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It is shown that bibliometric incidence matrices can be treated as vectors in nm-dimensional space and 
characterized by statistics of their singular values. A case of a personal bibliography is demonstrated. 

INTRODUCTION 

Without sound metrics, any science trying to measure its 
object is lost and resembles a soul without a living body. Horace 
knew that there is a measure in all things, but Prothagoras 
failed to explain how it came about that the measure of all 
things is man. For this reason, it is necessary to arrange 
conferences addressing this question.’ 

Bibliometrics is just one of many sciences whose name ends 
in “metrics”, Such sciences include biometrics, technometrics, 
scientometrics, chemometrics-all disciplines whose purpose 
is the precise measurement of an object. The metric sciences 
have achieved many successes: some statistical patterns have 
been discovered and proclaimed as laws,, and this has led to 
the requirement for their theoretical and philosophical 
interpretation. 

H a i t ~ n ~ - ~  tried to show that human activity differs from its 
physical base by its infinite moments of characteristic 
distribution functions. Unfortunately, this is not true because 
humans are not immortal and their work cannot be 
Speculation about character of information leads to conjectures 
by Khursin,* who built a complete system of scientific 
hierarchies resembling Smyth’s resultsg which were based upon 
measurements of the Great Pyramid. 

Information theory already has a mathematical basis. 
Rashewsky’O proposed long ago that information forms a 
hypersurface in multidimensional space. This technique is 
already used in coding theory,” factor analysis of citation 
studies,I2-I4 and analysis of databases,I5J6 but the philosophical 
and conceptual consequences for information laws have not 
been extracted from the mathematical formalism. 

This situation is caused by difficulties connected with the 
notion of multidimensional spaces. In quantum chemistry 
their application is common, but even so, specialists have 
difficulties with their antiintuitive properties.” Lengthy 
disputes about localization of microparticles did not evolve 
into questions concerning the localization of information. 

It should be of interest to readers of this Journal that the 
mathematical formalism describing information, or indeed 
information itself in the form of messages, is identical with 
the formalism used to describe chemical compounds as 
graphs.Is It is not surprising: Information in the form of 
messages is not only a result of physicochemical processes in 
our brains, but simultaneously a trigger of these processes. 
Likewise, a chemical compound can exert effects similar to 
those produced by a message. We can consider literature as 
a form of external memory, an extension of the brain which 
is accessible to direct inspection and thorough analysis. 

INCIDENCE MATRICES 
The essential problem connected with applications of algebra 

to the analysis of information strings is rooted in the fact that 
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information strings are noncommutative;p + a + t is different 
from t + a + p. To overcome this difficulty, we must see a 
suitable formal representation of information using matrices. 

In linear algebra, matrices are linear operators that 
transform one vector into another: 

y = M x  

x = I  
where I is the unit diagonal matrix vector. Then y is identical 
with the matrix M itself. The outcome of this is elementary, 
but not trivial. A message is an operator whose task is to 
change somebody’s mind. 

A string of symbols from an alphabet of n symbols forms 
a message which can be interpreted as a naive matrix N having 
in each row just one unit vector: 

We will limit ourselves to a specific case in which 

ej = (01, O,, ..., lj, ..., 0,) 
corresponding to the given letterj. This string can be mapped 
into the space of words, notions, or names. When some 
bibliometric analysis is made, we select some vectors, e.g., 
authors, as characteristic features and count their occurrences 
in a given set. This can be formalized as a projection of the 
matrix N onto the unit vector row JT, where the superscript 
symbol T means the transposition. This naive formalism 
r e ~ e a l e d l ~ , ~ ~  that information is governed by two groups of 
cyclic permutations S, and S,  represented by the unit 
permutation matrices P ,  and P,, which act independently on 
the information matrix N from the left and from the right, 
respectively, P,NP,. These symmetries can be separated by 
finding two quadratic forms: 

PnTNTNP, and PmNNTPmT 

This led to a simple proof that the Boltzmann (H,) and 
Shannon (H,) entropy functions are distinct and additive. 

We can continue to systematically build more complicated 
matrices and the corresponding multidimensional spaces. 
Matrices with two elements in each row, either the sums (e, 
+ ei) or differences (ej- ei) are known as the incidence matrices 
of unoriented graphs (G) or the oriented graphs (S), respec- 
tively. Through these matrices or their quadratic forms, all 
applications of graph theory in chemistry are interrelated.21 
But in spite of the apparent simplicity of these matrices, some 
of their properties remained undiscovered until quite recently.22 

All statistical linguistics and bibliometric studies are based 
upon the counting of distinctive words in sets of messages. 
When Lotka counted authors in the Chemical Abstracts 
Service Index, he ignored co-authors. Such simplification 
techniques are not generally allowable: as an example, in 
co-citation studies, it is necessary to be able to link papers 
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which are cited together. For this, we need matrices 
containing, in each row, an arbitrary number of nonzero 
elements representing papers in the rows and authors in the 
columns, or the citing papers in the rows and cited references 
in the columns. In conversation, we can express the importance 
of certain words by shouting them. This is because we have 
only a limited number of unit symbols. More generally, it is 
advantageous to express the weight of different terms by means 
of numbers. 

KUNZ 

MATRICES AND THEIR PROJECTIONS 
A matrix M with elements mij is a vector in mn-dimensional 

space, referred to by statistical mechanics as the phase space. 
It describes a stochastic system completely but is too 
complicated and detailed a description. One can either see 
details without grasping the whole or get a picture of the 
whole while missing the details. For a system of molecules 
of a gas, for example, you cannot feel individual molecules, 
but you can feel their mean motion as temperature or wind. 
With information vectors, we can easily read all the words, 
but have more difficulty finding parameters such as the mean 
productivity of specific authors, or the importance of different 
fields, which characterize the information system as a whole. 
It should be possible to find these parameters by means of 
statistical treatment of the generalized incidence matrices M. 
As an example, three types of incidence matrices can be given 

NTI 1 0 1 0 1 I N T J  3 
I o  0 0 1 01 1 
I o  1 0 0 01 1 

(-word ACABA). This matrix has just one nonzero symbol 
in each column (transposed row): 

MTI 1 1 1 1 01 MTJ 4 
I 1  0 0 0 01 1 

I o  0 1 0 11 2 

This matrix has 1 - n unit symbols in each row. This notation 
is used in music for different simultaneous tones: 

M , ~ I  0.5 1 0.8 1 0 I M , ~ J  3.3 
10.5 0 0 0 01 0.5 
1 0  0 0 . 2 O l l  1.2 

(weighted matrix MT). The column sums are always 1. The 
weights can be equal, as in 0.5 + 0.5, or unequal, as in 0.8 
+ 0.2. 

The matrixvector is simplified if we determine its projections 
into its subspaces-either into the subspace of the columns or 
the subspace of its rows. This is easily done by finding its 
scalar products with the unit vector row JT, that is JW, and 
with the unit vector column J, which is MJ. These scalar 
products are merely the column or row sums of matrix 
elements, as in our examples, where the transposed form (NTJ)* 
= JTN is used to conserve space. 

The relationship of a matrix vector to both projections is 
shown in Figure 1. Here, the original nm-dimensional vector 
M was somewhere in the Hilbert space on a sphere with 
diameter: 

The traces of both quadratic forms have equal length M%I 
and MMT. This follows from the rules for matrix multipli- 

Figure 1. System of vectors from the information incidence matrix 
M. M, the information vector, is a string of words which leads our 
mind to some state. We can choose just some parts, such as authors, 
references, or keywords which then replace the original information. 
MJ is the projection of the matrix M into m-dimensional space. If 
the matrix M is a text, it has in each row just one symbol, or word, 
and then MJ = J.Jis the unit vector which makes row sums of matrix 
elements. JTM is the projection of the matrix into n-dimensional 
space. Its elements are the column sums of elements in the information 
matrix M. In both projections, we abstract some features of the 
original information and get statistics. Tr(M7M) and Tr(MMT) are 
the trace vectors of the corresponding quadratics forms. They have 
the same length as the matrix vector, M. EA, is the vector of singular 
values of the matrix Mor eigenvalues of both quadratic forms. It is 
the matrix vector M in rotated coordinates. (MM9-I are inverse 
vectors if they are fhite.22.23126 Their importance with respect to 
information vectors has not been investigated. MJT, T r ( W M ) ,  and 
off-diagonal elements of MTM form a right triangle in the Hilbert 
space. The second triangle is formed by JTM, Tr(MMT), and the 
off-diagonal elements of MMT. 

cation or from the rules for finding the quadratic forms of 
vectors. Thus 

L*(M) = Tr(MTM) = Tr(MMT) 
where Tr(M) is the trace of the matrix, the sum of its diagonal 
elements. 

The difference between the tracevectors and both projection 
vectors is in the off-diagonal elementsof both quadratic forms. 
The diagonal and the off-diagonal elements form, in multi- 
dimensional space, a right triangle. 

If an information matrix is “naive” in that all its columns 
are orthogonal and all the off-diagonal elements of the 
quadratic form W N  are zero, the right triangle reduces to a 
straight line. By deducing this quadratic form, we transform 
a message into its statistics, and thus we now know which 
words were used and how many times, but we cannot determine 
the meaning of the message. If off-diagonal elements exist 
in the quadratic form, the trace will have the same length as 
the original vector M, as is shown in Figure 1, but it will not 
coincide with it. Such a matrix vector is better represented 
by the eigenvalues of the quadratic forms W M o r  MMT (both 
forms have equal eigenvalues). These eigenvalues are known 
as the singular values of the original matrix M. They are 
obtained by diagonalization of matrices, a process that is 
painless when carried out by some computer programs. 

When we speak of symmetry of information matrices, we 
have rotated an information vector in a fixed coordinate system 
and considered all the matrices obtained by such permutations 
to be equivalent and lying on a spherical orbit. When we 
search eigenvalues, we leave the matrix vector in position and 
rotate the coordinate systemin an attempt to findcombinations 
of unit vectors ej in which the matrix Mappears as a diagonal 
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Now, to the point of this exercise. We know that eigenvalues 
of matrices characterizing physical objects describe the objects’ 
physical and chemical properties and are, thus, more important 
than any of the explicit matrix elements. This being the case, 
these parameters can also be more important in information 
systems which make use of incidence matrices. Because of 
this, distributions of singular values could be more interesting 
than distributions obtained by direct counts. Studies of the 
distributions of singular values have already been rep~r ted ,~’  
but were done for other purposes, namely to determine the 
rank of the correlation matrices. In the present case, these 
distributions identify the struture of the information field.28329 

If, in an incidence matrix of authorships, more than one 
entry occurs in a row, publications are authored by groups. 
Many studies of different aspects of group authorships exist,2 
and we can ask how collective authorship affects the extremely 
skewed statistical distribution known as the Lotka Law. Such 
matricescan be treated in threedifferent ways. Full authorship 
may be attributed to each co-author; they can be weighted, 
evenly or unevenly; and, as an extreme case, the full merit can 
be assigned to a single author, as was done by Lotka,26 for 
pragmatic reasons. Pao recommends29 that this single author 
be the senior author. An incidence matrix is naivized by such 
a procedure, but the picture of the system is simultaneously 
distorted, and it is necessary to find some techniques that will 
overcome this deficiency. 

In some instances such as personal bibliographies, it is not 
possible to select a single author from the various co-authors. 
Personal bibliographies are not linked by a common subject, 
but by a common author. In earlier papers, he is usually a 
junior author and is the senior author only in later papers. 
Not only do his papers have co-authors, but his papers will 
appear in the bibliographies of his co-authors. As a test set, 
we can examine the first 150 publications of I. G~tman,~O who 
is a chemist in the Zagreb group, working on eigenvalue 
problems of chemical graphs.31 A total of 32 co-authors are 
found in this bibliography, and so the bibliography matrix, 
with its 150 rows (publications), has 32 columns (co-authors). 
Thenumbers of co-authors are summarized in the table below: 

no.ofco-authors 1 2 3 4 5 x32 
no. of papers 64 49 26 8 3 El50 

The arithmetic mean of the number of co-authors is 1.9 1. 
The incidence matrix is sparsely populated, with approximately 
only two nonzero elements per row. More than two-fifths of 
the publications were by Gutman alone, but there were 48 
papers published with his tutor, Trinajstie. With 13 of his 
co-authors, Gutman has published only one paper, as may be 
seen from the full breakdown in Table I, which also contains 
the distributions of unweighted and evenly weighted author- 
ships on a logarithmic scale, together with the corresponding 
singular values. 

The distribution reveals a typical pattern of extremely 
skewed information distribution. If such shapes are common 
for personal bibliographies, or whether they are specific for an 
exceptional author, cannot be determined in the absence of 
comparisons with other cases. Consequently, it is more 
important to show how the distribution of singular values 
differs from the distribution of authorships than to find some 
analytical function. 

Both singular values have a singularity of five zero values, 
and the skew of the other values is much less pronounced than 
for nk values. This differs from a case with, say, 13 
collaborators having only one publication in common, but it 
can becompared to a caseof fiveco-authors where the weighted 

vector. Such unit vectors are known as eigenvectors, or factors, 
and are explained in most chemometrics textbooks. 

There is still another way in which the relationships between 
both quadratic forms can be interpreted. We can take as the 
foundation stone of the information space, the adjacency 
matrix2’ A formed as a block matrix in which the diagonal 
blocks 0 are zero matrices and the off-diagonal blocks are the 
matrix M and its transpose. The adjacency matrix will be 
symmetrical, and its quadratic forms will coincide with its 
square, A*, which will split into two diagonal blocks, W M  
and MMT. They form separate orthogonal components of 
the original (m + n)-dimensional space. 

There seems to be a paradox in that the matrix MTM with 
n rows and columns corresponds to the projection of the matrix 
M into m-dimensional space while the m-dimensional square 
matrix M W  corresponds to the projection of the matrix M 
into n-dimensional space. This discrepancy can be explained 
in terms of the elements of both matrices. 

If the matrix Mis  the incidence matrix of publications and 
authors, then columns and row vectors of the correlation matrix 
MTM are authors, but elements of these vectors are publi- 
cations. Authors are represented by their publications, which 
are measures of their productivity. Shares of individual 
authors appear on the main diagonal, and off-diagonal elements 
show publications common to the given pair of authors. 
Conversely, the elements in the space of publications, MMT, 
are authors. This provides a formal explanation for Proth- 
agoras’ remark that man is the measure of all things. It is 
well-known that in both subspaces, it is possible to determine 
distances between authors or publications as paths in a graph,22 
which gives the local properties of the system described by the 
matrix M. These distances are connected in an intricate 
manner to the inverses of both quadratic  form^.^^-^^ 

It is customary to characterize the position of an information 
vector byafunction. Lotka26derivedastatisticfrom the Author 
Index of Chemical Abstracts. He counted the number nk of 
authors having mk publications and then expressed the first 
number as a function of the second: 

Such a function should describe the matrix vector M and 
its position in multidimensional space. This approximation 
is good when dealing with a naive matrix N, whose column 
sums JrN coincide with the column sums of its quadratic 
form P P N .  In a general case, the diagonal values of the 
quadratic form do not coincide with its eigenvalues. For our 
examples, we have 

This matrix has the diagonal values 4, 2, and 1 and 
eigenvalues 5.40, 1.32, and 0.28. For the weighted matrix 
M I  T M ~ ,  the corresponding diagonal values are 2.89,1.04, and 
0.25, while the eigenvalues are 2.93,1.03, and 0.23. Here the 
difference is small, but none of the values are simple sums. 
In the unweighted matrix, the difference is sufficiently large 
to merit investigation. 
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Table 1. Co-authorship Statistics of Publications by I. Gutmano 

logarithmic unweighted authorships weighted authorships 

scale matrix sums singular matrix sums singular 
log2 mk JTM values JTM, values 

< -9 0 5 0 5 
-4 to -9 0 0 0 0 

-3 0 0 5 4 
-2 0 0 9 8 
-1 0 0 4 9 
0 13 5 2 1 
1 7 2 5 3 
2 3 11  4 0 
3 5 7 1 0 
4 2 1 0 1 
5 0 1 1 0 
6 1 0 0 0 
7 0 0 1 0 
8 1 0 0 0 

a This tablecoversGutman’sfint 150p~bl ica t ions .~~ Extremely skewed 
information distributions such as  this are most simply modeled by the 
truncated log normal distribution.’ The logarithmic scale is used to form 
classes according to the sums mk, of unweighted or evenly weighted 
authorships. The distribution of co-authorships is modeled satisfactorily, 
but singular values show a singularity corresponding to authors with the 
lowest degrees of collaboration. 

co-authorship values are only 0.2. These co-authors collab- 
orated with Gutman only once, and the resulting publication 
had five other co-authors. 

DISCUSSION 

The foregoing exercise in linear algebra has shown, we 
believe, that man is a measure of all things only in the subspace 
of “things”. In the subspace of ”man”, “things” such as words, 
publications, citations, or money measure the importance of 
people. Of course, such subspaces must first be related by 
some incidence matrices. These relationships already exist: 
the problem is that we are unable to formulate the corre- 
sponding matrices. 

Significant parameters hide behind the apparent parameters 
obtained from simple bibliometric counts, and they can be 
calculated from the corresponding implicit or explicit matrices. 
The problems of eigenvalues of chemical graphs are important 
and have been studied for many decades30 by a branch of 
mathematical chemistry. 

Factor analysis introduced many years ago by psychome- 
tricians seeks to interpret eigenvalues of correlation matrices 
as the proportion of the dispersion that is explained by 
corresponding factors. According to this interpretation, 
Gutman authored 150 publications for which the unweighted 
authorship is 287, and his share in the bibliography is therefore 
52.7%. This is essentially the same as the figure of 53.8% of 
the first eigenvalue of 80.7 derived from 150 weighted 
authorships. But the first eigenvalue 173 of unweighted 
authorships from 287 is 60.5%. This gives greater merit to 
the first author which, unfortunately, is not always Gutman 
himself. The zero eigenvalues seem to represent co-authors 
who participated on a single Gutman publication with five 
authors, but it is dangerous to draw firm conclusions from a 
single case. 

The differences between the simple counts and the eigen- 
values could be used for evaluation of matrix structures and 
are similar to the complex structures measures studied by 
Kretschmer. 32 

If patterns of scientific research are becoming more 
complicated, bibliometric analysis cannot progress by sim- 
plifying the problems but rather by improving its methods. 

Evaluation of computer-developed statistics by simple cor- 
relation will become as obsolete as manual analysis. When, 
in a sparsely populated matrix of co-authorships, a significant 
difference is discovered between simple counts and singular 
values, then a much greater difference must be expected in 
citation matrices with tens of nonzero elements in each row. 
It is relatively easy to count singular values and to study their 
distributions. Computers need not be used only to register 
millions of compounds and to estimate their properties but 
also to unveil the mysteries of the chemical literature and its 
authors. 
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