superior temporal sulcus. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Calif Davis, Ctr Neurosci, Davis, CA 95616 USA. Univ Calif Davis, Sect Neurobiol Physiol & Behav, Davis, CA 95616 USA. RP Recanzone, GH (reprint author), Univ Calif Davis, Ctr Neurosci, 1544 Newton Ct, Davis, CA 95616 USA. CR AHISSAR M, 1992, J NEUROPHYSIOL, V67, P203 BENSON DA, 1981, BRAIN RES, V219, P249, DOI 10.1016/0006-8993(81)90290-0 Brugge JF, 1996, J NEUROSCI, V16, P4420 HEFFNER HE, 1990, J NEUROPHYSIOL, V64, P915 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 Jackson C. V., 1953, Q J EXPT PSYCHOL, V5, P52, DOI 10.1080/17470215308416626 Kaas JH, 1999, NAT NEUROSCI, V2, P1045, DOI 10.1038/15967 KING AJ, 1987, J NEUROPHYSIOL, V57, P596 Middlebrooks JC, 1998, J NEUROPHYSIOL, V80, P863 MIDDLEBROOKS JC, 1981, J NEUROSCI, V1, P107 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 Phan ML, 2000, J COGNITIVE NEUROSCI, V12, P583, DOI 10.1162/089892900562354 PICK HL, 1969, PERCEPT PSYCHOPHYS, V6, P203, DOI 10.3758/BF03207017 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 Rauschecker JP, 1998, AUDIOL NEURO-OTOL, V3, P86, DOI 10.1159/000013784 Recanzone GH, 1998, P NATL ACAD SCI USA, V95, P869, DOI 10.1073/pnas.95.3.869 Recanzone GH, 1998, J ACOUST SOC AM, V103, P1085, DOI 10.1121/1.421222 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2315 Recanzone GH, 2000, J NEUROPHYSIOL, V83, P2723 Slutsky DA, 2001, NEUROREPORT, V12, P7, DOI 10.1097/00001756-200101220-00009 SU TK, 2001, IN PRESS J ASS RES O, V2 Thomas GJ, 1941, J EXP PSYCHOL, V28, P163, DOI 10.1037/h0055183 TU TK, 2000, SOC NEUR ABSTR, V26, P955 Ungerleider LG, 1982, ANAL VISUAL BEHAV, P549 Ungerleider Leslie G., 1994, Current Opinion in Neurobiology, V4, P157, DOI 10.1016/0959-4388(94)90066-3 Wallace MT, 1996, J NEUROPHYSIOL, V76, P1246 WITKIN HA, 1952, J EXP PSYCHOL, V43, P58, DOI 10.1037/h0055889 WOODS TM, 2000, SOC NEUR ABSTR, V26, P1221 NR 28 TC 7 Z9 7 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 178 EP 181 DI 10.1159/000046828 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100005 PM 11694723 ER PT J AU King, AJ Kacelnik, O Mrsic-Flogel, TD Schnupp, JWH Parsons, CH Moore, DR AF King, AJ Kacelnik, O Mrsic-Flogel, TD Schnupp, JWH Parsons, CH Moore, DR TI How plastic is spatial hearing? SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci DE sound localization; plasticity; superior colliculus; auditory cortex; virtual acoustic space; behaviour; monaural; binaural ID EAR TRANSFER-FUNCTIONS; SOUND LOCALIZATION; AUDITORY SPACE; INDIVIDUAL-DIFFERENCES; CUES; FREQUENCY; INFANCY; FERRET; BRAIN; MAP AB The location of a sound source is derived by the auditory system from spatial cues present in the signals at the two ears. These cues include interaural timing and level differences, as well as monaural spectral cues generated by the external ear. The values of these cues vary with individual differences in the shape and dimensions of the head and external ears. We have examined the neurophysiological consequences of these intersubject variations by recording the responses of neurons in ferret primary auditory cortex to virtual sound sources mimicking the animal's own ears or those of other ferrets. For most neurons, the structure of the spatial response fields changed significantly when acoustic cues measured from another animal were presented. This is consistent with the finding that humans localize less accurately when listening to virtual sounds from other subjects. To examine the role of experience in shaping the ability to localize sound, we have studied the behavioural consequences of altering binaural cues by chronically plugging one ear. Ferrets raised and tested with one ear plugged learned to localize as accurately as control animals, which is consistent with previous findings that the representation of auditory space in the midbrain can accommodate abnormal sensory cues during development. Adaptive changes in behaviour were also observed in adults, particularly if they were provided with regular practice in the localization task. Together, these findings suggest that the neural circuits responsible for sound localization can be recalibrated throughout life. Copyright (C) 2001 S. KargerAG, Basel. C1 Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP King, AJ (reprint author), Univ Oxford, Physiol Lab, Parks Rd, Oxford OX1 3PT, England. RI schnupp, jan/A-3006-2012; King, Andrew/M-6708-2013 OI King, Andrew/0000-0001-5180-7179 CR CARLILE S, 1991, HEARING RES, V51, P265, DOI 10.1016/0378-5955(91)90043-9 CLIFTON RK, 1988, DEV PSYCHOL, V24, P477, DOI 10.1037//0012-1649.24.4.477 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 KACELNIK O, 2001, ABSTR ASS RES OTOLAR, V24, P262 King AJ, 2001, TRENDS COGN SCI, V5, P261, DOI 10.1016/S1364-6613(00)01660-0 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 King AJ, 1999, BIOESSAYS, V21, P900, DOI 10.1002/(SICI)1521-1878(199911)21:11<900::AID-BIES2>3.0.CO;2-6 Knudsen EI, 2000, P NATL ACAD SCI USA, V97, P11815, DOI 10.1073/pnas.97.22.11815 Masterton RB, 1997, ACOUSTICAL SIGNAL PROCESSING IN THE CENTRAL AUDITORY SYSTEM, P1, DOI 10.1007/978-1-4419-8712-9_1 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1493, DOI 10.1121/1.427147 MIDDLEBROOKS JC, 1990, J ACOUST SOC AM, V87, P2149, DOI 10.1121/1.399183 Middlebrooks JC, 1999, J ACOUST SOC AM, V106, P1480, DOI 10.1121/1.427176 Moore BCJ, 1997, INTRO PSYCHOL HEARIN Moore DR, 1999, J NEUROSCI, V19, P8704 Mrsic-Flogel TD, 2001, J NEUROPHYSIOL, V86, P1043 Parsons CH, 1999, J NEUROPHYSIOL, V82, P2294 SCHNUPP JWH, 2001, ABSTR ASS RES OTOLAR, V24, P262 Schnupp JWH, 1998, J NEUROPHYSIOL, V79, P1053 SHAW EAG, 1968, J ACOUST SOC AM, V44, P240, DOI 10.1121/1.1911059 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 SLATTERY WH, 1994, HEARING RES, V75, P38, DOI 10.1016/0378-5955(94)90053-1 Stein B. E., 1993, MERGING SENSES WENZEL EM, 1993, J ACOUST SOC AM, V94, P111, DOI 10.1121/1.407089 Xu L, 2000, J ACOUST SOC AM, V107, P1451, DOI 10.1121/1.428432 NR 24 TC 25 Z9 25 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 182 EP 186 DI 10.1159/000046829 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100006 PM 11694724 ER PT J AU Shinn-Cunningham, B AF Shinn-Cunningham, B TI Models of plasticity in spatial auditory processing SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiol Sci DE neural plasticity; spatial hearing; learning; auditory models; interaural time differences; interaural level differences; spectral cues ID SOUND LOCALIZATION; INTERAURAL TIME; BRAIN; SPACE; CUES; REPRESENTATION; COLLICULUS; HEARING; MAPS; SITE AB Both psychophysical and physiological studies have examined plasticity of spatial auditory processing. While there is a great deal known about how the system computes basic cues that influence spatial perception, less is known about how these cues are integrated to form spatial percepts and how the auditory system adapts and calibrates in order to maintain accurate spatial perception. After summarizing evidence for plasticity in the spatial auditory pathway, this paper reviews a statistical, decision-theory model of short-term plasticity and a system-level model of the spatial auditory pathway that may help elucidate how long- and short-term experiences influence the computations underlying spatial hearing. Copyright (C) 2001 S. Karger AG, Basel. C1 Boston Univ, Hearing Res Ctr, Dept Cognit & Neural Syst, Boston, MA 02215 USA. Boston Univ, Hearing Res Ctr, Dept Biomed Engn, Boston, MA 02215 USA. RP Shinn-Cunningham, B (reprint author), Boston Univ, Hearing Res Ctr, Dept Cognit & Neural Syst, 677 Beacon St, Boston, MA 02215 USA. EM shinn@cns.bu.edu CR BILSEN FA, 1973, ACUSTICA, V66, P131 BRAIDA LD, 1988, AUDITORY FUNCTION, P559 BRAINARD MS, 1993, J NEUROSCI, V13, P4589 BRAINARD MS, 1993, INT CONGR SER, V1036, P113 CLIFTON RK, 1988, DEV PSYCHOL, V24, P477, DOI 10.1037//0012-1649.24.4.477 Durlach N I, 1993, Presence (Camb), V2, P89 Florentine M, 1976, J Am Audiol Soc, V1, P243 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 KASSEM S, 1998, THESIS MIT KING AJ, 1993, EXP BRAIN RES, V94, P444 KING AJ, 1991, TRENDS NEUROSCI, V14, P31, DOI 10.1016/0166-2236(91)90181-S KNUDSEN EI, 1994, J NEUROPHYSIOL, V71, P79 KNUDSEN EI, 1987, ANNU REV NEUROSCI, V10, P41 KOEHNKE J, 1995, EAR HEARING, V16, P331, DOI 10.1097/00003446-199508000-00001 KORTE M, 1993, J NEUROPHYSIOL, V70, P1717 MOGDANS J, 1994, J NEUROPHYSIOL, V72, P2875 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 Shinn-Cunningham B, 2000, PERCEPT PSYCHOPHYS, V62, P33, DOI 10.3758/BF03212059 SHINNCUNNINGHAM BG, 1995, J ACOUST SOC AM, V98, P164, DOI 10.1121/1.413752 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3667, DOI 10.1121/1.423107 Shinn-Cunningham B.G., 2000, INT C AUD DISPL, P126 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 STERN RM, 1997, BINAURAL SPATIAL HEA, P499 WIGHTMAN FL, 1992, J ACOUST SOC AM, V91, P1648, DOI 10.1121/1.402445 WILMINGTON D, 1994, HEARING RES, V74, P99, DOI 10.1016/0378-5955(94)90179-1 NR 25 TC 9 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 187 EP 191 DI 10.1159/000046830 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100007 PM 11694725 ER PT J AU Irvine, DRF Rajan, R Brown, M AF Irvine, DRF Rajan, R Brown, M TI Injury- and use-related plasticity in adult auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci DE auditory cortex; plasticity; frequency tuning and organization; cochlear lesion; hearing loss; perceptual learning ID NUCLEUS BASALIS; REORGANIZATION; MAP; DISCRIMINATION; RESPONSES; INDUCTION; DYNAMICS AB After restricted cochlear lesions in adult animals the frequency selectivity of neurons in the cortical region deprived of its normal input by the lesion is changed such that the region is occupied by expanded representations of adjacent (perilesion) frequencies. These changes reflect a dynamic process of reorganization (plasticity) and are not explicable as passive consequences of the lesion. Analogous plasticity of cortical frequency selectivity and organization is seen following behavioural training that enhances the significance of particular acoustic stimuli. The occurrence of injury- and use-related auditory cortical plasticity gives rise to a number of questions relating to the mechanisms involved, the perceptual consequences and functional significance of such plastic changes, and their implications for the central processing of input from prosthetic devices. Evidence relating to these issues is briefly summarized in this review, and the directions of future research are considered. Copyright (C) 2001 S. Karger AG, Basel. C1 Monash Univ, Dept Psychol, Clayton, Vic 3800, Australia. Monash Univ, Dept Physiol, Clayton, Vic 3800, Australia. RP Irvine, DRF (reprint author), Monash Univ, Dept Psychol, POB 17, Clayton, Vic 3800, Australia. RI Rajan, Ramesh/A-5945-2008; Irvine, Dexter/F-7474-2011 CR Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 CALFORD MB, 1993, NEUROSCIENCE, V55, P953, DOI 10.1016/0306-4522(93)90310-C CALFORD MB, 1988, NATURE, V332, P446, DOI 10.1038/332446a0 DARIANSMITH C, 1994, NATURE, V368, P737, DOI 10.1038/368737a0 Dykes RW, 1997, CAN J PHYSIOL PHARM, V75, P535, DOI 10.1139/cjpp-75-5-535 Edeline JM, 1999, PROG NEUROBIOL, V57, P165 Gilbert CD, 1998, PHYSIOL REV, V78, P467 GILBERT CD, 1992, NATURE, V356, P150, DOI 10.1038/356150a0 Irvine DRF, 2000, J ACOUST SOC AM, V108, P2964, DOI 10.1121/1.1323465 IRVINE DRF, 1994, ADV HEARING RES, P3 Irvine DRF, 2000, J COMMUN DISORD, V33, P293, DOI 10.1016/S0021-9924(00)00026-5 IRVINE DRF, 1994, ABSTR ASS RES OTOLAR, V16, P21 Irvine DRF, 2000, HEARING RES, V147, P188, DOI 10.1016/S0378-5955(00)00131-3 KALTENBACH JA, 1992, HEARING RES, V59, P213, DOI 10.1016/0378-5955(92)90118-7 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204 Mollon JD, 1996, SPATIAL VISION, V10, P51, DOI 10.1163/156856896X00051 Rajan R, 1998, NAT NEUROSCI, V1, P138, DOI 10.1038/388 Rajan R, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P224 Rajan R, 1998, J COMP NEUROL, V399, P35 Rajan R, 2001, CEREB CORTEX, V11, P171, DOI 10.1093/cercor/11.2.171 RAMACHANDRAN VS, 1992, SCIENCE, V258, P1159, DOI 10.1126/science.1439826 RECANZONE GH, 1993, J NEUROSCI, V13, P87 Scheffler K, 1998, CEREB CORTEX, V8, P156, DOI 10.1093/cercor/8.2.156 WEINBERGER NM, 1995, ANNU REV NEUROSCI, V18, P129 Wright BA, 1997, J NEUROSCI, V17, P3956 NR 28 TC 33 Z9 33 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 192 EP 195 DI 10.1159/000046831 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100008 PM 11694726 ER PT J AU Kilgard, MP Pandya, PK Vazquez, JL Rathbun, DL Engineer, ND Moucha, R AF Kilgard, MP Pandya, PK Vazquez, JL Rathbun, DL Engineer, ND Moucha, R TI Spectral features control temporal plasticity in auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci DE auditory cortex; temporal processing; spectral processing; experience-dependent plasticity; receptive-field plasticity; learning; ripple stimuli; basal forebrain ID RECEPTIVE-FIELD PLASTICITY; PRIMARY SOMATOSENSORY CORTEX; ADULT OWL MONKEYS; CORTICAL PLASTICITY; NUCLEUS BASALIS; NEURONAL RESPONSES; SENSORY SYSTEMS; GUINEA-PIG; REPRESENTATION; REORGANIZATION AB Cortical responses are adjusted and optimized throughout life to meet changing behavioral demands and to compensate for peripheral damage. The cholinergic nucleus basalis (NB) gates cortical plasticity and focuses learning on behaviorally meaningful stimuli. By systematically varying the acoustic parameters of the sound paired with NB activation, we have previously shown that tone frequency and amplitude modulation rate alter the topography and selectivity of frequency tuning in primary auditory cortex. This result suggests that network-level rules operate in the cortex to guide reorganization based on specific features of the sensory input associated with NB activity. This report summarizes recent evidence that temporal response properties of cortical neurons are influenced by the spectral characteristics of sounds associated with cholinergic modulation. For example, repeated pairing of a spectrally complex (ripple) stimulus decreased the minimum response latency for the ripple, but lengthened the minimum latency for tones. Pairing a rapid train of tones with NB activation only increased the maximum following rate of cortical neurons when the carrier frequency of each train was randomly varied. These results suggest that spectral and temporal parameters of acoustic experiences interact to shape spectrotemporal selectivity in the cortex. Additional experiments with more complex stimuli are needed to clarify how the cortex learns natural sounds such as speech. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Texas, Sch Human Dev, Cognit & Neurosci Program, Cort Plast Lab, Richardson, TX 75083 USA. RP Kilgard, MP (reprint author), Univ Texas, Sch Human Dev, Cognit & Neurosci Program, Cort Plast Lab, GR41, Richardson, TX 75083 USA. CR Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A Bi GQ, 2001, ANNU REV NEUROSCI, V24, P139, DOI 10.1146/annurev.neuro.24.1.139 Bjordahl TS, 1998, BEHAV NEUROSCI, V112, P467, DOI 10.1037/0735-7044.112.3.467 Brosch M, 1997, J NEUROPHYSIOL, V77, P923 BUONOMANO DV, 1995, SCIENCE, V267, P1028, DOI 10.1126/science.7863330 Buonomano DV, 1998, ANNU REV NEUROSCI, V21, P149, DOI 10.1146/annurev.neuro.21.1.149 Byl N N, 2000, J Hand Ther, V13, P289 Cadenhead KS, 2000, AM J PSYCHIAT, V157, P55 Calhoun BM, 1998, EUR J NEUROSCI, V10, P926, DOI 10.1046/j.1460-9568.1998.00102.x Edeline JM, 1999, PROG NEUROBIOL, V57, P165 EGGERMONT JJ, 1994, HEARING RES, V74, P51, DOI 10.1016/0378-5955(94)90175-9 Gilbert CD, 1998, PHYSIOL REV, V78, P467 Guenther FH, 1999, J ACOUST SOC AM, V106, P2900, DOI 10.1121/1.428112 HARS B, 1993, NEUROSCIENCE, V56, P61, DOI 10.1016/0306-4522(93)90562-T HASSELMO ME, 1995, BEHAV BRAIN RES, V67, P1, DOI 10.1016/0166-4328(94)00113-T Irvine DRF, 2000, J COMMUN DISORD, V33, P293, DOI 10.1016/S0021-9924(00)00026-5 JENKINS WM, 1990, J NEUROPHYSIOL, V63, P82 JimenezCapdeville ME, 1997, J COMP NEUROL, V381, P53, DOI 10.1002/(SICI)1096-9861(19970428)381:1<53::AID-CNE5>3.0.CO;2-J Johansson BB, 2000, STROKE, V31, P223 JULIANO SL, 1991, P NATL ACAD SCI USA, V88, P780, DOI 10.1073/pnas.88.3.780 Karni A, 1997, CURR OPIN NEUROBIOL, V7, P530, DOI 10.1016/S0959-4388(97)80033-5 Katz LC, 1996, SCIENCE, V274, P1133, DOI 10.1126/science.274.5290.1133 KEELING MD, 1994, PLASTICITY REPRESENT, V1, P84 KILGARD MP, 1999, ORDER SELECTIVE PLAS Kilgard MP, 1998, NAT NEUROSCI, V1, P727, DOI 10.1038/3729 Kilgard MP, 1998, SCIENCE, V279, P1714, DOI 10.1126/science.279.5357.1714 Kilgard MP, 1999, HEARING RES, V134, P16, DOI 10.1016/S0378-5955(99)00061-1 Kilgard MP, 2001, J NEUROPHYSIOL, V86, P326 King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 Kraus N, 1999, INT J PEDIATR OTORHI, V47, P123, DOI 10.1016/S0165-5876(98)00130-X KUHL PK, 1999, NEW COGNITIVE NEUROS, pCH8 Markram H, 1998, NEUROBIOL LEARN MEM, V70, P101, DOI 10.1006/nlme.1998.3841 McGaughy J, 2000, BEHAV BRAIN RES, V115, P251, DOI 10.1016/S0166-4328(00)00262-X Merzenich M, 1996, COLD SPRING HARB SYM, V61, P1 MERZENICH MM, 1990, COLD SH Q B, V55, P873 MESULAM MM, 1983, NEUROSCIENCE, V10, P1185, DOI 10.1016/0306-4522(83)90108-2 MOUCHA R, 1908, PLASTICITY SPECTROSC MULLER AR, 2000, J AM ACAD AUDIOL, V11, P115 Nagarajan S, 1999, P NATL ACAD SCI USA, V96, P6483, DOI 10.1073/pnas.96.11.6483 Nudo RJ, 1999, REV NEUROL, V155, P713 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x PANDYA PK, 2000, FREQUENCY TUNING PLA Pantev C, 2001, NEUROREPORT, V12, P169, DOI 10.1097/00001756-200101220-00041 Pantev C, 1998, NATURE, V392, P811, DOI 10.1038/33918 PHILLIPS DP, 1989, J ACOUST SOC AM, V85, P2537, DOI 10.1121/1.397748 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 Rauschecker JP, 1999, TRENDS NEUROSCI, V22, P74, DOI 10.1016/S0166-2236(98)01303-4 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1031 RICHARDSON RT, 1991, ADV EXP MED BIOL, V295, P233 Schreiner CE, 1994, AUDIT NEUROSCI, V1, P39 Shamma S, 1995, AUDIT NEUROSCI, V1, P233 Tallal P, 1998, EXP BRAIN RES, V123, P210, DOI 10.1007/s002210050563 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 Versnel H, 1998, J ACOUST SOC AM, V103, P2502, DOI 10.1121/1.422771 WEBSTER HH, 1991, SOMATOSENS MOT RES, V8, P327 Weinberger N M, 1993, Curr Opin Neurobiol, V3, P570, DOI 10.1016/0959-4388(93)90058-7 Wright BA, 2000, CURR OPIN NEUROBIOL, V10, P482, DOI 10.1016/S0959-4388(00)00119-7 NR 60 TC 13 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 196 EP 202 DI 10.1159/000046832 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100009 PM 11694727 ER PT J AU Klinke, R Hartmann, R Heid, S Tillein, J Kral, A AF Klinke, R Hartmann, R Heid, S Tillein, J Kral, A TI Plastic changes in the auditory cortex of congenitally deaf cats following cochlear implantation SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article; Proceedings Paper CT 34th International Congress of the International-Union-of-Physiological-Sciences (IUPS) CY AUG, 2001 CL CHRISTCHURCH, NEW ZEALAND SP Int Union Physiolog Sci ID ELECTRICAL-STIMULATION; INFERIOR COLLICULUS; SPEECH-PERCEPTION; MONGOLIAN GERBIL; WHITE CAT; NEURONS; RESPONSES; PATTERNS; NERVE; TERM AB Congenitally deaf cats were used as a model for human inborn deafness and auditory deprivation. The deaf cats were supplied with a cochlear implant, chronically exposed to an acoustic environment and conditioned to acoustic stimuli. In case of early implantation the cats learned to make use of the newly gained auditory channel behaviourally. Neurophysiological and fMRI data showed that the central auditory system was recruited, if implantation took place within a sensitive period of <6 months. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Frankfurt, Inst Physiol 2, D-60590 Frankfurt, Germany. RP Klinke, R (reprint author), Univ Frankfurt, Inst Physiol 2, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR BOSHER SK, 1965, PROC R SOC SER B-BIO, V162, P147, DOI 10.1098/rspb.1965.0030 BRAUN S, 2001, P 29 GOTT NEUR C BUSBY PA, 1993, J ACOUST SOC AM, V93, P1058, DOI 10.1121/1.405554 BUSBY PA, 1992, AUDIOLOGY, V31, P95 Busby PA, 1999, J ACOUST SOC AM, V105, P1841, DOI 10.1121/1.426721 Dinse HR, 1997, AM J OTOL, V18, pS17 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P309 Hartmann R, 1997, HEARING RES, V112, P115, DOI 10.1016/S0378-5955(97)00114-7 HEID S, 2000, ASS RES OTOLARYNGOL, V23, P800 HEID S, 2001, P 29 GOTT NEUR C Heid S, 1997, HEARING RES, V110, P191, DOI 10.1016/S0378-5955(97)00074-9 Heid S, 1998, HEARING RES, V115, P101, DOI 10.1016/S0378-5955(97)00182-2 Klinke R, 1999, SCIENCE, V285, P1729, DOI 10.1126/science.285.5434.1729 KRAL A, 2001, IN PRESS AUDIOL NEUR Kral A, 2000, CEREB CORTEX, V10, P714, DOI 10.1093/cercor/10.7.714 Leake PA, 1999, J COMP NEUROL, V412, P543, DOI 10.1002/(SICI)1096-9861(19991004)412:4<543::AID-CNE1>3.0.CO;2-3 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 MITZDORF U, 1985, PHYSIOL REV, V65, P37 Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x Ohl FW, 1997, J COMP PHYSIOL A, V181, P685, DOI 10.1007/s003590050150 PONTON CW, 2001, IN PRESS AUDIOL NEUR Popelar J, 1995, HEARING RES, V92, P63, DOI 10.1016/0378-5955(95)00199-9 Raggio MW, 1999, J NEUROPHYSIOL, V82, P3506 Romand R, 1992, DEV AUDITORY VESTIBU Shepherd R K, 1997, Acta Otolaryngol Suppl, V532, P28 Shepherd RK, 1999, J NEUROPHYSIOL, V82, P1363 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 THIERFELDER C, 2000, ASS RES OTOLARYNGOL, V23, P813 Tyler RS, 1997, OTOLARYNG HEAD NECK, V117, P180, DOI 10.1016/S0194-5998(97)70172-4 WURTH N, 1999, P 27 GOTT NEUR C, P318 NR 30 TC 22 Z9 24 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 203 EP 206 DI 10.1159/000046833 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100010 PM 11694728 ER PT J AU Wright, BA AF Wright, BA TI Why and how we study human learning on basic auditory tasks SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory learning; human perception; temporal discrimination ID FREQUENCY DISCRIMINATION; INTERVAL DISCRIMINATION; PLASTICITY; LOCALIZATION; ORIENTATION; IMPROVEMENT; SOUND AB Human listeners can often improve their ability to discriminate sounds with practice. We have been using behavioral techniques to examine the patterns of learning and generalization on basic auditory tasks, such as the discrimination of the time interval between two sounds. Here we briefly state our motivations for examining learning on these basic tasks, describe our experimental paradigm, and provide an example of our results. Copyright (C) 2001 S. Karger AG, Basel. C1 Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. Northwestern Univ, Inst Neurosci, Evanston, IL 60208 USA. RP Wright, BA (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, 2299 N Campus Dr, Evanston, IL 60208 USA. CR BUTLER RA, 1987, PERCEPT PSYCHOPHYS, V41, P1, DOI 10.3758/BF03208206 CAMPBELL RA, 1963, J ACOUST SOC AM, V35, P1511, DOI 10.1121/1.1918738 DEMANY L, 1985, J ACOUST SOC AM, V78, P1118, DOI 10.1121/1.393034 FIORENTINI A, 1980, NATURE, V287, P43, DOI 10.1038/287043a0 FITZGERALD MB, 2000, J ACOUST SOC AM, V107, pA2916 GIBSON EJ, 1953, PSYCHOL BULL, V50, P401, DOI 10.1037/h0055517 Goldstone RL, 1998, ANNU REV PSYCHOL, V49, P585, DOI 10.1146/annurev.psych.49.1.585 HAFTER ER, 1970, J ACOUST SOC AM, V47, P1041, DOI 10.1121/1.1912003 Hofman PM, 1998, NAT NEUROSCI, V1, P417, DOI 10.1038/1633 Irvine DRF, 2000, J ACOUST SOC AM, V108, P2964, DOI 10.1121/1.1323465 JAVER AR, 1995, J OTOLARYNGOL, V24, P111 Karni A, 1997, CURR OPIN NEUROBIOL, V7, P530, DOI 10.1016/S0959-4388(97)80033-5 KARNI A, 1991, P NATL ACAD SCI USA, V88, P4966, DOI 10.1073/pnas.88.11.4966 LEEK MR, 1984, J ACOUST SOC AM, V76, P1037, DOI 10.1121/1.391422 Litovsky RY, 2000, J ACOUST SOC AM, V108, P2345, DOI 10.1121/1.1312361 LOEB M, 1975, PERCEPT PSYCHOPHYS, V18, P205, DOI 10.3758/BF03205969 MCKEE SP, 1978, PERCEPT PSYCHOPHYS, V24, P258, DOI 10.3758/BF03206097 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 MOSSBRIDGE JA, 2001, J ACOUST SOC AM, V109, pA2289 Nagarajan SS, 1998, J NEUROSCI, V18, P1559 OLSHO LW, 1988, INFANT BEHAV DEV, V11, P205, DOI 10.1016/S0163-6383(88)80006-7 ORTIZ JA, 2001, J ACOUST SOC AM, V109, pA2289 Palmer CV, 1998, J ACOUST SOC AM, V103, P1705, DOI 10.1121/1.421050 PISONI DB, 1982, J EXP PSYCHOL HUMAN, V8, P297 ROBINSON K, 1996, EAR HEARING, V17, P51 SABERI K, 1990, J ACOUST SOC AM, V87, P1732, DOI 10.1121/1.399422 SAGI D, 1994, CURR OPIN NEUROBIOL, V4, P195, DOI 10.1016/0959-4388(94)90072-8 Shinn-Cunningham BG, 1998, J ACOUST SOC AM, V103, P3656, DOI 10.1121/1.423088 SHIU LP, 1992, PERCEPT PSYCHOPHYS, V52, P582, DOI 10.3758/BF03206720 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 TURNER CW, 1996, EAR HEAR S, V17, P14 Tyler R. S., 1996, EAR HEAR S, V17, p38S WATSON CS, 1980, ANN OTO RHINOL LARYN, V89, P96 WRIGHT BA, 2000, J ACOUST SOC AM, V107, pA2882 WRIGHT BA, 2000, J ACOUST SOC AM, V107, pA2821 WRIGHT BA, 2001, PHYSL PSYCHOPHYSICAL, P477 WRIGHT BA, 2001, IN PRESS P NATL ACAD Wright BA, 1997, J NEUROSCI, V17, P3956 WRIGHT BA, 2001, J ACOUST SOC AM, V109, pA2289 WRIGHT BA, 1999, J ACOUST SOC AM, V105, pA1237 WRIGHT BA, 1998, ASS RES OT ABSTR, pA104 ZWISLOCKI J, 1958, J ACOUST SOC AM, V30, P254, DOI 10.1121/1.1909559 NR 42 TC 15 Z9 15 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 207 EP 210 DI 10.1159/000046834 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100011 PM 11694729 ER PT J AU Purdy, SC Kelly, AS Thorne, PR AF Purdy, SC Kelly, AS Thorne, PR TI Auditory evoked potentials as measures of plasticity in humans SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory evoked potential; cochlear implant; hearing aid; speech perception; plasticity ID COCHLEAR IMPLANT; MISMATCH NEGATIVITY; SYSTEM PLASTICITY; SPEECH; CHILDREN; SOUND; N1; MATURATION; DEAFNESS; CORTEX AB There is increasing evidence from animal studies for plasticity of auditory function. This has prompted research to determine whether such plastic changes occur in adults and children with hearing disorders. Behavioural measures such as speech perception scores do show improvements after hearing aid fitting and cochlear implantation. Several studies have also shown changes in cortical auditory evoked potentials after cochlear implantation and after auditory training. These studies indicate that improvements in speech perception ability are associated with changes in the central auditory system, particularly at the cortical level. Copyright (C) 2001 S. KargerAG, Basel. C1 Natl Acoust Labs, Australian Hearing, Sydney, NSW, Australia. Univ Auckland, Discipline Audiol, Auckland 1, New Zealand. RP Purdy, SC (reprint author), Natl Acoust Labs, 126 Greville St, Chatswood, NSW 2067, Australia. RI Purdy, Suzanne/F-2050-2010 CR Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 Cunningham J, 2000, EAR HEARING, V21, P554, DOI 10.1097/00003446-200012000-00003 Eggermont JJ, 1997, ACTA OTO-LARYNGOL, V117, P161, DOI 10.3109/00016489709117760 GANTZ BJ, 1994, AM J OTOL, V15, P1 Gray R F, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P275 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 Jordan K, 1997, AM J OTOL, V18, pS116 KAGA K, 1991, LARYNGOSCOPE, V101, P905 Kraus N, 1998, AUDIOL NEURO-OTOL, V3, P168, DOI 10.1159/000013788 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 Kraus N, 1998, Scand Audiol Suppl, V49, P7 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 Kraus N, 1999, INT J PEDIATR OTORHI, V47, P123, DOI 10.1016/S0165-5876(98)00130-X KURTZBERG D, 1989, Seminars in Hearing, V10, P252 Menning H, 2000, NEUROREPORT, V11, P817, DOI 10.1097/00001756-200003200-00032 Musiek F E, 1999, Scand Audiol Suppl, V51, P33 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Naatanen R, 2000, INT J PSYCHOPHYSIOL, V37, P3, DOI 10.1016/S0167-8760(00)00091-X ONISHI S, 1968, J ACOUST SOC AM, V44, P582, DOI 10.1121/1.1911124 Otsubo H, 2001, J CHILD NEUROL, V16, P227, DOI 10.1177/088307380101600401 Pang EW, 2000, CLIN NEUROPHYSIOL, V111, P388, DOI 10.1016/S1388-2457(99)00259-X Pantev C, 1999, BRAIN RES, V842, P192, DOI 10.1016/S0006-8993(99)01835-1 Pantev C, 2000, J CLIN NEUROPHYSIOL, V17, P130, DOI 10.1097/00004691-200003000-00003 Pantev C, 2001, NEUROREPORT, V12, P169, DOI 10.1097/00001756-200101220-00041 Picton TW, 2000, AUDIOL NEURO-OTOL, V5, P111, DOI 10.1159/000013875 Ponton C W, 1999, Scand Audiol Suppl, V51, P13 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 Ponton CW, 1996, EAR HEARING, V17, P430, DOI 10.1097/00003446-199610000-00009 Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 PURDY SC, 1995, ABSTR MIDW M ASS RES, V18, P138 Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Silman S, 1992, J Am Acad Audiol, V3, P390 Tremblay K, 1998, NEUROREPORT, V9, P3557 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 Turner CW, 1996, EAR HEARING, V17, pS14, DOI 10.1097/00003446-199617031-00003 Tyler R, 1997, SCAND AUDIOL, V26, P65 Tyler R. S., 1996, EAR HEAR S, V17, p38S Tyler RS, 1997, J ACOUST SOC AM, V102, P508, DOI 10.1121/1.419724 van Dijk JE, 1999, AUDIOLOGY, V38, P109 VERKINDT C, 1994, NEUROREPORT, V5, P1189 NR 42 TC 17 Z9 17 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 211 EP 215 DI 10.1159/000046835 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100012 PM 11694730 ER PT J AU Moore, DR Hogan, SC Kacelnik, O Parsons, CH Rose, MM King, AJ AF Moore, DR Hogan, SC Kacelnik, O Parsons, CH Rose, MM King, AJ TI Auditory learning as a cause and treatment of central dysfunction SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE hearing loss; deafness; otitis media; sound localization; binaural hearing; masking level difference; backward masking; temporal processing; language impairment ID OTITIS-MEDIA; IMPAIRED CHILDREN; BINAURAL HEARING; EFFUSION; MASKING; REPRESENTATION; PERCEPTION; PLASTICITY; DEFICITS; HISTORY AB Conductive hearing loss produced by middle ear disease (MED) is very prevalent in the first 5 years of childhood. Both MED in children and prolonged ear plugging in animals lead to a binaural hearing impairment that persists beyond the duration of the peripheral impairment. However, after cessation of the MED, or removal of the ear plug, binaural hearing gradually improves. We suggest here that this improvement is a passive form of auditory learning. We also show that active auditory learning, through repetition of discrimination tasks, can accelerate performance increments, both after hearing loss and in unimpaired individuals. A more detailed understanding of auditory learning holds out the prospect of improving rehabilitation strategies for the language- and hearing-impaired. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Oxford, Physiol Lab, Oxford OX1 3PT, England. RP Moore, DR (reprint author), Univ Oxford, Physiol Lab, Parks Rd, Oxford OX1 3PT, England. RI King, Andrew/M-6708-2013 OI King, Andrew/0000-0001-5180-7179 CR Bishop D. V. M., 1997, UNCOMMON UNDERSTANDI Bishop DVM, 1999, J SPEECH LANG HEAR R, V42, P1295 Buss E, 1999, J SPEECH LANG HEAR R, V42, P844 DAVIS AC, 1991, ACTA OTOLARYNGOLOG S, V476, P23 Durlach N. I., 1978, HDB PERCEPTION, V4, P365 Fitch RH, 1997, ANNU REV NEUROSCI, V20, P331, DOI 10.1146/annurev.neuro.20.1.331 GIBSON EJ, 1953, PSYCHOL BULL, V50, P401, DOI 10.1037/h0055517 Goldstone RL, 1998, ANNU REV PSYCHOL, V49, P585, DOI 10.1146/annurev.psych.49.1.585 Gravel JS, 2000, J SPEECH LANG HEAR R, V43, P631 Hall JW, 1998, EAR HEARING, V19, P429, DOI 10.1097/00003446-199812000-00004 HALL JW, 1986, J OTOL RHINOL LARYNG, V95, P118 Hartley DEH, 2000, J SPEECH LANG HEAR R, V43, P1402 Hogan S C, 1996, Audiol Neurootol, V1, P104 Hogan SC, 1997, BRIT MED J, V314, P350 *ISIS, 2000, TRIENN C BRIGHT King AJ, 2000, P NATL ACAD SCI USA, V97, P11821, DOI 10.1073/pnas.97.22.11821 KING AJ, 2001, IN PRESS AUDIOL NEUR Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 MERZENICH MM, 1990, COLD SH Q B, V55, P873 Moore DR, 1999, J NEUROSCI, V19, P8704 MOORE DR, 1991, AUDIOLOGY, V30, P91 Pantev C, 1998, NATURE, V392, P811, DOI 10.1038/33918 PARKS TN, 2001, DEV PLASTICITY AUDIT PILLSBURY HC, 1991, ARCH OTOLARYNGOL, V117, P718 RECANZONE GH, 1993, J NEUROSCI, V13, P87 ROSE MM, 2001, IN PRESS BR J AUDIOL, V35 Rosenfeld GD, 2000, GER STUD REV, V23, P171, DOI 10.2307/1431473 TALLAL P, 1973, NATURE, V241, P468, DOI 10.1038/241468a0 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 Wright B. A., 1998, PSYCHOPHYSICAL PHYSL, P604 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 NR 31 TC 3 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 216 EP 220 DI 10.1159/000046836 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100013 PM 11694731 ER PT J AU Kraus, N AF Kraus, N TI Auditory pathway encoding and neural plasticity in children with learning problems SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory pathway; perception; learning; evoked responses; neural plasticity; learning disorders ID CONSONANT-VOWEL SYLLABLES; EVENT-RELATED POTENTIALS; SCHOOL-AGE-CHILDREN; ADULT OWL MONKEYS; SPEECH-PERCEPTION; IMPAIRED CHILDREN; STOP CONSONANTS; FREQUENCY DISCRIMINATION; PHONEME REPRESENTATIONS; CONVERSATIONAL SPEECH AB An inability to process auditory information, especially speech, characterizes many children with learning and attention problems. Our working hypothesis is that these speech-sound perception problems arise, at least in some cases, from faulty representation of the speech signal in central auditory centers. Preconscious neurophysiologic representation of sound structure by central auditory pathway neurons can be reflected by subcortical and cortical aggregate neural responses. These neurophysiologic responses can be modified by perceptual learning. Our research has shown that some children with learning problems demonstrate abnormal perception and neural representation of certain speech sounds. Differences between normal and learning-impaired groups can be attributable to aspects of neural synchrony that are reflected in aggregate neural responses. Deficiencies in neural synchrony in these children are apparent in subcortical (as well as cortical) representations of speech-sound structure, and these timing deficits are related to performance on speech-sound perception and learning measures. Moreover, impaired perception and neurophysiologic encoding of speech sounds can be improved with cue enhancement and can be modified by perceptual learning associated with auditory training. Copyright (C) 2001 S. Karger AG, Basel. C1 Northwestern Univ, Evanston, IL 60201 USA. RP Kraus, N (reprint author), Northwestern Univ, 2299 N Campus Dr,Searle Bldg, Evanston, IL 60201 USA. CR ASLIN RN, 1981, CHILD DEV, V52, P1135, DOI 10.1111/j.1467-8624.1981.tb03159.x BALL EW, 1991, READ RES QUART, V26, P49, DOI 10.1598/RRQ.26.1.3 Bellis TJ, 1996, ASSESSMENT MANAGEMEN Bellis TJ, 2000, J NEUROSCI, V20, P791 BRADLEY L, 1983, NATURE, V301, P419, DOI 10.1038/301419a0 BRADLOW AR, 2000, J ACOUST SOC AM Bradlow AR, 1999, J ACOUST SOC AM, V106, P2074, DOI 10.1121/1.427952 BRADLOW AR, UNPUB SPEAKING CLEAR Bradlow AR, 1999, J ACOUST SOC AM, V106, P2086, DOI 10.1121/1.427953 BRANDT J, 1980, BRAIN LANG, V9, P324, DOI 10.1016/0093-934X(80)90152-2 BREEDIN SD, 1989, EAR HEARING, V10, P311, DOI 10.1097/00003446-198910000-00007 Carrell TD, 1999, EAR HEARING, V20, P175, DOI 10.1097/00003446-199904000-00008 Cestnick L, 2000, J Am Acad Audiol, V11, P501 Cheour M, 1998, NAT NEUROSCI, V1, P351, DOI 10.1038/1561 Chermak G, 1997, CENTRAL AUDITORY PRO Conley EM, 1999, CLIN NEUROPHYSIOL, V110, P2086, DOI 10.1016/S1388-2457(99)00183-2 Cunningham J, 2001, CLIN NEUROPHYSIOL, V112, P758, DOI 10.1016/S1388-2457(01)00465-5 Cunningham J, 2000, EAR HEARING, V21, P554, DOI 10.1097/00003446-200012000-00003 CUNNINGHAM J, 2000, NEUROPHYSIOLOGIC REP CUNNINGHAM J, 1999, NEUROPHYSIOLOGIE REP Dehaene-Lambertz G, 1998, NEUROREPORT, V9, P1885, DOI 10.1097/00001756-199806010-00040 DEWEIRDT W, 1988, APPL PSYCHOLINGUIST, V9, P163, DOI 10.1017/S0142716400006792 Diehl SF, 1999, LANG SPEECH HEAR SER, V30, P108 ELLIOTT LL, 1989, J SPEECH HEAR RES, V32, P112 Farmer ME, 1995, PSYCHON B REV, V2, P460, DOI 10.3758/BF03210983 FLETCHER JM, 1994, J EDUC PSYCHOL, V86, P6, DOI 10.1037/0022-0663.86.1.6 GEISLER CD, 1989, J ACOUST SOC AM, V85, P1639, DOI 10.1121/1.397952 GODFREY JJ, 1981, J EXP CHILD PSYCHOL, V32, P401, DOI 10.1016/0022-0965(81)90105-3 Hari R, 1996, NEUROSCI LETT, V205, P138, DOI 10.1016/0304-3940(96)12393-4 HAYES E, 2001, ASS RES OTOLARYNGOL JENKINS WM, 1990, J NEUROPHYSIOL, V63, P82 Jerger J, 1999, J Am Acad Audiol, V10, P410 JERGER S, 1987, EAR HEARING, V8, P78, DOI 10.1097/00003446-198704000-00004 JUSCZYK PW, 1984, J CHILD LANG, V11, P453 Katz J., 1992, CENTRAL AUDITORY PRO KING C, 2001, SPEECH EVOKED COCHLE King C, 1999, NEUROSCI LETT, V267, P89, DOI 10.1016/S0304-3940(99)00336-5 Koch D B, 1999, J Am Acad Audiol, V10, P304 KRAUS N, 1993, ELECTROEN CLIN NEURO, V88, P123, DOI 10.1016/0168-5597(93)90063-U Kraus N, 1998, AUDIOL NEURO-OTOL, V3, P168, DOI 10.1159/000013788 Kraus N, 1999, J SPEECH LANG HEAR R, V42, P1042 Kraus N., 1995, J COGNITIVE NEUROSCI, V7, P27 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 Kraus N, 2000, JARO-J ASSOC RES OTO, V1, P33, DOI 10.1007/s101620010004 KRAUS N, 1982, BRAIN RES, V246, P205, DOI 10.1016/0006-8993(82)91168-4 KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282 KUHL PK, 1992, SCIENCE, V255, P606, DOI 10.1126/science.1736364 LEONARD LB, 1992, J SPEECH HEAR RES, V35, P1076 LIVINGSTONE MS, 1991, P NATL ACAD SCI USA, V88, P7943, DOI 10.1073/pnas.88.18.7943 Martin BA, 1997, J ACOUST SOC AM, V101, P1585, DOI 10.1121/1.418146 McBrideChang C, 1996, CHILD DEV, V67, P1836, DOI 10.1111/j.1467-8624.1996.tb01831.x McGee T, 1996, J ACOUST SOC AM, V99, P3606, DOI 10.1121/1.414958 MEHLER J, 1978, PERCEPTION, V7, P491, DOI 10.1068/p070491 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 Merzenich M M, 1993, J Hand Ther, V6, P89 Mody M, 1997, J EXP CHILD PSYCHOL, V64, P199, DOI 10.1006/jecp.1996.2343 MORRISON S, 1998, COMPUTER APPL EAROBI NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1993, NEUROREPORT, V4, P503 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 Nagarajan S, 1999, P NATL ACAD SCI USA, V96, P6483, DOI 10.1073/pnas.96.11.6483 Orton S. T., 1937, READING WRITING SPEE PAYTON KL, 1994, J ACOUST SOC AM, V95, P1581, DOI 10.1121/1.408545 PICHENY MA, 1985, J SPEECH HEAR RES, V28, P96 PICHENY MA, 1986, J SPEECH HEAR RES, V29, P434 PISONI DB, 1982, J EXP PSYCHOL HUMAN, V8, P297 Ponton CW, 2000, CLIN NEUROPHYSIOL, V111, P220, DOI 10.1016/S1388-2457(99)00236-9 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1057 REED MA, 1989, J EXP CHILD PSYCHOL, V48, P270, DOI 10.1016/0022-0965(89)90006-4 SAMS M, 1985, ELECTROEN CLIN NEURO, V62, P437, DOI 10.1016/0168-5597(85)90054-1 SAMS M, 1991, PSYCHOPHYSIOLOGY, V28, P21, DOI 10.1111/j.1469-8986.1991.tb03382.x Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 SHANWEILER D, 1995, PSYCHOL SCI, V6, P149, DOI 10.1111/j.1467-9280.1995.tb00324.x Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 Sharma A, 1994, J ACOUST SOC AM, V95, P3011, DOI 10.1121/1.408785 Smith KR, 1999, ANIM BIOTECHNOL, V10, P1 Stark RE, 1996, J SPEECH HEAR RES, V39, P676 SUSSMAN JE, 1993, J SPEECH HEAR RES, V36, P1286 TALLAL P, 1974, NEUROPSYCHOLOGIA, V12, P83, DOI 10.1016/0028-3932(74)90030-X TALLAL P, 1981, J ACOUST SOC AM, V69, P568, DOI 10.1121/1.385431 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 Tallal P, 1998, EXP BRAIN RES, V123, P210, DOI 10.1007/s002210050563 TORGESON JK, 1991, LEARNING LEARNING DI Tremblay K, 1998, NEUROREPORT, V9, P3557 Tremblay K, 1997, J ACOUST SOC AM, V102, P3762, DOI 10.1121/1.420139 Tremblay K, 2001, EAR HEARING, V22, P79, DOI 10.1097/00003446-200104000-00001 Uchanski RM, 1996, J SPEECH HEAR RES, V39, P494 Welsh LW, 1996, ANN OTO RHINOL LARYN, V105, P117 WERKER JF, 1992, CAN J PSYCHOL, V46, P551, DOI 10.1037/h0084331 WERKER JF, 1981, CHILD DEV, V52, P349, DOI 10.2307/1129249 WERKER JF, 1987, CAN J PSYCHOL, V41, P48, DOI 10.1037/h0084150 WIBLE B, 1997, NATURE, V387, P176 ZHANG J, 2000, BRAIN BEHAV CHANGES NR 95 TC 11 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 2001 VL 6 IS 4 BP 221 EP 227 DI 10.1159/000046837 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 493BL UT WOS:000172202100014 PM 11694732 ER PT J AU Sohmer, H Perez, R Sichel, JY Priner, R Freeman, S AF Sohmer, H Perez, R Sichel, JY Priner, R Freeman, S TI The pathway enabling external sounds to reach and excite the fetal inner ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE fetus; amniotic fluid; bone conduction; hearing, in utero; gestation ID EVOKED OTOACOUSTIC EMISSIONS; BONE-CONDUCTION EXPERIMENTS; PRETERM INFANTS; HEARING; SHEEP; THRESHOLD; HUMANS AB The human fetus in utero is able to respond to sounds in the amniotic fluid enveloping the fetus after about 20 weeks gestation. The pathway by which sound reaches and activates the fetal inner ear is not entirely known. It has been suggested that in this total fluid environment, the tympanic membrane and the round window membrane become 'transparent' to the sound field, enabling the sounds to reach the inner ear directly through the tympanic membrane and the round window membrane. It is also possible that sounds reach the inner ear by means of tympanic membrane - ossicular chain - stapes footplate conduction (as in normal air conduction). There is also evidence that sounds reach the fetal inner ear by bone conduction. Several animal and human models of the fetus in utero were studied here in order to investigate the pathway enabling sounds to reach and activate the fetal inner ear. This included studying the auditory responses to sound stimuli of animals and humans under water. It was clearly shown in all the models that the dominant mechanism was bone conduction, with little if any contribution from the external and middle ears. Based on earlier experiments on the mechanism and pathway of bone conduction, the results of this study lead to the suggestion that the skull bone vibrations induced by the sound field in the amniotic fluid enveloping the fetus probably give rise to a sound field within the fetal cranial cavity (brain and CSF) which reaches the fetal inner ear through fluid communication channels connecting the cranial cavity and the inner ear. Copyright (C) 2001 S. Karger AG, Basel. C1 Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. Shaare Zedek Med Ctr, Dept Otolaryngol Head & Neck Surg, IL-91031 Jerusalem, Israel. Hadassah Univ Hosp, Dept Otolaryngol Head & Neck Surg, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. CR BONFILS P, 1992, LARYNGOSCOPE, V102, P182 Brienesse P, 1998, EUR J PEDIATR, V157, P999, DOI 10.1007/s004310050986 FAWER CL, 1982, NEUROPEDIATRICS, V13, P200, DOI 10.1055/s-2008-1059623 Freeman S, 2000, HEARING RES, V146, P72, DOI 10.1016/S0378-5955(00)00098-8 GAGNON R, 1989, SEMIN PERINATOL, V13, P393 Gerhardt KJ, 1996, SEMIN PERINATOL, V20, P11, DOI 10.1016/S0146-0005(96)80053-X GERHARDT KJ, 1989, SEMIN PERINATOL, V13, P362 Gerhardt KJ, 1996, AM J OTOLARYNG, V17, P374, DOI 10.1016/S0196-0709(96)90069-1 GERHARDT KJ, 1992, AM J OTOLARYNG, V13, P226, DOI 10.1016/0196-0709(92)90026-P HEPPER PG, 1994, ARCH DIS CHILD, V71, pF81, DOI 10.1136/fn.71.2.F81 HOLLIEN H, 1975, J ACOUST SOC AM, V57, P1488, DOI 10.1121/1.380589 LARY S, 1985, J PEDIATR-US, V107, P593, DOI 10.1016/S0022-3476(85)80030-5 MORLET T, 1993, ACTA OTO-LARYNGOL, V113, P271, DOI 10.3109/00016489309135808 NORMAN DA, 1971, J ACOUST SOC AM, V50, P544, DOI 10.1121/1.1912669 QUERLEU D, 1989, SEMIN PERINATOL, V13, P409 Rubel E W, 1985, Acta Otolaryngol Suppl, V421, P114 Sichel JY, 1999, J OTOLARYNGOL, V28, P217 SMITH P F, 1985, Journal of Auditory Research, V25, P221 SMURZYNSKI J, 1994, EAR HEARING, V15, P210, DOI 10.1097/00003446-199406000-00002 SOHMER H, 1994, HEARING RES, V75, P145, DOI 10.1016/0378-5955(94)90065-5 Sohmer H, 2000, HEARING RES, V146, P81, DOI 10.1016/S0378-5955(00)00099-X STARR A, 1977, PEDIATRICS, V60, P831 WOLFSON MR, 1990, ELECTROEN CLIN NEURO, V75, P242, DOI 10.1016/0013-4694(90)90177-L NR 23 TC 13 Z9 15 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2001 VL 6 IS 3 BP 109 EP 116 DI 10.1159/000046817 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 459CV UT WOS:000170234300001 PM 11474136 ER PT J AU Sha, SH Zajic, G Epstein, CJ Schacht, J AF Sha, SH Zajic, G Epstein, CJ Schacht, J TI Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE aminoglycosides; ototoxicity; protection; reactive oxygen species; superoxide dismutase ID PIG IN-VIVO; FOCAL CEREBRAL-ISCHEMIA; FREE-RADICAL FORMATION; TRANSGENIC MICE; GENTAMICIN OTOTOXICITY; NITRIC-OXIDE; IRON CHELATORS; AMINOGLYCOSIDE ANTIBIOTICS; NEUROTOXICITY; TOXICITY AB The participation of reactive oxygen species in aminoglycoside-induced ototoxicity has been deduced from observations that aminoglycoside-iron complexes catalyze the formation of superoxide radicals in vitro and that antioxidants attenuate ototoxicity in vivo. We therefore hypothesized that overexpression of Cu/Zn-superoxide dismutase (h-SOD1) should protect transgenic mice from ototoxicity. Immunocytochemistry confirmed expression of h-SOD1 in inner ear tissues of transgenic C57BL/6-TgN[SOD1]3Cje mice. Transgenic and nontransgenic littermates received kanamycin (400 mg/kg body weight/day) for 10 days beginning on day 10 after birth. Auditory thresholds were tested by evoked auditory brain stem responses at 1 month after birth. In nontransgenic animals, the threshold in the kanamycin-treated group was 45-50 dB higher than in saline-injected controls. In the transgenic group, kanamycin increased the threshold by only 15 dB over the respective controls. The effects were similar at 12 and 24 kHz. The protection by overexpression of superoxide dismutase supports the hypothesis that oxidant stress plays a significant role in aminoglycoside-induced ototoxicity. The results also suggest transgenic animals as suitable models to investigate the underlying mechanisms and possible strategies for prevention. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, Ann Arbor, MI 48109 USA. Univ Calif San Francisco, Dept Pediat, San Francisco, CA 94143 USA. RP Schacht, J (reprint author), Univ Michigan, Kresge Hearing Res Inst, Dept Otolaryngol, 1301 E Ann St, Ann Arbor, MI 48109 USA. CR ALFORD BR, 1963, ANN OTO RHINOL LARYN, V72, P237 Basile AS, 1996, NAT MED, V2, P1338, DOI 10.1038/nm1296-1338 CHAN PH, 1991, ANN NEUROL, V29, P482, DOI 10.1002/ana.410290506 CHEN CS, 1983, ARCH OTO-RHINO-LARYN, V238, P217, DOI 10.1007/BF00453932 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DULON D, 1988, ACTA OTO-LARYNGOL, V106, P219, DOI 10.3109/00016488809106429 EPSTEIN CJ, 1987, P NATL ACAD SCI USA, V84, P8044, DOI 10.1073/pnas.84.22.8044 Forge A, 2000, AUDIOL NEURO-OTOL, V5, P3, DOI 10.1159/000013861 Fujimura M, 2000, J NEUROSCI, V20, P2817 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Henry D, 1998, Climacteric, V1, P92, DOI 10.3109/13697139809085525 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 HOFFMAN DW, 1988, ANN OTO RHINOL LARYN, V97, P36 Huang TT, 1999, ANN NY ACAD SCI, V893, P95, DOI 10.1111/j.1749-6632.1999.tb07820.x KINOUCHI H, 1991, P NATL ACAD SCI USA, V88, P11158, DOI 10.1073/pnas.88.24.11158 LAUTERMANN J, 1995, HEARING RES, V86, P15, DOI 10.1016/0378-5955(95)00049-A Nakagawa T, 1999, NEUROSCI LETT, V267, P57, DOI 10.1016/S0304-3940(99)00317-1 Ohinata Y, 2000, BRAIN RES, V878, P163, DOI 10.1016/S0006-8993(00)02733-5 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 Priuska EM, 1998, INORG CHIM ACTA, V273, P85, DOI 10.1016/S0020-1693(97)05942-2 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 PRZEDBORSKI S, 1992, J NEUROSCI, V12, P1658 PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 Sattler R, 1999, SCIENCE, V284, P1845, DOI 10.1126/science.284.5421.1845 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 Sha SH, 1999, HEARING RES, V128, P112, DOI 10.1016/S0378-5955(98)00200-7 Sha SH, 1999, FREE RADICAL BIO MED, V26, P341, DOI 10.1016/S0891-5849(98)00207-X Sha SH, 1999, LAB INVEST, V79, P807 Sha SH, 2000, HEARING RES, V142, P34, DOI 10.1016/S0378-5955(00)00003-4 Song BB, 1997, J PHARMACOL EXP THER, V282, P369 Song BB, 1998, FREE RADICAL BIO MED, V25, P189, DOI 10.1016/S0891-5849(98)00037-9 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Tiedge M, 1999, DIABETOLOGIA, V42, P849, DOI 10.1007/s001250051237 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YANG GY, 1994, STROKE, V25, P165 Ying WH, 2000, J CEREBR BLOOD F MET, V20, P359 NR 37 TC 48 Z9 57 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2001 VL 6 IS 3 BP 117 EP 123 DI 10.1159/000046818 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 459CV UT WOS:000170234300002 PM 11474137 ER PT J AU Schimanski, S Scofield, MA Wangemann, P AF Schimanski, S Scofield, MA Wangemann, P TI Functional beta(2)-adrenergic receptors are present in nonstrial tissues of the lateral wall in the gerbil cochlea SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE receptor, beta-adrenergic; antagonists, beta-adrenergic; cochlea; spiral ligament; CGP 20712A; ICI 118551 ID ADENYLYL-CYCLASE ISOFORMS; STRIAL MARGINAL CELLS; GUINEA-PIG; K+ SECRETION; INNER-EAR; BETA(1)-ADRENERGIC RECEPTORS; ENDOLYMPHATIC HYDROPS; VASOPRESSIN RECEPTORS; CHOLERA-TOXIN; LOCALIZATION AB Recently, we have demonstrated that functional beta (1)-adrenergic receptors are the dominant beta -adrenergic receptor subtype in the stria, vascularis and that beta (1)-adrenergic receptors stimulate K+ secretion in strial marginal cells. The goal of the present study was to determine whether nonstrial tissues in the cochlear lateral wall contain beta -adrenergic receptors and if so which subtype is present. Pharmacological tools were used to identify receptors in functional studies where CAMP production was measured. Further, receptors were identified as transcripts by cloning and sequencing of reverse-transcriptase polymerase chain reaction (RT-PCR) products. Experiments were performed on gerbil nonstrial lateral wall tissues. Tissues stimulated with 10(-5) M isoproterenol produced 0.42 +/- 0.22 pmol CAMP per ear within 12 min (n = 14). The selective beta -adrenergic receptor agonist isoproterenol stimulated CAMP production with an EC50 of (2 +/- 3) x 10(-7) M (n = 7). Isoproterenol-stimulated CAMP production was inhibited by the beta (2)-adrenergic receptor antagonist ICI 118551 with an IC50 of (7 7) x 10(-6) M, which corresponds to an affinity constant of 1 x 10(-7) M(pK(DB)=6.89 +/- 0.23, n = 3). Isoproterenol-stimulated CAMP production was not inhibited by the highly selective Pl-adrenergic receptor antagonist CGP 20712A. The IC50 and the affinity constant for CGP 20712A were estimated to be >3 x 10(-4) and >6 x 10(-6) Mr respectively. RT-PCR of total RNA isolated from nonstrial lateral wall tissues using primers specific for beta (1)-, beta (2)- and beta (3)-adrenergic receptors revealed products of the predicted sizes for the beta (1)- and beta (2)- but not for the beta (3)-subtype. Sequence analysis confirmed that amplified cDNA fragments encoded gene-specific nucleotide sequences. These results demonstrate that nonstrial lateral wall tissues contain transcripts for beta (1)- and beta (2)- but not for beta (3)-adrenergic receptors and that the beta (2)-adrenergic receptor is the dominant functional receptor subtype. The cellular localization and function of the beta (2)-adrenergic receptors remains to be determined. Copyright (C) 2001 S. Karger AG, Basel. C1 Kansas State Univ, Cell Physiol Lab, Dept Anat & Physiol, Manhattan, KS 66506 USA. Creighton Univ, Dept Pharmacol, Mol Pharmacol Lab, Omaha, NE 68178 USA. RP Wangemann, P (reprint author), Kansas State Univ, Cell Physiol Lab, Dept Anat & Physiol, 1600 Dension Ave, Manhattan, KS 66506 USA. RI Wangemann, Philine/N-2826-2013 CR ALEXANDER SPH, 1998, RECEPTOR ION CHANNEL BAGGERSJOBACK D, 1980, ARCH OTO-RHINO-LARYN, V228, P217, DOI 10.1007/BF00454231 Boivin V, 2001, KIDNEY INT, V59, P515, DOI 10.1046/j.1523-1755.2001.059002515.x CARLISLE L, 1990, HEARING RES, V43, P107, DOI 10.1016/0378-5955(90)90219-F Drescher M J, 2000, Brain Res Mol Brain Res, V76, P289 FELDMAN AM, 1976, P NATL ACAD SCI USA, V73, P1761, DOI 10.1073/pnas.73.5.1761 KELSEN SG, 1994, AM J PHYSIOL-LUNG C, V267, pL456 KOCH T, 1988, ARCH OTO-RHINO-LARYN, V245, P82, DOI 10.1007/BF00481441 Kumagami H, 1999, HEARING RES, V132, P69, DOI 10.1016/S0378-5955(99)00035-0 LAKE CR, 1997, NOREPINEPHRINE, P1 Lohuis PJFM, 1999, HEARING RES, V137, P103, DOI 10.1016/S0378-5955(99)00130-6 MARTIN F, 1994, HEARING RES, V81, P33, DOI 10.1016/0378-5955(94)90150-3 Mizuta K, 1996, HEARING RES, V93, P111, DOI 10.1016/0378-5955(95)00202-2 RAREY KE, 1982, HEARING RES, V6, P15, DOI 10.1016/0378-5955(82)90004-1 REINACH P, 1989, CURR EYE RES, V8, P85, DOI 10.3109/02713688909013897 SCHACHT J, 1985, HEARING RES, V20, P9, DOI 10.1016/0378-5955(85)90053-X SCHIMANSKI S, 2000, ASS RES OTOLARYNGOL, V23, P129 Spicer SS, 1996, HEARING RES, V100, P80, DOI 10.1016/0378-5955(96)00106-2 WANGEMANN P, 1995, HEARING RES, V84, P19, DOI 10.1016/0378-5955(95)00009-S Wangemann P, 2000, J MEMBRANE BIOL, V175, P191, DOI 10.1007/s002320001067 Wangemann P, 1999, J MEMBRANE BIOL, V170, P67, DOI 10.1007/s002329900538 NR 21 TC 10 Z9 11 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2001 VL 6 IS 3 BP 124 EP 131 DI 10.1159/000046819 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 459CV UT WOS:000170234300003 PM 11474138 ER PT J AU Idrizbegovic, E Viberg, A Bogdanovic, N Canlon, B AF Idrizbegovic, E Viberg, A Bogdanovic, N Canlon, B TI Peripheral cell loss related to calcium binding protein immunocytochemistry in the dorsal cochlear nucleus in CBA/CaJ mice during aging SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE hair cells; spiral ganglia neurons; parvalbumin; calretinin; calbindin quantification; aging ID AUDITORY BRAIN-STEM; INFERIOR COLLICULUS; CYTOCHROME-OXIDASE; NEURONS; RAT; PARVALBUMIN; YOUNG; IMMUNOREACTIVITY; MORPHOLOGY; C57BL/6J AB The influence of cochlear hair cell and spiral ganglia neuron loss on calcium binding protein immunoreactivity (calretinin, parvalbumin and calbindin) in the dorsal and posteroventral cochlear nuclei (DCN and PVCN) in CBA/ CaJ (CBA) mice during aging (1-39 months) was determined. Since calcium binding proteins have buffering properties against calcium overload, they may have a protective role during aging. It is shown that the percentage of calretinin- and parvalbumin-immunopositive neurons in the DCN showed a statistically significant positive correlation with inner hair cell loss, outer hair cell loss, and spiral ganglion cell loss. A correlation was also found between aging and the auditory periphery, and calcium binding proteins in the DCN. These findings Imply that the pathophysiological state of the auditory periphery may influence the neuronal homeostasis in the dorsal cochlear nucleus. Copyright (C) 2001 S. Karger AG, Basel. C1 Huddinge Univ Hosp, Karolinska Inst, Dept Audiol, S-14186 Huddinge, Sweden. Karolinska Inst, Dept Physiol & Pharmacol, S-10521 Stockholm, Sweden. Karolinska Inst, NEUROTEC, Geriatr Sect, S-10521 Stockholm, Sweden. RP Idrizbegovic, E (reprint author), Huddinge Univ Hosp, Karolinska Inst, Dept Audiol, S-14186 Huddinge, Sweden. CR BAIMBRIDGE KG, 1992, TRENDS NEUROSCI, V15, P303, DOI 10.1016/0166-2236(92)90081-I BRAUN K, 1985, CELL TISSUE RES, V240, P117, DOI 10.1007/BF00217564 Caicedo A, 1997, J COMP NEUROL, V378, P1, DOI 10.1002/(SICI)1096-9861(19970203)378:1<1::AID-CNE1>3.0.CO;2-8 Caicedo A, 1996, ANAT EMBRYOL, V194, P465 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CARR PA, 1989, NEUROSCIENCE, V33, P363, DOI 10.1016/0306-4522(89)90216-9 CONLEE JW, 1982, NEUROSCIENCE, V7, P161, DOI 10.1016/0306-4522(82)90158-0 Edmonds B, 2000, NAT NEUROSCI, V3, P786, DOI 10.1038/77687 Forster CR, 2000, J COMP NEUROL, V416, P173, DOI 10.1002/(SICI)1096-9861(20000110)416:2<173::AID-CNE4>3.0.CO;2-V GUNDERSEN HJG, 1986, J MICROSC-OXFORD, V143, P3 HEIZMANN CW, 1992, TRENDS NEUROSCI, V15, P259, DOI 10.1016/0166-2236(92)90067-I HENRY KR, 1980, AUDIOLOGY, V19, P369 IDRIZBEGOVIC E, 2001, IN PRESS HEAR RES Idrizbegovic E, 1999, NEUROSCI LETT, V259, P49, DOI 10.1016/S0304-3940(98)00911-2 Idrizbegovic E, 1998, BRAIN RES, V800, P86, DOI 10.1016/S0006-8993(98)00504-6 KANE EC, 1974, J COMP NEUROL, V155, P301, DOI 10.1002/cne.901550303 KAWAGUCHI Y, 1987, BRAIN RES, V416, P369, DOI 10.1016/0006-8993(87)90921-8 KEITHLEY EM, 1982, HEARING RES, V8, P249, DOI 10.1016/0378-5955(82)90017-X KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 LAMBERT PR, 1982, OTOLARYNG HEAD NECK, V90, P787 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 Lorente de No R, 1933, LARYNGOSCOPE, V43, P327 MCMULLEN NT, 1994, J COMP NEUROL, V349, P493, DOI 10.1002/cne.903490402 Melamed SB, 2000, AUDIOLOGY, V39, P24 Morest DK, 1997, HEARING RES, V103, P151, DOI 10.1016/S0378-5955(96)00172-4 MUGNAINI E, 1980, J NEUROCYTOL, V9, P537, DOI 10.1007/BF01204841 OERTEL D, 1990, J COMP NEUROL, V295, P136, DOI 10.1002/cne.902950112 Osen KK, 1981, NEURONAL MECHANISMS, P119 Shimada A, 1998, J VET MED SCI, V60, P41, DOI 10.1292/jvms.60.41 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WEST MJ, 1991, ANAT REC, V231, P482, DOI 10.1002/ar.1092310411 WICKESBERG RE, 1988, J COMP NEUROL, V268, P389, DOI 10.1002/cne.902680308 WILLOTT JF, 1991, HEARING RES, V53, P78, DOI 10.1016/0378-5955(91)90215-U WILLOTT JF, 1988, HEARING RES, V37, P1, DOI 10.1016/0378-5955(88)90073-1 Willott J. F., 1991, AGING AUDITORY SYSTE WILLOTT JF, 1992, J COMP NEUROL, V321, P666, DOI 10.1002/cne.903210412 WILLOTT JF, 1990, J COMP NEUROL, V300, P61, DOI 10.1002/cne.903000106 WINSKY L, 1995, J COMP NEUROL, V354, P564, DOI 10.1002/cne.903540407 Zirpel L, 1996, J NEUROPHYSIOL, V76, P4127 NR 40 TC 7 Z9 8 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2001 VL 6 IS 3 BP 132 EP 139 DI 10.1159/000046820 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 459CV UT WOS:000170234300004 PM 11474139 ER PT J AU Liu, GB Hill, KG Mark, RF AF Liu, GB Hill, KG Mark, RF TI Temporal relationship between the auditory brainstem response and focal responses of auditory nerve root and cochlear nucleus during development in the tammar wallaby (Macropus eugenii) SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory development; wallaby; Macropus eugenii; auditory brainstem response ID STEM EVOKED-POTENTIALS; SOURCE DENSITY ANALYSIS; INDUCED NEURONAL LOSS; INFERIOR COLLICULUS; TRAPEZOID BODY; GUINEA-PIGS; CAT; GENERATORS; LESIONS; ORIGIN AB Thirty-two pouch-young tammar wallabies were used to discover the generators of the auditory brainstem response (ABR) during development by the use of simultaneous ABR and focal brainstem recordings. A click response from the auditory nerve root (ANR) in the wallaby was recorded from postnatal day (PND) 101, when no central auditory station was functional, and coincided with the ABR, a simple positive wave. The response of the cochlear nucleus (CN) was detected from PND 110, when the ABR had developed 1 positive and 1 negative peak. The dominant component of the focal ANR response, the N-1 wave, coincided with the first half of the ABR P wave, and that of the focal CN response, the N-1 wave, coincided with the later two thirds. In older animals, the ANR response coincided with the ABR's N-1, wave, while the CN response coincided with the ABR's P-2, N-2 and P-3 waves, with its contribution to the ABR P-2 dominant. The protracted development of the marsupial auditory system which facilitated these correlations makes the tammar wallaby a particularly suitable model. Copyright (C) 2001 S. Karger AG, Basel. C1 Australian Natl Univ, Res Sch Biol Sci, Dev Neurobiol & Endocrinol Grp, Canberra, ACT 2601, Australia. Univ Queensland, Dept Physiol & Pharmacol, Vis Touch & Hearing Res Ctr, Brisbane, Qld 4072, Australia. RP Mark, RF (reprint author), Australian Natl Univ, Res Sch Biol Sci, Dev Neurobiol & Endocrinol Grp, Canberra, ACT 2601, Australia. CR ACHOR LJ, 1980, ELECTROEN CLIN NEURO, V48, P174, DOI 10.1016/0013-4694(80)90302-8 ACHOR LJ, 1980, ELECTROEN CLIN NEURO, V48, P154, DOI 10.1016/0013-4694(80)90301-6 Aitkin L, 1996, J EXP ZOOL, V276, P394, DOI 10.1002/(SICI)1097-010X(19961215)276:6<394::AID-JEZ3>3.3.CO;2-K AITKIN L, 1995, HEARING RES, V82, P257, DOI 10.1016/0378-5955(94)00182-P ALTMAN J, 1981, EXP BRAIN RES, V42, P411 BUCHWALD JS, 1975, SCIENCE, V189, P382, DOI 10.1126/science.1145206 Canning KJ, 2000, ANN NY ACAD SCI, V911, P55 ConeWesson BK, 1997, HEARING RES, V105, P119, DOI 10.1016/S0378-5955(96)00199-2 COOPER WA, 1990, HEARING RES, V43, P171, DOI 10.1016/0378-5955(90)90226-F FULLERTON BC, 1990, HEARING RES, V49, P363, DOI 10.1016/0378-5955(90)90114-5 GRINNELL AD, 1963, J PHYSIOL-LONDON, V167, P67 GRINNELL AD, 1963, J PHYSIOL-LONDON, V167, P38 Hall J, 1992, HDB AUDITORY EVOKED HASHIMOTO I, 1981, BRAIN, V104, P841, DOI 10.1093/brain/104.4.841 Hill KG, 1998, HEARING RES, V117, P97, DOI 10.1016/S0378-5955(97)00211-6 JEWETT DL, 1970, ELECTROEN CLIN NEURO, V28, P609, DOI 10.1016/0013-4694(70)90203-8 JEWETT DL, 1970, SCIENCE, V167, P1517, DOI 10.1126/science.167.3924.1517 JEWETT DL, 1971, BRAIN, V94, P681, DOI 10.1093/brain/94.4.681 Kemp EH, 1937, AM J PHYSIOL, V120, P316 LEV A, 1972, ARCH KLIN EXP OHR, V201, P79, DOI 10.1007/BF00341066 LIU GB, 1994, P 1 AS PAC C NEUR SI, P146 MARTIN WH, 1995, EVOKED POTENTIAL, V96, P357, DOI 10.1016/0168-5597(94)00326-A Melcher JR, 1996, HEARING RES, V93, P52, DOI 10.1016/0378-5955(95)00200-6 Melcher JR, 1996, HEARING RES, V93, P28, DOI 10.1016/0378-5955(95)00179-4 Melcher JR, 1996, HEARING RES, V93, P1, DOI 10.1016/0378-5955(95)00178-6 Moller A. R., 1994, PRINCIPLES APPL AUDI, P23 MOLLER AR, 1983, SCAND AUDIOL, V12, P125, DOI 10.3109/01050398309076235 MOLLER AR, 1986, ELECTROEN CLIN NEURO, V65, P361, DOI 10.1016/0168-5597(86)90015-8 MOLLER AR, 1982, EXP NEUROL, V78, P144, DOI 10.1016/0014-4886(82)90196-0 MOLLER AR, 1981, ELECTROEN CLIN NEURO, V52, P18, DOI 10.1016/0013-4694(81)90184-X MOLLER AR, 1983, SCAND AUDIOL, V11, P33 MOLLER AR, 1982, ELECTROEN CLIN NEURO, V53, P612, DOI 10.1016/0013-4694(82)90137-7 MOORE JK, 1987, HEARING RES, V29, P33, DOI 10.1016/0378-5955(87)90203-6 Pearce AR, 2000, J COMP NEUROL, V418, P441 Reimer K, 1995, HEARING RES, V92, P143, DOI 10.1016/0378-5955(95)00213-8 SANDERSON KJ, 1990, BRAIN BEHAV EVOLUT, V35, P325, DOI 10.1159/000115878 STEGEMAN DF, 1987, ELECTROEN CLIN NEURO, V67, P176 TERKILDSEN K, 1974, SCAND AUDIOL, V3, P123, DOI 10.3109/01050397409044975 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P352, DOI 10.1016/0013-4694(83)90261-4 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P326, DOI 10.1016/0013-4694(83)90259-6 WADA SI, 1983, ELECTROEN CLIN NEURO, V56, P340, DOI 10.1016/0013-4694(83)90260-2 WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WALSH EJ, 1986, J ACOUST SOC AM, V79, P745, DOI 10.1121/1.393463 WALSH EJ, 1986, J ACOUST SOC AM, V79, P725, DOI 10.1121/1.393462 WYEDVORAK J, 1984, J COMP NEUROL, V228, P491, DOI 10.1002/cne.902280405 ZAAROOR M, 1991, ELECTROEN CLIN NEURO, V80, P422, DOI 10.1016/0168-5597(91)90091-B ZAAROOR M, 1991, ELECTROEN CLIN NEURO, V80, P436, DOI 10.1016/0168-5597(91)90092-C NR 47 TC 2 Z9 2 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 2001 VL 6 IS 3 BP 140 EP 153 DI 10.1159/000046821 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 459CV UT WOS:000170234300005 PM 11474140 ER PT J AU Aletsee, C Mullen, L Kim, D Pak, K Brors, D Dazert, S Ryan, AF AF Aletsee, C Mullen, L Kim, D Pak, K Brors, D Dazert, S Ryan, AF TI The disintegrin kistrin inhibits neurite extension from spiral ganglion explants cultured on laminin SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE laminin; tenascin; alpha v beta 3 integrin; kistrin; spiral ganglion; rat development ID GROWTH-FACTOR-I; MICROVASCULAR ENDOTHELIAL-CELLS; NERVOUS-SYSTEM NEURONS; ADHESION MOLECULES; PERIPHERAL-NERVES; TENASCIN-C; INNER-EAR; OUTGROWTH; INTEGRIN; GLYCOPROTEIN AB The influence of laminin-1 (LN) and tenascin-C (TN), extracellular matrix molecules expressed spatially and temporally along the neural growth route from spiral ganglion (SG) neurons to the cochlear sensory cells, was evaluated in cultured SG explants from postnatal day 4 rats. Increasing concentrations of LN resulted in a strong, dose-dependent increase in the length of neurites and in a higher number of neural processes, while varying TN concentrations had relatively minor effects on both parameters. The results suggest differential receptor activation by LN and TN. When explants grown on LN were treated with Kistrin, an inhibitor of the alphav beta3 integrin, the LN-induced increase in neurite length was reduced in a dose-dependent manner. However, the number of extending neurites was not affected, indicating that different receptors mediate this response, perhaps by increasing neuronal survival, Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol & Neurosci, La Jolla, CA 92093 USA. VA Med Ctr, La Jolla, CA USA. Univ Wurzburg, Dept Otolaryngol Head & Neck Surg, Wurzburg, Germany. RP Ryan, AF (reprint author), Univ Calif San Diego, Sch Med, Dept Surg Otolaryngol & Neurosci, 9500 Gilman Dr 0666, La Jolla, CA 92093 USA. CR Aletsee C, 2000, HNO, V48, P457, DOI 10.1007/s001060050597 BILSLAND J, 1999, J NEUROSCI METH, V15, P75 CALOF AL, 1994, NEURON, V13, P117, DOI 10.1016/0896-6273(94)90463-4 CHENG YF, 1991, EXP CELL RES, V194, P69, DOI 10.1016/0014-4827(91)90131-D CLARK EA, 1995, SCIENCE, V268, P233, DOI 10.1126/science.7716514 Cosgrove D, 1997, HEARING RES, V105, P159, DOI 10.1016/S0378-5955(96)00203-1 Dazert S, 1998, J CELL PHYSIOL, V177, P123, DOI 10.1002/(SICI)1097-4652(199810)177:1<123::AID-JCP13>3.0.CO;2-E DENNIS MS, 1990, P NATL ACAD SCI USA, V87, P2471, DOI 10.1073/pnas.87.7.2471 EBENDAL T, 1989, NERVE GROWTH FACTORS, P81 EDGAR D, 1984, EMBO J, V3, P1463 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 FAISSNER A, 1990, NEURON, V5, P627, DOI 10.1016/0896-6273(90)90217-4 HUANG TF, 1987, BIOCHIM BIOPHYS ACTA, V925, P248, DOI 10.1016/0304-4165(87)90189-9 HUSMANN K, 1992, J CELL BIOL, V116, P1475, DOI 10.1083/jcb.116.6.1475 Jones JI, 1996, P NATL ACAD SCI USA, V93, P2482, DOI 10.1073/pnas.93.6.2482 KING KL, 1994, J BONE MINER RES, V9, P381 KRAMER RH, 1990, J CELL BIOL, V111, P1233, DOI 10.1083/jcb.111.3.1233 LANDER AD, 1985, J CELL BIOL, V101, P898, DOI 10.1083/jcb.101.3.898 LEFEBVRE PP, 1992, HEARING RES, V58, P185, DOI 10.1016/0378-5955(92)90127-9 LEIN PJ, 1989, DEV BIOL, V136, P330, DOI 10.1016/0012-1606(89)90260-1 LETOURNEAU PC, 1989, DEVELOPMENT, V105, P505 LIU HM, 1988, J NEUROSCI RES, V20, P64, DOI 10.1002/jnr.490200110 LOCHTER A, 1991, J CELL BIOL, V113, P1159, DOI 10.1083/jcb.113.5.1159 Mackie EJ, 1999, J CELL SCI, V112, P3847 MACKIE EJ, 1988, DEVELOPMENT, V102, P237 MARTINI R, 1994, J NEUROCYTOL, V23, P1, DOI 10.1007/BF01189813 MECHAM RP, 1991, FASEB J, V5, P2538 MIRAGALL F, 1990, J NEUROCYTOL, V19, P899, DOI 10.1007/BF01186818 PIRVOLA U, 1992, P NATL ACAD SCI USA, V89, P9915, DOI 10.1073/pnas.89.20.9915 Powell SK, 1997, INT J BIOCHEM CELL B, V29, P401, DOI 10.1016/S1357-2725(96)00110-0 Primakoff P, 2000, TRENDS GENET, V16, P83, DOI 10.1016/S0168-9525(99)01926-5 REICHARDT LF, 1991, ANNU REV NEUROSCI, V14, P531, DOI 10.1146/annurev.neuro.14.1.531 RUOSLAHTI E, 1987, SCIENCE, V238, P491, DOI 10.1126/science.2821619 RUOSLAHTI E, 1994, CELL, V77, P477, DOI 10.1016/0092-8674(94)90209-7 SAGA Y, 1992, GENE DEV, V6, P1821, DOI 10.1101/gad.6.10.1821 SCARBOROUGH RM, 1993, J BIOL CHEM, V268, P1058 Sheu JR, 1997, BBA-GEN SUBJECTS, V1336, P445, DOI 10.1016/S0304-4165(97)00057-3 SRIRAMARAO P, 1993, J CELL SCI, V105, P1001 STAECKER H, 1995, NEUROREPORT, V6, P1533 STEINDLER DA, 1989, DEV BIOL, V131, P243, DOI 10.1016/S0012-1606(89)80056-9 TIMPL R, 1979, J BIOL CHEM, V254, P9933 VANDEWAT.TR, 1971, ACTA OTO-LARYNGOL, V71, P303, DOI 10.3109/00016487109125368 VANDENPOL AN, 1986, J CELL BIOL, V102, P2281, DOI 10.1083/jcb.102.6.2281 WEHRLE B, 1990, DEVELOPMENT, V110, P401 WEHRLEHALLER B, 1991, DEVELOPMENT, V112, P627 Whitlon DS, 1999, J COMP NEUROL, V406, P361, DOI 10.1002/(SICI)1096-9861(19990412)406:3<361::AID-CNE5>3.0.CO;2-O Whitlon DS, 1999, J NEUROCYTOL, V28, P955, DOI 10.1023/A:1007038609456 WOOLF NK, 1992, DEV BRAIN RES, V65, P21, DOI 10.1016/0165-3806(92)90004-G Wu DY, 1996, J NEUROSCI, V16, P1470 NR 49 TC 20 Z9 23 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2001 VL 6 IS 2 BP 57 EP 65 DI 10.1159/000046811 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 438NW UT WOS:000169060800001 PM 11385179 ER PT J AU Reng, D Muller, M Smolders, JWT AF Reng, D Muller, M Smolders, JWT TI Functional recovery of hearing following AMPA-induced reversible disruption of hair cell afferent synapses in the avian inner ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA); glutamate; bird; pigeon; inner ear; excitotoxicity; trauma; ototoxicity; transmitter; hair cell; basilar papilla; auditory nerve; cochlear synapses ID AUDITORY-NERVE FIBERS; GUINEA-PIG COCHLEA; SEVERE ACOUSTIC TRAUMA; KAINIC ACID; GLUTAMATE RECEPTORS; OTOACOUSTIC EMISSIONS; CHICK COCHLEA; ROUND WINDOW; RAT COCHLEA; REGENERATION AB Hair cells in the avian inner ear can regenerate after acoustic trauma or ototoxic insult, and significant functional recovery from hearing loss occurs. However, small residual deficits remain, possibly as a result of incomplete reestablishment of the hair cell neural synaptic contacts. The aim of the present study was to determine if intracochlear application of alpha -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA), an excitotoxic glutamate agonist, causes reversible disruption of hair cell neural contacts in the bird, and to what extent functional recovery occurs if synaptic contacts are reestablished. Compound action potential (CAP) responses to tone bursts were recorded to determine hearing thresholds during a recovery period of up to 4 months. Subsequently, the response properties of single auditory nerve fibers were analyzed in the same animals. Instillation of AMPA into the perilymph of the scala tympani led to immediate abolition of CAP thresholds. Partial recovery occurred over a period of 2-3 weeks, without further improvement of thresholds thereafter. High-frequency thresholds did not reach control values even after 3-4 months of recovery. Single-ganglion cell response properties, obtained 3-4 months after AMPA treatment, showed elevated thresholds at the fiber's characteristic frequency (CF) for units with CF above 0.3 kHz. Sharpness of tuning (Q(10) (dB)) was reduced in units with CF above 0.4 kHz. The spontaneous firing rate was higher in units with CF above 0.18 kHz. The maximum sound-evoked discharge rate was also increased. Transmission electron micrographs of the basilar papilla showed that, following AMPA treatment, the nerve endings went through a sequence of swelling, degeneration and recovery over a period of 3-7 days. The process of neosynaptogenesis was completed 14 days after exposure. The present findings are strong evidence for a role of glutamate or a related excitatory amino acid as the afferent transmitter in the avian inner ear. In addition they show that functional recovery after disruption and regeneration of hair cell neural synapses, without apparent damage to the hair cells, is incomplete. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Frankfurt Klinikum, Inst Physiol 2, D-60590 Frankfurt, Germany. RP Smolders, JWT (reprint author), Univ Frankfurt Klinikum, Inst Physiol 2, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR ALTSCHULER RA, 1989, HEARING RES, V42, P167, DOI 10.1016/0378-5955(89)90142-1 BLEDSOE SC, 1981, HEARING RES, V41, P189 Cotanche DA, 1999, AUDIOL NEURO-OTOL, V4, P271, DOI 10.1159/000013852 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 COYLE JT, 1983, J NEUROCHEM, V41, P1 Cramer Karina S., 1995, Current Opinion in Neurobiology, V5, P106, DOI 10.1016/0959-4388(95)80094-8 dAldin CG, 1997, INT J DEV NEUROSCI, V15, P619, DOI 10.1016/S0736-5748(96)00116-5 DINGPFENIGDORFF D, 1991, SYNAPSE TRANSMISSION DINGPFENNIGDORF.D, 1990, PFLUGERS ARCH S, V414, P103 DOLAN DF, 1990, J ACOUST SOC AM, V87, P2621, DOI 10.1121/1.399054 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Fettiplace R, 1999, ANNU REV PHYSIOL, V61, P809, DOI 10.1146/annurev.physiol.61.1.809 GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 Hennig AK, 1998, J NEUROSCI, V18, P3282 JANSSEN R, 1991, BRAIN RES, V552, P255, DOI 10.1016/0006-8993(91)90090-I JUIZ JM, 1989, HEARING RES, V40, P65, DOI 10.1016/0378-5955(89)90100-7 KALB RG, 1992, P NATL ACAD SCI USA, V89, P8502, DOI 10.1073/pnas.89.18.8502 KATAOKA Y, 1994, J PHYSIOL-LONDON, V477, P403 Kataoka Y, 1996, J NEUROPHYSIOL, V76, P1870 KLINKE R, 1994, HEARING RES, V74, P238, DOI 10.1016/0378-5955(94)90192-9 KLINKE R, 1986, HEARING RES, V22, P235, DOI 10.1016/0378-5955(86)90100-0 KLINKE R, 1977, EXP BRAIN RES, V30, P145 Knipper M, 1997, CELL TISSUE RES, V287, P23 KUSAKARI J, 1984, LARYNGOSCOPE, V94, P1365 LI HS, 1994, HEARING RES, V78, P235, DOI 10.1016/0378-5955(94)90029-9 MANLEY GA, 1989, J COMP PHYSIOL A, V164, P289, DOI 10.1007/BF00612989 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 MOSBACHER J, 1994, SCIENCE, V266, P1059, DOI 10.1126/science.7973663 Muller M, 1999, HEARING RES, V131, P153, DOI 10.1016/S0378-5955(99)00029-5 Muller M, 1996, HEARING RES, V102, P133, DOI 10.1016/S0378-5955(96)00155-4 Muller M, 1997, INT J DEV NEUROSCI, V15, P401, DOI 10.1016/S0736-5748(96)00100-1 NAVARATNAM DS, 1995, J BIOL CHEM, V270, P19238 NIEMIEC AJ, 1994, HEARING RES, V79, P1, DOI 10.1016/0378-5955(94)90122-8 Ofsie MS, 1997, HEARING RES, V113, P207, DOI 10.1016/S0378-5955(97)00150-0 Parks TN, 2000, HEARING RES, V147, P77, DOI 10.1016/S0378-5955(00)00122-2 Puel JL, 1998, NEUROREPORT, V9, P2109, DOI 10.1097/00001756-199806220-00037 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUEL JL, 1994, J COMP NEUROL, V341, P241, DOI 10.1002/cne.903410209 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUJOL R, 1985, HEARING RES, V18, P145, DOI 10.1016/0378-5955(85)90006-1 Ravindranathan A, 2000, J PHYSIOL-LONDON, V523, P667, DOI 10.1111/j.1469-7793.2000.00667.x Reng D, 1999, NEUROREPORT, V10, P2137, DOI 10.1097/00001756-199907130-00026 RYALS BM, 1994, HEARING RES, V72, P81, DOI 10.1016/0378-5955(94)90208-9 Saunders J. C., 1982, NEW PERSPECTIVES NOI, P229 SAUNDERS SS, 1995, J ACOUST SOC AM, V97, P1159 SCHERMULY L, 1985, J COMP PHYSL, V156, P206 SCHNEIDER ME, 1994, ARO ABSTR, V17, P139 SHATZ CJ, 1990, NEURON, V5, P745, DOI 10.1016/0896-6273(90)90333-B Shero M, 1998, NEUROSCI LETT, V257, P81, DOI 10.1016/S0304-3940(98)00821-0 Smolders JWT, 1999, AUDIOL NEURO-OTOL, V4, P286, DOI 10.1159/000013853 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 SMOLDERS JWT, 1992, ADV BIOSCI, V83, P197 Sun H, 2001, J COMP NEUROL, V430, P172, DOI 10.1002/1096-9861(20010205)430:2<172::AID-CNE1023>3.0.CO;2-W Sun H, 2000, J ACOUST SOC AM, V107, P2136, DOI 10.1121/1.428495 Wald A., 1947, SEQUENTIAL ANAL WU YC, 1995, PROG BIOPHYS MOL BIO, V63, P131, DOI 10.1016/0079-6107(95)00002-5 Wu YC, 1996, BIOPHYS J, V70, P2557 Zheng XY, 1997, HEARING RES, V105, P65, DOI 10.1016/S0378-5955(96)00188-8 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 NR 60 TC 7 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2001 VL 6 IS 2 BP 66 EP 78 DI 10.1159/000046812 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 438NW UT WOS:000169060800002 PM 11385180 ER PT J AU Cheatham, MA Pearce, M Richter, CP Onodera, K Shavit, JA AF Cheatham, MA Pearce, M Richter, CP Onodera, K Shavit, JA TI Use of the pinna reflex as a test of hearing in mutant mice SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlea; gene targeting; mutant mice; pinna reflex ID INBRED STRAINS; VISUAL-SYSTEM; IMPAIRED MICE; MOUSE; MORPHOLOGY AB Although it is a gross measure, the pinna reflex test is easily administered and is, therefore, incorporated as a general screening tool in mutagenesis programs. Our recent application of this approach indicated that mutant mice lacking one of the small Maf proteins, in this case MafG, failed to exhibit a pinna reflex. In contrast, littermate controls, with the same mixed 129/CD1 background, and including both wild type and heterozygous mutant animals, passed the test. Because previous studies indicate that mafG is expressed in both cochlear and vestibular parts of the mouse inner ear, the source of this 'presumed deafness' was further assessed by making round window recordings to determine compound action potential thresholds. Auditory brainstem responses were also acquired to assess function along portions of the central auditory pathway. In all cases, responses in homozygous mutants (-/-) were comparable to those obtained from littermate controls, either wild type (+/+) or heterozygous mutants (+/-). Gross anatomy of the organ of Corti was also found to be similar in all three groups of mice. Hence, the lack of a pinna reflex must relate to nonauditory causes. Copyright (C) 2001 S. Karger AG, Basel. C1 Northwestern Univ, Dept Commun Sci & Disorders, Evanston, IL 60208 USA. Northwestern Univ, Dept Biochem Mol & Cell Biol, Evanston, IL 60208 USA. RP Cheatham, MA (reprint author), Northwestern Univ, Dept Commun Sci & Disorders, 2299 N Campus Dr,2-240 Frances Searle Bldg, Evanston, IL 60208 USA. RI Richter, Claus-Peter/B-4641-2012 CR ANDERSON H, 1966, ACTA OTOLARYNGOL, V60, P375 BALKEMA GW, 1984, INVEST OPHTH VIS SCI, V25, P795 BALKEMA GW, 1981, J NEUROSCI, V1, P1320 Barrow JR, 1996, DEVELOPMENT, V122, P3817 Carlson S, 1998, J NEUROPHYSIOL, V79, P2603 DALLOS P, 1978, J ACOUST SOC AM, V64, P151, DOI 10.1121/1.381980 DAVIS M, 1982, J NEUROSCI, V2, P791 Edge RM, 1998, HEARING RES, V124, P1, DOI 10.1016/S0378-5955(98)00090-2 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 HACK MH, 1968, J AUD RES, V8, P449 HENRY KR, 1979, J AM AUDITORY SOC, V4, P173 JOHNSTONE JR, 1977, PSYCHOPHYSICS PHYSL, P89 Kiernan AE, 1999, J NEUROCYTOL, V28, P969, DOI 10.1023/A:1007090626294 Le Calvez S, 1998, HEARING RES, V120, P51, DOI 10.1016/S0378-5955(98)00051-3 Le Calvez S, 1998, HEARING RES, V120, P37, DOI 10.1016/S0378-5955(98)00050-1 MITCHINER JC, 1976, VISION RES, V16, P1168 OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y Onodera K, 1999, J BIOL CHEM, V274, P21162, DOI 10.1074/jbc.274.30.21162 Pearce M, 2001, J NEUROSCI METH, V106, P57, DOI 10.1016/S0165-0270(01)00329-6 Pinto LH, 2000, MAMM GENOME, V11, P531, DOI 10.1007/s003350010102 Richter CP, 2000, JARO, V1, P195, DOI 10.1007/s101620010019 Shavit JA, 1998, GENE DEV, V12, P2164, DOI 10.1101/gad.12.14.2164 SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M SHORE SE, 1985, J ACOUST SOC AM, V77, P590, DOI 10.1121/1.391877 TAYLOR MM, 1967, J ACOUST SOC AM, V41, P782, DOI 10.1121/1.1910407 Zheng QY, 1999, HEARING RES, V130, P94, DOI 10.1016/S0378-5955(99)00003-9 NR 26 TC 4 Z9 4 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2001 VL 6 IS 2 BP 79 EP 86 DI 10.1159/000046813 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 438NW UT WOS:000169060800003 PM 11385181 ER PT J AU James, C Blamey, P Shallop, JK Incerti, PV Nicholas, AM AF James, C Blamey, P Shallop, JK Incerti, PV Nicholas, AM TI Contralateral masking in cochlear implant users with residual hearing in the non-implanted ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear prostheses; deafness; central masking; contralateral masking ID ELECTRICAL-STIMULATION; INTRACOCHLEAR IMPLANT; PERCEPTION; LEVEL AB Contralateral masking was investigated in cochlear implant users with residual hearing in the non-implanted ear. Threshold elevations for acoustic probes were observed when electrical maskers were presented in the opposite ear. Also, threshold elevations for electrical probes were observed when acoustic contralateral maskers were presented. The amount of threshold shift expressed in decibels charge or decibels sound pressure level produced by either contralateral acoustic or electric maskers was within the range found in normal listeners for similar stimuli (i.e. 4-8 dB). There was a correlation between the sensation level of acoustic maskers and the maximum amount of masking observed which is consistent with data for normally hearing subjects. The width of the masking patterns was similar to that expected from forward masking patterns in severely sensorineurally impaired ears and implanted ears. The maximum amount of acoustic masking tended to occur for electrode positions that were more basal than expected from characteristic frequency positions. However, where a relatively high-frequency 4-kHz masker could be used, there was a good match between the characteristic frequency position of the maximum threshold elevation and that of the masker. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Melbourne, Dept Otolaryngol, E Melbourne, Australia. Bion Ear Inst, E Melbourne, Australia. Cooperat Res Ctr Cochlear Implant & Hearing Aid I, E Melbourne, Australia. Mayo Clin, Rochester, MN USA. RP James, C (reprint author), 384-388 Albert St, E Melbourne, Vic 3002, Australia. CR BILLINGS BL, 1977, J ACOUST SOC AM, V61, P1260, DOI 10.1121/1.381426 BLAMEY PJ, 1984, J ACOUST SOC AM, V76, P97, DOI 10.1121/1.391012 Blamey PJ, 1996, HEARING RES, V99, P139, DOI 10.1016/S0378-5955(96)00095-0 BLAMEY PJ, 1993, SPEECH COMMUN, V13, P453, DOI 10.1016/0167-6393(93)90044-L Bredberg G, 1968, ACTA OTO-LARYNGOL, V236, P1 Chatterjee M, 1998, J ACOUST SOC AM, V103, P2565, DOI 10.1121/1.422777 CLARK GM, 1987, ARCH OTOLARYNGOL, V113, P825 Cohen LT, 1996, AM J OTOL, V17, P859 DIRKS DD, 1965, J ACOUST SOC AM, V37, P631, DOI 10.1121/1.1909383 DIRKS DD, 1966, J ACOUST SOC AM, V40, P12, DOI 10.1121/1.1910028 Dorman MF, 1997, AM J OTOL, V18, pS113 EDDINGTON DK, 1978, T AM SOC ART INT ORG, V24, P1 FESTEN JM, 1990, J ACOUST SOC AM, V88, P1725, DOI 10.1121/1.400247 Fu QJ, 1999, EAR HEARING, V20, P332, DOI 10.1097/00003446-199908000-00006 GREENWOOD D, 1961, J ACOUST SOC AM, V33, P1344, DOI 10.1121/1.1908437 INGHAM JG, 1959, Q J EXP PSYCHOL, V9, P52 JEFFRESS LA, 1971, J ACOUST SOC AM, V49, P1169, DOI 10.1121/1.1912479 Kawano A, 1996, ANN OTO RHINOL LARYN, V105, P701 Kral A, 1998, HEARING RES, V121, P11, DOI 10.1016/S0378-5955(98)00061-6 LESHOWITZ B, 1977, PSYCHOPHYSICS PHYSL, P283 LESHOWITZ B, 1975, J ACOUST SOC AM, V58, pS71, DOI 10.1121/1.2002273 LIM HH, 1989, J ACOUST SOC AM, V86, P971, DOI 10.1121/1.398732 MARSH MA, 1993, AM J OTOL, V14, P386 McDermott HJ, 1997, J ACOUST SOC AM, V101, P1622, DOI 10.1121/1.418177 McKay CM, 1999, HEARING RES, V136, P159, DOI 10.1016/S0378-5955(99)00121-5 MCROBERT H, 1969, J COUND VIB, P305 MICHEYL C, 1994, J PHYS IV, V4, P387, DOI 10.1051/jp4:1994580 Mills JH, 1996, J ACOUST SOC AM, V100, P3336, DOI 10.1121/1.416974 Moore BCJ, 1997, AUDIT NEUROSCI, V3, P289 MOORE BCJ, 1986, FREQUENCY SELECTIVIT, P179 MOORE BCJ, 1995, PERCEPTUAL CONSEQUEN, pCH2 NELSON DA, 1991, J SPEECH HEAR RES, V34, P1233 ROSEN S, 1997, HEARING LANGUAGE WOR, V10 SAGHARICHI M, 1983, Journal of Auditory Research, V23, P77 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 SHERRICK CE, 1961, J ACOUST SOC AM, V33, P1381, DOI 10.1121/1.1908445 SNYDER JM, 1973, ACTA OTO-LARYNGOL, V75, P419, DOI 10.3109/00016487309139768 Strickland E. A., 1995, ABSTR ASS RES OT, V18, P173 TAYLOR MM, 1967, J ACOUST SOC AM, V41, P782, DOI 10.1121/1.1910407 TONG YC, 1983, J ACOUST SOC AM, V74, P73, DOI 10.1121/1.389620 vanHoesel RJM, 1997, J ACOUST SOC AM, V102, P495, DOI 10.1121/1.419611 Wightman F., 1977, PSYCHOPHYSICS PHYSL, P295 YOST WA, 1972, J ACOUST SOC AM, V52, P1234, DOI 10.1121/1.1913237 ZWISLOCK.JJ, 1968, J ACOUST SOC AM, V43, P1267, DOI 10.1121/1.1910978 ZWISLOCK.JJ, 1972, J ACOUST SOC AM, V52, P644, DOI 10.1121/1.1913154 ZWISLOCKI JJ, 1967, PERCEPT PSYCHOPHYS, V2, P59 ZWISLOCKI J, 1953, J ACOUST SOC AM, V25, P752, DOI 10.1121/1.1907171 ZWISLOKCI JJ, 1999, ACTA OTOLARYNGOL, V19, P140 NR 48 TC 16 Z9 18 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2001 VL 6 IS 2 BP 87 EP 97 DI 10.1159/000046814 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 438NW UT WOS:000169060800004 PM 11385182 ER PT J AU Tribukait, A Rosenhall, U AF Tribukait, A Rosenhall, U TI Directional sensitivity of the human macula utriculi based on morphological characteristics SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE vestibulum; otolith; utricle; morphology ID INNERVATING OTOLITH ORGANS; VESTIBULAR NERVE; SQUIRREL-MONKEY; STATIC TILTS; NEURONS AB A morphometric analysis of 43 human maculae utriculi is presented, Individual data on the shape, total area and relative area of the pars interna are given, In addition, the sensitivity of the entire macula to shear stimuli in different directions was estimated, The mean a rea of 39 maculae from adults and children was 4.30 +/- 0.30 (SD) mm(2), The pars interna was slightly but significantly smaller than the pars externa, The interindividual variability was larger for the shape of the macula than for the total area and the percentage of the pars interna, The estimated responsiveness of the macula was largest for shear directed anteromedially and smallest for shear directed posteriorly. The data are discussed taking into consideration clinical findings on patients with unilateral loss of otolith function, Copyright (C) 2001 S. Karger AG, Basel. C1 Karolinska Hosp, Dept Audiol, S-17176 Stockholm, Sweden. RP Tribukait, A (reprint author), Karolinska Hosp, Dept Audiol, S-17176 Stockholm, Sweden. CR Adrian ED, 1943, J PHYSIOL-LONDON, V101, P389 DAI MJ, 1989, EXP BRAIN RES, V77, P315, DOI 10.1007/BF00274989 FERNANDE.C, 1972, J NEUROPHYSIOL, V35, P978 FERNANDEZ C, 1990, J NEUROPHYSIOL, V63, P767 FERNANDEZ C, 1976, J NEUROPHYSIOL, V39, P970 FLOCK A, 1964, J CELL BIOL, V22, P413, DOI 10.1083/jcb.22.2.413 FLOCK A, 1965, COLD SPRING HARB SYM, V30, P133 FLUUR E, 1970, LARYNGOSCOPE, V80, P1701, DOI 10.1288/00005537-197011000-00005 GORNER P, 1963, Z VERGL PHYSIOL, V47, P316, DOI 10.1007/BF00298039 Halmagyi G. Michael, 1993, P89 Lempert T, 1999, ANN NY ACAD SCI, V871, P232, DOI 10.1111/j.1749-6632.1999.tb09188.x LINDEMAN HH, 1969, STUDIES MORPHOLOGY S LOE PR, 1973, J PHYSIOL-LONDON, V230, P29 LOWENSTEIN O, 1959, NATURE, V184, P1807, DOI 10.1038/1841807a0 Ogawa Y, 2000, NEUROSCI LETT, V278, P89, DOI 10.1016/S0304-3940(99)00909-X ROSENHAL.U, 1972, ANN OTO RHINOL LARYN, V81, P339 Tribukait A, 1998, ACTA OTO-LARYNGOL, V118, P479, DOI 10.1080/00016489850154595 NR 17 TC 21 Z9 21 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2001 VL 6 IS 2 BP 98 EP 107 DI 10.1159/000046815 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 438NW UT WOS:000169060800005 PM 11385183 ER PT J AU John, MS Dimitrijevic, A van Roon, P Picton, TW AF John, MS Dimitrijevic, A van Roon, P Picton, TW TI Multiple auditory steady-state responses to AM and FM stimuli SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory steady-state responses; amplitude modulation; frequency modulation; objective audiometry ID FREQUENCY-MODULATED TONES; RATE-INTENSITY FUNCTIONS; TIME-VARYING STIMULI; NERVE FIBERS; EVOKED-POTENTIALS; MIXED MODULATION; SPECTRAL CHARACTERISTICS; AMPLITUDE-MODULATION; SELECTIVE ADAPTATION; COCHLEAR NUCLEUS AB Multiple auditory steady-state responses were recorded using tonal stimuli that were amplitude-modulated (AM), frequency-modulated (FM)or modulated simultaneously in both amplitude and frequency (mixed modulation or MM). When MM stimuli combined 100% AM and 25% FM (12.5% above and below the carrier frequency) and the maximum frequency occurred simultaneously with maximum amplitude, the MM response was one third larger than the simple AM response. This enhancement occurred at intensities between 50 and 30 dB SPL and at carrier frequencies between 500 and 4000 Hz. The AM and FM components of a MM stimulus generate independent responses that add together to give the MM response. Since AM responses generally occur with a slightly later phase delay than FM responses, the largest MM response is recorded when the maximum frequency of the MM stimulus occurs just after the maximum amplitude. Copyright (C) 2001 S. Karger AG, Basel. C1 Univ Toronto, Rotman Res Inst, Baycrest Ctr Geriatr Care, Toronto, ON M6A 2E1, Canada. RP Picton, TW (reprint author), Univ Toronto, Rotman Res Inst, Baycrest Ctr Geriatr Care, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. CR Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7 ASLIN RN, 1989, J ACOUST SOC AM, V86, P582, DOI 10.1121/1.398237 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 COLOMBO J, 1986, CHILD DEV, V57, P287, DOI 10.1111/j.1467-8624.1986.tb00027.x Dolphin WF, 1997, HEARING RES, V110, P1, DOI 10.1016/S0378-5955(97)00056-7 EDWARDS BW, 1994, J ACOUST SOC AM, V96, P733, DOI 10.1121/1.411440 EGGERMONT JJ, 1979, J ACOUST SOC AM, V65, P463, DOI 10.1121/1.382345 Fisher N. I., 1993, STAT ANAL CIRCULAR D GARDNER RB, 1979, J ACOUST SOC AM, V66, P704, DOI 10.1121/1.383220 GEISLER CD, 1974, J NEUROPHYSIOL, V37, P1156 Goldstein JL, 1971, PHYSL AUDITORY SYSTE, P133 Gordon M, 1998, HEARING RES, V122, P97, DOI 10.1016/S0378-5955(98)00087-2 Hartmann W. M., 1998, SIGNALS SOUND SENSAT HARTMANN WM, 1982, ACUSTICA, V50, P297 HERDMAN AT, 2000, IN PRESS SCAND AUDIO JERGER J, 1970, ARCHIV OTOLARYNGOL, V91, P433 John MS, 2000, HEARING RES, V141, P57, DOI 10.1016/S0378-5955(99)00209-9 John MS, 2000, COMPUT METH PROG BIO, V61, P125, DOI 10.1016/S0169-2607(99)00035-8 John MS, 1998, AUDIOLOGY, V37, P59 KAY RH, 1972, J PHYSIOL-LONDON, V225, P657 KHANNA SM, 1989, HEARING RES, V39, P143, DOI 10.1016/0378-5955(89)90087-7 KHANNA SM, 1989, HEARING RES, V39, P159, DOI 10.1016/0378-5955(89)90088-9 KOHN M, 1978, ELECTROEN CLIN NEURO, V45, P236, DOI 10.1016/0013-4694(78)90007-X LANGNER G, 1998, PSYCHOPHYSICAL PHYSL, P277 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 LINS OG, 1995, J ACOUST SOC AM, V97, P3051, DOI 10.1121/1.411869 MAISTE A, 1989, EAR HEARING, V10, P153, DOI 10.1097/00003446-198906000-00003 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MOLLER AR, 1974, J ACOUST SOC AM, V55, P631, DOI 10.1121/1.1914574 MOLLER AR, 1977, AUDIOLOGY, V17, P446 MOLLER AR, 1972, ACTA PHYSIOL SCAND, V86, P223, DOI 10.1111/j.1748-1716.1972.tb05328.x MOORE BCJ, 1994, J ACOUST SOC AM, V96, P741, DOI 10.1121/1.410312 Moore BCJ, 1996, J ACOUST SOC AM, V100, P2320, DOI 10.1121/1.417941 OZIMEK E, 1987, J ACOUST SOC AM, V82, P1598, DOI 10.1121/1.395149 PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 POON PWF, 1992, EXP BRAIN RES, V91, P94 RANCE G, 1995, EAR HEARING, V16, P499, DOI 10.1097/00003446-199510000-00006 REGAN D, 1966, ELECTROEN CLIN NEURO, V20, P238, DOI 10.1016/0013-4694(66)90088-5 REGAN D, 1979, J ACOUST SOC AM, V65, P1249, DOI 10.1121/1.382792 RICKARDS FW, 1994, BRIT J AUDIOL, V28, P327, DOI 10.3109/03005369409077316 Rickards F.W., 1984, EVOKED POTENTIAL, VII, P163 Ricketts C, 1998, HEARING RES, V123, P27, DOI 10.1016/S0378-5955(98)00086-0 ROSE JE, 1971, J NEUROPHYSIOL, V34, P685 SABERI K, 1995, NATURE, V374, P537, DOI 10.1038/374537a0 Saberi K, 1998, J ACOUST SOC AM, V103, P2551, DOI 10.1121/1.422776 SACHS MB, 1974, J ACOUST SOC AM, V56, P1835, DOI 10.1121/1.1903521 Sek A, 1996, J ACOUST SOC AM, V100, P2332, DOI 10.1121/1.417942 SINEX DG, 1981, HEARING RES, V4, P127, DOI 10.1016/0378-5955(81)90001-0 SMITH RL, 1998, PSYCHOPHYSICAL PHYSL, P162 TANSLEY BW, 1983, J ACOUST SOC AM, V74, P765, DOI 10.1121/1.389864 TIAN B, 1994, J NEUROPHYSIOL, V71, P1959 VIEMEISTER NF, 1979, J ACOUST SOC AM, V66, P1364, DOI 10.1121/1.383531 WAKEFIELD GH, 1984, J ACOUST SOC AM, V75, P1588, DOI 10.1121/1.390808 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 WILSON AS, 1990, J ACOUST SOC AM, V88, P1333, DOI 10.1121/1.399710 WINTER IM, 1990, HEARING RES, V45, P191, DOI 10.1016/0378-5955(90)90120-E YATES GK, 1987, HEARING RES, V27, P221, DOI 10.1016/0378-5955(87)90003-7 YATES GK, 1990, HEARING RES, V45, P203, DOI 10.1016/0378-5955(90)90121-5 YOST WA, 1989, J ACOUST SOC AM, V85, P848, DOI 10.1121/1.397556 Zhao HB, 1997, HEARING RES, V106, P83, DOI 10.1016/S0378-5955(97)00004-X Zwicker E., 1990, PSYCHOACOUSTICS FACT ZWICKER EBERHARD, 1962, JOUR ACOUSTICAL SOC AMER, V34, P1425, DOI 10.1121/1.1918362 ZWISLOCKI JJ, 1991, ACTA OTO-LARYNGOL, V111, P256, DOI 10.3109/00016489109137384 NR 65 TC 63 Z9 70 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2001 VL 6 IS 1 BP 12 EP 27 DI 10.1159/000046805 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 396PH UT WOS:000166645400003 PM 11173772 ER PT J AU Wang, X Scheich, H AF Wang, X Scheich, H TI Resolution of single deviant intervals in periodic stimuli by auditory cortex neurons: Comparison of intracochlear electric pulse and acoustic click stimulation SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear implant; temporal resolution; electric stimulation; acoustic stimulation; auditory cortex; Mongolian gerbil ID GERBIL MERIONES-UNGUICULATUS; TEMPORAL RESPONSE PATTERNS; MONGOLIAN GERBIL; FUNCTIONAL-ORGANIZATION; COCHLEAR STIMULATION; CORTICAL FIELDS; NERVE FIBERS; CAT; FREQUENCY; REPRESENTATION AB Responses of neurons in the primary auditory cortex were compared in gerbils receiving intracochlear electric or acoustic stimulation. Stimuli were trains of periodic electric pulses or of acoustic clicks. Interspersed between intervals of equal length were single intervals which were longer, by some Deltat. The Deltat and the repetition rate of these prolonged intervals were varied. The degree of synchronization of spikes to the regular occurrences of prolonged intervals was quantified. While thresholds for synchronized responses to at (at Deltat repetition rates of 4-6 Hz) were about a hundredfold higher for electric (about 5-10 ms) than for acoustic stimulation (about 30 s), Deltat repetition rate response functions were similar for both types of stimulation. The results suggest the feasibility of coding brief acoustic transients by prolonged intervals in electric pulse trains with high pulse repetition rates, which could be another useful strategy for cochlear implants. Copyright (C) 2001 S. Karger AG, Basel. C1 Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. Northeastern Univ, Shenyang, Peoples R China. RP Scheich, H (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. CR CLOPTON BM, 1990, COCHLEAR IMPLANTS MO, P223 DOBIE RA, 1985, HEARING RES, V18, P41, DOI 10.1016/0378-5955(85)90109-1 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 Eggermont JJ, 1998, J NEUROPHYSIOL, V80, P2743 Green D. M., 1988, PROFILE ANAL GREENWOOD JA, 1955, ANN MATH STAT, V26, P233, DOI 10.1214/aoms/1177728540 Hartmann R., 1990, COCHLEAR IMPLANTS MO, P135 HARTMANN R, 1984, HEARING RES, V13, P47, DOI 10.1016/0378-5955(84)90094-7 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 Hess A, 1996, NEUROREPORT, V7, P2643, DOI 10.1097/00001756-199611040-00047 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 Kiang N. Y., 1965, MIT RES MONOGR, V35 KUK FK, 1989, SCAND AUDIOL, V18, P149, DOI 10.3109/01050398909070738 LANGNER G, 1983, EXP BRAIN RES, V52, P333 LANGNER G, 1992, HEARING RES, V60, P115, DOI 10.1016/0378-5955(92)90015-F LESHOWIT.B, 1971, J ACOUST SOC AM, V49, P462, DOI 10.1121/1.1912374 Mardia K. V., 1972, STAT DIRECTIONAL DAT MILLER SW, 1992, PHARMACOTHERAPY, V12, P217 Moore BCJ, 1997, INTRO PSYCHOL HEARIN Ohl FW, 1996, EUR J NEUROSCI, V8, P1001, DOI 10.1111/j.1460-9568.1996.tb01587.x PARKINS CW, 1989, HEARING RES, V41, P137, DOI 10.1016/0378-5955(89)90007-5 RAGGIO MW, 1994, J NEUROPHYSIOL, V72, P2334 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SCHEICH H, 1993, EUR J NEUROSCI, V5, P898, DOI 10.1111/j.1460-9568.1993.tb00941.x SCHREINER CE, 1988, HEARING RES, V32, P49, DOI 10.1016/0378-5955(88)90146-3 Schreiner CE, 1996, J NEUROPHYSIOL, V75, P1283 Schulze H, 1997, J COMP PHYSIOL A, V181, P573, DOI 10.1007/s003590050141 SHAILER MJ, 1987, J ACOUST SOC AM, V81, P1110, DOI 10.1121/1.394631 SHANNON RV, 1990, COCHLEAR IMPLANTS MO, P187 SHANNON RV, 1989, J ACOUST SOC AM, V85, P2587, DOI 10.1121/1.397753 Shepherd RK, 1997, HEARING RES, V108, P112, DOI 10.1016/S0378-5955(97)00046-4 Sugimoto S, 1997, HEARING RES, V112, P175, DOI 10.1016/S0378-5955(97)00119-6 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x VANDENHONERT C, 1987, HEARING RES, V29, P207, DOI 10.1016/0378-5955(87)90168-7 Wilson B.S., 1993, COCHLEAR IMPLANTS AU, P35 NR 35 TC 19 Z9 19 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2001 VL 6 IS 1 BP 28 EP 39 DI 10.1159/000046806 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 396PH UT WOS:000166645400004 PM 11173773 ER PT J AU Fraenkel, R Freeman, S Sohmer, H AF Fraenkel, R Freeman, S Sohmer, H TI The effect of various durations of noise exposure on auditory brainstem response, distortion product otoacoustic emissions and transient evoked otoacoustic emissions in rats SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE noise; hearing loss; auditory brainstem response; distortion product otoacoustic emission transient evoked otoacoustic emission; rat ID TEMPORARY THRESHOLD SHIFT; HAIR CELL LOSS; ACOUSTIC DISTORTION; GUINEA-PIG; EAR; INNER; CARBOPLATIN; CHINCHILLAS; ANIMALS; SOUND AB This study was designed to investigate the effect of various durations of noise exposure in animals on physiological responses from the cochlea which are also used clinically in humans: auditory brainstem response (ABR), transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs). Rats were exposed to 113 dB SPL broad-band noise (12 h on/12 h off) for durations of 3, 6, 9, 12, 15 and 21 days, and tested 24 h after cessation of the noise and again after a period of 6 weeks. ABR threshold to click stimuli and to a 2-kHz tone burst (TB), TEOAE energy content and DPOAE amplitude in the exposed rats were compared to those in a group of control rats not exposed to noise. ABR thresholds (click and TB) were significantly elevated in all exposure duration groups compared to control rats. DPOAE amplitudes and TEOAE energy content were significantly reduced. The mean ABR thresholds following 21 days exposure were significantly greater (click = 100 dB pe SPL; TB = 115 dB pe SPL) than those following 3 days exposure (click = 86 dB pe SPL; TB = 91 dB pe SPL). Linear regression analysis between recorded responses and duration of noise exposure (days) showed a significant increase in ABR thresholds of approximately 0.8-1.4 dB/day. TEOAE and DPOAE responses showed no such dependence on noise duration and were already maximally reduced after only 3 days of exposure. This can be explained by the possibility that short noise exposures may cause damage to the early, more active stages of cochlear transduction (as shown by TEOAEs and DPOAEs). As the noise exposure continues, further damage may be induced at additional, later stages of the cochlear transduction cascade (as shown by ABR). Thus, ABR seems more sensitive to noise duration than OAE measures. Copyright (C) 2001 S. Karger AG, Basel. C1 Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. CR Attanasio G, 1998, SCAND AUDIOL, V27, P45 AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866 CANLON B, 1993, J ACOUST SOC AM, V94, P3232, DOI 10.1121/1.407229 CLARK WW, 1987, J ACOUST SOC AM, V82, P1253, DOI 10.1121/1.395261 CLARK WW, 1991, J ACOUST SOC AM, V90, P155, DOI 10.1121/1.401309 DEW LA, 1993, HEARING RES, V66, P99, DOI 10.1016/0378-5955(93)90264-2 DOLAN TG, 1985, J ACOUST SOC AM, V77, P1475, DOI 10.1121/1.392042 Eddins AC, 1999, HEARING RES, V127, P119 Elberling C, 1976, ELECTROCOCHLEOGRAPHY, P151 Freeman S, 1999, AUDIOL NEURO-OTOL, V4, P207, DOI 10.1159/000013844 HENRY WR, 1995, HEARING RES, V84, P81, DOI 10.1016/0378-5955(95)00014-U Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 HOTZ MA, 1993, ACTA OTO-LARYNGOL, V113, P478, DOI 10.3109/00016489309135849 Kakigi Akinobu, 1998, Auris Nasus Larynx, V25, P223, DOI 10.1016/S0385-8146(98)00034-0 Khvoles R, 1996, HEARING RES, V97, P120 Khvoles R, 1999, AUDIOLOGY, V38, P121 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 Marshall L, 1998, J SPEECH LANG HEAR R, V41, P1319 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Patuzzi R, 1998, HEARING RES, V125, P17, DOI 10.1016/S0378-5955(98)00126-9 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 SCHMIEDT RA, 1986, J ACOUST SOC AM, V79, P1481, DOI 10.1121/1.393675 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 Withnell RH, 2000, HEARING RES, V139, P1, DOI 10.1016/S0378-5955(99)00132-X ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 27 TC 11 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2001 VL 6 IS 1 BP 40 EP 49 DI 10.1159/000046807 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 396PH UT WOS:000166645400005 PM 11173774 ER PT J AU Rapoport, A Sadeh, M AF Rapoport, A Sadeh, M TI Posterior semicircular canal type benign paroxysmal positioning vertigo with ageotropic paroxysmal positioning nystagmus SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE benign paroxysmal positional (positioning) vertigo; ageotropic nystagmus ID CUPULOLITHIASIS; CANALOLITHIASIS; VARIANT AB We report on 3 patients with typical benign paroxysmal positioning vertigo (BPPV) and atypical, paroxysmal positioning nystagmus. When the Dix-Hallpike test was performed, the patients exhibited an ageotropic nystagmus, different from that classically described in posterior semicircular canal BPPV. It was torsional-vertical with the vertical component beating downwards, and the torsional component was beating away from the lowermost ear. In both left and right Dix-Hallpike positions, the upper poles of the eyes were turning away from the lowermost ear. The atypical ageotropic paroxysmal positional nystagmus of the posterior semicircular canal was observed in the evolution of the BPPV in 2 patients and on the first examination in the third. Two patients had changing patterns of paroxysmal positioning nystagmus. Copyright (C) 2001 S. Karger AG, Basel. C1 Wolfson Med Ctr, Dept Neurol, IL-58100 Holon, Israel. Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. RP Rapoport, A (reprint author), Wolfson Med Ctr, Dept Neurol, POB 5, IL-58100 Holon, Israel. CR Agus G, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P143 BALOH RW, 1996, DISORDER VESTIBULAR BALOH RW, 1993, NEUROLOGY, V43, P2542 BALOH RW, 1995, NEUROLOGY, V45, P1297 BALOH RW, 1987, NEUROLOGY, V37, P371 Brandt T, 1993, J Vestib Res, V3, P373 BRANDT T, 1980, ARCH OTOLARYNGOL, V106, P484 EPLEY JM, 1995, OTOLARYNG HEAD NECK, V112, P154, DOI 10.1016/S0194-5998(95)70315-2 EPLEY JM, 1980, OTOLARYNG HEAD NECK, V88, P599 FETTER M, 1995, ACTA OTO-LARYNGOL, V115, P353, DOI 10.3109/00016489509139328 Fife TD, 1998, AM J OTOL, V19, P345 HERDMAN SJ, 1992, LARYNGOL HEAD NECK, V119, P450 PARNES LS, 1992, LARYNGOSCOPE, V102, P988 SCHUKNEC.HF, 1969, ARCH OTOLARYNGOL, V90, P765 Steddin S, 1996, ANN NEUROL, V40, P918 STEDDIN S, 1994, ARCH OTOLARYNGOL, V120, P1339 NR 16 TC 3 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2001 VL 6 IS 1 BP 50 EP 53 DI 10.1159/000046808 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 396PH UT WOS:000166645400006 PM 11173775 ER PT J AU Krishnan, A Parkinson, J AF Krishnan, A Parkinson, J TI Human frequency-following response: Representation of tonal sweeps SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE neural phase locking; steady-state vowels; time-variant vowels ID AUDITORY-NERVE FIBERS; STEADY-STATE VOWELS; DISCHARGE PATTERNS; COCHLEAR NUCLEUS; EVOKED-POTENTIALS; UNIT RESPONSES; PITCH; TONES AB Auditory nerve single-unit population studies have demonstrated that phase locking plays a dominant role in the neural encoding of steady-state speech sounds. Recently, we have reported that the phase-locked activity underlying the human frequency-following response (FFR) could also encode the first two formants of several tonal approximations of steady-state vowels. Since auditory nerve single-unit population studies have also demonstrated that phase locking is used to represent time-varying speech-like sounds, it was reasoned that the phase-locked neural activity underlying the human FFR, likewise, is dynamic enough to represent time-varying sounds. FFRs to a rising and a falling tone were obtained from 8 normal-hearing adults at 95, 85, 75 and 65 dB nHL, Results clearly demonstrated that the human FFR does indeed follow the trajectory of the rising and falling tones. Also, amplitude changes in the FFR supported the view that neural phase locking decreases with increasing frequency. Finally, the relatively smaller FFR amplitude for the falling tone compared to its rising counterpart lends further support to the notion that rising tones produce greater neural synchrony than falling tones. These results indicate that the human FFR may be used to evaluate encoding of time-varying speech sounds like diphthongs and certain consonant-vowel syllables. Copyright (C) 2000 S. Karger AG, Basel. C1 Purdue Univ, Dept Audiol & Speech Sci, Auditory Electrophysiol Lab, W Lafayette, IN 47907 USA. Univ Tennessee, Dept Audiol & Speech Pathol, Auditory Electrophysiol Lab, Knoxville, TN USA. RP Krishnan, A (reprint author), Purdue Univ, Dept Audiol & Speech Sci, Auditory Electrophysiol Lab, 1353 Heavilon Hall, W Lafayette, IN 47907 USA. CR ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003 CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800 CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157 COLLINS MJ, 1978, J ACOUST SOC AM, V63, P469, DOI 10.1121/1.381738 CULLEN JK, 1979, J ACOUST SOC AM, V65, pS38, DOI 10.1121/1.2017228 GARDI J, 1979, AUDIOLOGY, V18, P494 GARDI J, 1979, AUDIOLOGY, V18, P353 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 HALL JW, 1979, SCIENCE, V205, P1297, DOI 10.1126/science.472748 Jacobson R., 1963, PRELIMINARIES SPEECH KIANG NYS, 1965, RES MONOGR, V35 Krishnan A, 1999, AUDIOL NEURO-OTOL, V4, P95, DOI 10.1159/000013826 Marsh J.T., 1974, ELECTROENCEPHALOGR C, V38, P415 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X REALE RA, 1980, J ACOUST SOC AM, V67, P891, DOI 10.1121/1.383969 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P818 RYAN A, 1978, EXP BRAIN RES, V32, P389 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SHOFNER WP, 1985, J NEUROPHYSIOL, V54, P917 SHORE SE, 1987, J ACOUST SOC AM, V82, P471, DOI 10.1121/1.395448 SHORE SE, 1985, J ACOUST SOC AM, V78, P1286, DOI 10.1121/1.392898 SHORE SE, 1984, AM J OTOLARYNG, V5, P34, DOI 10.1016/S0196-0709(84)80018-6 SINEX DG, 1981, HEARING RES, V4, P127, DOI 10.1016/0378-5955(81)90001-0 SINEX DG, 1983, J ACOUST SOC AM, V73, P602, DOI 10.1121/1.389007 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 WORDEN F. G., 1968, ELECTROENCEPHALOGR C, V25, P45 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X Young E.D, 1984, HEARING SCI, P423 YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 33 TC 22 Z9 23 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2000 VL 5 IS 6 BP 312 EP 321 DI 10.1159/000013897 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 363TD UT WOS:000089849900002 PM 11025331 ER PT J AU Patuzzi, RB Thomson, SM AF Patuzzi, RB Thomson, SM TI Auditory evoked response test strategies to reduce cost and increase efficiency: The postauricular muscle response revisited SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE bit-stream averaging; lateral eye movement; correlation detection; tone burst audiometry ID POTENTIALS; COMPONENTS; DITHER AB We describe a number of techniques in auditory evoked response (AER) testing for hearing loss which should decrease its cost and increase its efficiency, making its use in infant hearing screening more viable. We demon strate the use of bit-stream averaging of the electrical signals from the head as a cheap alternative to analogue averaging and show that the average waveforms obtained are similar with both techniques. We demonstrate how the postauricular muscle response (PAMR) can be potentiated by lateral rotation of the eyes and argue that uncontrolled eye movements in previous studies have led to an unfounded belief that the PAMR is not stable. When eye rotation is used to potentiate the PAMR, the response becomes very stable and so large in most subjects that it is clearly visible in the raw traces. We also demonstrate that when the PAMR is potentiated by eye rotation, stable PAMR waveforms can be reliably obtained with tone bursts with frequencies up to and above 8 kHz and with sound levels within 30 dB of the subjective detection threshold. As a result the PAMR can be used to rapidly determine an objective audiogram in most subjects within minutes. Finally, we demonstrate a correlation technique for detecting the PAMR without waveform averaging and the need for an expensive computer. We are sure that a combination of these techniques can be used to increase the efficiency of AER screening for infant deafness and lower its cost dramatically, Copyright (C) 2000 S. Karger AG. Basel. C1 Univ Western Australia, Dept Physiol, Nedlands, WA 6009, Australia. RP Patuzzi, RB (reprint author), Univ Western Australia, Dept Physiol, Nedlands, WA 6009, Australia. CR BESS FH, 1994, PEDIATRICS, V93, P330 BICKFORD RG, 1964, ANN NY ACAD SCI, V112, P204, DOI 10.1111/j.1749-6632.1964.tb26749.x BICKFORD RG, 1963, ELECTROEN CLIN NEURO, V15, P921 BOCHENEK W, 1976, ACTA OTO-LARYNGOL, V81, P264, DOI 10.3109/00016487609119961 BUFFIN JT, 1977, J LARYNGOL OTOL, V91, P1047, DOI 10.1017/S0022215100084759 CODY DTR, 1964, ANN OTO RHINOL LARYN, V73, P763 CODY DTR, 1969, LARYNGOSCOPE, V79, P400, DOI 10.1288/00005537-196903000-00007 DAVIS H, 1976, ANN OTO RHINOL LARYN, V85, P3 Davis H, 1965, ACTA OTOLARYNGOL, V206, P122 DEGRANDIS D, 1980, ELECTROEN CLIN NEURO, V50, P437, DOI 10.1016/0013-4694(80)90009-7 DOUEK E, 1973, Journal of Laryngology and Otology, V87, P711, DOI 10.1017/S0022215100077550 DOUEK E, 1974, DEV MED CHILD NEUROL, V16, P32 Douek E E, 1975, Rev Laryngol Otol Rhinol (Bord), V96, P121 DUS V, 1975, ELECTROEN CLIN NEURO, V39, P523, DOI 10.1016/0013-4694(75)90055-3 FEMEIS H, 1994, POCKET ATLAS HUMAN A Flood L M, 1982, Br J Audiol, V16, P211, DOI 10.3109/03005368209081464 GEISLER CD, 1958, SCIENCE, V128, P1210, DOI 10.1126/science.128.3333.1210 GIBSON WPR, 1975, THESIS U LONDON, P1 HALL JW, 1992, HDB AUDITORY EVOKED, P101 Jacobson J. L., 1964, PHYSIOLOGIST, V7, P167 JOSEPH JP, 1985, EXP BRAIN RES, V57, P286 Kiang N. Y. -S., 1963, QUARTERLY PROGRESS R, V44, P218 MAST T, 1963, PHYSIOLOGIST, V6, P228 MELKONIAN L, 1992, 804 NAT SEM CORP, P1 OudesluysMurphy AM, 1996, EUR J PEDIATR, V155, P429, DOI 10.1007/BF01955176 PICTON TW, 1974, ELECTROEN CLIN NEURO, V36, P179, DOI 10.1016/0013-4694(74)90155-2 ROBINSON K, 1977, BRAIN, V100, P19, DOI 10.1093/brain/100.1.19 SCHUCHMA.L, 1964, IEEE T COMMUN TECHN, VCO12, P162, DOI 10.1109/TCOM.1964.1088973 SCHWARZ DM, 1994, PRINCIPLES APPL AUDI STRELETZ LJ, 1977, ELECTROEN CLIN NEURO, V43, P192, DOI 10.1016/0013-4694(77)90127-4 THORNTON ARD, 1975, J LARYNGOL OTOL, V89, P997, DOI 10.1017/S0022215100081317 TOTSUKA G, 1954, ANN OTO RHINOL LARYN, V63, P939 VANDERKOOY J, 1984, J AUDIO ENG SOC, V32, P106 VANDERKOOY J, 1987, J AUDIO ENG SOC, V35, P966 WEBER B, 1994, PRINCIPLES APPL AUDI, P357 Widrow B., 1960, T AIEE, V79, P555 Wilson S. A. K., 1908, REV NEUROL PSYCHIAT, V6, P331 YOSHIE N, 1969, Acta Oto-Laryngologica Supplement, V252, P89 NR 38 TC 7 Z9 7 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2000 VL 5 IS 6 BP 322 EP 332 DI 10.1159/000013898 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 363TD UT WOS:000089849900003 PM 11025332 ER PT J AU Lai, WK Dillier, N AF Lai, WK Dillier, N TI A simple two-component model of the electrically evoked compound action potential in the human cochlea SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE evoked potentials; cochlear implant; neural response telemetry; mathematical modeling ID STIMULATED AUDITORY-NERVE; PHYSIOLOGICAL-PROPERTIES; PROCESSING STRATEGY; CODING STRATEGY; NUCLEUS; IMPLANT; RECORDINGS; GANGLION AB Neural response telemetry (NRT) permits in situ intracochlear recordings of the electrically evoked compound action potential from the auditory nerves using scala tympani electrodes. The recorded NRT waveforms can generally be categorized under either single positive peak or double positive peak waveforms. This is similar to the observations from Stypulkowski and van den Honert, who suggested that the double peak complex arises from two components that could be axonal and dendritic in origin, respectively. Using a simple mathematical model wh ich linearly combines two separate waveforms similar in shape but differing in amplitude and latencies, it was possible to simulate the various NRT waveform categories, The simulation results support the view that the two waveform components originate from dendritic or axonal processes and implies that the shape of the response waveform may provide information about the degree of neural survival in the stimulated cochlea, This information could be useful for determining optimal speech coding parameters for cochlear implant users on an individual basis. Copyright (C) 2000 S. Karger AG, Basel. C1 Univ Zurich Hosp, ENT Dept, CH-8091 Zurich, Switzerland. RP Lai, WK (reprint author), Univ Zurich Hosp, ENT Dept, Frauenklinikstr 24, CH-8091 Zurich, Switzerland. CR Abbas PJ, 1999, EAR HEARING, V20, P45, DOI 10.1097/00003446-199902000-00005 Boex C, 1996, AM J OTOL, V17, P61 BROWN CJ, 1990, J ACOUST SOC AM, V88, P1385, DOI 10.1121/1.399716 Carter P M, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P48 DEES DC, 1995, ANN OTOL RHINOL LA S, V166, P258 DESAUVAGE RC, 1983, J ACOUST SOC AM, V73, P616 Felix H, 1997, PROGRESS IN HUMAN AUDITORY AND VESTIBULAR HISTOPATHOLOGY, P73 FRANCK KH, 1999, THESIS U WASHINGTON GOYCOOLEA MV, 1990, LARYNGOSCOPE, V100, P19, DOI 10.1288/00005537-199002001-00002 Kiefer J, 1996, ORL J OTO-RHINO-LARY, V58, P127 KILLIAN MJP, 1994, THESIS U UTRECHT LAI WK, 1999, NRT COOKBOOK MILLER CA, 1993, HEARING RES, V69, P35, DOI 10.1016/0378-5955(93)90091-E NADOL JB, 1990, HEARING RES, V49, P141, DOI 10.1016/0378-5955(90)90101-T Pollak A, 1985, Acta Otolaryngol Suppl, V423, P59 SKINNER MW, 1997, VOWELS EAR HEAR, V17, P182 SKINNER MW, 1994, AM J OTOL, V15, P15 STYPULKOWSKI PH, 1984, HEARING RES, V14, P205, DOI 10.1016/0378-5955(84)90051-0 VANDALI A, IN PRESS EAR HEAR VANDENHONERT C, 1984, HEARING RES, V14, P225, DOI 10.1016/0378-5955(84)90052-2 WHITFORD LA, 1995, ACTA OTO-LARYNGOL, V115, P629, DOI 10.3109/00016489509139378 WILSON BS, 1993, J REHABIL RES DEV, V30, P110 NR 22 TC 32 Z9 35 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 2000 VL 5 IS 6 BP 333 EP 345 DI 10.1159/000013899 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 363TD UT WOS:000089849900004 PM 11025333 ER PT J AU Friauf, E AF Friauf, E TI Development of chondroitin sulfate proteoglycans in the central auditory system of rats correlates with acquisition of mature properties SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE extracellular matrix; cochlear nuclear complex; superior olivary complex; lateral lemniscus; inferior colliculus; auditory cortex ID SUPERIOR OLIVARY NUCLEI; EXTRACELLULAR-MATRIX; NEURITE OUTGROWTH; POSTNATAL-DEVELOPMENT; PERINEURONAL NETS; COCHLEAR NUCLEUS; IMMUNOHISTOCHEMICAL LOCALIZATION; INFERIOR COLLICULUS; NEOCORTICAL NEURONS; ADHESION MOLECULES AB Chondroitin sulfate proteoglycans (CSPGs) are macromolecules which regulate the structural organization of the extracellular matrix and can mediate cell migration and axonal growth. Here the spatiotemporal distribution of CSPGs in the central auditory system of rats was investigated using a polyclonal antiserum, in adult brains, CSPGs surrounded many neuronal cell bodies and proximal dendrites at all stations of the auditory pathway except the medial geniculate body. During development, CSPG expression became visible at postnatal day (P) 4 in the superior olivary complex, at P8 in the midbrain, and at P18 in the cortex. Immunoreactivity increased strongly until P12 in the brainstem and until P24 in the cortex. The adult-like pattern in the pontine nuclei, the midbrain, and the cortex was seen at P12, P29, and P35, respectively. The relatively late expression of strong immunoreactivity indicates that the CSPGs are involved in the maturation of axonal connections, but not in early processes such as cell migration or neurite outgrowth. Copyright (C) 2000 S. Karger AG. Basel. C1 Univ Frankfurt Klinikum, Zentrum Physiol, Inst Sinnes & Neurophysiol, D-60590 Frankfurt, Germany. RP Friauf, E (reprint author), Univ Kaiserslautern, Abt Tierphysiol, Postfach 3049, D-67653 Kaiserslautern, Germany. RI Friauf, Eckhard/D-7529-2012 OI Friauf, Eckhard/0000-0002-1833-1698 CR ANGULO A, 1990, J ANAT, V168, P241 Atoji Y, 1997, HEARING RES, V110, P200, DOI 10.1016/S0378-5955(97)00079-8 ATOJI Y, 1989, J NEUROCYTOL, V18, P599, DOI 10.1007/BF01187081 ATOJI Y, 1992, BRAIN RES, V585, P287, DOI 10.1016/0006-8993(92)91220-9 ATOJI Y, 1990, ACTA ANAT, V139, P151 ATOJI Y, 1995, NEUROSCI LETT, V189, P39, DOI 10.1016/0304-3940(95)11447-5 BERTOLOTTO A, 1986, J NEUROL SCI, V73, P233, DOI 10.1016/0022-510X(86)90148-6 BERTOLOTTO A, 1995, BRAIN RES, V673, P344, DOI 10.1016/0006-8993(95)00015-I BICKNESE AR, 1994, J NEUROSCI, V14, P3500 BLATCHLEY BJ, 1987, DEV BRAIN RES, V32, P75, DOI 10.1016/0165-3806(87)90140-4 BRITTIS PA, 1992, SCIENCE, V255, P733, DOI 10.1126/science.1738848 CLARK GM, 1969, BRAIN RES, V14, P293, DOI 10.1016/0006-8993(69)90111-5 Coleman J.R., 1990, P205 DOU CL, 1994, J NEUROSCI, V14, P7616 FAISSNER A, 1994, J CELL BIOL, V126, P783, DOI 10.1083/jcb.126.3.783 FICHARD A, 1991, DEV BIOL, V148, P1, DOI 10.1016/0012-1606(91)90312-Q FRIAUF E, 1990, NEUROSCI LETT, V120, P58, DOI 10.1016/0304-3940(90)90167-8 FRIEDLANDER DR, 1994, J CELL BIOL, V125, P669, DOI 10.1083/jcb.125.3.669 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F Grumet M, 1996, PERSPECT DEV NEUROBI, V3, P319 HARTIG W, 1994, BRAIN RES, V635, P307, DOI 10.1016/0006-8993(94)91452-4 HUXLIN KR, 1995, DEV BRAIN RES, V84, P77, DOI 10.1016/0165-3806(94)00155-S IIJIMA N, 1991, J NEUROCHEM, V56, P706, DOI 10.1111/j.1471-4159.1991.tb08207.x Iozzo RV, 1998, ANNU REV BIOCHEM, V67, P609, DOI 10.1146/annurev.biochem.67.1.609 JEWETT DL, 1972, BRAIN RES, V36, P101, DOI 10.1016/0006-8993(72)90769-X KANDLER K, 1995, J NEUROSCI, V15, P6890 KANDLER K, 1993, J COMP NEUROL, V328, P161, DOI 10.1002/cne.903280202 KANE EC, 1973, INT J NEUROSCI, V5, P251, DOI 10.3109/00207457309149485 KATOHSEMBA R, 1995, EUR J NEUROSCI, V7, P613, DOI 10.1111/j.1460-9568.1995.tb00665.x KITZES LM, 1995, J COMP NEUROL, V353, P341, DOI 10.1002/cne.903530303 Koops A, 1996, MOL BRAIN RES, V41, P65, DOI 10.1016/0169-328X(96)00067-8 Koppe G, 1997, CELL TISSUE RES, V288, P33, DOI 10.1007/s004410050790 LENN NJ, 1966, AM J ANAT, V118, P375, DOI 10.1002/aja.1001180205 Levine JM, 1996, PERSPECT DEV NEUROBI, V3, P245 LINDSEY BG, 1975, J COMP NEUROL, V160, P81, DOI 10.1002/cne.901600106 LOHMANN C, IN PRESS J NEUROBIOL Margolis RK, 1996, PERSPECT DEV NEUROBI, V3, P273 Margolis RU, 1997, CELL TISSUE RES, V290, P343, DOI 10.1007/s004410050939 Matsui F, 1998, BRAIN RES, V790, P45, DOI 10.1016/S0006-8993(98)00009-2 Murakami T, 1996, ARCH HISTOL CYTOL, V59, P219, DOI 10.1679/aohc.59.219 NAKAJIMA Y, 1971, J CELL BIOL, V50, P121, DOI 10.1083/jcb.50.1.121 NICHOL KA, 1994, J NEUROSCI RES, V37, P623, DOI 10.1002/jnr.490370509 NONOMURA K, 1994, J COMP NEUROL, V349, P223, DOI 10.1002/cne.903490206 OAKLEY RA, 1991, DEV BIOL, V147, P187, DOI 10.1016/S0012-1606(05)80017-X OKOYAMA S, 1995, HEARING RES, V88, P65, DOI 10.1016/0378-5955(95)00100-I OOHIRA A, 1991, J NEUROSCI, V11, P822 Rietzel HJ, 1998, J COMP NEUROL, V390, P20 RIGGS GH, 1994, J ANAT, V185, P387 RING C, 1995, DEV BIOL, V168, P11, DOI 10.1006/dbio.1995.1057 ROCKEL AJ, 1973, J COMP NEUROL, V147, P61, DOI 10.1002/cne.901470104 RUSSELL FA, 1995, J COMP NEUROL, V352, P607, DOI 10.1002/cne.903520409 SCHWARTZ IR, 1972, BRAIN RES, V46, P187, DOI 10.1016/0006-8993(72)90015-7 SCHWEIZER M, 1993, J COMP NEUROL, V329, P313, DOI 10.1002/cne.903290303 SEEGER G, 1994, NEUROSCIENCE, V58, P371, DOI 10.1016/0306-4522(94)90044-2 SHEPPARD AM, 1991, J NEUROSCI, V11, P3928 SNOW DM, 1991, DEVELOPMENT, V113, P1473 SNOW DM, 1990, EXP NEUROL, V109, P111, DOI 10.1016/S0014-4886(05)80013-5 SOMOGYI P, 1982, NEUROSCIENCE, V7, P1779, DOI 10.1016/0306-4522(82)90035-5 STEINDLER DA, 1993, ANNU REV NEUROSCI, V16, P445, DOI 10.1146/annurev.ne.16.030193.002305 STERNBERGER LA, 1986, IMMUNOCYTOHCHEMISTRY TOKIMOTO T, 1977, Osaka City Medical Journal, V23, P141 NR 61 TC 13 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2000 VL 5 IS 5 BP 251 EP 262 DI 10.1159/000013889 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 342GT UT WOS:000088637400001 PM 10899695 ER PT J AU Lockwood, DS Ding, DL Wang, J Salvi, RJ AF Lockwood, DS Ding, DL Wang, J Salvi, RJ TI D-methionine attenuates inner hair cell loss in carboplatin-treated chinchillas SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE chinchilla; carboplatin; D-methionine; hair cells; ototoxicity ID PRODUCT OTOACOUSTIC EMISSIONS; EVOKED-POTENTIAL THRESHOLDS; CISPLATIN OTOTOXICITY; ANTIOXIDANT SYSTEM; SODIUM THIOSULFATE; HEARING-LOSS; PHASE-I; PROTECTION; NEPHROTOXICITY; CHEMOTHERAPY AB Carboplatin, a second-generation platinum-based antineoplastic drug, preferentially destroys inner hair cells (IHCs) in the chinchilla while sparing outer hair cells (OHCs), D-Methionine (D-Met), a sulfur-containing amino acid, has been shown to protect hair cells from cisplatin damage in rats, but its ability to protect IHCs from carboplatin damage has not yet been evaluated in the chinchilla, We tested whether D-Met would protect the hair cells in the chinchilla from carboplatin, Animals were divided into two groups: a control group that only received carboplatin (100 mg/kg, i.p.) and an experimental group that received 300 mg/kg D-Met (i.p.) 30 min before carboplatin treatment. Ototoxicity was assessed by measuring the amount of IHC and OHC loss. Average IHC loss in the group treated with D-Met was 62% compared with 84% in the untreated control group. Thus, D-Met causes a statistically significant reduction in IHC loss induced by carboplatin. Copyright (C) 2000 S. Karger AG. Basel. C1 SUNY Buffalo, Hearing Res Lab, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Hearing Res Lab, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. CR APPENROTH D, 1993, J APPL TOXICOL, V13, P189, DOI 10.1002/jat.2550130309 BARRON SE, 1987, HEARING RES, V26, P131, DOI 10.1016/0378-5955(87)90104-3 BECK A, 1992, HNO, V40, P123 CALVERT AH, 1982, CANCER CHEMOTH PHARM, V9, P140, DOI 10.1007/BF00257742 Campbell KCM, 1996, HEARING RES, V102, P90, DOI 10.1016/S0378-5955(96)00152-9 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 CURT GA, 1983, CANCER RES, V43, P4470 DELB W, 1993, LARYNGO RHINO OTOL, V72, P24, DOI 10.1055/s-2007-997847 Ding DL, 1999, AUDIOL NEURO-OTOL, V4, P55, DOI 10.1159/000013822 Freilich RJ, 1996, MED PEDIATR ONCOL, V26, P95 Gabaizadeh R, 1997, ACTA OTO-LARYNGOL, V117, P232, DOI 10.3109/00016489709117778 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 Hofstetter P, 1997, HEARING RES, V112, P199, DOI 10.1016/S0378-5955(97)00123-8 Hofstetter P, 1997, AUDIOLOGY, V36, P301 Hu BH, 1999, HEARING RES, V128, P125, DOI 10.1016/S0378-5955(98)00210-X Jock BM, 1996, HEARING RES, V96, P179, DOI 10.1016/0378-5955(96)00058-5 JONES MM, 1989, J APPL TOXICOL, V9, P229, DOI 10.1002/jat.2550090405 KENNEDY ICS, 1990, CANCER CHEMOTH PHARM, V26, P232, DOI 10.1007/BF02897206 McFadden SL, 1998, HEARING RES, V120, P121, DOI 10.1016/S0378-5955(98)00052-5 Neuwelt EA, 1998, J PHARMACOL EXP THER, V286, P77 Neuwelt EA, 1996, CANCER RES, V56, P706 OTTO WC, 1988, HEARING RES, V35, P79, DOI 10.1016/0378-5955(88)90042-1 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 ROZENCWEIG M, 1983, J CLIN ONCOL, V1, P621 Rybak LP, 1997, PHARMACOL TOXICOL, V81, P173 RYBAK LP, 1995, FUND APPL TOXICOL, V26, P293, DOI 10.1006/faat.1995.1100 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 TAUDY M, 1992, AUDIOLOGY, V31, P293 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 VOGT W, 1995, FREE RADICAL BIO MED, V18, P93, DOI 10.1016/0891-5849(94)00158-G WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WAKE M, 1994, LARYNGOSCOPE, V104, P488 Wang J, 1997, HEARING RES, V107, P67, DOI 10.1016/S0378-5955(97)00020-8 WILLIAMS PC, 1995, NEUROSURGERY, V37, P17 NR 35 TC 13 Z9 16 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2000 VL 5 IS 5 BP 263 EP 266 DI 10.1159/000013890 PG 4 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 342GT UT WOS:000088637400002 PM 10899696 ER PT J AU Roncagliolo, M Benitez, J Eguibar, JR AF Roncagliolo, M Benitez, J Eguibar, JR TI Progressive deterioration of central components of auditory brainstem responses during postnatal development of the myelin mutant taiep rat SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory brainstem response (ABR); evoked potentials; central conduction time; postnatal development; myelin mutant; taiep rat ID EVOKED-POTENTIALS; STEM RESPONSES; IMMOBILITY EPISODES; WAVE-II; INFANTS; MATURATION; ORIGIN; ABNORMALITIES; ADULTHOOD; CHILDREN AB Auditory brainstem responses (ABRs) were evaluated during the postnatal development (P10-P180) of taiep rats, neurological mutants characterized by early abnormal myelin development and subsequent demyelination of the CNS, The disorder is produced by an autosomal recessive mutation trait that affects the oligodendrocytes but not the Schwann cells. After onset of ABRs (P12-P14), taiep rats and their nonaffected heterozygous littermates that served as controls showed a similar pattern of maturation for wave 1. The central waves (In-IV) showed significantly longer latencies in the mutants. By P60-P180, the later waves (III and IV) were frequently difficult to discern. From the onset of ABRs, the interpeak latency I-IV, corresponding to the central conduction time (CCT) of the auditory pathway, showed in taiep rats significantly longer values than controls. After an initial reduction, proportional to that of control rats, the CCT value increased progressively during the second month of the mutants' lives. The electrophysiological results of the present study strongly support the hypothesis that mutation in the taiep rat impairs neuromaturation of the central auditory pathway in the brainstem by affecting the myelination process in the CNS. Copyright (C) 2000 S. Karger AG. Basel. C1 Univ Valparaiso, Fac Ciencias, Dept Fisiol, Inst Ciencias Biol & Quim, Valparaiso, Chile. Benemerita Univ Autonoma Puebla, Inst Fisiol, Puebla, Mexico. RP Roncagliolo, M (reprint author), Univ Valparaiso, Fac Ciencias, Dept Fisiol, Inst Ciencias Biol & Quim, Av Gran Bretana 1111,Casilla 5030, Valparaiso, Chile. EM manuel.roncagliolo@uv.cl CR BACKOFF PM, 1994, HEARING RES, V73, P163, DOI 10.1016/0378-5955(94)90231-3 BENITEZ J, 1994, NOT BIOL, V2, P113 CHEN TJ, 1991, EXP BRAIN RES, V85, P537 CHURCH MW, 1984, ELECTROEN CLIN NEURO, V59, P328, DOI 10.1016/0168-5597(84)90050-9 Couve E, 1997, J NEUROSCI RES, V47, P573, DOI 10.1002/(SICI)1097-4547(19970315)47:6<573::AID-JNR2>3.0.CO;2-A CURIO G, 1987, ELECTROEN CLIN NEURO, V66, P29, DOI 10.1016/0013-4694(87)90135-0 DUNCAN ID, 1992, J NEUROCYTOL, V21, P870, DOI 10.1007/BF01191684 EDWARDS DA, 1994, DEV BRAIN RES, V82, P181, DOI 10.1016/0165-3806(94)90161-9 ELIDAN J, 1982, ACTA NEUROL SCAND, V65, P570 FABIANI M, 1984, DEV MED CHILD NEUROL, V26, P461 FABIANI M, 1979, ELECTROEN CLIN NEURO, V47, P483, DOI 10.1016/0013-4694(79)90164-0 FerberViart C, 1996, BRAIN DEV-JPN, V18, P287, DOI 10.1016/0387-7604(96)00012-5 FRAHER JP, 1987, J ANAT, V155, P109 FUJIYOSHI T, 1994, ANN OTO RHINOL LARYN, V103, P449 HECOX K, 1974, ARCH OTOLARYNGOL, V99, P30 HOLMGREN B, 1989, LAB ANIM SCI, V39, P226 ICHIYAMA T, 1995, BRAIN DEV-JPN, V17, P49, DOI 10.1016/0387-7604(94)00105-7 JEWETT DL, 1972, BRAIN RES, V36, P101, DOI 10.1016/0006-8993(72)90769-X JIANG ZD, 1991, HEARING RES, V54, P67, DOI 10.1016/0378-5955(91)90137-X JIANG ZD, 1993, HEARING RES, V68, P35 LAUFFER H, 1990, NEUROPEDIATRICS, V21, P59, DOI 10.1055/s-2008-1071461 LINAGRANADE G, 1993, BRAIN DEV-JPN, V15, P263, DOI 10.1016/0387-7604(93)90021-Y LUNN KF, 1995, MICROSC RES TECHNIQ, V32, P183, DOI 10.1002/jemt.1070320303 Lunn KF, 1997, J NEUROCYTOL, V26, P267, DOI 10.1023/A:1018548400536 MARTIN WH, 1995, EVOKED POTENTIAL, V96, P357, DOI 10.1016/0168-5597(94)00326-A MOCHIZUKI Y, 1982, BRAIN DEV-JPN, V4, P127 MOLLER AR, 1981, ELECTROEN CLIN NEURO, V52, P18, DOI 10.1016/0013-4694(81)90184-X OCHIKUBO F, 1992, ELECTROEN CLIN NEURO, V82, P145, DOI 10.1016/0013-4694(92)90158-E PETTIGREW AG, 1987, DEV BRAIN RES, V33, P267, DOI 10.1016/0165-3806(87)90159-3 PRIETO GJ, 1991, ELECTROEN CLIN NEURO, V79, P141, DOI 10.1016/0013-4694(91)90052-6 ROBINSON K, 1975, LANCET, V1, P1164 RONCAGLIOLO M, 1994, DEV MED CHILD NEUROL, V36, P26 RONCAGLIOLO M, 1983, REV OTORRINOLARINGOL, V43, P87 Roncagliolo M, 1998, AM J CLIN NUTR, V68, P683 SALAMY A, 1976, ELECTROEN CLIN NEURO, V40, P418, DOI 10.1016/0013-4694(76)90193-0 SALAMY A, 1982, EARLY HUM DEV, V6, P331, DOI 10.1016/0378-3782(82)90071-8 SALAMY A, 1975, BRAIN RES, V96, P361, DOI 10.1016/0006-8993(75)90748-9 SCHWEITZER L, 1987, HEARING RES, V25, P249, DOI 10.1016/0378-5955(87)90096-7 SHAH SN, 1980, NEUROSCIENCE, V5, P2321, DOI 10.1016/0306-4522(80)90148-7 SHAH SN, 1978, EXP NEUROL, V58, P111, DOI 10.1016/0014-4886(78)90126-7 SHAW NA, 1988, PROG NEUROBIOL, V31, P19, DOI 10.1016/0301-0082(88)90021-4 STARR A, 1978, ANNU REV NEUROSCI, V1, P103, DOI 10.1146/annurev.ne.01.030178.000535 STARR A, 1976, ELECTROEN CLIN NEURO, V41, P595, DOI 10.1016/0013-4694(76)90005-5 STARR A, 1977, PEDIATRICS, V60, P831 STOCKARD JJ, 1977, NEUROLOGY, V27, P316 TAIT C, 1987, ARCH OTO-RHINO-LARYN, V244, P26, DOI 10.1007/BF00453487 THIVIERGE J, 1990, ELECTROEN CLIN NEURO, V77, P309, DOI 10.1016/0168-5597(90)90069-P VLES JSH, 1987, DEV MED CHILD NEUROL, V29, P577 NR 48 TC 19 Z9 19 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2000 VL 5 IS 5 BP 267 EP 275 DI 10.1159/000013891 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 342GT UT WOS:000088637400003 PM 10899697 ER PT J AU Sparacino, G Milani, S Magnavita, V Arslan, E AF Sparacino, G Milani, S Magnavita, V Arslan, E TI Electrocochleography potentials evoked by condensation and rarefaction clicks independently derived by a new numerical filtering approach SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE evoked potentials; signal processing; stochastic filtering; Bayes estimation; averaging; electrocochleography; compound action potential; cochlear microphonics ID TYMPANIC ELECTROCOCHLEOGRAPHY; MENIERES-DISEASE; INPUT AB The cochlear microphonic potential (CM) and the compound action potential (CAP) cannot be measured separately but only in combination. In the literature their individual estimates are conventionally recovered by the so-called CM cancellation technique. This method averages the potential obtained in response to rarefaction and condensation clicks under the assumption that changing the polarity of the clicks only affects the CM sign and does not alter the CAP in any way. However, both theory and evidence suggest that these hypotheses can be critical. In addition, recent contributions in the electrocochleography (ECochG) literature suggested that assessing the influence of stimulus polarity on the evoked CAP may constitute an indicator of clinical usefulness which the CM cancellation method cannot supply. In this work we propose a new algorithm to estimate the cochlear potentials evoked from positive clicks, CAP+ and CM+, and those evoked from negative clicks, CAP- and CM-, by processing the same kind and amount of data employed in the CM cancellation method. The application to real data taken from 3 subjects exhibiting quantitatively and qualitatively different ECochG responses at various levels of stimulation intensity is presented. In addition, simulated problems where the true CAP and CM are known are studied to permit a fair assessment of the proposed technique. Results suggest that the new algorithm is potentially able to point out small differences between CAP+ and CAP-, This encourages its further employment on a larger scale. Copyright (C) 2000 S. Karger AG, Basel. C1 Univ Padua, Dept Audiol & Phoniatr, I-35128 Padua, Italy. RP Arslan, E (reprint author), Univ Padua, Dept Audiol & Phoniatr, Via Giustiniani 2, I-35128 Padua, Italy. CR Anderson B. D. O., 1979, OPTIMAL FILTERING Aran J M, 1968, Rev Laryngol Otol Rhinol (Bord), V89, P361 Beck J. V., 1977, PARAMETER ESTIMATION BIONDI E, 1976, INT J BIOMED COMPUT, V7, P251, DOI 10.1016/0020-7101(76)90017-9 DAUMAN R, 1988, AM J OTOL, V9, P31 DeNicolao G, 1997, AUTOMATICA, V33, P851, DOI 10.1016/S0005-1098(96)00254-3 ELBERLING C, 1978, Scandinavian Audiology, V7, P171, DOI 10.3109/01050397809076284 Ferraro JA, 1997, AUDIOL NEURO-OTOL, V2, P241 Ge NN, 1997, AM J OTOL, V18, P58 Hall J, 1992, HDB AUDITORY EVOKED HALL P, 1987, J ROY STAT SOC B MET, V49, P184 HOKE M, 1984, ELECTROEN CLIN NEURO, V57, P484, DOI 10.1016/0013-4694(84)90078-6 HUNT B R, 1971, Mathematical Biosciences, V10, P215, DOI 10.1016/0025-5564(71)90061-7 Johansson R K, 1997, Acta Otolaryngol Suppl, V529, P63 Kumagami H, 1997, Adv Otorhinolaryngol, V53, P1 LEVINE SC, 1992, LARYNGOSCOPE, V102, P614, DOI 10.1288/00005537-199206000-00005 LIBERATI D, 1989, J BIOMED ENG, V11, P285, DOI 10.1016/0141-5425(89)90061-7 LJUNG L, 1987, SYSTEM INDENTIFICATI LJUNG L, 1989, MATLAB SYSTEM IDENTI MADHAVAN PG, 1992, IEEE T BIO-MED ENG, V39, P760, DOI 10.1109/10.142652 MARGOLIS RH, 1992, AUDIOLOGY, V31, P8 *MATH WORKS, 1993, MATH WORKS MATL US G Orchik D J, 1998, J Am Acad Audiol, V9, P121 Papoulis A., 1984, PROBABILITY RANDOM V RUTH RA, 1994, ELECTROCOCHLEOGRAPHY Sass K, 1998, AUDIOLOGY, V37, P198 Sparacino G, 1996, IEEE T BIO-MED ENG, V43, P512, DOI 10.1109/10.488799 WAHBA G, 1990, SIAM CBMSNFS REGIONA YOSHIE N, 1968, LARYNGOSCOPE, V78, P198, DOI 10.1288/00005537-196802000-00002 NR 29 TC 2 Z9 2 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2000 VL 5 IS 5 BP 276 EP 291 DI 10.1159/000013892 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 342GT UT WOS:000088637400004 PM 10899698 ER PT J AU Ikezono, T Tomiyama, S Pawankar, R Jinnouchi, K Suzuki, Y Yagi, T AF Ikezono, T Tomiyama, S Pawankar, R Jinnouchi, K Suzuki, Y Yagi, T TI Passive transfer of experimental autoimmune labyrinthitis SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE Meniere's disease; autoimmune labyrinthitis; passive transfer; animal model ID SPIRAL MODIOLAR VEIN; INNER-EAR; ENDOLYMPHATIC SAC; HEARING-LOSS; GUINEA-PIGS; DISEASE AB The aim of the present study was to establish an animal model of autoimmune labyrinthitis using heterologous inner ear antigen (IEAg) and to elucidate whether the experimentally induced labyrinthitis could be passively transferred, Cochlear and vestibular membranous labyrinthine tissues from bovine temporal bones were used as IEAg. Donor mice were inoculated intracutaneously at multiple sites with an emulsion consisting of equal parts of IEAg and complete Freund's adjuvant, After 10 days, mononuclear cells were collected from lymph nodes, spleen and blood of the donor mice and injected intravenously into naive recipient mice. Cellular infiltration was observed in the perilymphatic space of the cochlea of all donor and recipient mice. Endolymphatic hydrops was also observed in 63% of donor and 42% of recipient mice. These findings suggest that the experimentally induced labyrinthitis observed in this animal model was probably due to an autoimmune reaction to the IEAg and was passively transferred by a cell-mediated immune raction. Copyright (C) 2000 S. Karger AG. Basel. C1 Nippon Med Sch, Dept Otorhinolaryngol, Bunkyo Ku, Tokyo 1138603, Japan. Isesaki Municipal Hosp, Dept Otorhinolaryngol, Isesaki, Japan. Isesaki Municipal Hosp, Dept Pathol, Isesaki, Japan. RP Ikezono, T (reprint author), Nippon Med Sch, Dept Otorhinolaryngol, Bunkyo Ku, 1-1-5 Sendagi, Tokyo 1138603, Japan. CR Arnold W, 1995, Acta Otolaryngol Suppl, V519, P36 Barbara M, 1997, ANN NY ACAD SCI, V830, P243, DOI 10.1111/j.1749-6632.1997.tb51895.x Barna BP, 1997, CLIN LAB MED, V17, P581 BEICKERT P, 1961, Z Laryngol Rhinol Otol, V40, P837 Friberg U, 1985, Acta Otolaryngol Suppl, V426, P1 Fukuda S, 1992, Ann Otol Rhinol Laryngol Suppl, V157, P67 Gloddek B, 1997, ANN NY ACAD SCI, V830, P266, DOI 10.1111/j.1749-6632.1997.tb51897.x GLODDEK B, 1994, CLIN EXP IMMUNOL, V97, P133 GLODDEK B, 1991, ACTA OTO-LARYNGOL, V111, P1051, DOI 10.3109/00016489109138449 Harris JP, 1997, ANN NY ACAD SCI, V830, P166, DOI 10.1111/j.1749-6632.1997.tb51888.x HARRIS JP, 1994, AM J OTOL, V15, P710 HARRIS JP, 1990, ACTA OTO-LARYNGOL, V110, P357, DOI 10.3109/00016489009107455 HARRIS JP, 1987, LARYNGOSCOPE, V97, P63 HUGHES GB, 1988, OTOLARYNG HEAD NECK, V98, P221 KIMURA RS, 1965, PRACT-OTO-RHINO-LARY, V27, P343 LANDO Z, 1979, J IMMUNOL, V123, P2156 LEHNHARDT E, 1958, Z Laryngol Rhinol Otol, V37, P1 Minoda R, 1996, INT ARCH ALLERGY IMM, V111, P166 MOSCICKI RA, 1994, BAILLIERE CLIN NEUR, V3, P547 ONEILL JK, 1992, J NEUROIMMUNOL, V41, P177, DOI 10.1016/0165-5728(92)90068-V PATERSON PY, 1969, SCIENCE, V165, P191, DOI 10.1126/science.165.3889.191 ROSE NR, 1993, IMMUNOL TODAY, V14, P426, DOI 10.1016/0167-5699(93)90244-F SCHUKNECHT HF, 1991, ADV OTO-RHINO-LARYNG, V46, P50 Schuknecht H F, 1983, Ann Otol Rhinol Laryngol Suppl, V106, P1 STEARNS GS, 1993, LARYNGOSCOPE, V103, P890 TAKUMIDA M, 1988, ARCH OTO-RHINO-LARYN, V245, P266, DOI 10.1007/BF00464628 TOMIYAMA S, 1986, LARYNGOSCOPE, V96, P685 TOMIYAMA S, 1995, ORL J OTO-RHINO-LARY, V57, P122 YAMANOBE S, 1992, ANN OTO RHINOL LARYN, V101, P1007 NR 29 TC 6 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 2000 VL 5 IS 5 BP 292 EP 299 DI 10.1159/000013893 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 342GT UT WOS:000088637400005 PM 10899699 ER PT J AU Naatanen, R Escera, C AF Naatanen, R Escera, C TI Mismatch negativity: Clinical and other applications SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE mismatch negativity (MMN); event-related potential (ERP); central auditory processing; auditory-processing accuracy ID EVENT-RELATED POTENTIALS; AUDITORY SENSORY MEMORY; STRONG ATTENTIONAL FOCUS; SELECTIVE-ATTENTION; ELECTROPHYSIOLOGICAL SIGNS; NEUROPHYSIOLOGICAL BASIS; PHONEME REPRESENTATIONS; INVOLUNTARY ATTENTION; COGNITIVE FUNCTION; STIMULUS DEVIANCE AB The perspectives of application of the mismatch negativity (MMN), generated by the brain's automatic response to change in auditory stimulation, are discussed. In light of the fact that the MMN (and its magnetic equivalent MMNm) currently provides the only objective measure of the accuracy of the central auditory function, these perspectives appear very promising. The MMN can be measured in the absence of attention and task requirements, which makes it particularly suitable for testing different clinical populations and infants. Furthermore, the MMN enables one to evaluate the accuracy of auditory discrimination separately for any acoustic feature, such as frequency, intensity and duration, and for learned categories, such as the phonemes of a particular language. In addition, by measuring the decay of the MMN amplitude as a function of the interstimulus interval, it is possible to estimate the duration of sensory (echoic) memory. Copyright(C) 2000 S. Karger AG, Basel. C1 Univ Helsinki, Cognit Brain Res Unit, Dept Psychol, FIN-00014 Helsinki, Finland. Univ Barcelona, Dept Psychiat & Clin Psychobiol, Neurodynam Lab, Barcelona, Spain. RP Naatanen, R (reprint author), Univ Helsinki, Cognit Brain Res Unit, Dept Psychol, POB 13, FIN-00014 Helsinki, Finland. RI Escera, Carles/A-8658-2010 OI Escera, Carles/0000-0001-8203-2951 CR AALTONEN O, 1993, BRAIN LANG, V44, P139, DOI 10.1006/brln.1993.1009 AHVENINEN J, IN PRESS AUDIOL NEUR ALHO K, 1990, ELECTROEN CLIN NEURO, V77, P151, DOI 10.1016/0168-5597(90)90031-8 ALHO K, 1994, ELECTROEN CLIN NEURO, V91, P353, DOI 10.1016/0013-4694(94)00173-1 Alho K, 1997, NEUROREPORT, V8, P3233, DOI 10.1097/00001756-199710200-00010 ALHO K, 1992, ELECTROEN CLIN NEURO, V82, P356, DOI 10.1016/0013-4694(92)90005-3 ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Atienza M, 1997, NEUROSCI LETT, V237, P21, DOI 10.1016/S0304-3940(97)00798-2 BORN J, 1987, EXP BRAIN RES, V67, P85, DOI 10.1007/BF00269456 BORN J, 1986, PEPTIDES, V7, P189, DOI 10.1016/0196-9781(86)90211-1 Born J, 1998, PROG BRAIN RES, V119, P619 BOTTCHERGANDOR C, 1992, PSYCHOPHYSIOLOGY, V29, P546, DOI 10.1111/j.1469-8986.1992.tb02028.x Cheour M, 1997, NEUROREPORT, V8, P1785, DOI 10.1097/00001756-199705060-00043 Cheour M, 1998, NAT NEUROSCI, V1, P351, DOI 10.1038/1561 Cheour M, 1998, NEUROREPORT, V9, P2709, DOI 10.1097/00001756-199808240-00004 CheourLuhtanen M, 1996, PSYCHOPHYSIOLOGY, V33, P478, DOI 10.1111/j.1469-8986.1996.tb01074.x COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341 Dehaene-Lambertz G, 1998, NEUROREPORT, V9, P1885, DOI 10.1097/00001756-199806010-00040 Deouell LY, 2000, AUDIOL NEURO-OTOL, V5, P225, DOI 10.1159/000013884 Escera C, 1998, J COGNITIVE NEUROSCI, V10, P590, DOI 10.1162/089892998562997 Escera C, 2000, AUDIOL NEURO-OTOL, V5, P151, DOI 10.1159/000013877 Fischer C, 2000, AUDIOL NEURO-OTOL, V5, P192, DOI 10.1159/000013880 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x GOODIN DS, 1978, PSYCHOPHYSIOLOGY, V15, P360, DOI 10.1111/j.1469-8986.1978.tb01392.x Hirayasu Y, 1998, AM J PSYCHIAT, V155, P1281 Holguin SR, 1998, ALCOHOL CLIN EXP RES, V22, P1363, DOI 10.1097/00000374-199809000-00024 CSEPE V, 1989, SLEEP 88, P210 Jaaskelainen IP, 1998, ALCOHOL, V15, P105, DOI 10.1016/S0741-8329(97)00104-3 JAASKELAINEN IP, 1995, ALCOHOL CLIN EXP RES, V19, P607, DOI 10.1111/j.1530-0277.1995.tb01555.x JAMES L, 1989, COMPR PSYCHIAT, V30, P84, DOI 10.1016/0010-440X(89)90121-1 Javitt DC, 2000, AUDIOL NEURO-OTOL, V5, P207, DOI 10.1159/000013882 Javitt DC, 1996, P NATL ACAD SCI USA, V93, P11962, DOI 10.1073/pnas.93.21.11962 Kallio S, 1999, NEUROREPORT, V10, P3579, DOI 10.1097/00001756-199911260-00021 KANE NM, 1993, LANCET, V341, P688, DOI 10.1016/0140-6736(93)90453-N Kane NM, 1996, INTENS CARE MED, V22, P39, DOI 10.1007/BF01728329 Kane NM, 2000, AUDIOL NEURO-OTOL, V5, P186, DOI 10.1159/000013879 KAUKORANTA E, 1989, HEARING RES, V41, P15, DOI 10.1016/0378-5955(89)90174-3 KORPILAHTI P, 1994, ELECTROEN CLIN NEURO, V91, P256, DOI 10.1016/0013-4694(94)90189-9 Kraus N, 2000, AUDIOL NEURO-OTOL, V5, P140, DOI 10.1159/000013876 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 Leppanen PHT, 1997, AUDIOL NEURO-OTOL, V2, P308 LOUNASMAA OV, 1989, EUROPHYS LETT, V9, P603, DOI 10.1209/0295-5075/9/6/019 Makela JP, 1998, ELECTROEN CLIN NEURO, V106, P433, DOI 10.1016/S0013-4694(98)00005-4 Morlet D, 2000, AUDIOL NEURO-OTOL, V5, P198, DOI 10.1159/000013881 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, IN PRESS PSYCHOPHYSI NAATANEN R, 1982, BIOL PSYCHOL, V14, P53, DOI 10.1016/0301-0511(82)90017-5 NAATANEN R, 1995, EAR HEARING, V16, P6 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 NAATANEN R, 1993, PSYCHOPHYSIOLOGY, V30, P436, DOI 10.1111/j.1469-8986.1993.tb02067.x NAATANEN R, 1991, PSYCHOPHYSIOLOGY, V28, P478, DOI 10.1111/j.1469-8986.1991.tb00735.x NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 Näätänen R, 1999, Electroencephalogr Clin Neurophysiol Suppl, V49, P170 NAATANEN R, 1979, BIOL PSYCHOL, V8, P81, DOI 10.1016/0301-0511(79)90053-X Nakagome K, 1998, NEUROPSYCHOBIOLOGY, V38, P232, DOI 10.1159/000026547 OGURA C, 1993, BIOL PSYCHIAT, V33, P720, DOI 10.1016/0006-3223(93)90122-T PAAVILAINEN P, 1993, BIOL PSYCHOL, V37, P23, DOI 10.1016/0301-0511(93)90025-4 PEKKONEN E, 1993, ELECTROEN CLIN NEURO, V87, P321, DOI 10.1016/0013-4694(93)90185-X PEKKONEN E, 1994, NEUROREPORT, V5, P2537, DOI 10.1097/00001756-199412000-00033 Pekkonen E, 2000, AUDIOL NEURO-OTOL, V5, P216, DOI 10.1159/000013883 PEKKONEN E, 1995, ELECTROEN CLIN NEURO, V95, P47, DOI 10.1016/0013-4694(94)00304-4 Ponton CW, 2000, AUDIOL NEURO-OTOL, V5, P167, DOI 10.1159/000013878 Riekkinen P, 1997, PSYCHOPHARMACOLOGY, V133, P203, DOI 10.1007/s002130050392 Rinne T, 1999, NEUROREPORT, V10, P1113, DOI 10.1097/00001756-199904060-00038 RINNE T, IN PRESS NEUROIMAGE SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 SCHREIBER H, 1992, BIOL PSYCHIAT, V32, P634, DOI 10.1016/0006-3223(92)90294-A SCHREIBER H, 1995, BIOL PSYCHIAT, V37, P702, DOI 10.1016/0006-3223(94)00207-J SCHROEDER MM, 1994, BIOL PSYCHIAT, V35, P54, DOI 10.1016/0006-3223(94)91168-1 Schroger E, 1996, J COGNITIVE NEUROSCI, V8, P527, DOI 10.1162/jocn.1996.8.6.527 Seri S, 1999, CLIN NEUROPHYSIOL, V110, P1825, DOI 10.1016/S1388-2457(99)00137-6 Serra JM, 1996, NEUROSCI LETT, V203, P77 SHELLEY AM, 1991, BIOL PSYCHIAT, V30, P1059, DOI 10.1016/0006-3223(91)90126-7 Shtyrov Y, 1999, NEUROREPORT, V10, P2189, DOI 10.1097/00001756-199907130-00034 Smolnik R, 1998, J CLIN PSYCHOPHARM, V18, P241, DOI 10.1097/00004714-199806000-00010 Tervaniemi M, 1997, NEUROSCI LETT, V226, P1, DOI 10.1016/S0304-3940(97)00217-6 TREJO LJ, 1995, PSYCHOPHYSIOLOGY, V32, P319, DOI 10.1111/j.1469-8986.1995.tb01214.x Umbricht D, 1998, BIOL PSYCHIAT, V44, P716, DOI 10.1016/S0006-3223(97)00524-6 Vanhanen M, 1996, NEUROREPORT, V7, P2767, DOI 10.1097/00001756-199611040-00072 VANWOERKOM TCAM, 1988, ELECTROEN CLIN NEURO, V71, P443, DOI 10.1016/0168-5597(88)90048-2 WINKLER I, 1992, NEUROSCI LETT, V140, P239, DOI 10.1016/0304-3940(92)90111-J WINKLER I, 1993, PERCEPT PSYCHOPHYS, V53, P443, DOI 10.3758/BF03206788 Winkler I, 1999, PSYCHOPHYSIOLOGY, V36, P638, DOI 10.1017/S0048577299981908 WINSBERG BG, 1993, PSYCHOPHARMACOL BULL, V29, P229 Winsberg BG, 1997, BIOL PSYCHIAT, V42, P434, DOI 10.1016/S0006-3223(96)00429-5 Woldorff MG, 1998, PSYCHOPHYSIOLOGY, V35, P283, DOI 10.1017/S0048577298961601 WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x Yabe H, 1998, PSYCHOPHYSIOLOGY, V35, P615, DOI 10.1017/S0048577298000183 Yabe H, 1997, NEUROREPORT, V8, P1971, DOI 10.1097/00001756-199705260-00035 NR 91 TC 84 Z9 87 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 105 EP 110 DI 10.1159/000013874 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800001 PM 10859407 ER PT J AU Ponton, CW Eggermont, JJ Don, M Waring, MD Kwong, B Cunningham, J Trautwein, P AF Ponton, CW Eggermont, JJ Don, M Waring, MD Kwong, B Cunningham, J Trautwein, P TI Maturation of the mismatch negativity: Effects of profound deafness and cochlear implant use SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE evoked potentials; auditory cortex; maturation; cochlear implant; deafness; mismatch negativity (MMN) ID EVENT-RELATED POTENTIALS; INTRACOCHLEAR ELECTRICAL-STIMULATION; AUDITORY-SYSTEM PLASTICITY; SENSORINEURAL HEARING-LOSS; NEONATALLY DEAFENED CAT; EVOKED MAGNETIC-FIELDS; INTERSTIMULUS-INTERVAL; STIMULUS DEVIANCE; N1 WAVE; CHILDREN AB The use of cochlear implants to restore auditory sensation in deaf children is increasing, with a trend toward earlier implantation. However, little is known about how auditory deprivation and subsequent cochlear implant use affect the maturing human central auditory system. Our previous studies have demonstrated that the obligatory auditory evoked potentials (AEPs) of implanted children are very different from those of normal-hearing children. Unlike the obligatory potentials, which primarily reflect neural responses to stimulus onset, the mismatch negativity (MMN) provides a neurophysiological measure of auditory short-term memory and discrimination processes. The purpose of this investigation is to review our studies of the effects of auditory deprivation due to profound deafness and cochlear implant use on the maturation of the MMN in children, placed in the context of overall age-related changes in the AEPs. The development and application of a statistical technique to assess the MMN in individuals is also reviewed. Results show that although the morphology of the obligatory AEPs is substantially altered by the absence of a normal N-1 peak, the MMN is robustly present in a group of implanted children who have good spoken language perception through their device. Differences exist in the scalp distribution of the MMN between implanted and normal-hearing children. Specifically, the MMN appears to be more symmetrical in amplitude over both hemispheres, whereas it is initially much larger over the contralateral hemisphere in normal-hearing children. These findings suggest that, compared to N-1, the MMN is a better measure of basic auditory processes necessary for the development of spoken language perception skills in profoundly deaf children and adults who use a cochlear implant. Copyright (C) 2000 S. Karger AG, Basel. C1 House Ear Inst, Electrophysiol Lab, Los Angeles, CA 90057 USA. House Ear Inst, Childrens Auditory Res & Evaluat Ctr, Los Angeles, CA 90057 USA. Northwestern Univ, Auditory Neurosci Lab, Evanston, IL USA. Univ Calgary, Dept Phys & Biophys, Calgary, AB, Canada. Univ Calgary, Dept Psychol, Calgary, AB, Canada. RP Ponton, CW (reprint author), House Ear Inst, Electrophysiol Lab, 2100 W 3rd St, Los Angeles, CA 90057 USA. CR ALHO K, 1990, ELECTROEN CLIN NEURO, V77, P151, DOI 10.1016/0168-5597(90)90031-8 BARNET AB, 1975, ELECTROEN CLIN NEURO, V39, P29, DOI 10.1016/0013-4694(75)90124-8 BESS FH, 1986, EAR HEARING, V7, P20, DOI 10.1097/00003446-198602000-00005 BLAKEMORE C, 1981, CIBA F SYMP, V86, P152 Bruneau N, 1997, PSYCHOPHYSIOLOGY, V34, P32, DOI 10.1111/j.1469-8986.1997.tb02413.x Ceponiene R, 1998, EVOKED POTENTIAL, V108, P345, DOI 10.1016/S0168-5597(97)00081-6 Cheour M, 1998, INT J PSYCHOPHYSIOL, V29, P217, DOI 10.1016/S0167-8760(98)00017-8 CHEOURLUHTANEN M, 1995, HEARING RES, V82, P53 COURCHESNE E, 1978, ELECTROEN CLIN NEURO, V45, P468, DOI 10.1016/0013-4694(78)90291-2 Courchesne E, 1990, EVENT RELATED BRAIN, P210 CSEPE V, 1995, EAR HEARING, V16, P91 CUNNINGHAM J, 1996, ASS RES OT MIDW M Edgington E. S., 1995, RANDOMIZATION TESTS EGGERMONT JJ, 1988, ELECTROEN CLIN NEURO, V70, P293, DOI 10.1016/0013-4694(88)90048-X Ejiri Kazuo, 1992, No To Hattatsu, V24, P565 ELBERLING C, 1981, SCAND AUDIOL, V10, P203, DOI 10.3109/01050398109076182 GLENDENNING KK, 1992, J COMP NEUROL, V319, P100, DOI 10.1002/cne.903190110 Grau C, 1998, NEUROREPORT, V9, P2451, DOI 10.1097/00001756-199808030-00005 GRAYBIEL AM, 1973, BRAIN RES, V49, P229, DOI 10.1016/0006-8993(73)90420-4 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 HAYAKAWA K, 1989, RADIOLOGY, V172, P171 Jasper H. H., 1958, ELECTROENCEPHALOGRAP, V10, P371, DOI DOI 10.1016/0013-4694(58)90053-1 JAVITT DC, 1994, BRAIN RES, V667, P192, DOI 10.1016/0006-8993(94)91496-6 KAUKORANTA E, 1989, HEARING RES, V41, P15, DOI 10.1016/0378-5955(89)90174-3 KHOSLA D, UNPUB EFFECTS PROFOU KLEE TM, 1986, EAR HEARING, V7, P27, DOI 10.1097/00003446-198602000-00006 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KURTZBERG D, 1995, EAR HEARING, V16, P105, DOI 10.1097/00003446-199502000-00008 LEAKE PA, 1995, HEARING RES, V82, P65 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 LU ZL, 1992, SCIENCE, V258, P1668, DOI 10.1126/science.1455246 MAKELA JP, 1992, NEUROREPORT, V3, P94 Makela JP, 1996, EXP BRAIN RES, V110, P446 MARZI CA, 1991, NEUROPSYCHOLOGIA, V29, P1163, DOI 10.1016/0028-3932(91)90031-3 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 PAETAU R, 1995, J CLIN NEUROPHYSIOL, V12, P177, DOI 10.1097/00004691-199503000-00008 Pang EW, 1998, INT J PSYCHOPHYSIOL, V29, P227, DOI 10.1016/S0167-8760(98)00018-X PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PONTON CW, 1993, ELECTROEN CLIN NEURO, V88, P478, DOI 10.1016/0168-5597(93)90037-P PONTON CW, IN PRESS CLIN NEUROP PONTON CW, UNPUB EXPERIENCE REL Ponton CW, 1996, EAR HEARING, V17, P430, DOI 10.1097/00003446-199610000-00009 Ponton CW, 1996, NEUROREPORT, V8, P61, DOI 10.1097/00001756-199612200-00013 Ponton CW, 1997, EVOKED POTENTIAL, V104, P143, DOI 10.1016/S0168-5597(97)96104-9 PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010 Ponton CW, 1999, SCAND AUDIOL, V28, P13 PUJOL J, 1993, ANN NEUROL, V34, P71, DOI 10.1002/ana.410340113 RAUCH RA, 1994, BEHAV BRAIN RES, V64, P65, DOI 10.1016/0166-4328(94)90119-8 RECANZONE GH, 1992, J NEUROPHYSIOL, V67, P1015 RIF J, 1991, ELECTROEN CLIN NEURO, V79, P464, DOI 10.1016/0013-4694(91)90166-2 Scherg M., 1990, ADV AUDIOL, V6, P40 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 Sharma A, 1997, EVOKED POTENTIAL, V104, P540, DOI 10.1016/S0168-5597(97)00050-6 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Sussman E, 1998, NEUROREPORT, V9, P4167, DOI 10.1097/00001756-199812210-00031 TIMNEY B, 1979, DEV NEUROBIOLOGY VIS, P149 TonnquistUhlen I, 1996, SCAND AUDIOL, V25, P1 Trautwein PG, 1998, P 16 INT C AC 135 M, P877 Tremblay K, 1998, NEUROREPORT, V9, P3557 Truy E, 1998, INT J PEDIATR OTORHI, V45, P83, DOI 10.1016/S0165-5876(98)00097-4 VASAMA JP, 1995, HEARING RES, V87, P132, DOI 10.1016/0378-5955(95)00086-J WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 Winer JA, 1992, MAMMALIAN AUDITORY P, P222 WOODS DL, 1986, ELECTROEN CLIN NEURO, V65, P447, DOI 10.1016/0168-5597(86)90024-9 NR 67 TC 66 Z9 68 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 167 EP 185 DI 10.1159/000013878 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800005 PM 10859411 ER PT J AU Kane, NM Butler, SR Simpson, T AF Kane, NM Butler, SR Simpson, T TI Coma outcome prediction using event-related potentials: P-3 and mismatch negativity SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE coma; outcome prediction; evoked and event-related potentials; mismatch negativity (MMN) ID SOMATOSENSORY-EVOKED POTENTIALS; TRAUMATIC BRAIN INJURY; CLOSED-HEAD-INJURY; NONTRAUMATIC COMA; P300; RECOVERY; EMERGENCE; STATES; NAME AB The prediction of the outcome from coma is of considerable importance to the patients, their relatives and attendant medical staff, and yet current clinical methods lack sensitivity and specificity. Objective investigations can enhance the accuracy of such predictions and are an important adjuvant when reaching decisions to continue or terminate life support. Of the neurophysiological methods available, electroencephalography and short-latency somatosensory evoked potentials have proved the most useful in the clinical setting. These tests are good predictors of an adverse outcome; however, they tell us only about the ongoing cerebral activity and integrity of the primary somatosensory pathways, respectively. The presence of long-latency event-related potentials has been shown to be a useful predictor of a favourable neurological outcome, and thus their use complements other neurophysiological techniques. Their potential application in clinical practice is reviewed. Copyright (C) 2000 S. Karger AG, Basel. C1 Frenchay Hosp, Grey Walter Dept Cin Neurophysiol, Bristol BS16 1LE, Avon, England. Burden Neurol Inst, Bristol BS16 1QT, Avon, England. RP Kane, NM (reprint author), Frenchay Hosp, Grey Walter Dept Cin Neurophysiol, Bristol BS16 1LE, Avon, England. CR BERLAD I, 1995, EVOKED POTENTIAL, V96, P472, DOI 10.1016/0168-5597(95)00116-A Chatrian GE, 1996, ELECTROEN CLIN NEURO, V99, P103, DOI 10.1016/0013-4694(96)96059-9 Chiappa KH, 1998, ELECTROEN CLIN NEURO, V106, P149, DOI 10.1016/S0013-4694(97)00118-1 Clark C. R., 1992, Brain Injury, V6, P509, DOI 10.3109/02699059209008148 CURRY SH, 1980, MOTIVATION MOTOR SEN, P507 DEGIORGIO CM, 1993, ACTA NEUROL SCAND, V87, P423 DESALLES AAF, 1987, J NEUROSURG, V66, P102, DOI 10.3171/jns.1987.66.1.0102 Fischer C, 1999, CLIN NEUROPHYSIOL, V110, P1601, DOI 10.1016/S1388-2457(99)00131-5 Folmer RL, 1997, BRAIN LANG, V56, P306, DOI 10.1006/brln.1997.1828 GOTT PS, 1991, ARCH NEUROL-CHICAGO, V48, P1267 GREENBERG RP, 1977, J NEUROSURG, V47, P150, DOI 10.3171/jns.1977.47.2.0150 Guerit JM, 1999, CLIN NEUROPHYSIOL, V110, P1260, DOI 10.1016/S1388-2457(99)00061-9 Halgren E, 1998, ELECTROEN CLIN NEURO, V106, P156, DOI 10.1016/S0013-4694(97)00119-3 JONES SJ, IN PRESS ELECTROENCE KANE NM, IN PRESS ELECTROENCE KANE NM, 1993, LANCET, V341, P688, DOI 10.1016/0140-6736(93)90453-N Kane NM, 1996, INTENS CARE MED, V22, P39, DOI 10.1007/BF01728329 KANE NM, 1995, J PSYCHOPHYSIOL, V9, P183 KEREN O, 1994, BRAIN INJURY, V8, P239, DOI 10.3109/02699059409150976 Keren O, 1998, J HEAD TRAUMA REHAB, V13, P15 NARAYAN RK, 1981, J NEUROSURG, V54, P751, DOI 10.3171/jns.1981.54.6.0751 OLBRICH HM, 1986, SURG NEUROL, V26, P112, DOI 10.1016/0090-3019(86)90362-9 OMAHONY D, 1990, LANCET, V336, P1265, DOI 10.1016/0140-6736(90)92887-N Ozbudak-Demir S, 1999, ARCH PHYS MED REHAB, V80, P252, DOI 10.1016/S0003-9993(99)90134-X PAPANICOLAOU AC, 1984, NEUROSURGERY, V14, P676 PFURTSCHELLER G, 1985, ELECTROEN CLIN NEURO, V62, P88, DOI 10.1016/0168-5597(85)90020-6 POLICH J, 1986, ELECTROEN CLIN NEURO, V63, P138, DOI 10.1016/0013-4694(86)90007-6 PREVEC TS, 1993, ELECTROENCEPHALOGR C, V87, pS130 RAPPAPORT M, 1977, ARCH PHYS MED REHAB, V58, P333 RAPPAPORT M, 1986, J HEAD TRAUMA REHAB, V1, P15, DOI 10.1097/00001199-198603000-00005 Rappaport M, 1991, J Neuropsychiatry Clin Neurosci, V3, P180 Reuter B. M., 1989, TOPOGRAPHIC BRAIN MA, P192 RUGG MD, 1988, J NEUROL NEUROSUR PS, V51, P691, DOI 10.1136/jnnp.51.5.691 SIGNORINO M, 1995, LANCET, V345, P255, DOI 10.1016/S0140-6736(95)90252-X Society of Critical Care Medicine, 1988, CRIT CARE MED, V16, P807 YINGLING CD, 1990, LANCET, V336, P873, DOI 10.1016/0140-6736(90)92372-O Young GB, 1998, COMA IMPAIRED CONSCI NR 37 TC 37 Z9 37 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 186 EP 191 DI 10.1159/000013879 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800006 PM 10859412 ER PT J AU Fischer, C Morlet, D Giard, MH AF Fischer, C Morlet, D Giard, MH TI Mismatch negativity and N100 in comatose patients SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory evoked potentials; N100; mismatch negativity (MMN); coma; intensive care; head injury; anoxia; stroke ID AUDITORY-EVOKED-POTENTIALS; EVENT-RELATED POTENTIALS; NONTRAUMATIC COMA; SENSORY MEMORY; MIDDLE-LATENCY; BRAIN-STEM; P300; STIMULI; SLEEP AB Mismatch negativity (MMN) and N100 auditory evoked potential were recorded in 52 healthy subjects and in 128 severely comatose patients. The MMN was present in 33/128 patients and N100 in 84/128. A ratio of 30/33 patients with MMN and 70/84 with N100 regained consciousness in a mean time of 6.3 +/- 4 days after the recording session. Thus, in terms of predicting return to consciousness, the MMN was more specific (90.9%) than the N100 (57.6%), but its sensitivity was lower (31.6% for MMN and 73.7% for N100, respectively). The amplitudes of MMN and N100 in comatose patients were smaller than those of healthy subjects. It is concluded that MMN and N100 can be very useful in predicting whether or not a comatose patient will regain consciousness. Copyright (C) 2000 S. Karger AG, Basel. C1 Neurol Hosp, Clin Neurophysiol Unit, EA1880, F-69003 Lyon, France. INSERM U280, Mental Proc & Brain Activat, Lyon, France. RP Fischer, C (reprint author), Neurol Hosp, Clin Neurophysiol Unit, EA1880, 59 Blvd Pinel, F-69003 Lyon, France. CR Atienza M, 1997, NEUROSCI LETT, V237, P21, DOI 10.1016/S0304-3940(97)00798-2 CANT BR, 1986, ELECTROEN CLIN NEURO, V65, P188, DOI 10.1016/0168-5597(86)90053-5 DEGIORGIO CM, 1993, ACTA NEUROL SCAND, V87, P423 Fischer C, 1999, CLIN NEUROPHYSIOL, V110, P1601, DOI 10.1016/S1388-2457(99)00131-5 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x GOTT PS, 1991, ARCH NEUROL-CHICAGO, V48, P1267 GREENBERG RP, 1981, J NEUROSURG, V55, P227, DOI 10.3171/jns.1981.55.2.0227 Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 KANE NM, 1993, LANCET, V341, P688, DOI 10.1016/0140-6736(93)90453-N Kane NM, 1996, INTENS CARE MED, V22, P39, DOI 10.1007/BF01728329 Litscher G, 1995, INT J NEUROSCI, V83, P253 Loewy DH, 1996, ELECTROEN CLIN NEURO, V98, P493, DOI 10.1016/0013-4694(96)95553-4 Morlet D, 2000, AUDIOL NEURO-OTOL, V5, P198, DOI 10.1159/000013881 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1995, EAR HEARING, V16, P6 PEKKONEN E, 1993, ELECTROEN CLIN NEURO, V87, P321, DOI 10.1016/0013-4694(93)90185-X ROSENBERG C, 1984, ARCH NEUROL-CHICAGO, V41, P835 Schroger E, 1996, J COGNITIVE NEUROSCI, V8, P527, DOI 10.1162/jocn.1996.8.6.527 SIGNORINO M, 1995, LANCET, V345, P255, DOI 10.1016/S0140-6736(95)90252-X TIITINEN H, 1994, NATURE, V372, P90, DOI 10.1038/372090a0 vanHooff JC, 1997, ELECTROEN CLIN NEURO, V103, P268, DOI 10.1016/S0013-4694(97)00012-6 NR 21 TC 46 Z9 49 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 192 EP 197 DI 10.1159/000013880 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800007 PM 10859413 ER PT J AU Morlet, D Bouchet, P Fischer, C AF Morlet, D Bouchet, P Fischer, C TI Mismatch negativity and N100 monitoring: Potential clinical value and methodological advances SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory evoked potentials; N100; monitoring; mismatch negativity (MMN); trend analysis; intensive care; coma ID AUDITORY-EVOKED-POTENTIALS; COMATOSE PATIENTS; SENSORY MEMORY; DURATION AB Continuous long-term recording of brainstem (BAEPs), middle-latency (MLAEPs) and long-latency auditory evoked potentials, including the mismatch negativity (MMN), brings additional information on the immediate functional state and the outcome of patients in coma or recovering after surgery, in relation with clinical observations and therapeutics. A recently designed monitoring system is introduced, aimed at the continuous recording of late auditory potentials (N100 and MMN) as well as BAEPs and MLAEPs, Specific methodological aspects are emphasized. Long-term monitoring data from one patient recorded in the recovery room after surgery are displayed, allowing an illustration of the techniques used and of the problems raised. Copyright (C) 2000 S. Karger AG, Basel. C1 INSERM U280, Mental Proc & Brain Activat, F-69424 Lyon 03, France. Neurol Hosp, Clin Neurophysiol Unit, EA1881, Lyon, France. RP Morlet, D (reprint author), INSERM U280, Mental Proc & Brain Activat, 151 Cours Albert Thomas, F-69424 Lyon 03, France. CR ALHO K, 1986, PSYCHOPHYSIOLOGY, V23, P613, DOI 10.1111/j.1469-8986.1986.tb00680.x Bertrand O, 1990, Electroencephalogr Clin Neurophysiol Suppl, V41, P51 CANT BR, 1986, ELECTROEN CLIN NEURO, V65, P188, DOI 10.1016/0168-5597(86)90053-5 Fischer C, 2000, AUDIOL NEURO-OTOL, V5, P192, DOI 10.1159/000013880 Fischer C, 1999, CLIN NEUROPHYSIOL, V110, P1601, DOI 10.1016/S1388-2457(99)00131-5 FISCHER C, 1997, HEMIFACIAL SPASM MUL, P107 GARCIALARREA L, 1987, ELECTROEN CLIN NEURO, V68, P446, DOI 10.1016/0168-5597(87)90056-6 Grau C, 1998, NEUROREPORT, V9, P2451, DOI 10.1097/00001756-199808030-00005 Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 KANE NM, 1993, LANCET, V341, P688, DOI 10.1016/0140-6736(93)90453-N Kane NM, 1996, INTENS CARE MED, V22, P39, DOI 10.1007/BF01728329 Litscher G, 1995, INT J NEUROSCI, V83, P253 MOLLER AR, 1995, INTRAOPERATIVCE NEUR Morlet D, 1997, EVOKED POTENTIAL, V104, P437, DOI 10.1016/S0168-5597(97)00044-0 Morlet D, 1998, INT J PSYCHOPHYSIOL, V30, P69, DOI 10.1016/S0167-8760(98)90173-8 NAATANEN R, 1984, HUMAN ACTION PERSONA, P29 PEKKONEN E, 1995, EVOKED POTENTIAL, V96, P546, DOI 10.1016/0013-4694(95)00148-R Tervaniemi M, 1999, CLIN NEUROPHYSIOL, V110, P1388, DOI 10.1016/S1388-2457(99)00108-X TIITINEN H, 1994, NATURE, V372, P90, DOI 10.1038/372090a0 Tooley MA, 1996, BRIT J ANAESTH, V77, P720 NR 20 TC 29 Z9 29 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 198 EP 206 DI 10.1159/000013881 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800008 PM 10859414 ER PT J AU Javitt, DC AF Javitt, DC TI Intracortical mechanisms of mismatch negativity dysfunction in schizophrenia SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory potentials; event-related potentials; cognition; cortex; N-methyl-D-aspartate receptors; glutamate; psychosis; mismatch negativity (MMN) ID AUDITORY SENSORY MEMORY; EVENT-RELATED POTENTIALS; LEFT TEMPORAL-LOBE; WORKING-MEMORY; SELECTIVE ATTENTION; PARKINSONS-DISEASE; NEUROPSYCHOLOGICAL DEFICITS; COGNITIVE DYSFUNCTION; CORTICAL DYSFUNCTION; PHENCYCLIDINE MODEL AB Event-related potentials provide an objective index of neurocognitive dysfunction in schizophrenia. Schizophrenia subjects show a decreased mismatch negativity (MMN) amplitude relative to age- and sex-matched controls, along with a characteristic pattern of MMN dysfunction across conditions. Deficits in MMN generation are accompanied by (1) impaired precision of auditory sensory memory performance and (2) an interstimulus-interval-dependent deficit in auditory N-1 generation. Similar deficits are observed following systemic or local infusion of N-methyl-D-aspartate (NMDA) antagonists, supporting glutamatergic and phencyclidine/NMDA models of the disorder. Deficits in MMN generation may also be seen following focal cortical damage, especially to the dorsolateral prefrontal cortex. MMN thus provides a useful tool for investigating mechanisms underlying brain dysfunction in schizophrenia. Copyright (C) 2000 S. Karger AG, Basel. C1 Nathan S Kline Inst Psychiat Res, Program Cognit Neurosci & Schizophrenia, Orangeburg, NY 10962 USA. RP Javitt, DC (reprint author), Nathan S Kline Inst Psychiat Res, Program Cognit Neurosci & Schizophrenia, 140 Old Orangeburg Rd, Orangeburg, NY 10962 USA. CR Alain C, 1998, BIOL PSYCHIAT, V44, P1151, DOI 10.1016/S0006-3223(97)00478-2 Alain C, 1997, PSYCHOPHYSIOLOGY, V34, P534, DOI 10.1111/j.1469-8986.1997.tb01740.x Alain C, 1998, BRAIN RES, V812, P23, DOI 10.1016/S0006-8993(98)00851-8 ALHO K, 1994, PSYCHOPHYSIOLOGY, V31, P469, DOI 10.1111/j.1469-8986.1994.tb01050.x ALHO K, 1994, ELECTROEN CLIN NEURO, V91, P353, DOI 10.1016/0013-4694(94)00173-1 ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Aramakis VB, 1998, J NEUROSCI, V18, P8485 Aramakis VB, 1997, EXP BRAIN RES, V113, P484, DOI 10.1007/PL00005601 BRAFF DL, 1991, ARCH GEN PSYCHIAT, V48, P891 Bruder G, 1999, ARCH GEN PSYCHIAT, V56, P267, DOI 10.1001/archpsyc.56.3.267 Butler PD, 1996, BIOL PSYCHIAT, V40, P295, DOI 10.1016/0006-3223(96)00007-8 CALABURDA A, 1983, J COMP NEUROL, V221, P169 CATTS SV, 1995, AM J PSYCHIAT, V152, P213 Chao LL, 1998, J COGNITIVE NEUROSCI, V10, P167, DOI 10.1162/089892998562636 Cienfuegos A, 1999, BIOL PSYCHIAT, V45, P82, DOI 10.1016/S0006-3223(98)00064-X COWAN N, 1993, J EXP PSYCHOL LEARN, V19, P909, DOI 10.1037//0278-7393.19.4.909 COWAN N, 1984, PSYCHOL BULL, V96, P341, DOI 10.1037/0033-2909.96.2.341 Coyle JT, 1996, HARVARD REV PSYCHIAT, V3, P241, DOI 10.3109/10673229609017192 DAVIS KL, 1991, AM J PSYCHIAT, V148, P1474 FORD JM, 1992, ANN NY ACAD SCI, V658, P146, DOI 10.1111/j.1749-6632.1992.tb22843.x FORD JM, 1994, BIOL PSYCHIAT, V36, P153, DOI 10.1016/0006-3223(94)91221-1 Ford JM, 1999, SCHIZOPHR RES, V37, P149, DOI 10.1016/S0920-9964(98)00148-0 Gene-Cos N, 1999, NEUROPSY NEUROPSY BE, V12, P17 GIARD MH, 1995, J COGNITIVE NEUROSCI, V7, P133, DOI 10.1162/jocn.1995.7.2.133 Goldman-Rakic P S, 1998, Adv Pharmacol, V42, P707 HALBERSTADT AL, 1995, CLIN NEUROPHARMACOL, V18, P237, DOI 10.1097/00002826-199506000-00004 HARVEY PD, 1990, SCHIZOPHRENIA BULL, V16, P147 Heckers S, 1997, SCHIZOPHRENIA BULL, V23, P403 Hirayasu Y, 1998, AM J PSYCHIAT, V155, P1281 Hirsch SR, 1997, PHARMACOL BIOCHEM BE, V56, P797, DOI 10.1016/S0091-3057(96)00428-5 HOLCOMB HH, 1995, PSYCHIAT RES, V57, P75, DOI 10.1016/0165-1781(95)02270-7 IMADA T, 1993, ELECTROEN CLIN NEURO, V87, P144, DOI 10.1016/0013-4694(93)90120-K JAVITT DC, IN PRESS CLIN NEUROP Javitt DC, 1999, SCHIZOPHR RES, V36, P254 JAVITT DC, 1994, PERSPECTIVES EVENT P, V44, P161 Javitt DC, 1998, EVOKED POTENTIAL, V108, P143, DOI 10.1016/S0168-5597(97)00073-7 JAVITT DC, 1991, AM J PSYCHIAT, V148, P1301 JAVITT D C, 1987, Hillside Journal of Clinical Psychiatry, V9, P12 JAVITT DC, 1992, ELECTROEN CLIN NEURO, V83, P87, DOI 10.1016/0013-4694(92)90137-7 JAVITT DC, 1993, BIOL PSYCHIAT, V33, P513, DOI 10.1016/0006-3223(93)90005-X JAVITT DC, 1995, SCHIZOPHR RES, V15, P179 JAVITT DC, IN PRESS SCHIZOPHR B Javitt DC, 1996, P NATL ACAD SCI USA, V93, P11962, DOI 10.1073/pnas.93.21.11962 Javitt DC, 1997, J ABNORM PSYCHOL, V106, P315, DOI 10.1037/0021-843X.106.2.315 Jentsch JD, 1999, NEUROPSYCHOPHARMACOL, V20, P201, DOI 10.1016/S0893-133X(98)00060-8 KARAYANIDIS F, 1995, PSYCHOPHYSIOLOGY, V32, P335, DOI 10.1111/j.1469-8986.1995.tb01216.x Kasai K, 1999, SCHIZOPHR RES, V35, P141, DOI 10.1016/S0920-9964(98)00116-9 KATHMANN N, 1995, BIOL PSYCHIAT, V37, P754, DOI 10.1016/0006-3223(94)00309-Q KAY SR, 1990, COMPR PSYCHIAT, V31, P91, DOI 10.1016/0010-440X(90)90012-H KEEFE RSE, 1995, SCHIZOPHR RES, V17, P25, DOI 10.1016/0920-9964(95)00027-J KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4 Kreitschmann-Andermahr I, 1999, SCHIZOPHR RES, V35, P121, DOI 10.1016/S0920-9964(98)00115-7 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 LEVANEN S, 1993, EXP BRAIN RES, V97, P177 Makela JP, 1998, ELECTROEN CLIN NEURO, V106, P433, DOI 10.1016/S0013-4694(98)00005-4 March L, 1999, J ABNORM PSYCHOL, V108, P69, DOI 10.1037//0021-843X.108.1.69 METHERATE R, 1995, EXP BRAIN RES, V107, P59 Mohamed S, 1999, ARCH GEN PSYCHIAT, V56, P749, DOI 10.1001/archpsyc.56.8.749 NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 NOPOULOS P, 1994, SCHIZOPHR RES, V14, P29, DOI 10.1016/0920-9964(94)90006-X Oades RD, 1997, BIOL PSYCHIAT, V41, P1196, DOI 10.1016/S0006-3223(96)00214-4 ODONNELL BF, 1994, INT J PSYCHOPHYSIOL, V17, P219, DOI 10.1016/0167-8760(94)90065-5 OLNEY JW, 1995, ARCH GEN PSYCHIAT, V52, P998 PAKKENBERG B, 1990, ARCH GEN PSYCHIAT, V47, P1023 PEKKONEN E, 1993, ELECTROEN CLIN NEURO, V87, P321, DOI 10.1016/0013-4694(93)90185-X PEKKONEN E, 1994, NEUROREPORT, V5, P2537, DOI 10.1097/00001756-199412000-00033 PEKKONEN E, 1995, ELECTROEN CLIN NEURO, V95, P47, DOI 10.1016/0013-4694(94)00304-4 Riekkinen P, 1997, PSYCHOPHARMACOLOGY, V133, P203, DOI 10.1007/s002130050392 ROTH WT, 1980, ELECTROEN CLIN NEURO, V48, P127, DOI 10.1016/0013-4694(80)90299-0 Salisbury DF, 1998, ARCH GEN PSYCHIAT, V55, P173, DOI 10.1001/archpsyc.55.2.173 SAMS M, 1991, PSYCHOPHYSIOLOGY, V28, P21, DOI 10.1111/j.1469-8986.1991.tb03382.x SAYKIN AJ, 1994, ARCH GEN PSYCHIAT, V51, P124 SAYKIN AJ, 1991, ARCH GEN PSYCHIAT, V48, P618 SCHALL U, 1995, SCHIZOPHR RES, V15, P164, DOI 10.1016/0920-9964(95)95509-8 Selemon LD, 1999, BIOL PSYCHIAT, V45, P17, DOI 10.1016/S0006-3223(98)00281-9 SHAGASS C, 1977, BIOL PSYCHIAT, V12, P221 SHELLEY AM, 1991, BIOL PSYCHIAT, V30, P1059, DOI 10.1016/0006-3223(91)90126-7 Shelley AM, 1999, SCHIZOPHR RES, V37, P65, DOI 10.1016/S0920-9964(98)00138-8 Shutara Y, 1996, BRAIN TOPOGR, V8, P285, DOI 10.1007/BF01184786 Silverstein ML, 1997, J NERV MENT DIS, V185, P722, DOI 10.1097/00005053-199712000-00002 Stevens AA, 1998, ARCH GEN PSYCHIAT, V55, P1097, DOI 10.1001/archpsyc.55.12.1097 STROUS RD, 1995, AM J PSYCHIAT, V152, P1517 Sullivan EV, 1998, CEREB CORTEX, V8, P117, DOI 10.1093/cercor/8.2.117 Tamminga CA, 1998, CRIT REV NEUROBIOL, V12, P21 Thornberg SA, 1996, PHARMACOTHERAPY, V16, P82 Turetsky BI, 1998, BIOL PSYCHIAT, V43, P84, DOI 10.1016/S0006-3223(97)00258-8 UMBRICHT D, 1998, 1 INT WORKSH MISM NE, V1, P85 Umbricht D, 1998, BIOL PSYCHIAT, V44, P716, DOI 10.1016/S0006-3223(97)00524-6 UMBRICHT D, IN PRESS EFFECTS RIS VIEREGGE P, 1994, COGNITIVE BRAIN RES, V2, P117, DOI 10.1016/0926-6410(94)90008-6 Weinberger DR, 1996, PHILOS T R SOC B, V351, P1495, DOI 10.1098/rstb.1996.0135 Wexler BE, 1998, ARCH GEN PSYCHIAT, V55, P1093, DOI 10.1001/archpsyc.55.12.1093 WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x NR 93 TC 84 Z9 84 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 207 EP 215 DI 10.1159/000013882 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800009 PM 10859415 ER PT J AU Pekkonen, E AF Pekkonen, E TI Mismatch negativity in aging and in Alzheimer's and Parkinson's diseases SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE event-related potential (ERP); mismatch negativity (MMN); memory trace decay; Alzheimer's disease; Parkinson's disease; aging; magnetoencephalography (MEG) ID EVENT-RELATED POTENTIALS; AUDITORY SELECTIVE ATTENTION; INTER-STIMULUS INTERVAL; CLINICAL-APPLICATION; ELDERLY SUBJECTS; SENSORY MEMORY; EEG POTENTIALS; AGE; DEVIANCE; CORTEX AB Mismatch negativity (MMN) is an auditory event-related potential (ERP) that reflects automatic stimulus discrimination in the human auditory system. By varying the interstimulus intervals (ISIs), the MMN can be used as an index of auditory sensory memory. This paper focuses on MMN findings in aging and in Alzheimer's (AD) and Parkinson's diseases (PD). The accumulated data suggest that MMN to duration deviance, unlike MMN to frequency deviance, is reduced in amplitude in aging at short ISIs. The attenuated MMN to frequency deviance observed at long ISIs in elderly subjects seems to be caused by age-related memory trace decay. Existing results suggest that automatic discrimination for the frequency change is not affected in the early phase of AD, whereas the memory trace seems to decay faster in AD patients. The present findings on PD are not as conclusive, although they tentatively suggest deteriorated automatic change detection. The MMN appears to offer an objective tool for studying auditory processing and memory trace decay in different neurological disorders. Copyright (C) 2000 S. Karger AG, Basel. C1 Univ Helsinki, Cent Hosp, Dept Neurol, Helsinki, Finland. Univ Helsinki, Cent Hosp, BioMag Lab, Med Engn Ctr, Helsinki, Finland. Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, SF-00100 Helsinki, Finland. CR ADAMS RD, 1989, PRINCIPLES NEUROLOGY, P488 AGID Y, 1991, LANCET, V337, P1321 ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Amenedo E, 1998, EVOKED POTENTIAL, V108, P361, DOI 10.1016/S0168-5597(98)00007-0 Anderson B, 1996, BRAIN, V119, P1983, DOI 10.1093/brain/119.6.1983 BADDELEY AD, 1995, MEMORY DISORDERS, P3 BOTTCHERGANDOR C, 1992, PSYCHOPHYSIOLOGY, V29, P546, DOI 10.1111/j.1469-8986.1992.tb02028.x Csepe V, 1997, AUDIOL NEURO-OTOL, V2, P354 CZIGLER I, 1992, BIOL PSYCHOL, V33, P195, DOI 10.1016/0301-0511(92)90031-O Deouell LY, 1998, PSYCHOPHYSIOLOGY, V35, P745, DOI 10.1017/S0048577298980039 Escera C, 1996, EVOKED POTENTIAL, V100, P549, DOI 10.1016/S0168-5597(96)95633-6 Fischer C, 2000, AUDIOL NEURO-OTOL, V5, P192, DOI 10.1159/000013880 Gaeta H, 1998, NEUROBIOL AGING, V19, P447, DOI 10.1016/S0197-4580(98)00087-6 Gaeta H, 1999, NEUROREPORT, V10, P281, DOI 10.1097/00001756-199902050-00014 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x Gunter TC, 1996, BIOL PSYCHOL, V43, P103, DOI 10.1016/0301-0511(95)05180-5 Halgren E, 1998, ELECTROEN CLIN NEURO, V106, P156, DOI 10.1016/S0013-4694(97)00119-3 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HARI R, 1984, NEUROSCI LETT, V50, P127, DOI 10.1016/0304-3940(84)90474-9 HICKISH G, 1989, BRIT MED J, V299, P1415 HOEHN MM, 1967, NEUROLOGY, V17, P427 Jaaskelainen IP, 1999, NEUROREPORT, V10, P123 Javitt DC, 1996, P NATL ACAD SCI USA, V93, P11962, DOI 10.1073/pnas.93.21.11962 Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 Kane NM, 1996, INTENS CARE MED, V22, P39, DOI 10.1007/BF01728329 Kane NM, 2000, AUDIOL NEURO-OTOL, V5, P186, DOI 10.1159/000013879 KARAYANIDIS F, 1995, PSYCHOPHYSIOLOGY, V32, P335, DOI 10.1111/j.1469-8986.1995.tb01216.x Kazmerski VA, 1997, BIOL PSYCHIAT, V42, P382, DOI 10.1016/S0006-3223(96)00344-7 KROPOTOV JD, 1995, PSYCHOPHYSIOLOGY, V32, P418, DOI 10.1111/j.1469-8986.1995.tb01226.x LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 Luszcz MA, 1999, GERONTOLOGY, V45, P2, DOI 10.1159/000022048 Morlet D, 2000, AUDIOL NEURO-OTOL, V5, P198, DOI 10.1159/000013881 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1995, EAR HEARING, V16, P6 Namba H, 1998, LANCET, V351, P881, DOI 10.1016/S0140-6736(05)70293-2 PEKKONEN E, 1995, EVOKED POTENTIAL, V96, P546, DOI 10.1016/0013-4694(95)00148-R PEKKONEN E, 1993, ELECTROEN CLIN NEURO, V87, P321, DOI 10.1016/0013-4694(93)90185-X PEKKONEN E, 1994, NEUROREPORT, V5, P2537, DOI 10.1097/00001756-199412000-00033 Pekkonen E, 1996, EXP AGING RES, V22, P171, DOI 10.1080/03610739608254005 PEKKONEN E, 1995, ELECTROEN CLIN NEURO, V95, P47, DOI 10.1016/0013-4694(94)00304-4 PIRCH JH, 1995, CNS NEUROTRANSMITTER, P115 Richards T, 1998, BRIT MED J, V317, P896 Riekkinen P, 1997, PSYCHOPHARMACOLOGY, V133, P203, DOI 10.1007/s002130050392 Rogers SL, 1998, NEUROLOGY, V50, P136 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 Schapira AHV, 1999, BRIT MED J, V318, P311 Schroeder MM, 1995, ANN NY ACAD SCI, V769, P399, DOI 10.1111/j.1749-6632.1995.tb38155.x Schroger E, 1996, EVOKED POTENTIAL, V100, P517, DOI 10.1016/S0168-5597(96)95576-8 SINHA UK, 1993, NEUROLOGY, V43, P779 SQUIRE LR, 1991, SCIENCE, V253, P1380, DOI 10.1126/science.1896849 STAM CJ, 1993, BRAIN, V116, P1139, DOI 10.1093/brain/116.5.1139 TERRY RD, 1994, ALZHEIMER DIS TESTA JA, 1998, MEMORY NEURODEGENERA, P36, DOI 409861621,12,1 VERLEGER R, 1992, ELECTROEN CLIN NEURO, V84, P332, DOI 10.1016/0168-5597(92)90086-Q VERLEGER R, 1991, ELECTROEN CLIN NEURO, V79, P488, DOI 10.1016/0013-4694(91)90168-4 VIEREGGE P, 1994, COGNITIVE BRAIN RES, V2, P117, DOI 10.1016/0926-6410(94)90008-6 WOODS DL, 1992, ELECTROEN CLIN NEURO, V84, P456, DOI 10.1016/0168-5597(92)90033-8 Yokoyama Y, 1995, Electromyogr Clin Neurophysiol, V35, P431 NR 59 TC 83 Z9 86 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 216 EP 224 DI 10.1159/000013883 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800010 PM 10859416 ER PT J AU Deouell, LY Hamalainen, H Bentin, S AF Deouell, LY Hamalainen, H Bentin, S TI Unilateral neglect after right-hemisphere damage: Contributions from event-related potentials SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE brain damage; unilateral neglect; event-related potential (ERP); P-a; N-1; mismatch negativity (MMN); P-3; N-d; attention ID VISUAL-EVOKED POTENTIALS; MISMATCH NEGATIVITY; SPATIAL NEGLECT; SELECTIVE-ATTENTION; HEMISPATIAL NEGLECT; LEXICAL DECISION; AUDITORY-STIMULI; FIELD; EXTINCTION; LESIONS AB Unilateral neglect is a frequent sequel of right-hemisphere damage. Patients suffering from neglect may fail to detect, orient to, acknowledge or respond to stimuli on their contralesional side, even in the absence of primary sensory or motor loss. Despite the major clinical significance of the phenomenon and its potential implications for our understanding of human cognition, the underlying cognitive deficits are not well understood. We review the relatively few event-related potential studies that attempted to assess the different parts of the cognitive system in neglect patients. We suggest that theories of neglect, based primarily on performance data, may be refined by incorporating these results, and that this line of research may provide information that is not available using traditional performance measures. Copyright (C) 2000 S. Karger AG, Basel. C1 Hebrew Univ Jerusalem, Dept Psychol, IL-91905 Jerusalem, Israel. Loewenstein Rehabil Ctr, Dept Neurol Rehabil, Raanana, Israel. Tel Aviv Univ, Sackler Sch Med, IL-69978 Tel Aviv, Israel. Univ Turku, Ctr Cognit Neurosci, Turku, Finland. RP Deouell, LY (reprint author), Hebrew Univ Jerusalem, Dept Psychol, IL-91905 Jerusalem, Israel. CR AALTONEN O, 1993, BRAIN LAB, V44, P628 ABOUD S, 1996, ANN BIOMED ENG, V24, P75 Alho K, 1997, NEUROREPORT, V8, P3233, DOI 10.1097/00001756-199710200-00010 ALHO K, 1989, PSYCHOPHYSIOLOGY, V26, P514, DOI 10.1111/j.1469-8986.1989.tb00704.x ALHO K, 1992, ELECTROEN CLIN NEURO, V82, P356, DOI 10.1016/0013-4694(92)90005-3 Angelelli P, 1996, NEUROPSYCHOLOGIA, V34, P1151, DOI 10.1016/0028-3932(96)00036-X BENTIN S, 1985, ELECTROEN CLIN NEURO, V60, P343, DOI 10.1016/0013-4694(85)90008-2 Bentin S, 1996, J COGNITIVE NEUROSCI, V8, P551, DOI 10.1162/jocn.1996.8.6.551 BERTI A, 1992, J COGNITIVE NEUROSCI, V4, P345, DOI 10.1162/jocn.1992.4.4.345 Bisiach E., 1987, NEUROPHYSIOLOGICAL N, P183 BISIACH E, 1984, BRAIN, V107, P37, DOI 10.1093/brain/107.1.37 BISIACH E, 1978, CORTEX, V14, P129 CALAMARO N, 1995, RESTOR NEUROL NEUROS, V7, P151, DOI 10.3233/RNN-1994-7304 CORBETTA M, 1993, J NEUROSCI, V13, P1202 Deacon D, 1998, PSYCHOPHYSIOLOGY, V35, P413, DOI 10.1017/S004857729896053X DENES G, 1982, BRAIN, V105, P543, DOI 10.1093/brain/105.3.543 DENNYBROWN D, 1954, AMA ARCH NEUROL PSY, V71, P302 DENNYBROWN D, 1952, BRAIN, V75, P434 Deouell LY, 1998, PSYCHOPHYSIOLOGY, V35, P355, DOI 10.1017/S0048577298970287 DEOUELL LY, 1998, MMN98 1 INT WORKSH M Deouell LY, 2000, BRAIN, V123, P353, DOI 10.1093/brain/123.2.353 DERENZI E, 1984, NEUROPSYCHOLOGIA, V22, P733 DERENZI E, 1989, J NEUROL NEUROSUR PS, V52, P613, DOI 10.1136/jnnp.52.5.613 Donchin E., 1978, EVENT RELATED BRAIN, P349 Doricchi F, 1996, NEUROREPORT, V7, P1360, DOI 10.1097/00001756-199605310-00005 EIMER M, 1994, PSYCHOPHYSIOLOGY, V31, P154, DOI 10.1111/j.1469-8986.1994.tb01035.x GAINOTTI G, 1989, INT J NEUROSCI, V45, P81, DOI 10.3109/00207458908986219 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x HALLIGAN PW, 1994, COGNITIVE NEUROPSYCH, V11, P167, DOI 10.1080/02643299408251973 HALLIGAN PW, 1990, J NEUROL NEUROSUR PS, V53, P487, DOI 10.1136/jnnp.53.6.487 HAMALAINEN H, 1998, MMN98 1 INT WORKSH M Heilman K M, 1970, Trans Am Neurol Assoc, V95, P259 HEILMAN KM, 1979, ANN NEUROL, V5, P166, DOI 10.1002/ana.410050210 Heilman KM, 1993, CLIN NEUROPSYCHOLOGY, P279 HEILMAN KM, 1980, NEUROLOGY, V30, P327 IBANEZ V, 1989, ARCH NEUROL-CHICAGO, V46, P1325 Katz N, 1999, ARCH PHYS MED REHAB, V80, P379, DOI 10.1016/S0003-9993(99)90273-3 Kinsbourne M., 1987, NEUROPHYSIOLOGICAL N, P69 LHERMITTE F, 1985, ARCH NEUROL-CHICAGO, V42, P567 LIVINGSTONE MS, 1987, J NEUROSCI, V7, P3416 LUCK SJ, 1990, ELECTROEN CLIN NEURO, V75, P528, DOI 10.1016/0013-4694(90)90139-B MANGUN GR, 1994, J COGNITIVE NEUROSCI, V6, P267, DOI 10.1162/jocn.1994.6.3.267 MANGUN GR, 1993, ATTENTION PERFORMANC, V14 MARSHALL JC, 1988, NATURE, V336, P766, DOI 10.1038/336766a0 MARSHALL JC, 1993, UNILATERAL NEGLECT C, P311 MARZI C, 1998, ABSTR SOC NEUROSCI, V24, P506 MCGLINCHEYBERROTH R, 1993, COGNITIVE NEUROPSYCH, V10, P79, DOI 10.1080/02643299308253457 MESULAM MM, 1990, ANN NEUROL, V28, P597, DOI 10.1002/ana.410280502 MOSCOVITCH M, 1994, J COGNITIVE NEUROSCI, V6, P151, DOI 10.1162/jocn.1994.6.2.151 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 NAATANEN R, 1991, PSYCHOPHYSIOLOGY, V28, P478, DOI 10.1111/j.1469-8986.1991.tb00735.x NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341 NOVAK G, 1992, PSYCHOPHYSIOLOGY, V29, P412, DOI 10.1111/j.1469-8986.1992.tb01714.x Pitzalis S, 1997, CORTEX, V33, P679, DOI 10.1016/S0010-9452(08)70725-1 POSNER MI, 1984, J NEUROSCI, V4, P1863 POSNER MI, 1987, PSYCHOBIOLOGY, V15, P107 RAPCSAK SZ, 1987, J NEUROL NEUROSUR PS, V50, P1117, DOI 10.1136/jnnp.50.9.1117 RIDDOCH JR, 1987, NEUROPHYSIOLOGICAL N, P151 RIDDOCH MJ, 1983, NEUROPSYCHOLOGIA, V21, P589, DOI 10.1016/0028-3932(83)90056-8 RITTER W, 1995, EAR HEARING, V16, P52, DOI 10.1097/00003446-199502000-00005 Rizzolatti G, 1988, HDB NEUROPSYCHOLOGY, V1, P223 ROSENZWEIG MR, 1951, AM J PHYSIOL, V167, P147 SCHROGER E, 1995, PSYCHOPHYSIOLOGY, V32, P55, DOI 10.1111/j.1469-8986.1995.tb03406.x SCHROGER E, 1994, NEUROSCI LETT, V173, P163, DOI 10.1016/0304-3940(94)90174-0 Schroger E, 1996, J COGNITIVE NEUROSCI, V8, P527, DOI 10.1162/jocn.1996.8.6.527 Schroger E, 1998, COGNITIVE BRAIN RES, V7, P71, DOI 10.1016/S0926-6410(98)00013-5 SOROKER N, 1995, J CLIN EXP NEUROPSYC, V17, P243 Soroker N, 1997, NEUROPSYCHOLOGIA, V35, P249, DOI 10.1016/S0028-3932(96)00038-3 Spinelli D, 1996, NEUROREPORT, V7, P553, DOI 10.1097/00001756-199601310-00042 Spinelli D, 1996, NEUROREPORT, V7, P815, DOI 10.1097/00001756-199602290-00032 SPINELLI D, 1994, VISUAL NEUROSCI, V11, P909 VALLAR G, 1991, NEUROLOGY, V41, P650 VALLAR G, 1991, NEUROLOGY, V41, P1918 Verleger R, 1996, ELECTROEN CLIN NEURO, V99, P444, DOI 10.1016/S0013-4694(96)95645-X VIGGIANO MP, 1995, BRAIN COGNITION, V27, P17, DOI 10.1006/brcg.1995.1002 VOLPE BT, 1979, NATURE, V282, P722, DOI 10.1038/282722a0 WATSON RT, 1977, ARCH NEUROL-CHICAGO, V34, P224 WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x NR 81 TC 20 Z9 21 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 225 EP 234 DI 10.1159/000013884 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800011 PM 10859417 ER PT J AU Sinkkonen, J Tervaniemi, M AF Sinkkonen, J Tervaniemi, M TI Towards optimal recording and analysis of the mismatch negativity SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE mismatch negativity (MMN); auditory event-related potential (ERP) reliability; optimal effective paradigm and analysis ID TEST-RETEST RELIABILITY; HUMAN BRAIN; COGNITIVE NEUROSCIENCE; ATTENTIONAL MODULATION; SELECTIVE-ATTENTION; AUDITORY-STIMULI; SENSORY MEMORY; RESPONSES; FREQUENCY; REPRESENTATION AB In this paper, the conceptual and practical issues related to the measurement of mismatch negativity (MMN) are discussed from the viewpoint of cost-efficiency. First, various criteria for efficiency or optimality of measurements are described, including reliability and signal-to-noise ratio. Then a critical look is taken at some currently used concepts and data analysis methods. Practical guidelines for the measurement and analysis of MMN are given, complementing the earlier reviews on the subject. Finally, reliability studies on MMN are critically reviewed. Copyright (C) 2000 S. Karger AG, Basel. C1 Univ Helsinki, Cent Hosp, BioMag Lab, Med Engn Ctr, Helsinki, Finland. Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, SF-00100 Helsinki, Finland. RP Sinkkonen, J (reprint author), Med Engn Ctr, BioMag Lab, FIN-00029 Helsinki, Finland. CR Alho K, 1998, NEUROSCI LETT, V258, P9, DOI 10.1016/S0304-3940(98)00836-2 Alho K, 1997, NEUROSCI LETT, V233, P33, DOI 10.1016/S0304-3940(97)00620-4 ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 CATTS SV, 1995, AM J PSYCHIAT, V152, P213 Deouell LY, 1998, PSYCHOPHYSIOLOGY, V35, P745, DOI 10.1017/S0048577298980039 DON M, 1994, J ACOUST SOC AM, V96, P2746, DOI 10.1121/1.411281 Efron B., 1993, INTRO BOOTSTRAP Escera C, 1996, EVOKED POTENTIAL, V100, P549, DOI 10.1016/S0168-5597(96)95633-6 FrodlBauch T, 1997, BRAIN TOPOGR, V10, P3, DOI 10.1023/A:1022214905452 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 HAWKINS HL, 1986, HDB PERCEPTION HUMAN Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 Kathmann N, 1999, CLIN NEUROPHYSIOL, V110, P317, DOI 10.1016/S1388-2457(98)00011-X Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 LANG AH, 1990, PSYCHOPHYSIOLOGICAL, V1, P294 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 Loewy DH, 1996, ELECTROEN CLIN NEURO, V98, P493, DOI 10.1016/0013-4694(96)95553-4 MAY P, 1994, NEUROREPORT, V5, P1918, DOI 10.1097/00001756-199410000-00019 McGee T, 1997, EVOKED POTENTIAL, V104, P359, DOI 10.1016/S0168-5597(97)00024-5 Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1995, EAR HEARING, V16, P6 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 NAATANEN R, 1993, PSYCHOPHYSIOLOGY, V30, P436, DOI 10.1111/j.1469-8986.1993.tb02067.x Naatanen R, 1999, PSYCHOL BULL, V125, P826, DOI 10.1037/0033-2909.125.6.826 NAATANEN R, 1993, NEUROREPORT, V5, P310 Naatanen R, 1987, EVOKED POTENTIAL, P392 Nousak JMK, 1996, COGNITIVE BRAIN RES, V4, P305, DOI 10.1016/S0926-6410(96)00068-7 Paavilainen P, 1998, PSYCHOPHYSIOLOGY, V35, P483, DOI 10.1017/S0048577298970895 PEKKONEN E, 1995, EVOKED POTENTIAL, V96, P546, DOI 10.1016/0013-4694(95)00148-R Ponton CW, 1997, EVOKED POTENTIAL, V104, P143, DOI 10.1016/S0168-5597(97)96104-9 RAO C, 1973, LINEAR STA INFERENCE SAARINEN J, 1992, NEUROREPORT, V3, P1149, DOI 10.1097/00001756-199212000-00030 SCHROGER E, 1995, PSYCHOPHYSIOLOGY, V32, P55, DOI 10.1111/j.1469-8986.1995.tb03406.x Schroger E, 1997, PSYCHOPHYSIOLOGY, V34, P245, DOI 10.1111/j.1469-8986.1997.tb02395.x Schroger E, 1998, BEHAV RES METH INS C, V30, P131, DOI 10.3758/BF03209423 Sinkkonen J, 1996, NEUROREPORT, V7, P2479 Sinkkonen J, 1999, INFORM THEORY BRAIN, V241- 254 Tervaniemi M, 1999, CLIN NEUROPHYSIOL, V110, P1388, DOI 10.1016/S1388-2457(99)00108-X TERVANIEMI M, 1994, BIOL PSYCHOL, V38, P157, DOI 10.1016/0301-0511(94)90036-1 TERVANIEMI M, 1993, MUSIC PERCEPT, V10, P305 TERVANIEMI M, 1994, NEUROREPORT, V5, P844, DOI 10.1097/00001756-199403000-00027 TREJO LJ, 1995, PSYCHOPHYSIOLOGY, V32, P319, DOI 10.1111/j.1469-8986.1995.tb01214.x Winkler I, 1996, BRAIN RES, V742, P239, DOI 10.1016/S0006-8993(96)01008-6 Woldorff MG, 1998, PSYCHOPHYSIOLOGY, V35, P283, DOI 10.1017/S0048577298961601 WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x NR 46 TC 60 Z9 62 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 2000 VL 5 IS 3-4 BP 235 EP 246 DI 10.1159/000013885 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 326MR UT WOS:000087739800012 PM 10859418 ER PT J AU Gaihede, M Koefoed-Nielsen, B AF Gaihede, M Koefoed-Nielsen, B TI Mechanics of the middle ear system: Age-related changes in viscoelastic properties SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE admittance; compliance; hysteresis; elasticity; viscosity; middle ear pressure ID TYMPANIC MEMBRANE AB Morphological studies of age-related changes in the tympanic membrane have suggested a decreased elasticity for increasing age, whereas age-related changes in admittance measured by tympanometry have revealed inconsistent results. In this study we report on the viscoelastic properties of the middle ear system by means of a new method in two different age groups, This method measures hysteresis (mu J), which describes the viscous properties of the system, and compliance (mm(3)/kPa) reflecting its elasticity, Moreover, P-ec0 (kPa) was recorded, which corresponds to middle ear pressure measured by tympanometry, Recordings were made in a group of 30 older normal subjects (mean age 77 years) and results were compared to previous findings in a group of 39 younger normal subjects (mean age 29), Hysteresis was markedly decreased in the older normal group compared to the younger one (p = 0.057), This may reflect morphological changes previously reported in the tympanic membrane and can be related to theoretical considerations on tympanic membrane rupture pressures. Compliance and P-ec0 were not influenced by variation in age (p = 0.645 and 0.966), Copyright (C) 2000 S. Karger AG, Basel. C1 Holstebro Cent Hosp, Dept Otolaryngol, Holstebro, Denmark. Aarhus Univ Hosp, Dept Audiol, DK-8000 Aarhus, Denmark. RP Gaihede, M (reprint author), Aalborg Hosp, Dept Otolaryngol, DK-9000 Aalborg, Denmark. CR Altman DG, 1997, BRIT MED J, V314, P1874 BEATTIE RC, 1975, J AM AUDITORY SOC, V1, P21 CRETEN WL, 1985, SCAND AUDIOL, V14, P115, DOI 10.3109/01050398509045932 Fung Y. C., 1993, BIOMECHANICS MECH PR, P242 Gaihede M, 1999, Auris Nasus Larynx, V26, P383, DOI 10.1016/S0385-8146(99)00018-8 Gaihede M, 1997, ACTA OTO-LARYNGOL, V117, P382, DOI 10.3109/00016489709113410 GAIHEDE M, 1995, ACTA OTO-LARYNGOL, V115, P522, DOI 10.3109/00016489509139360 Gaihede M, 1999, AUDIOL NEURO-OTOL, V4, P137, DOI 10.1159/000013832 GATES GA, 1990, EAR HEARING, V11, P247, DOI 10.1097/00003446-199008000-00001 JENSEN JH, 1993, ACTA OTO-LARYNGOL, V113, P62, DOI 10.3109/00016489309135768 JERGER J, 1972, ARCHIV OTOLARYNGOL, V96, P513 RUAH CB, 1991, ARCH OTOLARYNGOL, V117, P627 RUDIN R, 1985, ACTA OTO-LARYNGOL, V99, P53, DOI 10.3109/00016488509119145 NR 13 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2000 VL 5 IS 2 BP 53 EP 58 DI 10.1159/000013867 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 296TJ UT WOS:000086041600001 PM 10720820 ER PT J AU Liu, TC Lin, KN AF Liu, TC Lin, KN TI Probe-tube microphone measures in patients with open-mastoid surgery: Real-ear-to-coupler differences and real-ear unaided responses SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE real-ear-to-coupler difference; real-ear unaided response; mastoid surgery ID CHILDREN AB Real-ear-to-coupler differences (RECDs) and real-ear unaided responses (REURs) were measured using a probe-tube microphone system in 15 patients who underwent open mastoid surgery, The results show that RECDs are significantly smaller at higher frequencies (1.5, 2.0, 3.0, 4.0 and 6.0 kHz) in mastoid ears. The intra subject variability of RECDs measures in these patients is on average 2.6 dB larger than for controls. For REURs, mastoid surgery significantly reduced the mean peak resonant frequency without affecting the amplitude and bandwidth, In operated ears, mean resonant frequency is by a factor of 1.4 lower than that for normal ears. Reduced responses (negative gains) at frequencies above the resonance peak occurred in 7 out of the 15 patients. These reduced responses corresponded to the smaller RECD at the middle and high frequencies. The results support the need for individual RECD measures to be made in operated ears instead of using average values from normal subjects. Otherwise, real-ear measures of the aided response should be made for each patient with open-mastoid cavity and the fitting should be done in terms of the target response at the eardrum rather than by defining a target insertion gain. Copyright (C) 2000 S. Karger AG. Basel. C1 Natl Taiwan Univ Hosp, Dept Otolaryngol, Taipei, Taiwan. RP Liu, TC (reprint author), Natl Taiwan Univ Hosp, Dept Otolaryngol, 7 Chung Shan S Rd, Taipei, Taiwan. CR EVANS RA, 1989, CLIN OTOLARYNGOL, V14, P317, DOI 10.1111/j.1365-2273.1989.tb00379.x FEIGIN JA, 1989, EAR HEARING, V10, P254 FIKRETPASA S, 1992, J SPEECH HEAR RES, V35, P384 Hawkins D B, 1990, J Am Acad Audiol, V1, P154 Martin HC, 1997, BRIT J AUDIOL, V31, P63, DOI 10.3109/03005364000000009 Martin HC, 1996, BRIT J AUDIOL, V30, P71, DOI 10.3109/03005369609077934 MUELLER GH, 1992, PROBE MICROPHONE MEA, P41 NELSONBARLOW NL, 1988, EAR HEARING, V9, P243 SACHS RM, 1972, J ACOUST SOC AM, V52, P183, DOI 10.1121/1.1982149 TOLLEY NS, 1992, J LARYNGOL OTOL, V106, P597, DOI 10.1017/S0022215100120286 ZEMPLENYI J, 1985, J ACOUST SOC AM, V78, P2146, DOI 10.1121/1.392676 NR 11 TC 3 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2000 VL 5 IS 2 BP 59 EP 63 DI 10.1159/000013868 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 296TJ UT WOS:000086041600002 PM 10720821 ER PT J AU Zhang, SY Robertson, D AF Zhang, SY Robertson, D TI A study of tea tree oil ototoxicity SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tea tree oil; ototoxicity; compound action potential; external and middle ear infection ID MELALEUCA-ALTERNIFOLIA; ANTIMICROBIAL ACTIVITY; OTITIS-EXTERNA; SUSCEPTIBILITY AB Tea tree oil shows promise as an effective treatment for a number of micro-organisms commonly associated with otitis externa and otitis media, but its possible ototoxicity has not been previously assessed. The ototoxicity of tea tree oil was examined in the guinea pig by measuring the thresholds of the compound auditory nerve action potential (CAP) to tone bursts before and after instillation of the oil into the middle ear. After 30 min of instillation, 100% tea tree oil caused a partial CAP threshold elevation at 20 kHz, A lower concentration of oil [2% tea tree oil dissolved in saline using 0.5% detergent (Tween-80)] did not cause any significant lasting threshold change after middle ear instillation for the same period of time. The tatter concentration of oil is greater than the minimum inhibitory concentration reported for most microorganisms in the effective spectrum of the oil and this suggests that this concentration may be safe and effective provided only short exposures (about 30 min) are used, The results suggest that high concentrations of tea tree oil applied to the round window for a relatively short time are to some extent ototoxic to the high-frequency region of the cochlea. Hence further study is needed to establish whether tea tree oil can be used with safety in the treatment of external and middle ear infections, Copyright (C) 2000 S. Karger AG, Basel. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. Guangdong Prov Peoples Hosp, Dept Otolaryngol, Guangzhou, Peoples R China. RP Robertson, D (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. CR AGUIS AM, 1992, CLIN OTOLARYNGOL, V17, P150 Altman P.M., 1988, AUST J PHARM, V69, P276 BASSETT IB, 1990, MED J AUSTRALIA, V153, P455 BLACKWELL AL, 1992, AUSTR J DERMATOL, V33, P145 Brook I, 1997, ANN OTO RHINOL LARYN, V106, P751 CARSON CF, 1993, LETT APPL MICROBIOL, V16, P49, DOI 10.1111/j.1472-765X.1993.tb00340.x CARSON CF, 1995, MICROBIOS, V82, P181 CARSON CF, 1994, LETT APPL MICROBIOL, V19, P24, DOI 10.1111/j.1472-765X.1994.tb00894.x CARSON CF, 1995, J APPL BACTERIOL, V78, P264, DOI 10.1111/j.1365-2672.1995.tb05025.x Clark WB, 1997, OTOLARYNG HEAD NECK, V116, P23, DOI 10.1016/S0194-5998(97)70346-2 Hammer KA, 1997, J MED VET MYCOL, V35, P375 *INT ORG STAND, 1996, INT STAND OIL MEL TE JOHNSTONE JR, 1979, J ACOUST SOC AM, V65, P254, DOI 10.1121/1.382244 Matsumoto Yoshihiro, 1998, Japanese Journal of Antibiotics, V51, P561 Oshima A, 1998, Nihon Ishinkin Gakkai Zasshi, V39, P99 PATUZZI R, 1988, PHYSIOL REV, V68, P1009 SHANSON DC, 1989, MICROBIOLOGY CLIN PR, P382 SYED TA, 1990, MED J AUSTRALIA, V153, P455 TONG MM, 1999, TROP MED INT HEALTH, V4, P284 Walsh LJ, 1987, PERIODONTOLOGY, V8, P11 NR 20 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2000 VL 5 IS 2 BP 64 EP 68 DI 10.1159/000013869 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 296TJ UT WOS:000086041600003 PM 10720822 ER PT J AU Schonweiler, R Wubbelt, P Tolloczko, R Rose, C Ptok, M AF Schonweiler, R Wubbelt, P Tolloczko, R Rose, C Ptok, M TI Classification of passive auditory event-related potentials using discriminant analysis and self-organizing feature maps SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE artificial neural networks; self-organizing feature maps; discriminant analysis; event-related potentials; behavioral auditory perception deficits; central auditory perception disorders (CAPD) ID LANGUAGE-IMPAIRED CHILDREN; MISMATCH NEGATIVITY; ODDBALL TASK; P300; STIMULUS; DEFICITS; N1; INTENSITY; REPRESENTATIONS; IDENTIFICATION AB Discriminant analysis (DA) and self-organizing feature maps (SOFM) were used to classify passively evoked auditory event-related potentials (ERP) P-1, N-1, P-2 and N-2 Responses from 16 children with severe behavioral auditory perception deficits, 16 children with marked behavioral auditory perception deficits, and 14 controls were examined. Eighteen ERP amplitude parameters were selected for examination of statistical differences between the groups, Different DA methods and SOFM configurations were trained to the values, SOFM had better classification results than DA methods. Subsequently, measures on another 37 subjects that were unknown for the trained SOFM were used to test the reliability of the system. With 10-dimensional vectors, reliable classifications were obtained that matched behavioral auditory perception deficits in 96%, implying central auditory processing disorder (CAPD). The results also support the assumption that CARD includes a 'non-peripheral' auditory processing deficit. Copyright (C) 2000 S. Karger AG, Basel. C1 Hannover Med Sch, Dept Commun Disorders, D-30623 Hannover, Germany. Hannover Med Sch, Inst Biometry, D-30623 Hannover, Germany. Krankenhaus Nordstadt, Dept Otorhinolaryngol Head & Neck Surg, Hannover, Germany. RP Schonweiler, R (reprint author), Hannover Med Sch, Dept Commun Disorders, OE 6510, D-30623 Hannover, Germany. CR ALCAINI M, 1994, PSYCHOPHYSIOLOGY, V31, P611, DOI 10.1111/j.1469-8986.1994.tb02354.x Alexander JE, 1996, INT J PSYCHOPHYSIOL, V21, P189, DOI 10.1016/0167-8760(95)00047-X ALEXANDER JE, 1994, INT J PSYCHOPHYSIOL, V17, P35, DOI 10.1016/0167-8760(94)90053-1 Anderer P, 1996, ELECTROEN CLIN NEURO, V99, P458, DOI 10.1016/S0013-4694(96)96518-9 Augustine Lloyd E., 1995, Seminars in Speech and Language, V16, P243, DOI 10.1055/s-2008-1064125 BAXT WG, 1995, LANCET, V346, P1135, DOI 10.1016/S0140-6736(95)91804-3 BYRING R, 1985, DEV MED CHILD NEUROL, V27, P141 CHERMAK GD, 1997, CONS C ANN CONV AM S COYLE S, 1991, EXP AGING RES, V17, P103 deLugt DR, 1996, ELECTROEN CLIN NEURO, V98, P484, DOI 10.1016/0013-4694(96)94726-4 ERWIN E, 1992, BIOL CYBERN, V67, P47, DOI 10.1007/BF00201801 Esser G., 1987, SPRACHE-STIMME-GEHOR, V11, P10 FELDMANN H, 1965, Arch Ohren Nasen Kehlkopfheilkd, V184, P294, DOI 10.1007/BF01968706 FUCHIGAMI T, 1993, DEV MED CHILD NEUROL, V35, P230 Gabor AJ, 1996, ELECTROEN CLIN NEURO, V99, P257 GARCIALARREA L, 1992, NEUROPSYCHOLOGIA, V30, P723, DOI 10.1016/0028-3932(92)90042-K GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x GRAUEL A, 1997, P ARTIFICIAL INTELLI, V5 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 KOHONEN T, 1990, P IEEE, V78, P1464, DOI 10.1109/5.58325 KOHONEN T, 1995, LEARNING VECTOR QUAT Kohonen T., 1995, SELF ORG MAP PROGRAM KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G KRAUS N, 1993, EAR HEARING, V14, P223, DOI 10.1097/00003446-199308000-00001 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1984, LARYNGOSCOPE, V94, P400 LEHTIO P, 1978, MED BIOL, V56, P110 Leppanen PHT, 1997, AUDIOL NEURO-OTOL, V2, P308 Looney C.G., 1997, PATTERN RECOGNITION MERZENICH MM, 1993, ANN NY ACAD SCI, V682, P1 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341 NAATANEN R, 1988, BIOL PSYCHOL, V26, P117, DOI 10.1016/0301-0511(88)90017-8 NIEMEYER W, 1976, BREMER LAUTDISKRIMIN PINKERTON F, 1989, DEV MED CHILD NEUROL, V31, P569 POLICH J, 1994, ELECTROEN CLIN NEURO, V92, P253, DOI 10.1016/0168-5597(94)90068-X Polich J, 1996, PSYCHOPHYSIOLOGY, V33, P334, DOI 10.1111/j.1469-8986.1996.tb01058.x POLICH J., 1993, CURRENT DIRECTIONS P, P175, DOI 10.1111/1467-8721.ep10769728 Portin K, 1996, ELECTROEN CLIN NEURO, V98, P273, DOI 10.1016/0013-4694(95)00272-3 RITTER H, 1990, PSYCHOL RES-PSYCH FO, V52, P128, DOI 10.1007/BF00877520 Ritter H. J., 1991, NEURONALE NETZE ROSE C, 1996, AKTUELLE PHONIATRISC, P173 Scherer A., 1997, NEURONALE NETZE GRUN Schroger E, 1996, COGNITIVE BRAIN RES, V4, P145 Schroger E, 1996, EVOKED POTENTIAL, V100, P517, DOI 10.1016/S0168-5597(96)95576-8 SCHUNICH.R, 1974, ARCH OTO-RHINO-LARYN, V206, P217, DOI 10.1007/BF00465536 StuddertKennedy M, 1995, PSYCHON B REV, V2, P508, DOI 10.3758/BF03210986 SUGG MJ, 1995, BIOL PSYCHOL, V41, P255, DOI 10.1016/0301-0511(95)05136-8 TALLAL P, 1985, NEUROPSYCHOLOGIA, V23, P527, DOI 10.1016/0028-3932(85)90006-5 TALLAL P, 1985, BRAIN LANG, V25, P314, DOI 10.1016/0093-934X(85)90087-2 TonnquistUhlen I, 1996, EVOKED POTENTIAL, V100, P250, DOI 10.1016/0168-5597(95)00256-1 UTTENWEILER V, 1980, SPRACHE-STIMME-GEHOR, V4, P107 WELTE V, 1981, SPRACHE-STIMME-GEHOR, V5, P121 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 Zhang XY, 1998, BRAIN LANG, V65, P395, DOI 10.1006/brln.1998.1999 NR 55 TC 11 Z9 15 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2000 VL 5 IS 2 BP 69 EP 82 DI 10.1159/000013870 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 296TJ UT WOS:000086041600004 PM 10720823 ER PT J AU Cacace, AT McFarland, DJ Ouimet, JR Schrieber, EJ Marro, P AF Cacace, AT McFarland, DJ Ouimet, JR Schrieber, EJ Marro, P TI Temporal processing deficits in remediation-resistant reading-impaired children SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE dyslexia; temporal order discrimination; just noticeable differences; temporal integration; visual perception; auditory perception ID SPECIFICALLY DISABLED READERS; DEVELOPMENTAL DYSLEXIA; MAGNOCELLULAR DEFECT; POOR READERS; CONTRAST SENSITIVITY; PERCEPTION DEFICITS; INSPECTION TIME; FAMILY PATTERNS; VISUAL-MOTION; DISCRIMINATION AB There is considerable interest in whether a deficit in temporal processing underlies specific learning and language disabilities in school-aged children. This view is particularly controversial in the area of developmental reading problems. The temporal-processing hypothesis was tested in a sample of normal children, 9-11 years of age, and in a sample of age-matched children with reading impairments, by assessing temporal-order discrimination. Five different binary temporal-order tasks were evaluated in the auditory and visual sensory modalities. Other basic discrimination abilities for single auditory stimuli were also assessed, including just noticeable differences (JNDs) for frequency and intensity and a simple threshold detection task. In these tasks, the temporal dimension was the duration of the individual stimuli (20 and 200 ms). All data were obtained using forced-choice psychophysical methods, either in a single-track adaptive format or using psychometric functions. The results from these experiments showed that children with reading impairments had deficits in temporal-order discrimination, but these effects were not modality specific. These same children also had significantly elevated frequency and intensity JNDs and their performance on these tasks were not dependent on stimulus duration. No group differences were observed on the threshold detection task, and the derived measurements of temporal integration (i.e. the threshold difference between the 20-and 200-ms stimuli) were considered normal, averaging 11.7 dB. As a whole, discrimination deficits observed in the reading-impaired group only occurred with suprathreshold stimuli. The deficits were neither modality specific nor temporal (duration) specific. Copyright (C) 2000 S. Karger AG,Basel. C1 Albany Med Coll, Dept Neurol, Albany, NY 12208 USA. New York State Dept Hlth, Wadsworth Ctr Labs & Res, Albany, NY 12201 USA. Learning Disabil Associates, Latham, NY USA. Albany Med Coll, Dept Surg, Div Otolaryngol, Albany, NY 12208 USA. RP Cacace, AT (reprint author), Albany Med Coll, Dept Surg, Div Otolaryngol, 47 New Scotland Ave, Albany, NY 12208 USA. CR *AM NAT STAND I, 1989, AM STAND SPEC AUD Bakker D. J., 1972, TEMPORAL ORDER DISTU Baldeweg T, 1999, ANN NEUROL, V45, P495, DOI 10.1002/1531-8249(199904)45:4<495::AID-ANA11>3.0.CO;2-M Beaton AA, 1997, BRAIN LANG, V60, P255, DOI 10.1006/brln.1997.1825 BENTON A, 1991, VISION VISUAL DYSLEX, P113 Blachman B. A., 1994, LANGUAGE LEARNING DI, P253 BODER E, 1973, DEV MED CHILD NEUROL, V15, P663 Bonnel AM, 1998, PERCEPT PSYCHOPHYS, V60, P179, DOI 10.3758/BF03206027 Borsting E, 1996, VISION RES, V36, P1047, DOI 10.1016/0042-6989(95)00199-9 BRADLEY W H, 1959, Laryngoscope, V69, P422 Brady S., 1991, PHONOLOGICAL PROCESS Burns NR, 1998, PERS INDIV DIFFER, V24, P25, DOI 10.1016/S0191-8869(97)00142-6 Cacace AT, 1998, J SPEECH LANG HEAR R, V41, P355 Corcos E., 1993, VISUAL PROCESSES REA, P95 CORNELISSEN P, 1995, VISION RES, V35, P1483, DOI 10.1016/0042-6989(95)98728-R Demb JB, 1997, P NATL ACAD SCI USA, V94, P13363, DOI 10.1073/pnas.94.24.13363 Demb JB, 1998, J NEUROSCI, V18, P6939 DILOLLO V, 1983, J EXP PSYCHOL HUMAN, V9, P923, DOI 10.1037//0096-1523.9.6.923 DIXON P, 1994, COGNITIVE PSYCHOL, V26, P33, DOI 10.1006/cogp.1994.1002 DREARY IJ, 1996, AM PSYCHOL, V51, P599 EDEN GF, 1995, CORTEX, V31, P451 Eden GF, 1996, NATURE, V382, P66, DOI 10.1038/382066a0 Eden GF, 1996, NEUROIMAGE, V4, pS108, DOI 10.1006/nimg.1996.0061 Edwards VT, 1996, VISION RES, V36, P1037, DOI 10.1016/0042-6989(95)00193-X Farmer ME, 1995, PSYCHON B REV, V2, P460, DOI 10.3758/BF03210983 GALABURDA A, 1993, ANN NY ACAD SCI, V682, P70, DOI 10.1111/j.1749-6632.1993.tb22960.x GALABURDA AM, 1993, NEUROL CLIN, V11, P161 GALABURDA AM, 1979, ANN NEUROL, V6, P94, DOI 10.1002/ana.410060203 GALABURDA AM, 1993, NEUROL CHRON, V2, P1 GALABURDA AM, 1994, P NATL ACAD SCI USA, V91, P8010, DOI 10.1073/pnas.91.17.8010 GALABURDA AM, 1985, ANN NEUROL, V18, P222, DOI 10.1002/ana.410180210 GENGEL RW, 1969, J SPEECH HEAR RES, V12, P847 Hari R, 1999, NEUROSCI LETT, V271, P202, DOI 10.1016/S0304-3940(99)00547-9 Heath SM, 1999, J CHILD PSYCHOL PSYC, V40, P637, DOI 10.1017/S0021963099003947 HIRSH IJ, 1988, STEVENS HDB EXPT PSY, P377 HUSAIN M, 1991, VISION VISUAL DYSLEX, P12 JENSEN JK, 1993, PSYCHOL SCI, V4, P104, DOI 10.1111/j.1467-9280.1993.tb00469.x LEEK MR, 1991, J ACOUST SOC AM, V90, P1385, DOI 10.1121/1.401930 LEVITT H, 1971, J ACOUST SOC AM, V49, P467, DOI 10.1121/1.1912375 LIVINGSTONE M, 1988, SCIENCE, V240, P740, DOI 10.1126/science.3283936 LIVINGSTONE MS, 1987, J NEUROSCI, V7, P3416 LIVINGSTONE MS, 1991, P NATL ACAD SCI USA, V88, P7943, DOI 10.1073/pnas.88.18.7943 LOVEGROVE W, 1991, VISION VISUAL DYSLEX, P148 LOVEGROVE W, 1978, CORTEX, V14, P268 Lovegrove W J, 1990, J Am Optom Assoc, V61, P137 LOVEGROVE WJ, 1993, VISUAL PROCESSES REA, P311 LU ZL, 1995, VISION RES, V35, P2697, DOI 10.1016/0042-6989(95)00025-U MARTIN F, 1987, PERCEPTION, V16, P215, DOI 10.1068/p160215 MAXON AB, 1982, EAR HEARING, V3, P301 MAY JG, 1988, NEUROPSYCHOLOGIA, V26, P917, DOI 10.1016/0028-3932(88)90059-0 McAnally KI, 1996, P ROY SOC B-BIOL SCI, V263, P961, DOI 10.1098/rspb.1996.0142 McFarland DJ, 1998, J SPEECH LANG HEAR R, V41, P300 McFarland DJ, 1995, AM J AUDIOL, V4, P32 Mody M, 1997, J EXP CHILD PSYCHOL, V64, P199, DOI 10.1006/jecp.1996.2343 Nittrouer S, 1999, J SPEECH LANG HEAR R, V42, P925 Olsson H, 1998, PERS INDIV DIFFER, V25, P627, DOI 10.1016/S0191-8869(98)00061-0 Paulesu E, 1996, BRAIN, V119, P143, DOI 10.1093/brain/119.1.143 PROTOPAPAS A, 1998, SOC NEUR ABSTR, V190, P491 Pugh KR, 1996, BRAIN, V119, P1221, DOI 10.1093/brain/119.4.1221 Rae C, 1998, LANCET, V351, P1849, DOI 10.1016/S0140-6736(97)99001-2 Reppas JB, 1997, NATURE, V388, P175, DOI 10.1038/40633 Richards TL, 1999, AM J NEURORADIOL, V20, P1393 ROSEN S, 1999, CURR BIOL, V9, P698 Schulte-Korne G, 1998, PERCEPT MOTOR SKILL, V86, P1043 Shaywitz SE, 1998, P NATL ACAD SCI USA, V95, P2636, DOI 10.1073/pnas.95.5.2636 Slaghuis WL, 1996, CORTEX, V32, P413 StuddertKennedy M, 1995, PSYCHON B REV, V2, P508, DOI 10.3758/BF03210986 STUDDERTKENNEDY M, 1997, DEFICITS PHONEME AWA TALLAL P, 1980, BRAIN LANG, V9, P182, DOI 10.1016/0093-934X(80)90139-X TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x TOBEY EA, 1984, J SPEECH HEAR RES, V27, P527 VELLUTINO FR, 1987, ADV APPL PSYCHOLINGU, V1, P1 Vellutino FR, 1996, J EDUC PSYCHOL, V88, P601, DOI 10.1037/0022-0663.88.4.601 VONBRISINSKI IS, 1994, BEHAV RES METH INS C, V26, P335 WIGHTMAN F, 1989, CHILD DEV, V60, P611, DOI 10.1111/j.1467-8624.1989.tb02742.x Witton C, 1998, CURR BIOL, V8, P791, DOI 10.1016/S0960-9822(98)70320-3 Wolff PH, 1995, AM J MED GENET, V60, P494, DOI 10.1002/ajmg.1320600604 Wolff PH, 1996, AM J MED GENET, V67, P378, DOI 10.1002/(SICI)1096-8628(19960726)67:4<378::AID-AJMG11>3.0.CO;2-G Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 Wright H. N., 1978, HDB CLIN AUDIOLOGY, P218 ZWISLOCKI J, 1960, J ACOUST SOC AM, V32, P1046, DOI 10.1121/1.1908276 NR 81 TC 42 Z9 43 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 2000 VL 5 IS 2 BP 83 EP 97 DI 10.1159/000013871 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 296TJ UT WOS:000086041600005 PM 10720824 ER PT J AU Kadner, A Scheich, H AF Kadner, A Scheich, H TI Trained discrimination of temporal patterns: Cochlear implants in gerbils SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE learning rehabilitation; cochlear implants; deafness; auditory cortex; 2 DG ID MERIONES-UNGUICULATUS; FUNCTIONAL-ORGANIZATION; ELECTRICAL-STIMULATION; AUDITORY-CORTEX; SINGLE-CHANNEL; SPEECH; 2-DEOXYGLUCOSE; RECOGNITION; RESPONSES; FIELDS AB The purpose of this study was to establish an animal model for the discrimination of temporal order cues contained in electrical stimuli to the cochlea, Gerbils were deafened and implanted in the right cochlea with a single platinum stimulating electrode. Two groups of animals were trained in a two-way active avoidance shuttle box paradigm to discriminate downward from upward interval-modulated pulse trains (1-100 ms). One group consisted of naive animals, The other group had previously been trained in the same shuttle box (same behavioral meaning) to discriminate identical pulse trains presented acoustically. Significant discrimination performance was found in the group of naive animals, However, over the 6-day training period, animals with previous acoustic experience achieved no significant discrimination performance. This suggests that temporal order cues in pulse trains can be used in cochlear implants to transmit behaviorally relevant information but that this may be in conflict with relevant auditory preexperience, Copyright (C) 2000 S. Karger AG, Basel. C1 Leibniz Inst Neurobiol, D-39118 Magdeburg, Germany. RP Kadner, A (reprint author), Leibniz Inst Neurobiol, Brenneckestr 6, D-39118 Magdeburg, Germany. CR CAIRD D, 1991, J COMP PHYSIOL A, V168, P13, DOI 10.1007/BF00217100 Creelman C. D., 1991, DETECTION THEORY USE Dinse HR, 1997, EUR J NEUROSCI, V9, P113, DOI 10.1111/j.1460-9568.1997.tb01359.x DOBIE RA, 1985, HEARING RES, V18, P41, DOI 10.1016/0378-5955(85)90109-1 EIMAS PD, 1973, COGNITIVE PSYCHOL, V4, P99, DOI 10.1016/0010-0285(73)90006-6 Hessel H, 1998, ORL J OTO-RHINO-LARY, V60, P61, DOI 10.1159/000027566 HINDERINK JB, 1995, LARYNGOSCOPE, V105, P618, DOI 10.1288/00005537-199506000-00011 Jayel E., 1990, COCHLEAR IMPLANTS MO, P247 KUHL PK, 1986, EXP BIOL, V53, P31 MAY B, 1989, J ACOUST SOC AM, V85, P837, DOI 10.1121/1.397555 Miller CA, 1995, HEARING RES, V92, P85, DOI 10.1016/0378-5955(95)00204-9 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 SCHEICH H, 1993, EUR J NEUROSCI, V5, P898, DOI 10.1111/j.1460-9568.1993.tb00941.x SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 SWETS JA, 1961, PSYCHOL REV, V68, P301, DOI 10.1037/0033-295X.68.5.301 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x VANTASELL DJ, 1987, J ACOUST SOC AM, V82, P1152, DOI 10.1121/1.395251 Wang X, 1999, RESTOR NEUROL NEUROS, V14, P201 Weston S C, 1995, Ann Otol Rhinol Laryngol Suppl, V165, P19 Wetzel W, 1998, BEHAV BRAIN RES, V91, P29, DOI 10.1016/S0166-4328(97)00099-5 Wilson B.S., 1993, COCHLEAR IMPLANTS AU, P35 NR 22 TC 3 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2000 VL 5 IS 1 BP 23 EP 30 DI 10.1159/000013862 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 288QA UT WOS:000085573700002 PM 10686429 ER PT J AU Beitel, RE Vollmer, M Snyder, RL Schreiner, CE Leake, PA AF Beitel, RE Vollmer, M Snyder, RL Schreiner, CE Leake, PA TI Behavioral and neurophysiological thresholds for electrical cochlear stimulation in the deaf cat SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE psychophysical threshold; neurophysiological threshold; inferior colliculus; primary auditory cortex; deafness; electrical cochlear stimulation; sinusoidal amplitude modulation ID BRAIN-STEM RESPONSE; INFERIOR COLLICULUS; IMPLANTS; NEURONS; NUCLEUS AB Psychophysical detection thresholds for unmodulated electrical pulse trains or for sinusoidally amplitude-modulated (SAM) pulse trains were estimated in deaf juvenile cats using a conditioned avoidance paradigm, Biphasic current pulses (0.2 ms/phase) were delivered by scala tympani electrodes consisting of 4-8 electrode contacts driven as bipolar pairs, Electrical auditory brainstem response (EABR) thresholds were obtained periodically, and at the conclusion of behavioral training, response thresholds were obtained for neurons in the inferior colliculus (IC) and the primary auditory cortex (A1) in acute physiological experiments in the same animals. The results of the study include: (1) detection thresholds for unmodulated pulse trains and for SAM pulse trains were virtually identical; (2) EABR thresholds and behavioral thresholds were significantly correlated, although EABR thresholds consistently overestimated behavioral thresholds; (3) the lowest thresholds in the IC a nd the Al were significantly correlated with behavioral thresholds, and (4) mean lowest thresholds in the IC and the Al were essentially the same as the mean psychophysical detection threshold in the trained deaf cats, Copyright (C) 2000 S. Karger AG, Basel. C1 Univ Calif San Francisco, Dept Otolaryngol, San Francisco, CA 94143 USA. RP Beitel, RE (reprint author), Univ Calif San Francisco, Dept Otolaryngol, Box 0732, San Francisco, CA 94143 USA. CR ABBAS PJ, 1991, HEARING RES, V51, P123, DOI 10.1016/0378-5955(91)90011-W BEITEL RE, 1995, 18 MIDW RES M ASS RE ELBERLING C, 1987, J ACOUST SOC AM, V81, P115, DOI 10.1121/1.395019 GREEN DM, 1966, SIGNAL DETECTION THE HEFFNER RS, 1985, HEARING RES, V19, P85, DOI 10.1016/0378-5955(85)90100-5 HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O LEAKE PA, 1991, HEARING RES, V54, P251, DOI 10.1016/0378-5955(91)90120-X LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 MONTNEY LM, 1998, 21 MIDW RES M ASS RE MOON AK, 1993, HEARING RES, V67, P166, DOI 10.1016/0378-5955(93)90244-U PARKINS CW, 1987, HEARING RES, V31, P267, DOI 10.1016/0378-5955(87)90196-1 PFINGST BE, 1998, J ACOUST SOC AM, V103, P2846, DOI 10.1121/1.421520 PFINGST BE, 1988, HEARING RES, V34, P243, DOI 10.1016/0378-5955(88)90005-6 PFINGST BE, 1990, COCHLEAR IMPLANTS MO, P161 RAGGIO MW, 1994, J NEUROPHYSIOL, V72, P2334 SHANNON RV, 1985, HEARING RES, V18, P135, DOI 10.1016/0378-5955(85)90005-X SHANNON RV, 1989, HEARING RES, V40, P197, DOI 10.1016/0378-5955(89)90160-3 SHANNON RV, 1992, J ACOUST SOC AM, V91, P2156, DOI 10.1121/1.403807 SMITH DW, 1994, HEARING RES, V81, P1, DOI 10.1016/0378-5955(94)90147-3 SNYDER R, 1995, J NEUROPHYSIOL, V73, P449 SNYDER RL, 1991, HEARING RES, V56, P246, DOI 10.1016/0378-5955(91)90175-9 SNYDER RL, 1990, HEARING RES, V50, P7, DOI 10.1016/0378-5955(90)90030-S Vallbo AB, 1976, SENSORY FUNCTIONS SK, P185 VOLLMER M, 1999, 22 MIDW RES M ASS RE VUREK LS, 1981, ANN OTO RHINOL LARYN, V90, P21 WILSON BS, 1991, NATURE, V352, P236, DOI 10.1038/352236a0 NR 26 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2000 VL 5 IS 1 BP 31 EP 38 DI 10.1159/000013863 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 288QA UT WOS:000085573700003 PM 10686430 ER PT J AU Szagun, G AF Szagun, G TI The acquisition of grammatical and lexical structures in children with cochlear implants: A developmental psycholinguistic approach SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE children with cochlear implants; language acquisition; acquisition of grammar; inflectional morphology; vocabulary ID DYSPHASIA; LANGUAGE; SPEECH AB The acquisition of grammatical and lexical structures was studied in a sample of 10 young German-speaking children with cochlear implants (mean implantation age 2 years 3 months). Spontaneous speech samples were collected covering the first 18 months after fi rst tu ne-up, At the end of this period, 8 children were able to produce two- or multi-word utterances. Furthermore, 8 children had acquired plural inflections on nouns, and 5 children had acquired a substantial portion of verb inflectional morphology. Children did less well acquiring case-marked articles, forms of the copula and modal verbs. Articles were acquired better when they functioned as pronouns. Children had good vocabularies (type/token ratios greater than or equal to 0.25), and all but one child started language with a preference for content words as opposed to function words, Copyright (C) 2000 S. Karger AG, Basel. C1 Carl von Ossietzky Univ Oldenburg, Inst Kognit Forsch, D-26111 Oldenburg, Germany. RP Szagun, G (reprint author), Carl von Ossietzky Univ Oldenburg, Inst Kognit Forsch, Postfach 2503, D-26111 Oldenburg, Germany. EM szagun@psychologie.uni-oldenburg.de CR Bates E., 1992, HDB NEUROPSYCHOLOGY, V6, P69 Bishop D. V. M., 1997, UNCOMMON UNDERSTANDI BOOSMAN K, 1998, 26 NEUR C GOTT MARCH Brown R., 1973, 1 LANGUAGE EARLY STA CLAHSEN H, 1989, LINGUISTICS, V27, P897, DOI 10.1515/ling.1989.27.5.897 FENSON L, 1994, MONOGR SOC RES CHILD, V59, pR5 FryaufBertschy H, 1997, J SPEECH LANG HEAR R, V40, P183 Heidolph K. E., 1984, GRUNDZUGE DTSCH GRAM MacWhinney B., 1995, CHILDES PROJECT TOOL MCCORMICK B, 1994, COCHLEAR IMPLANTS YO National Institutes of Health, 1995, NIH CONSENSUS STATE, V13, P1 RICHARDS B, 1987, J CHILD LANG, V14, P201 Scholer H, 1998, SPEZIFISCHE SPRACHEN Slobin D. I., 1973, STUDIES CHILD LANGUA, P175 SNIJDERS T, 1996, SONR 2 HALF 7 SNIJDE SZAGUN G, 1998, SPRACHE STIMME GEHOR, V0022 Szagun G, 1997, AM J OTOL, V18, pS131 Szagun G, 1997, INT J PEDIATR OTORHI, V42, P55, DOI 10.1016/S0165-5876(97)00121-3 TALLAL P, 1980, NEUROPSYCHOLOGIA, V18, P273, DOI 10.1016/0028-3932(80)90123-2 TYEMURRAY N, 1995, J SPEECH HEAR RES, V38, P327 NR 20 TC 20 Z9 20 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 2000 VL 5 IS 1 BP 39 EP 47 DI 10.1159/000013864 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 288QA UT WOS:000085573700004 PM 10686431 ER PT J AU Tervaniemi, M Radil, T Radilova, J Kujala, T Naatanen, R AF Tervaniemi, M Radil, T Radilova, J Kujala, T Naatanen, R TI Pre-attentive discriminability of sound order as a function of tone duration and interstimulus interval: A mismatch negativity study SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory information; temporal processing; complex tones; human; event-related potentials; mismatch negativity ID EVENT-RELATED POTENTIALS; CLINICAL-APPLICATION; SELECTIVE-ATTENTION; SPEECH; CHILDREN; BRAIN; REPRESENTATION; INFORMATION; PATTERNS; TIME AB The present study addressed the pre-attentive processing of sound order. Event-related potentia Is were recorded from reading subjects while they were presented with pairs of two tones differing from each other in frequency (1000 vs. 1500 Hz). The within-pair (silent) interstimulus interval (ISI) was, in separate blocks, varied between 0 and 245 ms to determine the minimum separation in time needed for detecting the reversed order of the two frequencies. In standard tone pal rs (p = 0.9), the frequencies were in an ascending order, whereas in the deviant pairs (p = 0.1), their order was reversed. Tone durations of 5 and 20 ms were employed in separate experiments. With the 20-ms stimulus duration, the change-specific mismatch negativity (MMN) component was elicited with all within-pair ISIs employed (0, 10, 30, 90 ms). With the 5-ms stimulus duration, however, MMN was elicited only with the 245-ms ISI but not with 95-ms or shorter ISIs. These results show that increased stimulus duration considerably improves perceiving the order of two tones at the pre-attentive level. They also indicate that the accuracy of the processing of temporal information can be probed with MMN. This finding, together with the fact that MMN elicitation does not require the subject's voluntary attention, suggests that MMN might be used in the assessment of temporal processing deficits in clinical disorders in which patients are not motivated or able to give their verbal or motor response. C1 Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, FIN-00014 Helsinki, Finland. Acad Sci Czech Republ, Inst Physiol, Prague, Czech Republic. RP Tervaniemi, M (reprint author), Univ Helsinki, Dept Psychol, Cognit Brain Res Unit, POB 13, FIN-00014 Helsinki, Finland. RI Radil, Tomas/G-4442-2014 CR AALTONEN O, 1994, J ACOUST SOC AM, V96, P1489, DOI 10.1121/1.410291 ALAIN C, 1994, NEUROREPORT, V6, P140, DOI 10.1097/00001756-199412300-00036 ALHO K, 1992, ELECTROEN CLIN NEURO, V82, P356, DOI 10.1016/0013-4694(92)90005-3 ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 Csepe V, 1997, AUDIOL NEURO-OTOL, V2, P354 EFRON R, 1963, BRAIN, V86, P403, DOI 10.1093/brain/86.3.403 Escera C, 1996, EVOKED POTENTIAL, V100, P549, DOI 10.1016/S0168-5597(96)95633-6 Farmer ME, 1995, PSYCHON B REV, V2, P460, DOI 10.3758/BF03210983 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x HARI R, 1984, NEUROSCI LETT, V50, P127, DOI 10.1016/0304-3940(84)90474-9 JOHNSON R, 1995, HDB NEUROPSYCHOLOGY, V10 Joutsiniemi SL, 1998, EVOKED POTENTIAL, V108, P154, DOI 10.1016/S0168-5597(97)00082-8 KORPILAHTI P, 1994, ELECTROEN CLIN NEURO, V91, P256, DOI 10.1016/0013-4694(94)90189-9 Kraus N, 1998, AUDIOL NEURO-OTOL, V3, P168, DOI 10.1159/000013788 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003 LANG AH, 1995, EAR HEARING, V16, P118, DOI 10.1097/00003446-199502000-00009 LANG AH, 1990, PSYCHOPHYSIOLOGICAL, V1, P294 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 Moore B. C. J., 1989, INTRO PSYCHOL HEARIN Naatanen R., 1992, ATTENTION BRAIN FUNC NAATANEN R, 1995, EAR HEARING, V16, P1 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341 NORDBY H, 1988, PSYCHOPHYSIOLOGY, V25, P249, DOI 10.1111/j.1469-8986.1988.tb01238.x PAAVILAINEN P, 1991, ELECTROEN CLIN NEURO, V78, P466, DOI 10.1016/0013-4694(91)90064-B PEKKONEN E, 1995, EVOKED POTENTIAL, V96, P546, DOI 10.1016/0013-4694(95)00148-R Poppel E, 1997, TRENDS COGN SCI, V1, P56, DOI 10.1016/S1364-6613(97)01008-5 ROSEN S, 1992, PHILOS T ROY SOC B, V336, P367, DOI 10.1098/rstb.1992.0070 Schroger E, 1996, COGNITIVE BRAIN RES, V4, P145 Schroger E, 1995, NEUROSCI LETT, V202, P117, DOI 10.1016/0304-3940(95)12222-2 SCHROGER E, 1994, ELECTROEN CLIN NEURO, V92, P140, DOI 10.1016/0168-5597(94)90054-X Schroger E, 1998, BEHAV RES METH INS C, V30, P131, DOI 10.3758/BF03209423 SHANNON RV, 1995, SCIENCE, V270, P303, DOI 10.1126/science.270.5234.303 SWISHER L, 1972, NEUROPSYCHOLOGIA, V10, P137, DOI 10.1016/0028-3932(72)90053-X TALLAL P, 1975, NEUROPSYCHOLOGIA, V13, P69, DOI 10.1016/0028-3932(75)90049-4 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 TERVANIEMI M, 1994, BIOL PSYCHOL, V38, P157, DOI 10.1016/0301-0511(94)90036-1 TERVANIEMI M, UNPUB TEST RETEST RE Tervaniemi M, 1997, NEUROSCI LETT, V226, P1, DOI 10.1016/S0304-3940(97)00217-6 TIITINEN H, 1994, NATURE, V372, P90, DOI 10.1038/372090a0 Wilson B.S., 1993, COCHLEAR IMPLANTS AU, P35 WINKLER I, 1995, NEUROREPORT, V6, P690, DOI 10.1097/00001756-199503000-00026 NR 44 TC 8 Z9 8 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1999 VL 4 IS 6 BP 303 EP 310 DI 10.1159/000013854 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 242XX UT WOS:000082968600003 PM 10516390 ER PT J AU Moore, JK Simmons, DD Guan, YL AF Moore, JK Simmons, DD Guan, YL TI The human olivocochlear system: Organization and development SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE efferent neurons; choline acetyltransferase; calcitonin gene-related peptide; superior olivary complex ID GENE-RELATED PEPTIDE; SUPERIOR OLIVARY COMPLEX; COCHLEAR EFFERENT NEURONS; AUDITORY BRAIN-STEM; HUMAN TEMPORAL BONE; GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; CHOLINE-ACETYLTRANSFERASE; VESTIBULOCOCHLEAR ANASTOMOSIS; IMMUNOCYTOCHEMICAL DETECTION AB The goals of the present study were to identify ol ivocochlear neurons in the human brainstem, to establish the time course of their early development and to compare the organization of the human olivocochlear system to that of other mammals. To accomplish these goals, we used immunohistochemistry for choline acetyltransferase (ChAT) and calcitonin gene-related peptide (CGRP) in postmortem brainstems of human subjects ranging in age from 16 fetal weeks to 17 years. By immunostaining, we identified two classes of cells in the superior olivary complex: both classes were seen to be present from the twenty-first fetal week to the seventeenth year. Neurons which are immunostained only for ChAT are located primarily in the dorsomedial, ventral and ventrolateral sectors of the periolivary region. These neurons are predominantly bipolar or multipolar cells, and are probably homologous to medial olivocochlear neurons in other species. A second population of cells is immunoreactive for both ChAT and CGRP. This population includes a cluster of mostly small oval neurons, located on the dorsal edge of the olivary complex, and a variable number of cells found along the margin of the lateral olivary nucleus. These ChAT- and CGRP-immunoreactive cells are likely to be homologous to the lateral olivocochlear system in other mammals. With increasing age, the dorsal cluster of small cells shifts from its original cap-like position over the lateral olivary nucleus to become an extended column of cells lying among the fibers of the olivocochlear bundle. C1 House Ear Inst, Dept Neuroanat, Los Angeles, CA 90057 USA. Cent Inst Deaf, Ctr Biol Hearing & Deafness, St Louis, MO 63110 USA. Washington Univ, Sch Med, Dept Otolaryngol, St Louis, MO 63110 USA. RP Moore, JK (reprint author), House Ear Inst, Dept Neuroanat, 2100 W 3rd St,5th Floor, Los Angeles, CA 90057 USA. CR Abdala C, 1999, J ACOUST SOC AM, V105, P2392, DOI 10.1121/1.426844 ABOUMADI L, 1987, HEARING RES, V30, P135, DOI 10.1016/0378-5955(87)90131-6 ADAMS JC, 1983, J COMP NEUROL, V215, P275, DOI 10.1002/cne.902150304 ADAMS JC, 1986, ASS RES OT ABSTR, P5 ALTSCHULER RA, 1984, J HISTOCHEM CYTOCHEM, V32, P839 ALTSCHULER RA, 1983, NEUROSCIENCE, V9, P621, DOI 10.1016/0306-4522(83)90178-1 ARNESEN AR, 1984, ACTA OTO-LARYNGOL, V98, P501, DOI 10.3109/00016488409107591 ARNESEN AR, 1984, ACTA OTO-LARYNGOL, V98, P255, DOI 10.3109/00016488409107562 ASCHOFF A, 1988, EXP BRAIN RES, V71, P252 ASCHOFF A, 1987, J COMP NEUROL, V264, P56, DOI 10.1002/cne.902640106 BISHOP AL, 1987, HEARING RES, V31, P175, DOI 10.1016/0378-5955(87)90124-9 BROWN JC, 1972, ACTA ANAT, V83, P505 BROWN MC, 1988, J COMP NEUROL, V278, P591, DOI 10.1002/cne.902780410 CAMPBELL JP, 1988, HEARING RES, V35, P271, DOI 10.1016/0378-5955(88)90124-4 CARPENTER MB, 1987, BRAIN RES, V408, P275, DOI 10.1016/0006-8993(87)90387-8 EMMERLING MR, 1990, J ELECTRON MICR TECH, V15, P123, DOI 10.1002/jemt.1060150205 GACEK RR, 1961, ARCHIV OTOLARYNGOL, V74, P690 GIARD MH, 1994, BRAIN RES, V633, P353, DOI 10.1016/0006-8993(94)91561-X Giraud AL, 1997, NEUROREPORT, V8, P1779 GUINAN JJ, 1983, J COMP NEUROL, V221, P358, DOI 10.1002/cne.902210310 HELFERT RH, 1989, BRAIN RES, V501, P269, DOI 10.1016/0006-8993(89)90644-6 ISHI T, 1967, ANN OTOL LARYNGOL, V76, P115 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KONG WJ, 1994, ACTA OTO-LARYNGOL, V114, P245, DOI 10.3109/00016489409126051 Konigsmark B, 1970, CONT RES METHODS NEU LAVIGNEREBILLARD M, 1988, ACTA OTO-LARYNGOL, V105, P398, DOI 10.3109/00016488809119492 LU SM, 1987, HEARING RES, V31, P137, DOI 10.1016/0378-5955(87)90119-5 Merchan Perez A., 1994, Developmental Brain Research, V82, P29, DOI 10.1016/0165-3806(94)90145-7 MERCHANPEREZ A, 1990, INT J DEV NEUROSCI, V8, P603, DOI 10.1016/0736-5748(90)90052-4 MOORE JK, 1987, HEARING RES, V29, P1, DOI 10.1016/0378-5955(87)90202-4 MOORE JK, 1995, HEARING RES, V87, P21, DOI 10.1016/0378-5955(95)00073-D MOORE JK, 1979, AM J ANAT, V154, P393, DOI 10.1002/aja.1001540306 MOORE JK, 1997, SOC NEUR ABSTR, V27, P183 MOORE JK, 1971, FOLIA PRIMATOL, V16, P35, DOI 10.1159/000155390 MOORE RY, 1989, J COMP NEUROL, V282, P512, DOI 10.1002/cne.902820404 NADOL JB, 1990, J ELECTRON MICR TECH, V15, P187, DOI 10.1002/jemt.1060150210 NEW HV, 1986, NATURE, V323, P809, DOI 10.1038/323809a0 OSEN KK, 1984, ARCH ITAL BIOL, V122, P169 OSEN KK, 1969, BRAIN RES, V16, P165, DOI 10.1016/0006-8993(69)90092-4 PUEL JL, 1988, BRAIN RES, V447, P380, DOI 10.1016/0006-8993(88)91144-4 PUJOL R, 1980, HEARING RES, V2, P423, DOI 10.1016/0378-5955(80)90078-7 Pujol R, 1985, Acta Otolaryngol Suppl, V423, P43 PUJOL R, 1982, DEV BRAIN RES, V3, P151, DOI 10.1016/0165-3806(82)90084-0 ROBERTSON D, 1985, HEARING RES, V20, P79, DOI 10.1016/0378-5955(85)90060-7 ROBERTSON D, 1987, EXP BRAIN RES, V66, P449, DOI 10.1007/BF00270677 RYAN AF, 1987, J COMP NEUROL, V255, P606, DOI 10.1002/cne.902550411 SAFFEIDINE S, 1992, EUR J NEUROSCI, V4, P981 SAFFIEDINE S, 1997, EUR J NEUROSCI, V9, P356 Scharf B, 1997, HEARING RES, V103, P101, DOI 10.1016/S0378-5955(96)00168-2 SCHROTTFISCHER A, 1994, HEARING RES, V78, P149, DOI 10.1016/0378-5955(94)90020-5 SCHUKNECHT HF, 1959, ARCHIV OTOLARYNGOL, V69, P549 SHI SR, 1992, J HISTOCHEM CYTOCHEM, V40, P787 SIMMONS DD, 1993, J CHEM NEUROANAT, V6, P407, DOI 10.1016/0891-0618(93)90015-V Simmons DD, 1997, J COMP NEUROL, V377, P207 Simmons DD, 1998, J COMP NEUROL, V397, P281 Simmons DD, 1996, DEV BRAIN RES, V95, P213 SOBKOWICZ HM, 1989, J NEUROCYTOL, V18, P209, DOI 10.1007/BF01206663 STRUTZ J, 1984, BRAIN RES, V299, P174, DOI 10.1016/0006-8993(84)90803-5 TAKAMI K, 1985, BRAIN RES, V328, P386, DOI 10.1016/0006-8993(85)91055-8 TAKEDA N, 1986, EXP BRAIN RES, V61, P575 THOMPSON GC, 1986, J COMP NEUROL, V254, P246, DOI 10.1002/cne.902540208 TOHYAMA Y, 1990, BRAIN RES, V515, P312, DOI 10.1016/0006-8993(90)90613-G TOHYAMA Y, 1989, INN EAR BIOL ABSTR, V26, P68 TOKUNAGA A, 1988, NEUROSCI RES, V6, P20, DOI 10.1016/0168-0102(88)90003-X VETTER DE, 1991, SYNAPSE, V7, P21, DOI 10.1002/syn.890070104 VETTER DE, 1990, ARCH ITAL BIOL, V128, P331 VETTER DE, 1992, ANAT EMBRYOL, V185, P1, DOI 10.1007/BF00213596 Veuillet E, 1996, HEARING RES, V93, P128, DOI 10.1016/0378-5955(95)00212-X Walsh EJ, 1998, J NEUROSCI, V18, P3859 Warr W., 1992, MAMMALIAN AUDITORY P WARR WB, 1975, J COMP NEUROL, V161, P159, DOI 10.1002/cne.901610203 Warr WB, 1997, HEARING RES, V108, P89, DOI 10.1016/S0378-5955(97)00044-0 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WHITE JS, 1983, J COMP NEUROL, V219, P203, DOI 10.1002/cne.902190206 WINTER IM, 1989, J COMP NEUROL, V280, P143, DOI 10.1002/cne.902800110 NR 75 TC 23 Z9 23 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1999 VL 4 IS 6 BP 311 EP 325 DI 10.1159/000013855 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 242XX UT WOS:000082968600004 PM 10516391 ER PT J AU Freeman, S Khvoles, R Cherny, L Sohmer, H AF Freeman, S Khvoles, R Cherny, L Sohmer, H TI Effect of long-term noise exposure on the developing and developed ear in the rat SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE noise; hearing loss; age effects; auditory brainstem response; otoacoustic emission; fetus; neonate ID PRODUCT OTOACOUSTIC EMISSIONS; ACOUSTIC TRAUMA; FETAL SHEEP; HEARING; COCHLEA; THRESHOLDS; PREGNANCY; NEWBORN; DAMAGE; ORGAN AB There have been reports that the developing ear is more sensitive than the adult ear to noise-induced hearing loss. This was investigated by testing auditory function in rats, both electrophysiologically and histologically, following exposure to broad-band noise (12 h/day for 15 days) at different stages of auditory development (neonates and adults), and also in age-matched controls. An exposure of 90 dB SPL broad-band noise caused no longterm change in auditory function in either age group. A higher exposure (102 dB SPL) caused greater long-term changes in hearing in the adult compared to the young noise-exposed rats, although histology showed greater damage to hair cells in the younger animals. Therefore, functionally, the developing ear does not seem more vulnerable than the developed ear to acoustic trauma. C1 Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. Hadassah Univ Hosp, Dept Otorhinolaryngol Head & Neck Surg, IL-91120 Jerusalem, Israel. RP Freeman, S (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. CR AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866 BENCH J, 1968, J GENET PSYCHOL, V113, P85 BIRNHOLZ JC, 1983, SCIENCE, V222, P516, DOI 10.1126/science.6623091 BOETTCHER FA, 1992, HEARING RES, V62, P217, DOI 10.1016/0378-5955(92)90189-T BORG E, 1995, SCAND AUDIOL S, V40, P9 BOSHER SK, 1971, J PHYSIOL-LONDON, V212, P739 COOK RO, 1982, DEV PSYCHOBIOL, V15, P95, DOI 10.1002/dev.420150202 DALDIN C, 1998, ABSTR ASS RES OT M S Daniel T, 1982, Rev Laryngol Otol Rhinol (Bord), V103, P313 DODSON HC, 1978, ACTA OTO-LARYNGOL, V86, P195, DOI 10.3109/00016487809124736 DOUEK E, 1976, LANCET, V2, P1110 DUNN DE, 1981, ABSTR ASS RES OTOLAR, P61 FAWER CL, 1982, NEUROPEDIATRICS, V13, P200, DOI 10.1055/s-2008-1059623 Freeman S, 1996, HEARING RES, V97, P19 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GERHARDT KJ, 1990, AM J OBSTET GYNECOL, V162, P282 GERHARDT KJ, 1992, AM J OTOLARYNG, V13, P226, DOI 10.1016/0196-0709(92)90026-P GRIFFITHS SK, 1994, HEARING RES, V74, P221, DOI 10.1016/0378-5955(94)90190-2 JOHANSSON B, 1992, ACTA OBSTET GYN SCAN, V71, P610, DOI 10.3109/00016349209006229 Khvoles R, 1996, HEARING RES, V97, P120 LALANDE NM, 1986, AM J IND MED, V10, P427, DOI 10.1002/ajim.4700100410 LENOIR M, 1980, ACTA OTOLARYNGOL, V89, P357 LENOIR M, 1979, J PHYSIOL-PARIS, V75, P521 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MU MY, 1992, ACTA OTO-LARYNGOL, V112, P618, DOI 10.3109/00016489209137450 MULLER M, 1991, HEARING RES, V51, P247, DOI 10.1016/0378-5955(91)90041-7 NIEMTZOW RC, 1993, MIL MED, V158, P10 RICHARDS DS, 1992, OBSTET GYNECOL, V80, P186 ROTH B, 1992, ANAT EMBRYOL, V185, P559, DOI 10.1007/BF00185615 Sohmer H, 1996, Audiol Neurootol, V1, P137 SOHMER H, 1981, ARCH OTO-RHINO-LARYN, V230, P189, DOI 10.1007/BF00456149 SPOENDLI.H, 1973, ACTA OTO-LARYNGOL, V75, P220, DOI 10.3109/00016487309139699 SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004 SUTTON LA, 1994, HEARING RES, V75, P161, DOI 10.1016/0378-5955(94)90067-1 UZIEL A, 1981, AUDIOLOGY, V20, P89 WALKER D, 1971, AM J OBSTET GYNECOL, V10, P307 NR 36 TC 15 Z9 16 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1999 VL 4 IS 5 BP 207 EP 218 DI 10.1159/000013844 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 220YP UT WOS:000081697700001 PM 10436313 ER PT J AU Ohlemiller, KK Dugan, LL AF Ohlemiller, KK Dugan, LL TI Elevation of reactive oxygen species following ischemia-reperfusion in mouse cochlea observed in vivo SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE C57BL/6J mouse; hydroxyl radical; free radical; salicylate; cochlear perfusion ID HYDROXYL RADICAL GENERATION; INFERIOR CEREBELLAR ARTERY; INDUCED HEARING-LOSS; PIG IN-VIVO; BLOOD-FLOW; GUINEA-PIG; SALICYLATE HYDROXYLATION; SUPEROXIDE-DISMUTASE; CEREBRAL-ISCHEMIA; OXIDATIVE STRESS AB An in vivo method for assessment of changes in hydroxyl radical levels in cochlear perilymphatic spaces is described and applied to cochlear ischemia-reperfusion in the mouse. Cochlear blood flow was reversibly reduced by compression of the anterior inferior cerebellar arterial network. Changes in the production of hydroxyl radicals, used as an index of tissue production of reactive oxygen species (ROS), were determined by measuring the conversion of salicylate to 2,3-dihydroxybenzoic acid. Low levels of salicylate (0.1 mM) in artificial perilymph were applied by perfusion of the cochlea using a round window entry and apical exit. Perfusate was collected and analyzed by high-performance liquid chromatography. Forty minutes of partial ischemia led to a >10-fold average increase over baseline in the concentration of hydroxyl radical, which increase persisted for at least 40-80 min following reperfusion. Our observations support previous results obtained using less direct methods, indicating that cochear ischemia-reperfusion and related damage is associated with elevated ROS levels. Development of an in vivo method for assessing changes in cochlear ROS in mice will facilitate the study of the relation between deafness genes, vulnerability to insults and dynamics of cellular processes that produce and regulate ROS. C1 Cent Inst Deaf, Res Dept, St Louis, MO 63110 USA. Washington Univ, Sch Med, Ctr Study Nervous Syst Injury, St Louis, MO USA. Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Cent Inst Deaf, Res Dept, 818 S Euclid, St Louis, MO 63110 USA. CR ALTHAUS JS, 1993, MOL CHEM NEUROPATHOL, V20, P147 BILLETT TE, 1989, HEARING RES, V41, P189, DOI 10.1016/0378-5955(89)90010-5 CAO W, 1988, NEUROSCI LETT, V88, P233, DOI 10.1016/0304-3940(88)90132-2 Choi DW, 1996, CURR OPIN NEUROBIOL, V6, P667, DOI 10.1016/S0959-4388(96)80101-2 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clerici WJ, 1996, TOXICOL APPL PHARM, V136, P236, DOI 10.1006/taap.1996.0030 Clerici WJ, 1996, HEARING RES, V101, P14, DOI 10.1016/S0378-5955(96)00126-8 COUDRAY C, 1995, ANAL BIOCHEM, V227, P101, DOI 10.1006/abio.1995.1258 DUGAN LL, 1994, ANN NEUROL, V35, pS17, DOI 10.1002/ana.410350707 DUGAN LL, 1995, FREE RADICAL RES, V23, P27, DOI 10.3109/10715769509064016 DUGAN LL, 1995, J NEUROSCI, V15, P6377 Dugan LL, 1997, P NATL ACAD SCI USA, V94, P9434, DOI 10.1073/pnas.94.17.9434 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FECHTER LD, 1987, HEARING RES, V27, P37, DOI 10.1016/0378-5955(87)90024-4 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S FLOYD RA, 1984, J BIOCHEM BIOPH METH, V10, P221, DOI 10.1016/0165-022X(84)90042-3 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 GLOBUS MYT, 1995, J NEUROCHEM, V65, P1250 GOTZ ME, 1994, PHARMACOL THERAPEUT, V63, P37, DOI 10.1016/0163-7258(94)90055-8 GROOTVELD M, 1986, BIOCHEM J, V237, P499 GUTTERIDGE JMC, 1994, ANN NY ACAD SCI, V738, P201 HALL ED, 1993, J NEUROCHEM, V60, P588, DOI 10.1111/j.1471-4159.1993.tb03189.x HALLIWELL B, 1991, FREE RADICAL BIO MED, V10, P439, DOI 10.1016/0891-5849(91)90052-5 HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X JORDAN VM, 1973, ANN OTO RHINOL LARYN, V82, P111 Jucker M, 1997, BEHAV BRAIN RES, V85, P1, DOI 10.1016/S0166-4328(96)02243-7 Kil HY, 1996, J CEREBR BLOOD F MET, V16, P100 KIMURA R., 1958, ANN OTOL RHINOL AND LARYNGOL, V67, P5 Kopke RD, 1997, AM J OTOL, V18, P559 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N Lopez-Gonzalez MA, 1998, NEUROCHEM INT, V33, P55, DOI 10.1016/S0197-0186(05)80009-9 MCFADDEN SL, 1998, ABSTR ASS RES OT, V21, P130 Morimoto T, 1996, J CEREBR BLOOD F MET, V16, P92 MYERS MW, 1992, LARYNGOSCOPE, V102, P981 OBATA T, 1995, COMP BIOCHEM PHYS B, V110, P277, DOI 10.1016/0305-0491(94)00060-8 OHLEMILLER KK, 1998, 21 MIDW RES M ASS RE, V21, P130 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P237, DOI 10.1159/000013847 PERLMAN H B, 1959, Laryngoscope, V69, P591 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 PUEL JL, 1990, OTOLARYNG HEAD NECK, V102, P66 PUJOL R, 1992, NEUROREPORT, V3, P299, DOI 10.1097/00001756-199204000-00002 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RANDOLF HB, 1990, EUR ARCH OTO-RHINO-L, V247, P226 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 REN TY, 1994, J APPL PHYSIOL, V76, P212 REN TY, 1993, HEARING RES, V71, P91, DOI 10.1016/0378-5955(93)90024-U Ren TY, 1995, HEARING RES, V92, P30, DOI 10.1016/0378-5955(95)00192-1 SAFIEDDINE S, 1992, NEUROREPORT, V3, P1145, DOI 10.1097/00001756-199212000-00029 SEIDMAN MD, 1992, EUR ARCH OTO-RHINO-L, V249, P332 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P511 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SIESJPO B K, 1989, Cerebrovascular and Brain Metabolism Reviews, V1, P165 Solenski NJ, 1997, STROKE, V28, P2545 Song BB, 1996, HEARING RES, V94, P87, DOI 10.1016/0378-5955(96)00003-2 Takayama M, 1997, Acta Otolaryngol Suppl, V528, P19 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yang GM, 1997, BRAIN RES, V752, P209, DOI 10.1016/S0006-8993(96)01453-9 NR 63 TC 46 Z9 47 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1999 VL 4 IS 5 BP 219 EP 228 DI 10.1159/000013845 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 220YP UT WOS:000081697700002 PM 10436314 ER PT J AU Ohlemiller, KK Wright, JS Dugan, LL AF Ohlemiller, KK Wright, JS Dugan, LL TI Early elevation of cochlear reactive oxygen species following noise exposure SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE free radical; C57BL/6J mouse; hydroxyl radical; salicylate; permanent threshold shift ID INDUCED HEARING-LOSS; HYDROXYL RADICAL GENERATION; PIG INNER-EAR; GUINEA-PIG; SUPEROXIDE-DISMUTASE; HAIR-CELLS; SALICYLATE HYDROXYLATION; OXIDATIVE STRESS; ACOUSTIC TRAUMA; C57BL/6J MICE AB Reactive oxygen species (ROS) have been implicated in a growing number of neurological disease states, from acute traumatic injury to neurodegenerative conditions such as Alzheimer's disease. Considerable evidence suggests that ROS also mediate ototoxicant- and noise-induced cochlear injury, although most of this evidence is indirect. To obtain real-time assessment of noise-induced cochlear ROS production in vivo, we adapted a technique which uses the oxidation of salicylate to 2,3-dihydroxybenzoic acid as a probe for the generation of hydroxyl radical. In a companion paper we described the development and characterization of this method in cochlear ischemia-reperfusion. in the present paper we use this method to demonstrate early elevations in ROS production following acute noise exposure. C57BL/6J mice were exposed for 1 h to intense broad-band noise sufficient to cause permanent threshold shift (PTS), as verified by auditory brainstem responses. Comparison of noise-exposed animals with unexposed controls indicated that ROS levels increase nearly 4-fold in the period 1-2 h following exposure and do not decline over that time. Our ROS measures extend previous results indicating that noise-induced PTS is associated with elevated cochlear ROS production and ROS-mediated injury. Persistent cochlear ROS elevation following noise exposure suggests a sustained process of oxidative stress which might be amenable to intervention with chronic antioxidant therapy. C1 Cent Inst Deaf, Res Dept, St Louis, MO 63110 USA. Washington Univ, Sch Med, Ctr Study Nervous Syst Injury, St Louis, MO USA. Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Cent Inst Deaf, Res Dept, 818 S Euclid, St Louis, MO 63110 USA. CR ALTHAUS JS, 1993, MOL CHEM NEUROPATHOL, V20, P147 CAO W, 1988, NEUROSCI LETT, V88, P233, DOI 10.1016/0304-3940(88)90132-2 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 Clerici WJ, 1996, TOXICOL APPL PHARM, V136, P236, DOI 10.1006/taap.1996.0030 DUGAN LL, 1994, ANN NEUROL, V35, P517 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X Fechter LD, 1997, TOXICOL APPL PHARM, V142, P47, DOI 10.1006/taap.1996.8027 FLOYD RA, 1984, J BIOCHEM BIOPH METH, V10, P221, DOI 10.1016/0165-022X(84)90042-3 FREDELIUS L, 1988, ACTA OTO-LARYNGOL, V106, P81, DOI 10.3109/00016488809107374 GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 GLOBUS MYT, 1995, J NEUROCHEM, V65, P1250 GOTZ ME, 1994, PHARMACOL THERAPEUT, V63, P37, DOI 10.1016/0163-7258(94)90055-8 GUTTERIDGE JMC, 1994, ANN NY ACAD SCI, V738, P201 HALL ED, 1993, J NEUROCHEM, V60, P588, DOI 10.1111/j.1471-4159.1993.tb03189.x HALLIWELL B, 1991, FREE RADICAL BIO MED, V10, P439, DOI 10.1016/0891-5849(91)90052-5 HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x HAMERNIK RP, 1989, HEARING RES, V38, P199, DOI 10.1016/0378-5955(89)90065-8 HARDING GW, 1992, HEARING RES, V63, P26, DOI 10.1016/0378-5955(92)90070-4 Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Jacono AA, 1998, HEARING RES, V117, P31, DOI 10.1016/S0378-5955(97)00214-1 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Jucker M, 1997, BEHAV BRAIN RES, V85, P1, DOI 10.1016/S0166-4328(96)02243-7 Kopke RD, 1997, AM J OTOL, V18, P559 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 LIU Y, 1995, TOXICOL APPL PHARM, V132, P196, DOI 10.1006/taap.1995.1099 Lopez-Gonzalez MA, 1998, NEUROCHEM INT, V33, P55, DOI 10.1016/S0197-0186(05)80009-9 Miller JM, 1998, SCAND AUDIOL, V27, P53 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 OHLEMILLER KK, 1999, AUDIOL NEURO-OTOL, V4, P235 Ohlemiller KK, 1997, AUDIOL NEURO-OTOL, V2, P175 OHLEMILLER KK, 1998, 21 MIDW RES M ASS RE, V21, P130 Priuska EM, 1995, BIOCHEM PHARMACOL, V50, P1749, DOI 10.1016/0006-2952(95)02160-4 PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 QUIRK WS, 1994, HEARING RES, V74, P217, DOI 10.1016/0378-5955(94)90189-9 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P511 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SIESJPO B K, 1989, Cerebrovascular and Brain Metabolism Reviews, V1, P165 Usami S, 1996, BRAIN RES, V743, P337, DOI 10.1016/S0006-8993(96)01090-6 Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 YAMASOBA T, 1998, HEARING RES, V784, P82 Yamasoba T, 1998, BRAIN RES, V804, P72, DOI 10.1016/S0006-8993(98)00660-X Yao XF, 1996, HEARING RES, V96, P199, DOI 10.1016/0378-5955(96)00050-0 NR 46 TC 214 Z9 239 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1999 VL 4 IS 5 BP 229 EP 236 DI 10.1159/000013846 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 220YP UT WOS:000081697700003 PM 10436315 ER PT J AU Ohlemiller, KK McFadden, SL Ding, DL Flood, DG Reaume, AG Hoffman, EK Scott, RW Wright, JS Putcha, GV Salvi, RJ AF Ohlemiller, KK McFadden, SL Ding, DL Flood, DG Reaume, AG Hoffman, EK Scott, RW Wright, JS Putcha, GV Salvi, RJ TI Targeted deletion of the cytosolic Cu/Zn-superoxide dismutase gene (Sod1) increases susceptibility to noise-induced hearing loss SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE reactive oxygen species; free radical; knockout mouse; permanent threshold shift ID INDUCED COCHLEAR DAMAGE; AMYOTROPHIC-LATERAL-SCLEROSIS; OXIDATIVE STRESS; CU,ZN-SUPEROXIDE DISMUTASE; RADICAL PRODUCTION; ACOUSTIC TRAUMA; C57BL/6J MICE; HAIR-CELLS; IN-VITRO; AGE AB Reactive oxygen species (ROS) such as superoxide, peroxide and hydroxyl radicals are generated during normal cellular metabolism and are increased in acute injury and in many chronic disease states. When their production is inadequately regulated, ROS accumulate and irreversibly damage cell components, causing impaired cellular function and death. Antioxidant enzymes such as superoxide dismutase (SOD) play a vital role in minimizing ROS levels and ROS-mediated damage. The cytosolic form of Cu/Zn-SOD appears specialized to remove superoxide produced as a result of injury. 'Knockout' mice with targeted deletion of Sod1, the gene that codes for Cu/Zn-SOD, develop normally but show enhanced susceptibility to central nervous system injury. Since loud noise is injurious to the cochlea and is associated with elevated cochlear ROS, we hypothesized that Sod? knockout mice would be more susceptible to noise-induced permanent threshold shifts (PTS) than wild-type and heterozygous control mice. Fifty-nine mice (15 knockout, 29 heterozygous and 15 wild type for Sod?) were exposed to broad-band noise (4.0-45.0 kHz) at 110 dB SPL for 1 h. Hearing sensitivity was evaluated at 5, 10, 20 and 40 kHz using auditory brainstem responses before exposure and 1, 14 and 28 days afterward. Cu/Zn-SOD deficiency led to minor (0-7 dB) threshold elevations prior to noise exposure, and about 10 dB of additional noise-induced PTS at all test frequencies, compared to controls. The distribution of thresholds at 10 and 20 kHz at 28 days following exposure contained three modes, each showing an effect of Cu/Zn-SOD deficiency. Thus another factor, possibly an additional unlinked gene, may account for the majority of the observed PTS. Our results indicate that genes involved in ROS regulation can impact the vulnerability of the cochlea to noise-induced hearing loss. C1 Cent Inst Deaf, Res Dept, St Louis, MO 63110 USA. Univ Buffalo, Hearing Res Lab, Buffalo, NY USA. Cephalon Inc, Dept Mol Biol, W Chester, PA USA. Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA. RP Ohlemiller, KK (reprint author), Cent Inst Deaf, Res Dept, 818 S Euclid, St Louis, MO 63110 USA. CR BECKMAN JS, 1990, P NATL ACAD SCI USA, V87, P1620, DOI 10.1073/pnas.87.4.1620 CARLSSON LM, 1995, P NATL ACAD SCI USA, V92, P6264, DOI 10.1073/pnas.92.14.6264 CHOI D, 1997, TRENDS NEUROL SCI, V11, P499 Clerici WJ, 1996, HEARING RES, V98, P116, DOI 10.1016/0378-5955(96)00075-5 DalCanto MC, 1997, ACTA NEUROPATHOL, V93, P537 Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X GARETZ SL, 1994, HEARING RES, V77, P75, DOI 10.1016/0378-5955(94)90254-2 GARETZ SL, 1994, HEARING RES, V77, P81, DOI 10.1016/0378-5955(94)90255-0 Gerlai R, 1996, TRENDS NEUROSCI, V19, P177, DOI 10.1016/S0166-2236(96)20020-7 GOTZ ME, 1994, PHARMACOL THERAPEUT, V63, P37, DOI 10.1016/0163-7258(94)90055-8 GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 GUTTERIDGE JMC, 1994, ANN NY ACAD SCI, V738, P201 HALL ED, 1993, J NEUROCHEM, V60, P588, DOI 10.1111/j.1471-4159.1993.tb03189.x HALLIWELL B, 1992, J NEUROCHEM, V59, P1609, DOI 10.1111/j.1471-4159.1992.tb10990.x Hirose K, 1997, HEARING RES, V104, P1, DOI 10.1016/S0378-5955(96)00169-4 Hu BH, 1997, HEARING RES, V113, P198, DOI 10.1016/S0378-5955(97)00143-3 Johnson KR, 1997, HEARING RES, V114, P83, DOI 10.1016/S0378-5955(97)00155-X Kondo T, 1997, J NEUROSCI, V17, P4180 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 LI YB, 1995, NAT GENET, V11, P376, DOI 10.1038/ng1295-376 MICHIELS C, 1994, FREE RADICAL BIO MED, V17, P235, DOI 10.1016/0891-5849(94)90079-5 Mills JH, 1997, J ACOUST SOC AM, V101, P1681, DOI 10.1121/1.418152 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P219, DOI 10.1159/000013845 Ohlemiller KK, 1999, AUDIOL NEURO-OTOL, V4, P229, DOI 10.1159/000013846 Peskin AV, 1997, BIOSCIENCE REP, V17, P85, DOI 10.1023/A:1027343519591 PIERSON MG, 1982, HEARING RES, V6, P141, DOI 10.1016/0378-5955(82)90050-8 RAVI R, 1995, PHARMACOL TOXICOL, V76, P386 Reaume AG, 1996, NAT GENET, V13, P43, DOI 10.1038/ng0596-43 RIPPS ME, 1995, P NATL ACAD SCI USA, V92, P689, DOI 10.1073/pnas.92.3.689 Schuknecht HF, 1993, PATHOLOGY EAR Schwartz PJ, 1998, BRAIN RES, V789, P32, DOI 10.1016/S0006-8993(97)01469-8 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P511 SEIDMAN MD, 1991, OTOLARYNG HEAD NECK, V105, P457 SEIDMAN MD, 1993, OTOLARYNG HEAD NECK, V109, P1052 SHONE G, 1991, HEARING RES, V57, P153, DOI 10.1016/0378-5955(91)90084-M Willott J. F., 1991, AGING AUDITORY SYSTE Willott JF, 1998, HEARING RES, V119, P27, DOI 10.1016/S0378-5955(98)00029-X Yamane H, 1995, EUR ARCH OTO-RHINO-L, V252, P504, DOI 10.1007/BF02114761 Yao XF, 1996, HEARING RES, V96, P199, DOI 10.1016/0378-5955(96)00050-0 ZHENG QY, 1997, ABSTR ASS RES OT, V20, P221 NR 41 TC 112 Z9 129 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1999 VL 4 IS 5 BP 237 EP 246 DI 10.1159/000013847 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 220YP UT WOS:000081697700004 PM 10436316 ER PT J AU Cacace, AT Cousins, JP Parnes, SM Semenoff, D Holmes, T McFarland, DJ Davenport, C Stegbauer, K Lovely, TJ AF Cacace, AT Cousins, JP Parnes, SM Semenoff, D Holmes, T McFarland, DJ Davenport, C Stegbauer, K Lovely, TJ TI Cutaneous-evoked tinnitus - I. Phenomenology, psychophysics and functional imaging SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tinnitus; cutaneous-evoked tinnitus; glomus jugulare tumor; acoustic tumor; psychophysics; unilateral deafferentation; unilateral deefferentation; functional MRI (fMRI) ID NEUROPHYSIOLOGICAL APPROACH; HUMAN BRAIN; MODEL; PLASTICITY; MECHANISMS; VALIDATION; MAGNITUDES; CORTEX AB Complete and acute unilateral deafferentation of the auditory periphery (auditory and vestibular afferents) can induce changes in the central nervous system that may result in unique forms of tinnitus. These tinnitus perceptions can be controlled (turned on and off) or modulated (changed in pitch or loudness) by performing certain overt behaviors in other sensory/motor systems. Clinical reports from our laboratory and several other independent sources indicate that static change in eye gaze, from a neutral head-referenced position, is one such behavior that can evoke, modulate and/or suppress these phantom auditory events. This report deals with a new clinical entity and a form of tinnitus that can be evoked directly by cutaneous stimulation of the upper hand and fingertip regions. In 2 adults, cutaneous-evoked tinnitus was reported following neurosurgery for space-occupying lesions at the base of the skull and posterior craniofossa, where hearing and vestibular functions were lost completely and acutely in one ear (unilateral deafferentation) and facial nerve paralysis (unilateral deefferentation) was present either immediately following neurosurgery or had occurred as a delayed-onset event. Herein, we focus on the phenomenology of this discovery, provide perceptual correlates using contemporary psychophysical methods and document in one individual cutaneous-evoked tinnitus-related neural activity using functional magnetic resonance imaging. In a companion paper, neuroanatomical and physiological interactions between auditory and somatosensory systems, possible mechanistic accounts and relevant functional neuroimaging studies are reviewed. C1 Albany Med Coll, Dept Surg, Div Otolaryngol, Albany, NY 12208 USA. Albany Med Coll, Dept Neurol, Albany, NY 12208 USA. Albany Med Coll, Dept Radiol, Albany, NY 12208 USA. Rensselaer Polytech Inst, Dept Biomed Engn, Troy, NY 12180 USA. New York State Dept Hlth, Wadsworth Ctr Labs & Res, Albany, NY 12201 USA. RP Cacace, AT (reprint author), Albany Med Coll, Dept Surg, Div Otolaryngol, 47 New Scotland Ave, Albany, NY 12208 USA. CR BERGER EH, 1989, J ACOUST SOC AM, V86, P1392, DOI 10.1121/1.398699 CACACE AT, 1994, AUDIOLOGY, V33, P291 Cacace AT, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P354 Cacace AT, 1999, AUDIOL NEURO-OTOL, V4, P258, DOI 10.1159/000013849 CACACE AT, 1994, HEARING RES, V81, P22, DOI 10.1016/0378-5955(94)90149-X Claussen C, 1995, INT TINN J, V1, P105 Cytowic Richard, 1989, SYNESTHESIA UNION SE DUYN JH, 1994, NMR BIOMED, V7, P83, DOI 10.1002/nbm.1940070113 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z Fernandez A, 1997, J NERV MENT DIS, V185, P195, DOI 10.1097/00005053-199703000-00009 Gerken GM, 1996, HEARING RES, V97, P75 HAZELL JWP, 1990, J OTOLARYNGOL, V19, P1 Hazell JWP, 1995, MECH TINNITUS, P57 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Jastreboff PJ, 1996, AM J OTOL, V17, P236 KAADA B, 1989, SCAND AUDIOL, V18, P211, DOI 10.3109/01050398909042196 Kim SG, 1997, J NEUROSCI METH, V74, P229, DOI 10.1016/S0165-0270(97)02252-8 Lenarz T., 1995, MECH TINNITUS, P101 LEPAGE EL, 1995, MECH TINNITUS, P115 LEVINE RA, 1994, CURR OPIN OTOLARYNGO, V2, P171, DOI 10.1097/00020840-199404000-00014 Lockwood AH, 1998, NEUROLOGY, V50, P114 MCFADDEN D, 1982, 89 COMM HEAR BIOAC B Meikle M. B., 1995, MECH TINNITUS, P181 MOLLER AR, 1995, MECH TINNITUS, P207 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 OGAWA S, 1990, MAGNET RESON MED, V14, P68, DOI 10.1002/mrm.1910140108 PANDYA DN, 1995, REV NEUROL, V151, P486 PENNER MJ, 1992, J SPEECH HEAR RES, V35, P694 Press W.H., 1995, ART SCI COMPUTING Rahko T, 1997, Acta Otolaryngol Suppl, V529, P88 Rao SM, 1996, J CEREBR BLOOD F MET, V16, P1250 RAVICZ ME, 1998, MIDW M ASS RES OT DE, P208 RUBINSTEIN B, 1990, Journal of Craniomandibular Disorders, V4, P186 SALVI RJ, 1983, J SPEECH HEAR RES, V26, P629 Samii M, 1997, NEUROSURGERY, V40, P248, DOI 10.1097/00006123-199702000-00005 SMITH P, 1987, P 3 INT TINN SEM KAR, P147 Teunisse RJ, 1996, LANCET, V347, P794, DOI 10.1016/S0140-6736(96)90869-7 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 VANGELDEREN P, 1995, P NATL ACAD SCI USA, V92, P6906 Vernon J. A., 1996, P 5 INT TINN SEM 199, P51 VERRILLO RT, 1981, J GERONTOL, V36, P625 Woods RP, 1998, J COMPUT ASSIST TOMO, V22, P153, DOI 10.1097/00004728-199801000-00028 ZENNER HP, 1995, MECH TINNITUS, P237 ZWISLOCKI JJ, 1980, PERCEPT PSYCHOPHYS, V28, P28, DOI 10.3758/BF03204312 ZWISLOCKI JJ, 1983, PERCEPT PSYCHOPHYS, V33, P460, DOI 10.3758/BF03202897 NR 46 TC 48 Z9 51 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1999 VL 4 IS 5 BP 247 EP 257 DI 10.1159/000013848 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 220YP UT WOS:000081697700005 PM 10436317 ER PT J AU Magnan, P Dancer, A Probst, R Smurzynski, J Avan, P AF Magnan, P Dancer, A Probst, R Smurzynski, J Avan, P TI Intracochlear acoustic pressure measurements: Transfer functions of the middle ear and cochlear mechanics SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE middle ear; transfer function; cochlear mechanics; otoacoustic emission; intracochlear pressure; cochlear microphonic potential ID GUINEA-PIG; BASILAR-MEMBRANE; EMISSIONS; RESPONSES; TONES AB Direct intracochlear acoustic pressure recordings (from 20 to 20,000 Hz) are used to measure the middle-ear transfer functions (forward and reverse) and to better understand the cochlear mechanics in the guinea pig. In the forward direction, the middle-ear transfer function is strongly dependent on the frequency and presents a maximum of +30 dB at 1,000 Hz (bulla open). In the reverse direction, the middle-ear transfer function looks like an ideal reverse middle-ear pressure transformer with -35 dB gain and 0 degrees phase lag from 20 to 8,000 Hz (bulla open, closed ear canal). Passive cochlear mechanics is studied with the help of intracochlear pressure measurements and differential cochlear microphonic potential recordings in the different turns. C1 Univ Auvergne, Biophys Lab, Clermont Ferrand, France. Inst Franco Allemand Rech, St Louis, France. Univ Basel, Kantonsspital, HNO Klin, CH-4031 Basel, Switzerland. RP Magnan, P (reprint author), French German Res Inst St Louis, POB 34, F-68301 St Louis, France. CR DALLOS P, 1971, J ACOUST SOC AM, V49, P1140, DOI 10.1121/1.1912475 DANCER A, 1992, AUDIOLOGY, V31, P301 DANCER A, 1980, HEARING RES, V2, P191, DOI 10.1016/0378-5955(80)90057-X DECORY L, 1991, NOISE INDUCED HEARIN, P73 FRANKE R, 1983, ACUSTICA, V52, P160 FRANKE R, 1985, ACUSTICA, V59, P30 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KUROKAWA H, 1995, OTOLARYNG HEAD NECK, V113, P349, DOI 10.1016/S0194-5998(95)70067-6 MAGNAN P, 1995, THESIS U MONTPELLIER Magnan P, 1997, HEARING RES, V107, P41, DOI 10.1016/S0378-5955(97)00015-4 NEDZELNITSKY V, 1980, J ACOUST SOC AM, V68, P1676, DOI 10.1121/1.385200 Nuttall AL, 1996, J ACOUST SOC AM, V99, P1556, DOI 10.1121/1.414732 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PURIA S, 1997, DIVERSITY AUDITORY M, P151 Puria S, 1997, J ACOUST SOC AM, V101, P2754, DOI 10.1121/1.418563 ROSOWSKI JJ, 1994, MAMMALS SPRINGER HDB, P172 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 SELLICK PM, 1982, J ACOUST SOC AM, V72, P131, DOI 10.1121/1.387996 ZWISLOCK.JJ, 1974, J ACOUST SOC AM, V55, P578, DOI 10.1121/1.1914567 NR 19 TC 15 Z9 15 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 123 EP 128 DI 10.1159/000013830 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900002 PM 10187919 ER PT J AU Rosowski, JJ Ravicz, ME Teoh, SW Flandermeyer, D AF Rosowski, JJ Ravicz, ME Teoh, SW Flandermeyer, D TI Measurements of middle-ear function in the Mongolian gerbil, a specialized mammalian ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE middle-ear mechanics; comparative hearing; stapes motion ID SOUND-POWER COLLECTION; MERIONES-UNGUICULATUS; AUDITORY PERIPHERY; MECHANICS AB The middle ear of the Mongolian gerbil is thought to be specialized so that it can hear the 3,000-Hz and lower sounds produced by approaching predators. Evidence in the literature suggests several specializations: (1) an effect of the large middle-ear air spaces in the gerbil is to increase the sensitivity of this ear to sounds of 3,000 Hz and lower in frequency; (2) the combined action of the middle-ear cavity and the significant pars flaccida of the tympanic membrane in the gerbil ear reduces the sensitivity to sounds of frequencies below 500 Hz. This paper describes anatomical and functional measurements of stapes motion and suggests that the stiffness of the gerbil bil ossicular system a Iso acts to reduce sensitivity to low-frequency sounds. The primary conclusion is that the frequency dependence of the gerbil middle ear is the result of the interaction of multiple factors, thereby complicating the relationship between single structural specializations and overall function. C1 Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, Boston, MA 02114 USA. Harvard Univ, Sch Med, Dept Otol & Laryngol, Boston, MA 02115 USA. MIT, Harvard Mit Div Hlth Sci & Technol, Speech & Hearing Sci Program, Cambridge, MA 02139 USA. RP Rosowski, JJ (reprint author), Massachusetts Eye & Ear Infirm, Eaton Peabody Lab Auditory Physiol, 243 Charles St, Boston, MA 02114 USA. CR DALLOS P, 1970, J ACOUST SOC AM, V48, P489, DOI 10.1121/1.1912163 DECRAEMER WF, 1994, P OPT IMAGING TECH B, V2329, P74 Fleischer G, 1978, Adv Anat Embryol Cell Biol, V55, P3 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 KOHLLOFFEL LUE, 1984, HEARING RES, V13, P83, DOI 10.1016/0378-5955(84)90098-4 KRINGLEBOTN M, 1985, J ACOUST SOC AM, V77, P159, DOI 10.1121/1.392280 LAY DOUGLAS, 1972, J MORPHOL, V138, P41, DOI 10.1002/jmor.1051380103 LAY DM, 1974, J MAMMAL, V55, P608, DOI 10.2307/1379549 LEGOUIX JP, 1955, ACUSTICA, V5, P208 MANLEY GA, 1974, J ACOUST SOC AM, V56, P571, DOI 10.1121/1.1903292 NUMELLA S, 1995, HEARING RES, V85, P18 Olson ES, 1998, J ACOUST SOC AM, V103, P3445, DOI 10.1121/1.423083 Ravicz ME, 1997, J ACOUST SOC AM, V101, P2135, DOI 10.1121/1.418275 RAVICZ ME, 1992, J ACOUST SOC AM, V92, P157, DOI 10.1121/1.404280 Rosowski JJ, 1997, DIVERSITY AUDITORY M, P129 Rosowski John J., 1994, Springer Handbook of Auditory Research, V4, P172 ROSOWSKI JJ, 1990, ANN OTO RHINOL LARYN, V99, P403 ROSOWSKI JJ, 1991, EVOLUTIONARY BIOL HE, P615 RUGGERO MA, 1990, J ACOUST SOC AM, V87, P1612, DOI 10.1121/1.399409 Teoh SW, 1997, HEARING RES, V106, P39, DOI 10.1016/S0378-5955(97)00002-6 Webster D.B., 1984, CONTRIBUTIONS TO SENSORY PHYSIOLOGY, V8, P161 WEBSTER DB, 1991, EVOLUTIONARY BIOL HE, P637 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 24 TC 42 Z9 43 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 129 EP 136 DI 10.1159/000013831 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900003 PM 10187920 ER PT J AU Gaihede, M AF Gaihede, M TI Mechanical properties of the middle ear system investigated by its pressure-volume relationship - Introduction to methods and selected preliminary clinical cases SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tympanometry; hysteresis; compliance; secretory otitis media; middle ear pressure; ossicular discontinuity; myringoplasty; nonlinearity AB A new method is presented for the measurement of ear canal pressure changes in response to tympanic membrane volume displacements, i.e. the pressure-volume relationship (PVR) of the middle ear system. This method has several advantages when compared to tympanometry; for example, it avoids phase delay and hysteresis can be used as a variable thanks to bidirectional recordings. Moreover, dynamic complicance is registered physically as changes in volume relative to pressure. Normative data for 39 subjects are summarized along with preliminary data from patients exhibiting various clinical conditions. The major findings are that secretory otitis media with middle ear effusion results in significantly increased hysteresis (leading to large errors when middle ear pressure is determined by tympanometry), two types of ossicular discontinuity may be distinguished by this method and that myringoplasty leads to a linear PVR in contrast to the nonlinearity found in normal subjects. C1 Aarhus Univ Hosp, Dept Otolaryngol, DK-8000 Aarhus, Denmark. RP Gaihede, M (reprint author), Aalborg Hosp, Dept Otolaryngol, DK-9000 Aalborg, Denmark. CR ANDREASSON L, 1976, ANN OTO RHINOL LARYN, V85, P198 DECRAEMER WF, 1984, SCAND AUDIOL, V13, P165, DOI 10.3109/01050398409043056 Gaihede M, 1997, ACTA OTO-LARYNGOL, V117, P382, DOI 10.3109/00016489709113410 GAIHEDE M, 1995, ACTA OTO-LARYNGOL, V115, P522, DOI 10.3109/00016489509139360 Gaihede M, 1996, HEARING RES, V102, P28, DOI 10.1016/S0378-5955(96)00146-3 GAIHEDE M, IN PRESS MECH MIDDLE HERGILS LG, 1990, SCAND AUDIOL, V19, P183, DOI 10.3109/01050399009070770 JERGER J, 1970, ARCHIV OTOLARYNGOL, V92, P311 RENVALL U, 1975, SCAND AUDIOL, V4, P135, DOI 10.3109/01050397509043076 NR 9 TC 5 Z9 5 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 137 EP 141 DI 10.1159/000013832 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900004 PM 10187921 ER PT J AU Schon, F Muller, J AF Schon, F Muller, J TI Measurements of ossicular vibrations in the middle ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE middle ear; malleus; incus; stapes; vibration; mechanics; modal analysis; electrostatic excitation ID MALLEUS VIBRATION AB The vibrations of the ossicles were measured with a laser Doppler vibrometer in temporal bone specimens. The data contradicted the generally accepted view that the malleus and incus rotate about a fixed axis. The vibrations of the ossicles show a more complex pattern and, consequently, a more sophisticated model is needed to portray the behaviour of the middle ear in a satisfactory manner. But in turn models with many degrees of freedom make the identification process a very difficult task. This dilemma can be resolved if the system is divided into subsystems of less complexity where each subsystem can be studied in an appropriate manner, The excitation by electrostatic forces, as applied in this study, seems to be a powerful tool to make possible a study of parts of the ossicular chain. C1 Univ Wurzburg, ENT Clin, D-97080 Wurzburg, Germany. RP Schon, F (reprint author), Univ Wurzburg, ENT Clin, Josef-Schneider-Str 11, D-97080 Wurzburg, Germany. CR CANCURA W, 1980, ACTA OTO-LARYNGOL, V89, P342, DOI 10.3109/00016488009127146 Dahmann H, 1929, Z HALS NASEN OHRENH, V24, P462 DECRAEMER WF, 1994, HEARING RES, V72, P1, DOI 10.1016/0378-5955(94)90199-6 DECRAEMER WF, 1991, HEARING RES, V54, P305, DOI 10.1016/0378-5955(91)90124-R FISCHLER H, 1967, J ACOUST SOC AM, V41, P1220, DOI 10.1121/1.1910463 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 GUNDERSE.T, 1972, ARCHIV OTOLARYNGOL, V96, P416 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 HUTTENBRINK KB, 1988, LARYNGO RHINO OTOL, V67, P45 KAUF AHM, 1997, FORTSCHR BER VDI REI, V17 KREUTZER BA, 1978, THESIS TUBINGEN MAGNUS K, 1969, SCHWINGUNGEN Natke H. G., 1992, EINFUHRUNG THEORIE P RODRIGUEZ JJ, 1997, HNO, V45, P283 SCHEDE B, 1995, THESIS WURZBURG Schiehlen W., 1986, TECHNISCHE DYNAMIK SCHON F, 1994, EUR ARCH OTORHINOL S, V2, P102 STASCHE N, 1994, LARYNGO RHINO OTOL, V73, P353, DOI 10.1055/s-2007-997151 TONNDORF J, 1967, J ACOUST SOC AM, V41, P513, DOI 10.1121/1.1910362 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x VONHELMHOLTZ HLF, 1868, PFLUGERS ARCH GES PH, V1, P1 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 22 TC 9 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 142 EP 149 DI 10.1159/000013833 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900005 PM 10187922 ER PT J AU Vorwerk, U Steinicke, G Begall, K AF Vorwerk, U Steinicke, G Begall, K TI Observation of eardrum movements during quasi-static pressure changes by high-speed digital imaging SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE eardrum; middle ear mechanics; quasi-static pressure; high-speed digital video imaging; valsalva manoeuvre ID VALSALVA MANEUVER; VIBRATIONS; MOTIONS AB Under specific quasi-static pressure conditions during the Valsalva manoeuvre, high-speed digital video pictures of eardrum displacements were recorded using an endoscope and a Kodak Image Ektapro 1000 Motion Analyzer, A new type of data interface enabled the complete videoclip to be saved and processed digitally, and, with special mathematical algorithms, it is possible to generate three-dimensional computer animations of eardrum movements under quasi-static pressure. The present study describes patterns of eardrum movements under static pressure changes (Valsalva manoeuvre), These patterns were consistent with the results of finite-element simulations of highly similar eardrum displacements reported by other workers. C1 Otto Von Guericke Univ, Fac Med, Otorhinolaryngol Clin, HNO Klin, D-39120 Magdeburg, Germany. BOS Systemhaus GmbH, Munich, Germany. RP Vorwerk, U (reprint author), Otto Von Guericke Univ, Fac Med, Otorhinolaryngol Clin, HNO Klin, Leipziger Str 44, D-39120 Magdeburg, Germany. CR Beer H.J., 1997, MIDDLE EAR MECH RES, P40 DECRAEMER WF, 1991, HEARING RES, V51, P107, DOI 10.1016/0378-5955(91)90010-7 EIBER A, 1997, ZB95 U STUTTG I B ME HELMHOLTZ H, 1868, ARCH GESAMTE PHYSL M, V1, P49 HESS MM, 1993, ANN OTO RHINOL LARYN, V102, P502 HUTTENBRINK KB, 1988, LARYNGO RHINO OTOL, V67, P45 *KODAK CO, 1993, KODAK EL VIS SYST 12 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 TONNDORF J, 1968, J ACOUST SOC AM, V44, P1547 von Bally G, 1978, Laryngol Rhinol Otol (Stuttg), V57, P444 Vorwerk U, 1997, LARYNGO RHINO OTOL, V76, P341, DOI 10.1055/s-2007-997439 VORWERK U, 1997, MIDDLE EAR MECH RES, P100 Vorwerk U, 1998, ORL J OTO-RHINO-LARY, V60, P138, DOI 10.1159/000027582 WILLIAMS K R, 1990, British Journal of Audiology, V24, P319, DOI 10.3109/03005369009076572 NR 14 TC 4 Z9 4 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 150 EP 155 DI 10.1159/000013834 PG 6 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900006 PM 10187923 ER PT J AU Beer, HJ Bornitz, M Hardtke, HJ Schmidt, R Hofmann, G Vogel, U Zahnert, T Huttenbrink, KB AF Beer, HJ Bornitz, M Hardtke, HJ Schmidt, R Hofmann, G Vogel, U Zahnert, T Huttenbrink, KB TI Modelling of components of the human middle ear and simulation of their dynamic behaviour SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE finite-element method; middle ear; ossicles; tympanic membrane; modal analysis; parameter estimation AB In order to get a better insight into the function of the human middle ear it is necessary to simulate its dynamic behaviour by means of the finite-element method. Three-dimensional measurements of the surfaces of the tympanic membrane and of the auditory ossicles malleus, incus and stapes are carried out and geometrical models are created, On the basis of these data, finite-element models are constructed and the dynamic behaviour of the combinations tympanic membrane with malleus in its elastic suspensions and stapes with annular ligament is simulated. Natural frequencies and mode shapes are computed by modal analysis. These investigations showed that the ossicles can be treated as rigid bodies only in a restricted frequency range from 0 to 3.5 kHz. C1 Dresden Univ Technol, Dept Solid State Mech, D-8027 Dresden, Germany. Dresden Univ Hosp, Dept Otorhinolaryngol, Dresden, Germany. RP Beer, HJ (reprint author), Tech Univ Dresden, Fak Maschinenwesen, Inst Festkorpermech, D-01062 Dresden, Germany. EM beer@mfm.mw.tu-dresden.de CR Beer H.J., 1997, MIDDLE EAR MECH RES, P40 BORNITZ M, IN PRESS IDENTIFICAT DRESCHER J, 1995, THESIS TU DRESDEN Fung Y.C., 1993, BIOMECHANICS MECH PR KIRIKAE J, 1960, MIDDLE EAR WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 NR 6 TC 53 Z9 60 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 156 EP 162 DI 10.1159/000013835 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900007 PM 10187924 ER PT J AU Bornitz, M Zahnert, T Hardtke, HJ Huttenbrink, HB AF Bornitz, M Zahnert, T Hardtke, HJ Huttenbrink, HB TI Identification of parameters for the middle ear model SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE finite-element model; middle ear; parameter estimation; tympanic membrane; modal analysis; laser scanning vibrometer AB This paper presents a method of parameter identification for a finite-element model of the human middle ear. The parameter values are estimated using a characterization of the difference in natural frequencies and mode shapes of the tympanic membrane between the model and the specimens. Experimental results were obtained from temporal bone specimens under sound excitation (300-3,000 Hz). The first 3 modes of the tympanic membrane could be observed with a laser scanning vibrometer and were used to estimate the stiffness parameters for the orthotropic finite-element model of the eardrum. A further point of discussion is the parameter sensitivity and its implication for the identification process. C1 Dresden Univ Technol, Dept Solid State Mech, Dresden, Germany. Dresden Univ Hosp, Dept Otorhinolaryngol, Dresden, Germany. RP Bornitz, M (reprint author), Tech Univ Dresden, Fak Maschinenwesen, Inst Festkorpermech, D-01062 Dresden, Germany. EM bornitz@mfm.mw.tu-dresden.de CR *ANSYS, ANSYS REV 5 3 US MAN Beer H.J., 1997, MIDDLE EAR MECH RES, P40 DRESCHER J, 1995, THESIS TU DRESDEN DR EIBER A, 1994, HNO, V42, P754 FUNNELL WRJ, 1982, ORL J OTO-RHINO-LARY, V44, P181 GOODE RL, 1994, AM J OTOL, V15, P145 Hudde H, 1997, ACUSTICA, V83, P535 KIRKAE J, 1960, MIDDLE EAR Natke H. G., 1983, EINFUHRUNG THEORIE P VONBEKESY G, 1949, J ACOUST SOC AM, V21, P217 WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 WADA H, 1990, T JMSE, V56, P1431 WILLIAMS KR, 1997, MIDDLE EAR MECH RES, P40 NR 13 TC 15 Z9 15 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 163 EP 169 DI 10.1159/000013836 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900008 PM 10187925 ER PT J AU Eiber, A AF Eiber, A TI Mechanical modeling and dynamical behavior of the human middle ear SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE middle ear dynamics; mechanical models; transient behavior; impulse noise ID HEARING AB Very serious injuries may result from impulse noise applied to the human ear. To assess the hazard of a given impulse, its effects on the displacements and the velocities of the structures in the middle and inner ear have to be evaluated, Thus, it is necessary to consider the temporal pattern of applied pressure and the resulting temporal response of the ossicular displacements and velocities, These investigations have to be carried out in the time domain because the relations in the frequency domain known from steady-state motion do not hold. Mechanical models based on the finite-element approach and the multibody system method are presented to describe the spatial motions of the eardrum and the ossicles in the middle ear. The motion of all points of the ossicular chain can be calculated using these models. The free vibrations as well as the general solution of the excited system, consisting of a transient and a steady-state part, are analyzed. Three different sound pressure sources are considered and the dynamical response of the ossicular chain evaluated. It is not sufficient to assess a particular impulse only by its peak pressure and a characteristic time duration since the temporal response of the middle ear is strongly dependent on the waveform of sound pressure. In particular, it is shown that in most of the cases the first negative part of the pressure waveform is expected to cause the worst damage. C1 Univ Stuttgart, Inst Mech B, D-70550 Stuttgart, Germany. RP Eiber, A (reprint author), Univ Stuttgart, Inst Mech B, Pfaffenwaldring 9, D-70550 Stuttgart, Germany. CR BEER HJ, 1997, MIDDLE EAR MECH RES BRINKMANN H, 1990, SCAND AUDIOL S, V34, P79 Eiber A, 1997, HNO, V45, P538, DOI 10.1007/s001060050128 Eiber A, 1999, AUDIOL NEURO-OTOL, V4, P178, DOI 10.1159/000013838 Eiber A, 1996, ROBOT AUTON SYST, V19, P199, DOI 10.1016/S0921-8890(96)00047-4 GOODE RL, 1993, AM J OTOL, V14, P247 HUBER A, 1997, HNO, V45, P997 Jorge JR, 1997, HNO, V45, P997 KAUF A, 1997, FORTSCHRITTSBER REIH, V17 Pfander F, 1994, SCHRIFTENREIHE PRAVE, VPM 1 PRICE GR, 1991, J ACOUST SOC AM, V90, P219, DOI 10.1121/1.401291 ROSOWSKI JJ, 1991, J ACOUST SOC AM, V90, P124, DOI 10.1121/1.401306 NR 12 TC 20 Z9 20 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 170 EP 177 DI 10.1159/000013837 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900009 PM 10187926 ER PT J AU Eiber, A Freitag, HG Burkhardt, C Hemmert, W Maassen, M Jorge, JR Zenner, HP AF Eiber, A Freitag, HG Burkhardt, C Hemmert, W Maassen, M Jorge, JR Zenner, HP TI Dynamics of middle ear prostheses - Simulations and measurements SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE dynamics; temporal bone; middle ear; prostheses; laser Doppler vibrometer measurement mechanical models AB The efficient and systematic development of a middle ear prosthesis necessitates the use of computer models for the prosthesis itself and the reconstructed middre ear. The structure and parameters of the computer model have to be verified by specific measurements of the implant and the reconstructed ear, To obtain a realistic model of a reconstructed ear, three steps of modeling and measurements have been carried out. To get a first approach of the coupling elements a mechanical test rig representing a simplified reconstructed middle ear was built. The velocity of the stapedial footplate was measured with a laser Doppler vibrometer, The corresponding computer model was formulated, and the respective parameters were determined using the measured dynamical transfer functions, In the second step, a prosthesis was implanted into a human temporal bone without inner ear. Exciting this system with noise, the velocity of the stapes footplate was measured with the laser Doppler vibrometer, Based on the multibody system approach, a mechanical computer model was generated to describe the spatial motions of the reconstructed ossicular chain, Varying some significant parameters, simulations have been carried out. To describe the dynamical behavior of the system consisting of middle and inner ear, the computer model used in the second step has been enlarged by adding a simplified structure of the inner ear, The results were compared with in situ measurements taken from living humans. C1 Univ Stuttgart, Inst Mech B, D-70550 Stuttgart, Germany. Univ Tubingen, Dept Otorhinolaryngol, D-72074 Tubingen, Germany. RP Eiber, A (reprint author), Univ Stuttgart, Inst Mech B, Pfaffenwaldring 9, D-70550 Stuttgart, Germany. CR HUDDE H, 1985, ACUSTICA, V57, P76 Jorge JR, 1996, P SOC PHOTO-OPT INS, V2628, P148 KAUF A, 1997, VDI Z REIHE, V17 Shaw E. A. G., 1983, MECH HEARING, P3 STASCHE N, 1993, HNO, V41, P1 VLAMING MSMG, 1986, CLIN OTOLARYNGOL, V11, P353, DOI 10.1111/j.1365-2273.1986.tb00137.x WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 NR 7 TC 20 Z9 20 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 178 EP 184 DI 10.1159/000013838 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900010 PM 10187927 ER PT J AU Prendergast, PJ Ferris, P Rice, HJ Blayney, AW AF Prendergast, PJ Ferris, P Rice, HJ Blayney, AW TI Vibro-acoustic modelling of the outer and middle ear using the finite-element method SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE middle ear; finite elements; vibro-acoustics; prostheses; partial ossicular replacement prosthesis; ossicular chain ID HUMAN TEMPORAL BONES; CAT EARDRUM; MECHANICS AB In this study, a computer-based method called finite-element analysis is used to predict the forced-frequency response of the ear, with and without an ossicular replacement prosthesis (PORP 0362, Xomed Surgical Products). The method allows visualisation of the dynamical behaviour of the tympanic membrane (TM) and of the ossicles. The finite-element model is fully three-dimensional and includes both ligaments and muscles, and accounts for damping caused by the TM, ligaments, incudostapedial joint and the fluids of the inner ear. For validation, comparison is made with experimental measurements of umbo displacement taken from the literature. The translation and rotation (both anterior-posterior and inferior-superior) of the stapedial footplate are investigated. It is predicted that the translatory motion of the footplate decreases with increasing frequency, except when the frequency bf the acoustic signal matches the natura I frequencies of the ossicular chain or outer ear canal. The tilting motion of the stapedial footplate is also predicted to depend on frequency of excitation. The presence of a prosthesis changes the dynamical response considerably by shifting the natural frequencies of the ossicular chain. Ratios of stapes motion with and without the prostheses are plotted as a function of frequency allowing this effect to be clearly observed. C1 Trinity Coll, Dept Mech Engn, Bioengn Grp, Dublin 2, Ireland. Mater Hosp, Dublin, Ireland. RP Prendergast, PJ (reprint author), Trinity Coll, Dept Mech Engn, Bioengn Grp, Parsons Bldg, Dublin 2, Ireland. CR Beer H.J., 1997, MIDDLE EAR MECH RES, P40 Blayney AW, 1997, ACTA OTO-LARYNGOL, V117, P269, DOI 10.3109/00016489709117785 EIBER A, 1997, MIDDLE EAR MECH RES, P61 Funnell WRJ, 1996, J ACOUST SOC AM, V99, P3036, DOI 10.1121/1.414875 FUNNELL WRJ, 1978, J ACOUST SOC AM, V63, P1461, DOI 10.1121/1.381892 FUNNELL WRJ, 1983, J ACOUST SOC AM, V73, P1657, DOI 10.1121/1.389386 GYO K, 1987, ACTA OTO-LARYNGOL, V103, P87, DOI 10.3109/00016488709134702 KEMPE C, 1997, MIDDLE EAR MECH RES, P95 Kirikae J, 1960, STRUCTURE FUNCTION M KOIKE T, 1996, ARO M NEW JERS Ladak HM, 1996, J ACOUST SOC AM, V100, P933, DOI 10.1121/1.416205 LESSER THJ, 1991, CLIN OTOLARYNGOL, V16, P29, DOI 10.1111/j.1365-2273.1991.tb01938.x LIGHTHILL J, 1991, J VIB ACOUST, V113, P1 LOBEL KD, 1996, CLIN PERFORMANCE SKE, P215 MCAVOY GJ, 1995, DEV VIBROACOUSTIC FI Merchant SN, 1996, HEARING RES, V97, P30 Nishihara S., 1997, MIDDLE EAR MECH RES, P91 Prendergast PJ, 1997, CLIN BIOMECH, V12, P343, DOI 10.1016/S0268-0033(97)00018-1 STINSON MR, 1985, J ACOUST SOC AM, V78, P1596, DOI 10.1121/1.392797 TONNDORF J, 1972, J ACOUST SOC AM, V52, P1221, DOI 10.1121/1.1913236 von Bekesy G., 1941, AKUST Z, V6, P1 WADA H, 1992, J ACOUST SOC AM, V92, P3157, DOI 10.1121/1.404211 WILLIAMS K R, 1990, British Journal of Audiology, V24, P319, DOI 10.3109/03005369009076572 WILLIAMS KR, 1992, CLIN OTOLARYNGOL, V17, P261, DOI 10.1111/j.1365-2273.1992.tb01840.x ZAHNERT T, 1997, MIDDLE EAR MECH RES, P200 ZWISLOCKI J., 1962, JOUR ACOUSTICAL SOC AMER, V34, P1514, DOI 10.1121/1.1918382 NR 26 TC 48 Z9 55 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 185 EP 191 DI 10.1159/000013839 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900011 PM 10187928 ER PT J AU Weistenhofer, C Hudde, H AF Weistenhofer, C Hudde, H TI Determination of the shape and inertia properties of the human auditory ossicles SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE human auditory ossicles; shape determination; inertia properties AB This paper describes a method to accurately determine the shape of the hu man middle ear ossicles. If the density and the shape of a body are known, the inertia properties can be calculated using commercially available software. The inertia properties have been calculated for the stapes and for the incudomalleal unit. Different rectangular views of the stapes and the incudomalleal unit are shown to depict the position of the center of gravity and the position of the principal axes of inertia. C1 Ruhr Univ Bochum, Inst Kommunikat Akust, D-44780 Bochum, Germany. RP Weistenhofer, C (reprint author), Ruhr Univ Bochum, Inst Kommunikat Akust, IC 1-33, D-44780 Bochum, Germany. CR Beer H.J., 1997, MIDDLE EAR MECH RES, P40 Hudde H, 1997, ACUSTICA, V83, P535 Kirikae I., 1960, STRUCTURE FUNCTION M WITTENBURG J, 1977, LEITFADEN ANGEW MATH, V33 NR 4 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 192 EP 196 DI 10.1159/000013840 PG 5 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900012 PM 10187929 ER PT J AU Steele, CR Lim, KM AF Steele, CR Lim, KM TI Cochlear model with three-dimensional fluid, inner sulcus and feed-forward mechanism SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE three-dimensional cochlear model; inner sulcus; active feed-forward mechanism ID MEMBRANE AB A three-dimensional model of the guinea pig cochlea using the phase-integral method is presented, This model incorporates the viscous fluid effects in the cochlea, dimensional and material property variation along the cochlear duct and the active feed-forward mechanism of the outer hair cells. Two degrees of freedom of the basilar membrane are considered, which results in two traveling waves propagating along the duct for a given frequency. Basilar membrane response with the active feed-forward mechanism compares favorably with published experimental measurements. C1 Stanford Univ, Div Mech & Computat, Stanford, CA 94305 USA. RP Steele, CR (reprint author), Stanford Univ, Div Mech & Computat, Durand Bldg, Stanford, CA 94305 USA. RI Lim, Kian-Meng/B-2556-2010 OI Lim, Kian-Meng/0000-0003-4311-9223 CR CHADWICK RS, 1997, DIVERSITY COCHLEAR M, P409 GEISLER CD, 1995, HEARING RES, V86, P132, DOI 10.1016/0378-5955(95)00064-B Gummer AW, 1996, P NATL ACAD SCI USA, V93, P8727, DOI 10.1073/pnas.93.16.8727 Ruggero MA, 1997, J ACOUST SOC AM, V101, P2151, DOI 10.1121/1.418265 STEELE CR, 1995, BIOMEDICAL ENG HDB, P505 Steele CR, 1993, BIOPHYSICS HAIR CELL, P207 TABER LA, 1981, J ACOUST SOC AM, V70, P426, DOI 10.1121/1.386785 NR 7 TC 29 Z9 31 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-AUG PY 1999 VL 4 IS 3-4 BP 197 EP 203 DI 10.1159/000013841 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 185HG UT WOS:000079661900013 PM 10187930 ER PT J AU Ding, DL McFadden, SL Wang, J Hu, BH Salvi, RJ AF Ding, DL McFadden, SL Wang, J Hu, BH Salvi, RJ TI Age- and strain-related differences in dehydrogenase activity and glycogen levels in CBA and C57 mouse cochleas SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE presbycusis; energy metabolism; cochlea; hair cells; stria vascularis ID INDUCED HEARING-LOSS; BRAIN-STEM RESPONSE; HAIR CELL LOSS; SUCCINIC-DEHYDROGENASE; F1-HYBRID STRAINS; ACOUSTIC TRAUMA; C57BL/6J MICE; 2 GENOTYPES; GUINEA-PIGS; NOISE AB In the C57 mouse strain, loss of sensory hair cells (HCs) begins during early adulthood, starting in the base of the cochlea and progressing toward the apex as aging continues. In contrast, the CBA mouse strain exhibits no significant cochlear histopathology until relatively late in life. These strain and age differences may be related to differences in cochlear energy metabolism. To examine this possibility, we used dehydrogenase and glycogen histochemistry to evaluate the metabolic capacities of HCs and stria vascularis (SV) in cochleas of C57 and CBA mice. Reaction product density was quantified and compared as a function of strain (1.5-month-old C57 mice vs. CBA mice) and age (CBA mice, 1.5, 18 and 36 months). Young C57 mice had significantly less HC dehydrogenase activity than CBA mice of any age, lower HC glycogen levels than 18-month-old CBA mice and lower SV glycogen levels than 18- or 36-month-old CBA animals. Within the CBA strain, HC dehydrogenase activity decreased significantly between 1.5 and 18 months of age, while glycogen levels in both HCs and SV increased over the same time period. Between 18 and 36 months, HC dehydrogenase activity and SV glycogen levels remained stable. The results show that there are significant age-related changes in energy metabolism in the inner ear of CBA mice that are correlated with age-related hearing loss. Genetically determined deficits in cochlear metabolic capacity in C57 mice could be linked to the early onset of hearing loss in this strain. C1 SUNY Buffalo, Hearing Res Labs, Buffalo, NY 14214 USA. RP Salvi, RJ (reprint author), SUNY Buffalo, Hearing Res Labs, Buffalo, NY 14214 USA. CR ALTMAN FP, 1976, HISTOCHEM J, V8, P501, DOI 10.1007/BF01003839 ALTMAN FP, 1974, HISTOCHEMISTRY, V38, P155, DOI 10.1007/BF00499663 CHALMERS GR, 1992, BRAIN RES, V570, P1, DOI 10.1016/0006-8993(92)90556-O CHOLE RA, 1983, AUDIOLOGY, V22, P384 CLARKE DD, 1989, BASIC NEUROCHEMISTRY, P565 EHRET G, 1974, NATURWISSENSCHAFTEN, V61, P506 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, SCIENTIFIC BASIS OF NOISE-INDUCED HEARING LOSS, P56 Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X FALBEHANSEN J, 1964, ACTA OTO-LARYNGOL, V188, P108 HANCOCK R, 1961, BIOCHEMISTRY-US, V78, P7 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HENRY KR, 1980, AUDIOLOGY, V19, P369 HENRY KR, 1984, BEHAV NEUROSCI, V98, P107, DOI 10.1037/0735-7044.98.1.107 HENRY KR, 1978, ACTA OTO-LARYNGOL, V86, P366, DOI 10.3109/00016487809107515 HENRY KR, 1981, ARCH OTOLARYNGOL, V107, P92 Hsu C J, 1992, J Formos Med Assoc, V91, P258 HUNTER KP, 1987, HEARING RES, V30, P207, DOI 10.1016/0378-5955(87)90137-7 ISHII D, 1969, ACTA OTO-LARYNGOL, V67, P573, DOI 10.3109/00016486909125484 KAKU Y, 1973, ARCH OTOLARYNGOL, V98, P282 Koide Y, 1966, Acta Otolaryngol, V61, P332, DOI 10.3109/00016486609127069 KOIDE Y, 1964, Acta Otolaryngol, V58, P344, DOI 10.3109/00016486409121395 LI HS, 1993, AUDIOLOGY, V32, P195 LI HS, 1993, HEARING RES, V68, P19, DOI 10.1016/0378-5955(93)90060-E LI HS, 1991, ACTA OTO-LARYNGOL, V111, P827, DOI 10.3109/00016489109138418 LI HS, 1994, ORL J OTO-RHINO-LARY, V56, P61 LI HS, 1992, ACTA OTO-LARYNGOL, V112, P956, DOI 10.3109/00016489209137496 LING XB, 1995, ABSTR ASS RES OT, V18, P190 MIKAELIAN DO, 1979, LARYNGOSCOPE, V89, P1 Mizukoshi O, 1967, Acta Otolaryngol, V64, P45, DOI 10.3109/00016486709139091 NEWLANDER JK, 1995, ARO, V18, P89 PETER JB, 1972, BIOCHEMISTRY-US, V11, P2627, DOI 10.1021/bi00764a013 POSTMA DS, 1976, ARCH OTOLARYNGOL, V102, P154 RICHARDSON GP, 1997, ABSTR ASS RES OTOLAR, V20, P121 SAITO T, 1995, SCANNING MICROSCOPY, V9, P271 SAITOH Y, 1994, HEARING RES, V75, P27, DOI 10.1016/0378-5955(94)90052-3 SCHACHT J, 1986, ORL J OTO-RHINO-LARY, V48, P116 Shnerson A, 1981, Brain Res, V254, P65 Shnerson A, 1981, Brain Res, V254, P77 SHONE G, 1991, HEARING RES, V56, P173, DOI 10.1016/0378-5955(91)90167-8 SJOSTROM B, 1990, ACTA OTO-LARYNGOL, V109, P353, DOI 10.3109/00016489009125155 SPECTOR GJ, 1975, J HISTOCHEM CYTOCHEM, V23, P216 SPOENDLIN HEINRICH H., 1963, LARYNGOSCOPE, V73, P1061 Spongr VP, 1997, J ACOUST SOC AM, V101, P3546, DOI 10.1121/1.418315 STOWARD PJ, 1982, J MICROSC-OXFORD, V128, P49 THALMANN R, 1972, LARYNGOSCOPE, V82, P2249, DOI 10.1288/00005537-197212000-00013 VINNIKOV YA, 1964, ORGAN CORTI ITS HIST VOSTEEN K. H., 1960, LARYNGOSCOPE, V70, P351 WENNGREN BI, 1988, ACTA OTO-LARYNGOL, V106, P386, DOI 10.3109/00016488809122261 WILLOTT JF, 1991, ABSTR ASS RES OT, V14, P16 YANG FS, 1991, EUR ARCH OTO-RHINO-L, V248, P195 YANG FS, 1990, EUR ARCH OTO-RHINO-L, V247, P283 NR 52 TC 23 Z9 25 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 1999 VL 4 IS 2 BP 55 EP 63 DI 10.1159/000013822 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 163QW UT WOS:000078417500001 PM 9892756 ER PT J AU Picton, TW Alain, C Woods, DL John, MS Scherg, M Valdes-Sosa, P Bosch-Bayard, J Trujillo, NJ AF Picton, TW Alain, C Woods, DL John, MS Scherg, M Valdes-Sosa, P Bosch-Bayard, J Trujillo, NJ TI Intracerebral sources of human auditory-evoked potentials SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE evoked potentials; source analysis; auditory cortex ID DIPOLE MODEL ANALYSIS; HUMAN-BRAIN; MIDDLE-LATENCY; ELECTROMAGNETIC TOMOGRAPHY; MAGNETIC-FIELDS; CURRENT-DENSITY; N1 WAVE; CORTEX; LOCALIZATION; COMPONENTS AB Evoked potentials to brief 1,000-Hz tones presented to either the left or the right ear were recorded from 30 electrodes arrayed over the head. These recordings were submitted to two different forms of source analysis: brain electric source analysis (BESA) and variable-resolution electromagnetic tomography (VARETA). Both analyses showed that the dominant intracerebral sources for the late auditory-evoked potentials (50-300 ms) were in the supratemporal plane and lateral temporal lobe contralateral to the ear of stimulation. The analyses also suggested the possibility of additional sources in the frontal robes. C1 Univ Toronto, Baycrest Ctr Geriatr Care, Rotman Res Inst, Toronto, ON M6A 2E1, Canada. Univ Calif Davis, Dept Neurol, Davis, CA USA. Univ Heidelberg, Dept Neurol, D-6900 Heidelberg, Germany. Cuban Neurosci Ctr, Havana, Cuba. RP Picton, TW (reprint author), Univ Toronto, Baycrest Ctr Geriatr Care, Rotman Res Inst, 3560 Bathurst St, Toronto, ON M6A 2E1, Canada. EM picton@psych.toronto.edu RI Trujillo-Barreto, Nelson/G-3764-2013 CR ACHIM A, 1991, ELECTROEN CLIN NEURO, V79, P227, DOI 10.1016/0013-4694(91)90140-Y Achim A, 1997, ELECTROEN CLIN NEURO, V103, P381, DOI 10.1016/S0013-4694(97)96055-0 ACHIM A, 1995, EVOKED POTENTIAL, V96, P574, DOI 10.1016/0013-4694(95)00066-8 ACHIM A, 1995, BRAIN COGNITION, V27, P256, DOI 10.1006/brcg.1995.1023 Alain C, 1997, EVOKED POTENTIAL, V104, P531, DOI 10.1016/S0168-5597(97)00057-9 Anderer P, 1998, EVOKED POTENTIAL, V108, P160, DOI 10.1016/S0168-5597(97)00080-4 AREZZO J, 1975, BRAIN RES, V90, P57, DOI 10.1016/0006-8993(75)90682-4 BERG P, 1994, BRAIN ELECT SOURCE A CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403 Cuffin BN, 1996, IEEE T BIO-MED ENG, V43, P299, DOI 10.1109/10.486287 DALE AM, 1993, J COGNITIVE NEUROSCI, V5, P162, DOI 10.1162/jocn.1993.5.2.162 DEWINSKY O, 1995, BRAIN, V118, P279 Dien J, 1997, J COGNITIVE NEUROSCI, V9, P799, DOI 10.1162/jocn.1997.9.6.799 Evan A, 1993, P IEEE NUCL SCI S ME, P1813 FLETCHER DJ, 1995, IEEE T BIO-MED ENG, V42, P1094, DOI 10.1109/10.469376 GEORGE JS, 1995, J CLIN NEUROPHYSIOL, V12, P406, DOI 10.1097/00004691-199509010-00002 GIARD MH, 1994, ELECTROEN CLIN NEURO, V92, P238, DOI 10.1016/0168-5597(94)90067-1 GOLDBERG G, 1985, BEHAV BRAIN SCI, V8, P567 Graziano MSA, 1997, SCIENCE, V277, P239, DOI 10.1126/science.277.5323.239 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 Hamalainen MS, 1984, TKKFA559 HELS U TECH HAMALAINEN MS, 1994, MED BIOL ENG COMPUT, V32, P35, DOI 10.1007/BF02512476 HARI R, 1980, EXP BRAIN RES, V40, P237 HARI R, 1982, ELECTROEN CLIN NEURO, V54, P561, DOI 10.1016/0013-4694(82)90041-4 Hari R, 1990, ADV AUDIOL, V6, P222 HOWARD MA, 1997, ABSTR SOC NEUROSCI, V23, P2067 HUGHES JR, 1964, ELECTROEN CLIN NEURO, V16, P561, DOI 10.1016/0013-4694(64)90047-1 Jones SJ, 1998, EVOKED POTENTIAL, V108, P131, DOI 10.1016/S0168-5597(97)00077-4 Kim SG, 1997, MAGNET RESON MED, V37, P631, DOI 10.1002/mrm.1910370427 KNIGHT RT, 1980, ELECTROEN CLIN NEURO, V50, P112, DOI 10.1016/0013-4694(80)90328-4 KNIGHT RT, 1988, ELECTROEN CLIN NEURO, V70, P499, DOI 10.1016/0013-4694(88)90148-4 KNOSCHE TR, IN PRESS BRAIN TOPOG KWONG KK, 1995, MAGN RESON QUART, V11, P1 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 LUTKENHONER B, 1990, ADV AUDIOL, V6, P165 MAZZIOTTA JC, 1995, NEUROIMAGE, V2, P89, DOI 10.1006/nimg.1995.1012 McCallum W. C., 1979, HUMAN EVOKED POTENTI, P235, DOI 10.1007/978-1-4684-3483-5_16 Menendez RGDP, 1997, HUM BRAIN MAPP, V5, P454 MENON RS, IN PRESS P NATL ACAD MOCKS J, 1988, IEEE T BIOMED ENG, V35, P141 MOREL A, 1992, J COMP NEUROL, V318, P27, DOI 10.1002/cne.903180104 MULLER MM, 1998, COGN BRAIN RES NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789 PASCUALMARQUI RD, 1994, INT J PSYCHOPHYSIOL, V18, P49, DOI 10.1016/0167-8760(84)90014-X Penhune VB, 1996, CEREB CORTEX, V6, P661, DOI 10.1093/cercor/6.5.661 PERRIN F, 1990, ELECTROEN CLIN NEURO, V76, P565 PERRIN F, 1989, ELECTROEN CLIN NEURO, V72, P184, DOI 10.1016/0013-4694(89)90180-6 Picton T. W., 1995, HDB NEUROPSYCHOLOGY, V10, P3 RADEMACHER J, 1993, CEREB CORTEX, V3, P313, DOI 10.1093/cercor/3.4.313 RICHER F, 1989, ELECTROEN CLIN NEURO, V74, P202, DOI 10.1016/0013-4694(89)90006-0 RIERA YJ, 1998, IEEE T BIOMED ENG, V45, P746 Rizzolatti G, 1997, SCIENCE, V277, P190, DOI 10.1126/science.277.5323.190 RUBENS AB, 1976, NEUROLOGY, V26, P620 SCHERG M, 1985, ELECTROEN CLIN NEURO, V62, P290, DOI 10.1016/0168-5597(85)90006-1 Scherg M, 1996, Electroencephalogr Clin Neurophysiol Suppl, V46, P127 Scherg M, 1991, Electroencephalogr Clin Neurophysiol Suppl, V42, P24 Scherg M., 1990, ADV AUDIOL, V6, P40 SCHERG M, 1990, ADV AUDIOL, V6, P165 SCHERG M, 1986, ELECTROEN CLIN NEURO, V65, P344, DOI 10.1016/0168-5597(86)90014-6 Scherg M, 1989, J Cogn Neurosci, V1, P336, DOI 10.1162/jocn.1989.1.4.336 STEINMETZ H, 1990, BRAIN LANG, V39, P357, DOI 10.1016/0093-934X(90)90145-7 STEINSCHNEIDER M, 1980, BRAIN RES, V198, P75, DOI 10.1016/0006-8993(80)90345-5 Talairach J., 1988, COPLANAR STEREOTAXIC TOWLE VL, 1993, ELECTROEN CLIN NEURO, V86, P1, DOI 10.1016/0013-4694(93)90061-Y TRUJILLO NJ, 1998, NEUROIMAGE, V7, pS637 VALDES P, 1998, NEUROIMAGE, V7, pS635 VALDESSOSA P, IN PRESS ADV BIOMAGN VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 WITELSON SF, 1992, J COMP NEUROL, V323, P326, DOI 10.1002/cne.903230303 WOLPAW JR, 1975, ELECTROEN CLIN NEURO, V39, P609, DOI 10.1016/0013-4694(75)90073-5 WOOD CC, 1982, ELECTROEN CLIN NEURO, V54, P25, DOI 10.1016/0013-4694(82)90228-0 Woods D L, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P102 Woods D. L., 1990, EVENT RELATED BRAIN, P178 WOODS DL, 1985, ELECTROEN CLIN NEURO, V60, P122, DOI 10.1016/0013-4694(85)90018-5 WOODS DL, 1987, ELECTROEN CLIN NEURO, V68, P132, DOI 10.1016/0168-5597(87)90040-2 Worsley KJ, 1996, HUM BRAIN MAPP, V4, P58, DOI 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O ZATORRE RJ, 1992, SCIENCE, V256, P846, DOI 10.1126/science.1589767 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 NR 80 TC 167 Z9 168 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 1999 VL 4 IS 2 BP 64 EP 79 DI 10.1159/000013823 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 163QW UT WOS:000078417500002 PM 9892757 ER PT J AU Mitchell, CR Kempton, JB Creedon, TA Trune, DR AF Mitchell, CR Kempton, JB Creedon, TA Trune, DR TI The use of a 56-stimulus train for the rapid acquisition of auditory brainstem responses SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE multiple stimulus; auditory brainstem response; tone burst; threshold; latency; amplitude ID MAXIMUM LENGTH SEQUENCES; STEM RESPONSE; EVOKED RESPONSES AB To further develop a multiple stimulus method for the rapid acquisition of auditory brainstem responses (ABRs), a 56-stimulus train was tested in mice. Stimuli in the train were tone bursts spaced at 0.5-octave intervals from 4 to 32 kHz. ABR thresholds, latency-intensity and amplitude-intensity functions were obtained using stimuli presented singly (one at a time) and using the 56-stimulus train. Responses from stimuli presented singly and those obtained using the 56-stimulus train were compared. There were no significant differences in thresholds (0.01 level) and very small differences in response latencies and amplitudes. These findings demonstrate the feasibility of multiple stimulus trains for the rapid acquisition of ABRs. C1 Vet Affairs Med Ctr R&D 16, Natl Ctr Rehabil Auditory Res, Portland, OR 97207 USA. Oregon Hearing Res Ctr, Portland, OR USA. RP Mitchell, CR (reprint author), Vet Affairs Med Ctr R&D 16, Natl Ctr Rehabil Auditory Res, 3710 SW Vet Hosp Rd, Portland, OR 97207 USA. CR BURKARD R, 1990, J ACOUST SOC AM, V87, P1656, DOI 10.1121/1.399413 BURKARD R, 1990, J ACOUST SOC AM, V87, P1665, DOI 10.1121/1.399414 DON M, 1977, ANN OTO RHINOL LARYN, V86, P186 EGGERMONT JJ, 1976, HDB SENSORY PHYSL, V5, P626 EYSHOLDT U, 1982, AUDIOLOGY, V21, P242 FAUSTI SA, 1993, HEAR J, V46, P23 Fausti S A, 1994, J Am Acad Audiol, V5, P119 Hall J, 1992, HDB AUDITORY EVOKED HAMILL TA, 1992, EAR HEARING, V13, P165, DOI 10.1097/00003446-199206000-00005 HAMILL TA, 1991, EAR HEARING, V12, P229, DOI 10.1097/00003446-199108000-00001 Hoke M, 1991, Acta Otolaryngol Suppl, V482, P45 JEGER J, 1985, AUDITORY BRAINSTEM R, P371 MARSH RR, 1993, EAR HEARING, V14, P169, DOI 10.1097/00003446-199306000-00003 Mitchell C, 1996, HEARING RES, V99, P38, DOI 10.1016/S0378-5955(96)00081-0 MITCHELL C, 1977, LARYNGOSCOPE, V87, P2016 MITCHELL CR, 1991, 14 ANN ARO MIDW M CL Mitchell C R, 1994, J Am Acad Audiol, V5, P110 Mouney D F, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P348 Murphy WJ, 1998, J ACOUST SOC AM, V103, P1951, DOI 10.1121/1.421376 NUTTALL AH, 1981, IEEE T ACOUST SPEECH, V29, P84, DOI 10.1109/TASSP.1981.1163506 OLPHEN A, 1979, AUDIOLOGY, V18, P388 PLOURDE G, 1988, ELECTROEN CLIN NEURO, V71, P405, DOI 10.1016/0168-5597(88)90044-5 SPOOR A, 1971, AUDIOLOGY, V10, P340 Spoor A, 1974, Acta Otolaryngol Suppl, V316, P25 WEATHERBY L, 1982, Journal of the Acoustical Society of America, V71, pS99, DOI 10.1121/1.2019668 NR 25 TC 12 Z9 14 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 1999 VL 4 IS 2 BP 80 EP 87 DI 10.1159/000013824 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 163QW UT WOS:000078417500003 PM 9892758 ER PT J AU Brantberg, K Hansson, H Fransson, PA Rosenhall, U AF Brantberg, K Hansson, H Fransson, PA Rosenhall, U TI The binaural interaction component in human ABR is stable within the 0- to 1-ms range of interaural time differences SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE binaural interaction; interaural time difference; auditory brainstem response; binaural difference waveform ID AUDITORY-EVOKED-POTENTIALS; BRAIN-STEM RESPONSE; MIDDLE-LATENCY; ADULTS; BETA AB The effect of unilaterally delayed acoustic stimuli on binaural interaction was studied in 12 subjects with normal hearing. Auditory brainstem response (ABR) was obtained in the midline between the forehead and the neck, and click stimuli were unilaterally delayed at 0.2-ms intervals in the 0- to 1-ms range. Binaural interaction was evaluated by measuring the beta wave in the binaural difference waveform, i.e. the remainder after subtracting the binaurally evoked registration from the sum of the two monaural registrations. Computation of the binaural difference waveform showed the beta wave amplitude to be relatively stable throughout the 0- to 1-ms range of interaural time differences. This finding suggests stable binaural interaction within the range of interaural time differences where binaural click stimuli induce a binaurally fused intracranial image. C1 Karolinska Hosp, Dept Audiol, S-17176 Stockholm, Sweden. Stockholm Univ, Coll Hlth Sci, S-10691 Stockholm, Sweden. Lund Hosp, Dept Otorhinolaryngol, Lund, Sweden. RP Brantberg, K (reprint author), Karolinska Hosp, Dept Audiol, S-17176 Stockholm, Sweden. EM kbr@ent.ks.se CR ARNOLD SA, 1985, EAR HEARING, V6, P144 BABKOFF H, 1965, J ACOUST SOC AM, V39, P87 DECKER TN, 1981, J ACOUST SOC AM, V69, P1084, DOI 10.1121/1.385687 DOBIE RA, 1985, ELECTROEN CLIN NEURO, V62, P56, DOI 10.1016/0168-5597(85)90035-8 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 DOBIE RA, 1982, J ACOUST SOC AM, V71, P1031, DOI 10.1121/1.387584 Don M, 1996, J ACOUST SOC AM, V99, P491, DOI 10.1121/1.414560 ELBERLING C, 1987, J ACOUST SOC AM, V81, P115, DOI 10.1121/1.395019 FOWLER CG, 1988, SCAND AUDIOL, V17, P195, DOI 10.3109/01050398809070704 FULLERTON BC, 1987, ELECTROEN CLIN NEURO, V66, P547, DOI 10.1016/0013-4694(87)90102-7 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 GUNNARSON AD, 1991, J SPEECH HEAR RES, V34, P1207 HOSFORD HL, 1979, J ACOUST SOC AM, V65, pS86, DOI 10.1121/1.2017483 JONES SJ, 1990, ELECTROEN CLIN NEURO, V77, P214, DOI 10.1016/0168-5597(90)90040-K KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181 LASKY RE, 1995, EAR HEARING, V16, P354, DOI 10.1097/00003446-199508000-00002 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LEVINE RA, 1991, HEARING RES, V57, P121, DOI 10.1016/0378-5955(91)90081-J MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MCPHERSON DL, 1989, ELECTROEN CLIN NEURO, V74, P124, DOI 10.1016/0168-5597(89)90017-8 MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1 Parthasarathy T K, 1993, J Am Acad Audiol, V4, P229 Stollman MHP, 1996, BRIT J AUDIOL, V30, P227, DOI 10.3109/03005369609079043 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 NR 24 TC 10 Z9 10 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 1999 VL 4 IS 2 BP 88 EP 94 DI 10.1159/000013825 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 163QW UT WOS:000078417500004 PM 9892759 ER PT J AU Krishnan, A AF Krishnan, A TI Human frequency-following responses to two-tone approximations of steady-state vowels SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE vowel encoding; phase-locking; formants; distortion products; two-tone suppression ID AUDITORY-NERVE FIBERS; DORSAL COCHLEAR NUCLEUS; DISCHARGE PATTERNS; DISTORTION PRODUCTS; EVOKED-POTENTIALS; REPRESENTATION; PITCH AB Auditory nerve single-unit population studies have demonstrated that phase-locking plays a dominant role in the neural encoding of the spectrum of speech sounds. Since the scalp-recorded human frequency-following response (FFR) reflects synchronous, phase-locked activity in a population of neurons in the rostral auditory brainstem, it was reasoned that the human FFR might preserve information about certain acoustic features of speech sounds. FFRs to three different two-tone approximations of vowels (/u/,/(sic)/, and /a/) were obtained from 10 normal-hearing human adults at 85, 75, 65 and 55 dB nHL. Spectrum analyses of the FFRs revealed distinct peaks at frequencies corresponding to the first and the second formants across all levels suggesting that phase-locked activity among two distinct populations of neurons are indeed preserved in the FFR. Also, the FFR spectrum for vowels (/u/,/(sic)/, and /a/) revealed a robust component at 2F(1)-F-2 frequency suggesting that the human FFR contains a neural representation of cochlear nonlinearity. Finally, comparison of FFRs to the vowel approximations and the individual components at F-1 and F-2 revealed effects that may be suggestive of two-tone synchrony suppression and/or lateral inhibition. These results suggest that the scalp-recorded FFR may be used to evaluate not only neural encoding of speech sounds but also processes associated with cochlear nonlinearity. C1 Univ Tennessee, Dept Speech Pathol & Audiol, Auditory Electrophysiol Lab, Knoxville, TN USA. RP Krishnan, A (reprint author), Purdue Univ, Dept Audiol & Speech Sci, 1353 Heavilon Hall, W Lafayette, IN 47907 USA. CR ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003 BLEDSOE SC, 1980, ELECTROEN CLIN NEURO, V48, P654, DOI 10.1016/0013-4694(80)90422-8 BLEDSOE SC, 1982, J NEUROPHYSIOL, V47, P113 BROWN R, 1958, WORDS THINGS, P36 Carlson R., 1975, AUDITORY ANAL PERCEP, P55 CHERTOFF ME, 1990, J ACOUST SOC AM, V87, P1248, DOI 10.1121/1.398800 CHERTOFF ME, 1992, J SPEECH HEAR RES, V35, P157 GARDI J, 1979, AUDIOLOGY, V18, P494 GLASER EM, 1976, ELECTROEN CLIN NEURO, V40, P25, DOI 10.1016/0013-4694(76)90176-0 GOLDSTEI.JL, 1968, PR INST ELECTR ELECT, V56, P981, DOI 10.1109/PROC.1968.6449 GREENBERG S, 1987, HEARING RES, V25, P91, DOI 10.1016/0378-5955(87)90083-9 HALL JW, 1979, SCIENCE, V205, P1297, DOI 10.1126/science.472748 KIANG NYS, 1974, J ACOUST SOC AM, V55, P620, DOI 10.1121/1.1914572 KIM DO, 1980, HEARING RES, V2, P297, DOI 10.1016/0378-5955(80)90064-7 Marsh J.T., 1974, ELECTROENCEPHALOGR C, V38, P415 Matthews J. W., 1985, PERIPHERAL AUDITORY, P258 MILLER MI, 1983, J ACOUST SOC AM, V74, P502, DOI 10.1121/1.389816 MILLER MI, 1984, HEARING RES, V14, P257, DOI 10.1016/0378-5955(84)90054-6 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X NELSON DA, 1992, J SPEECH HEAR RES, V35, P1142 NORTON SJ, 1990, MECH BIOPHYSICS HEAR, P217 PETERSON GE, 1952, J ACOUST SOC AM, V24, P175, DOI 10.1121/1.1906875 REALE RA, 1980, J ACOUST SOC AM, V67, P891, DOI 10.1121/1.383969 RICKMAN MD, 1991, J ACOUST SOC AM, V89, P2818, DOI 10.1121/1.400720 SACHS MB, 1979, J ACOUST SOC AM, V66, P470, DOI 10.1121/1.383098 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 VOIGT HF, 1982, HEARING RES, V8, P49, DOI 10.1016/0378-5955(82)90033-8 VOIGT HF, 1980, J NEUROPHYSIOL, V44, P76 WORDEN F. G., 1968, ELECTROENCEPHALOGR C, V25, P45 YOUNG ED, 1982, HEARING RES, V6, P153, DOI 10.1016/0378-5955(82)90051-X YOUNG ED, 1979, J ACOUST SOC AM, V66, P1381, DOI 10.1121/1.383532 NR 32 TC 31 Z9 33 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 1999 VL 4 IS 2 BP 95 EP 103 DI 10.1159/000013826 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 163QW UT WOS:000078417500005 PM 9892760 ER PT J AU Cook, RD Ferguson, MO Hall, JW Grose, JH Pillsbury, HC AF Cook, RD Ferguson, MO Hall, JW Grose, JH Pillsbury, HC TI The effects of amplitude modulation on acoustic reflex decay SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE acoustic reflex decay; sensorineural hearing loss; retrocochlear lesion; phase-locking; amplitude modulation ID AUDITORY-NERVE FIBERS; AUDIOMETRY; RESPONSES; TONES AB The temporal decay of the acoustic reflex provides the basis for an objective audiological test that differentiates cochlear from retrocochlear pathologies. The classic sign of a neural lesion is a rapid decay of the reflex under conditions of pure-tone stimulation for frequencies of 1,000 Hz and below. This restriction to lower frequencies is due to the fact that even normal ears show decay for higher-frequency signals. At present, it is unclear whether the acoustic reflex decay (ARD) seen in normal ears is related to frequency-specific channels or whether the critical variable is the timing information coded within the channels. This study examined ARD in subjects with normal hearing and middle ear function. The degree of ARD was measured for both modulated and unmodulated carrier frequencies of 500, 1,000, 2,000 and 4,000 Hz with amplitude modulation rates of 50-400 Hz. The dependent variable was the half-life of the decaying reflex (ARD 50%) over a 20-second stimulation interval. Significant ARD was present for high-frequency unmodulated carriers but not for low-frequency carriers. For all listeners, ARD was diminished for all modulated stimuli. The results of this study suggest that resistance to ARD is mediated by both the temporal aspects and frequency of a stimulus. C1 Univ N Carolina, Sch Med, Div Otolaryngol Head & Neck Surg, Chapel Hill, NC 27599 USA. RP Cook, RD (reprint author), 4100 5 Oaks Dr No 7, Durham, NC 27707 USA. CR ANDERSON H, 1970, SENSORINEURAL HEARIN, P275 ANDERSON H, 1969, NOBEL S, V10, P48 BAUCH CD, 1982, EAR HEARING, V3, P83, DOI 10.1097/00003446-198203000-00006 BORG WE, 1979, ACTA OTOLARYNGOL, V87, P421 Galambos R, 1943, J NEUROPHYSIOL, V6, P39 GLASSCOCK ME, 1979, LARYNGOSCOPE, V89, P1021 HABENER SA, 1974, ARCH OTOLARYNGOL, V100, P294 JAVEL E, 1980, J ACOUST SOC AM, V68, P133, DOI 10.1121/1.384639 JERGER J, 1972, ARCHIV OTOLARYNGOL, V96, P513 Johansson B, 1967, Acta Otolaryngol, V64, P256, DOI 10.3109/00016486709139114 Johnson D.H., 1974, THESIS MIT CAMBRIDGE Kaplan H J, 1976, Trans Sect Otolaryngol Am Acad Ophthalmol Otolaryngol, V82, P368 KHANNA SM, 1989, HEARING RES, V39, P143, DOI 10.1016/0378-5955(89)90087-7 KOBRAK HG, 1941, LARYNGOSCOPE, V11, P798 LONGTIN A, 1986, BIOL CYBERN, V53, P323, DOI 10.1007/BF00336564 LUTMAN ME, 1978, J SOUND VIB, V56, P137, DOI 10.1016/0022-460X(78)90576-X OVIATT DL, 1984, EAR HEARING, V5, P145, DOI 10.1097/00003446-198405000-00005 ROSE JE, 1967, J NEUROPHYSIOL, V30, P769 SILMAN S, 1978, J ACOUST SOC AM, V64, P1406, DOI 10.1121/1.382107 TURNER RG, 1991, MAKING CLIN DECISION, P679 TURNER RG, 1984, EAR HEARING, V5, P187, DOI 10.1097/00003446-198407000-00002 WILSON RH, 1984, J SPEECH HEAR RES, V27, P586 YOUNG ED, 1986, J ACOUST SOC AM, V79, P426, DOI 10.1121/1.393530 NR 23 TC 29 Z9 29 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-APR PY 1999 VL 4 IS 2 BP 104 EP 113 DI 10.1159/000013827 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 163QW UT WOS:000078417500006 PM 9892761 ER PT J AU Sturzebecher, E Cebulla, M Wernecke, KD AF Sturzebecher, E Cebulla, M Wernecke, KD TI Objective response detection in the frequency domain: Comparison of several q-sample tests SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE objective response detection; q-sample tests; comparison of test statistics; Monte Carlo simulation ID AUDITORY-EVOKED-POTENTIALS; STATISTICAL TESTS; PHASE; COHERENCE AB The objective assessment of the hearing threshold requires a suitable statistical test for response detection. For checking the q spectral lines of an auditory-evoked potential spectrum in the frequency domain, a q-sample test seems to be more favourable compared to q applications of a one-sample test. The response detection performance of three q-sample tests (q-sample analogue of Watsons U-2 test, q-sample uniform scores test and a modified q-sample uniform scores test) has been checked by extensive Monte Carlo simulations. To compare the performance of the th ree test statistics, sensitivity was calculated and receiver-operating characteristics were constructed from the probability density functions estimated by the Monte Carte simulations. In addition, a comparison on the basis of real near-threshold auditory brainstem response data was carried out. The modified q-sample uniform scores test appeared to be the most powerful test. Some aspects of the practical application of this test are discussed in this paper. C1 Univ Frankfurt, ENT Clin, D-6000 Frankfurt, Germany. Humboldt Univ, Fac Med Charite, Biomed Dept, Berlin, Germany. RP Sturzebecher, E (reprint author), Univ Frankfurt Klinikum, Klin Hals Nasen Ohrenheilkunde, Theodor Stern Kai 7, D-60590 Frankfurt, Germany. CR AOYAGI M, 1988, MED INFORM, V13, P211 BACHEN NI, 1986, IEEE T BIO-MED ENG, V33, P566, DOI 10.1109/TBME.1986.325824 BEAGLEY HA, 1979, ACTA OTO-LARYNGOL, V87, P270, DOI 10.3109/00016487909126420 Cebulla M, 1996, SCAND AUDIOL, V25, P201, DOI 10.3109/01050399609048005 CHAMPLIN CA, 1992, HEARING RES, V58, P63, DOI 10.1016/0378-5955(92)90009-C DOBIE RA, 1993, ELECTROEN CLIN NEURO, V88, P516, DOI 10.1016/0168-5597(93)90040-V DOBIE RA, 1989, EAR HEARING, V10, P2 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 Elberling C, 1979, Scand Audiol, V8, P57, DOI 10.3109/01050397909076302 FRIDMAN J, 1984, AUDIOLOGY, V23, P99 GREENBLATT E, 1985, AUDIOLOGY, V24, P288 Hochberg Y., 1987, MULTIPLE COMP PROCED HODGES JL, 1955, ANN MATH STAT, V26, P523, DOI 10.1214/aoms/1177728498 Howell DC, 1987, STAT METHODS PSYCHOL JERVIS BW, 1983, IEEE T BIO-MED ENG, V30, P43, DOI 10.1109/TBME.1983.325165 Kramer MS, 1988, CLIN EPIDEMIOLOGY BI Lütkenhöner B, 1991, Acta Otolaryngol Suppl, V491, P52 MAAG UR, 1966, BIOMETRIKA, V53, P579 Mardia K. V., 1972, STAT DIRECTIONAL DAT McClelland R J, 1983, Br J Audiol, V17, P263, DOI 10.3109/03005368309081487 MOORE BR, 1980, BIOMETRIKA, V67, P175 PICTON TW, 1987, ELECTROEN CLIN NEURO, V68, P119, DOI 10.1016/0168-5597(87)90039-6 Press W. H., 1986, NUMERICAL RECIPES AR STAPELLS DR, 1987, ELECTROEN CLIN NEURO, V67, P260, DOI 10.1016/0013-4694(87)90024-1 STEPHENS MA, 1965, BIOMETRIKA, V52, P566 STURZEBECHER E, Patent No. 19548982 Sturzebecher E, 1997, SCAND AUDIOL, V26, P7, DOI 10.3109/01050399709074970 VALDESSOSA MJ, 1987, AUDIOLOGY, V26, P166 VICTOR JD, 1991, ELECTROEN CLIN NEURO, V78, P378, DOI 10.1016/0013-4694(91)90099-P WERNECKE KD, 1995, ANGEW STAT PRAXIS NR 30 TC 11 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1999 VL 4 IS 1 BP 2 EP 11 DI 10.1159/000013815 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 152UT UT WOS:000077795700002 PM 9873148 ER PT J AU Ross, B Lutkenhoner, B Pantev, C Hoke, M AF Ross, B Lutkenhoner, B Pantev, C Hoke, M TI Frequency-specific threshold determination with the CERAgram method: Basic principle and retrospective evaluation of data SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE evoked response audiometry; cortical evoked response audiometry; auditory evoked potential; hearing threshold; Rayleigh test; signal detection ID AUDITORY-EVOKED-POTENTIALS; STEADY-STATE RESPONSES; BRAIN-STEM RESPONSES; OBJECTIVE DETECTION; STATISTICAL TESTS; SIGNAL-DETECTION; DOMAIN; AUDIOMETRY; NOISE AB A method for the objective evaluation of the hearing threshold using cortical evoked response audiometry was developed. The method results in a kind of objective audiogram, visualizing the significance of an auditory evoked potential (AEP) in a scheme similar to a conventional audiogram. In the present implementation of the method, four frequencies are tested quasi-simultaneously (500, 1000, 2000 and 3000 Hz; intensity steps of 5 dB). The significance of an evoked potential is assessed by means of the Rayleigh test, which is applied to the phase values derived from certain time windows of the single-trial epochs. A retrospective analysis of 1,920 threshold estimations in 240 subjects suggested that the detection threshold (lowest stimulus intensity yielding a significant response) was, on the average, 7.5 dB above the electrophysiological threshold (intensity where the AEP amplitude vanishes). The grand-average amplitude-intensity characteristic was approximated by the function a(1 - exp(-I/b)), with a = 6.25 mu V, b = 22.3 dB and I representing the intensity (in decibels) relative to the electrophysiological threshold. C1 Univ Munster, Inst Expt Audiol, D-48129 Munster, Germany. RP Ross, B (reprint author), Univ Munster, Inst Expt Audiol, Kardinal von Galen Ring 10, D-48129 Munster, Germany. CR ACHIM A, 1995, EVOKED POTENTIAL, V96, P574, DOI 10.1016/0013-4694(95)00066-8 ANTINORO F, 1970, J ACOUST SOC AM, V46, P1433 Beagley H A, 1967, J Laryngol Otol, V81, P861, DOI 10.1017/S0022215100067815 BEAGLEY HA, 1979, ACTA OTO-LARYNGOL, V87, P270, DOI 10.3109/00016487909126420 Beagley HA, 1969, INT AUDIOL, V8, P345, DOI 10.3109/05384916909079077 Cebulla M, 1996, SCAND AUDIOL, V25, P201, DOI 10.3109/01050399609048005 Davis H, 1976, Ann Otol Rhinol Laryngol, V85 SUPPL 28, P1 DAVIS H, 1966, INT AUDIOL, V5, P77, DOI 10.3109/05384916609074146 DAVIS H, 1966, J ACOUST SOC AM, V39, P109, DOI 10.1121/1.1909858 DAVIS H, 1974, HDB SENSORY PHYSL, V1 Davis PA, 1939, J NEUROPHYSIOL, V2, P494 DOBIE RA, 1993, ELECTROEN CLIN NEURO, V88, P516, DOI 10.1016/0168-5597(93)90040-V DOBIE RA, 1989, EAR HEARING, V10, P2 DON M, 1984, SCAND AUDIOL, V13, P219, DOI 10.3109/01050398409042130 Don M, 1996, J ACOUST SOC AM, V99, P491, DOI 10.1121/1.414560 ELBERLING C, 1984, SCAND AUDIOL, V13, P187, DOI 10.3109/01050398409043059 Faires J.D., 1993, NUMERICAL METHODS Fisher N. I., 1993, STAT ANAL CIRCULAR D GREENWOOD JA, 1955, ANN MATH STAT, V26, P233, DOI 10.1214/aoms/1177728540 HARI R, 1987, AUDIOLOGY, V26, P31 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 KEIDEL WD, 1965, J ACOUST SOC AM, V38, P191, DOI 10.1121/1.1909629 LINDSEY J W, 1971, T.-I.-T. (Tower International Technomedical) Journal of Life Sciences, V1, P91 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 LUTKENHONER B, 1991, ARCH OTORHINOLARYN S, V2, P133 Lütkenhöner B, 1991, Acta Otolaryngol Suppl, V491, P52 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 Mardia K. V., 1972, STAT DIRECTIONAL DAT PANTEW C, 1975, ARCH OTO-RHINO-LARYN, V211, P43, DOI 10.1007/BF00467289 PANTEV C, 1986, AUDIOLOGY, V25, P263 Pantev C, 1996, EAR HEARING, V17, P255, DOI 10.1097/00003446-199606000-00008 PICTON TW, 1977, J OTOLARYNGOL, V6, P90 ROSS AJ, 1980, J BIOMED ENG, V2, P310 ROSS B, 1991, ARCH OTORHINOLARYN S, V2, P153 ROSS B, 1989, ADV BIOMAGNETISM, P741 SALOMON G, 1969, NORD MED, V81, P440 SALOMON G, 1975, S ZOOL SOC LOND, V37, P205 SHARRARD GA, 1973, BRIT J AUDIOL, V7, P47, DOI 10.3109/03005367309079053 Stapells DR, 1997, AUDIOL NEURO-OTOL, V2, P257 Stevens SS, 1961, SENSORY COMMUNICATIO Sturzebecher E, 1999, AUDIOL NEURO-OTOL, V4, P2, DOI 10.1159/000013815 Sturzebecher E, 1997, SCAND AUDIOL, V26, P7, DOI 10.3109/01050399709074970 VALDESSOSA MJ, 1987, AUDIOLOGY, V26, P166 NR 44 TC 41 Z9 41 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1999 VL 4 IS 1 BP 12 EP 27 DI 10.1159/000013816 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 152UT UT WOS:000077795700003 PM 9873149 ER PT J AU Aoyagi, M Suzuki, Y Yokota, M Furuse, H Watanabe, T Ito, T AF Aoyagi, M Suzuki, Y Yokota, M Furuse, H Watanabe, T Ito, T TI Reliability of 80-Hz amplitude-modulation-following response detected by phase coherence SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory steady-state response; amplitude-modulation-following response; phase coherence; electrical response audiometry ID STATE EVOKED-POTENTIALS; SPECTRAL-ANALYSIS; YOUNG-CHILDREN; FREQUENCY; TONES; HUMANS; SLEEP AB The reliability and frequency specificity of the 80-Hz amplitude-modulation-following response (80-Hz AMFR) during sleep detected by phase coherence as a measure of the hearing threshold was evaluated in 169 affected ears of 125 children with hearing impairment. The 80-Hz AMFR at a carrier frequency of 1000 Hz was monitored in all 169 ears and the auditory brainstem response (ABR) elicited by 1000-Hz tone pips was evaluated in 93 ears. Both responses were examined during sleep, and the thresholds were compared with the behavioral hearing threshold, which was determined by standard pure-tone audiometry or play audiometry. In 24 ears of 22 children with various patterns of audiogram, the 80-Hz AMFR was examined at different carrier frequencies, and the threshold pattern was compared with the pu re-tone audiogram to investigate the frequency specificity of 80-Hz AMFR. The mean and standard deviation of the difference between the 80-Hz AMFR at a carrier frequency of 1000 Hz and pure-tone thresholds of 1000 Hz was 3.8 and 12.9 dB, and that between the ABR and pure-tone thresholds was 6.8 and 14.1 dB, respectively. The threshold patterns of 80-Hz AMFR clearly followed the corresponding audiogram patterns in all types of hearing impairment. The measurement of 80-Hz AMFR thus appears to be accurate in hearing assessment and to have good frequency specificity in children during sleep. C1 Yamagata Univ, Sch Med, Dept Otolaryngol, Yamagata 9909585, Japan. RP Aoyagi, M (reprint author), Yamagata Univ, Sch Med, Dept Otolaryngol, Iida Nishi 2-2-2, Yamagata 9909585, Japan. CR Aoyagi M, 1996, Acta Otolaryngol Suppl, V522, P6 Aoyagi M, 1994, Acta Otolaryngol Suppl, V511, P7 AOYAGI M, 1993, HEARING RES, V65, P253, DOI 10.1016/0378-5955(93)90218-P Aoyagi M, 1993, Acta Otolaryngol Suppl, V504, P82 AOYAGI M, 1993, AUDIOLOGY, V32, P293 BATRA R, 1986, HEARING RES, V21, P167, DOI 10.1016/0378-5955(86)90037-7 CAMPBELL FW, 1977, PROG CLIN NEUROPHYS, V2, P68 COHEN LT, 1991, J ACOUST SOC AM, V90, P2467, DOI 10.1121/1.402050 DOBIE RA, 1991, ELECTROEN CLIN NEURO, V80, P194, DOI 10.1016/0168-5597(91)90121-D DON M, 1979, ANN OTO RHINOL LARYN, V88, P1 FRIDMAN J, 1984, AUDIOLOGY, V23, P99 GALAMBOS R, 1981, P NATL ACAD SCI USA, V78, P26643 GRIFFITHS SK, 1991, EAR HEARING, V12, P235, DOI 10.1097/00003446-199108000-00002 KLEIN AJ, 1983, ARCH OTOLARYNGOL, V109, P6 KUWADA S, 1986, HEARING RES, V21, P179, DOI 10.1016/0378-5955(86)90038-9 LINDEN RD, 1985, EAR HEARING, V6, P167, DOI 10.1097/00003446-198505000-00008 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W Lins OG, 1996, EAR HEARING, V17, P81, DOI 10.1097/00003446-199604000-00001 MAURIZI M, 1990, AUDIOLOGY, V29, P322 MOLLER AR, 1987, ELECTROEN CLIN NEURO, V66, P56, DOI 10.1016/0013-4694(87)90138-6 PICTON TW, 1987, J ACOUST SOC AM, V82, P165, DOI 10.1121/1.395560 PICTON TW, 1979, J OTOLARYNGOL, V8, P289 PICTON TW, 1987, ELECTROEN CLIN NEURO, V68, P119, DOI 10.1016/0168-5597(87)90039-6 RANCE G, 1995, EAR HEARING, V16, P499, DOI 10.1097/00003446-199510000-00006 SUZUKI T, 1984, AUDIOLOGY, V23, P599 VALDES JL, IN PRESS EAR HEAR VICTOR JD, 1991, ELECTROEN CLIN NEURO, V78, P378, DOI 10.1016/0013-4694(91)90099-P ZAPPULLA R, 1984, NEUROSURGERY, V15, P186 NR 28 TC 45 Z9 53 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1999 VL 4 IS 1 BP 28 EP 37 DI 10.1159/000013817 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 152UT UT WOS:000077795700004 PM 9873150 ER PT J AU Popescu, M Papadimitriou, S Karamitsos, D Bezerianos, A AF Popescu, M Papadimitriou, S Karamitsos, D Bezerianos, A TI Adaptive denoising and multiscale detection of the V wave in brainstem auditory evoked potentials SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE brainstem auditory evoked potentials; wavelet transform; neural networks ID MULTIRESOLUTION ANALYSIS; STEM RESPONSES; FREQUENCY; TRANSFORM; IDENTIFICATION; FILTERS; DECOMPOSITION; ALGORITHMS; NETWORKS; LATENCY AB This paper describes a wavelet-transform-based system for the V wave identification in brainstem auditory evoked potentials (BAEP). The system combines signal denoising and rule-based localization modules. The signal denoising module has the potential of effective noise reduction after signal averaging. It analyses adaptively the evolution of the wavelet transform maxima across scales. The singularities of the signal create wavelet maxima with different properties from those of the induced noise. A non-linear filtering process implemented with a neural network extracts out the noise-induced maxima. The filtered wavelet details are subsequently analysed by the rule-based localization module for the automatic identification of the V wave. In the first phase, it implements a set of statistical observations as well as heuristic criteria used by human experts in order to classify the IV-V complex. At the second phase, using a multiscale focusing algorithm, the IV and V waves are positioned on the BAEP signal. Our experiments revealed that the system provides accurate results even for signals exhibiting unclear IV-V complexes. C1 Univ Patras, Sch Med, Dept Med Phys, Patras 26500, Greece. Hippokrates Otol Ctr, Patras, Greece. RP Bezerianos, A (reprint author), Univ Patras, Sch Med, Dept Med Phys, Patras 26500, Greece. EM Bezer@patreas.upatras.gr CR BERTRAND O, 1994, IEEE T BIO-MED ENG, V41, P77, DOI 10.1109/10.277274 BOSTON JR, 1980, ELECTROEN CLIN NEURO, V48, P361, DOI 10.1016/0013-4694(80)90273-4 BOSTON JR, 1989, IEEE T BIO-MED ENG, V36, P528, DOI 10.1109/10.24254 CHIAPPA KH, 1983, EVOKED POTENTIALS CL, P106 CHIPMAN HA, 1996, 421 U CHIC DEP STAT Chui C., 1992, WAVELET ANAL ITS APP COHEN L, 1989, P IEEE, V77, P941, DOI 10.1109/5.30749 COIFMAN RR, 1992, IEEE T INFORM THEORY, V38, P713, DOI 10.1109/18.119732 de Weerd J. P. C., 1978, Biological Cybernetics, V30 DONOHO DL, 1995, IEEE T INFORM THEORY, V41, P613, DOI 10.1109/18.382009 ELTON M, 1984, ELECTROEN CLIN NEURO, V57, P490, DOI 10.1016/0013-4694(84)90079-8 Gabor D., 1946, Journal of the Institution of Electrical Engineers. III. Radio and Communication Engineering, V93 GRONFORS T, 1993, INT J BIOMED COMPUT, V32, P171, DOI 10.1016/0020-7101(93)90012-U GROSSMANN A, 1984, SIAM J MATH ANAL, V15, P723, DOI 10.1137/0515056 HABRAKEN JBA, 1993, COMPUT BIOL MED, V23, P369, DOI 10.1016/0010-4825(93)90134-M Hall J W 3rd, 1997, Adv Otorhinolaryngol, V53, P21 Haykin S., 1994, NEURAL NETWORKS HOKE M, 1984, AUDIOLOGY, V23, P195 LI CW, 1995, IEEE T BIO-MED ENG, V42, P21 MALLAT S, 1991, IEEE T INFORM THEORY, V37, P1019, DOI 10.1109/18.86995 MALLAT S, 1992, IEEE T INFORM THEORY, V38, P617, DOI 10.1109/18.119727 MALLAT S, 1992, IEEE T PATTERN ANAL, V14, P710, DOI 10.1109/34.142909 MALLAT SG, 1989, IEEE T PATTERN ANAL, V11, P674, DOI 10.1109/34.192463 MARTIN W, 1985, IEEE T ACOUST SPEECH, V33, P1461, DOI 10.1109/TASSP.1985.1164760 MCGILLEM CD, 1977, IEEE T BIO-MED ENG, V24, P232, DOI 10.1109/TBME.1977.326208 Papadimitriou S, 1996, J SYST ARCHITECT, V42, P55, DOI 10.1016/1383-7621(96)00007-0 Papadimitriou S, 1997, INT J MED INFORM, V44, P177, DOI 10.1016/S1386-5056(97)00019-1 POGGIO T, 1990, SCIENCE, V247, P978, DOI 10.1126/science.247.4945.978 PORTNOFF MR, 1980, IEEE T ACOUST SPEECH, V28, P55, DOI 10.1109/TASSP.1980.1163359 PRATT H, 1989, AUDIOLOGY, V28, P272 RAZ J, 1995, WAVELET APPL MED BIO Rioul O, 1991, IEEE SIGNAL PROC MAG, V8, P14, DOI 10.1109/79.91217 SAMAR VJ, 1995, BRAIN COGNITION, V27, P398, DOI 10.1006/brcg.1995.1028 SCHIMMEL H, 1967, SCIENCE, V157, P92, DOI 10.1126/science.157.3784.92 STARR A, 1982, ANN NY ACAD SCI, V388, P427, DOI 10.1111/j.1749-6632.1982.tb50807.x THAKOR NV, 1987, IEEE T BIO-MED ENG, V34, P6, DOI 10.1109/TBME.1987.326024 THAKOR NV, 1993, IEEE T BIO-MED ENG, V40, P1085, DOI 10.1109/10.245625 THORNTON C, 1984, BRIT J ANAESTH, V56, P315, DOI 10.1093/bja/56.4.315 VIDAKOVIC B, 1994, 9424 ISDS DUK U Ville J., 1948, Cables et Transmission, V2 WONG PKH, 1980, ELECTROEN CLIN NEURO, V50, P25, DOI 10.1016/0013-4694(80)90320-X YU KB, 1983, IEEE T BIO-MED ENG, V30, P730, DOI 10.1109/TBME.1983.325187 YU XH, 1994, IEEE T BIO-MED ENG, V41, P1062 YU XH, 1994, IEEE T BIO-MED ENG, V41, P1072 NR 44 TC 11 Z9 11 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1999 VL 4 IS 1 BP 38 EP 50 DI 10.1159/000013818 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 152UT UT WOS:000077795700005 PM 9873151 ER PT J AU Khvoles, R Freeman, S Sohmer, H AF Khvoles, R Freeman, S Sohmer, H TI Effect of temperature on the transient evoked and distortion product otoacoustic emissions in rats SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE transient; distortion product; otoacoustic emissions; temperature; hypothermia; cochlear amplifier ID 2 DISCRETE SOURCES; OUTER HAIR-CELLS; BRAIN-STEM; HYPOTHERMIA; RESPONSES; RABBIT; VULNERABILITY; DEPENDENCY; POTENTIALS; ELEVATION AB In order to study the energy dependence of the cochlear amplifier, transient evoked otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) were recorded in rats during gradual cooling to 27 degrees C and heating to 40 degrees C, In the range 33-39 degrees C, the TEOAEs and DPOAEs were Otoacoustic emissions maximal in amplitude and almost insensitive to temperature, However, they were significantly depressed (reversibly) at higher and lower temperatures. Intensity functions were plotted at 37, 27 and 40 degrees C for both types of oto-acoustic emissions. At 37 degrees C intensity functions were nonlinear, with a notch at mid-intensity regions. At 27 degrees C, the magnitudes were depressed more at the lower intensities and threshold elevations were observed. As a result, the intensity functions were more linear and the notch was no longer seen. This result provides further evidence for a more active, energy-dependent component of the otoacoustic emissions at lower intensities for both TEOAEs and DPOAEs. The cooling probably affects the lower intensity otoacoustic emissions by inducing a depression in the endocochlear potential, by reducing the motility of the outer hair cells and by introducing a small conductive hearing loss. C1 Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. CR BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWN MC, 1983, J ACOUST SOC AM, V73, P1662, DOI 10.1121/1.389387 COATS AC, 1965, SCIENCE, V150, P1481, DOI 10.1126/science.150.3702.1481 DIJK P, 1989, HEARING RES, V42, P273 FerberViart C, 1995, HEARING RES, V91, P202, DOI 10.1016/0378-5955(95)00193-X Geal-Dor Miriam, 1997, Journal of Basic and Clinical Physiology and Pharmacology, V8, P127 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F GITTER AH, 1992, ORL J OTO-RHINO-LARY, V54, P121 GOLD S, 1985, ELECTROEN CLIN NEURO, V60, P146, DOI 10.1016/0013-4694(85)90021-5 GULICK W. L., 1960, ANN OTOL RHINOL AND LARYNGOL, V69, P35 HENRY KR, 1980, AUDIOLOGY, V19, P44 Khvoles R, 1996, HEARING RES, V97, P120 KONISHI T, 1981, HEARING RES, V4, P265, DOI 10.1016/0378-5955(81)90011-3 MANLEY GA, 1994, HEARING RES, V72, P171, DOI 10.1016/0378-5955(94)90216-X Manley GA, 1996, J ACOUST SOC AM, V99, P1588, DOI 10.1121/1.414680 MARKAND ON, 1987, ANN NEUROL, V22, P507, DOI 10.1002/ana.410220410 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 MUSTAFA KY, 1997, ELECTROENCEPHALOGR C, V71, P133 Noyes WS, 1996, OTOLARYNG HEAD NECK, V115, P548, DOI 10.1016/S0194-5998(96)70009-8 OBRIEN AJ, 1994, BRIT J AUDIOL, V28, P281, DOI 10.3109/03005369409086578 OHLEMILLER KK, 1992, HEARING RES, V63, P79, DOI 10.1016/0378-5955(92)90076-Y ROSSI GT, 1984, ELECTROEN CLIN NEURO, V57, P143, DOI 10.1016/0013-4694(84)90173-1 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 SCHMIDT RS, 1962, J CELL COMPAR PHYSL, V59, P311, DOI 10.1002/jcp.1030590311 SHORE SE, 1985, J ACOUST SOC AM, V77, P590, DOI 10.1121/1.391877 SMOLDERS JWT, 1990, ELECTROEN CLIN NEURO, V75, P97, DOI 10.1016/0013-4694(90)90157-F SOHMER H, 1989, ELECTROEN CLIN NEURO, V74, P50, DOI 10.1016/0168-5597(89)90051-8 VANDIJK P, 1987, J ACOUST SOC AM, V82, P2147, DOI 10.1121/1.395660 WERNER YI, 1976, J EXP ZOOL, V195, P319, DOI 10.1002/jez.1401950302 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 NR 33 TC 11 Z9 11 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1998 VL 3 IS 6 BP 349 EP 360 DI 10.1159/000013805 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120HT UT WOS:000075951500001 PM 9732129 ER PT J AU Kakigi, A Hirakawa, H Harel, N Mount, RJ Harrison, RV AF Kakigi, A Hirakawa, H Harel, N Mount, RJ Harrison, RV TI Basal cochlear lesions result in increased amplitude of otoacoustic emissions SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE aminoglycoside; amikacin; ototoxicity; otoacoustic emission; monitoring; scanning electron microscopy; cochleogram; auditory brainstem evoked responses ID ACOUSTIC DISTORTION PRODUCTS; OTOTOXICITY; NEPHROTOXICITY; ANTIBIOTICS; AMIKACIN; BLOOD AB We have measured the changes in transient otoacoustic emissions (TEOAEs) and distortion product otoacoustic emissions (DPOAEs) during and after ototoxic amikacin treatment in an animal (chinchilla) model. TEOAE and DPOAE were recorded from 6 adult chinchillas over a 6-week time course starting just before a 5-day or 7-day treatment period with amikacin sulphate (400 mg/kg/day, i.m.). After final recordings, cochlear morphology was assessed by scanning electron microscopy. Generally, both DPOAE and TEOAE amplitudes change during and after treatment in a systematic fashion. High-frequency components change first, followed by lower-frequency components. We note that there is often a long latency to the onset of changes in otoacoustic emissions (OAE), and that these changes can continue for weeks after treatment. Most importantly we report that when the basal region of the cochlea is damaged in the frequency region above the OAE recording bandwidth (0.6-6 kHz for TEOAE; 1-6.7 kHz for DPOAE), we often find an increase in OAE amplitudes. More specifically, we note that as a cochlear lesion progresses apically, there is often a transient increase in a frequency-specific OAE before it reduces or is lost. Our results suggest that the increase in OAE amplitudes precedes the expression of detectable cochlear pathology. C1 Hosp Sick Children, Dept Otolaryngol, Toronto, ON M5G 1X8, Canada. Univ Toronto, Dept Otolaryngol, Auditory Sci Lab, Toronto, ON, Canada. RP Harrison, RV (reprint author), Hosp Sick Children, Dept Otolaryngol, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. CR BARZA M, 1977, J MAINE MED ASSOC, V68, P194 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWN AM, 1989, HEARING RES, V42, P143, DOI 10.1016/0378-5955(89)90140-8 Brummett RE, 1982, AMINOGLYCOSIDES MICR, P419 CAMPBELL KCM, 1993, OTOLARYNG CLIN N AM, V26, P903 DAHLGREN JG, 1975, ANTIMICROB AGENTS CH, V8, P58 ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 FAUSTI S, 1994, EAR HEARING, V15, P232, DOI 10.1097/00003446-199406000-00004 GATELL JM, 1983, ANTIMICROB AGENTS CH, V23, P897 Harrison R V, 1979, SCAND AUDIOL S, P83 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P31, DOI 10.3109/00016489309135763 HAWKINS JE, 1953, ANN OTO RHINOL LARYN, V62, P1128 HENLEY CM, 1988, AUDIOLOGY, V27, P137 HENLEY CM, 1995, BRAIN RES REV, V20, P68, DOI 10.1016/0165-0173(94)00006-B Henley CM, 1996, HEARING RES, V98, P93, DOI 10.1016/0378-5955(96)00077-9 HOTZ MA, 1990, EUR ARCH OTO-RHINO-L, V247, P202 HOTZ MA, 1994, LARYNGOSCOPE, V104, P1130 HUNTERDUVAR IM, 1978, SCANNING ELECTRON MI, V2, P423 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 LIM DJ, 1976, ANN OTO RHINOL LARYN, V85, P740 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARTIN GK, 1987, HEARING RES, V28, P191, DOI 10.1016/0378-5955(87)90049-9 MEYER RD, 1981, ANN INTERN MED, V95, P328 MOUNTAIN DC, 1986, NEUROBIOLOGY HEARING, P77 PLAUT ME, 1979, J MED, V10, P257 SARUBBI FA, 1978, ANN INTERN MED, V89, P612 ZOROWKA P, 1993, INT J PEDIATR OTORHI, V27, P245, DOI 10.1016/0165-5876(93)90230-Z NR 27 TC 20 Z9 21 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1998 VL 3 IS 6 BP 361 EP 372 DI 10.1159/000013806 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120HT UT WOS:000075951500002 PM 9732130 ER PT J AU Sockalingam, R Filippich, L Sommerlad, S Murdoch, B Charles, B AF Sockalingam, R Filippich, L Sommerlad, S Murdoch, B Charles, B TI Transient-evoked and 2F(1)-F-2 distortion product oto-acoustic emissions in dogs: Preliminary findings SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE oto-acoustic emission; transient-evoked distortion product; dog; animal model ID BRAIN-STEM RESPONSE; OTOACOUSTIC EMISSIONS; HEARING-LOSS; GUINEA-PIG; BASIC FEATURES; EARS; FUROSEMIDE; HUMANS AB Transient (click)-evoked oto-acoustic emissions (TEOAEs) and distortion product oto-acoustic emissions (DPOAEs) were recorded in a feasibility study in 7 healthy mixed-breed dogs using the ILO 92 OAE analyser (Oto-dynamics, Hartfield, UK). Five dogs were found to have normal hearing in both ears and 2 dogs in the left ear only following otoscopy, tympanometry and auditory brainstem response audiometry. Twelve sets of TEOAEs (click-evoked) to 80 dB peSPL click stimulus and 9 sets of DPOAEs (2F(1)-F-2) to 8 different stimulus levels of the primary tones (L-1/L-2) were collected at 11 test frequencies (F-2) in these normal-hearing dogs. TEOAEs were successfully recorded in 11 of the 12 ears using the default user setting and in all 12 ears using the quickscreen program. DPOAEs were successfully recorded in all 9 ears tested. While the TEOAEs parameters matched those for humans, the average signal-to-noise ratio of DPOAEs was considerably higher in the dogs. Stimulus levels at 55/55, 55/45 and 55/35 dB SPL were demonstrated to produce DPOAEs that seem to reflect the active dynamic status of the outer hair cell system. Postmortem DPOAEs at these stimulus levels and TEOAEs at 80 Db peSPL could not be elicited 5 min following euthanasia of dogs. However, DPOAEs could still be recorded albeit with reduced amplitude at stimulus levels where L-1 > 55 dB SPL. The results suggest that TEOAEs and DPOAEs in dogs have the potential to provide valuable insights into their mechanisms of generation, and the specific role and behaviour of outer hair cells of the cochlea in certain pathological conditions, particularly in drug-induced ototoxicity, in humans. C1 Univ Queensland, Dept Speech Pathol & Audiol, Brisbane, Qld 4072, Australia. Univ Queensland, Sch Vet Sci, Brisbane, Qld 4072, Australia. Univ Queensland, Sch Pharm, Brisbane, Qld 4072, Australia. RP Sockalingam, R (reprint author), Univ Queensland, Dept Speech Pathol & Audiol, Brisbane, Qld 4072, Australia. RI Charles, Bruce/G-4411-2010; Charles, Bruce/A-3828-2012; Murdoch, Bruce/C-1397-2012 CR AVAN P, 1990, HEARING RES, V44, P151, DOI 10.1016/0378-5955(90)90077-3 AVAN P, 1995, J ACOUST SOC AM, V97, P3012, DOI 10.1121/1.411866 BALKANY T, 1994, AM J OTOL, V15, P29 BONFILS P, 1989, ANN OTO RHINOL LARYN, V98, P326 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BROWN AM, 1987, HEARING RES, V31, P25, DOI 10.1016/0378-5955(87)90211-5 BROWNELL WE, 1990, EAR HEARING, V11, P82, DOI 10.1097/00003446-199004000-00003 Burkard R, 1996, Audiol Neurootol, V1, P197 FRANKLIN D, 1991, HEARING RES, V13, P185 HARRIS FP, 1990, J SPEECH HEAR RES, V33, P594 HARRIS FP, 1989, J ACOUST SOC AM, V85, P220, DOI 10.1121/1.397728 HARRIS FP, 1991, EAR HEARING, V12, P399, DOI 10.1097/00003446-199112000-00004 HILGER AW, 1995, HEARING RES, V84, P1, DOI 10.1016/0378-5955(95)00007-Q KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 Kemp David T., 1993, Seminars in Hearing, V14, P30, DOI 10.1055/s-0028-1085103 Khvoles R, 1996, HEARING RES, V97, P120 LONSBURYMARTIN BL, 1993, PROG BRAIN RES, V97, P77 LONSBURYMARTIN BL, 1990, EAR HEARING, V11, P90 LONSBURYMARTIN BL, 1987, HEARING RES, V28, P173, DOI 10.1016/0378-5955(87)90048-7 MARTIN GK, 1988, HEARING RES, V33, P49, DOI 10.1016/0378-5955(88)90020-2 MILLS DM, 1994, HEARING RES, V77, P183, DOI 10.1016/0378-5955(94)90266-6 Munro KJ, 1997, BRIT J AUDIOL, V31, P309, DOI 10.3109/03005364000000025 Munro KJ, 1997, J SMALL ANIM PRACT, V38, P2, DOI 10.1111/j.1748-5827.1997.tb02976.x NELSON DA, 1992, J SPEECH HEAR RES, V35, P1142 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 RESHEF I, 1993, BRIT J AUDIOL, V27, P387, DOI 10.3109/03005369309076715 ROBINETTE M S, 1992, Seminars in Hearing, V13, P23, DOI 10.1055/s-0028-1085139 SIMS MH, 1994, PROG VET NEUROL, V5, P49 UEDA H, 1992, HEARING RES, V62, P199, DOI 10.1016/0378-5955(92)90187-R WHITEHEAD M L, 1992, Seminars in Hearing, V13, P81, DOI 10.1055/s-0028-1085143 WHITEHEAD ML, 1990, LECT NOTES BIOMATH, V87, P243 WIEDERHOLD ML, 1986, PERIPHERAL AUDITORY, P322 WILSON JP, 1980, HEARING RES, V2, P527, DOI 10.1016/0378-5955(80)90090-8 WIT HP, 1982, HEARING RES, V8, P1, DOI 10.1016/0378-5955(82)90030-2 Zheng XY, 1996, HEARING RES, V95, P161, DOI 10.1016/0378-5955(96)00047-0 ZUREK PM, 1982, J ACOUST SOC AM, V72, P774, DOI 10.1121/1.388258 NR 37 TC 6 Z9 6 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1998 VL 3 IS 6 BP 373 EP 385 DI 10.1159/000013807 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120HT UT WOS:000075951500003 PM 9732131 ER PT J AU Lamprecht-Dinnesen, A Pohl, M Hartmann, S Heinecke, A Ahrens, S Muller, E Riebandt, M AF Lamprecht-Dinnesen, A Pohl, M Hartmann, S Heinecke, A Ahrens, S Muller, E Riebandt, M TI Effects of age, gender and ear side on SOAE parameters in infancy and childhood SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE spontaneous otoacoustic emissions; age effect; gender difference; ear side difference; infancy; childhood ID SPONTANEOUS OTOACOUSTIC EMISSIONS; MEDIAL OLIVOCOCHLEAR SYSTEM; NORMALLY HEARING SUBJECTS; BRAIN-STEM RESPONSE; FUNCTIONAL MATURATION; NOISE EXPOSURE; HEAD SIZE; ASYMMETRY; CHILDREN; PRETERM AB We investigated 267 infants and children aged 9 days to 16.8 years to study the spontaneous otoacoustic emission (SOAE) data prevalence, number per ear, level and frequency as a function of growth. Dependence on age, gender and ear side was statistically analyzed using the method of generalized estimation equations. Except in the Ist year of life, SOAE prevalence per ear and SOAE number per ear decreased significantly with increasing age. Both SOAE parameters were significantly higher in female than in male subjects, with gender difference of SOAE prevalence per ear being more distinct in the Ist year of life. Although a clear ear side effect on SOAE prevalence per ear could already be seen in ears of female children in this age group, only SOAE number per ear was significantly higher in right ears than in left ears from the ist year of life on. Except in the first 12 months, SOAE level and SOAE frequency decreased significantly with increasing age. Neither a significant gender difference nor a significant ear side difference could be determined. Our results found in infancy and childhood are discussed within the framework of the current literature. C1 Univ Munster, Dept Phoniatr & Pedaudiol, D-48129 Munster, Germany. Univ Munster, Inst Informat & Biomath, D-48129 Munster, Germany. Univ Munster, Dept Pediat Hematol Oncol, D-48129 Munster, Germany. RP Lamprecht-Dinnesen, A (reprint author), Univ Munster, Dept Phoniatr & Pedaudiol, Kardinal von Galen Ring 10, D-48129 Munster, Germany. EM a.lamprecht.dinnesen@uni-muenster.de CR RUGGERO MA, 1983, HEARING RES, V10, P283, DOI 10.1016/0378-5955(83)90094-1 AXELSSON A, 1981, SCAND AUDIOL, V10, P91, DOI 10.3109/01050398109076167 BARGONES JY, 1988, J ACOUST SOC AM, V83, P1809, DOI 10.1121/1.396515 BENTLER RA, 1989, J SPEECH HEAR DISORD, V54, P264 BIESALSKI P, 1982, PHONIATRIE PADAUDIOL, P355 BILGER RC, 1990, J SPEECH HEAR RES, V33, P418 BOHME G, 1984, AUDIOMETRIC HORPRUFU, P259 BONFILS P, 1992, LARYNGOSCOPE, V102, P182 BONFILS P, 1989, LARYNGOSCOPE, V99, P752 Bray P., 1989, THESIS U COLL MIDDLE Brienesse P, 1996, AUDIOLOGY, V35, P296 BRIGHT KE, 1984, ASHA, V26, P147 BURNS EM, 1994, J ACOUST SOC AM, V95, P385, DOI 10.1121/1.408330 BURNS EM, 1992, J ACOUST SOC AM, V91, P1571, DOI 10.1121/1.402438 CHANG KW, 1993, ARCH OTOLARYNGOL, V119, P276 CHATRIAN GE, 1985, EAR HEARING, V6, P130, DOI 10.1097/00003446-198505000-00002 CHUNG DY, 1983, J ACOUST SOC AM, V73, P1277, DOI 10.1121/1.389276 COLLET L, 1993, BRAIN DEV-JPN, V15, P249, DOI 10.1016/0387-7604(93)90018-4 DALLMAYR C, 1985, ACUSTICA, V59, P67 FRICK LR, 1988, EAR HEARING, V9, P190, DOI 10.1097/00003446-198808000-00004 FRITZE W, 1986, LARYNGO RHINO OTOL, V65, P600, DOI 10.1055/s-2007-1008046 HAMMEL DR, 1983, THESIS U ILLINOIS UR HAUSER R, 1991, ARCH OTOLARYNGOL H S, V2, P138 IBARGUEN AM, 1995, ACTA OTORRINOLARINGO, V46, P175 JERGER J, 1974, ARCH OTOLARYNGOL, V99, P165 JURZITZA D, 1992, THESIS TU MUNCHEN KANNAN PM, 1974, J ACOUST SOC AM, V55, P1092, DOI 10.1121/1.1914657 KEEFE DH, 1994, J ACOUST SOC AM, V95, P355, DOI 10.1121/1.408380 KEMP DT, 1990, EAR HEARING, V11, P93 Khalfa S, 1997, ACTA OTO-LARYNGOL, V117, P192, DOI 10.3109/00016489709117767 Khalfa S, 1996, NEUROREPORT, V7, P993, DOI 10.1097/00001756-199604100-00008 KOK MR, 1993, HEARING RES, V69, P115, DOI 10.1016/0378-5955(93)90099-M KRUGER B, 1987, ACTA OTO-LARYNGOL, V103, P578 LEHNHARDT E, 1996, PRAXIS AUDIOMETRIE, P54 LEVINE RA, 1988, NEUROPSYCHOLOGIA, V26, P603, DOI 10.1016/0028-3932(88)90116-9 LONSBURYMARTIN BL, 1990, ANN OTO RHINOL LARYN, V99, P15 Lonsbury-Martin B L, 1990, Ann Otol Rhinol Laryngol Suppl, V147, P3 LONSBURYMARTIN BL, 1988, HEARING RES, V33, P69, DOI 10.1016/0378-5955(88)90021-4 MANCL LA, 1995, 9503 U WASH DEP DENT MARTIN GK, 1990, EAR HEARING, V11, P106 MCFADDEN D, 1993, HEARING RES, V71, P208, DOI 10.1016/0378-5955(93)90036-Z MCFADDEN D, 1995, HEARING RES, V85, P181, DOI 10.1016/0378-5955(95)00045-6 MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MITCHELL C, 1989, HEARING RES, V40, P75, DOI 10.1016/0378-5955(89)90101-9 MORLET T, 1995, HEARING RES, V90, P44, DOI 10.1016/0378-5955(95)00144-4 MORLET T, 1993, ACTA OTO-LARYNGOL, V113, P271, DOI 10.3109/00016489309135808 MORLET T, 1995, INT J PEDIATR OTORHI, V33, P207, DOI 10.1016/0165-5876(95)01210-9 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M ORCHIK DJ, 1978, ARCH OTOLARYNGOL, V104, P409 PENNER MJ, 1993, HEARING RES, V68, P229, DOI 10.1016/0378-5955(93)90126-L PINKERTON F, 1989, DEV MED CHILD NEUROL, V31, P569 PIRILA T, 1992, AUDIOLOGY, V31, P150 PIRILA T, 1991, ACTA OTO-LARYNGOL, V111, P861, DOI 10.3109/00016489109138422 PROBST R, 1986, HEARING RES, V21, P261, DOI 10.1016/0378-5955(86)90224-8 Probst R, 1990, Adv Otorhinolaryngol, V44, P1 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PROBST R, 1990, ADV AUDIOL, V7, P117 ROCHE AF, 1978, J ACOUST SOC AM, V64, P1593, DOI 10.1121/1.382143 ROYSTER LH, 1980, J ACOUST SOC AM, V68, P551, DOI 10.1121/1.384769 RYAN S, 1994, ACTA OTO-LARYNGOL, V114, P485, DOI 10.3109/00016489409126091 SATO H, 1991, ACTA OTO-LARYNGOL, V111, P1037, DOI 10.3109/00016489109138447 SCHLOTH E, 1983, ACUSTICA, V53, P250 SIERVOGEL RM, 1982, J ACOUST SOC AM, V71, P372, DOI 10.1121/1.387462 SOENDLIN H, 1990, NOVA ACTA LEOPOLDINA, P21 STOVER L, 1993, J ACOUST SOC AM, V94, P2670, DOI 10.1121/1.407351 STRICKLAND EA, 1985, J ACOUST SOC AM, V78, P931, DOI 10.1121/1.392924 TALMADGE CL, 1993, HEARING RES, V71, P170, DOI 10.1016/0378-5955(93)90032-V TRUNE DR, 1988, HEARING RES, V32, P165, DOI 10.1016/0378-5955(88)90088-3 WABLE J, 1994, HEARING RES, V80, P141, DOI 10.1016/0378-5955(94)90105-8 WESTWOOD GFS, 1992, BRIT J AUDIOL, V26, P143, DOI 10.3109/03005369209079032 WHITEHEAD ML, 1993, SCAND AUDIOL, V22, P3, DOI 10.3109/01050399309046012 WIER CC, 1984, J ACOUST SOC AM, V76, P1248, DOI 10.1121/1.391376 Wright A, 1987, Acta Otolaryngol Suppl, V436, P15 Zheng XY, 1997, HEARING RES, V104, P191, DOI 10.1016/S0378-5955(96)00187-6 ZUREK PM, 1981, J ACOUST SOC AM, V69, P514, DOI 10.1121/1.385481 NR 75 TC 16 Z9 20 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1998 VL 3 IS 6 BP 386 EP 401 DI 10.1159/000013808 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120HT UT WOS:000075951500004 PM 9732132 ER PT J AU Hatzopoulos, S Prosser, S Mazzoli, M Rosignoli, M Martini, A AF Hatzopoulos, S Prosser, S Mazzoli, M Rosignoli, M Martini, A TI Clinical applicability of transient evoked otoacoustic emissions: Identification and classification of hearing loss SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE otoacoustic emissions; TEOAE; identification of hearing loss; classification of hearing loss ID IMPAIRED EARS; THRESHOLDS AB The study aimed at the development of a clinically applicable methodology that could: (1) discriminate transient evoked otoacoustic emission (TEOAE) recordings from normal hearing or hearing impaired individuals; (2) classify the nature of the hearing loss as conductive or as cochlear, and (3) define clear-cut TEOAE clinical criteria, A classification algorithm based on a multivariate discriminant analysis of fast Fourier transform data from recordings evoked by click stimuli of 50 +/- 2, 62 +/- 2, 68 +/- 2 and 80 +/- 2 dB SPL was used to discriminate 302 normal subjects from 383 subjects suffering from mild to moderate hearing losses, The best discriminant model (QDF80) produced a sensitivity of 93.8% and a specificity of 79.4%. When extra correlation criteria were serially applied to the classification outcome, the specificity was increased to 85.3%, but the sensitivity was marginally decreased to 91.7%. The classification of the correctly identified hearing-impaired cases yielded 93.8% identification of conductive and 75.1% identification of cochlear cases, A sensitivity analysis of the misclassified hearing-impaired cases suggested that the TEOAE spectra are well correlated with the 2-kHz but poorly correlated with the 4-kHz octave frequency. C1 Univ Ferrara, ENT Dept, Serv Audiol, I-44100 Ferrara, Italy. RP Hatzopoulos, S (reprint author), Univ Ferrara, ENT Dept, Serv Audiol, 203 Corso Giovecca, I-44100 Ferrara, Italy. EM sdh@dns.unife.it CR BONFILS P, 1988, ARCH OTO-RHINO-LARYN, V245, P53, DOI 10.1007/BF00463550 BRASS D, 1994, EAR HEARING, V15, P467, DOI 10.1097/00003446-199412000-00008 COLET L, 1989, REV LARYNGOL OTOL RH, V110, P67 COLLET L, 1991, AUDIOLOGY, V30, P164 DARGALINOUBARY GR, 1992, COMMUN STAT-THEOR M, V19, P2439 FUKAZAWA T, 1992, HEARING RES, V59, P17, DOI 10.1016/0378-5955(92)90097-7 GORGA MP, 1993, J ACOUST SOC AM, V94, P2639, DOI 10.1121/1.407348 HALL JW, 1994, OTOLARYNG HEAD NECK, V110, P22, DOI 10.1016/S0194-5998(94)70789-8 Hatzopoulos S, 1995, AUDIOLOGY, V34, P248 HATZOPOULOS S, 1994, THESIS WORCESTER HAUSER R, 1991, EUR ARCH OTO-RHINO-L, V248, P345 Hurley R M, 1994, J Am Acad Audiol, V5, P195 KEMP DT, 1978, J ACOUST SOC AM, V64, P1386, DOI 10.1121/1.382104 KEMP DT, 1993, SEMIN HEAR, V14, P33 Kemp D T, 1991, Acta Otolaryngol Suppl, V482, P73 KIMBERLEY BP, 1994, EAR HEARING, V15, P199, DOI 10.1097/00003446-199406000-00001 LEPAGE EL, 1991, INTERNOISE 91 P, V1, P217 MCLACHLAN G, 1990, DISCRIMINANT ANAL ST PRIEVE BA, 1993, J ACOUST SOC AM, V93, P3308, DOI 10.1121/1.405715 RESHEF I, 1993, BRIT J AUDIOL, V27, P387, DOI 10.3109/03005369309076715 Whitehead ML, 1995, EAR HEARING, V16, P599 WIT HP, 1994, HEARING RES, V81, P208, DOI 10.1016/0378-5955(94)90166-X NR 22 TC 5 Z9 8 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1998 VL 3 IS 6 BP 402 EP 418 DI 10.1159/000013809 PG 17 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120HT UT WOS:000075951500005 PM 9732133 ER PT J AU van Huffelen, WM Mateijsen, NJM Wit, HP AF van Huffelen, WM Mateijsen, NJM Wit, HP TI Classification of patients with Meniere's disease using otoacoustic emissions SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE Meniere's disease; click evoked otoacoustic emissions; distortion product otoacoustic emissions ID SENSORINEURAL HEARING-LOSS; ENDOLYMPHATIC HYDROPS; DISTORTION-PRODUCT; FINE-STRUCTURE; MIDDLE; MODEL AB Otoacoustic emissions (OAEs) were studied in patients with Meniere's disease in order to assess their usefulness for distinguishing between different stages of the disease. An accurate classification of Meniere's patients is expected to allow optimalization of the treatment for each particular stage. Click-evoked and distortion product OAEs were evaluated in both ears for 70 Meniere's patients. Based on these measurements, Meniere's patients can be divided into four different categories. In patients with small hearing losses OAEs are found, whereas patients with pure-tone thresholds larger than 60 dB exhibit no OAEs at all. In the intermediate range (30- to 60-dB thresholds) two categories of patients are distinguished: patients with relatively large emissions and patients without measurable emissions. These findings suggest the presence of various stages in the pathophysiological mechanism involved in Meniere's disease. Additionally, Meniere's patients with contralateral ears with normal thresholds have significantly smaller emissions than normal-hearing adults. This observation could represent a very early manifestation of bilateral Meniere's disease, which cannot be detected by other diagnostic methods. C1 Univ Groningen Hosp, Dept Otorhinolaryngol, NL-9700 RB Groningen, Netherlands. RP van Huffelen, WM (reprint author), Univ Groningen Hosp, Dept Otorhinolaryngol, POB 30001, NL-9700 RB Groningen, Netherlands. CR AVAN P, 1996, DIVERSITY AUDITORY M BARTOLI R, 1992, B SOC ITAL BIOL SPER, V3, P217 Beasley NJP, 1996, J LARYNGOL OTOL, V110, P1107 BONFILS P, 1988, ARCH OTO-RHINO-LARYN, V245, P53, DOI 10.1007/BF00463550 Buki B, 1996, HEARING RES, V94, P125, DOI 10.1016/0378-5955(96)00015-9 COLLET L, 1990, HEARING RES, V43, P251, DOI 10.1016/0378-5955(90)90232-E COLLET L, 1993, EAR HEARING, V14, P141, DOI 10.1097/00003446-199304000-00009 Dunnebier EA, 1997, ACTA OTO-LARYNGOL, V117, P13, DOI 10.3109/00016489709117984 HARRIS FP, 1992, ACTA OTO-LARYNGOL, V112, P36, DOI 10.3109/00016489209100780 He NJ, 1996, J ACOUST SOC AM, V99, P1002, DOI 10.1121/1.414629 Heitmann J, 1996, EUR ARCH OTO-RHINO-L, V253, P167, DOI 10.1007/BF00615115 HORNER KC, 1988, HEARING RES, V32, P41, DOI 10.1016/0378-5955(88)90145-1 Kemp D T, 1986, Scand Audiol Suppl, V25, P71 KIMURA RS, 1982, AM J OTOLARYNG, V3, P447, DOI 10.1016/S0196-0709(82)80023-9 KRINGLEBOTN M, 1988, SCAND AUDIOL, V17, P75, DOI 10.3109/01050398809070695 LONSBURYMARTIN BL, 1993, EAR HEARING, V1, P11 MERCHANT SN, 1995, EUR ARCH OTO-RHINO-L, V252, P63 Mrowinski D, 1996, Audiol Neurootol, V1, P125 NADOL JB, 1987, ANN OTO RHINOL LARYN, V96, P449 OHLMS LA, 1991, OTOLARYNG HEAD NECK, V104, P159 OLSEN JE, 1980, AM OTOL RHIN LARYNGO, V86, P15 PRIEVE BA, 1995, EAR HEARING, V16, P521 Rosingh HJ, 1996, ACTA OTO-LARYNGOL, V116, P382, DOI 10.3109/00016489609137861 Sakashita T, 1991, Acta Otolaryngol Suppl, V486, P66 SHEA JJ, 1993, AM J OTOL, V14, P224 TILANUS CC, 1996, CLICK EVOKED OTOACOU Wake M, 1996, ACTA OTO-LARYNGOL, V116, P374, DOI 10.3109/00016489609137860 WELZLMULLER K, 1994, AUDIOLOGY, V33, P28 ZWICKER E, 1984, J ACOUST SOC AM, V75, P1148, DOI 10.1121/1.390763 NR 29 TC 10 Z9 10 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1998 VL 3 IS 6 BP 419 EP 430 DI 10.1159/000013810 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 120HT UT WOS:000075951500006 PM 9732134 ER PT J AU Takeno, S Wake, M Mount, RJ Harrison, RV AF Takeno, S Wake, M Mount, RJ Harrison, RV TI Degeneration of spiral ganglion cells in the chinchilla after inner pair cell loss induced by carboplatin SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE organ of Corti; spiral ganglion cells; morphometry; carboplatin; ototoxicity; chinchilla ID COCHLEAR IMPLANTATION; HEARING-LOSS; GUINEA-PIG; OTOTOXICITY; STIMULATION; NEOMYCIN; DEAFNESS; NEURONS; DAMAGE; ORGAN AB The anticancer drug carboplatin has been used to generate inner hair cell. (IHC) lesions in the cochlea of chinchillas. This has provided a valuable model for the study of the relative roles of IHCs and outer hair cells (OHCs). In the present study, we examined the pathological and temporal relationships between the degeneration of the cochlear IHCs and type I spiral ganglion cells (SGCs). A single intravenous dose of 200 mg/m(2) carboplatin produced extensive IHC loss with no apparent effect on the OHCs. The auditory brainstem response threshold was significantly elevated by 2 weeks following treatment and remained stable through 12 weeks. Elevated thresholds were well correlated with morphological lesions. On the other hand, the SGC population progressively decreased from 2 to 12 weeks after treatment, to about half of the control density values. A positive correlation existed between the density of SGC and the number of surviving IHCs. These results indicate that selective damage to IHCs causes a distinct loss of SGCs. C1 Hiroshima Univ, Sch Med, Dept Otolaryngol, Minami Ku, Hiroshima 734, Japan. Royal Hosp Wolverhampton, Dept Otolaryngol Head & Neck Surg, Wolverhampton WV2 1BT, England. Dudley Hosp, Wolverhampton, England. Hosp Sick Children, Dept Otolaryngol, Auditory Sci Lab, Toronto, ON M5G 1X8, Canada. RP Takeno, S (reprint author), Hiroshima Univ, Sch Med, Dept Otolaryngol, Minami Ku, Kasumi 1-2-3, Hiroshima 734, Japan. CR BICHLER E, 1983, ARCH OTO-RHINO-LARYN, V237, P201, DOI 10.1007/BF00453725 CALVERT AH, 1982, CANCER CHEMOTH PHARM, V9, P140, DOI 10.1007/BF00257742 DUPONT J, 1993, HEARING RES, V68, P217, DOI 10.1016/0378-5955(93)90125-K ELDREDGE DH, 1981, J ACOUST SOC AM, V69, P1091, DOI 10.1121/1.385688 JOHNSSON LG, 1974, ANN OTO RHINOL LARYN, V83, P294 LEAKE PA, 1988, HEARING RES, V33, P11, DOI 10.1016/0378-5955(88)90018-4 MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 MILLER JM, 1983, ANN OTO RHINOL LARYN, V92, P599 MOREST DK, 1983, HEARING RES, V9, P145, DOI 10.1016/0378-5955(83)90024-2 MYERS SF, 1991, OTOLARYNG HEAD NECK, V104, P122 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 NADOL JB, 1991, ANN OTO RHINOL LARYN, V100, P712 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 RUGGERO MA, 1982, HEARING RES, V8, P339, DOI 10.1016/0378-5955(82)90023-5 SCHUKNECHT HF, 1953, AMA ARCH OTOLARYNGOL, V57, P129 SIMMONS FB, 1979, ANN OTO RHINOL LARYN, V88, P533 SPOENDLI.H, 1972, ACTA OTO-LARYNGOL, V73, P235, DOI 10.3109/00016487209138937 SPOENDLIN H, 1975, ACTA OTO-LARYNGOL, V79, P266, DOI 10.3109/00016487509124683 SPOENDLIN H, 1979, ARCH OTO-RHINO-LARYN, V223, P1, DOI 10.1007/BF00455076 Spoendlin H, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P76 STRAUSS M, 1983, LARYNGOSCOPE, V93, P1554, DOI 10.1288/00005537-198312000-00007 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 Wake M, 1996, ACTA OTO-LARYNGOL, V116, P714, DOI 10.3109/00016489609137912 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WEBSTER M, 1981, BRAIN RES, V212, P17, DOI 10.1016/0006-8993(81)90028-7 Wersäll J, 1980, Scand J Infect Dis Suppl, VSuppl 23, P104 YATES FE, 1986, J PHARM SCI, V75, P1019, DOI 10.1002/jps.2600751103 ZAPPIA JJ, 1989, HEARING RES, V40, P29, DOI 10.1016/0378-5955(89)90096-8 NR 28 TC 31 Z9 33 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1998 VL 3 IS 5 BP 281 EP 290 DI 10.1159/000013800 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 116CH UT WOS:000075705200001 PM 9705525 ER PT J AU Krishnan, A McDaniel, SS AF Krishnan, A McDaniel, SS TI Binaural interaction in the human frequency-following response: Effects of interaural intensity difference SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE binaural interaction component; interaural intensity difference; lateralization ID AUDITORY-EVOKED-POTENTIALS; SUPERIOR OLIVARY COMPLEX; BRAIN-STEM POTENTIALS; CLICK LATERALIZATION; INFERIOR COLLICULUS; TIME; CAT; UNITS; COMPONENT; MASKING AB The binaural interaction component (BIC) of the 500-Hz human frequency-following response (FFR) was evaluated as a function of interaural intensity difference (IID) using a lateralization paradigm. The robust FFR interaction component (FFR-BIC) was shown to decrease systematically with increasing IID with no discernible FFR-BIC for IID values larger than about 20 dB, These findings are similar to that observed for the high-frequency auditory brainstem response interaction component (ABR-BIC). Thus, like the ABR-BIC, the FFR-BIC may be correlated with binaural fusion and the perceived location of the fused image of the sound. These results taken together suggest that the binaural neurons in the brainstem are able to utilize IID cues presented in both low-frequency and high-frequency sounds. C1 Univ Tennessee, Dept Speech Pathol & Audiol, Audiol Electrophysiol Lab, Knoxville, TN 37996 USA. RP Krishnan, A (reprint author), Univ Tennessee, Dept Speech Pathol & Audiol, Audiol Electrophysiol Lab, 457 S Stadium Hall, Knoxville, TN 37996 USA. CR ANANTHANARAYAN AK, 1992, EAR HEARING, V13, P228, DOI 10.1097/00003446-199208000-00003 BOUDREAU JC, 1968, J NEUROPHYSIOL, V31, P442 CAIRD D, 1985, ELECTROEN CLIN NEURO, V61, P50, DOI 10.1016/0013-4694(85)91072-7 Colburn HS, 1978, HDB PERCEPTION, VIV, P467 DOBIE RA, 1985, ELECTROEN CLIN NEURO, V62, P56, DOI 10.1016/0168-5597(85)90035-8 DOBIE RA, 1979, ARCH OTOLARYNGOL, V105, P391 DOBIE RA, 1980, ELECTROEN CLIN NEURO, V49, P303, DOI 10.1016/0013-4694(80)90224-2 FURST M, 1985, J ACOUST SOC AM, V78, P1644, DOI 10.1121/1.392802 FURST M, 1990, HEARING RES, V49, P347, DOI 10.1016/0378-5955(90)90113-4 GARDI J, 1979, AUDIOLOGY, V18, P494 GAUMOND RP, 1991, J ACOUST SOC AM, V89, P454, DOI 10.1121/1.400482 GERKEN GM, 1975, CLIN NEUROPHYSIOL, V38, P379 GERULL G, 1984, AUDIOLOGY, V23, P265 GOLDBERG JAY M., 1968, J NEUROPHYSIOL, V31, P639 GUINAN JJ, 1972, INT J NEUROSCI, V4, P147 GUINAN JJ, 1972, INT J NEUROSCI, V4, P101, DOI 10.3109/00207457209147165 HINK RF, 1980, AUDIOLOGY, V19, P36 HOSFORDDUNN H, 1981, AUDIOLOGY, V20, P394 KELLYBALLWEBER D, 1984, AUDIOLOGY, V23, P181 LEVINE RA, 1981, ANN NEUROL, V9, P384, DOI 10.1002/ana.410090412 LEVINE RA, 1991, HEARING RES, V57, P121, DOI 10.1016/0378-5955(91)90081-J MCPHERSON DL, 1993, HEARING RES, V66, P91, DOI 10.1016/0378-5955(93)90263-Z MCPHERSON DL, 1995, HEARING RES, V89, P162, DOI 10.1016/0378-5955(95)00134-1 MOUSHEGI.G, 1973, ELECTROEN CLIN NEURO, V35, P665, DOI 10.1016/0013-4694(73)90223-X MOUSHEGIAN G, 1975, J NEUROPHYSIOL, V38, P1037 Parthasarathy T K, 1993, J Am Acad Audiol, V4, P229 Prasher D K, 1981, Br J Audiol, V15, P189, DOI 10.3109/03005368109081436 ROSE JE, 1966, J NEUROPHYSIOL, V29, P288 SEMPLE MN, 1979, J NEUROPHYSIOL, V42, P1626 SMITH JC, 1975, ELECTROEN CLIN NEURO, V39, P465, DOI 10.1016/0013-4694(75)90047-4 SONTHEIMER D, 1985, ELECTROEN CLIN NEURO, V61, P539, DOI 10.1016/0013-4694(85)90973-3 STILLMAN RD, 1972, EXP NEUROL, V36, P118, DOI 10.1016/0014-4886(72)90140-9 WREGE KS, 1981, ARCH NEUROL-CHICAGO, V38, P572 YIN TCT, 1990, J NEUROPHYSIOL, V64, P465 NR 34 TC 10 Z9 10 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1998 VL 3 IS 5 BP 291 EP 299 DI 10.1159/000013801 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 116CH UT WOS:000075705200002 PM 9705526 ER PT J AU Hoke, ES Muhlnickel, W Ross, B Hoke, M AF Hoke, ES Muhlnickel, W Ross, B Hoke, M TI Tinnitus and event-related activity of the auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tinnitus; magnetoencephalogram; auditory evoked potentials; auditory evoked fields; event-related potentials; event-related fields; contingent negative variation; spectrotemporal analysis; plasticity; reorganization ID CONTINGENT NEGATIVE-VARIATION; EVOKED MAGNETIC-FIELDS; COCHLEAR HEARING-LOSS; NOISE-INDUCED TINNITUS; BRAIN-STEM RESPONSES; ATTENTIONAL DEMANDS; STIMULUS-INTENSITY; VARIATION CNV; POTENTIALS; ORGANIZATION AB A neuromagnetic study in tinnitus patients and normal-hearing controls was performed with a modified contingent negative variation (CNV) paradigm. While the warning stimulus S1 was a tone burst at an intensity well above threshold, the imperative stimulus S2 was presented at a near threshold intensity because, in the majority of cases, the perceived loudness of tinnitus is very close to the threshold for a pure tone of the same frequency. Subjects had to respond to S2 by pressing a button until its offset was detected. In this case, instead of the usual sudden cut-off of the CNV after the perception of S2, a slow negative deflection develops, the post-imperative negative variation (PINV). Its initial portion probably indicates the development of a second initial CNV because the subject had to attend also to the offset of S2. The neuromagnetic data were analysed both in the time domain and in the frequency domain (short-time spectral analysis of the classical EEG bands). The time domain waveform as well as the spectrotemporal patterns of the MEG bands exhibited deviations from the normal pattern in several tinnitus subgroups, depending on the characteristics of tinnitus (tonal vs, noisiform, monaural vs. binaural) and on the stimulation conditions (tinnitus side vs, non-tinnitus side). C1 Univ Munster, Inst Expt Audiol, D-48129 Munster, Germany. Humboldt Univ, Dept Psychol, Berlin, Germany. RP Hoke, ES (reprint author), Univ Munster, Inst Expt Audiol, Kardinal von Galen Ring 10, D-48129 Munster, Germany. CR ALHO K, 1994, BIOL PSYCHOL, V38, P73, DOI 10.1016/0301-0511(94)90050-7 ALLEN JB, 1977, P IEEE, V65, P1558, DOI 10.1109/PROC.1977.10770 ANNETT M, 1967, Q J EXP PSYCHOL, V19, P327, DOI 10.1080/14640746708400109 Attias J, 1996, AUDIOLOGY, V35, P259 Attias J, 1996, EAR HEARING, V17, P327, DOI 10.1097/00003446-199608000-00004 ATTIAS J, 1993, HEARING RES, V71, P106, DOI 10.1016/0378-5955(93)90026-W Attias J, 1995, J Basic Clin Physiol Pharmacol, V6, P173 AXELSSON A, 1987, P 3 INT TINN SEM, P154 BARNEA G, 1990, AUDIOLOGY, V29, P36 CASSVAN A, 1990, ARCH PHYS MED REHAB, V71, P583 COLE HW, 1985, INT J PSYCHOPHYSIOL, V3, P33, DOI 10.1016/0167-8760(85)90017-0 COLES RRA, 1984, J LARYNGOL OTOL S, V9, P194 Coles R R, 1984, J Laryngol Otol Suppl, V9, P7 ELBERLING C, 1981, SCAND AUDIOL, V10, P203, DOI 10.3109/01050398109076182 ELBERLING C, 1982, SCAND AUDIOL, V11, P61, DOI 10.3109/01050398209076201 ELBERT T, 1994, ELECTROEN CLIN NEURO, V92, P262, DOI 10.1016/0168-5597(94)90069-8 Faucheux B A, 1983, Rev Electroencephalogr Neurophysiol Clin, V13, P74, DOI 10.1016/S0370-4475(83)80021-5 Fowler EP, 1940, ARCHIV OTOLARYNGOL, V32, P903 GAILLARD AWK, 1976, BIOL PSYCHOL, V4, P139, DOI 10.1016/0301-0511(76)90013-2 Gerken GM, 1996, HEARING RES, V97, P75 Giedke H., 1980, MOTIVATION MOTOR SEN, P579 GOLDSTEIN B, 1991, TINNITUS DIAGNOSIS T, P99 GROSSBERG S, 1987, ADAPTIVE BRAIN, V2, P313 GUTIERREZ S, 1988, INT J NEUROSCI, V42, P149, DOI 10.3109/00207458808985769 Hamano T, 1997, EVOKED POTENTIAL, V104, P257, DOI 10.1016/S0168-5597(97)96107-4 HANSEN JC, 1980, J EXP PSYCHOL HUMAN, V9, P1 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P31, DOI 10.3109/00016489309135763 HARRISON RV, 1991, HEARING RES, V54, P11, DOI 10.1016/0378-5955(91)90131-R HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 HAZELL JWP, 1987, P 3 INT TINN SEM MUN, P121 Hoke E S, 1996, Audiol Neurootol, V1, P161 HOKE M, 1984, AUDIOLOGY, V23, P195 Hoke M, 1991, Acta Otolaryngol Suppl, V491, P176 HOKE M, 1988, SPRINGER SERIES BRAI, P311 HOKE M, 1989, TOPOGRAPHIC BRAIN MA, P537 HOKE M, 1989, DYNAMICS COGNITIVE S, P84 HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2 IKEMI A, 1988, PSYCHOTHER PSYCHOSOM, V49, P230 IKNER CL, 1990, EAR HEARING, V11, P16, DOI 10.1097/00003446-199002000-00005 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JACOBSON GP, 1991, HEARING RES, V56, P44, DOI 10.1016/0378-5955(91)90152-Y JASTREBOFF PJ, 1992, TINNITUS 91, P331 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Klein C, 1996, SCHIZOPHR RES, V21, P97, DOI 10.1016/0920-9964(96)00028-X KUMPF W, 1981, LARYNG RHINOL OTOL V, V60, P259, DOI 10.1055/s-2007-1008714 LEMAIRE MCD, 1989, ARCH INT PHYSL BIOCH, V97, P135 LEMAIRE MCD, 1995, ARCH PHYSIOL BIOCHEM, V103, P79 LEMAIRE MCD, 1991, ARCH INT PHYSL BIOCH, V99, P435 LEMAIRE MCD, 1990, ARCH INT PHYSL BIOCH, V98, P403 LEVI H, 1987, AUDIOLOGY, V26, P153 Lockwood AH, 1998, NEUROLOGY, V50, P114 Loveless N E, 1974, Biol Psychol, V1, P303, DOI 10.1016/0301-0511(74)90005-2 Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 Mantanus H, 1984, Rev Electroencephalogr Neurophysiol Clin, V14, P97, DOI 10.1016/S0370-4475(84)80013-1 MAURIZI M, 1985, AUDIOLOGY, V24, P207 McCallum W., 1988, HDB ELECTROENCEPHALO, V3, P427 MCKEE GJ, 1992, AUDIOLOGY, V31, P313 MICHIE PT, 1990, BIOL PSYCHOL, V30, P219, DOI 10.1016/0301-0511(90)90141-I MOLLER AR, 1992, LARYNGOSCOPE, V102, P187 Moller AR, 1987, P O INT TINN SEM MUN, P58 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x Näätänen R, 1991, Acta Otolaryngol Suppl, V491, P161 NAATANEN R, 1967, ANN ACAD SCI FENN B, V151, P1 NAATANEN R, 1992, NEUROREPORT, V3, P493 NASHMI R, 1994, ELECTROEN CLIN NEURO, V91, P456, DOI 10.1016/0013-4694(94)90166-X PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1989, HEARING RES, V40, P261, DOI 10.1016/0378-5955(89)90167-6 Pantev C, 1998, AUDIOL NEURO-OTOL, V3, P183, DOI 10.1159/000013789 PIERSON A, 1987, INT J PSYCHOPHYSIOL, V5, P107, DOI 10.1016/0167-8760(87)90015-8 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 Rajan R, 1998, AUDIOL NEURO-OTOL, V3, P123, DOI 10.1159/000013786 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RAY WJ, 1985, SCIENCE, V228, P750, DOI 10.1126/science.3992243 REITE M, 1982, ELECTROEN CLIN NEURO, V54, P147, DOI 10.1016/0013-4694(82)90156-0 Rockstroh B, 1989, SLOW CORTICAL POTENT Rockstroh B, 1997, INT J PSYCHOPHYSIOL, V25, P155, DOI 10.1016/S0167-8760(96)00741-6 ROSENHALL U, 1995, SCAND AUDIOL, V24, P97, DOI 10.3109/01050399509047521 SAERMARK K, 1993, PHYSIOL MEAS, V14, pA69, DOI 10.1088/0967-3334/14/4A/012 SCHAFER RW, 1973, IEEE T ACOUST SPEECH, VAU21, P165, DOI 10.1109/TAU.1973.1162474 SCHWABER MK, 1993, AM J OTOL, V14, P252 SHIRAISHI T, 1991, AM J OTOLARYNG, V12, P267, DOI 10.1016/0196-0709(91)90004-Y Szczepaniak WS, 1996, HEARING RES, V97, P46 TEDER W, 1993, PSYCHOPHYSIOLOGY, V30, P71 TONNDORF J, 1991, TINNITUS DIAGNOSIS T, P41 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 TONNDORF J, 1981, ACTA OTO-LARYNGOL, V91, P469, DOI 10.3109/00016488109138530 WALTER WG, 1964, NATURE, V203, P380, DOI 10.1038/203380a0 WOLLBRINK A, 1994, COMPUTERGESTUTZTES V WOODS DL, 1994, J EXP PSYCHOL HUMAN, V20, P81, DOI 10.1037/0096-1523.20.1.81 ZWICKER E, 1964, J ACOUST SOC AM, V36, P2413, DOI 10.1121/1.1919373 NR 91 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1998 VL 3 IS 5 BP 300 EP 331 DI 10.1159/000013802 PG 32 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 116CH UT WOS:000075705200003 PM 9705527 ER PT J AU Ceranic, BJ Prasher, DK Luxon, LM AF Ceranic, BJ Prasher, DK Luxon, LM TI Presence of tinnitus indicated by variable spontaneous otoacoustic emissions SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tinnitus; spontaneous otoacoustic emissions; cochlear mechanics ID MICROMECHANICAL PROPERTIES; ACOUSTIC STIMULATION; DISTORTION PRODUCTS; FINE-STRUCTURE; HUMAN EARS; FREQUENCY; HEARING; MECHANISMS; AMPLITUDE; COCHLEA AB Spontaneous otoacoustic emissions (SOAE) have been widely studied in normal subjects, and there is evidence of their high frequency stability in repeated recordings. A study to determine the frequency stability of SOAP in 53 of 100 consecutive patients, who presented with tinnitus and in whom SOAE were recordable, was undertaken. Patients were divided into five aetiologically homogeneous subgroups: (i) those with normal hearing and no identified pathology, (ii) those with sensorineural hearing loss of unknown origin, (iii) those with normal hearing, but complaining of tinnitus related to head injury, (iv) those with endolymphatic hydrops, and (v) those with noise exposure. The control group consisted of 20 subjects, selected on the basis of recordable SOAE from 38 volunteers with normal hearing and no tinnitus. The prevalence of SOAE and their inter-session frequency stability (reproducibility and relative frequency shift) were analysed. In contrast to the controls, the tinnitus group had significantly increased frequency variability of SOAE (lower reproducibility and increased relative frequency shift). The prevalence of subjects with SOAE was not notably different between the controls and subjects with tinnitus, if the tinnitus group was considered in tote, but a striking 100% prevalence of bilaterally present SOAE was observed in the tinnitus subgroup with head injury. C1 UCL, Inst Laryngol & Otol, London WC1X 8EE, England. RP Ceranic, BJ (reprint author), UCL, Inst Laryngol & Otol, 330 Grays Inn Rd, London WC1X 8EE, England. CR BELL A, 1992, HEARING RES, V58, P91, DOI 10.1016/0378-5955(92)90012-C BONFILS P, 1989, LARYNGOSCOPE, V99, P752 British Society of Audiology, 1992, BRIT J AUDIOL, V26, P255 British Society of Audiology, 1981, BRIT J AUDIOL, V15, P213 BURNS EM, 1984, HEARING RES, V16, P271, DOI 10.1016/0378-5955(84)90116-3 BURNS EM, 1991, TINNITUS 91, P89 CACACE AT, 1996, 14 MIDW M ASS RES OT CACACE AT, 1994, HEARING RES, V81, P22, DOI 10.1016/0378-5955(94)90149-X CERANIC BJ, 1995, CLIN OTOLARYNGOL, V20, P192, DOI 10.1111/j.1365-2273.1995.tb01846.x COLES R, 1990, P 14 DAN S, P377 Committee on Hearing and Equilibirum, 1995, OTOLARYNGOL HEAD NEC, V113, P181 DALLMAYR C, 1985, ACUSTICA, V59, P67 FELDMEIER I, 1996, 14 MIDW M ASS RES OT FROEHLICH P, 1990, BRAIN RES, V508, P286, DOI 10.1016/0006-8993(90)90408-4 FROEHLICH P, 1993, HEARING RES, V66, P1, DOI 10.1016/0378-5955(93)90254-X HAGGERTY HS, 1993, HEARING RES, V70, P31, DOI 10.1016/0378-5955(93)90050-B HAGINOMORI S, 1995, ACTA OTO-LARYNGOL, V115, P488, DOI 10.3109/00016489509139353 HARRISON WA, 1993, J ACOUST SOC AM, V94, P2649, DOI 10.1121/1.407349 HAUSER R, 1993, HEARING RES, V69, P133, DOI 10.1016/0378-5955(93)90101-6 HE NJ, 1993, J ACOUST SOC AM, V94, P2659, DOI 10.1121/1.407350 Hinchcliffe R., 1992, J AUDIOLOGICAL MED, V1, P38 HOKE M, 1989, HEARING RES, V37, P281, DOI 10.1016/0378-5955(89)90028-2 JASTREBOFF MM, 1996, 14 MIDW M ASS RES OT JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Kemp D T, 1981, Ciba Found Symp, V85, P54 KEMP DT, 1979, ARCH OTO-RHINO-LARYN, V224, P37, DOI 10.1007/BF00455222 KEMP DT, 1986, HEARING RES, V22, P95, DOI 10.1016/0378-5955(86)90087-0 KULAWIEC JT, 1995, EAR HEARING, V16, P515 LEPAGE EL, 1989, HEARING RES, V38, P177, DOI 10.1016/0378-5955(89)90064-6 LOCKWOOD AH, 1996, 14 MIDW M ASS RES OT MCFADDEN D, 1993, HEARING RES, V68, P143, DOI 10.1016/0378-5955(93)90118-K MERIC C, 1993, ACTA OTO-LARYNGOL, V113, P471, DOI 10.3109/00016489309135848 MOLLER AR, 1984, ANN OTO RHINOL LARYN, V93, P39 MOLLER AR, 1992, LARYNGOSCOPE, V102, P1165 MOTT JB, 1989, HEARING RES, V38, P229, DOI 10.1016/0378-5955(89)90068-3 MOULIN A, 1993, HEARING RES, V65, P216, DOI 10.1016/0378-5955(93)90215-M PENNER MJ, 1990, ARCH OTOLARYNGOL, V116, P418 PENNER MJ, 1981, J SPEECH HEAR RES, V24, P257 PENNER MJ, 1995, EAR HEARING, V16, P428, DOI 10.1097/00003446-199508000-00009 PENNER MJ, 1997, HEARING RES, V103, P20 POWERS NL, 1995, NATURE, V375, P585, DOI 10.1038/375585a0 PROBST R, 1987, AM J OTOLARYNG, V8, P73, DOI 10.1016/S0196-0709(87)80027-3 PROBST R, 1991, J ACOUST SOC AM, V89, P2027, DOI 10.1121/1.400897 PUEL JL, 1989, NATO ASI SER, P315 SCHARF B, 1994, HEARING RES, V75, P11, DOI 10.1016/0378-5955(94)90051-5 SCHLOTH E, 1983, ACUSTICA, V53, P250 Shiomi Y, 1997, ACTA OTO-LARYNGOL, V117, P31, DOI 10.3109/00016489709117987 STRICKLAND E, 1984, J ACOUST SOC AM S1, V75, pS82, DOI 10.1121/1.2021637 VANDIJK P, 1990, J ACOUST SOC AM, V88, P1779, DOI 10.1121/1.400199 WHITEHEAD ML, 1991, HEARING RES, V53, P269, DOI 10.1016/0378-5955(91)90060-M WITH HP, 1985, HEARING RES, V18, P197 ZENNER HP, 1986, HEARING RES, V22, P83, DOI 10.1016/0378-5955(86)90082-1 ZWEIG G, 1995, J ACOUST SOC AM, V98, P2018, DOI 10.1121/1.413320 ZWICKER E, 1986, J ACOUST SOC AM, V80, P146, DOI 10.1121/1.394175 NR 54 TC 6 Z9 6 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1998 VL 3 IS 5 BP 332 EP 344 DI 10.1159/000013803 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA 116CH UT WOS:000075705200004 PM 9705528 ER PT J AU Trautwein, PG Hashino, E Salvi, RJ AF Trautwein, PG Hashino, E Salvi, RJ TI Regenerated hair cells become functional during continuous administration of kanamycin SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE aminoglycoside; resistance; hair cells; regeneration; compound action potentials ID AMINOGLYCOSIDE ANTIBIOTICS; COCHLEAR CULTURES; CHICK COCHLEA; INNER-EAR; OTOTOXICITY; RECOVERY; HEARING AB The compound action potential (CAP) was used to assess the functional status of regenerated hair cells in the chick cochlea during prolonged administration of kanamycin (KM), Immediately after 10 days of KM treatment, the CAP thresholds were elevated by 6-54 dB above those from age-matched control animals. The frequencies with the greatest threshold shifts (> 1 kHz) corresponded to the hair cell lesion in the basal 40% of the basilar papilla. After 20 days of KM, the CAP thresholds at 3 and 4 kHz were significantly lower than those after 10 days of KM treatment, but virtually the same as those after 10 days of KM plus 10 days of recovery. Similarly, the CAP amplitudes at frequencies higher than 1.5 kHz were significantly greater in animals that received KM for 20 days than in animals that received KM for 10 days. The threshold as well as amplitude improvement between 10 days and 20 days of KM treatment was associated with the morphological maturation of the regenerated hair cells in the basal 25% of the cochlea. In addition, the rapid functional recovery seen at high frequencies coincided with the base-to-apex gradient of morphological recovery in the basilar papilla. These results suggest that the process of hair cell maturation is not suppressed by the presence of aminoglycosides in the extracellular environment. C1 SUNY Buffalo, Ctr Hearing & Deafness, Buffalo, NY 14214 USA. RP Hashino, E (reprint author), SUNY Buffalo, Ctr Hearing & Deafness, 215 Parker Hall, Buffalo, NY 14214 USA. EM ehashino@ubmedg.buffalo.edu CR CARLIER E, 1980, ARCH OTO-RHINO-LARYN, V226, P129, DOI 10.1007/BF00455127 CHEN L, 1994, HEARING RES, V81, P130, DOI 10.1016/0378-5955(94)90160-0 CHEN L, 1993, HEARING RES, V69, P15, DOI 10.1016/0378-5955(93)90089-J DUCKERT LG, 1990, HEARING RES, V48, P161, DOI 10.1016/0378-5955(90)90206-5 DUCKERT LG, 1993, J COMP NEUROL, V331, P75, DOI 10.1002/cne.903310105 DULON D, 1989, J NEUROSCI RES, V24, P338, DOI 10.1002/jnr.490240226 FIKES JD, 1994, TOXICOL PATHOL, V22, P10 FORGE A, 1993, J NEUROCYTOL, V22, P854, DOI 10.1007/BF01186357 Hashino E, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P190 HASHINO E, 1991, HEARING RES, V52, P356, DOI 10.1016/0378-5955(91)90025-5 HASHINO E, 1995, HEARING RES, V88, P156, DOI 10.1016/0378-5955(95)00109-H Hashino E, 1996, BRAIN RES, V720, P172, DOI 10.1016/0006-8993(95)01467-5 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 HUDSPETH AJ, 1985, SCIENCE, V230, P745, DOI 10.1126/science.2414845 KROESE ABA, 1989, HEARING RES, V37, P203, DOI 10.1016/0378-5955(89)90023-3 MAREAN GC, 1995, HEARING RES, V82, P267, DOI 10.1016/0378-5955(94)00183-Q MAREAN GC, 1993, HEARING RES, V71, P125, DOI 10.1016/0378-5955(93)90028-Y PRIEVE BA, 1984, ACTA OTO-LARYNGOL, V98, P428, DOI 10.3109/00016488409107584 RICHARDSON GP, 1991, HEARING RES, V53, P293, DOI 10.1016/0378-5955(91)90062-E Ryals BM, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P84 RYALS BM, 1994, HEARING RES, V72, P81, DOI 10.1016/0378-5955(94)90208-9 SALVI RJ, 1994, J COMP PHYSIOL A, V174, P351 Saunders JC, 1983, DEV AUDITORY VESTIBU, P3 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 NR 24 TC 7 Z9 8 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1998 VL 3 IS 4 BP 229 EP 239 DI 10.1159/000013795 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZV118 UT WOS:000074271200001 PM 9644535 ER PT J AU Meric, C Gartner, M Collet, L Chery-Croze, S AF Meric, C Gartner, M Collet, L Chery-Croze, S TI Psychopathological profile of tinnitus sufferers: Evidence concerning the relationship between tinnitus features and impact on life SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE handicap; severity; distress; tinnitus impact; Minnesota multiphasic; personality inventory ID PSYCHOMETRIC PROPERTIES; QUESTIONNAIRE; DISTRESS; HANDICAP AB This study involving 281 French tinnitus sufferers sought to investigate possible correlations between psychopathological profile and scores obtained from three tinnitus questionnaires. The patients all completed a French version of the Mini-Mult - a shortened Minnesota Multiphasic Personality Inventory and French translations of three questionnaires designed especially for the clinical assessment of tinnitus: Tinnitus Reaction Questionnaire (TRQ), Subjective Tinnitus Severity Scale (STSS) and Tinnitus Handicap Questionnaire (THQ). Significant correlations were found (p < 0.0001) between scores on various Mini-Mult scales and total or factor 1 THQ and total TRQ scores. No significant correlation was found between the STSS and any Mini-Mult score. C1 Hop Edouard Herriot, CNRS, UPRESA 5020, F-69437 Lyon 03, France. RP Chery-Croze, S (reprint author), Hop Edouard Herriot, CNRS, UPRESA 5020, Pavillon U, F-69437 Lyon 03, France. EM schery@olfac.univ-lyon1.fr CR *AM TINN ASS, 1993, RES 1992 TINN PAT SU ATTIAS J, 1995, SCAND AUDIOL, V24, P13, DOI 10.3109/01050399509042204 BRINER W, 1990, AM J OTOL, V11, P334 COLES RRA, 1985, J LARYNGOL OTOL, V99, P1 Coles RRA, 1981, CIBA F S, V85, P16 COLLINS PJ, 1990, PESTIC SCI, V28, P101, DOI 10.1002/ps.2780280112 GERBER KE, 1985, INT J PSYCHIAT MED, V15, P81 HALFORD JBS, 1991, J LARYNGOL OTOL, V105, P89, DOI 10.1017/S0022215100115038 HALLAM R, 1984, CONTRIBUTION MED PSY, P32 Hallam R. S, 1987, TINNITUS, P156 HALLAM RS, 1988, BRIT J CLIN PSYCHOL, V27, P213 HALLBERG LRM, 1993, BRIT J AUDIOL, V27, P19, DOI 10.3109/03005369309077885 Hathaway SR, 1940, J PSYCHOL, V10, P249 HILLER W, 1994, BRIT J CLIN PSYCHOL, V33, P231 House P R, 1981, Ciba Found Symp, V85, P193 HOUSE PR, 1991, TINNITUS DIAGNOSIS T, P533 JAKES SC, 1992, COGNITIVE THER RES, V16, P67, DOI 10.1007/BF01172957 KINCANNO.JC, 1968, J CONSULT CLIN PSYCH, V32, P319, DOI 10.1037/h0025891 KUK FK, 1990, EAR HEARING, V11, P434, DOI 10.1097/00003446-199012000-00005 LINDBERG P, 1984, SCAND AUDIOL, V18, P278 Meikle M, 1984, J Laryngol Otol Suppl, V9, P17 Meikle M. B., 1991, TINNITUS DIAGNOSIS T, P416 MEIKLE MB, 1987, HEAR J, V42, P68 MERIC C, 1997, J OTOLARYNGOL, V26, P1 MERIC C, 1996, J FR ORL, V45, P409 MERIC C, 1991, IN PRESS ENCEPHALE NEWMAN CW, 1994, AUDIOLOGY, V33, P47 REICH GE, 1983, J LARYNGOL OTOL S9, V97, P228 TYLER RS, 1992, TINNITUS 91, P391 TYLER RS, 1992, TINNITUS 91, P17 VERNON JA, 1994, ARCH OTOLARYNGOL, V120, P547 Vernon JA, 1992, OTOLARYNGOLOGY, P1 WILSON PH, 1991, J SPEECH HEAR RES, V34, P197 NR 33 TC 26 Z9 31 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1998 VL 3 IS 4 BP 240 EP 252 DI 10.1159/000013796 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZV118 UT WOS:000074271200002 PM 9644536 ER PT J AU Kato, T Shiraishi, K Eura, Y Shibata, K Sakata, T Morizono, T Soda, T AF Kato, T Shiraishi, K Eura, Y Shibata, K Sakata, T Morizono, T Soda, T TI A 'neural' response with 3-ms latency evoked by loud sound in profoundly deaf patients SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory brainstem response; negative potential; deaf patient; vestibular evoked response ID BRAIN-STEM; COCHLEAR NUCLEUS; GUINEA-PIG; POTENTIALS; STIMULATION; DESTRUCTION AB A large negative deflection with a latency of 3 ms was observed in the auditory brainstem response (ABR) waveforms of some patients with peripheral profound deafness, This deflection was termed the N3 potential. In this paper, we review patients with the N3 potential and discuss the characteristics of abnormal ABR waveforms, The origin of the N3 potential was also discussed, especially with respect to vestibular evoked potentials, In most of the patients, audiograms showed no response to the maximum output of an audiometer in the high-frequency range and a residual response in the low-frequency range, The N3 potentials were noted at intensities of 80 dB nHL or greater, As the stimulus intensity increased, the amplitude of the potential increased and the latency decreased, A high repetition rate (83.3/s) of the click stimulus influenced the latency and amplitude of the N3 potential, The potential was replicated on retest within less than a month, and had a consistent latency and amplitude over the scalp, The results indicate that the N3 potential is not an electrical artifact but a physiological neural response evoked by a loud sound, The N3 potential is most likely not an auditory evoked response from cochlear or a response from a semicircular canal, because it has a 3-ms latency, a sharp waveform, and is unassociated with vertigo, The results suggest that the N3 potential may be a saccular acoustic response. C1 Fukuoka Univ, Sch Med, Dept Otorhinolaryngol, Johnan Ku, Fukuoka 81480, Japan. RP Shiraishi, K (reprint author), Fukuoka Univ, Sch Med, Dept Otorhinolaryngol, Johnan Ku, 7-45-1 Nanakuma, Fukuoka 81480, Japan. CR ARAN JM, 1979, ACTA OTO-LARYNGOL, V87, P300, DOI 10.3109/00016487909126424 BURIAN M, 1989, ARCH OTO-RHINO-LARYN, V246, P238, DOI 10.1007/BF00463563 CAZALS Y, 1980, SCIENCE, V210, P83, DOI 10.1126/science.6968092 CAZALS Y, 1983, ACTA OTO-LARYNGOL, V95, P211, DOI 10.3109/00016488309130937 CAZALS Y, 1987, VESTIBULAR SYSTEM NE, P601 CAZALS Y, 1979, ARCH OTO-RHINO-LARYN, V224, P61, DOI 10.1007/BF00455225 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P1538, DOI 10.1136/jnnp.57.12.1538 COLEBATCH JG, 1994, J NEUROL NEUROSUR PS, V57, P190, DOI 10.1136/jnnp.57.2.190 DON M, 1978, J ACOUST SOC AM, V63, P1084, DOI 10.1121/1.381816 Gacek R R, 1969, Acta Otolaryngol Suppl, V254, P1 MANABE T, 1982, AUDIOLOGY JPN, V25, P433 WARING MD, 1995, EVOKED POTENTIAL, V96, P338, DOI 10.1016/0168-5597(95)00022-K WIT HP, 1981, ACTA OTO-LARYNGOL, V92, P409, DOI 10.3109/00016488109133280 NR 13 TC 12 Z9 16 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1998 VL 3 IS 4 BP 253 EP 264 DI 10.1159/000013797 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZV118 UT WOS:000074271200003 PM 9644537 ER PT J AU Steinstrater, O Lutkenhoner, B AF Steinstrater, O Lutkenhoner, B TI Three-dimensional reconstruction of the auditory cortical areas from magnetic resonance images SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE Heschl's gyrus; planum temporale; insula; Sylvian fissure; magnetic resonance imaging; three-dimensional segmentation; ray tracing; magnetoencephalography; biomagnetic inverse problem; auditory-evoked field ID PLANUM-TEMPORALE; NEURONAL-ACTIVITY; MR-IMAGES; LOCALIZATION; ASYMMETRY; BRAIN; ORGANIZATION; HEAD; MAGNETOENCEPHALOGRAPHY; SEGMENTATION AB The future of neuromagnetic research will be highly dependent on the development of analysis procedures utilizing morphological information derived from magnetic resonance (MR) images. However, constraining the biomagnetic inverse problem by using such information may lead to serious misinterpretations if the reconstruction algorithm for the cortical surface overlooks boundaries between grey matter and cerebrospinal fluid (CSF) or artificially generates them. The purpose of this study was to check as to what extent an advanced automatic three-dimensional reconstruction procedure is able to segment the cortical structures located hidden in the Sylvian fissure (especially Heschl's gyrus and planum temporale). The procedure consisted of four processes: a coarse segmentation, a refined segmentation of the white matter, a skeletonization of the sulci and a segmentation of the cortical surface by concurrent region growing for brain and CSF. The reconstruction result for single slices basically agrees with the impression obtained upon visual inspection of the original MR data. Photorealistic visualizations, showing a good qualitative agreement with anatomical images, suggest that the reconstructed surfaces are realistic and detailed enough to be applicable in source analyses of auditory evoked fields. C1 Univ Munster, Inst Expt Audiol, D-48129 Munster, Germany. RP Steinstrater, O (reprint author), Univ Munster, Inst Expt Audiol, Kardinal von Galen Ring 10, D-48129 Munster, Germany. EM olaf@headmod.uni-muenster.de CR BARTA PE, 1995, PSYCHIAT RES-NEUROIM, V61, P137, DOI 10.1016/0925-4927(95)02650-M BOMANS M, 1990, IEEE T MED IMAGING, V9, P177, DOI 10.1109/42.56342 BORGEFORS G, 1984, COMPUT VISION GRAPH, V27, P321, DOI 10.1016/0734-189X(84)90035-5 CAMPAIN R, 1976, BRAIN LANG, V3, P318, DOI 10.1016/0093-934X(76)90026-2 CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403 DALE AM, 1993, J COGNITIVE NEUROSCI, V5, P162, DOI 10.1162/jocn.1993.5.2.162 DANIELSSON PE, 1980, COMPUT VISION GRAPH, V14, P227, DOI 10.1016/0146-664X(80)90054-4 Lütkenhöner B, 1995, Brain Topogr, V7, P291, DOI 10.1007/BF01195255 FUCHS M, 1994, NATO ADV SCI INST SE, V271, P435 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 GALABURDA AM, 1978, SCIENCE, V199, P852, DOI 10.1126/science.341314 GESCHWIN.N, 1968, SCIENCE, V161, P186, DOI 10.1126/science.161.3837.186 HARALICK RM, 1985, COMPUT VISION GRAPH, V29, P100, DOI 10.1016/S0734-189X(85)90153-7 HU XP, 1990, J NEUROSURG, V72, P433, DOI 10.3171/jns.1990.72.3.0433 KULYNYCH JJ, 1993, J COMPUT ASSIST TOMO, V17, P529, DOI 10.1097/00004728-199307000-00003 KULYNYCH JJ, 1995, BRIT J PSYCHIAT, V166, P742, DOI 10.1192/bjp.166.6.742 LEVOY M, 1990, IEEE COMPUT GRAPH, V10, P33, DOI 10.1109/38.50671 Lutkenhoner B, 1998, AUDIOL NEURO-OTOL, V3, P191, DOI 10.1159/000013790 Mai JK, 1997, ATLAS HUMAN BRAIN MAKELA JP, 1994, ELECTROEN CLIN NEURO, V92, P414, DOI 10.1016/0168-5597(94)90018-3 MUSIEK FE, 1986, EAR HEARING, V7, P283, DOI 10.1097/00003446-198610000-00001 NAKASATO N, 1995, ELECTROEN CLIN NEURO, V94, P183, DOI 10.1016/0013-4694(94)00280-X Nieuwenhuys R., 1988, HUMAN CENTRAL NERVOU OHASHI Y, 1992, COMPUTER GRAPHICS GE, P63 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PANTEV C, 1990, ELECTROEN CLIN NEURO, V75, P173, DOI 10.1016/0013-4694(90)90171-F PAPANICOLAOU AC, 1990, ARCH NEUROL-CHICAGO, V47, P33 REITE M, 1988, ELECTROEN CLIN NEURO, V70, P490, DOI 10.1016/0013-4694(88)90147-2 ROSSI A, 1994, BRAIN LANG, V47, P89, DOI 10.1006/brln.1994.1043 Rubin GD, 1996, RADIOLOGY, V199, P321 SCHLAUG G, 1995, SCIENCE, V267, P699, DOI 10.1126/science.7839149 Silbergeld DL, 1997, NEUROSURGERY, V40, P389, DOI 10.1097/00006123-199702000-00033 STEINMETZ H, 1989, J COMPUT ASSIST TOMO, V13, P996, DOI 10.1097/00004728-198911000-00011 STEINSTRATER O, 1997, QUANTITATIVE TOPOLOG, P330 Szikla G, 1977, ANGIOGRAPHY HUMAN BR TIEDE U, 1990, IEEE COMPUT GRAPH, V10, P41, DOI 10.1109/38.50672 TISSARI SO, 1993, 9TH INT C BIOM VIENN Utsunomiya H, 1996, ACTA RADIOL, V37, P57 WALLIS JW, 1991, J NUCL MED, V32, P534 YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732 ZAMPERONI P, 1989, METHODEN DIGITALEN B Zucker S. W., 1976, Computer Graphics and Image Processing, V5, DOI 10.1016/S0146-664X(76)80014-7 NR 42 TC 1 Z9 1 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1998 VL 3 IS 4 BP 265 EP 278 DI 10.1159/000013798 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZV118 UT WOS:000074271200004 PM 9644538 ER PT J AU Kaas, JH Hackett, TA AF Kaas, JH Hackett, TA TI Subdivisions of auditory cortex and levels of processing in primates SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE medial geniculate; core; belt; parabelt; prefrontal ID SUPERIOR TEMPORAL REGION; BINDING PROTEIN IMMUNOREACTIVITY; GRANULAR FRONTAL-CORTEX; RHESUS-MONKEY; ASSOCIATION CORTEX; HORSERADISH-PEROXIDASE; SQUIRREL-MONKEY; AFFERENT INPUT; MACAQUE MONKEY; TUPAIA-GLIS AB In a series of experiments on New World and Old World monkeys, architectonic features of auditory cortex were related to tone frequency maps and patterns of connections to generate and evaluate theories of cortical organization, The results suggest that cortical processing of auditory information involves a number of functionally distinct fields that can be broadly grouped into four or more levels of processing. At the first level, there are three primary-like areas, each with a discrete pattern of tonotopic organization, koniocortical histological features, and direct inputs from the ventral division of the medial geniculate complex, These three core areas are interconnected and project to a narrow surrounding belt of perhaps seven areas which receive thalamic input from the major divisions of the medial geniculate complex, the suprageniculate/limitans complex, and the medial pulvinar, The belt areas connect with a lateral parabelt region of two or more fields that are almost devoid of direct connections with the core and the ventral division of the medial geniculate complex, The parabelt fields connect with more distant cortex in the superior temporal gyrus, superior temporal sulcus, and prefrontal cortex, The results indicate that auditory processing involves 15 or more cortical areas, each of which is interconnected with a number of other fields, especially adjoining fields of the same level. C1 Vanderbilt Univ, Dept Psychol, Nashville, TN 37240 USA. RP Kaas, JH (reprint author), Vanderbilt Univ, Dept Psychol, 301 Wilson Hall, Nashville, TN 37240 USA. EM Jon.Kaas@Vanderbilt.edu CR AITKIN LM, 1988, J COMP NEUROL, V269, P235, DOI 10.1002/cne.902690208 AITKIN LM, 1986, J COMP NEUROL, V252, P175, DOI 10.1002/cne.902520204 AKERT K, 1959, ANAT REC, V133, P242 BARBAS H, 1985, NEUROSCIENCE, V15, P619, DOI 10.1016/0306-4522(85)90064-8 BARBAS H, 1981, J COMP NEUROL, V200, P407, DOI 10.1002/cne.902000309 Brodmann K., 1909, VERGLEICHENDE LOKALI BURTON H, 1976, J COMP NEUROL, V168, P249, DOI 10.1002/cne.901680204 JONES EG, 1976, J COMP NEUROL, V168, P197, DOI 10.1002/cne.901680203 CASSEDAY JH, 1976, J COMP NEUROL, V166, P303, DOI 10.1002/cne.901660304 CHAVIS DA, 1976, BRAIN RES, V117, P369, DOI 10.1016/0006-8993(76)90089-5 CIPOLLONI PB, 1989, J COMP NEUROL, V281, P567, DOI 10.1002/cne.902810407 COLOMBO M, 1990, SCIENCE, V247, P336, DOI 10.1126/science.2296723 COSTALUPES JA, 1984, EXP NEUROL, V84, P478, DOI 10.1016/0014-4886(84)90243-7 COWEY A, 1976, NEUROPSYCHOLOGIA, V14, P1, DOI 10.1016/0028-3932(76)90002-6 CUSICK CG, 1985, SOMATOSENS RES, V3, P1 DEACON TW, 1992, BRAIN RES, V573, P8, DOI 10.1016/0006-8993(92)90109-M Felleman DJ, 1991, CEREB CORTEX, V1, P1, DOI 10.1093/cercor/1.1.1 FERRIER D, 1975, P ROY SOC LOND B BIO, V24, P409 FITZPATRICK KA, 1978, J COMP NEUROL, V177, P537, DOI 10.1002/cne.901770402 FORBES BF, 1974, BRAIN RES, V67, P239, DOI 10.1016/0006-8993(74)90275-3 GALABURDA AM, 1983, J COMP NEUROL, V221, P169, DOI 10.1002/cne.902210206 HACKETT TA, IN PRESS J COMP NEUR Hackett T. A., 1997, Society for Neuroscience Abstracts, V23, P186 Hackett T., 1996, Society for Neuroscience Abstracts, V22, P1071 HEFFNER HE, 1986, J NEUROPHYSIOL, V56, P683 HEFFNER HE, 1987, ARCH NEUROL-CHICAGO, V44, P218 HEILMAN KM, 1971, ARCH NEUROL-CHICAGO, V24, P323 IMIG TJ, 1977, J COMP NEUROL, V171, P111, DOI 10.1002/cne.901710108 JACOBSON S, 1977, BRAIN RES, V132, P209, DOI 10.1016/0006-8993(77)90417-6 JONES EG, 1995, J COMP NEUROL, V362, P153, DOI 10.1002/cne.903620202 KAAS JH, 1993, ANN ANAT, V175, P509 LEINONEN L, 1980, EXP BRAIN RES, V39, P203 LOCKE S, 1960, J COMP NEUROL, V115, P155, DOI 10.1002/cne.901150205 LUETHKE LE, 1989, J COMP NEUROL, V285, P487, DOI 10.1002/cne.902850406 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MESULAM MM, 1973, BRAIN RES, V60, P315, DOI 10.1016/0006-8993(73)90793-2 MOLINARI M, 1995, J COMP NEUROL, V362, P171, DOI 10.1002/cne.903620203 MOREL A, 1992, J COMP NEUROL, V318, P27, DOI 10.1002/cne.903180104 MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 OLIVER DL, 1978, J COMP NEUROL, V182, P459, DOI 10.1002/cne.901820306 PANDYA DN, 1994, J COMP NEUROL, V345, P447, DOI 10.1002/cne.903450311 PANDYA DN, 1973, Z ANAT ENTWICKLUNGS, V139, P127, DOI 10.1007/BF00523634 PETRIDES M, 1988, J COMP NEUROL, V273, P52, DOI 10.1002/cne.902730106 PFINGST BE, 1981, J NEUROPHYSIOL, V45, P16 PREUSS TM, 1989, J COMP NEUROL, V282, P293, DOI 10.1002/cne.902820210 PREUSS TM, 1991, J COMP NEUROL, V310, P429, DOI 10.1002/cne.903100402 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Romanski L. M., 1997, Society for Neuroscience Abstracts, V23, P2073 SANIDES F, 1972, STRUCTURE FUNCTION N, V5 SCHALL JD, 1995, J NEUROSCI, V15, P4464 STREITFELD BD, 1980, INT J NEUROSCI, V11, P51, DOI 10.3109/00207458009147579 SYMMES D, 1971, HEARING RES, V4, P203 Tian B., 1995, Society for Neuroscience Abstracts, V21, P669 TROJANOWSKI JQ, 1975, BRAIN RES, V85, P347, DOI 10.1016/0006-8993(75)90094-3 von Economo C., 1925, CYTOARCHITEKTONIK HI Walker AE, 1937, J ANAT, V71, P319 WEGENER JG, 1976, NEUROPSYCHOLOGIA, V14, P161, DOI 10.1016/0028-3932(76)90045-2 WOOLSEY CN, 1944, AM J MED SCI, V207, P685 WOOLSEY CN, 1982, CORTICAL SENSORY ORG, P231 NR 60 TC 131 Z9 131 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 73 EP 85 DI 10.1159/000013783 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700002 PM 9575378 ER PT J AU Rauschecker, JP AF Rauschecker, JP TI Parallel processing in the auditory cortex of primates SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory cortex; macaque monkey; human; neurophysiology; neuroanatomy; neuroimaging; communication sounds; speech processing; auditory space ID RHESUS-MONKEY; MACAQUE MONKEY; TEMPORAL-LOBE; NEURONS; ORGANIZATION; CONNECTIONS; PERCEPTION; COMPLEX; AREAS AB Evidence from anatomical tracer studies as well as lesions of the primary auditory cortex (AI) indicate that the principal relay nucleus of the auditory thalamus, the ventral part of the medial geniculate (MGv), projects in parallel to AI and the rostral area on the supratemporal plane of the macaque monkey. The caudomedial area, by contrast, receives input from MGv only indirectly via Al, and neurons in this area are often tuned to the spatial location of a complex sound. The belt areas on the lateral surface of the superior temporal gyrus receive input from the primary areas. Neurons in these areas respond better to more complex stimuli, such as band-pass noise pulses of frequency-modulated sweeps, than to pure tones. Often neurons in the lateral belt respond well to species-specific communication calls. The hypothesis is put forward that the central auditory pathways in the macaque monkey are organized into parallel streams, similar to the visual system, one for the processing of spatial information, the other for the processing of auditory 'patterns'. Evidence from neuroimaging studies in humans with MRI and PET are consistent with this hypothesis. Virtual auditory space stimuli lead to selective activation of an inferior parietal region, whereas speech-like stimuli activate superior temporal regions. C1 Georgetown Inst Cognit & Computat Sci, Washington, DC 20007 USA. RP Rauschecker, JP (reprint author), Georgetown Inst Cognit & Computat Sci, Washington, DC 20007 USA. RI Rauschecker, Josef/A-4120-2013 CR BOATMAN D, 1995, BRAIN LANG, V51, P269, DOI 10.1006/brln.1995.1061 DESIMONE R, 1991, J COGNITIVE NEUROSCI, V3, P1, DOI 10.1162/jocn.1991.3.1.1 DESIMONE R, 1985, VISION RES, V25, P441, DOI 10.1016/0042-6989(85)90069-0 GALABURDA AM, 1983, J COMP NEUROL, V221, P169, DOI 10.1002/cne.902210206 Grady CL, 1997, NEUROREPORT, V8, P2511, DOI 10.1097/00001756-199707280-00019 Hackett T., 1996, Society for Neuroscience Abstracts, V22, P1071 Hauser M.D., 1996, EVOLUTION COMMUNICAT HAXBY JV, 1994, J NEUROSCI, V14, P6336 JONES EG, 1995, J COMP NEUROL, V362, P153, DOI 10.1002/cne.903620202 Jones EG, 1985, THALAMUS LEINONEN L, 1980, EXP BRAIN RES, V39, P203 LIVERMAN AM, 1967, PSYCHOL REV, V74, P431 MARGOLIASH D, 1992, J NEUROSCI, V12, P4309 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MESULAM MM, 1973, BRAIN RES, V60, P315, DOI 10.1016/0006-8993(73)90793-2 MISHKIN M, 1983, TRENDS NEUROSCI, V6, P414, DOI 10.1016/0166-2236(83)90190-X MOREL A, 1993, J COMP NEUROL, V335, P437, DOI 10.1002/cne.903350312 PANDYA DN, 1994, J COMP NEUROL, V345, P447, DOI 10.1002/cne.903450311 PANDYA DN, 1973, Z ANAT ENTWICKLUNGS, V139, P127, DOI 10.1007/BF00523634 PANDYA DN, 1982, TRENDS NEUROSCI, V5, P386, DOI 10.1016/0166-2236(82)90219-3 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker J P, 1997, Acta Otolaryngol Suppl, V532, P34 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 Romanski L. M., 1997, Society for Neuroscience Abstracts, V23, P2073 SUGA N, 1968, J PHYSIOL-LONDON, V198, P51 SUGA N, 1969, J PHYSIOL-LONDON, V200, P555 SUGA N, 1978, SCIENCE, V200, P778, DOI 10.1126/science.644320 TALLAL P, 1973, NATURE, V241, P468, DOI 10.1038/241468a0 Tian B., 1995, Society for Neuroscience Abstracts, V21, P669 Ungerleider LG, 1982, ANAL VISUAL BEHAV, P549 WEEKS RA, 1997, NEUROLOGY, V48 Wessinger CM, 1997, HUM BRAIN MAPP, V5, P18, DOI 10.1002/(SICI)1097-0193(1997)5:1<18::AID-HBM3>3.0.CO;2-Q Wessinger C. M., 1997, Society for Neuroscience Abstracts, V23, P2073 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 WIGHTMAN FL, 1989, J ACOUST SOC AM, V85, P858, DOI 10.1121/1.397557 Woolsey CN, 1942, B JOHNS HOPKINS HOSP, V71, P315 ZATORRE RJ, 1994, J NEUROSCI, V14, P1908 ZHENOCHIN S, 1998, IN PRESS ASS RES OTO, V21 NR 39 TC 229 Z9 231 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 86 EP 103 DI 10.1159/000013784 PG 18 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700003 PM 9575379 ER PT J AU Schreiner, CE AF Schreiner, CE TI Spatial distribution of responses to simple and complex sounds in the primary auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory system; topography; cochleotopicity; speech sounds; syllables; electroencephalography; magnetoencephalography ID FREQUENCY-MODULATED STIMULI; MULTIPLE-NEURON RECORDINGS; SPEECH-EVOKED ACTIVITY; FUNCTIONAL TOPOGRAPHY; TONOTOPIC ORGANIZATION; AZIMUTHAL SENSITIVITY; COMMON MARMOSET; PRESSURE LEVEL; TONE INTENSITY; SINGLE-NEURON AB The basic functional organization of the cat primary auditory cortex is discussed as it is revealed by electrophysiological studies of the distribution of elementary receptive field (RF) parameters. RFs of cortical neurons have been shown to vary considerably from neuron to neuron; additionally, specific RF properties vary independently. Furthermore, some of the RF properties are nonhomogeneously distributed across the auditory cortex and can be interpreted as forming 'maps' that represent specific stimulus information in a topographic way. Accordingly, the functional organization of the primary auditory cortex is interpreted as a series of superimposed independent parameter maps. The consequences of such a layout for the spatial and temporal coding of pure tones and speech sounds is illustrated and ramifications for the interpretation of far-field event-related potentials are discussed. C1 Univ Calif San Francisco, Sloan Ctr Theoret Neurobiol, WM Keck Ctr Integrat Neurosci, Coleman Lab, San Francisco, CA 94143 USA. RP Schreiner, CE (reprint author), Univ Calif San Francisco, Sloan Ctr Theoret Neurobiol, WM Keck Ctr Integrat Neurosci, Coleman Lab, 513 Parnassus Ave, San Francisco, CA 94143 USA. EM chris@phy.ucsf.edu CR AITKIN LM, 1986, J COMP NEUROL, V252, P175, DOI 10.1002/cne.902520204 Bertrand O, 1991, Acta Otolaryngol Suppl, V491, P116 BRUGGE JF, 1973, J NEUROPHYSIOL, V36, P1138 CLAREY JC, 1994, J NEUROPHYSIOL, V72, P2383 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 CSEPE V, 1997, AUDIO NEUROOTOL, V2, P237 Eggermont JJ, 1996, AUDIT NEUROSCI, V2, P79 FLYNN ER, 1994, REV SCI INSTRUM, V65, P922, DOI 10.1063/1.1144922 GEORGOPOULOS AP, 1989, SCIENCE, V243, P234, DOI 10.1126/science.2911737 GOCHIN PM, 1994, J NEUROPHYSIOL, V71, P2325 HAMALAINEN M, 1993, REV MOD PHYS, V65, P413, DOI 10.1103/RevModPhys.65.413 Heil P, 1997, J NEUROPHYSIOL, V77, P2616 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W HEIL P, 1994, HEARING RES, V76, P188, DOI 10.1016/0378-5955(94)90099-X HEIL P, 1992, HEARING RES, V63, P108, DOI 10.1016/0378-5955(92)90080-7 HOKE M, 1991, ACTA OTOLARYNGOL S S, V491, P7 IMIG TJ, 1990, J NEUROPHYSIOL, V63, P1448 IMIG TJ, 1977, BRAIN RES, V138, P241, DOI 10.1016/0006-8993(77)90743-0 KNIGHT PL, 1977, BRAIN RES, V130, P447, DOI 10.1016/0006-8993(77)90108-1 LAVEY S, 1991, NEURAL BASIS VISUAL, P266 LUND JS, 1990, SENSORY PROCESSING M, P209 MATSUBARA JA, 1988, J COMP NEUROL, V268, P38, DOI 10.1002/cne.902680105 MCMULLEN NT, 1993, BRAIN RES, V620, P317, DOI 10.1016/0006-8993(93)90173-K Mendelson JR, 1997, J COMP PHYSIOL A, V181, P615, DOI 10.1007/s003590050145 MENDELSON JR, 1993, EXP BRAIN RES, V94, P65 MERZENICH MM, 1991, EVOLUTIONARY BIOL HE, P673 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MIDDLEBROOKS JC, 1980, BRAIN RES, V181, P31, DOI 10.1016/0006-8993(80)91257-3 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Pelleg-Toiba R., 1991, Journal of Basic and Clinical Physiology and Pharmacology, V2, P257 PHILLIPS DP, 1994, EXP BRAIN RES, V102, P210 RAGGIO MW, 1994, J NEUROPHYSIOL, V72, P2334 RAJAN R, 1990, J NEUROPHYSIOL, V64, P872 RAJAN R, 1990, J NEUROPHYSIOL, V64, P888 RAUSCHECKER JP, 1995, SCIENCE, V268, P111, DOI 10.1126/science.7701330 Rauschecker JP, 1997, J COMP NEUROL, V382, P89 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 Sams M, 1991, Acta Otolaryngol Suppl, V491, P124 SCHREINER CE, 1984, J NEUROPHYSIOL, V51, P1284 Schreiner C E, 1991, Acta Otolaryngol Suppl, V491, P7 SCHREINER C E, 1989, Society for Neuroscience Abstracts, V15, P111 SCHREINER CE, 1996, AUDITORY BASIS SPEEC, P127 SCHREINER CE, 1992, J NEUROPHYSIOL, V68, P1487 SCHREINER CE, 1995, CURR OPIN NEUROBIOL, V5, P489, DOI 10.1016/0959-4388(95)80010-7 SCHREINER CE, 1992, EXP BRAIN RES, V92, P105 SCHREINER CE, 1986, HEARING RES, V21, P227, DOI 10.1016/0378-5955(86)90221-2 SCHREINER CE, 1990, J NEUROPHYSIOL, V64, P1442 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 STEINSCHNEIDER M, 1990, BRAIN RES, V519, P158, DOI 10.1016/0006-8993(90)90074-L STEINSCHNEIDER M, 1993, ANN NY ACAD SCI, V682, P415, DOI 10.1111/j.1749-6632.1993.tb23010.x STEINSCHNEIDER M, 1982, BRAIN RES, V252, P353, DOI 10.1016/0006-8993(82)90403-6 Suga N., 1984, DYNAMIC ASPECTS NEOC, P315 Sugimoto S, 1997, HEARING RES, V112, P175, DOI 10.1016/S0378-5955(97)00119-6 SUTTER ML, 1990, ABSTR ASS RES OT, V13, P221 SUTTER ML, 1995, J NEUROPHYSIOL, V73, P190 SUTTER ML, 1991, J NEUROPHYSIOL, V65, P1207 Ungerleider LG, 1982, ANAL VISUAL BEHAV, P549 WALLACE MN, 1991, EXP BRAIN RES, V86, P527 Wang XQ, 1995, J NEUROPHYSIOL, V74, P2685 Weinberg RJ, 1997, BRAIN RES BULL, V44, P113, DOI 10.1016/S0361-9230(97)00095-6 Woolsey CN, 1942, B JOHNS HOPKINS HOSP, V71, P315 NR 61 TC 82 Z9 82 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 104 EP 122 DI 10.1159/000013785 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700004 PM 9575380 ER PT J AU Rajan, R Irvine, DRF AF Rajan, R Irvine, DRF TI Neuronal responses across cortical field A1 in plasticity induced by peripheral auditory organ damage SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE primary auditory cortex (A1), cat; tonotopic map; plasticity; hearing loss; cochlear damage; neuronal responses ID CORTEX; CAT; REORGANIZATION; FREQUENCY; ORGANIZATION; RECORDINGS; AMPUTEES; LOUDNESS; BRAIN; LIMB AB The adult auditory cortex is capable of a plastic reorganization of its tonotopic map after damage to restricted parts of the cochlear sensory epithelium. We examine the precise conditions of cochlear damage required to demonstrate such plasticity in the primary auditory cortex (Al) of the cat and the changes observed in neuronal responses in the Al which has reorganized in plasticity of the tonotopic map. From these data we attempt to predict the conditions required for similar plasticity to occur in humans after coachlear damage. C1 Monash Univ, Dept Physiol, Clayton, Vic 3168, Australia. Monash Univ, Dept Psychol, Clayton, Vic 3168, Australia. RP Rajan, R (reprint author), Monash Univ, Dept Physiol, Clayton, Vic 3168, Australia. RI Rajan, Ramesh/A-5945-2008; Irvine, Dexter/F-7474-2011 CR AGLIOTI S, 1994, NEUROREPORT, V5, P473, DOI 10.1097/00001756-199401120-00026 EYSEL U T, 1992, Current Biology, V2, P389 Garraghty P E, 1992, Curr Opin Neurobiol, V2, P522, DOI 10.1016/0959-4388(92)90191-M Gilbert C D, 1993, Curr Opin Neurobiol, V3, P100, DOI 10.1016/0959-4388(93)90042-W GREENWOOD DD, 1990, J ACOUST SOC AM, V87, P2592, DOI 10.1121/1.399052 HALL EJ, 1990, NEUROSCI LETT, V116, P379, DOI 10.1016/0304-3940(90)90105-I HALLIGAN PW, 1993, NEUROREPORT, V4, P233, DOI 10.1097/00001756-199303000-00001 ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 Irvine DRF, 1996, J NEUROPHYSIOL, V75, P75 IRVINE DRF, 1991, P AUST NEUROSCI SOC, V2, P31 Kaltenbach JA, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P317 Kiang NY-s, 1965, DISCHARGE PATTERNS S Knecht S, 1995, NEUROSCI LETT, V201, P262, DOI 10.1016/0304-3940(95)12186-2 LIBERMAN MC, 1982, J ACOUST SOC AM, V72, P1441, DOI 10.1121/1.388677 Merzenich M M, 1993, Curr Opin Neurobiol, V3, P187, DOI 10.1016/0959-4388(93)90209-H MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 MOORE BCJ, 1985, J ACOUST SOC AM, V77, P1505, DOI 10.1121/1.392045 Rajan R, 1996, AUDITORY SYSTEM PLASTICITY AND REGENERATION, P224 RAJAN R, 1991, HEARING RES, V53, P153, DOI 10.1016/0378-5955(91)90222-U RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 RAMACHANDRAN VS, 1992, NEUROREPORT, V3, P583, DOI 10.1097/00001756-199207000-00009 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 SCHREINER CE, 1992, J NEUROPHYSIOL, V68, P1487 SCHWABER MK, 1993, AM J OTOL, V14, P252 South DA, 1995, BRAIN RES, V704, P275, DOI 10.1016/0006-8993(95)01134-X STILLMAN JA, 1993, J ACOUST SOC AM, V93, P425, DOI 10.1121/1.405622 Weinberger N M, 1993, Curr Opin Neurobiol, V3, P570, DOI 10.1016/0959-4388(93)90058-7 YANG TT, 1994, NATURE, V368, P45 YANG TT, 1994, NEUROREPORT, V5, P701, DOI 10.1097/00001756-199402000-00010 NR 29 TC 75 Z9 75 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 123 EP 144 DI 10.1159/000013786 PG 22 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700005 PM 9575381 ER PT J AU Weinberger, NM Bakin, JS AF Weinberger, NM Bakin, JS TI Learning-induced physiological memory in adult primary auditory cortex: Receptive field plasticity, model, and mechanisms SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE adult plasticity; representation of frequency; basal forebrain cholinergic system; Hebbian mechanisms ID MEDIAL GENICULATE-BODY; NUCLEUS BASALIS-MAGNOCELLULARIS; CHOLINERGIC MODULATION; LATERAL HYPOTHALAMUS; CONDITIONED-RESPONSES; SINGLE NEURONS; RAT; NEOCORTEX; CAT; ACETYLCHOLINE AB It is well established that the functional organization of adult sensory cortices, including the auditory cortex, can be modified by deafferentation, sensory deprivation, or selective sensory stimulation. This paper reviews evidence establishing that the adult primary auditory cortex develops physiological plasticity during learning. Determination of frequency receptive fields before and at various times following aversive classical conditioning and instrumental avoidance learning in the guinea pig reveals increased neuronal responses to the pure tone frequency used as a conditioned stimulus (CS). In contrast, responses to the pretraining best frequency and other non-CS frequencies are decreased. These opposite changes an often sufficient to shift cellular tuning toward or even to the frequency of the CS. Learning-induced receptive field (RF) plasticity (i) is associative (requires pairing tone and shock), (ii) highly specific to the CS frequency (e.g., limited to this frequency +/- a small fraction of an octave), (iii) discriminative (specific increased response to a reinforced CS+ frequency but decreased response to a nonreinforced CS- frequency), (iv) develops extremely rapidly (within 5 trials, the fewest trials tested), and (v) is retained indefinitely (tested to 8 weeks). Moreover, RF plasticity is robust and not due to arousal, but can be expressed in the deeply anesthetized subject. Because learning-induced RF plasticity has the major characteristics of associative memory, it is therefore referred to as 'physiological memory.' We developed a model of RF plasticity based on convergence in the auditory cortex of nucleus basalis cholinergic effects acting at muscarinic receptors, with lemniscal and nonlemniscal frequency information from the ventral and magnocellular divisions of the medial geniculate nucleus, respectively. In the model, the specificity of RF plasticity is dependent on Hebbian rules of covariance. This aspect was confirmed in vivo using microstimulation techniques. Further, the model predicts that pairing a tone with activation of the nucleus basalis is sufficient to induce RF plasticity similar to that obtained in behavioral learning. This prediction has been confirmed. Additional tests of the model are described. RF plasticity is thought to translate the acquired significance of sound into an increased frequency representation of behaviorally important stimuli. C1 Univ Calif Irvine, Bonney Ctr, Ctr Neurobiol Learning & Memory, Irvine, CA 92697 USA. RP Weinberger, NM (reprint author), Univ Calif Irvine, Bonney Ctr, Ctr Neurobiol Learning & Memory, Irvine, CA 92697 USA. CR Aitkin L. M., 1990, AUDITORY CORTEX STRU ARMONY JL, 1995, BEHAV NEUROSCI, V109, P246, DOI 10.1037//0735-7044.109.2.246 ASHE JH, 1989, SYNAPSE, V4, P44, DOI 10.1002/syn.890040106 Bakin JS, 1996, P NATL ACAD SCI USA, V93, P11219, DOI 10.1073/pnas.93.20.11219 BAKIN JS, 1992, BRAIN RES, V577, P226, DOI 10.1016/0006-8993(92)90278-H BAKIN JS, 1990, BRAIN RES, V536, P271, DOI 10.1016/0006-8993(90)90035-A BIRT D, 1981, J NEUROPHYSIOL, V46, P1039 BORIN EG, 1957, HIST EXPT PSYCHOL BURTON MJ, 1976, EXP NEUROL, V51, P668, DOI 10.1016/0014-4886(76)90189-8 Buzsàki G, 1989, EXS, V57, P159 CONDON CD, 1991, BEHAV NEUROSCI, V105, P416 Cruikshank SJ, 1996, J NEUROSCI, V16, P861 Cruikshank SJ, 1996, BRAIN RES REV, V22, P191, DOI 10.1016/S0165-0173(96)00015-X DAWSON DR, 1987, J COMP NEUROL, V256, P246, DOI 10.1002/cne.902560205 DEUTSCH JA, 1971, SCIENCE, V174, P788, DOI 10.1126/science.174.4011.788 DIAMOND DM, 1989, BEHAV NEUROSCI, V103, P471, DOI 10.1037/0735-7044.103.3.471 DIAMOND DM, 1986, BRAIN RES, V372, P357, DOI 10.1016/0006-8993(86)91144-3 EDELINE JM, 1988, BEHAV NEURAL BIOL, V50, P61, DOI 10.1016/S0163-1047(88)90780-7 EDELINE JM, 1991, BEHAV NEUROSCI, V105, P618, DOI 10.1037/0735-7044.105.5.618 EDELINE JM, 1993, BEHAV NEUROSCI, V107, P539 EDELINE JM, 1992, BEHAV NEUROSCI, V106, P81, DOI 10.1037//0735-7044.106.1.81 GABRIEL M, 1975, SCIENCE, V189, P1108, DOI 10.1126/science.1162365 Gibson E. J., 1969, PRINCIPLES PERCEPTUA HARTGRAVES SL, 1982, NEUROSCIENCE, V7, P2369, DOI 10.1016/0306-4522(82)90201-9 Hebb D, 1949, ORG BEHAV Herkenham M, 1986, CEREB CORTEX, V5, P403 JOHNSTON MV, 1979, P NATL ACAD SCI USA, V76, P5392, DOI 10.1073/pnas.76.10.5392 JOHNSTON MV, 1981, EXP BRAIN RES, V43, P159 LEHMANN J, 1980, NEUROSCIENCE, V5, P1161, DOI 10.1016/0306-4522(80)90195-5 LENNARTZ RC, 1992, PSYCHOBIOLOGY, V20, P93 LENNARTZ RC, 1994, PSYCHOBIOLOGY, V22, P5 LOVE JA, 1969, CAN J PHYSIOL PHARM, V47, P881 Mackintosh N. J., 1983, CONDITIONING ASS LEA MAHO C, 1995, PSYCHOBIOLOGY, V23, P10 McEchron MD, 1996, J NEUROSCI, V16, P1273 MCECHRON MD, 1995, BRAIN RES, V682, P157, DOI 10.1016/0006-8993(95)00331-J MCGAUGH JL, 1989, ANNU REV NEUROSCI, V12, P255, DOI 10.1146/annurev.neuro.12.1.255 MCKENNA TM, 1989, SYNAPSE, V4, P30, DOI 10.1002/syn.890040105 MESULAM MM, 1983, NEUROSCIENCE, V10, P1185, DOI 10.1016/0306-4522(83)90108-2 METHERATE R, 1990, SYNAPSE, V6, P133, DOI 10.1002/syn.890060204 METHERATE R, 1989, BRAIN RES, V480, P372, DOI 10.1016/0006-8993(89)90210-2 METHERATE R, 1992, J NEUROSCI, V12, P4701 MORA F, 1976, EXP NEUROL, V53, P508, DOI 10.1016/0014-4886(76)90089-3 RECANZONE GH, 1993, J NEUROSCI, V13, P87 RESCORLA RA, 1988, ANNU REV NEUROSCI, V11, P329 RICHARDSON RT, 1986, BRAIN RES, V399, P364, DOI 10.1016/0006-8993(86)91529-5 ROLLS ET, 1979, BRAIN RES, V164, P121, DOI 10.1016/0006-8993(79)90010-6 RYUGO DK, 1978, BEHAV BIOL, V22, P275, DOI 10.1016/S0091-6773(78)92351-9 Schacter D.L., 1994, MEMORY SYSTEMS 1994 STENT GS, 1973, P NATL ACAD SCI USA, V70, P997, DOI 10.1073/pnas.70.4.997 VANDERLOOS H, 1973, SCIENCE, V179, P385 Weinberger N. M., 1990, NEUROCOMPUTATION LEA, P91 Weinberger NM, 1990, CONCEPTS NEUROSCIENC, V1, P91 WEINBERGER NM, 1964, SCIENCE, V144, P1355, DOI 10.1126/science.144.3624.1355 WEINBERGER NM, 1995, BEHAV NEUROSCI, V109, P10, DOI 10.1037/0735-7044.109.1.10 WEINBERGER NM, 1995, ANNU REV NEUROSCI, V18, P129 WEINBERGER NM, 1982, CONDITIONING REPRESE, P697 WEINBERGER NM, 1993, P NATL ACAD SCI USA, V90, P2394, DOI 10.1073/pnas.90.6.2394 WEINBERGER NM, UNPUB EVALUATION PRO Weinberger Norman M., 1995, P1071 WEINBERGER NM, 1987, PROG NEUROBIOL, V29, P1, DOI 10.1016/0301-0082(87)90014-1 WEPSIC JG, 1966, EXP NEUROL, V15, P299, DOI 10.1016/0014-4886(66)90053-7 WIESEL TN, 1963, J NEUROPHYSIOL, V26, P1003 WIESEL TN, 1965, J NEUROPHYSIOL, V28, P1029 WINER JA, 1992, NEUROANATOMY MAMMALI, V1 NR 65 TC 87 Z9 89 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 145 EP 167 DI 10.1159/000013787 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700006 PM 9575382 ER PT J AU Kraus, N McGee, TJ Koch, DB AF Kraus, N McGee, TJ Koch, DB TI Speech sound representation, perception, and plasticity: A neurophysiologic perspective SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE speech; auditory; evoked responses; speech sounds; training ID PRIMARY AUDITORY-CORTEX; LANGUAGE-LEARNING PROBLEMS; MEDIAL GENICULATE-BODY; EVOKED ACTIVITY; SINGLE NEURONS; MISMATCH NEGATIVITY; NORMAL-CHILDREN; DISCRIMINATION; RESPONSES; FREQUENCY AB Historically, auditory research has focused predominately upon how relatively simple acoustic signals are represented in the neuronal responses of the auditory periphery. However, in order to understand the neurophysiology underlying speech perception, the ultimate objective is to discover how speech sounds are represented in the central auditory system and to relate that representation to the perception of speech as a meaningful acoustic signal, This paper reviews three areas that pertain to the central auditory representation of speech: ( I) the differences in neural representation of speech sounds at different levels of the auditory system; (2) the relation between the representation of sound in the auditory pathway and the perception/misperception of speech, and (3) the training-related plasticity of speech sound neural representation and speech perception. C1 Northwestern Univ, Evanston, IL 60208 USA. RP Kraus, N (reprint author), Northwestern Univ, 2299 N Campus Dr,Searle Bldg, Evanston, IL 60208 USA. CR ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 BALL EW, 1991, READ RES QUART, V26, P49, DOI 10.1598/RRQ.26.1.3 BRADLEY L, 1983, NATURE, V301, P419, DOI 10.1038/301419a0 Bradlow AR, 1997, J ACOUST SOC AM, V101, P2299, DOI 10.1121/1.418276 BUCHWALD JS, 1966, PHYSIOL BEHAV, V1, P11, DOI 10.1016/0031-9384(66)90037-0 BYRNE B, 1993, J EDUC PSYCHOL, V85, P104, DOI 10.1037/0022-0663.85.1.104 CARNEY LH, 1986, J ACOUST SOC AM, V79, P1896, DOI 10.1121/1.393197 CREUTZFELDT O, 1980, EXP BRAIN RES, V39, P87 CSEPE V, 1992, ELECTROEN CLIN NEURO, V84, P538, DOI 10.1016/0168-5597(92)90043-B CSEPE V, 1988, ADV BIOSCI, V76, P43 De Ribaupierre F, 1972, Brain Res, V48, P205, DOI 10.1016/0006-8993(72)90179-5 DELGUTTE B, 1984, J ACOUST SOC AM, V75, P866, DOI 10.1121/1.390596 EDELINE JM, 1991, BEHAV NEUROSCI, V105, P154, DOI 10.1037/0735-7044.105.1.154 EGGERMONT J, 1995, J ACOUST SOC AM, P911 EGGERMONT JJ, 1991, HEARING RES, V56, P153, DOI 10.1016/0378-5955(91)90165-6 ELLIOTT LL, 1989, J SPEECH HEAR RES, V32, P112 ELLIOTT LL, 1988, J SPEECH HEAR DISORD, V53, P467 GATEHOUSE S, 1992, J ACOUST SOC AM, V92, P1258, DOI 10.1121/1.403921 GAZZANIGA MS, 1983, AM PSYCHOL, V38, P525, DOI 10.1037/0003-066X.38.5.525 GESHWIND N, 1972, SCI AM, V226, P76 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x GODFREY JJ, 1981, J EXP CHILD PSYCHOL, V32, P401, DOI 10.1016/0022-0965(81)90105-3 HALAS ES, 1970, ELECTROEN CLIN NEURO, V28, P468, DOI 10.1016/0013-4694(70)90272-5 HARI R, 1984, NEUROSCI LETT, V50, P127, DOI 10.1016/0304-3940(84)90474-9 HARRISON RV, 1993, ACTA OTO-LARYNGOL, V113, P296, DOI 10.3109/00016489309135812 HEIL P, 1992, HEARING RES, V63, P135, DOI 10.1016/0378-5955(92)90081-W ROBERTSON D, 1989, J COMP NEUROL, V282, P456, DOI 10.1002/cne.902820311 JAVITT DC, 1992, ELECTROEN CLIN NEURO, V83, P87, DOI 10.1016/0013-4694(92)90137-7 KIANG NYS, 1974, J ACOUST SOC AM, V55, P620, DOI 10.1121/1.1914572 KING C, 1997, ASS RES OTOLARYNGOL, P104 KOCH D, 1997, ASS RES OTOLARYNGOL, V20, P80 Kraus N, 1995, Electroencephalogr Clin Neurophysiol Suppl, V44, P93 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1995, J COGNITIVE NEUROSCI, V7, P25, DOI 10.1162/jocn.1995.7.1.25 KRAUS N, 1994, J NEUROPHYSIOL, V72, P1270 KRAUS N, 1982, BRAIN RES, V246, P205, DOI 10.1016/0006-8993(82)91168-4 KRAUS N, 1994, J ACOUST SOC AM, V96, P2758, DOI 10.1121/1.411282 KURTZBERG D, 1989, Seminars in Hearing, V10, P252 LUNDBERG I, 1988, READ RES QUART, V23, P263, DOI 10.1598/RRQ.23.3.1 MAINEN ZF, 1995, SCIENCE, V268, P1503, DOI 10.1126/science.7770778 MAKELA JP, 1987, HEARING RES, V27, P257, DOI 10.1016/0378-5955(87)90007-4 MCCLASKEY CL, 1983, PERCEPT PSYCHOPHYS, V34, P323, DOI 10.3758/BF03203044 McGee T, 1996, J ACOUST SOC AM, V99, P3606, DOI 10.1121/1.414958 MENDELSON JR, 1985, BRAIN RES, V327, P331, DOI 10.1016/0006-8993(85)91530-6 Merzenich MM, 1996, SCIENCE, V271, P77, DOI 10.1126/science.271.5245.77 MERZENICH MM, 1990, COLD SH Q B, V55, P873 MIYAMOTO R, 1993, 3 INT COCHL IMPL C I NAATANEN R, 1995, EAR HEARING, V16, P1 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 NAATANEN R, 1986, HUMAN MEMORY COGNITI, P615 NEVILLE HJ, 1983, BRAIN RES, V266, P127, DOI 10.1016/0006-8993(83)91314-8 OLDS J, 1972, J NEUROPHYSIOL, V35, P202 OLESON TD, 1975, J NEUROPHYSIOL, V38, P1114 PHILLIPS DP, 1985, EXP BRAIN RES, V58, P443 PHILLIPS DP, 1990, J ACOUST SOC AM, V88, P1403, DOI 10.1121/1.399718 PHILLIPS DP, 1993, J EXP PSYCHOL HUMAN, V19, P203, DOI 10.1037//0096-1523.19.1.203 PHILLIPS DP, 1993, ANN NY ACAD SCI, V682, P104, DOI 10.1111/j.1749-6632.1993.tb22963.x PHILLIPS DP, 1990, BEHAV BRAIN RES, V40, P85, DOI 10.1016/0166-4328(90)90001-U PISONI DB, 1982, J EXP PSYCHOL HUMAN, V8, P297 RAJAN R, 1993, J COMP NEUROL, V338, P17, DOI 10.1002/cne.903380104 REALE RA, 1987, DEV BRAIN RES, V34, P281, DOI 10.1016/0165-3806(87)90215-X RECANZONE GH, 1993, J NEUROSCI, V13, P87 REED MA, 1989, J EXP CHILD PSYCHOL, V48, P270, DOI 10.1016/0022-0965(89)90006-4 ROUILLER E, 1981, HEARING RES, V5, P81, DOI 10.1016/0378-5955(81)90028-9 SACHS MB, 1983, J NEUROPHYSIOL, V50, P27 SAMS M, 1985, ELECTROEN CLIN NEURO, V62, P437, DOI 10.1016/0168-5597(85)90054-1 SCHERG M, 1990, PSYCHOPHYSIOLOGICAL, V1, P94 SCHREINER CE, 1988, AUDITORY FUNCTION NE, P337 SHAMMA SA, 1993, J NEUROPHYSIOL, V69, P367 SHANWEILER D, 1995, PSYCHOL SCI, V6, P149, DOI 10.1111/j.1467-9280.1995.tb00324.x SHANNON RV, 1993, PROG BRAIN RES, V97, P261 SHARMA A, 1995, ASS RES OT ABSTR, V729, P183 Sharma A, 1994, J ACOUST SOC AM, V95, P3011, DOI 10.1121/1.408785 STEINSCHNEIDER M, 1994, ELECTROEN CLIN NEURO, V92, P30, DOI 10.1016/0168-5597(94)90005-1 STEINSCHNEIDER M, 1990, BRAIN RES, V519, P158, DOI 10.1016/0006-8993(90)90074-L STEINSCHNEIDER M, 1982, BRAIN RES, V252, P353, DOI 10.1016/0006-8993(82)90403-6 TALLAL P, 1993, ANN NY ACAD SCI, V682, P27, DOI 10.1111/j.1749-6632.1993.tb22957.x TALLAL P, 1981, INT J PEDIATR OTORHI, V3, P1, DOI 10.1016/0165-5876(81)90014-8 TALLAL P, 1985, NEUROPSYCHOLOGIA, V23, P314 Tallal P, 1996, SCIENCE, V271, P81, DOI 10.1126/science.271.5245.81 TREMBLAY K, 1997, J ACOUST SOC AM, V102, P6762 WEINBERGER NM, 1984, BEHAV NEUROSCI, V98, P171, DOI 10.1037/0735-7044.98.2.171 WERKER JF, 1987, CAN J PSYCHOL, V41, P48, DOI 10.1037/h0084150 WHITFIEL.IC, 1965, J NEUROPHYSIOL, V28, P655 Wright BA, 1997, NATURE, V387, P176, DOI 10.1038/387176a0 NR 86 TC 22 Z9 22 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 168 EP 182 DI 10.1159/000013788 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700007 PM 9575383 ER PT J AU Pantev, C Ross, B Berg, P Elbert, T Rockstroh, B AF Pantev, C Ross, B Berg, P Elbert, T Rockstroh, B TI Study of the human auditory cortices using a whole-head magnetometer: Left vs. right hemisphere and ipsilateral vs. contralateral stimulation SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE hearing; magnetoencephalogram; auditory evoked magnetic field; human auditory cortex ID EVOKED-POTENTIALS; MIDDLE-LATENCY; CORTEX; ORGANIZATION; RESPONSES; AREAS; BRAIN AB Structural and functional asymmetries of the temporal lobe affect language development and may also play a role in a variety of disorders, ranging from specific language impairment to schizophrenia. Whole-head neuromagnetometers allow the noninvasive measurement of functional asymmetries since activity from both hemispheres is recorded simultaneously. In the present study, the location of the auditory cortices and their responsiveness to pure tones was compared between hemispheres in healthy human subjects. Data suggest a greater contralateral than ipsilateral activation. In line with previous findings, sources of responses for the right hemisphere seem to be more anterior than for the left one. C1 Univ Munster, Ctr Biomagnetism, Inst Expt Audiol, D-48129 Munster, Germany. Univ Konstanz, D-7750 Constance, Germany. RP Pantev, C (reprint author), Univ Munster, Ctr Biomagnetism, Inst Expt Audiol, Kardinal Von Galen Ring 10, D-48129 Munster, Germany. RI Elbert, Thomas/C-8556-2009 CR BERG P, 1992, P 10 INT C EV REL PO, P14 BUTLER RA, 1969, ACTA OTO-LARYNGOL, V68, P317, DOI 10.3109/00016486909121570 CAMPAIN R, 1976, BRAIN LANG, V3, P318, DOI 10.1016/0093-934X(76)90026-2 CANSINO S, 1994, BRAIN RES, V663, P38, DOI 10.1016/0006-8993(94)90460-X CELESIA GG, 1976, BRAIN, V99, P403, DOI 10.1093/brain/99.3.403 ELBERLING C, 1980, SCAND AUDIOL, V9, P185, DOI 10.3109/01050398009076353 EVANS EF, 1982, SENSES, P255 GALABURDA A, 1980, J COMP NEUROL, V190, P597, DOI 10.1002/cne.901900312 GALABURDA AM, 1978, SCIENCE, V199, P852, DOI 10.1126/science.341314 GESCHWIN.N, 1968, SCIENCE, V161, P186, DOI 10.1126/science.161.3837.186 Hari R, 1990, ADV AUDIOL, V6, P222 HOKE M, 1988, DYNAMICS COGNITIVE S, P311 HORI T, 1980, Shinkei Kenkyu No Shinpo, V24, P479 KAUKORANTA E, 1987, EXP BRAIN RES, V69, P19 Levanen S, 1996, CEREB CORTEX, V6, P288, DOI 10.1093/cercor/6.2.288 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 MAKELA JP, 1988, PFLUG ARCH EUR J PHY, V412, P12 MAKELA JP, 1992, NEUROREPORT, V3, P94 Mäkelä J P, 1990, Adv Neurol, V54, P177 Moran John E., 1993, Brain Topography, V5, P229, DOI 10.1007/BF01128990 NAKASATO N, 1995, ELECTROEN CLIN NEURO, V94, P183, DOI 10.1016/0013-4694(94)00280-X PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1991, American Journal of EEG Technology, V31, P83 PANTEV C, 1986, AUDIOLOGY, V25, P54 REITE M, 1989, ARCH GEN PSYCHIAT, V46, P565 ROCKSTROH B, 1997, IMPULSE KLIN PSYCHOL, P1 Rogers R L, 1990, J Cogn Neurosci, V2, P44, DOI 10.1162/jocn.1990.2.1.44 ROSENZWEIG MR, 1951, AM J PHYSIOL, V167, P147 SCHERG M, 1990, ADV AUDIOL, V6, P165 SCHERG M, 1986, ELECTROEN CLIN NEURO, V65, P344, DOI 10.1016/0168-5597(86)90014-6 WILLIAMSON S J, 1991, Brain Topography, V4, P169, DOI 10.1007/BF01132773 WOODS DL, 1987, ELECTROEN CLIN NEURO, V68, P132, DOI 10.1016/0168-5597(87)90040-2 NR 33 TC 73 Z9 75 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 183 EP 190 DI 10.1159/000013789 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700008 PM 9575384 ER PT J AU Lutkenhoner, B Steinstrater, O AF Lutkenhoner, B Steinstrater, O TI High-precision neuromagnetic study of the functional organization of the human auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory cortex; Heschl's gyrus; planum temporale; auditory evoked field; tonotopy; N1m; P2m; biomagnetism; magnetoencephalography; current dipole ID EVOKED MAGNETIC-FIELDS; TONOTOPIC ORGANIZATION; NEURONAL-ACTIVITY; PLANUM-TEMPORALE; VISUAL AREAS; LOCALIZATION; RESPONSES; ASYMMETRY; BRAIN; RAT AB Previous studies have proven that a dipole source analysis of the auditory evoked field is capable of providing evidence of the tonotopic organization of the human auditory cortex. To explore the nature of the estimated dipoles in greater detail, a single subject was extensively studied, and the estimated sources were registered in a three-dimensional reconstruction of the cortical surface derived from magnetic resonance images. The stimuli were 500-ms tone bursts with frequencies of 250, 500, 1,000, and 2,000 Hz (mean intensity of 60 dB SL). The total number of stimuli presented per condition was about 3,600 (36 independent experiments spread over 4 days). Using special postprocessing techniques, the relative localization accuracy could be enhanced to such an extent that differences in the dipole locations of 1 mm could be clearly distinguished. The results suggest that peak Nlm (latency around 100 ms) arises from the planum temporale, whereas peak P2m (latency around 170 ms) appears to correspond to a center of activity in (or close to) Heschl's gyrus. The tonotopic organization found for the generator of Nlm was consistent with earlier studies ('the higher the frequency the deeper the source'). However, additional findings (time dependence of the estimated sources; slightly different tonotopy obtained for field change; dependence of the estimated sources on the estimation technique) indicate that multiple areas are involved in the generation of Nlm. Evidence of a frequency-dependent source location was found also for P2m. C1 Univ Munster, Inst Expt Audiol, D-48129 Munster, Germany. RP Lutkenhoner, B (reprint author), Univ Munster, Inst Expt Audiol, Kardinal Von Galen Ring 10, D-48129 Munster, Germany. CR BARTH D, 1990, MAGNETOENCEPHALOGRAP, V54, P119 BARTH DS, 1988, BRAIN RES, V450, P280, DOI 10.1016/0006-8993(88)91567-3 BEAULIEU C, 1989, J COMP NEUROL, V279, P228, DOI 10.1002/cne.902790206 CAMPAIN R, 1976, BRAIN LANG, V3, P318, DOI 10.1016/0093-934X(76)90026-2 CANSINO S, 1994, BRAIN RES, V663, P38, DOI 10.1016/0006-8993(94)90460-X CLARKE S, 1997, NEUROIMAGE, V5, pS7 ELBERLING C, 1981, SCAND AUDIOL, V10, P203, DOI 10.3109/01050398109076182 Lütkenhöner B, 1995, Brain Topogr, V7, P291, DOI 10.1007/BF01195255 Hamalainen Matti S., 1995, Brain Topography, V7, P283, DOI 10.1007/BF01195254 Hari R, 1990, ADV AUDIOL, V6, P222 HARI R, 1987, AUDIOLOGY, V26, P31 HARI R, 1988, EXP BRAIN RES, V71, P87 HUOTILAINEN M, 1995, NEUROREPORT, V6, P841, DOI 10.1097/00001756-199504190-00004 Hyde M, 1997, AUDIOL NEURO-OTOL, V2, P281 JACOBSON GP, 1992, EAR HEARING, V13, P387, DOI 10.1097/00003446-199212000-00003 JOHNSRUDE IS, 1997, NEUROIMAGE, V5, pS177 KULYNYCH JJ, 1993, J COMPUT ASSIST TOMO, V17, P529, DOI 10.1097/00004728-199307000-00003 Lantos G, 1997, NEUROIMAGE, V5, pS174 LIEGEOISCHAUVEL C, 1994, ELECTROEN CLIN NEURO, V92, P204, DOI 10.1016/0168-5597(94)90064-7 LUTKENHONER B, 1998, IN PRESS IEEE T BIOM LUTKENHONER B, 1992, INT CONGR SER, V988, P143 LUTKENHONER B, 1998, IN PRESS ELECTROENCE LUTKENHONER B, 1992, MOGLICHKEITEN GRENZE Lutkenhoner B, 1997, ELECTROEN CLIN NEURO, V102, P326, DOI 10.1016/S0013-4694(96)96590-6 LUTKENHONER B, 1994, NATO ADV SCI INST SE, V271, P259 LUTKENHONER B, 1992, BIOMED RES-TOKYO, V13, P17 LUTKENHONER B, 1992, P IEEE EMBS SAT S NE, P112 Makela J. P., 1993, Human Brain Mapping, V1, P48, DOI 10.1002/hbm.460010106 McEvoy L, 1997, PSYCHOPHYSIOLOGY, V34, P308, DOI 10.1111/j.1469-8986.1997.tb02401.x MELCHER JR, 1997, NEUROIMAGE, V5, pS172 MENNINGHAUS E, 1994, IEEE T BIO-MED ENG, V41, P986, DOI 10.1109/10.324531 MORAN JE, 1992, INT CONGR SER, V988, P801 Moran John E., 1993, Brain Topography, V5, P229, DOI 10.1007/BF01128990 NAKASATO N, 1995, ELECTROEN CLIN NEURO, V94, P183, DOI 10.1016/0013-4694(94)00280-X Nieuwenhuys R., 1988, HUMAN CENTRAL NERVOU Okada Y, 1983, BIOMAGNETISM INTERDI, P399 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1988, ELECTROEN CLIN NEURO, V69, P160, DOI 10.1016/0013-4694(88)90211-8 PANTEV C, 1991, American Journal of EEG Technology, V31, P83 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 PANTEV C, 1994, ELECTROEN CLIN NEURO, V90, P82, DOI 10.1016/0013-4694(94)90115-5 PANTEV C, 1986, AUDIOLOGY, V25, P54 Pantev C, 1996, EAR HEARING, V17, P255, DOI 10.1097/00003446-199606000-00008 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 PANTEV C, 1990, ELECTROEN CLIN NEURO, V75, P173, DOI 10.1016/0013-4694(90)90171-F PAPANICOLAOU AC, 1990, ARCH NEUROL-CHICAGO, V47, P33 PICTON T, UNPUB AUDIOL NEUROOT REITE M, 1981, ELECTROEN CLIN NEURO, V51, P388, DOI 10.1016/0013-4694(81)90102-4 ROGERS RL, 1990, ELECTROEN CLIN NEURO, V77, P237, DOI 10.1016/0168-5597(90)90043-D ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 ROMANI GL, 1982, EXP BRAIN RES, V47, P381 ROMANI GL, 1989, ADV BIOMAGNETISM, P33 SCHLAUG G, 1995, SCIENCE, V267, P699, DOI 10.1126/science.7839149 Skoglund TS, 1996, NEUROSCI LETT, V208, P97, DOI 10.1016/0304-3940(96)12569-6 STEINMETZ H, 1989, J COMPUT ASSIST TOMO, V13, P996, DOI 10.1097/00004728-198911000-00011 STEINSCHNEIDER M, 1994, ELECTROEN CLIN NEURO, V92, P30, DOI 10.1016/0168-5597(94)90005-1 STEINSTRATER O, 1998, AUDIOL NEUROOTOL TALAVAGE TM, 1997, NEUROIMAGE, V5, pS8 TIIHONEN J, 1989, AUDIOLOGY, V28, P37 VALDESSOSA P, 1998, ADV BIOMAGNETISM RES, V1 WILLIAMS M, 1990, NEUROTRANSMISSIONS, V6, P1 Williamson S. J., 1987, EEG HDB, V1, P405 WILLIAMSON S J, 1991, Brain Topography, V4, P169, DOI 10.1007/BF01132773 WINFIELD DA, 1980, BRAIN, V103, P245, DOI 10.1093/brain/103.2.245 WITELSON SF, 1995, J NEUROSCI, V15, P3418 WOLDORFF M, 1997, NEUROIMAGE, V5, pS173 YAMAMOTO T, 1988, P NATL ACAD SCI USA, V85, P8732, DOI 10.1073/pnas.85.22.8732 NR 67 TC 191 Z9 193 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 191 EP 213 DI 10.1159/000013790 PG 23 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700009 PM 9575385 ER PT J AU Harrison, RV Harel, N Kakigi, A Raveh, E Mount, RJ AF Harrison, RV Harel, N Kakigi, A Raveh, E Mount, RJ TI Optical imaging of intrinsic signals in chinchilla auditory cortex SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE auditory system; hearing; tonotopic map; frequency organization ID ISO-ORIENTATION DOMAINS; FERRET MUSTELA-PUTORIUS; CAT VISUAL-CORTEX; TONOTOPIC ORGANIZATION; FREQUENCY REPRESENTATION; ELECTRICAL-ACTIVITY; FUNCTIONAL ARCHITECTURE; NEURONAL-ACTIVITY; RAT; COCHLEA AB We have assessed sound frequency and intensity responses in primary auditory cortex of the (ketamine) anesthetized chinchilla using optical imaging of intrinsic signals. Temporal cortex was exposed via a 10-mm craniotomy and a windowed chamber was mounted, A 4-second period of gated tones (10 ms rise/fall; 50 ms plateau; 10/s) was presented to the contralateral ear at levels between 0 and 80 dB SPL. The cortical surface was illuminated with 540 nm light and video images captured in 0.5-second bins for 7.5 s (Imager 2001; Optical Imaging), Intrinsic signals were first apparent 0.5-1 s after stimulus onset, and were maximal after 3-4 s; they decayed over several seconds, The cortical area in which intrinsic activity was detected corresponded closely with electrophysiologically defined AI cortex. Intrinsic signals can reliably be detected to stimuli at 30-40 dB SPL? and in general, the area of intrinsic signal activity tends to expand with increasing stimulation level. Using stimulation levels of 80 dB SPL, we show that low-frequency stimuli (0.5-1 kHz) evoke intrinsic signals in anterior areas whilst posterior areas are activated by high-frequency stimuli (e.g. 16 kHz). Thus a low-to high-frequency tonotopic organization is seen along this axis. C1 Hosp Sick Children, Dept Otolaryngol, Auditory Sci Lab, Toronto, ON M5G 1X8, Canada. Univ Toronto, Dept Otolaryngol, Auditory Sci Lab, Toronto, ON M5G 1X8, Canada. RP Harrison, RV (reprint author), Hosp Sick Children, Dept Otolaryngol, Auditory Sci Lab, 555 Univ Ave, Toronto, ON M5G 1X8, Canada. EM robert.harrison@mailhub.sickkids.on.ca CR AITKIN LM, 1986, J COMP NEUROL, V252, P175, DOI 10.1002/cne.902520204 Bakin JS, 1996, CEREB CORTEX, V6, P120, DOI 10.1093/cercor/6.2.120 BONHOEFFER T, 1993, J NEUROSCI, V13, P4157 Bonhoeffer Tobias, 1996, P55 BONHOEFFER T, 1991, NATURE, V353, P429, DOI 10.1038/353429a0 COHEN LB, 1973, PHYSIOL REV, V53, P373 Dinse HR, 1997, EUR J NEUROSCI, V9, P113, DOI 10.1111/j.1460-9568.1997.tb01359.x FROSTIG RD, 1990, P NATL ACAD SCI USA, V87, P6082, DOI 10.1073/pnas.87.16.6082 GOCHIN PM, 1992, P NATL ACAD SCI USA, V89, P8381, DOI 10.1073/pnas.89.17.8381 GRINVALD A, 1984, NATURE, V308, P848, DOI 10.1038/308848a0 GRINVALD A, 1986, NATURE, V324, P361, DOI 10.1038/324361a0 GRINVALD A, 1988, PHYSIOL REV, V68, P1285 Harrison RV, 1996, HEARING RES, V100, P157, DOI 10.1016/0378-5955(96)00120-7 Harrison R. V., 1997, Society for Neuroscience Abstracts, V23, P1033 HELLWEG FC, 1977, EXP BRAIN RES, V29, P467 Hess A, 1996, NEUROREPORT, V7, P2643, DOI 10.1097/00001756-199611040-00047 Howard MA, 1996, BRAIN RES, V724, P260, DOI 10.1016/0006-8993(96)00315-0 IMIG TJ, 1977, J COMP NEUROL, V171, P111, DOI 10.1002/cne.901710108 KELLY JB, 1986, HEARING RES, V24, P111, DOI 10.1016/0378-5955(86)90054-7 MACVICAR BA, 1991, J NEUROSCI, V11, P1458 Malonek D, 1996, SCIENCE, V272, P551, DOI 10.1126/science.272.5261.551 MCMULLEN NT, 1982, EXP NEUROL, V75, P208, DOI 10.1016/0014-4886(82)90019-X MERZENICH MM, 1976, J COMP NEUROL, V166, P387, DOI 10.1002/cne.901660402 MERZENIC.MM, 1973, BRAIN RES, V50, P275, DOI 10.1016/0006-8993(73)90731-2 MERZENICH MM, 1975, J NEUROPHYSIOL, V38, P231 OLIVER DL, 1976, ANAT REC, V184, P491 ORBACH HS, 1985, J NEUROSCI, V5, P1886 PANTEV C, 1995, ELECTROEN CLIN NEURO, V94, P26, DOI 10.1016/0013-4694(94)00209-4 PANTEV C, 1989, SCIENCE, V246, P486, DOI 10.1126/science.2814476 Pantev C, 1996, HEARING RES, V101, P62, DOI 10.1016/S0378-5955(96)00133-5 Penfield W., 1958, EXCITABLE CORTEX CON PHILLIPS DP, 1988, BRAIN RES, V443, P281, DOI 10.1016/0006-8993(88)91622-8 RATZLAFF EH, 1991, J NEUROSCI METH, V36, P127, DOI 10.1016/0165-0270(91)90038-2 REALE RA, 1980, J COMP NEUROL, V192, P265, DOI 10.1002/cne.901920207 REDIES H, 1989, J COMP NEUROL, V282, P473, DOI 10.1002/cne.902820402 ROMANI GL, 1982, SCIENCE, V216, P1339, DOI 10.1126/science.7079770 SALLY SL, 1988, J NEUROPHYSIOL, V59, P1627 TANIGUCHI I, 1992, NEUROSCI LETT, V146, P37, DOI 10.1016/0304-3940(92)90166-5 THOMAS H, 1993, EUR J NEUROSCI, V5, P882, DOI 10.1111/j.1460-9568.1993.tb00940.x TSO DY, 1990, SCIENCE, V249, P417, DOI 10.1126/science.2165630 UNO H, 1993, NEUROSCI LETT, V150, P179, DOI 10.1016/0304-3940(93)90530-X VERKINDT C, 1995, EVOKED POTENTIAL, V96, P143, DOI 10.1016/0168-5597(94)00242-7 Woolsey CN, 1942, B JOHNS HOPKINS HOSP, V71, P315 NR 43 TC 26 Z9 26 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAR-JUN PY 1998 VL 3 IS 2-3 BP 214 EP 223 DI 10.1159/000013791 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA ZG275 UT WOS:000072984700010 PM 9575386 ER PT J AU Gleich, O Kadow, C Strutz, J AF Gleich, O Kadow, C Strutz, J TI The postnatal growth of cochlear nucleus subdivisions and neuronal somata of the anteroventral cochlear nucleus in the mongolian gerbil (Meriones unguiculatus) SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE development; maturation; cochlear nucleus morphology; somal growth ID AUDITORY BRAIN-STEM; INTRACOCHLEAR ELECTRICAL-STIMULATION; CONDUCTIVE HEARING-LOSS; AGE-RELATED-CHANGES; OUTER HAIR-CELLS; INFERIOR COLLICULUS; NEONATAL GERBIL; RHESUS-MONKEYS; GUINEA-PIG; SIZE AB We have analysed the postnatal volume increase of the cochlear nucleus subdivisions from birth to senescence in the Mongolian gerbil. All subdivisions showed the most prominent growth in the 2nd week of life before the onset of hearing on day 12. After the onset of hearing, the dorsal and the posteroventral portion of the cochlear nucleus showed only a moderate degree of further growth. The antero-ventral cochlear nucleus, however, almost doubled in volume after the onset of hearing, reaching a maximum in 4-month-old animals. In ageing gerbils, we observed a small but systematic reduction of the cochlear nucleus volume. To further assess which elements contribute to the growth of the antero-ventral cochlear nucleus after the onset of hearing, we analysed the somal size of the neurones. Before the onset of hearing, somal and volume growth were highly correlated. However, somata had reached an adult size by the onset of hearing. We conclude that the growth of the antero-ventral cochlear nucleus after the onset of hearing is due to changes in the neuropil. C1 Univ Regensburg, HNO Klin, ENT Dept, D-93042 Regensburg, Germany. RP Gleich, O (reprint author), Univ Regensburg, HNO Klin, ENT Dept, Franz Josef Str Allee 11, D-93042 Regensburg, Germany. CR Armstrong E, 1991, CEREB CORTEX, V1, P426, DOI 10.1093/cercor/1.5.426 BANCROFT BR, 1991, HEARING RES, V54, P20, DOI 10.1016/0378-5955(91)90132-S COHEN YE, 1993, AM J OTOLARYNG, V14, P191, DOI 10.1016/0196-0709(93)90029-7 COLEMAN J, 1982, DEV BRAIN RES, V4, P119, DOI 10.1016/0165-3806(82)90104-3 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 DODSON HC, 1994, DEV BRAIN RES, V80, P261, DOI 10.1016/0165-3806(94)90111-2 DOYLE WJ, 1991, HEARING RES, V54, P145, DOI 10.1016/0378-5955(91)90144-X Fleckeisen C E, 1991, Acta Otolaryngol Suppl, V489, P23 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x FRISINA RD, 1982, HEARING RES, V6, P259, DOI 10.1016/0378-5955(82)90059-4 GANDOLFI A, 1981, J NEUROL SCI, V50, P443, DOI 10.1016/0022-510X(81)90156-8 GLEICH O, IN PRESS ACOUSTICAL, P167 Gleich O, 1997, AUDIOL NEURO-OTOL, V2, P113 GOTTLIEB A, 1977, BIOL NEONATE, V32, P166 HARRIS DM, 1990, HEARING RES, V50, P1, DOI 10.1016/0378-5955(90)90029-O HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 HUANG JM, 1995, HEARING RES, V88, P14, DOI 10.1016/0378-5955(95)00094-K HULTCRANTZ M, 1991, HEARING RES, V54, P272, DOI 10.1016/0378-5955(91)90121-O JEN KLC, 1985, INT J OBESITY, V9, P213 KAMEYAMA T, 1994, SPINE, V19, P2077, DOI 10.1097/00007632-199409150-00013 KEITHLEY EM, 1989, HEARING RES, V38, P125, DOI 10.1016/0378-5955(89)90134-2 KONIGSMARK B W, 1972, Journal of Neuropathology and Experimental Neurology, V31, P304, DOI 10.1097/00005072-197204000-00006 KONISHI M, 1989, SCIENCE, V246, P465, DOI 10.1126/science.2683069 LARSEN SA, 1985, ACTA OTOLARYNGOL S S, V417, P1 LESPERANCE MM, 1995, HEARING RES, V86, P77, DOI 10.1016/0378-5955(95)00056-A LUSTIG LR, 1994, HEARING RES, V74, P29, DOI 10.1016/0378-5955(94)90173-2 MARTIN MR, 1981, J COMP NEUROL, V197, P169, DOI 10.1002/cne.901970113 MCGINN MD, 1984, ACTA OTO-LARYNGOL, V97, P297, DOI 10.3109/00016488409130992 MCGUIRT JP, 1995, HEARING RES, V84, P52, DOI 10.1016/0378-5955(95)00015-V MEYER J, 1981, BRAIN BEHAV EVOLUT, V18, P60, DOI 10.1159/000121776 MILLS JH, 1990, HEARING RES, V46, P201, DOI 10.1016/0378-5955(90)90002-7 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 NARA T, 1993, EARLY HUM DEV, V32, P93, DOI 10.1016/0378-3782(93)90003-D NIELSEN KK, 1995, J UROLOGY, V154, P2170, DOI 10.1016/S0022-5347(01)66722-3 NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6 PASIC TR, 1994, J COMP NEUROL, V348, P111, DOI 10.1002/cne.903480106 Paxinos G., 1982, RAT BRAIN STEREOTAXI PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RAJ JU, 1992, RESPIR PHYSL, V88, P120 ROMAND R, 1987, HEARING RES, V28, P117, DOI 10.1016/0378-5955(87)90158-4 RUBSAMEN R, 1994, J COMP NEUROL, V346, P289, DOI 10.1002/cne.903460208 RUSCH A, 1997, MEMBRANE MIND, P15 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SAUNDERS JC, 1993, COMP BIOCHEM PHYS A, V106, P7, DOI 10.1016/0300-9629(93)90030-8 SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SCHULMEYER FJ, 1992, THESIS UW GOETHE U F SCHUZ A, 1989, J COMP NEUROL, V286, P442, DOI 10.1002/cne.902860404 SELDON HL, 1991, BRAIN RES, V551, P185, DOI 10.1016/0006-8993(91)90932-L SMITH DI, 1987, HEARING RES, V27, P157, DOI 10.1016/0378-5955(87)90016-5 STATLER KD, 1990, HEARING RES, V50, P275, DOI 10.1016/0378-5955(90)90051-P STUERMER IW, 1997, MEMBRANE MIND, P356 SUTTON D, 1991, DEV BRAIN RES, V58, P59, DOI 10.1016/0165-3806(91)90237-D TARNOWSKI BI, 1991, HEARING RES, V54, P123, DOI 10.1016/0378-5955(91)90142-V Tierney TS, 1997, BRIT J AUDIOL, V31, P122 Valerius KP, 1996, J MORPHOL, V230, P291, DOI 10.1002/(SICI)1097-4687(199612)230:3<291::AID-JMOR4>3.0.CO;2-H WEAVER SP, 1994, HEARING RES, V72, P44, DOI 10.1016/0378-5955(94)90204-6 WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 WEBSTER DB, 1980, ANN OTO RHINOL LARYN, V89, P254 WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5 WILKINSON F, 1986, BEHAV BRAIN RES, V19, P59, DOI 10.1016/0166-4328(86)90048-3 WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 WU SH, 1987, HEARING RES, V30, P99 ZOOK JM, 1982, J COMP NEUROL, V207, P1, DOI 10.1002/cne.902070102 NR 71 TC 7 Z9 7 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1998 VL 3 IS 1 BP 1 EP 20 DI 10.1159/000013775 PG 20 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YW684 UT WOS:000071962200001 PM 9502538 ER PT J AU Kirk, DL Yates, GK AF Kirk, DL Yates, GK TI 4-aminopyridine in scala media reversibly alters the cochlear potentials and suppresses electrically evoked oto-acoustic emissions SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE 4-aminopyridine; oto-acoustic emissions; mechano-electrical transduction; electrical stimulation ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; OTOACOUSTIC EMISSIONS; BASILAR-MEMBRANE; MECHANICAL RESPONSES; TRANSDUCTION; CURRENTS; ENHANCEMENT; BUNDLES; INNER AB Iontophoresis of 4-aminopyridine into scala media of the guinea pig cochlea caused elevation of the thresholds of the compound action potential of the auditory nerve, loss of amplitude of the extracellular cochlear microphonic response (CM), increase in the endocochlear potential (EP) and reduction in the amplitude of electrically evoked oto-acoustic emissions (EEOAEs). These changes were reversible over 10-20 min. The reciprocity of the changes in the CM and the EP was consistent with an interruption of both DC and AC currents through outer hair cells (OHCs), probably by blockade of mechano-electrical transduction (MET) channels in OHCs. Reductions in EEOAEs were consistent with the extrinsically applied generating current entering the OHC via the MET channels. Implications for the activation of OHC electromotility in vivo are discussed. C1 Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. RP Kirk, DL (reprint author), Univ Western Australia, Dept Physiol, Auditory Lab, Nedlands, WA 6907, Australia. CR ANNIKO M, 1986, HEARING RES, V22, P279, DOI 10.1016/0378-5955(86)90104-8 ASHMORE JF, 1987, J PHYSIOL-LONDON, V388, P323 ASSAD JA, 1991, NEURON, V7, P985, DOI 10.1016/0896-6273(91)90343-X BROWNELL WE, 1985, SCIENCE, V227, P194, DOI 10.1126/science.3966153 CRAWFORD AC, 1985, J PHYSIOL-LONDON, V364, P359 DALLOS P, 1986, HEARING RES, V22, P185, DOI 10.1016/0378-5955(86)90095-X DALLOS P, 1995, SCIENCE, V267, P2006, DOI 10.1126/science.7701325 Dallos P, 1973, BASIC MECHANISMS HEA, P335 DAVIS H, 1983, HEARING RES, V9, P79, DOI 10.1016/0378-5955(83)90136-3 DEITMER JW, 1982, J EXP BIOL, V96, P239 DENK W, 1992, J NEUROPHYSIOL, V68, P927 DRESCHER MJ, 1987, BRAIN RES, V417, P39, DOI 10.1016/0006-8993(87)90177-6 DULON D, 1990, J NEUROSCI, V10, P1388 HALLWORTH R, 1993, J NEUROPHYSIOL, V70, P549 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1992, J PHYSIOL-LONDON, V448, P73 HOWE JR, 1991, J PHYSIOL-LONDON, V433, P183 HUBBARD AE, 1990, HEARING RES, V43, P269, DOI 10.1016/0378-5955(90)90234-G HUDSPETH AJ, 1994, NEURON, V12, P1, DOI 10.1016/0896-6273(94)90147-3 JARAMILLO F, 1991, NEURON, V7, P409, DOI 10.1016/0896-6273(91)90293-9 JORGENSEN F, 1983, ACTA PHYSIOL SCAND, V118, P423, DOI 10.1111/j.1748-1716.1983.tb07292.x Kirk DL, 1996, J ACOUST SOC AM, V100, P3714, DOI 10.1121/1.417335 KIRK DL, IN PRESS HEARING RES KONISHI T, 1979, ACTA OTO-LARYNGOL, V88, P41, DOI 10.3109/00016487909137138 KROS CJ, 1990, J PHYSIOL-LONDON, V421, P263 LEWIS RS, 1983, NATURE, V304, P538, DOI 10.1038/304538a0 LIM DJ, 1986, AM J OTOLARYNG, V7, P73, DOI 10.1016/S0196-0709(86)80037-0 MOUNTAIN DC, 1989, HEARING RES, V42, P195, DOI 10.1016/0378-5955(89)90144-5 MURATA K, 1991, HEARING RES, V55, P201, DOI 10.1016/0378-5955(91)90105-I Nakajima HH, 1996, AUDIT NEUROSCI, V3, P79 Nuttall AL, 1995, HEARING RES, V92, P170, DOI 10.1016/0378-5955(95)00216-2 OHMORI H, 1985, J PHYSIOL-LONDON, V359, P189 PAE SS, 1994, P NATL ACAD SCI USA, V91, P1153, DOI 10.1073/pnas.91.3.1153 PATUZZI RB, 1989, HEARING RES, V39, P189, DOI 10.1016/0378-5955(89)90090-7 PATUZZI RB, 1989, HEARING RES, V39, P177, DOI 10.1016/0378-5955(89)90089-0 PROESCHEL U, 1984, 21 WORKSH INN EAR BI, P88 RODDY J, 1994, HEARING RES, V73, P148, DOI 10.1016/0378-5955(94)90229-1 RUDY B, 1988, NEUROSCIENCE, V25, P729, DOI 10.1016/0306-4522(88)90033-4 RUSSELL IJ, 1986, HEARING RES, V22, P199, DOI 10.1016/0378-5955(86)90096-1 SALT AN, 1979, HEARING RES, V1, P343, DOI 10.1016/0378-5955(79)90005-4 SANTOS-SACCHI J, 1988, HEARING RES, V35, P143, DOI 10.1016/0378-5955(88)90113-X SANTOS-SACCHI J, 1989, J NEUROSCI, V9, P2954 SANTOS-SACCHI J, 1992, J NEUROSCI, V12, P1906 SELLICK P M, 1975, Progress in Neurobiology (Oxford), V5, P337, DOI 10.1016/0301-0082(75)90015-5 SEWELL WF, 1984, HEARING RES, V14, P305, DOI 10.1016/0378-5955(84)90057-1 WANG J, 1993, HEARING RES, V68, P152 WILSON JP, 1975, J ACOUST SOC AM, V57, P705, DOI 10.1121/1.380472 XUE SW, 1993, HEARING RES, V70, P121, DOI 10.1016/0378-5955(93)90056-7 YATES GK, 1997, 20 MIDW M ST PET BEA, P123 YATES GK, 1992, TRENDS NEUROSCI, V15, P57, DOI 10.1016/0166-2236(92)90027-6 ZHANG M, 1997, 20 MIDW M ST PET BEA, P64 NR 51 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1998 VL 3 IS 1 BP 21 EP 39 DI 10.1159/000013776 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YW684 UT WOS:000071962200002 PM 9502539 ER PT J AU Khvoles, R Freeman, S Sohmer, H AF Khvoles, R Freeman, S Sohmer, H TI Development of transient evoked otoacoustic emissions in the neonatal rat SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE transient; distortion product; otoacoustic emissions; development; neonate; rat ID 2 DISCRETE SOURCES; OUTER HAIR-CELLS; DISTORTION-PRODUCT; PRETERM INFANTS; GERBIL; ORGAN; EAR; VULNERABILITY; POTENTIALS; THRESHOLDS AB Otoacoustic emissions (OAEs) represent acoustic energy generated by the cochlear amplifier which contributes to auditory sensitivity and frequency discrimination. Therefore the OAEs can serve as a noninvasive tool to study the cochlear amplifier. While transient evoked OAEs (TEOAEs) are generally recorded clinically in man, it has been difficult to record them in animals and instead cubic distortion product OAEs (DPOAEs) have been experimentally studied in animals. In a previous study, we perfected a method of recording TEOAEs routinely in rats and this technique was used here to study the development of OAEs in neonatal rats. TEOAEs were recorded and compared to the DPOAEs on several postnatal days. With increasing postnatal age, TEOAE peak-to-peak amplitude and spectral energy in the 2- to 4-kHz band increased, their threshold decreased and their input-output functions became less monotonic with a change in slope (notch and/or plateau) in the mid-intensity region. The DPOAEs to higher frequencies appeared first, then the TEOAEs, followed by the DPOAEs to lower frequencies. With age, their amplitude also increased, thresholds decreased and a notch appeared in their input-output functions. The TEOAEs were measurable during the continuum of the appearance of the DPOAEs and the developmental sequences of both types of OAEs were similar. This may be evidence that similar mechanisms account for their maturation which probably initially involves a reduction in the air-bone gap with maturation of the outer and middle ears, and then elevation of the endocochlear potential and additional micromechanical maturations. C1 Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, IL-91120 Jerusalem, Israel. RP Sohmer, H (reprint author), Hebrew Univ Jerusalem, Hadassah Med Sch, Dept Physiol, POB 12272, IL-91120 Jerusalem, Israel. EM Sohmer@md2.huji.ac.il CR BONFILS P, 1992, LARYNGOSCOPE, V102, P182 BOSHER SK, 1971, J PHYSL, V212, P736 BRAY P, 1987, British Journal of Audiology, V21, P191, DOI 10.3109/03005368709076405 BRUNDIN L, 1991, NEUROSCI LETT, V128, P77, DOI 10.1016/0304-3940(91)90763-J BRUNDIN L, 1992, HEARING RES, V58, P175, DOI 10.1016/0378-5955(92)90126-8 BRUNDIN L, 1989, NATURE, V342, P814, DOI 10.1038/342814a0 CHUANG SW, 1993, INT J PEDIATR OTORHI, V26, P39, DOI 10.1016/0165-5876(93)90194-8 Doan DE, 1996, J ACOUST SOC AM, V99, P1566, DOI 10.1121/1.415235 FERNANDE.C, 1974, ACTA OTO-LARYNGOL, V78, P173, DOI 10.3109/00016487409126343 Freeman S, 1996, HEARING RES, V97, P19 FREEMAN S, 1995, J NEUROL SCI, V131, P21, DOI 10.1016/0022-510X(95)00038-4 GEALDOR M, 1993, HEARING RES, V69, P236, DOI 10.1016/0378-5955(93)90113-F HE DZZ, 1994, HEARING RES, V78, P77, DOI 10.1016/0378-5955(94)90046-9 HENLEY CM, 1990, HEARING RES, V43, P141, DOI 10.1016/0378-5955(90)90223-C Khvoles R, 1996, HEARING RES, V97, P120 LENOIR M, 1987, HEARING RES, V29, P265, DOI 10.1016/0378-5955(87)90173-0 McFadden SL, 1996, HEARING RES, V100, P68, DOI 10.1016/0378-5955(96)00108-6 MILLS DM, 1993, J ACOUST SOC AM, V94, P2108, DOI 10.1121/1.407483 Mills DM, 1996, J ACOUST SOC AM, V100, P428, DOI 10.1121/1.415857 NORTON SJ, 1991, HEARING RES, V51, P73, DOI 10.1016/0378-5955(91)90008-W RUBEL EW, 1983, SCIENCE, V219, P512, DOI 10.1126/science.6823549 RUGGERO MA, 1991, J NEUROSCI, V11, P1057 RYBAK LP, 1992, HEARING RES, V59, P189, DOI 10.1016/0378-5955(92)90115-4 SADANAGA M, 1995, HEARING RES, V89, P155, DOI 10.1016/0378-5955(95)00133-X SAUNDERS JC, 1993, COMP BIOCHEM PHYS A, V106, P7, DOI 10.1016/0300-9629(93)90030-8 SMURZYNSKI J, 1994, EAR HEARING, V15, P210, DOI 10.1097/00003446-199406000-00002 Sohmer H, 1996, Audiol Neurootol, V1, P137 Sohmer H, 1995, J Basic Clin Physiol Pharmacol, V6, P95 WALSH EJ, 1986, J ACOUST SOC AM, V79, P712, DOI 10.1121/1.393461 WHITEHEAD ML, 1992, J ACOUST SOC AM, V92, P2662, DOI 10.1121/1.404382 WHITEHEAD ML, 1992, J ACOUST SOC AM, V91, P1587, DOI 10.1121/1.402440 NR 31 TC 9 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1998 VL 3 IS 1 BP 40 EP 53 DI 10.1159/000013777 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YW684 UT WOS:000071962200003 PM 9502540 ER PT J AU Quaranta, A Marini, F Sallustio, V AF Quaranta, A Marini, F Sallustio, V TI Long-term outcome of Meniere's disease: Endolymphatic mastoid shunt versus natural history SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE Meniere's disease; vertigo; hearing loss; tinnitus; endolymphatic-mastoid shunt ID SAC; SURGERY AB This retrospective study evaluates the outcome of 38 patients with intractable Meniere's disease with a minimum of 7 years follow-up. Twenty underwent endolymphatic-mastoid shunt (EMS) and 18 were offered surgery but declined (natural history, NH, group). At the last control, 85% of the patients who were operated on (EMS group) and 74% of the NH patients had complete or substantial control of vertigo. The difference between the two groups was not significant. However, it was significant at 2 and 4 years follow-up. At 2 years, EMS patients had complete or substantial control of vertigo in 65% of the cases, at 4 and 6 years in 85% of the cases. Only 32% of the NH patients had complete or substantial control of vertigo at 2 years. This percentage rose to 50% at 4 years and to 74% at 6 years. Hearing results in the two groups were not significantly different. Tinnitus disappeared or decreased in 56% of the EMS patients and in 18% of the NH patients. Sixty-seven percent of the EMS patients and 29% of the NH patients reported that their aural fullness was abolished. In conclusion, over the years, approximately 8 out of 10 of our patients with Meniere's disease achieved complete or substantial control of vertigo; however, this reduction was observed earlier in EMS patients than in those who declined surgery. C1 Univ Bari, Dept Ophthalmol & Otolaryngol, Policlin Bari, Audiol & Otol Ctr, I-70124 Bari, Italy. RP Quaranta, A (reprint author), Univ Bari, Dept Ophthalmol & Otolaryngol, Policlin Bari, Audiol & Otol Ctr, I-70124 Bari, Italy. CR ARENBERG IK, 1987, AM J OTOL, V8, P335 BRACKMANN DE, 1987, AM J OTOL, V8, P275 Committee on Hearing and Equilibirum, 1995, OTOLARYNGOL HEAD NEC, V113, P181 Committee on Hearing and Equilibrium, 1985, AAO HNS B, V5, P6 Filipo R, 1994, Ear Nose Throat J, V73, P254 GOIN DW, 1992, AM J OTOL, V13, P393 GOLDENBERG RA, 1990, LARYNGOSCOPE, V100, P141 PAPARELLA MM, 1976, LARYNGOSCOPE, V86, P697, DOI 10.1288/00005537-197605000-00010 PAPARELLA MM, 1987, AM J OTOL, V8, P294 Quaranta A, 1997, AM J OTOL, V18, P444 SCHUKNECHT HF, 1981, PANEL MENIERES DIS SILVERSTEIN H, 1989, OTOLARYNG HEAD NECK, V100, P6 STAHLE J, 1989, AM J OTOL, V10, P170 THOMSEN J, 1986, ANN OTO RHINOL LARYN, V95, P32 NR 14 TC 26 Z9 27 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-FEB PY 1998 VL 3 IS 1 BP 54 EP 60 DI 10.1159/000013781 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YW684 UT WOS:000071962200004 PM 9502541 ER PT J AU Hain, TC Ostrowski, VB AF Hain, TC Ostrowski, VB TI Limits of normal for pressure sensitivity in the fistula test SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE perilymphatic fistula; round window; pressure sensitivity; nystagmus ID PERILYMPH FISTULA; CHILDREN; SIGN AB In patients with perilymphatic fistula (PLF), nystagmus may sometimes be elicited by application of pressure to the external ear canal. The extent to which the normal population also exhibits such 'pressure sensitivity' is presently unknown. Our goal was to determine the limits of normal pressure sensitivity and to quantify the performance of the fistula test. Our subjects consisted of 13 normal controls and 7 patients with a history of pressure sensitivity who later underwent exploratory tympanotomy. We measured nystagmus prior to and following pressurization of the external ear canal. Pressure was applied manually over 60 s with a pneumatic otoscope bulb. In normal subjects, change in nystagmus between prepressure and postpressure tests ranged from -1.3 to 0.9 degrees/s. In patients, change in nystagmus greater than the 95th percentile limits of normal was not a reliable indication of PLF. C1 NORTHWESTERN UNIV,SCH MED,DEPT NEUROL,CHICAGO,IL 60611. RP Hain, TC (reprint author), NORTHWESTERN UNIV,SCH MED,DEPT OTOLARYNGOL,707 FAIRBANKS,SUITE 1010,CHICAGO,IL 60611, USA. CR Brandt T, 1988, Adv Otorhinolaryngol, V42, P153 BROOKLER KH, 1991, AM J OTOL, V12, P480 DASPIT CP, 1980, LARYNGOSCOPE, V90, P217 DEECKE L, 1981, ANN NY ACAD SCI, V374, P650, DOI 10.1111/j.1749-6632.1981.tb30908.x EMMETT JR, 1980, LARYNGOSCOPE, V90, P1513 Hennebert C, 1911, PRESSE MED BELG BRUX, V63, P467 HUGHES GB, 1990, OTOLARYNG HEAD NECK, V102, P111 KENYON GS, 1987, CLIN OTOLARYNGOL, V12, P137, DOI 10.1111/j.1365-2273.1987.tb00176.x McCabe B F, 1984, Ann Otol Rhinol Laryngol Suppl, V112, P138 NADOL JB, 1974, ARCH OTOLARYNGOL, V100, P273 NADOL JB, 1977, ARCH OTOLARYNGOL, V103, P524 NYLEN CO, 1923, ACTA OTOLARYNGO S S4, V3, P501 PERLMAN HB, 1952, LARYNGOSCOPE, V62, P1175, DOI 10.1288/00005537-195211000-00003 REKER U, 1984, ARCH OTO-RHINO-LARYN, V239, P229, DOI 10.1007/BF00464248 SELTZER S, 1986, LARYNGOSCOPE, V94, P37 SHELTON C, 1988, ANN OTO RHINOL LARYN, V97, P105 Simmons F B, 1982, Adv Otorhinolaryngol, V28, P68 SUPANCE JS, 1983, OTOLARYNG HEAD NECK, V91, P663 THOMPSON JN, 1979, OTOLARYNG HEAD NECK, V87, P898 WALL C, 1992, AM J OTOL, V13, P443 YOUNG LR, 1975, AM PSYCHOL, V30, P315 NR 21 TC 1 Z9 1 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1997 VL 2 IS 6 BP 384 EP 390 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE308 UT WOS:A1997YE30800002 PM 9390842 ER PT J AU Sass, K Densert, B Magnusson, M AF Sass, K Densert, B Magnusson, M TI Transtympanic electrocochleography in the assessment of perilymphatic fistulas SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE electrocochleography; perilymphatic fistula; intrathoracic pressure; vertigo ID COCHLEAR AQUEDUCT; CLINICAL ELECTROCOCHLEOGRAPHY; MENIERES-DISEASE; EXPERIENCE; MANAGEMENT; DIAGNOSIS; PRESSURE; FLUID; MEMBRANE; RUPTURE AB An objective method for the pre-operative diagnosis and the post-operative assessment of a presumed perilymphatic fistula (PLF) using transtympanic electrocochleography is presented. Three cases are reported in which the history of the disease and the symptoms strongly suggested the presence of a PLF. Pre-operative transtympanic electrocochleography (TT ECoG) recordings at rest showed changes similar to those of endolymphatic hydrops and signs of instability of the inner ear hydrodynamic system during raised intrathoracic pressure. Surgery revealed a visible leak in two of the three cases. Both windows were repaired in all the patients. All patients were relieved from their vestibular symptoms at the time when the post-operative TT ECoG was conducted 3-6 months later. The post-operative recordings were stable during raised intrathoracic pressure and the previously elevated summating potentials decreased which was interpreted as an objective indication of the recovery of the hydrodynamic system. However, later one of the patients again developed recurrent vertigo. Twenty patients with well-documented Meniere's disease were used as a control group. TT ECoG was conducted during raised intrathoracic pressure. The Meniere patients showed stable recordings. It is suggested that among patients with suspected PLF and signs of hydrops in TT ECoG, a dependence on the intrathoracic pressure reflected in the recordings may indicate a possible fistula. C1 LUND UNIV,DEPT OTOLARYNGOL,LUND,SWEDEN. CR ALLEN GW, 1983, OTOLARYNG CLIN N AM, V16, P3 ARENBERG IK, 1993, AM J OTOL, V14, P94 ARENBERG IK, 1988, OTOLARYNG HEAD NECK, V99, P435 ASO S, 1994, AM J OTOL, V15, P96 BASSIOUNY M, 1992, AM J OTOL, V13, P552 BLACK FO, 1992, AM J OTOL, V13, P254 CAMPBELL KCM, 1992, ANN OTO RHINOL LARYN, V101, P496 CARLBORG BIR, 1983, AM J OTOLARYNG, V4, P273, DOI 10.1016/S0196-0709(83)80071-4 DAUMAN R, 1986, ANN OTO RHINOL LARYN, V95, P389 DENSERT B, 1994, AUDIOLOGY, V33, P254 DENSERT O, 1975, ACTA OTO-LARYNGOL, V80, P93, DOI 10.3109/00016487509121306 EGGERMONT JJ, 1979, ARCH OHREN NASEN KEH, V222, P63, DOI 10.1007/BF00456340 Gibson W.P.R., 1978, ESSENTIALS CLIN ELEC GIBSON WPR, 1992, AM J OTOL, V13, P146 Gibson WPR, 1991, P 3 INT S WORKSH SUR, P109 GIBSON WPR, 1977, AUDIOLOGY, V16, P389 GOODHILL V, 1971, LARYNGOSCOPE, V81, P1462, DOI 10.1288/00005537-197109000-00010 HARKER LA, 1974, T AM ACAD OPHTHALMOL, V78, P448 HEALY GB, 1982, NEW ENGL J MED, V28, P68 HOUSE JW, 1991, OTOLARYNG HEAD NECK, V105, P51 HUGHES GB, 1990, OTOLARYNG HEAD NECK, V102, P111 INGELSTEDT S, 1976, ACTA OTO-LARYNGOL, V82, P368, DOI 10.3109/00016487609120921 KONRADSSON KS, 1994, ACTA OTO-LARYNGOL, V114, P24, DOI 10.3109/00016489409126012 MARCHBANKS R J, 1990, British Journal of Audiology, V24, P179, DOI 10.3109/03005369009076554 MOFFAT DA, 1978, ACTA OTO-LARYNGOL, V85, P158, DOI 10.3109/00016487809111922 PORTMANN M, 1971, LARYNGOSCOPE, V21, P899 RASKANDERSEN H, 1977, ANN OTOL RHINOL LA S, V42, P1 SCHUKNECHT HF, 1978, ANN OTO RHINOL LARYN, V87, P743 SELTZER S, 1986, LARYNGOSCOPE, V96, P37 SIMMONS FB, 1979, LARYNGOSCOPE, V89, P59 Simmons F B, 1982, Adv Otorhinolaryngol, V28, P68 SYMS CA, 1991, INNER EAR SURGERY, P379 TODD NW, 1995, AM J OTOL, V16, P539 TONNDORF J, 1975, OTOLARYNG CLIN N AM, V8, P303 WLODYKA J, 1978, ANN OTO RHINOL LARYN, V87, P22 NR 35 TC 4 Z9 4 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1997 VL 2 IS 6 BP 391 EP 402 PG 12 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE308 UT WOS:A1997YE30800003 PM 9390843 ER PT J AU Andersson, G Kinnefors, A Ekvall, L RaskAndersen, H AF Andersson, G Kinnefors, A Ekvall, L RaskAndersen, H TI Tinnitus and translabyrinthine acoustic neuroma surgery SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE vestibular schwannoma; postoperative effects; tinnitus distress; tinnitus grading; questionnaire study ID REMOVAL AB The purpose of this investigation was to study the effects of translabyrinthine acoustic neuroma surgery on tinnitus in a consecutive sample of patients operated on between 1988 and 1994 in Uppsala (Sweden). A postal questionnaire was returned by 141 patients, yielding a 90% response rate without reminder. The results showed that tinnitus was experienced by 70% of the patients before surgery and 60% after surgery. In general, low degrees of tinnitus distress were found, which was confirmed by the questionnaire results. Ratings of tinnitus distress after surgery, using the Klockhoff and Lindblom grading system, showed that 48 % had tinnitus of grade I, 46 % of grade II, and 6 % of grade III. Pre-and postsurgery grading of distress did not change significantly. There was a 35 % risk for developing tinnitus when no preoperative tinnitus was present and a 15 % chance that tinnitus disappears when present preoperatively. C1 UNIV UPPSALA HOSP,DEPT OTOLARYNGOL,S-75185 UPPSALA,SWEDEN. RP Andersson, G (reprint author), UPPSALA UNIV,DEPT PSYCHOL,BOX 1225,S-75142 UPPSALA,SWEDEN. RI Andersson, Gerhard/J-8529-2012 OI Andersson, Gerhard/0000-0003-4753-6745 CR ANDERSSON G, 1995, SCAND AUDIOL, V24, P147, DOI 10.3109/01050399509047528 Andersson G, 1995, ANN BEHAV MED, V17, P357, DOI 10.1007/BF02888601 AXELSSON A, 1989, British Journal of Audiology, V23, P53, DOI 10.3109/03005368909077819 BAGULEY DM, 1992, J LARYNGOL OTOL, V106, P329, DOI 10.1017/S0022215100119413 BERLINER KI, 1992, AM J OTOL, V13, P13 EGGERMONT JJ, 1990, HEARING RES, V48, P111, DOI 10.1016/0378-5955(90)90202-Z EKVALL L, 1992, ACOUSTIC NEUROMA, P347 ELDRIDGE R, 1992, NEUROSURGERY, V30, P962 HAZELL JWP, 1990, J OTOLARYNGOL, V19, P6 Heinrich DE, 1995, EAR NOSE THROAT J, V74, P462 JASTREBOFF PJ, 1993, BRIT J AUDIOL, V27, P7, DOI 10.3109/03005369309077884 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 Klockhoff I, 1967, Acta Otolaryngol, V63, P347, DOI 10.3109/00016486709128769 Meikle M., 1993, J AUDIOLOGICAL MED, V2, P141 Parving A, 1994, J AUDIOL MED, V3, P87 STOUFFER JL, 1991, AM J OTOL, V12, P188 TONNDORF J, 1987, HEARING RES, V28, P271, DOI 10.1016/0378-5955(87)90054-2 WIEGAND DA, 1989, LARYNGOSCOPE, V99, P179 NR 18 TC 20 Z9 20 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1997 VL 2 IS 6 BP 403 EP 409 PG 7 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE308 UT WOS:A1997YE30800004 PM 9390844 ER PT J AU Himi, T Harabuchi, Y Shintani, T Yamaguchi, T Yoshioka, I Kataura, A AF Himi, T Harabuchi, Y Shintani, T Yamaguchi, T Yoshioka, I Kataura, A TI Surgical strategy of cochlear implantation in patients with chronic middle ear disease SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear implant; otitis media; surgical procedure; complication ID OTITIS-MEDIA AB We report 10 postlingually deafened adults in whom the electrophysical criteria for cochlear implant were fulfilled, except that they showed the following unfavorable middle ear lesions: otitis media with effusion, chronic perforative otitis media, cholesteatoma and previous radical ear operation. Staged operations for cochlear implant were performed in 8 cases, and 2 patients who had undergone radical ear operation had a single-stage operation. As a first step, one of the following was performed in each patient as surgically indicated: myringoplasty with or without mastoidectomy, mastoidectomy with reconstruction of the posterior wall of the external canal, mastoidectomy with the insertion of a ventilation tube, radical mastoidectomy or surgical cleansing of the radical cavity. From 6 months to 2.5 years after the first operation, the actual cochlear implant was performed in the second or third stage. There was no major complication as a result of electrode insertion into the cochlea and the results of speech perception in these cases were not different from those in patients with normal middle ears. In our experience, it was considered that the staged operations would enable successful cochlear implants in selected patients with pathological middle ear lesions even if they had previously been diagnosed as contraindicated for this procedure. In a case with radical ear cavity a single-stage operation could be performed when there was no cavity problem. RP Himi, T (reprint author), SAPPORO MED UNIV,SCH MED,DEPT OTOLARYNGOL,CHUO KU,S-1,W-16,SAPPORO,HOKKAIDO 060,JAPAN. CR BABIGHIAN G, 1993, ADV OTO-RHINO-LARYNG, V48, P65 BELAL A, 1986, AM J OTOL, V7, P172 CLARK GM, 1984, ACTA OTOLARYNGOL S S, V410, P5 CLARK GM, 1987, ADV OTORHINOLARYNGOL, V38, P22 DAHM MC, 1994, ACTA OTO-LARYNGOL, V114, P620, DOI 10.3109/00016489409126115 Donnelly M J, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P406 GRAY RF, 1995, AM J OTOL, V16, P682 Hoffman R A, 1995, Ann Otol Rhinol Laryngol Suppl, V166, P420 Kiefer J, 1997, ADV OTO-RHINO-LARYNG, V52, P135 Marangos N, 1997, ADV OTO-RHINO-LARYNG, V52, P147 SCHLONDORFF G, 1989, HNO, V37, P423 SHIROMA M, 1992, ANN OTO RHINOL LARYN, V101, P32 NR 12 TC 10 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD NOV-DEC PY 1997 VL 2 IS 6 BP 410 EP 417 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA YE308 UT WOS:A1997YE30800005 PM 9390845 ER PT J AU Ferraro, JA Krishnan, G AF Ferraro, JA Krishnan, G TI Cochlear potentials in clinical audiology SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE electrocochleography; summating potential; cochlear microphonic; action potential; Meniere's disease endolymphatic hydrops ID MENIERES-DISEASE; ENDOLYMPHATIC HYDROPS; TRANSTYMPANIC ELECTROCOCHLEOGRAPHY; TYMPANIC ELECTROCOCHLEOGRAPHY; ROUND-WINDOW; TONE-BURSTS; GUINEA-PIG; ELECTRODE; DIAGNOSIS; MEMBRANE AB The recording of cochlear and auditory nerve potentials in humans via Electrocochleography (ECochG) has emerged as a valuable tool for a variety of clinical applications. This review consolidates current research on the use of cochlear potentials and ECochG in the clinical setting and identifies several areas in need of additional study, Methodological topics discussed include a review of ECochG recording approaches (i.e. transtympanic versus extratympanic) and issues related to choice of stimuli (clicks versus tonebursts), The review of current applications for cochlear potentials focuses primarily on the use of ECochC in the identification and treatment of Meniere's disease/endolymphatic hydrops (MD/ELH). Other uses for ECochG also are presented (e.g. intraoperative monitoring, enhancement of ABR wave I, estimation of hearing sensitivity), Several suggestions are offered to maximize the predictive value of ECochC ill the diagnosis of MD/ELH. C1 UNIV COLORADO,DEPT PSYCHOL,BOULDER,CO 80309. RP Ferraro, JA (reprint author), UNIV KANSAS,MED CTR,DEPT SPEECH & HEARING,39TH & RAINBOW BLVD,KANSAS CITY,KS 66160, USA. CR *AM SPEECH LANG HE, 1988, SHORT LAT AUD EV POT ANDREEV AM, 1939, J PHYSL USSR, V26, P206 Arenberg I K, 1993, Acta Otolaryngol Suppl, V504, P58 ASO S, 1991, ACTA OTO-LARYNGOL, V111, P44, DOI 10.3109/00016489109137353 BOJRAB DI, 1994, OTOLARYNG HEAD NECK, V111, P478 CAMPBELL KCM, 1992, ANN OTO RHINOL LARYN, V101, P496 COATS A C, 1986, Seminars in Hearing, V7, P247, DOI 10.1055/s-0028-1091462 DENSERT B, 1994, AUDIOLOGY, V33, P254 DURRANT J, 1974, J ACOUST SOC AM, V56, P262 DURRANT JD, 1990, EAR HEARING, V11, P468, DOI 10.1097/00003446-199012000-00011 DURRANT JD, 1991, EAR HEARING, V12, P144, DOI 10.1097/00003446-199104000-00011 Ferraro J A, 1994, J Am Acad Audiol, V5, P17 Ferraro J A, 1994, J Am Acad Audiol, V5, P24 FERRARO JA, 1991, P 3 INT S WORKSH SUR, P253 FERRARO JA, 1985, ARCH OTOLARYNGOL, V111, P71 FERRARO JA, 1989, EAR HEARING, V10, P161, DOI 10.1097/00003446-198906000-00004 FERRARO JA, 1992, AUDIOL TODAY, V4, P25 FERRARO JA, 1992, AUDIOL TODAY, V5, P31 FERRARO JA, 1994, PRINCIPLES APPL AUDI, P101 FROMM B, 1935, ACTA OTOLARYNGOL STO, V22, P477, DOI 10.3109/00016483509118125 GALAMBOS R, 1959, J ACOUST SOC AM, V31, P349, DOI 10.1121/1.1907723 GERHARDT KJ, 1979, J SPEECH HEAR RES, V22, P63 GIBSON WPR, 1990, P 3 INT S WORKSH SUR, P295 GIBSON WPR, 1992, AM J OTOL, V13, P146 Gibson W P, 1991, Acta Otolaryngol Suppl, V485, P46 Gibson W P, 1991, Acta Otolaryngol Suppl, V485, P65 GUINAN JJ, 1967, J ACOUST SOC AM, V41, P1237, DOI 10.1121/1.1910465 HORNER KC, 1988, AUDIOLOGY, V27, P147 KEITH RW, 1992, AM J OTOL, V13, P347 KLIS JFL, 1985, HEARING RES, V20, P15, DOI 10.1016/0378-5955(85)90054-1 KOYUNCU M, 1994, J LARYNGOL OTOL, V108, P125 LAUREANO AN, 1995, AM J OTOL, V16, P209 LEMPERT J, 1947, ARCH OTOLARYNGOL, V45, P61 LEMPERT J, 1950, ARCH OTOLARYNGOL, V51, P307 LEVINE SC, 1992, LARYNGOSCOPE, V102, P614, DOI 10.1288/00005537-199206000-00005 LIGHTFOOT GR, 1993, BRIT J AUDIOL, V27, P211, DOI 10.3109/03005369309076695 LOPEZ WJ, 1993, ASHA, V35, P183 MARGOLIS RH, 1995, ARCH OTOLARYNGOL, V121, P44 MISHLER ET, 1994, ANN M AM NEUR SOC, P45 MORRISON AW, 1980, OTOLARYNGOL CLIN N A, V11, P703 MURPHY EA, 1982, BIOSTATISTICS MED NOWOSIELSKI J E, 1991, British Journal of Audiology, V25, P345, DOI 10.3109/03005369109076608 ORCHIK DJ, 1993, AM J OTOL, V14, P290 PERLMAN MB, 1941, ARCH OTOLARYNGOL, V34, P710 PONTON CW, 1992, SCAND AUDIOL, V21, P131, DOI 10.3109/01050399209045993 ROLAND PS, 1993, LARYNGOSCOPE, V103, P963 RUBEN R. J., 1960, ANN OTOL RHINOL AND LARYNGOL, V69, P459 RUTH RA, 1989, OTOLARYNG HEAD NECK, V100, P546 RUTH RA, 1988, AM J OTOL, V9, P1 Schoonhoven R, 1995, EAR HEARING, V16, P619, DOI 10.1097/00003446-199512000-00008 STYPULKOWSKI PH, 1987, EAR HEARING, V8, P304, DOI 10.1097/00003446-198710000-00010 VANDEELEN GW, 1988, ACTA OTO-LARYNGOL, V105, P193, DOI 10.3109/00016488809096998 VANDEELEN GW, 1987, ARCH OTO-RHINO-LARYN, V244, P167 VISCOMI JG, 1992, OTOLARYNGOL HEAD NEC, V107, P33 WINZENBURG SM, 1993, AM J OTOL, V14, P63 NR 55 TC 14 Z9 16 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1997 VL 2 IS 5 BP 241 EP 256 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV359 UT WOS:A1997XV35900002 PM 9390835 ER PT J AU Naatanen, R Alho, K AF Naatanen, R Alho, K TI Mismatch negativity - The measure for central sound representation accuracy SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE mismatch negativity; sound representation; auditory discrimination; change detection; memory trace; auditory sensory memory; attention ID EVENT-RELATED POTENTIALS; HUMAN AUDITORY-CORTEX; SENSORY MEMORY TRACE; SELECTIVE-ATTENTION; COMPLEX SOUND; HUMAN-BRAIN; STEADY RHYTHM; DEVIANT TONES; PITCH CHANGES; RESPONSES AB The mismatch negativity (MMN), elicited by any discriminable change in a repetitive sound even when this sound is not attended to, provides a pre-perceptual physiological measure of the accuracy of the central sound representation in the human brain. This accuracy, which can be measured separately for the different features of the sound, determines the individual's sound discrimination accuracy in normal and various pathological conditions. RP Naatanen, R (reprint author), UNIV HELSINKI,DEPT PSYCHOL,COGNIT BRAIN RES UNIT,POB 13,MERITULLINKATU 1,FIN-00014 HELSINKI,FINLAND. RI Alho, Kimmo/G-2997-2013 CR AALTONEN O, 1993, BRAIN LANG, V44, P139, DOI 10.1006/brln.1993.1009 AALTONEN O, 1987, BIOL PSYCHOL, V24, P1957 AALTONEN O, IN PRESS J ACOUST SO AALTONEN O, 1994, J ACOUST SOC AM, V3, P1489 Alho K, 1996, PSYCHOPHYSIOLOGY, V33, P369, DOI 10.1111/j.1469-8986.1996.tb01061.x ALHO K, 1989, PSYCHOPHYSIOLOGY, V26, P514, DOI 10.1111/j.1469-8986.1989.tb00704.x ALHO K, 1993, NEUROREPORT, V4, P391, DOI 10.1097/00001756-199304000-00012 AULANKO R, 1993, NEUROREPORT, V4, P1356, DOI 10.1097/00001756-199309150-00018 DUNCAN CC, 1987, CURRENT TRENDS EVENT, P527 FORD JM, 1981, PSYCHOPHYSIOLOGY, V18, P322, DOI 10.1111/j.1469-8986.1981.tb03043.x HARI R, 1989, NEUROSCI LETT, V99, P164, DOI 10.1016/0304-3940(89)90283-8 HARI R, 1984, NEUROSCI LETT, V50, P127, DOI 10.1016/0304-3940(84)90474-9 IMADA T, 1993, RECENT ADV BIOMAGNET, P118 KANE NM, 1993, LANCET, V341, P688, DOI 10.1016/0140-6736(93)90453-N KANE NM, IN PRESS J PSYCHOPHY KAUKORANTA E, 1989, HEARING RES, V41, P15, DOI 10.1016/0378-5955(89)90174-3 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003 LANG AH, 1990, PSYCHOPHYSIOLOGICAL, V1, P294 Leppanen PHT, 1997, AUDIOL NEURO-OTOL, V2, P308 LEVANEN S, 1993, EXP BRAIN RES, V97, P177 LINS OG, 1995, EVOKED POTENTIAL, V96, P420, DOI 10.1016/0168-5597(95)00048-W LOUNASMAA OV, 1989, EUROPHYS LETT, V9, P603, DOI 10.1209/0295-5075/9/6/019 LYYTINEN H, 1992, PSYCHOPHYSIOLOGY, V29, P523, DOI 10.1111/j.1469-8986.1992.tb02025.x MANTYSALO S, 1987, BIOL PSYCHOL, V24, P183, DOI 10.1016/0301-0511(87)90001-9 Naatanen R., 1985, ATTENTION PERFORM, V11, P355 NAATANEN R, 1989, NEUROSCI LETT, V107, P347, DOI 10.1016/0304-3940(89)90844-6 NAATANEN R, 1987, PSYCHOPHYSIOLOGY, V24, P375, DOI 10.1111/j.1469-8986.1987.tb00311.x NAATANEN R, 1993, NEUROREPORT, V4, P503 NAATANEN R, 1995, EAR HEARING, V16, P6 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 1997, NATURE, V385, P432, DOI 10.1038/385432a0 Näätänen R, 1995, Int J Neurosci, V80, P317, DOI 10.3109/00207459508986107 NAATANEN R, 1993, PSYCHOPHYSIOLOGY, V30, P436, DOI 10.1111/j.1469-8986.1993.tb02067.x NAATANEN R, 1984, HUMAN ACTION PERSONA, P29 NAATANEN R, 1989, NEUROSCI LETT, V98, P217, DOI 10.1016/0304-3940(89)90513-2 NAATANEN R, 1991, PSYCHOPHYSIOLOGY, V28, P478, DOI 10.1111/j.1469-8986.1991.tb00735.x NAATANEN R, 1990, BEHAV BRAIN SCI, V13, P201 NAATANEN R, 1993, NEUROREPORT, V5, P310 Naatanen R, 1987, EVOKED POTENTIAL, P392 NAATANEN R, 1979, BIOL PSYCHOL, V8, P81, DOI 10.1016/0301-0511(79)90053-X NORDBY H, 1988, PSYCHOPHYSIOLOGY, V25, P249, DOI 10.1111/j.1469-8986.1988.tb01238.x PAAVILAINEN P, 1993, BIOL PSYCHOL, V35, P139, DOI 10.1016/0301-0511(93)90010-6 PAAVILAINEN P, 1993, BIOL PSYCHOL, V37, P23, DOI 10.1016/0301-0511(93)90025-4 PAAVILAINEN P, 1989, ELECTROEN CLIN NEURO, V73, P129, DOI 10.1016/0013-4694(89)90192-2 PEKKONEN E, 1994, NEUROREPORT, V5, P2537, DOI 10.1097/00001756-199412000-00033 SAMS M, 1985, ELECTROEN CLIN NEURO, V62, P437, DOI 10.1016/0168-5597(85)90054-1 SAMS M, 1993, J COGNITIVE NEUROSCI, V5, P363, DOI 10.1162/jocn.1993.5.3.363 Schroger E, 1996, J COGNITIVE NEUROSCI, V8, P527, DOI 10.1162/jocn.1996.8.6.527 Schroger E, 1996, NEUROREPORT, V7, P3005, DOI 10.1097/00001756-199611250-00041 SCHROGER E, 1994, ELECTROEN CLIN NEURO, V92, P140, DOI 10.1016/0168-5597(94)90054-X SCHROGER E, 1992, NEUROSCI LETT, V146, P183, DOI 10.1016/0304-3940(92)90073-G TERVANIEMI M, 1994, BIOL PSYCHOL, V38, P157, DOI 10.1016/0301-0511(94)90036-1 Tervaniemi M, 1997, NEUROSCI LETT, V226, P1, DOI 10.1016/S0304-3940(97)00217-6 TIITINEN H, 1994, NATURE, V372, P90, DOI 10.1038/372090a0 TREJO LJ, 1995, PSYCHOPHYSIOLOGY, V32, P319, DOI 10.1111/j.1469-8986.1995.tb01214.x WOLDORFF MG, 1991, PSYCHOPHYSIOLOGY, V28, P30, DOI 10.1111/j.1469-8986.1991.tb03384.x Yabe H, 1997, NEUROREPORT, V8, P1971, DOI 10.1097/00001756-199705260-00035 NR 58 TC 147 Z9 150 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1997 VL 2 IS 5 BP 341 EP 353 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV359 UT WOS:A1997XV35900006 PM 9390839 ER PT J AU Csepe, V Molnar, M AF Csepe, V Molnar, M TI Towards the possible clinical application of the mismatch negativity component of event-related potentials SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE mismatch negativity; difference sensitivity; memory trace decay; automatic versus controlled processing; clinical application ID AUDITORY SELECTIVE ATTENTION; CORRELATION DIMENSION AB The mismatch negativity (MMN) is an event-related potential component that signifies neurophysiological processing of fine acoustic differences. The MMN indicates attention-independent change detection, reflects auditory sensory memory and provides a physiological measure of difference sensitivity. This paper will provide an overview of current research where results gained by MMN testing in different patient groups were central to the interpretation of an assumed abnormality of processing or storing acoustic features. RP Csepe, V (reprint author), HUNGARIAN ACAD SCI, INST PSYCHOL, DEPT PSYCHOPHYSIOL, HUMAN EVOKED POTENTIAL LAB, POB 398, H-1394 BUDAPEST, HUNGARY. RI Csepe, Valeria/C-5394-2011 CR AALTONEN O, 1993, BRAIN LANG, V44, P139, DOI 10.1006/brln.1993.1009 ALHO K, 1994, ELECTROEN CLIN NEURO, V91, P353, DOI 10.1016/0013-4694(94)00173-1 ALHO K, 1995, EAR HEARING, V16, P38, DOI 10.1097/00003446-199502000-00004 BABLOYANTZ A, 1986, DIMENSIONS ENTROPIES, P141 CATTS SV, 1995, AM J PSYCHIAT, V152, P213 CheourLuhtanen M, 1996, PSYCHOPHYSIOLOGY, V33, P478, DOI 10.1111/j.1469-8986.1996.tb01074.x CSEPE V, 1995, EAR HEARING, V16, P91 ESCERA C, 1996, ELECTROENCEPHALOGR C, V6, P549 GIARD MH, 1990, PSYCHOPHYSIOLOGY, V27, P627, DOI 10.1111/j.1469-8986.1990.tb03184.x GRILLON C, 1995, PSYCHOPHARMACOLOGY, V4, P455 Gunter TC, 1996, BIOL PSYCHOL, V43, P103, DOI 10.1016/0301-0511(95)05180-5 JAASKELAINEN IP, 1995, ALCOHOL, V12, P491, DOI 10.1016/0741-8329(95)00009-7 Jaaskelainen IP, 1996, BIOL PSYCHOL, V43, P13, DOI 10.1016/0301-0511(95)05174-0 JAASKELAINEN IP, 1995, ALCOHOL CLIN EXP RES, V19, P607, DOI 10.1111/j.1530-0277.1995.tb01555.x JAVITT DC, 1993, BIOL PSYCHIAT, V33, P513, DOI 10.1016/0006-3223(93)90005-X JAVITT DC, 1995, ARCH GEN PSYCHIAT, V52, P550 Jennet B., 1972, LANCET, P734 Kane NM, 1996, INTENS CARE MED, V22, P39, DOI 10.1007/BF01728329 KARAYANIDIS F, 1995, PSYCHOPHYSIOLOGY, V32, P335, DOI 10.1111/j.1469-8986.1995.tb01216.x KATHMANN N, 1995, BIOL PSYCHIAT, V37, P754, DOI 10.1016/0006-3223(94)00309-Q KEMNER C, 1995, BIOL PSYCHIAT, V38, P150, DOI 10.1016/0006-3223(94)00247-Z Kemner C, 1996, BIOL PSYCHIAT, V40, P522, DOI 10.1016/0006-3223(95)00429-7 KIRINO E, 1996, SEISHIN SHINKEIGAKU, V10, P807 KONEN E, 1994, NEUROREPORT, V18, P2537 KORPILAHTI P, 1994, ELECTROEN CLIN NEURO, V91, P256, DOI 10.1016/0013-4694(94)90189-9 KRAUS N, 1993, HEARING RES, V65, P118, DOI 10.1016/0378-5955(93)90206-G KRAUS N, 1993, EAR HEARING, V14, P223, DOI 10.1097/00003446-199308000-00001 KRAUS N, 1994, AM J AUDIOL, V7, P39 Kraus N, 1996, SCIENCE, V273, P971, DOI 10.1126/science.273.5277.971 KRAUS N, 1995, EAR HEARING, V16, P19, DOI 10.1097/00003446-199502000-00003 Lembreghts M, 1993, Acta Psychiatr Belg, V93 Spec No, P322 Leppanen PHT, 1997, AUDIOL NEURO-OTOL, V2, P308 Loewy DH, 1996, ELECTROEN CLIN NEURO, V98, P493, DOI 10.1016/0013-4694(96)95553-4 MOLNAR M, 1995, ELECTROEN CLIN NEURO, V95, P118, DOI 10.1016/0013-4694(95)00039-2 NAATANEN R, 1978, ACTA PSYCHOL, V42, P313, DOI 10.1016/0001-6918(78)90006-9 Naatanen R, 1997, AUDIOL NEURO-OTOL, V2, P341 Oades RD, 1996, INT J PSYCHOPHYSIOL, V22, P185, DOI 10.1016/0167-8760(96)00026-8 Oades RD, 1996, BIOL PSYCHOL, V43, P163, DOI 10.1016/0301-0511(96)05189-7 ODONNELL BF, 1994, INT J PSYCHOPHYSIOL, V17, P219, DOI 10.1016/0167-8760(94)90065-5 PEKKONEN E, 1993, ELECTROEN CLIN NEURO, V87, P321, DOI 10.1016/0013-4694(93)90185-X PEKKONEN E, 1995, ELECTROENCEPHALOGR C, V6, P546 Pekkonen E, 1996, EXP AGING RES, V22, P171, DOI 10.1080/03610739608254005 PEKKONEN E, 1995, ELECTROEN CLIN NEURO, V95, P47, DOI 10.1016/0013-4694(94)00304-4 PONTON CW, 1995, EAR HEARING, V16, P131, DOI 10.1097/00003446-199502000-00010 RAPPAPORT M, 1982, ARCH PHYS MED REHAB, V63, P118 ROCKSTROH B, 1995, ZNS S FORSCH PRAX NE, P181 SCHREIBER H, 1992, BIOL PSYCHIAT, V32, P634, DOI 10.1016/0006-3223(92)90294-A Shutara Y, 1996, BRAIN TOPOGR, V8, P285, DOI 10.1007/BF01184786 Skinner James E., 1994, Integrative Physiological and Behavioral Science, V29, P217, DOI 10.1007/BF02691327 TOWEY JP, 1994, PSYCHOPHYSIOLOGY, V31, P535, DOI 10.1111/j.1469-8986.1994.tb02346.x VIEREGGE P, 1994, COGNITIVE BRAIN RES, V2, P117, DOI 10.1016/0926-6410(94)90008-6 Winkler I, 1996, INT CONGR SER, V1099, P36 WOODS DL, 1992, ELECTROEN CLIN NEURO, V84, P456, DOI 10.1016/0168-5597(92)90033-8 Yokoyama Y, 1995, Electromyogr Clin Neurophysiol, V35, P431 NR 54 TC 20 Z9 20 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD SEP-OCT PY 1997 VL 2 IS 5 BP 354 EP 369 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XV359 UT WOS:A1997XV35900007 PM 9390840 ER PT J AU Ohlemiller, KK Hughes, RM Lett, JM Ogilvie, JM Speck, JD Wright, JS Faddis, BT AF Ohlemiller, KK Hughes, RM Lett, JM Ogilvie, JM Speck, JD Wright, JS Faddis, BT TI Progression of cochlear and retinal degeneration in the tubby (rd5) mouse SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE Usher's syndrome; Alstrom's syndrome; Bardet-Biedl syndrome; cochlea; retina; hair cells; tubby mouse; rd5 mouse; tub gene ID MICE AB Mice homozygous for a defect of the tub (rd5) gene exhibit cochlear and retinal degeneration combined with obesity, and resemble certain human autosomal recessive sensory deficit syndromes. To establish the progressive nature of sensory cell loss associated with the tub gene, and to differentiate tub-related losses from those associated with the C57 background on which tub arose, we evaluated cochleas and retinas from tub/tub, tub/+, and +/+ mice, aged 2 weeks to 1 year by light and electron microscopy. Cochleas from mice of all three genotypes show progressive inner (IHC) and outer hair cell (OHC) loss. Relative to tub/+ and +/+ animals, however, tub homozygotes show accelerated OHC loss, affecting the extreme cochlear base (hook region) by 1 month, and the apex by 6 months. IHC loss in tub/tub animals is accelerated in the basal half of the cochlea, affecting the hook region by 6 months. Spiral ganglion cell losses were observed only in tub/tub mice, and only in the cochlear base. Retinas of tub/tub mice are abnormal at maturity, exhibiting shortened photoreceptor outer segments by 2 weeks, and progressive photoreceptor loss thereafter. Because the tub mutation causes degeneration of sensory cells in the ear and eye but has no other neurological effects, tubby mice hold unique promise for the study of human syndromic sensory loss. C1 WASHINGTON UNIV,DEPT OPHTHALMOL & VISUAL SCI,ST LOUIS,MO 63130. RP Ohlemiller, KK (reprint author), CENT INST DEAF,RES DEPT,818 S EUCLID,ST LOUIS,MO 63110, USA. CR BARONG SD, 1992, ARCH OPHTHALMOL-CHIC, V110, P706 COLEMAN DL, 1990, J HERED, V81, P424 ERWAY LC, 1993, HEARING RES, V65, P125, DOI 10.1016/0378-5955(93)90207-H Erway LC, 1996, HEARING RES, V93, P181, DOI 10.1016/0378-5955(95)00226-X GORLIN RJ, 1995, HEREDITARY HEARING L, P105 HECKENLIVELY JR, 1995, P NATL ACAD SCI USA, V92, P11100, DOI 10.1073/pnas.92.24.11100 Henry K. R., 1983, AUDITORY PSYCHOBIOLO, P470 HUNTER DG, 1986, ARCH OPHTHALMOL-CHIC, V104, P385 Kimberling W J, 1995, J Am Acad Audiol, V6, P63 KLEYN PW, 1996, CELL, V85, P1 MILLAY RH, 1986, AM J OPHTHALMOL, V102, P482 NobenTrauth K, 1996, NATURE, V380, P534, DOI 10.1038/380534a0 OHLEMILLER KK, 1995, NEUROREPORT, V6, P845, DOI 10.1097/00001756-199504190-00005 PIEKEDAHL S, UNPUB HEARING LOSS R SANYAL S, 1980, J COMP NEUROL, V194, P193, DOI 10.1002/cne.901940110 Schuknecht HF, 1993, PATHOLOGY EAR SEBAG J, 1984, BRIT J OPHTHALMOL, V68, P494, DOI 10.1136/bjo.68.7.494 STEEL KP, 1995, EFFECTS MYOSIN MUTAT, P9 Steel KP, 1995, ANNU REV GENET, V29, P675 Weil D, 1995, Nature, V374, P60 NR 20 TC 32 Z9 32 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1997 VL 2 IS 4 BP 175 EP 185 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG371 UT WOS:A1997XG37100001 PM 9390831 ER PT J AU Sarkar, B Stiebler, I Smolders, J Klinke, R AF Sarkar, B Stiebler, I Smolders, J Klinke, R TI Thresholds of intracranially recorded auditory field potentials in the pigeon compared with compound action potential thresholds SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE pigeon; acoustically evoked potentials; auditory thresholds; compound action potential ID INTENSE SOUND AB The compound action potential (CAP) thresholds provide a reliable indicator for cochlear functional integrity during experimentation in birds as well as in mammals, However, if experimental manipulations are necessary in the middle ear/inner ear spaces, the round window electrodes are often inconvenient, In search for an alternative for CAP recordings, intracranial recordings of acoustically evoked field potentials from the nucleus angularis/magnocellularis were made in pigeons using stereotactically placed electrodes, The responses were compared with those recorded from intracranial surface electrodes placed on the dura mater and compared with CAP responses recorded from the round window, The field potentials recorded from the nucleus angularis/magnocellularis contain a significant contribution from the auditory nerve, as large in amplitude as the CAP recorded at the round window, The recordings from the intracranial surface electrodes were noisier and the contribution from the auditory nerve was too small to be used as a fast monitor of the condition of the inner ear, Threshold curves as a function of frequency could be determined with an automated method from the nucleus angularis/magnocellularis with the same sensitivity and accuracy as from the round window CAP within a few minutes, These results demonstrate that stereotactic recordings of field potentials from the nucleus magnocellularis/angularis region are a suitable alternative to reliably monitor the condition of the inner ear when round window electrodes cannot be used. C1 UNIV FRANKFURT,ZENTRUM PHYSIOL,INST PHYSIOL 3,D-60590 FRANKFURT,GERMANY. CR ERULKAR SD, 1955, J COMP NEUROL, V103, P421, DOI 10.1002/cne.901030303 GUMMER AW, 1987, HEARING RES, V29, P63, DOI 10.1016/0378-5955(87)90206-1 HARRISON JB, 1971, J AUD RES, V11, P33 HEISE GA, 1952, J COMP PHYSIOL PSYCH, V45, P401, DOI 10.1037/h0060226 HEISE GA, 1953, AM J PSYCHOL, V1, P1 Karten H.J., 1967, STEREOTAXIC ATLAS BR KLUVER H, 1953, J NEUROPATH EXP NEUR, V12, P400 MCFADDEN EA, 1989, HEARING RES, V41, P205, DOI 10.1016/0378-5955(89)90012-9 Muller M, 1996, HEARING RES, V94, P148, DOI 10.1016/0378-5955(95)00230-8 PUGLIANO FA, 1993, ACTA OTO-LARYNGOL, V113, P18, DOI 10.3109/00016489309135761 Saunders J. C., 1982, NEW PERSPECTIVES NOI, P229 SCHERMULY L, 1985, J COMP PHYSIOL A, V156, P209, DOI 10.1007/BF00610863 SCHERMULY L, 1990, J COMP PHYSIOL A, V166, P355 Smolders JWT, 1995, HEARING RES, V92, P151, DOI 10.1016/0378-5955(95)00214-6 TAYLOR MM, 1967, J ACOUST SOC AM, V41, P782, DOI 10.1121/1.1910407 TUCCI DL, 1990, OTOLARYNG HEAD NECK, V103, P443 WALD A, 1973, SEQUENTIAL ANAL, P88 Wever EG, 1936, J COMP PSYCHOL, V22, P353, DOI 10.1037/h0059858 NR 18 TC 0 Z9 0 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1997 VL 2 IS 4 BP 186 EP 196 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG371 UT WOS:A1997XG37100002 PM 9390832 ER PT J AU Jastreboff, PJ Zhou, ST Jastreboff, MM Kwapisz, U Gryczynska, U AF Jastreboff, PJ Zhou, ST Jastreboff, MM Kwapisz, U Gryczynska, U TI Attenuation of salicylate-induced tinnitus by Ginkgo biloba extract in rats SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE tinnitus; salicylate; Ginkgo biloba; EGb 761; rats ID PHANTOM AUDITORY-PERCEPTION; ANIMAL-MODEL; GUINEA-PIG; CONDITIONED SUPPRESSION; INFERIOR COLLICULUS; EGB-761; IMPAIRMENT; AGE; PREVALENCE; MECHANISMS AB The effects of an extract from Ginkgo biloba, EGb 761, on tinnitus were tested using an animal model of tinnitus. Daily oral administration of EGb 761 in doses from 10 to 100 mg/kg/day began 2 weeks before behavioral procedures and continued until the end of the experiment. Tinnitus was induced by daily administration of 321 mg/kg sodium salicylate s.c. (corresponding to 275 mg/kg/day of salicylate acid) in fourteen groups of pigmented rats, 6 animals/group. The results from salicylate- and EGb-761-treated animals were compared to control groups receiving either salicylate, saline, or EGb 761 only in doses of 100 mg/kg. Administration of EGb 761 resulted in a statistically significant decrease of the behavioral manifestation of tinnitus for doses of 25, 50 and 100 mg/kg/day. RP Jastreboff, PJ (reprint author), UNIV MARYLAND,SCH MED,DEPT SURG,TINNITUS & HYPERACUSIS CTR,10 S PINE ST,MSTF BLDG,RM 436,BALTIMORE,MD 21201, USA. CR ANNAU Z, 1961, J COMP PHYSIOL PSYCH, V54, P428, DOI 10.1037/h0042199 AZORLOSA JL, 1986, ANIM LEARN BEHAV, V14, P163, DOI 10.3758/BF03200051 BARKATS M, 1994, LIFE SCI, V56, P213, DOI 10.1016/0024-3205(94)00915-5 BRENNAN JF, 1991, ACTA NEUROBIOL EXP, V51, P15 BRENNAN JF, 1993, PSYCHOBIOLOGY, V21, P60 CHEN GD, 1995, HEARING RES, V82, P158, DOI 10.1016/0378-5955(94)00174-O Church RM, 1969, PUNISHMENT AVERSIVE, P111 COLES R, 1988, CLIN OTOLARYNGOL, V13, P501 Coles R. R. A., 1996, P 5 INT TINN SEM 199, P25 DEBERDT W, 1994, LIFE SCI, V55, P2057, DOI 10.1016/0024-3205(94)00386-6 DEFEUDIS FV, 1991, PHARM ACTIVITIES CLI DETURCO EBR, 1993, PHYSIOL BEHAV, V53, P1001 DEVITO PL, 1986, J EXP PSYCHOL ANIM B, V12, P99, DOI 10.1037//0097-7403.12.2.99 DRUKIER GS, 1989, AM ANN DEAF, V134, P260 DURRANT JD, 1984, BASES HEARING SCI, P52 DUVERGER D, 1995, GEN PHARMACOL, V26, P1375, DOI 10.1016/0306-3623(94)00309-B Estes WK, 1941, J EXP PSYCHOL, V29, P390, DOI 10.1037/h0062283 FITZGERALD JJ, 1993, HEARING RES, V67, P147, DOI 10.1016/0378-5955(93)90242-S GUTH PS, 1992, TINNITUS 91, P115 HALE WE, 1986, J AM GERIATR SOC, V34, P333 HOLGERS KM, 1994, AUDIOLOGY, V33, P85 HUGUET F, 1994, J PHARM PHARMACOL, V46, P316 ITIL T, 1995, PSYCHOPHARMACOL BULL, V31, P147 Jastreboff P. J., 1993, BRIT J AUDIOL, V27, P1 Jastreboff P. J., 1995, MECH TINNITUS, P73 JASTREBOFF PJ, 1994, HEARING RES, V80, P216, DOI 10.1016/0378-5955(94)90113-9 JASTREBOFF PJ, 1986, J ACOUST SOC AM, V80, P1384, DOI 10.1121/1.394391 JASTREBOFF PJ, 1988, BEHAV NEUROSCI, V102, P811, DOI 10.1037/0735-7044.102.6.811 JASTREBOFF PJ, 1990, NEUROSCI RES, V8, P221, DOI 10.1016/0168-0102(90)90031-9 JASTREBOFF PJ, 1996, P 5 INT TINN SEM POR, P114 Jastreboff PJ, 1996, P 5 INT TINN SEM POR, P500 Jastreboff PJ, 1996, AM J OTOL, V17, P236 JASTREBOFF PJ, 1994, AUDIOLOGY, V33, P202 JASTREBOFF PJ, 1994, AM J OTOL, V15, P19 JASTREBOFF PJ, 1988, LARYNGOSCOPE, V98, P280 JASTREBOFF PJ, 1988, ARCH OTOLARYNGOL, V114, P186 JASTREBOFF PJ, 1992, TINNITUS 91, P309 JASTREBOFF PJ, 1991, ARCH OTOLARYNGOL, V117, P1162 KAKEHATA S, 1996, ASS RES OTOLARYNGOL, V19, P198 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 Kiang N Y, 1970, Ciba Found Symp, P241 KUJAWA SG, 1992, HEARING RES, V64, P73, DOI 10.1016/0378-5955(92)90169-N LAMOUR Y, 1992, EFFECTS GINKGO BILOB, P19 LEWIS JE, 1994, CLIN OTOLARYNGOL, V19, P50, DOI 10.1111/j.1365-2273.1994.tb01147.x Liberman M C, 1978, Acta Otolaryngol Suppl, V358, P1 LONG GR, 1988, J ACOUST SOC AM, V84, P1343, DOI 10.1121/1.396633 McFadden D, 1982, TINNITUS FACTS THEOR RAPIN JR, 1994, GEN PHARMACOL, V25, P1009, DOI 10.1016/0306-3623(94)90111-2 SASAKI CT, 1980, BRAIN RES, V194, P511, DOI 10.1016/0006-8993(80)91233-0 SATALOFF J, 1987, AM J OTOL, V8, P87 SEMLITSCH HV, 1995, PHARMACOPSYCHIATRY, V28, P134, DOI 10.1055/s-2007-979605 STOUFFER JL, 1991, AM J OTOL, V12, P188 STYPULKOWSKI PH, 1990, HEARING RES, V46, P113, DOI 10.1016/0378-5955(90)90144-E TIGHILET B, 1995, J VESTIBUL RES-EQUIL, V5, P187 TINSTALL MJ, 1995, J PHYSL, V485, P739 Vernon J. A., 1996, P 5 INT TINN SEM 199, P51 VONWEDEL H, 1995, ADV OTO-RHINO-LARYNG, V49, P105 Wesnes KA, 1987, HUMAN PSYCHOPHARMACO, V2, P159, DOI 10.1002/hup.470020305 Winer B. J., 1971, STATISTICAL PRINCIPL YABE T, 1992, PHARMACOL BIOCHEM BE, V42, P595, DOI 10.1016/0091-3057(92)90004-Y NR 60 TC 16 Z9 17 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1997 VL 2 IS 4 BP 197 EP 212 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG371 UT WOS:A1997XG37100003 PM 9390833 ER PT J AU Naito, E Honrubia, V Naito, Y Beykirch, K Toga, AW Hoffman, L AF Naito, E Honrubia, V Naito, Y Beykirch, K Toga, AW Hoffman, L TI Arrangement of vestibular nerve fibers in the semicircular canal crista of the chinchilla SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE semicircular canal; crista; chinchilla; bundle; fiber diameter; 3D reconstruction ID PERIPHERAL INNERVATION PATTERNS; ANATOMICAL CHARACTERISTICS; SQUIRREL-MONKEY; BULLFROG AB The topographic arrangement of vestibular nerve fibers innervating semicircular canal cristae of the chinchilla was studied using computer-aided video-microscopy and three-dimensional reconstruction. At the level 20 mu m proximal to the base of the crista, bundles consisting of 30-50 nerve fibers each were identified. Nerve fibers in bundles were classified into seven categories depending on the diameter, We confirmed that large nerve fibers were more frequently found in the central bundles and small nerve fibers were more frequently found in the peripheral bundles. The central bundle might function as a physiological unit coding various types of head movements, whereas the peripheral bundle might contribute more to the detection of slow and long-lasting movements giving rise to tonus and posture changes, The canalicular nerve may code rotational acceleration of the head via function- and locus-specific nerve fiber bundles. C1 UNIV CALIF LOS ANGELES,SCH MED,DIV HEAD & NECK SURG,LOS ANGELES,CA 90024. UNIV CALIF LOS ANGELES,SCH MED,LAB NEUROIMAGING,LOS ANGELES,CA 90024. RP Naito, E (reprint author), KYOTO UNIV,FAC MED,DEPT OTOLARYNGOL,SAKYO KU,KYOTO 60601,JAPAN. CR BAIRD RA, 1988, J NEUROPHYSIOL, V60, P182 BOORD RL, 1958, ANAT REC, V130, P394 Cajal S.R., 1908, TRAB LAB INVEST BIOL, V6, P1 DUNN RF, 1978, J COMP NEUROL, V182, P621, DOI 10.1002/cne.901820405 ENGSTROM H, 1940, Z MIKROSK ANAT FORSC, V47, P448 FERNANDEZ C, 1995, J NEUROPHYSIOL, V73, P1253 FERNANDEZ C, 1988, J NEUROPHYSIOL, V60, P167 GACEK RR, 1961, ANAT REC, V139, P455, DOI 10.1002/ar.1091390402 HONRUBIA V, 1981, INT J NEUROSCI, V15, P197, DOI 10.3109/00207458108985857 HONRUBIA V, 1984, LARYNGOSCOPE, V94, P464, DOI 10.1288/00005537-198404000-00004 HONRUBIA V, 1987, LARYNGOSCOPE, V97, P228 HONRUBIA V, 1989, J NEUROPHYSIOL, V61, P688 LANDOLT JP, 1973, BRAIN RES, V54, P31, DOI 10.1016/0006-8993(73)90031-0 Lee W S, 1990, Laryngoscope, V100, P756 Lorente de No R., 1926, TRAV LAB INVEST BIOL, V24, P53 OLEARY DP, 1974, INT J NEUROSCI, V15, P197 Rasmussen AT, 1940, LARYNGOSCOPE, V50, P67 NR 17 TC 2 Z9 3 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1997 VL 2 IS 4 BP 213 EP 222 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG371 UT WOS:A1997XG37100004 PM 9390834 ER PT J AU Himi, T Shintani, T Yamaguchi, T Harabushi, Y Yoshioka, I Kataura, A AF Himi, T Shintani, T Yamaguchi, T Harabushi, Y Yoshioka, I Kataura, A TI Relation between vestibular function and speech recognition in postlingually deafened adults with cochlear implantation SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear implant; speech perception; stabilometry; caloric response; postlingual deafness ID TEMPORAL BONE; GANGLION; PERFORMANCE; SURVIVAL AB Thirty-one postlingually deafened adults with 22-channel cochlear implant were evaluated preoperatively using vestibular function tests, the caloric test and stabilometry. The results of caloric response were classified into two diagnostic groups: normo- or hyporeflexia and areflexia. Stabilometric recordings were made using a computerized static posturographic platform. Between the two categories of caloric response, there was a significant difference in consonant recognition, but the recognition of vowels showed no significant difference. The results of the distance of body sway in stabilometry, but not of the area, correlated to the results of consonant recognition in speech perception tests. The degree of residual vestibular function seems to be one of the indicators influencing postoperative speech recognition by cochlear implant patients. RP Himi, T (reprint author), SAPPORO MED UNIV,SCH MED,DEPT OTOLARYNGOL,CHUO KU,S-1,W-16,SAPPORO,HOKKAIDO 060,JAPAN. CR Battmer R.-D., 1995, Annals of Otology Rhinology and Laryngology, V104, P185 BLACK FO, 1987, ANN OTO RHINOL LARYN, V96, P106 BLACK FO, 1977, ANN OTOL RHINOL S38, V96, P49 BLAMEY PJ, 1992, ANN OTO RHINOL LARYN, V101, P342 CHIONG CM, 1993, ANN OTO RHINOL LARYN, V102, P425 CHOUARD CH, 1981, ANN OTOLARYNGOL CHIR, V98, P596 EISENBERG LS, 1982, ANN OTO RHINOL LARYN, V91, P47 FRITZE W, 1989, British Journal of Audiology, V23, P293, DOI 10.3109/03005368909076517 GUSSEN R, 1976, ANN OTO RHINOL LARYN, V85, P94 HOLMES AE, 1987, AM J OTOL, V8, P240 HUYGEN PLM, 1994, ANN OTO RHINOL LARYN, V103, P609 KILENY PR, 1991, ANN OTO RHINOL LARYN, V100, P563 MANGHAM CA, 1987, ANN OTO RHINOL LARYN, V96, P101 NADOL JB, 1989, ANN OTO RHINOL LARYN, V98, P411 OTTE J, 1978, LARYNGOSCOPE, V88, P1231 PARKIN JL, 1989, OTOLARYNG HEAD NECK, V101, P314 RICHTER E, 1980, ACTA OTO-LARYNGOL, V90, P199, DOI 10.3109/00016488009131716 SHIROMA M, 1992, ANN OTO RHINOL LARYN, V101, P32 VANDENBROEK P, 1993, ACTA OTO-LARYNGOL, V113, P263 YAMADA K, 1994, ACTA OTO-LARYNGOL, V114, P586, DOI 10.3109/00016489409126110 NR 20 TC 2 Z9 2 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JUL-AUG PY 1997 VL 2 IS 4 BP 223 EP 230 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA XG371 UT WOS:A1997XG37100005 PM 9471400 ER PT J AU Gleich, O Strutz, J AF Gleich, O Strutz, J TI Age-dependent effects of the onset of a conductive hearing loss on the volume of the cochlear nucleus subdivisions and the expression of c-fos in the mongolian gerbil (Meriones unguiculatus) SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE development; maturation; deprivation; deafness; cochlear nucleus morphology ID AUDITORY BRAIN-STEM; NERVE ELECTRICAL-ACTIVITY; INFERIOR COLLICULUS; ACOUSTIC DEPRIVATION; OTITIS-MEDIA; AFFERENT INFLUENCES; CELL-SIZE; RAT; REMOVAL; PROJECTIONS AB A monaural conductive hearing loss was induced by interrupting the chain of the middle ear ossicles on the right side in gerbils of four different age groups (P12-14, P20-21, P42 and P84). The volumes of the cochlear nucleus subdivisions and the number of cells that expressed immunoreactivity for c-fos after noise stimulation were determined on the left and right side in the deprived animals, and in undeprived control animals when they reached the age of 6 months. The anteroventral cochlear nucleus on the deprived side was reduced in volume when the deprivation started before the age of 3 months. The other cochlear nucleus subdivisions showed no systematic age-dependent reductions. The expression of c-fos in the dorsal cochlear nucleus appeared more resistant to a hearing loss, with deprivation being more effective in younger animals. c-fos expression was also dramatically reduced in the ventral cochlear nucleus, regardless of age at the onset of hearing loss. RP Gleich, O (reprint author), UNIV REGENSBURG,HNO KLIN,DEPT ENT,FRANZ JOSEF STR ALLEE 11,D-93042 REGENSBURG,GERMANY. CR ADAMS JC, 1995, J COMP NEUROL, V361, P645, DOI 10.1002/cne.903610408 ANNIKO M, 1989, ARCH OTO-RHINO-LARYN, V246, P43, DOI 10.1007/BF00454133 BLATCHLEY BJ, 1983, EXP NEUROL, V80, P81, DOI 10.1016/0014-4886(83)90008-0 BORN DE, 1985, J COMP NEUROL, V231, P435, DOI 10.1002/cne.902310403 Cant NB, 1992, MAMMALIAN AUDITORY P, P66 CASSELBRANT ML, 1985, LARYNGOSCOPE, V95, P428 CLARK WW, 1987, J ACOUST SOC AM, V81, P1093, DOI 10.1121/1.394629 COLEMAN J, 1982, DEV BRAIN RES, V4, P119, DOI 10.1016/0165-3806(82)90104-3 COLEMAN JR, 1979, EXP NEUROL, V64, P553, DOI 10.1016/0014-4886(79)90231-0 CONLEE JW, 1981, J COMP NEUROL, V202, P373, DOI 10.1002/cne.902020307 DODSON HC, 1994, DEV BRAIN RES, V80, P261, DOI 10.1016/0165-3806(94)90111-2 DOYLE WJ, 1991, HEARING RES, V54, P145, DOI 10.1016/0378-5955(91)90144-X EHRET G, 1974, NATURWISSENSCHAFTEN, V11, P506 EHRET G, 1991, BRAIN RES, V567, P350, DOI 10.1016/0006-8993(91)90819-H Fay R. R., 1988, HEARING VERTEBRATES Fleckeisen C E, 1991, Acta Otolaryngol Suppl, V489, P23 FOX K, 1992, J NEUROSCI, V12, P1826 FRIAUF E, 1992, EUR J NEUROSCI, V4, P798, DOI 10.1111/j.1460-9568.1992.tb00190.x FRIELPATTI S, 1982, PEDIATR INFECT DIS J, V1, P104, DOI 10.1097/00006454-198203000-00008 FUKUSHIMA N, 1990, HEARING RES, V50, P107, DOI 10.1016/0378-5955(90)90037-P Gleich O, 1995, NEUROREPORT, V7, P29, DOI 10.1097/00001756-199512000-00006 GLEICH O, 1994, 17 ARO MIDW M, V17, P10 GLEICH O, 1996, 19 ARO MIDW M, V19, P117 GLEICH O, 1994, HEARING RES, V78, P49, DOI 10.1016/0378-5955(94)90043-4 GLEICH O, 1997, 20 ARO MIDW RES M, V20, P137 GRAVEL JS, 1995, ACTA OTO-LARYNGOL, V115, P279, DOI 10.3109/00016489509139309 HASHISAKI GT, 1989, J COMP NEUROL, V283, P465, DOI 10.1002/cne.902830402 KACZMAREK L, 1993, J NEUROSCI RES, V34, P377, DOI 10.1002/jnr.490340402 KADOW C, 1996, BRAIN EVOLUTION, V2, P214 KELLY JB, 1977, J COMP PHYSIOL PSYCH, V91, P930, DOI 10.1037/h0077356 KING CT, 1991, J COMP NEUROL, V303, P159, DOI 10.1002/cne.903030114 KOMULAINEN A, 1991, AM J VET RES, V52, P585 KONIGSMARK B W, 1972, Journal of Neuropathology and Experimental Neurology, V31, P304, DOI 10.1097/00005072-197204000-00006 LOUS J, 1995, DAN MED B, V42, P42 MOORE DR, 1990, J COMP NEUROL, V302, P810, DOI 10.1002/cne.903020412 MOORE DR, 1989, J NEUROSCI, V9, P1213 MOORE DR, 1988, J COMP NEUROL, V272, P503, DOI 10.1002/cne.902720405 MOORE DR, 1985, J COMP NEUROL, V240, P180, DOI 10.1002/cne.902400208 MOORE DR, 1994, J COMP NEUROL, V339, P301, DOI 10.1002/cne.903390209 NARA T, 1993, EARLY HUM DEV, V32, P93, DOI 10.1016/0378-3782(93)90003-D NORDEEN KW, 1983, J COMP NEUROL, V214, P144, DOI 10.1002/cne.902140204 OSEN KK, 1969, J COMP NEUROL, V136, P453, DOI 10.1002/cne.901360407 PARKS TN, 1979, J COMP NEUROL, V183, P665, DOI 10.1002/cne.901830313 PASIC TR, 1989, J COMP NEUROL, V283, P474, DOI 10.1002/cne.902830403 PASIC TR, 1991, OTOLARYNG HEAD NECK, V104, P6 PLASSMANN W, 1987, BRAIN BEHAV EVOLUT, V30, P82, DOI 10.1159/000118639 RHOADES RW, 1994, SOMATOSENS MOT RES, V11, P1, DOI 10.3109/08990229409028853 ROUILLER EM, 1992, NEUROSCI LETT, V144, P19, DOI 10.1016/0304-3940(92)90706-D RUBSAMEN R, 1994, J COMP NEUROL, V346, P289, DOI 10.1002/cne.903460208 RYAN A, 1976, J ACOUST SOC AM, V59, P1222, DOI 10.1121/1.380961 SATO K, 1992, NEUROSCI LETT, V142, P48, DOI 10.1016/0304-3940(92)90617-G SCHMIEDT RA, 1989, HEARING RES, V42, P23, DOI 10.1016/0378-5955(89)90115-9 SUTTON D, 1991, DEV BRAIN RES, V58, P59, DOI 10.1016/0165-3806(91)90237-D TRUNE DR, 1982, J COMP NEUROL, V209, P409, DOI 10.1002/cne.902090410 TUCCI DL, 1985, J COMP NEUROL, V238, P371, DOI 10.1002/cne.902380402 UPDIKE C, 1992, ANN OTO RHINOL LARYN, V101, P530 VISCHER MW, 1994, NEUROSCI RES, V19, P175, DOI 10.1016/0168-0102(94)90141-4 WEBSTER DB, 1971, J COMP NEUROL, V143, P323, DOI 10.1002/cne.901430305 WEBSTER DB, 1988, HEARING RES, V32, P185, DOI 10.1016/0378-5955(88)90090-1 WEBSTER DB, 1982, AM J ANAT, V163, P103, DOI 10.1002/aja.1001630202 WEBSTER DB, 1988, HEARING RES, V32, P193, DOI 10.1016/0378-5955(88)90091-3 WEBSTER DB, 1979, ANN OTO RHINOL LARYN, V88, P684 WEBSTER DB, 1983, HEARING RES, V12, P145, DOI 10.1016/0378-5955(83)90123-5 WIESEL TN, 1963, J NEUROPHYSIOL, V26, P978 WIESEL TN, 1965, J NEUROPHYSIOL, V28, P1029 WILSON DA, 1992, NEUROSCIENCE, V49, P183, DOI 10.1016/0306-4522(92)90086-H WOOLF NK, 1984, HEARING RES, V13, P277, DOI 10.1016/0378-5955(84)90081-9 ZEISEL SA, 1995, J PEDIATR-US, V127, P875, DOI 10.1016/S0022-3476(95)70021-8 ZOOK JM, 1982, J COMP NEUROL, V207, P1, DOI 10.1002/cne.902070102 NR 69 TC 6 Z9 6 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 1997 VL 2 IS 3 BP 113 EP 127 PG 15 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WR094 UT WOS:A1997WR09400001 PM 9390826 ER PT J AU McFadden, SL Henderson, D Quaranta, A AF McFadden, SL Henderson, D Quaranta, A TI Remote masking in normal-hearing and noise-exposed chinchillas SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE temporary threshold shift; noise-induced hearing loss; acoustic trauma; auditory masking; cochlear distortion; auditory non-linearity ID PRODUCT OTOACOUSTIC EMISSIONS; AUDIBILITY CURVE; FREQUENCY; EXPOSURES AB Remote masking (RM), the phenomenon whereby an intense high-frequency masking noise elevates thresholds for low-frequency signals, has been shown to be sensitive to various types of hearing loss in humans. We performed two experiments to evaluate the chinchilla as a model of RM and to examine changes in RM associated with temporary threshold shifts (TTSs) induced by low-frequency noise exposure. Thresholds for 0.5-, 1- and 2-kHz tones were measured in quiet, then in the presence of a narrow-band (300-Hz-wide) masking noise centered at 3 kHz. In Experiment I, effective masking was measured as a function of masker level, from 48 to 98 dB sound pressure level (SPL; referenced to 20 mu Pa), to determine threshold and rate of growth of RM in the chinchilla. In Experiment II, RM was measured before, during and after exposure to a low-frequency noise known to produce TTSs in chinchillas (i.e., a 0.5-kHz octave band noise at 90 dB SPL for 6 h/day for 10 days). The results show that normal-hearing chinchillas have the same pattern of RM as humans, and that a noise exposure that produces TTSs also produces rapid and significant changes in RM. C1 UNIV BARI,DEPT AUDIOL & OTOL,BARI,ITALY. RP McFadden, SL (reprint author), SUNY BUFFALO,HEARING RES LABS,DEPT COMMUN SCI & DISORDERS,215 PARKER HALL,BUFFALO,NY 14214, USA. CR BILGER RC, 1958, J ACOUST SOC AM, V30, P817, DOI 10.1121/1.1909777 BILGER RC, 1956, J ACOUST SOC AM, V28, P623, DOI 10.1121/1.1908426 BILGER RC, 1966, J ACOUST SOC AM, V39, P103, DOI 10.1121/1.1909857 CERVELLERA G, 1982, Journal of Auditory Research, V22, P161 CERVELLERA G, 1980, AUDIOLOGY, V19, P404 CERVELLERA G, 1978, AUDIOLOGY, V17, P317 CLARK WW, 1978, ANN OTOL RHINOL LA S, V51, P1 CLARK WW, 1974, J ACOUST SOC AM, V56, P1202, DOI 10.1121/1.1903409 CRANDELL CC, 1991, EAR HEAR S, V12, P100 DEATHERAGE BH, 1957, J ACOUST SOC AM, V29, P132, DOI 10.1121/1.1908641 EVANS EF, 1982, AUDIOLOGY, V21, P204 FAY RR, 1988, HEARING RES, V34, P295, DOI 10.1016/0378-5955(88)90009-3 Fletcher H, 1940, REV MOD PHYS, V12, P0047, DOI 10.1103/RevModPhys.12.47 GIRAUDI D, 1980, J ACOUST SOC AM, V68, P802, DOI 10.1121/1.384818 HAWKINS JE, 1950, J ACOUST SOC AM, V22, P6, DOI 10.1121/1.1906581 HEFFNER RS, 1991, HEARING RES, V52, P13, DOI 10.1016/0378-5955(91)90183-A HENDERSO.D, 1973, J ACOUST SOC AM, V54, P1099, DOI 10.1121/1.1914321 HENDERSON D, 1994, HDB CLIN AUDIOLOGY HENRY KR, 1985, AUDIOLOGY, V24, P309 HIRSH IJ, 1958, J ACOUST SOC AM, V30, P827, DOI 10.1121/1.1909781 KARLOVICH RS, 1977, AUDIOLOGY, V16, P507 KEITH RW, 1969, J ACOUST SOC AM, V46, P393, DOI 10.1121/1.1911702 LONG GR, 1984, J ACOUST SOC AM, V75, P1184, DOI 10.1121/1.390768 McFadden SL, 1997, HEARING RES, V103, P142, DOI 10.1016/S0378-5955(96)00170-0 MCGEE T, 1976, J ACOUST SOC AM, V60, P1146, DOI 10.1121/1.381216 MILLER JD, 1970, J ACOUST SOC AM, V48, P513, DOI 10.1121/1.1912166 MURPHY WJ, 1995, ASS RES OTOLARYNGOL, V548, P137 QUARANTA A, 1992, SCAND AUDIOL, V21, P265, DOI 10.3109/01050399209046011 QUARANTA A, 1978, Journal of Auditory Research, V18, P125 Quaranta A, 1986, Scand Audiol Suppl, V25, P153 QUARANTA A, 1991, ACTA OTOLARYNGOL S, V476, P91 QUARANTA A, 1990, COCHLEAR MECH OTOACO, V7, P171 ROBERTSON LF, 1990, AM J OTOL, V11, P431 SAUNDERS SS, 1987, J ACOUST SOC AM, V82, P1604, DOI 10.1121/1.395150 SMOORENBURG GF, 1980, HEARING RES, V2, P347, DOI 10.1016/0378-5955(80)90069-6 SUBRAMANIAM M, 1994, HEARING RES, V74, P204, DOI 10.1016/0378-5955(94)90188-0 SUBRAMANIAM M, 1994, EAR HEARING, V15, P299, DOI 10.1097/00003446-199408000-00004 TREES DE, 1986, AUDIOLOGY, V25, P70 WARD WD, 1961, J ACOUST SOC AM, V33, P1034, DOI 10.1121/1.1908886 Wegel RL, 1924, PHYS REV, V23, P266, DOI 10.1103/PhysRev.23.266 NR 40 TC 4 Z9 4 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 1997 VL 2 IS 3 BP 128 EP 138 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WR094 UT WOS:A1997WR09400002 PM 9390827 ER PT J AU Lalwani, AK Linthicum, FH Wilcox, ER Moore, JK Walters, FC SanAgustin, TB Mislinski, J Miller, MR Sinninger, Y Attaie, A Luxford, WM AF Lalwani, AK Linthicum, FH Wilcox, ER Moore, JK Walters, FC SanAgustin, TB Mislinski, J Miller, MR Sinninger, Y Attaie, A Luxford, WM TI A five-generation family with late-onset progressive hereditary hearing impairment due to cochleosaccular degeneration SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE Scheibe degeneration; linkage analysis; lod score; temporal-bone histopathology ID TEMPORAL BONE FINDINGS; NON-SYNDROMIC DEAFNESS; WAARDENBURG SYNDROME; INNER-EAR; 2 FAMILIES; GENE; LINKAGE; MUTATIONS; MOUSE; MAPS AB Cochleosaccular dysplasia or degeneration (Scheibe degeneration) is considered the most common cause of profound congenital hearing impairment, and accounts for approximately 70% of cases 2 with hereditary deafness. A five-generation family with hereditary hearing impairment associated with cochleosaccular degeneration has recently been identified. The diagnosis of classical Scheibe degeneration was based on histopathological findings in the temporal bones of the proband, a 61-year-old profoundly deaf male. Auditory structures in the brainstem of the proband were also studied. Twenty-two members of the family were contacted for surveys and blood samples. Of these, 6 males and 2 females have hearing impairment. Complete audiological evaluation was done on 12 family members, and prior audiologic records of the proband and affected family members were available for study. Affected family members suffer a mild bilateral high-frequency hearing loss during childhood and adolescence, and progress to moderate-to-profound deafness in the second and third decades of life. The family is suitable for Linkage analysis and does not map to previously reported loci harboring autosomal dominant, nonsyndromic hereditary hearing impairment genes. The genetic study of this family will be helpful in identifying the genes which, when mutated, result in Scheibe degeneration. C1 HOUSE EAR RES INST,DEPT HISTOPATHOL,LOS ANGELES,CA. HOUSE EAR RES INST,DEPT NEUROANAT,LOS ANGELES,CA. HOUSE EAR RES INST,DEPT CHILDRENS AUDITORY RES & EVALUAT,LOS ANGELES,CA. HOUSE EAR CLIN,LOS ANGELES,CA. NIDOCD,GENET MOL LAB,NIH,ROCKVILLE,MD. RP Lalwani, AK (reprint author), UNIV SAN FRANCISCO,DEPT OTOLARYNGOL HEAD & NECK SURG,MOL OTOL LAB,350 PARNASSUS AVE,SUITE 210,SAN FRANCISCO,CA 94117, USA. CR AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 BALDWIN CT, 1992, NATURE, V355, P637, DOI 10.1038/355637a0 BERGSTROM L, 1980, ANN OTO RHINOL LARYN, V89, P31 BODURTHA JN, 1988, OTOLOGIC MED SURGERY, V1, P831 BOEHNKE M, 1986, AM J HUM GENET, V39, P513 BROWN PG, 1969, ACTA OTO-LARYNGOL, V68, P14, DOI 10.3109/00016486909121538 BROWN PG, 1969, ACTA OTOLARYNGOL, V68, P26 CHAIB H, 1994, HUM MOL GENET, V3, P2219, DOI 10.1093/hmg/3.12.2219 CHEN AH, 1995, HUM MOL GENET, V4, P1073, DOI 10.1093/hmg/4.6.1073 COUCKE P, 1994, NEW ENGL J MED, V331, P425, DOI 10.1056/NEJM199408183310702 DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145 Fraser G. R., 1976, CAUSES PROFOUND DEAF FRASER GR, 1965, ANN HUM GENET, V29, P171, DOI 10.1111/j.1469-1809.1965.tb00512.x Friedmann I, 1968, J Laryngol Otol, V82, P883, DOI 10.1017/S0022215100069620 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 Grundfast Kenneth M., 1992, Ear Nose and Throat Journal, V71, P479 Gulya A. Julianna, 1992, Ear Nose and Throat Journal, V71, P499 KIRSHHOFER K, 1995, MOL BIOL HEARING DEA KONIGSMARK BW, 1976, GENETIC METABOLIC DE LALWANI AK, 1995, AM J HUM GENET, V56, P75 LATHROP GM, 1984, P NATL ACAD SCI-BIOL, V81, P3443, DOI 10.1073/pnas.81.11.3443 LEON PE, 1992, P NATL ACAD SCI USA, V89, P5181, DOI 10.1073/pnas.89.11.5181 LESPERANCE MM, 1995, HUM MOL GENET, V4, P1967, DOI 10.1093/hmg/4.10.1967 Mair I W, 1973, Acta Otolaryngol Suppl, V314, P1 MARAZITA ML, 1993, AM J MED GENET, V46, P486, DOI 10.1002/ajmg.1320460504 MOORE JK, 1994, ASS RES OT ABSTR, V17, P144 MOORE JK, 1994, AM J OTOL, V15, P588 NADOL JB, 1982, LARYNGOSCOPE, V92, P1028 ORMEROD F C, 1960, J Laryngol Otol, V74, P919, DOI 10.1017/S0022215100057376 SANDO I, 1970, ARCHIV OTOLARYNGOL, V91, P552 SCHEIBE A, 1892, ZEITSCHRIFT OHRENHEI, V22, P11 Scheibe A., 1895, Z OHRENHEILKD, V27, P95 Schuknecht H. F., 1974, PATHOLOGY EAR SCHWARTZ IR, ACTA OTOLARYNGOL, V93, P9 STEEL KP, 1987, HEARING RES, V27, P11, DOI 10.1016/0378-5955(87)90022-0 STEEL KP, 1983, BEHAV NEUROSCI, V97, P381, DOI 10.1037//0735-7044.97.3.381 STEEL KP, 1983, ARCH OTOLARYNGOL, V109, P22 TASSABEHJI M, 1992, NATURE, V355, P635, DOI 10.1038/355635a0 TRANEBJAERG L, 1995, MOL BIOL HEARING DEA TSUZUKU T, 1992, ANN OTO RHINOL LARYN, V101, P413 VANCAMP G, 1995, HUM MOL GENET, V4, P2159 WALBY AP, 1984, ARCH OTOLARYNGOL, V110, P477 Weil D, 1995, Nature, V374, P60 NR 43 TC 24 Z9 24 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 1997 VL 2 IS 3 BP 139 EP 154 PG 16 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WR094 UT WOS:A1997WR09400003 PM 9390828 ER PT J AU Ding, DL Wang, J Salvi, RJ AF Ding, DL Wang, J Salvi, RJ TI Early damage in the chinchilla vestibular sensory epithelium from carboplatin SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE carboplatin; hair cells; chinchilla; crista; macula; vestibular nerve; mitochondria ID CISPLATIN; OTOTOXICITY; ANALOGS; COCHLEA; TUMORS AB Carboplatin, a second-generation platinum drug used in the treatment of cancer, can damage the hair cells in the vestibular system; however, Little is known about the time course of its vestibulotoxic effects. The present study examined the acute vestibulotoxic effects of carboplatin (50 mg/kg) in the chinchilla. The duration of the nystagmus response evoked by cold caloric stimulation was significantly reduced 6 h following carboplatin treatment and showed a maximum, permanent reduction of approximately 50% by 24 h after injection. Light-microscopic observations at 6h subsequent to injection revealed swollen afferent dendrites beneath type-I hair cells and the appearance of small vacuoles within the type-I hair cells; these changes were most pronounced in the crista ampullaris of the semicircular canals compared to the maculae of the utricle and saccule. Many mitochondria were swollen and partially depleted of their membranous infoldings. The mitochondrial abnormalities tended to be somewhat more severe in the hair cells than in their afferent terminals. The structural abnormalities in the mitochondria were more severe at 24 h following injection resulting in the appearance of larger and more numerous vacuoles in the hair cells. By 3 days after injection, many type-I hair cells were filled with large vacuoles which often caused severe distortion of the nucleus and disruption of the plasma membrane. Small vacuoles were occasionally observed in type-II hair cells, mainly in the crista ampullaris. These results indicate that the vestibulotoxic effects of carboplatin occur quite rapidly and cause significant disruption of the mitochondria in hair cells and their afferent terminals. RP Ding, DL (reprint author), SUNY BUFFALO,HEARING RES LAB,CTR HEARING & DEAFNESS,215 PARKER HALL,BUFFALO,NY 14214, USA. CR AGGARWAL SK, 1993, J HISTOCHEM CYTOCHEM, V41, P1053 BAUER FP, 1992, HNO, V40, P19 BONVENTRE JV, 1986, AM J PHYSIOL, V250, pF329 CALVERT AH, 1982, CANCER CHEMOTH PHARM, V9, P140, DOI 10.1007/BF00257742 CASTELLO MA, 1990, AM J PEDIAT HEMATOL, V12, P297 DING D, 1991, CHIN J OTORHINOLARYN, V26, P154 DING D, 1993, CHIN J OTORHINOLARYN, V28, P265 GEMBA M, 1987, TOXICOL LETT, V38, P291, DOI 10.1016/0378-4274(87)90011-7 Hashino E, 1995, BRAIN RES, V704, P135, DOI 10.1016/0006-8993(95)01198-6 KRIJNSELOCKER J, 1995, MOL BIOL CELL, V6, P1315 MACDONALD MR, 1994, J OTOLARYNGOL, V23, P151 Mount R J, 1995, Acta Otolaryngol Suppl, V519, P60 Nakayama M, 1992, Nihon Jibiinkoka Gakkai Kaiho, V95, P81 PUEL JL, 1991, NEUROSCIENCE, V45, P63, DOI 10.1016/0306-4522(91)90103-U PUJOL R, 1993, ACTA OTO-LARYNGOL, V113, P330, DOI 10.3109/00016489309135819 SAITO T, 1989, Auris Nasus Larynx, V16, P13 SCHWEITZER VG, 1986, LARYNGOSCOPE, V96, P959 TAKENO S, 1994, SCANNING MICROSCOPY, V8, P97 TAKENO S, 1994, HEARING RES, V75, P93, DOI 10.1016/0378-5955(94)90060-4 TAUDY M, 1992, AUDIOLOGY, V31, P293 Trautwein P, 1996, HEARING RES, V96, P71, DOI 10.1016/0378-5955(96)00040-8 VANDERHULST RJAM, 1988, ANN OTO RHINOL LARYN, V97, P133 VANHENNIK MB, 1987, CANCER RES, V47, P6297 WAKE M, 1993, J LARYNGOL OTOL, V107, P585, DOI 10.1017/S0022215100123771 WOLOSCHUK DMM, 1988, DRUG INTEL CLIN PHAR, V22, P843 YATES FE, 1986, J PHARM SCI, V75, P1019, DOI 10.1002/jps.2600751103 NR 26 TC 7 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD MAY-JUN PY 1997 VL 2 IS 3 BP 155 EP 167 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WR094 UT WOS:A1997WR09400004 PM 9390829 ER PT J AU Hughes, DC AF Hughes, DC TI Paradigms and paradoxes: Mouse (and human) models of genetic deafness SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE mouse; deafness; Kreisler; fibroblast growth factor; myosin; collagen; position effects ID INNER-EAR; EXPRESSION; MICE; COCHLEA; COL2A1; INT-2; CHONDRODYSPLASIA; PROTOONCOGENE; DISORDERS; MUTATIONS AB Mouse models have proved valuable tools in the analysis of human genetic disorders. The identification of the genes mutated in classical mouse mutants and the analysis of the phenotype of mutants following targeted gene disruption have provided some clarification of the development and functioning of the inner ear. A number of these genes also play a role in human deafness. Analysis of mutations in both human and mouse deafness genes has identified a number of distinct phenomena that contribute to the observed phenotype. RP Hughes, DC (reprint author), UNIV NOTTINGHAM,MRC,INST HEARING RES,UNIV PK,NOTTINGHAM NG7 2RD,ENGLAND. CR AVRAHAM KB, 1995, NAT GENET, V11, P369, DOI 10.1038/ng1295-369 Bedell MA, 1996, NAT GENET, V12, P229, DOI 10.1038/ng0396-229 CHO H, 1991, ANN NY ACAD SCI, V630, P259 COHEN MM, 1996, HEREDITARY HEARING L, P141 Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 CORDES SP, 1994, CELL, V79, P1025, DOI 10.1016/0092-8674(94)90033-7 Cosgrove D, 1996, HEARING RES, V97, P54 Darling S, 1996, CURR OPIN GENET DEV, V6, P289, DOI 10.1016/S0959-437X(96)80004-9 DARLING SM, 1992, BIOESSAYS, V14, P359, DOI 10.1002/bies.950140602 DeBry RW, 1996, GENOMICS, V33, P337, DOI 10.1006/geno.1996.0209 DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145 deKok YJM, 1996, HUM MOL GENET, V5, P1229, DOI 10.1093/hmg/5.9.1229 DIETRICH WF, 1995, P NATL ACAD SCI USA, V92, P10849, DOI 10.1073/pnas.92.24.10849 ElAmraoui A, 1996, HUM MOL GENET, V5, P1171, DOI 10.1093/hmg/5.8.1171 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 Friedman RA, 1996, ARCH OTOLARYNGOL, V122, P252 GIBSON F, 1995, NATURE, V374, P62, DOI 10.1038/374062a0 GUILFORD P, 1994, HUM MOL GENET, V3, P989, DOI 10.1093/hmg/3.6.989 HASSON T, 1995, P NATL ACAD SCI USA, V92, P9815, DOI 10.1073/pnas.92.21.9815 Hasson T, 1996, GENOMICS, V36, P431, DOI 10.1006/geno.1996.0488 Jin H, 1996, NAT GENET, V14, P177, DOI 10.1038/ng1096-177 KHETARPAL U, 1993, ARCH OTOLARYNGOL, V119, P1305 KHETARPAL U, 1994, HEARING RES, V79, P59, DOI 10.1016/0378-5955(94)90127-9 Lyon MF.RastanS, 1996, GENETIC VARIANTS STR MANSOUR SL, 1993, DEVELOPMENT, V117, P13 MEISLER MH, 1992, TRENDS GENET, V8, P341, DOI 10.1016/0168-9525(92)90278-C MORTON NE, 1991, ANN NY ACAD SCI, V630, P16, DOI 10.1111/j.1749-6632.1991.tb19572.x MUENKE M, 1995, TRENDS GENET, V11, P308, DOI 10.1016/S0168-9525(00)89088-5 PACE JM, 1995, AM J HUM GENET, V57, P1290 PARIMOO S, 1995, ANAL BIOCHEM, V228, P1, DOI 10.1006/abio.1995.1308 PETERS K, 1993, DEV BIOL, V155, P423, DOI 10.1006/dbio.1993.1040 PROCKOP DJ, 1995, ANNU REV BIOCHEM, V64, P403, DOI 10.1146/annurev.biochem.64.1.403 RAMIREZSOLIS R, 1993, METHOD ENZYMOL, V225, P855 Reimold AM, 1996, NATURE, V379, P262, DOI 10.1038/379262a0 REPRESA J, 1991, NATURE, V353, P561, DOI 10.1038/353561a0 ROMEO G, 1994, NAT GENET, V7, P451, DOI 10.1038/ng0894-451 Steel K P, 1985, Acta Otolaryngol Suppl, V421, P48 STEEL KP, 1991, ANN NY ACAD SCI, V630, P68, DOI 10.1111/j.1749-6632.1991.tb19576.x Steel KP, 1995, ANNU REV GENET, V29, P675 Webster MK, 1996, EMBO J, V15, P520 Weil D, 1995, Nature, V374, P60 Weil D, 1996, P NATL ACAD SCI USA, V93, P3232, DOI 10.1073/pnas.93.8.3232 WILKINSON DG, 1988, EMBO J, V7, P691 YOSHIOKA H, 1995, DEV DYNAM, V204, P41 NR 44 TC 13 Z9 13 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 3 EP 11 PG 9 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300002 PM 9390817 ER PT J AU Kiernan, AE Fekete, DM AF Kiernan, AE Fekete, DM TI In vivo gene transfer into the embryonic inner ear using retroviral vectors SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE retrovirus; gene transfer; otocyst; otic placode; chicken ID CHICKEN OPTIC TECTUM; ROUS-SARCOMA VIRUS; LINEAGE ANALYSIS; TARGETED DISRUPTION; MIGRATION PATTERNS; COMMON PROGENITOR; CEREBRAL-CORTEX; ENTRY SITE; CELLS; EXPRESSION AB Retrovirus-mediated gene transfer holds great promise for elucidating key genes in the development and function of the inner ear. Retroviral vectors offer a number of advantages over other gene transfer methods including stable and efficient integration into the host genome, high levels of transcription and restriction of expression to a target area. Because of the wide variety of recombinant retroviral vectors currently available, this review outlines which vectors are appropriate for particular applications. Successful strategies for infecting the ear are reviewed and current drawbacks and future directions are discussed. C1 BOSTON COLL,DEPT BIOL,CHESTNUT HILL,MA 02167. CR AUSTIN CP, 1995, DEVELOPMENT, V121, P3637 AUSTIN CP, 1990, DEVELOPMENT, V110, P713 BOERKOEL CF, 1993, VIROLOGY, V195, P669, DOI 10.1006/viro.1993.1418 BRADBURY JM, 1995, DEV BIOL, V170, P553, DOI 10.1006/dbio.1995.1236 CEPKO C, 1995, METHOD ENZYMOL, V254, P387 CEPKO CL, 1992, CURRENT PROTOCOLS MO CHISAKA O, 1992, NATURE, V355, P516, DOI 10.1038/355516a0 COPP AJ, 1995, TRENDS GENET, V11, P87, DOI 10.1016/S0168-9525(00)89008-3 COSSET FL, 1992, J VIROL, V66, P5671 DAMICOMARTEL A, 1983, AM J ANAT, V166, P445, DOI 10.1002/aja.1001660406 DELAPOMPA JL, 1993, MECH DEVELOP, V43, P187, DOI 10.1016/0925-4773(93)90035-V Duprez D, 1996, MECH DEVELOP, V57, P145, DOI 10.1016/0925-4773(96)00540-0 Emerman M, 1984, Cell, V39, P449 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 ERNFORS P, 1994, NATURE, V368, P147, DOI 10.1038/368147a0 FARINAS I, 1994, NATURE, V369, P658, DOI 10.1038/369658a0 Federspiel MJ, 1996, P NATL ACAD SCI USA, V93, P4931, DOI 10.1073/pnas.93.10.4931 FEKETE DM, 1994, DEV BIOL, V166, P666, DOI 10.1006/dbio.1994.1346 FEKETE DM, 1993, P NATL ACAD SCI USA, V90, P2350, DOI 10.1073/pnas.90.6.2350 FIELDSBERRY SC, 1992, P NATL ACAD SCI USA, V89, P693, DOI 10.1073/pnas.89.2.693 Fritzsch B., 1995, AUDIT NEUROSCI, V1, P401 GALILEO DS, 1990, P NATL ACAD SCI USA, V87, P458, DOI 10.1073/pnas.87.1.458 GALILEO DS, 1992, NEURON, V9, P117 GHATTAS IR, 1991, MOL CELL BIOL, V11, P5848 GOLDEN JA, 1995, P NATL ACAD SCI USA, V92, P5704, DOI 10.1073/pnas.92.12.5704 Golden JA, 1996, DEVELOPMENT, V122, P65 GRAY GE, 1992, DEVELOPMENT, V114, P271 HAMBURGER V, 1951, J MORPHOL, V88, P49, DOI 10.1002/jmor.1050880104 HOEBEN RC, 1991, J VIROL, V65, P904 Homburger SA, 1996, DEV DYNAM, V206, P112, DOI 10.1002/(SICI)1097-0177(199605)206:1<112::AID-AJA10>3.0.CO;2-7 HUGHES S, 1984, VIROLOGY, V136, P89, DOI 10.1016/0042-6822(84)90250-2 HUGHES SH, 1987, J VIROL, V61, P3004 Itoh N, 1996, DEVELOPMENT, V122, P291 JANG SK, 1990, GENE DEV, V4, P1560, DOI 10.1101/gad.4.9.1560 JONES KR, 1994, CELL, V76, P989, DOI 10.1016/0092-8674(94)90377-8 KOO HM, 1991, J VIROL, V65, P4769 LEBER SM, 1996, METHODS AVIAN EMBRYO, P161 LILLIEN L, 1995, NATURE, V377, P158, DOI 10.1038/377158a0 LUFKIN T, 1991, CELL, V66, P1105, DOI 10.1016/0092-8674(91)90034-V MIMA T, 1995, DEV BIOL, V167, P617, DOI 10.1006/dbio.1995.1053 Minichiello L, 1995, DEVELOPMENT, V121, P4067 MORGAN BA, 1992, NATURE, V358, P236, DOI 10.1038/358236a0 Morgan BA, 1996, METHOD CELL BIOL, V51, P185, DOI 10.1016/S0091-679X(08)60629-9 Nakamoto M, 1996, CELL, V86, P755, DOI 10.1016/S0092-8674(00)80150-6 NIWA O, 1983, CELL, V32, P1105, DOI 10.1016/0092-8674(83)90294-5 RIDDLE RD, 1993, CELL, V75, P1401, DOI 10.1016/0092-8674(93)90626-2 ROE TY, 1993, EMBO J, V12, P2099 RYDER EF, 1994, NEURON, V12, P1011, DOI 10.1016/0896-6273(94)90310-7 SCHIMMANG T, 1995, DEVELOPMENT, V121, P3381 SONEOKA Y, 1995, NUCLEIC ACIDS RES, V23, P628, DOI 10.1093/nar/23.4.628 STOKER AW, 1993, MOL VIROLOGY PRACTIC, P171 TO RYL, 1994, VIROLOGY, V200, P336, DOI 10.1006/viro.1994.1198 TURNER DL, 1987, NATURE, V328, P131, DOI 10.1038/328131a0 Vortkamp A, 1996, SCIENCE, V273, P613, DOI 10.1126/science.273.5275.613 WALSH C, 1992, SCIENCE, V255, P434, DOI 10.1126/science.1734520 Watanabe Y, 1996, MECH DEVELOP, V57, P69, DOI 10.1016/0925-4773(96)00534-5 Yuasa J, 1996, NATURE, V382, P632, DOI 10.1038/382632a0 ZHAO JJG, 1993, NATURE, V365, P448, DOI 10.1038/365448a0 Zou HY, 1996, SCIENCE, V272, P738, DOI 10.1126/science.272.5262.738 NR 60 TC 14 Z9 14 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 12 EP 24 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300003 PM 9390818 ER PT J AU Holley, MC Lawlor, PW AF Holley, MC Lawlor, PW TI Production of conditionally immortalised cell lines from a transgenic mouse SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE cochlear; vestibular; hair cells; transgenic; Immortomouse; conditional immortalisation ID EAR SENSORY EPITHELIA; MAMMALIAN INNER-EAR; HAIR-CELLS; GENE-TRANSFER; GROWTH-FACTOR; T-ANTIGEN; MICE; DERIVATION; MUTATION; TISSUE AB This review describes the H2k(b)tsA58 transgenic mouse (Immortomouse) and its application to the production of conditionally immortalised cell lines from sensory epithelia within the mammalian inner ear. Established cell lines should overcome many of the technical difficulties associated with experimental procedures in auditory and vestibular research. These include the limited amount of tissue available and the relatively complex and laborious dissection. Conditional immortalisation should also allow essential studies on the molecular and cellular mechanisms that govern both the differentiation of sensory cells and the development of sensory epithelia. RP Holley, MC (reprint author), UNIV BRISTOL,SCH MED SCI,DEPT PHYSIOL,UNIV WALK,BRISTOL BS8 1TD,AVON,ENGLAND. CR ALMAZAN G, 1992, BRAIN RES, V579, P234, DOI 10.1016/0006-8993(92)90056-F BARALD KF, 1997, IN PRESS INT J DEV N Barber RD, 1996, PFLUG ARCH EUR J PHY, V432, P749, DOI 10.1007/s004240050194 Barber RD, 1996, BRIT J PHARMACOL, V119, P772 BERNARD R, 1994, EXP CELL RES, V214, P373, DOI 10.1006/excr.1994.1270 CAIRNS LA, 1994, EMBO J, V13, P4577 CHAMBERS TJ, 1993, P NATL ACAD SCI USA, V90, P5578, DOI 10.1073/pnas.90.12.5578 Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 CRENSHAW EB, 1991, J NEUROSCI, V11, P1524 DELEON JR, 1994, P NATL ACAD SCI USA, V91, P519 Dennis JE, 1996, J CELL PHYSIOL, V167, P523, DOI 10.1002/(SICI)1097-4652(199606)167:3<523::AID-JCP16>3.0.CO;2-4 EHLER E, 1995, CIRCULATION, V92, P3289 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 FOX IJ, 1995, HEPATOLOGY, V21, P837, DOI 10.1016/0270-9139(95)90539-1 Freshney RI, 1994, CULTURE ANIMAL CELLS, V3rd Friedman RA, 1996, ARCH OTOLARYNGOL, V122, P252 GANNON J V, 1990, New Biologist, V2, P84 Giordano M, 1996, CELL TRANSPLANT, V5, P563, DOI 10.1016/0963-6897(96)00027-9 Gonos ES, 1996, MOL CELL BIOL, V16, P5127 GORDON JW, 1989, INT REV CYTOL, V115, P171, DOI 10.1016/S0074-7696(08)60630-0 GORDON JW, 1994, CELL BIOL LAB HDB, V3, P106 GORDON JW, 1983, METHOD ENZYMOL, V101, P411 GROVES AK, 1993, DEV BIOL, V159, P87, DOI 10.1006/dbio.1993.1223 HARRIS SA, 1995, J BONE MINER RES, V10, P178 HOLLEY MC, 1995, 18 M ASS RES OT ST P HOLLEY MC, 1995, J NEUROCYTOL, V24, P853, DOI 10.1007/BF01179984 Hughes DC, 1997, AUDIOL NEURO-OTOL, V2, P3 IKRAM Z, 1994, P NATL ACAD SCI USA, V91, P6448, DOI 10.1073/pnas.91.14.6448 ISHIZAKA Y, 1995, P NATL ACAD SCI USA, V92, P3224, DOI 10.1073/pnas.92.8.3224 JAT PS, 1991, P NATL ACAD SCI USA, V88, P5096, DOI 10.1073/pnas.88.12.5096 JAT PS, 1989, MOL CELL BIOL, V9, P1672 Jones JE, 1996, J NEUROSCI, V16, P649 KALINEC F, 1996, 19 M ASS RES OT ST P KELLEY MW, 1995, J NEUROSCI, V15, P3013 Kelley MW, 1997, AUDIOL NEURO-OTOL, V2, P50 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 KERSHAW TR, 1993, CELL TRANSPLANT, V2, P215 KERSHAW TR, 1994, NEUROREPORT, V5, P2197, DOI 10.1097/00001756-199410270-00052 Kiernan AE, 1997, AUDIOL NEURO-OTOL, V2, P12 KNDA S, 1996, CELL GROWTH DIFFER, V7, P383 LAMBERT PR, 1994, LARYNGOSCOPE, V104, P701 MANSOUR SL, 1994, MOL REPROD DEV, V39, P62, DOI 10.1002/mrd.1080390111 Marone M, 1995, DEV NEUROSCI-BASEL, V17, P311, DOI 10.1159/000111301 McKay IJ, 1996, DEV BIOL, V174, P370, DOI 10.1006/dbio.1996.0081 MIGNOTTE B, 1990, ONCOGENE, V5, P1529 MILLER C, 1994, MOL CELL BIOCHEM, V36, P29 MORGAN JE, 1994, DEV BIOL, V162, P486, DOI 10.1006/dbio.1994.1103 Navaratnam DS, 1996, NAT MED, V2, P1136, DOI 10.1038/nm1096-1136 Nishida Y, 1996, Audiol Neurootol, V1, P31 NOBLE M, 1992, BRAIN PATHOL, V2, P39 OESTERLE EC, 1996, ANN NY ACAD SCI, V781, P324 PALMITER RD, 1986, ANNU REV GENET, V20, P465 PARADIS K, 1995, GASTROENTEROLOGY, V109, P1308, DOI 10.1016/0016-5085(95)90593-6 RENFRANZ PJ, 1991, CELL, V66, P713, DOI 10.1016/0092-8674(91)90116-G Rivolta MN, 1997, AUDIOL NEURO-OTOL, V2, P36 Ruben R. J., 1967, ACTA OTO-LARYNGOL, V220, P1 Saffer LD, 1996, HEARING RES, V94, P14, DOI 10.1016/0378-5955(95)00228-6 Simon LV, 1996, EXP CELL RES, V224, P264, DOI 10.1006/excr.1996.0136 STEEL KP, 1994, TRENDS GENET, V10, P428, DOI 10.1016/0168-9525(94)90113-9 Stone JS, 1996, J NEUROSCI, V16, P6157 TING CN, 1994, GENETICS, V136, P247 Walther N, 1996, EXP CELL RES, V225, P411, DOI 10.1006/excr.1996.0192 WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 Warchol ME, 1996, J NEUROSCI, V16, P5466 WHITEHEAD RH, 1994, EPITHELIAL CELL BIOL, V3, P119 WHITEHEAD RH, 1993, P NATL ACAD SCI USA, V90, P587, DOI 10.1073/pnas.90.2.587 Yamane H, 1995, Acta Otolaryngol Suppl, V520 Pt 1, P174 YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152 Yoshino K, 1995, No To Shinkei, V47, P1149 Zavizion B, 1996, IN VITRO CELL DEV-AN, V32, P138 Zavizion B, 1996, IN VITRO CELL DEV-AN, V32, P149 Zhang X, 1996, J PHYSIOL-LONDON, V490, P17 ZHENG JL, 1977, IN PRESS J NEUROSCI, P17 NR 75 TC 27 Z9 27 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 25 EP 35 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300004 PM 9390819 ER PT J AU Rivolta, MN AF Rivolta, MN TI Transcription factors in the ear: Molecular switches for development and differentiation SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE transcription factors; DNA-binding proteins; inner ear; homeoboxes; zinc finger; POU genes; PAX genes; Brn 3.1 ID MOUSE HOMEOBOX GENE; RETINOIC ACID; WAARDENBURG SYNDROME; HOMEOTIC TRANSFORMATION; BINDING-PROTEINS; DISTAL-LESS; HAIR-CELLS; INNER-EAR; EXPRESSION; DOMAIN AB In order to understand the molecular events underlying differentiation and development in the inner ear, we need to identify and characterize the molecular 'switches' involved in the regulation of gene expression in the system, The most important molecular regulators are represented by a family of proteins generically called transcription factors, This article reviews our current knowledge of the expression of several transcription factors in the ear and their implications for both development and homeostasis in the auditory organs. RP Rivolta, MN (reprint author), UNIV BRISTOL,SCH MED SCI,DEPT PHYSIOL,UNIV WALK,BRISTOL BS8 1TD,AVON,ENGLAND. CR Acampora D, 1996, NAT GENET, V14, P218, DOI 10.1038/ng1096-218 AKIMENKO MA, 1994, J NEUROSCI, V14, P3475 ALTABA AR, 1987, EMBO J, V6, P3065 Ang SL, 1996, DEVELOPMENT, V122, P243 BALDWIN CT, 1992, NATURE, V355, P637, DOI 10.1038/355637a0 BOVER E, 1994, DEV BIOL, V162, P288 BRADLEY DJ, 1994, P NATL ACAD SCI USA, V91, P439, DOI 10.1073/pnas.91.2.439 CHALFIE M, 1989, SCIENCE, V243, P1027, DOI 10.1126/science.2646709 CHISAKA O, 1992, NATURE, V355, P516, DOI 10.1038/355516a0 DAVIDSON D, 1995, TRENDS GENET, V11, P405, DOI 10.1016/S0168-9525(00)89124-6 DEITCHER DL, 1994, J NEUROSCI, V14, P486 DEKOK YJM, 1995, SCIENCE, V267, P685, DOI 10.1126/science.7839145 DOLLE P, 1990, DEVELOPMENT, V110, P1133 EKKER M, 1992, NEURON, V9, P27, DOI 10.1016/0896-6273(92)90217-2 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EPSTEIN DJ, 1991, CELL, V67, P767, DOI 10.1016/0092-8674(91)90071-6 Erichsen S, 1996, ACTA OTO-LARYNGOL, V116, P721, DOI 10.3109/00016489609137913 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 Forrest D, 1996, NAT GENET, V13, P354, DOI 10.1038/ng0796-354 GAUNT SJ, 1993, DEVELOPMENT, V117, P769 GENDRONMAGUIRE M, 1993, CELL, V75, P1317, DOI 10.1016/0092-8674(93)90619-2 GEORGE KM, 1994, DEVELOPMENT, V120, P2673 HODGKINSON CA, 1993, CELL, V74, P395 HOFFMAN D, 1995, ECTOPIC EXPRESSION M HOOVERS JMN, 1992, GENOMICS, V12, P254, DOI 10.1016/0888-7543(92)90372-Y JOHNSTON M, 1987, MICROBIOL REV, V51, P458 KELLEY MW, 1993, DEVELOPMENT, V119, P1041 LANDSCHULZ WH, 1988, SCIENCE, V240, P1759, DOI 10.1126/science.3289117 LEON PE, 1992, P NATL ACAD SCI USA, V89, P5181, DOI 10.1073/pnas.89.11.5181 LEON Y, 1995, DEV BIOL, V167, P75, DOI 10.1006/dbio.1995.1008 LUFKIN T, 1991, CELL, V66, P1105, DOI 10.1016/0092-8674(91)90034-V LUO L, 1997, 20 M ASS RES OT ST P MCGUINNIS W, 1984, NATURE, V308, P428 MCKENZIE A, 1992, DEVELOPMENT, V115, P403 MILLER J, 1985, EMBO J, V4, P1609 Milton NGN, 1996, BIOCHEM J, V317, P419 MURRE C, 1992, TRANSCRIPTIONAL REGU, V2, P861 NORNES HO, 1990, DEVELOPMENT, V109, P797 OOSTERWEGEL M, 1993, DEVELOPMENT, V118, P439 OPSTELTEN DJE, 1991, MECH DEVELOP, V34, P29, DOI 10.1016/0925-4773(91)90089-O Ott T, 1996, MECH DEVELOP, V56, P117, DOI 10.1016/0925-4773(96)00516-3 RAJU K, 1993, MECH DEVELOP, V44, P51, DOI 10.1016/0925-4773(93)90016-Q REDDY BA, 1992, TRENDS BIOCHEM SCI, V17, P344, DOI 10.1016/0968-0004(92)90308-V Reimold AM, 1996, NATURE, V379, P262, DOI 10.1038/379262a0 REPRESA J, 1990, DEVELOPMENT, V110, P1081 RIJLI FM, 1993, CELL, V75, P1333, DOI 10.1016/0092-8674(93)90620-6 RINKWITZBRANDT S, 1995, MECH DEVELOP, V52, P371, DOI 10.1016/0925-4773(95)00414-V Rivolta MN, 1996, BBA-GENE STRUCT EXPR, V1306, P127, DOI 10.1016/0167-4781(96)00022-X ROBERTS CWM, 1994, NATURE, V368, P747, DOI 10.1038/368747a0 ROBINSON GW, 1994, MECH DEVELOP, V48, P199, DOI 10.1016/0925-4773(94)90060-4 ROIVERAPEREZ JA, 1995, DEVELOPMENT, V121, P3005 RYAN AF, 1995, POU DOMAIN GENES DEV SANCHEZGARCIA I, 1994, TRENDS GENET, V10, P315, DOI 10.1016/0168-9525(94)90034-5 SATOKATA I, 1994, NAT GENET, V6, P348, DOI 10.1038/ng0494-348 SCOTT MP, 1984, P NATL ACAD SCI-BIOL, V81, P4115, DOI 10.1073/pnas.81.13.4115 SCOTT MP, 1992, CELL, V71, P551, DOI 10.1016/0092-8674(92)90588-4 SIMEONE A, 1993, EMBO J, V12, P2735 STADLER HS, 1994, DEV BIOL, V161, P251, DOI 10.1006/dbio.1994.1025 Stein S, 1996, MECH DEVELOP, V55, P91, DOI 10.1016/0925-4773(95)00494-7 STUART ET, 1993, ANNU REV GENET, V27, P219 TAKEDA K, 1992, J CLIN ENDOCR METAB, V74, P49, DOI 10.1210/jc.74.1.49 TASSABEHJI M, 1994, NAT GENET, V8, P251, DOI 10.1038/ng1194-251 TASSABEHJI M, 1992, NATURE, V355, P635, DOI 10.1038/355635a0 Torres MA, 1996, DEVELOPMENT, V122, P3381 TRAINOR CD, 1990, NATURE, V343, P92, DOI 10.1038/343092a0 TSAI MJ, 1994, ANNU REV BIOCHEM, V63, P451, DOI 10.1146/annurev.biochem.63.1.451 VANCAMP G, 1995, HUM MOL GENET, V4, P2159 Wegner M, 1993, CURR OPIN CELL BIOL, V5, P488, DOI 10.1016/0955-0674(93)90015-I NR 68 TC 12 Z9 12 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 36 EP 49 PG 14 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300005 PM 9390820 ER PT J AU Kelley, MW AF Kelley, MW TI Cellular commitment and differentiation in the cochlea: Potential advances using gene transfer SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE hair cell; cochlea; cell commitment; differentiation; adenovirus; adeno-associated virus; vaccinia virus; herpes virus; lipofection; biolistic transfection ID CENTRAL-NERVOUS-SYSTEM; EAR SENSORY EPITHELIA; MAMMALIAN INNER-EAR; ADENOASSOCIATED VIRUS; GROWTH-FACTOR; ADENOVIRUS VECTORS; SUPPORTING CELLS; VACCINIA VIRUS; HAIR-CELLS; IN-VIVO AB The development of individual cells as hair cells and supporting cells is a key step during the embryonic formation of the auditory system. However, at present the factors that play a role in the commitment and differentiation of cells as hair cells and supporting cells have not been identified. Recent advances in molecular biological techniques have led to the identification of candidate genes that may be involved in hair cell and supporting cell development, however it has been difficult to determine the specific effects of these genes. The development of new methods for gene transfer into post-mitotic cells should provide powerful new techniques for examining the specific effects of candidate genes. Virally mediated vectors, such as adenovirus and herpes simplex virus, and non-virally mediated vectors, such as lipofectins and biolistics, have been shown to efficiently transfer candidate genes into many different cell types, including hair cells, supporting cells, and spiral ganglion neurons. In addition, studies in other developing systems have demonstrated that these techniques can be used to determine the effects of expression of candidate genes during the specification of individual cell phenotypes. These results suggest that these vectors can be used effectively to study the role of specific genes during the development of the auditory system. RP Kelley, MW (reprint author), GEORGETOWN UNIV,SCH MED,DEPT CELL BIOL,3900 RESERVOIR RD NW,WASHINGTON,DC 20007, USA. CR AKLI S, 1993, NAT GENET, V3, P224, DOI 10.1038/ng0393-224 ARTAVANISTSAKONAS S, 1995, SCIENCE, V268, P225, DOI 10.1126/science.7716513 BAIRD RA, 1995, ABSTR SOC NEUROSCI, V21, P396 BAJOCCHI G, 1993, NAT GENET, V3, P229, DOI 10.1038/ng0393-229 Berns KI, 1995, ANN NY ACAD SCI, V772, P95, DOI 10.1111/j.1749-6632.1995.tb44735.x BRADLEY DJ, 1994, P NATL ACAD SCI USA, V91, P439, DOI 10.1073/pnas.91.2.439 Chambon Pierre, 1994, Seminars in Cell Biology, V5, P115, DOI 10.1006/scel.1994.1015 Colvin JS, 1996, NAT GENET, V12, P390, DOI 10.1038/ng0496-390 Cotanche Douglas A., 1994, Current Opinion in Neurobiology, V4, P509, DOI 10.1016/0959-4388(94)90051-5 DAVIDSON BL, 1993, NAT GENET, V3, P219, DOI 10.1038/ng0393-219 DERBY ML, 1996, IN PRESS HUM GENET T DOLLE P, 1990, DEVELOPMENT, V110, P1133 DOLLE P, 1994, MECH DEVELOP, V45, P91, DOI 10.1016/0925-4773(94)90023-X DORSKY RI, 1995, NEURON, V14, P487, DOI 10.1016/0896-6273(95)90305-4 EFSTATHIOU S, 1995, BRIT MED BULL, V51, P45 EKKER M, 1992, NEURON, V9, P27, DOI 10.1016/0896-6273(92)90217-2 Erkman L, 1996, NATURE, V381, P603, DOI 10.1038/381603a0 ERNFORS P, 1995, NEURON, V14, P1153, DOI 10.1016/0896-6273(95)90263-5 FARHOOD H, 1994, ANN NY ACAD SCI, V716, P23, DOI 10.1111/j.1749-6632.1994.tb21701.x FEDEROFF HJ, 1992, P NATL ACAD SCI USA, V89, P1636, DOI 10.1073/pnas.89.5.1636 FELGNER JH, 1994, J BIOL CHEM, V269, P2550 FELGNER PL, 1987, P NATL ACAD SCI USA, V84, P7413, DOI 10.1073/pnas.84.21.7413 FORGE A, 1993, SCIENCE, V259, P1616, DOI 10.1126/science.8456284 Geller A I, 1993, Curr Opin Genet Dev, V3, P81, DOI 10.1016/S0959-437X(05)80345-4 Geschwind MD, 1996, HUM GENE THER, V7, P173, DOI 10.1089/hum.1996.7.2-173 GLIORIOSO JC, 1994, AM NEUROL ASS, V35, pS28 Kikuchi K, 1965, Acta Otolaryngol, V60, P207, DOI 10.3109/00016486509127003 JOHNSTON SA, 1990, NATURE, V346, P776, DOI 10.1038/346776a0 JONES CM, 1995, CURR BIOL, V5, P574, DOI 10.1016/S0960-9822(95)00112-6 KAPLITT M G, 1991, Molecular and Cellular Neuroscience, V2, P320, DOI 10.1016/1044-7431(91)90062-S KAPLITT MG, 1994, NAT GENET, V8, P148, DOI 10.1038/ng1094-148 KELLEY MW, 1995, J NEUROSCI, V15, P3013 KOJIMA H, 1995, BIOCHEM BIOPH RES CO, V212, P712, DOI 10.1006/bbrc.1995.2027 KOTIN RM, 1992, EMBO J, V11, P5071 KOTIN RM, 1990, P NATL ACAD SCI USA, V87, P2211, DOI 10.1073/pnas.87.6.2211 KOTIN RM, 1991, GENOMICS, V10, P831, DOI 10.1016/0888-7543(91)90470-Y KREMER EJ, 1995, BRIT MED BULL, V51, P31 LAROCCA SA, 1994, ONCOGENE, V9, P3499 Latchman David S., 1994, Molecular Biotechnology, V2, P179, DOI 10.1007/BF02824809 Lawrence MS, 1996, J NEUROSCI, V16, P486 LEVINE EM, 1995, ABSTR SOC NEUROSCI, V21, P1767 Lim D J, 1985, Acta Otolaryngol Suppl, V422, P1 LIM DJ, 1986, HEARING RES, V22, P117, DOI 10.1016/0378-5955(86)90089-4 LINNIK MD, 1995, STROKE, V26, P1670 LO DC, 1994, NEURON, V13, P1263, DOI 10.1016/0896-6273(94)90412-X MCALLISTER AK, 1905, NEURON, V15, P7919 MOSS B, 1991, SCIENCE, V252, P1662, DOI 10.1126/science.2047875 MUZYCZKA N, 1992, CURR TOP MICROBIOL, V158, P97 Naldini L, 1996, SCIENCE, V272, P263, DOI 10.1126/science.272.5259.263 NORNES HO, 1990, DEVELOPMENT, V109, P797 OLSON EN, 1987, MOL CELL BIOL, V7, P2104 Paquet L, 1996, J NEUROSCI, V16, P964 PECORINO LT, 1994, DEVELOPMENT, V120, P325 Pettit D L, 1995, Neuron, V14, P685, DOI 10.1016/0896-6273(95)90212-0 PIRVOLA U, 1995, P NATL ACAD SCI USA, V92, P9269, DOI 10.1073/pnas.92.20.9269 RAPHAEL Y, 1994, HEARING RES, V80, P53, DOI 10.1016/0378-5955(94)90008-6 Raphael Y, 1996, NEUROSCI LETT, V207, P137, DOI 10.1016/0304-3940(96)12499-X ROMAND R, 1994, HEARING RES, V72, P53, DOI 10.1016/0378-5955(94)90205-4 ROWE WP, 1953, P SOC EXP BIOL MED, V84, P570 SANES JR, 1986, EMBO J, V5, P3133 SCHMID P, 1991, DEVELOPMENT, V111, P117 SCHOFIELD JP, 1995, BRIT MED BULL, V51, P56 SHASTRY BS, 1994, MOL CELL BIOCHEM, V136, P171, DOI 10.1007/BF00926078 Stone JS, 1996, J NEUROSCI, V16, P6157 STRATFORDPERRICAUDET LD, 1990, HUM GENE THER, V1, P241, DOI 10.1089/hum.1990.1.3-241 STRATFORDPERRIC.LD, 1992, J CLIN INVEST, V906, P26 TANNAHILL D, 1995, DEV BIOL, V168, P694, DOI 10.1006/dbio.1995.1116 THAYER MJ, 1990, CELL, V63, P23, DOI 10.1016/0092-8674(90)90285-M Tomita K, 1996, NEURON, V16, P723, DOI 10.1016/S0896-6273(00)80093-8 TSAI YJL, 1995, ANN NY ACAD SCI, V172, P126 TURNER DL, 1987, NATURE, V328, P131, DOI 10.1038/328131a0 WARCHOL ME, 1993, HEARING RES, V71, P28, DOI 10.1016/0378-5955(93)90018-V WARCHOL ME, 1993, SCIENCE, V259, P1619, DOI 10.1126/science.8456285 WILLIAMS RS, 1991, P NATL ACAD SCI USA, V88, P2726, DOI 10.1073/pnas.88.7.2726 WOLFE JH, 1992, NAT GENET, V1, P379, DOI 10.1038/ng0892-379 WU GY, 1995, NEURON, V14, P681, DOI 10.1016/0896-6273(95)90211-2 YAMASHITA H, 1995, P NATL ACAD SCI USA, V92, P3152, DOI 10.1073/pnas.92.8.3152 YANG K, 1994, NEUROSCI LETT, V182, P291, DOI 10.1016/0304-3940(94)90819-2 YANG K, 1994, NEUROSCI LETT, V182, P287, DOI 10.1016/0304-3940(94)90818-4 ZHOU XH, 1994, BBA-BIOMEMBRANES, V1189, P195, DOI 10.1016/0005-2736(94)90066-3 NR 80 TC 9 Z9 9 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 50 EP 60 PG 11 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300006 PM 9390821 ER PT J AU Riedl, AE Lee, KH Moskalyk, LA Cotanche, DA AF Riedl, AE Lee, KH Moskalyk, LA Cotanche, DA TI The molecular biology of hair cell regeneration in the avian cochlea SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE regeneration; cochlea; hair cell; molecular biology; PCR; Northern blot; differential display; ribonuclease protection assay; RNA isolation ID POLYMERASE CHAIN-REACTION; ACOUSTIC TRAUMA; DIFFERENTIAL DISPLAY; CHICK COCHLEA; MESSENGER-RNA AB The sensory cells of the ear, the hair cells, are damaged by loud noise or certain types of drugs. In the bird cochlea, new hair cells are produced to replace those that are lost. Regeneration also occurs in the vestibular epithelia of birds, fish, and mammals but does not occur in the mammalian cochlea. In order to further our understanding of the regeneration process in the bird cochlea, we have begun to identify the genes that are involved. However, the small size of this organ has made it difficult to use traditional molecular biology methods to address these problems. Recently, many molecular techniques have been adapted for use with small amounts of tissue. Northern blot analysis, the ribonuclease protection assay, semiquantitative PCR and differential display of mRNA are all techniques that are being used to greatly improve our understanding of hair cell regeneration and may eventually provide the information necessary to induce regeneration in hearing-impaired humans. C1 CASE WESTERN RESERVE UNIV,DEPT GENET,CLEVELAND,OH 44106. RP Riedl, AE (reprint author), BOSTON UNIV,SCH MED,DEPT ANAT & NEUROBIOL,80 E CONCORD ST,BOSTON,MA 02118, USA. CR CORWIN JT, 1988, SCIENCE, V240, P1772, DOI 10.1126/science.3381100 COTANCHE DA, 1987, HEARING RES, V30, P181, DOI 10.1016/0378-5955(87)90135-3 Cotanche Douglas A., 1994, Current Opinion in Neurobiology, V4, P509, DOI 10.1016/0959-4388(94)90051-5 COTANCHE DA, 1994, ANAT EMBRYOL, V189, P1 CRUZ RM, 1987, ARCH OTOLARYNGOL, V113, P1058 Furuta H, 1995, HEARING RES, V92, P78, DOI 10.1016/0378-5955(95)00203-0 GHYSEN A, 1993, GENE DEV, V7, P723, DOI 10.1101/gad.7.5.723 Glowatzki E, 1997, AUDIOL NEURO-OTOL, V2, P71 Gong TWL, 1996, HEARING RES, V96, P20, DOI 10.1016/0378-5955(96)00013-5 KAWASAKI ES, 1988, P NATL ACAD SCI USA, V85, P5698, DOI 10.1073/pnas.85.15.5698 LEE JJ, 1987, METHOD ENZYMOL, V152, P633 Lee KH, 1996, HEARING RES, V94, P1, DOI 10.1016/0378-5955(95)00220-0 Lee K H, 1996, Audiol Neurootol, V1, P41 LEE KH, 1995, HEARING RES, V87, P9, DOI 10.1016/0378-5955(95)00072-C LIANG P, 1993, NUCLEIC ACIDS RES, V21, P3269, DOI 10.1093/nar/21.14.3269 LIANG P, 1992, SCIENCE, V257, P967, DOI 10.1126/science.1354393 Livesey FJ, 1996, TRENDS NEUROSCI, V19, P84, DOI 10.1016/S0166-2236(96)80032-4 MULLIS K, 1986, COLD SPRING HARB SYM, V51, P263 NADOL JB, 1993, NEW ENGL J MED, V329, P1092, DOI 10.1056/NEJM199310073291507 OBERHOLTZER JC, 1993, HEARING RES, V23, P161 PICKLES JO, 1993, HEARING RES, V71, P225, DOI 10.1016/0378-5955(93)90038-3 RYALS BM, 1988, SCIENCE, V240, P1774, DOI 10.1126/science.3381101 SIEBERT PD, 1993, METHODS APPL BOOK 3 NR 23 TC 2 Z9 2 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 61 EP 70 PG 10 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300007 PM 9390822 ER PT J AU Glowatzki, E AF Glowatzki, E TI Analysis of gene expression in the organ of corti revealed by single-cell RT-PCR SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE single-cell RT-PCR; hair cells; cochlea; acetylcholine receptor ID OUTER HAIR-CELLS; GUINEA-PIG COCHLEA; CA2+ PERMEABILITY; RECEPTOR; SUBUNIT; ACETYLCHOLINE; NEURONS; PHYSIOLOGY; CHANNELS; ALPHA-9 AB Many genes encoding proteins which are expressed in the auditory periphery have been identified in the last years. With single-cell reverse transcription-polymerase chain reaction (RT-PCR), the molecular analysis of gene expression can be done on the single-cell level. Furthermore a single-cell RT-PCR experiment can be combined with the electrophysiological characterization of an individual cell. The combination of these two methods will lead to a better understanding of how functional properties of neurons are controlled by the expression of complex proteins. C1 UNIV TUBINGEN,DEPT PHYSIOL,D-72076 TUBINGEN,GERMANY. RP Glowatzki, E (reprint author), UNIV TUBINGEN,DEPT OTOLARYNGOL,SECT SENSORY BIOPHYS,RONTGENWEG 11,D-72076 TUBINGEN,GERMANY. CR Ausubel F. M., 1995, SHORT PROTOCOLS MOL, V3rd Blanchet C, 1996, J NEUROSCI, V16, P2574 BOCHET P, 1994, NEURON, V12, P383, DOI 10.1016/0896-6273(94)90279-8 BRAKE AJ, 1994, NATURE, V371, P519, DOI 10.1038/371519a0 BRANDLE U, 1995, P MOL BIOL HEARING D, P168 Corey DP, 1996, SCIENCE, V273, P323, DOI 10.1126/science.273.5273.323 EBERWINE J, 1992, P NATL ACAD SCI USA, V89, P3010, DOI 10.1073/pnas.89.7.3010 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 EYBALIN M, 1993, PHYSIOL REV, V73, P309 GEIGER JRP, 1995, NEURON, V15, P193, DOI 10.1016/0896-6273(95)90076-4 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V262, P141, DOI 10.1098/rspb.1995.0188 HAMILL OP, 1981, PFLUG ARCH EUR J PHY, V391, P85, DOI 10.1007/BF00656997 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 Innis MA, 1990, PCR PROTOCOLS JONAS P, 1994, NEURON, V12, P1281, DOI 10.1016/0896-6273(94)90444-8 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KROS CJ, 1996, COCHLEA, V8, P318 LAMBOLEZ B, 1992, NEURON, V9, P247, DOI 10.1016/0896-6273(92)90164-9 MCPHEE JR, 1988, PHYSL EAR, P221 Monyer Hannah, 1995, P357 MONYER H, 1995, CURR OPIN NEUROBIOL, V5, P382, DOI 10.1016/0959-4388(95)80052-2 Niedzielski AS, 1997, AUDIOL NEURO-OTOL, V2, P79 RUSSELL IJ, 1987, HEARING RES, V31, P9, DOI 10.1016/0378-5955(87)90210-3 Sobkowicz H M, 1993, Acta Otolaryngol Suppl, V502, P3 SPRENGEL R, 1995, LIGAND VOLTAGE GATED, P213 NR 27 TC 9 Z9 10 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 71 EP 78 PG 8 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300008 PM 9390823 ER PT J AU Niedzielski, AS Safieddine, S Wenthold, RJ AF Niedzielski, AS Safieddine, S Wenthold, RJ TI Molecular analysis of excitatory amino acid receptor expression in the cochlea SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE glutamate receptor; in situ hybridization; immunocytochemistry; polymerase chain reaction; hair cell; spiral ganglion neuron ID POLYMERASE CHAIN-REACTION; GUINEA-PIG COCHLEA; RAT COCHLEA; MESSENGER-RNAS; IMMUNOCYTOCHEMICAL LOCALIZATION; ACETYLCHOLINE-RECEPTOR; HAIR-CELLS; NMDA; SUBUNITS; AMPA AB Our present understanding of excitatory neurotransmission has expanded enormously in the last decade through the use of molecular biology. In the mammalian cochlea, the analysis of excitatory amino acid receptor expression by the reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization and immunochemistry has provided considerable evidence for glutamate as the afferent neurotransmitter. Using these molecular techniques, the ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate, N-methyl-D-aspartic acid (NMDA) and delta receptor subunits and the metabotropic glutamate receptors have all been detected in the cochlea, in either the spiral ganglion neurons, the hair cells or both. Due to the utility of the techniques and the diversity of expressed neurotransmitter receptors, molecular biology will continue to provide important information for researchers of the auditory periphery. C1 NIDCD,NEUROCHEM LAB,NIH,BETHESDA,MD. RP Niedzielski, AS (reprint author), MED UNIV S CAROLINA,DEPT OTOLARYNGOL RS608,171 ASHLEY AVE,CHARLESTON,SC 29425, USA. CR ALTSCHULER RA, 1989, HEARING RES, V42, P167, DOI 10.1016/0378-5955(89)90142-1 DALDIN C, 1996, ARO ABSTR, V19, P129 DOI K, 1992, P SENDAI S, V2, P11 DRESCHER DG, 1992, J NEUROCHEM, V59, P765, DOI 10.1111/j.1471-4159.1992.tb09436.x ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EYBALIN M, 1995, MOL BIOL HEARING DEA, P80 EYBALIN M, 1993, PHYSIOL REV, V73, P309 Funabiki K, 1995, NEUROREPORT, V7, P189, DOI 10.1097/00001756-199512000-00045 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V262, P141, DOI 10.1098/rspb.1995.0188 HOLLMANN M, 1994, ANNU REV NEUROSCI, V17, P31, DOI 10.1146/annurev.ne.17.030194.000335 HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X HUNTER C, 1992, OTOLARYNG CLIN N AM, V25, P1027 KURIYAMA H, 1993, HEARING RES, V69, P215, DOI 10.1016/0378-5955(93)90110-M KURIYAMA H, 1994, HEARING RES, V80, P233, DOI 10.1016/0378-5955(94)90114-7 LAMBOLEZ B, 1992, NEURON, V9, P247, DOI 10.1016/0896-6273(92)90164-9 LI HS, 1994, HEARING RES, V78, P235, DOI 10.1016/0378-5955(94)90029-9 LUO L, 1995, J COMP NEUROL, V361, P372, DOI 10.1002/cne.903610303 Matsubara A, 1996, J NEUROSCI, V16, P4457 NIEDZIELSKI AS, 1995, J NEUROSCI, V15, P2338 PETRALIA RS, 1995, EXCITATORY AMINO ACI, P55 Puel JL, 1995, PROG NEUROBIOL, V47, P449, DOI 10.1016/0301-0082(95)00028-3 PUEL JL, 1995, CR ACAD SCI III-VIE, V318, P67 RYAN AF, 1991, NEUROREPORT, V2, P643, DOI 10.1097/00001756-199111000-00002 SAFIEDDINE S, 1992, NEUROREPORT, V3, P1145, DOI 10.1097/00001756-199212000-00029 SAFIEDDINE S, 1995, MOL BIOL HEARING DEA, P121 Safieddine S, 1995, NEUROREPORT, V7, P193 SEKIGUCHI M, 1994, J BIOL CHEM, V269, P14559 SEWELL WF, 1987, J NEUROSCI, V7, P2465 SEWELL WF, 1978, SCIENCE, V202, P910, DOI 10.1126/science.30998 SIMMONS DM, 1989, J HISTOTECHNOL, V12, P169 SOMMER B, 1992, TRENDS PHARMACOL SCI, V13, P291, DOI 10.1016/0165-6147(92)90088-N TAKUMI Y, 1996, ARO ABSTR, V19, P129 WILCOX JN, 1993, J HISTOCHEM CYTOCHEM, V41, P1725 NR 33 TC 29 Z9 29 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 79 EP 91 PG 13 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300009 PM 9390824 ER PT J AU Housley, GD Ryan, AF AF Housley, GD Ryan, AF TI Cholinergic and purinergic neurohumoral signalling in the inner ear: A molecular physiological analysis SO AUDIOLOGY AND NEURO-OTOLOGY LA English DT Article DE ATP-gated ion channels; acetylcholine receptors; cochlea; vestibular system; hair cells; Organ of Corti; spiral ganglion ID GUINEA-PIG COCHLEA; OUTER HAIR-CELLS; NICOTINIC ACETYLCHOLINE-RECEPTOR; POLYMERASE CHAIN-REACTION; GATED ION CHANNELS; ADENOSINE 5'-TRIPHOSPHATE ATP; EXTRACELLULAR ATP; OLIVOCOCHLEAR NEURONS; EXPRESSION; SUBUNIT AB The ability to identify the expression of the protein subunits which assemble to form ionotropic receptors for acetylcholine and extracellular adenosine 5'-triphosphate (ATP) in individual cells of the inner ear provides examples of the high resolution and exquisite sensitivity which molecular biology brings to the study of hearing and balance. The data from these studies provide both fine detail with respect to the classification of the elements involved and an overview of the sites of potential interaction of both extracellular and intracellular signalling pathways. The high sensitivity necessitates a molecular physiological approach when using these techniques so that these data on the site and extent of expression can be balanced against functional significance. With the demonstration of expression of the alpha 9 subunit of the nicotinic acetylcholine receptor in cochlear outer hair cells, molecular biology has provided an explanation for the unusual cholinergic receptor pharmacology of the olivocochlear efferent innervation which has confounded investigators for decades. In addition, a role for extracellular ATP as a signalling molecule regulating electrochemical gradients and neurotransmission within the inner ear is supported by the extent of P2 receptor expression in this tissue, data which beg for intense functional study. C1 UNIV CALIF SAN DIEGO,DEPT SURG,OTOLARYNGOL RES DIV,SAN DIEGO,CA 92103. UNIV CALIF SAN DIEGO,DEPT NEUROSCI,SAN DIEGO,CA 92103. RP Housley, GD (reprint author), UNIV AUCKLAND,DEPT PHYSIOL,MOL PHYSIOL LAB,PRIVATE BAG 92019,AUCKLAND,NEW ZEALAND. CR ASHMORE JF, 1992, ADV BIOSCI, V83, P19 ASHMORE JF, 1994, EXP PHYSIOL, V79, P113 ASHMORE JF, 1990, J PHYSIOL-LONDON, V428, P109 Ashmore Jonathan F., 1994, Current Opinion in Neurobiology, V4, P503, DOI 10.1016/0959-4388(94)90050-7 AUBERT A, 1994, NEUROSCIENCE, V62, P963, DOI 10.1016/0306-4522(94)90487-1 BARINAGA M, 1995, SCIENCE, V267, P177, DOI 10.1126/science.7809622 BARNARD EA, 1994, TRENDS PHARMACOL SCI, V15, P67, DOI 10.1016/0165-6147(94)90280-1 BARTOLAMI S, 1993, NEUROREPORT, V4, P1003 Blanchet C, 1996, J NEUROSCI, V16, P2574 BOBBIN RP, 1971, NATURE-NEW BIOL, V231, P222 BOBBIN RP, 1996, HAIR CELLS HEARING A, P29 BOSHOFF C, 1995, NAT MED, V1, P1274, DOI 10.1038/nm1295-1274 BRAKE AJ, 1994, NATURE, V371, P519, DOI 10.1038/371519a0 BRANDLE TU, 1996, DRUG DEVELOP RES, V37, P118 BURNSTOCK G, 1981, J PHYSIOL-LONDON, V313, P1 Burnstock G, 1996, SEMIN NEUROSCI, V8, P171, DOI 10.1006/smns.1996.0022 Chen C, 1996, HEARING RES, V98, P9, DOI 10.1016/0378-5955(96)00049-4 CHIEN S, 1989, INTRO MOL BIOL PHYSL Collo G, 1996, J NEUROSCI, V16, P2495 DESMEDT JE, 1963, NATURE, V200, P472, DOI 10.1038/200472b0 DESMEDT JE, 1960, ARCH INT PHARMACOD T, V129, P244 DEVILLERSTHIERY A, 1993, J MEMBRANE BIOL, V136, P97, DOI 10.1007/BF02505755 DOI T, 1993, HEARING RES, V67, P179, DOI 10.1016/0378-5955(93)90245-V DRESCHER DG, 1992, J NEUROCHEM, V59, P765, DOI 10.1111/j.1471-4159.1992.tb09436.x DULON D, 1996, IN PRESS EUR J NEURO, V8 ELGOYHEN AB, 1994, CELL, V79, P705, DOI 10.1016/0092-8674(94)90555-X EROSTEGUI C, 1994, HEARING RES, V74, P135, DOI 10.1016/0378-5955(94)90182-1 Evans MG, 1996, J PHYSIOL-LONDON, V491, P563 EYBALIN M, 1993, PHYSIOL REV, V73, P309 GIBBS RA, 1990, ANAL CHEM, V62, P1202, DOI 10.1021/ac00212a004 GIFFORD ML, 1987, HEARING RES, V29, P179, DOI 10.1016/0378-5955(87)90166-3 GLOWATZKI E, 1995, P ROY SOC B-BIOL SCI, V262, P141, DOI 10.1098/rspb.1995.0188 Green GE, 1996, J NEUROCHEM, V67, P37 Guth PS, 1996, HEARING RES, V98, P1, DOI 10.1016/0378-5955(96)00031-7 HIEL H, 1995, P MOL BIOL HEAR DEAF, P119 HOUSLEY GD, 1993, BIOPHYSICS HAIR CELL, P116 HOUSLEY GD, 1992, P ROY SOC B-BIOL SCI, V249, P265, DOI 10.1098/rspb.1992.0113 HOUSLEY GD, 1995, BIOCHEM BIOPH RES CO, V212, P501, DOI 10.1006/bbrc.1995.1998 HOUSLEY GD, 1991, P ROY SOC B-BIOL SCI, V244, P161, DOI 10.1098/rspb.1991.0065 HOUSLEY GD, 1995, P MOL BIOL HEAR DEAF, P91 HOUSLEY GD, UNPUB LOCALIZATION M HOUSLEY GD, 1994, HEARING RES, V75, P47, DOI 10.1016/0378-5955(94)90054-X HOUSLEY GD, 1996, DRUG DEVELOP RES, V37, P171 HOYULE CHV, 1996, SEMIN NEUROSCI, V8, P207 IISMAA TP, 1995, PROTEIN COUPLED RECE JARLEBARK L, 1996, DRUG DEVELOP RES, V37, P184 KAKEHATA S, 1993, J PHYSIOL-LONDON, V463, P227 KALINEC F, 1992, P NATL ACAD SCI USA, V89, P8671, DOI 10.1073/pnas.89.18.8671 Kawasaki ES, 1990, PCR PROTOCOLS GUIDE, P21 KUJAWA SG, 1994, HEARING RES, V76, P87, DOI 10.1016/0378-5955(94)90091-4 KUJAWA SG, 1994, HEARING RES, V78, P181, DOI 10.1016/0378-5955(94)90024-8 LEWIS C, 1995, NATURE, V377, P432, DOI 10.1038/377432a0 LI HS, 1995, P MOL BIOL HEAR DEAF, P118 LIU J, 1995, AUDIT NEUROSCI, V1, P331 LUO L, UNPUB DEV EXPRESSION MOCKETT BG, 1995, HEARING RES, V84, P177, DOI 10.1016/0378-5955(95)00024-X MOCKETT BG, 1994, J NEUROSCI, V14, P6992 MULLIS KB, 1990, SCI AM, V320, P36 MUNOZ DJB, 1995, HEARING RES, V90, P119, DOI 10.1016/0378-5955(95)00153-5 MUNOZ DJB, 1995, HEARING RES, V90, P106, DOI 10.1016/0378-5955(95)00152-3 NAKAGAWA T, 1990, J NEUROPHYSIOL, V63, P1068 NICKE A, 1996, DRUG DEVELOP RES, V37, P115 NIEDZIELSKI AS, 1992, HEARING RES, V59, P250, DOI 10.1016/0378-5955(92)90121-3 NILLES R, 1994, HEARING RES, V73, P27, DOI 10.1016/0378-5955(94)90279-8 NORRIS CH, 1974, ACTA OTO-LARYNGOL, V77, P318, DOI 10.3109/00016487409124631 North RA, 1996, CURR OPIN CELL BIOL, V8, P474, DOI 10.1016/S0955-0674(96)80023-8 NUOVO GJ, 1994, BIOCHEMICA, V11, P4 Raybould NP, 1997, J PHYSIOL-LONDON, V498, P717 RENNIE KJ, 1993, NEUROSCI LETT, V160, P185, DOI 10.1016/0304-3940(93)90409-E RYAN AF, 1987, J COMP NEUROL, V255, P606, DOI 10.1002/cne.902550411 SANGER F, 1977, P NATL ACAD SCI USA, V74, P5463, DOI 10.1073/pnas.74.12.5463 SIMMONS DM, 1989, J HISTOTECHNOL, V12, P169 Sneddon P, 1996, SEMIN NEUROSCI, V8, P201, DOI 10.1006/smns.1996.0026 SUCHER NJ, 1993, J BIOL CHEM, V268, P22299 SUGASAWA M, 1996, IN PRESS AM J PHYSL Sugasawa M, 1996, J PHYSIOL-LONDON, V491, P707 SURPRENANT A, 1995, TRENDS NEUROSCI, V18, P224, DOI 10.1016/0166-2236(95)93907-F Surprenant A, 1996, SCIENCE, V272, P735, DOI 10.1126/science.272.5262.735 SZIKLAI I, 1993, ACTA OTO-LARYNGOL, V113, P326, DOI 10.3109/00016489309135818 TAYLOR LM, 1992, P PHYSL SOC NZ, V12, P28 Thorne PR, 1996, SEMIN NEUROSCI, V8, P233, DOI 10.1006/smns.1996.0030 UNWIN N, 1995, NATURE, V373, P37, DOI 10.1038/373037a0 VALERA S, 1994, NATURE, V371, P516, DOI 10.1038/371516a0 VANDENABBEELE T, 1977, J PHYSL, V494, P77 Vlajkovic SM, 1996, HEARING RES, V99, P31, DOI 10.1016/S0378-5955(96)00079-2 WACKYM PA, 1995, CELL BIOL INT, V19, P291, DOI 10.1006/cbir.1995.1071 WARR WB, 1979, BRAIN RES, V173, P152, DOI 10.1016/0006-8993(79)91104-1 WEBB TE, 1993, FEBS LETT, V324, P219, DOI 10.1016/0014-5793(93)81397-I WHITE PN, 1995, HEARING RES, V90, P97, DOI 10.1016/0378-5955(95)00151-1 NR 89 TC 30 Z9 31 PU KARGER PI BASEL PA ALLSCHWILERSTRASSE 10, CH-4009 BASEL, SWITZERLAND SN 1420-3030 J9 AUDIOL NEURO-OTOL JI Audiol. Neuro-Otol. PD JAN-APR PY 1997 VL 2 IS 1-2 BP 92 EP 110 PG 19 WC Audiology & Speech-Language Pathology; Neurosciences; Otorhinolaryngology SC Audiology & Speech-Language Pathology; Neurosciences & Neurology; Otorhinolaryngology GA WM893 UT WOS:A1997WM89300010 PM 9390825 ER EF