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Abstract This paper aims at contributing to the on-going discussion about building and

applying bibliometric indicators. It sheds light on their properties and requirements con-

cerning six different aspects: deterministic versus probabilistic approach, application-

related properties, the time dependence, normalization issues, size dependence and net-

work indicators.
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Introduction

The use of bibliometric indicators emerged from the application of scientometric methods

to the evaluation of research. Indicators aim at characterizing and assessing units of

analysis by quantitative methods based on generic measures or on the quantification of

expert opinions. Basic requirements are robustness, validity of measurement and appli-

cation as well as reproducibility. Thus indicators should be insensitive to marginal changes

in the aspects they aim to measure, should be meaningful measures of what they are

applied to and, of course, under the same conditions and using the same data and methods,

the same indicator values should be obtained. Furthermore another issue emerges, namely

that correctness of application has two sides. An indicator might be meaningful but for-

mally not well-defined, or, conversely, it might be formally-mathematically correct but not

a meaningful measure. In both cases one should refrain from the application of such an

indicator.
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In bibliometrics, finally, a further specific issue arises, namely that of outliers. While in

many fields of application outliers are simply discarded as being exceptions, in biblio-

metrics ‘outliers’ are often part of the high-end of research performance and deserve

certainly special attention. The question arises in how far extreme value statistics can serve

as supplementary indicators to the standard measures.

In the following sections, we shed light on important properties of bibliometric indi-

cators from the viewpoint of six aspects concerning their definition and use. To each of

them a separate section will be devoted.

Deterministic versus probabilistic approach

Beyond doubt, the deterministic approach is the easiest way to process simple counts of raw

data and measurements to indicators. Mostly elementary mathematical operations (e.g.,

shares, averages, ratios) are applied; more sophisticated techniques such as transformations

are the preferred tools for data presentation and visualization. Beyond the application of

rather simple methods, the interpretation of more complex measures and constructs, for

instance, composite indicators, becomes increasingly problematic. Yet, observations and

measurement are in practice subject to a variety of influences, most of which are not

apparent or at least not quantifiable and thus not directly measurable. Even social processes,

although more dependent on the actual and individual constellation and therefore less well

reproducible if the same individuals consciously take action under the same conditions,

seem to be influenced by random effects. It is the complexity of social interactions itself that

yields the effect that one usually interprets as randomness. In bibliometrics, too, the events

we become aware of, seem to be random as they are conditioned by a plethora of super-

posing actions, processes and effects; communication, mobility, collaboration, publications

and citations all are subject to these effects. Even the unlikely might happen with positive

probability, if the number of ‘‘trials’’ is large enough, as Stanisław Lem has impressively

described in his novel ‘‘The Chain of Chance’’ (Lem 1978).

Beyond the determinism in social processes, a probabilistic component causes all events

to happen with a certain likelihood, that the impossible event might happen anyway, that

the almost sure event might fail to happen and that this becomes measurable as well. Thus

the probabilistic approach assumes random effects and provides stochastic methods.

Events might imply other ones with a certain probability. This approach broadens the

spectrum of applications and interpretation. While validity of measurement can still be

guaranteed in the deterministic approach, validity of the actual application remains

problematic even if appropriate deterministic models are used. For instance, the question as

to what level of aggregation data could be broken down to, or what the error rate tolerance

of a measurement might be, can only be answered by the probabilistic approach. In

particular, this helps to construct confidence intervals (which is important for ranking) and

limitations concerning the level of aggregation (for the evaluation of individuals or teams).

The stochastic nature of bibliometric indicators

The calculation of shares for a unit of assessment—for instance, the world share of articles

published from a particular country—plays an important role in the deterministic approach.

One important advantage of the probabilistic approach is that shares of units of analysis

that take certain values, or values in given ranges, can be considered part of empirical

distributions. As will be explained below, such relative frequencies have important
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asymptotic properties providing unbiased and consistent estimators of the assumed cor-

responding theoretical distribution function and their moments. Similarly to relative fre-

quencies, means of empirical distributions are unbiased and consistent estimators for the

corresponding expected value.

Another important feature of the stochastic approach is the introduction of a time-

dependent parameter resulting in stochastic processes that are able to reflect the changes of

probabilities, moments and empirical values in time. As early as in 1976, Dieks and Chang

introduced a mathematical model describing citing as a stochastic process. The model

enabled one to ascertain what differences in citation rates are to be considered significant, i.e.,

not caused by mere chance, with a certain probability. The total number of citations was

assumed to follow a Poisson distribution, often used to describe a situation in which many

events occur with a low probability, and independently of one another. The parameter of the

Poisson distribution itself could be assumed to be a random variable (according to the subject,

age, social status, etc. of the author) at any time so that a compound process (e.g., a negative

binomial or generalized Waring process) is obtained (cf. Burrell 2005).

An often raised question concerns the use of means if the underlying distribution is not

only non-Gaussian, but also skewed and integer-valued. The answer consists of two parts.

1. Is the mean to be used to represent the individual observation?

2. Or is the mean to be used for estimation or for comparison with other means from

similar distributions?

In the first case, the mean should certainly not be used if the underlying distribution is very

skewed, and has a long tail. The same applies, under certain conditions, to symmetrical

distributions as well, such as the normal distributions with large standard deviation, (e.g., if

the coefficient of variation is greater than 50 %). In the second case—and this is the essential

one for building and using indicators—this question is closely related to the number of free

parameters of the underlying distribution. Distributions with one free parameter, e.g., the

Poisson, the geometric, exponential or Pareto distribution are uniquely determined by the

expectation, provided this is finite. Two Poisson distributions with the same expected value

are necessarily identical. This implies that the comparison of two means makes sense only if

the two underlying distributions are of the same type and have only one free parameter. Even

if there are skewed, these distributions are best described by their mean. At the same time the

mean often provides an efficient, unbiased estimator for the parameter. However, if the

number of free parameters is greater than one, additional information is needed. This holds

for the normal distribution as well. In order to illustrate this, we use the following example

from zoology. For a housecat we ‘‘compare’’ two statistics. (1) The average number of kittens

per litter amounts to about four. (2) The average number of legs per kitten amounts to about

four. While the probability of three or five kitten in a litter is quite large, the probability of a

kitten born with three or five legs is, fortunately, minute. Without applying any particular test,

one could state that a litter size of five does not significantly deviate from the expectation, but

a new-born kitten with five legs does. Although the underlying distributions are almost

symmetrical and have the same expected value, their standard deviations completely differ.

In the case of the normal distribution the standard deviation forms the second free parameter.

Distribution of means and shares

The use of means in comparative analysis gave often rise to a further misunderstanding:

comparing the means of two different sets is not the same as comparing individual
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observations in the sets, for which the means might not be representative, because of their

skewness and large variation. One of the base properties of sample means is that those

have an approximately normal distribution and converge to the expectation of the

underlying common distribution, provided this distribution belongs to the attraction

domain of the normal distribution. This property, which is a consequence of the Central
Limit Theorem, even holds for skewed and integer-valued distributions (cf. Glänzel 2010).

The convergence speed, of course, depends on several properties of the distributions such

as the shape and continuity. In the literature thresholds between 30 and 50 observations are

indicated for acceptable approximation in practice and the application of tests requiring

normality. In particular, Vincze (1974) mentions 40 for the context of the Welch-test.

Furthermore, the standard deviation of the mean equals the standard deviation of the

common distribution divided by the square root of the sample size. The same applies to the

share of uncited papers with respect to the probability that a paper is not cited (Glänzel and

Moed 2002). In order to illustrate this, we have selected 20 random samples from the

Belgian publication output in 2004 as indexed in the Science Citation Index Expanded of

Thomson Reuters’ Web of Science (WoS). Only so-called citable documents, that is,

articles, letters, reviews and proceedings papers published in journals have been taken into

account. Citations have been counted for the 3-year citation window 2004–2006. In total

20 samples have been drawn representing about 1 % each of the Belgian publication

activity as reflected by the WoS database. Since the samples do not overlap, their union

represents about 20 % of the Belgian total. The sample means and the shares of uncited

papers are presented in Table 1.

Both statistics seem to be randomly distributed around the common expectations.

According to a characterization theorem for Gaussian distributions, a random variable X
has a normal distribution iff the equality DX(x) = m�dX(x) ? r2 holds for some real value

m and positive real value r, where dX(x) = E(X | X C x) - x, DX(x) = E(X2 | X C x) -

x�E(X | X C x) for all real x, m = E(X) and r = [E(X2) - E(X)2]� (Glänzel 1990).

Substituting the functions Dx(x) and dX(x) by the corresponding sample statistics, a nor-

mality test for random variables with unknown parameters is obtained. Figure 1 shows the

results for both the mean values and the relative frequencies of uncitedness. The corre-

lation is in both cases very strong. Consequently the statistics are approximately normally

distributed. A simple test also substantiates that the totals in Table 1 (x = 5.788 and

f0 = 21.8 %) representing 19.5 % of the Belgian publications in 2004 do not deviate

Table 1 Sample means and shares of uncited papers (1 % of Belgian publications in 2004 with 3-year
citation window) [Data sourced from Thomson Reuters Web of Knowledge]

k n x f0 (%) k n x f0 (%) k n x f0 (%)

1 126 5.016 20.6 8 113 5.265 21.2 15 108 5.028 16.7

2 94 7.160 23.4 9 115 5.652 18.3 16 108 4.102 25.0

3 133 5.639 20.3 10 117 5.538 20.5 17 130 6.362 24.6

4 122 5.951 19.7 11 122 5.385 19.7 18 137 4.569 28.5

5 126 6.262 22.2 12 149 6.913 23.5 19 114 4.456 19.3

6 112 5.768 17.0 13 103 4.641 29.1 20 110 6.473 21.8

7 128 6.992 22.7 14 145 7.807 21.4 Total 2,412 5.788 21.8

k sample number, n sample size, �x sample mean, f0 share of uncited papers
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significantly from the mean citation rate and share of uncited papers of the total Belgian

publication output which amounted to 5.72 and 21.5 %, respectively. The absolute values

of the corresponding w-statistics (cf. Glänzel and Moed 2002) amount to 0.471 and 0.377,

respectively. Both values are far below the critical value of 1.96 corresponding to the

confidence level of 0.95.

The above tests refer to random samples. In real life, however, statistics are built for

units of analysis that are far from being considered random samples. In such cases, the

possible significance of deviation can be interpreted as an indication that the units in

question are biased in one or the other direction, and cannot simply be considered a random

sample of the same population and representing its standard. Furthermore, the assumption

of one single free parameter does not reflect reality (see e.g., Glänzel 2009) of bibliometric

practice. Based on the experience, at least two parameters are needed to model publication

activity or citation impact. Taking into account that both phenomena change over time, and

thus form stochastic processes, the time windows should always be compatible in com-

parative analysis. The issue of the multidimensionality of the parameter space can be

solved by the use of several independent statistics. As a workaround mean and share of

(un)cited papers might be used as has been done in our example, although these two

statistics cannot be considered completely independent (cf. Glänzel 2009).

More sophisticated derivatives of empirical distributions provide better insight into the

statistical properties of bibliometric processes than a mean or relative frequency could do.

These derivatives, zones usually derived from a reference distribution, such as the citation

distribution of a scientific journal or a complete discipline. These zones might be self-

adjusting as in the case of the Characteristic Scores and Scales (CSS, see Glänzel and

Schubert 1988) or predefined by given percentiles (Leydesdorff et al. 2011). The first

approach proceeds from iteratively truncated moments and usually results, when applied to

citation impact, in four self-adjusting zones (classes) ranging from poorly till outstandingly

cited. This method, which has interesting mathematical properties in the case of Paretian
distributions, as has been shown in the above-mentioned paper, can be applied to grade

individual publications as well as to compare citation-impact statistics and distributions of

given units of analysis with the corresponding reference standard. The second method

proceeds from a pre-set set of six rank percentages calculated for the reference distribution.

Individual observations are then scored according to the rank percentage the publications

in question belong to. The proposed R(6) indicators is then defined as the average score

over the papers by the unit of analysis. Since the authors found objections to the use of

averages, in a later paper they revised their approach by summing up the rank scores

obtained from the rank percentages of the reference distribution (Leydesdorff and

Fig. 1 Plot of truncated moments for 20 sample means and shares of uncited papers (1 % of Belgian
publication in 2004 with 3-year citation window) [data sourced from Thomson Reuters Web of Knowledge]
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Bornmann 2011). Their new indicator is called Integrated Impact Indicators (I3). In both

cases the impact of a given unit is characterized by one single indicator again.

Properties proposed for correct applications

In this section we point at some basic requirements on indicators from the viewpoint of

statistical functions and estimators for moments, probabilities or parameters. In this

respect, one has to distinguish between two essential issues, a methodological one and the

implications for application.

Consistency of indicators

Indicators should have at least one of the following important properties. The first one is

consistency. An estimator of a parameter is said to be (weakly) consistent if it converges in

probability to the true value of the parameter it estimates. In verbal terms, estimates should

improve as the number of observations increases, that is, the more observations we have,

the smaller the error. In practice, this means that the lesser the tolerance, the more reliable

conclusions one can draw. A somewhat weaker requirement is asymptotic unbiasedness.

An estimator of a parameter is said to be asymptotically unbiased if its expectation con-

verges to the true value of the parameter. For instance, means are unbiased and consistent

estimators of the expected values and relative frequencies of the corresponding probabil-

ities, as has already mentioned above.

Important implications for the application to bibliometric indicators are, that there are

limitations concerning the size of the underlying set the indicators represent. There are no

clearly defined ‘‘lower bounds’’ for application, but as a rule of thumb a value of 50 is

suggested as minimum value for approximate properties such as ‘‘normality’’ of the dis-

tribution of means and relative frequencies (cf. ‘Distribution of means and shares’ above).

In the above example a sample size of the order of magnitude of 100 was used and

provided acceptable results. Another implication is that seemingly large deviations

between different values of the same indicator need not necessarily significant. This is

often a consequence of large standard deviations that are in bibliometrics usually caused by

the superposition of small sizes and skewed distributions. In terms of ranking according to

indicators, ties might occur where indicators have actually taken different values (see

Glänzel 2010).

Recently a new interpretation of ‘consistency’ was proposed by Waltman et al. (2011).

According to their definition, which should not be confused with consistency in a math-

ematical-statistical sense (see paragraphs above), an indicator is consistent if the order

relation between the indicator values of two identically sized sets will not change if the

same value is added to both sets. Even stricter conditions for indicators have been intro-

duced by Rousseau and Leydesdorff (2011). According to their requirement of ‘ranking

invariance’ (with respect to non-cited items) the rank of two sets of not necessarily the

same size should not change if the same amount of items with zero value is added.

Intuitively both requirements sound justified. However, most statistics fail to meet these

criteria. For instance, it is not difficult to show that the median and percentiles are not

‘consistent’ in the sense of the definition by Waltman et al. and that neither means nor

medians and percentiles are ‘ranking invariant’. So what is wrong with classical statistics?

According to Rousseau and Leydesdorff their requirement tells against the use of means in

the case of highly skewed distributions. Yet, ‘ranking invariance’ has the same effect with
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respect to rarely or highly cited items as well. It is a truism that small sets are sensitive to

changes, whereas large sets can more easily absorb new items that deviate from their

profiles. But here statistics meets life. In particular, the real problem is that these two

requirements are not formulated as asymptotic properties and thus they pave the way for

questionable application of indicators at the small scale, where (mathematical) statistics

should not be used at all.

One should also be aware that rigid application of such formal criteria may lower the

level of sophistication of composite indicators. For instance, as regards the journal metric

Source Normalized Impact per Paper (SNIP, see ‘Normalization issues’ below) it is true

that the score of a journal may decrease when a journal obtains an additional citation. But

this can also be conceived as a sign of sophistication of relative, composite indicators: this

one ‘‘additional citation’’ provides at the same time additional information on a journal’s

subject field, and can for instance reveal that the citation potential in the field is higher (or

lower) than was previously estimated without the citation.

High-end versus the common run?

One of the key issues in present-day bibliometrics is that researchers in our field, even

though they recognise the necessity of rather complex approaches, tend to condense their

statistics into one single indicator at the end, but demand solutions for inference at the

individual level at the same time. This of course forms an insoluble conflict: on the one

hand, measures based on larger sets are projected on the linear scale (e.g., to allow for

ranking) and, on the other hand, individual cases are sought to be assessed using the same

or similar measures. In order to solve this paradox, the question as to how to treat the high-

end of a skewed distribution (e.g., the highly cited papers representing only a minute share

of the total) should be separated from those statistical questions that are based on large

numbers. Quantiles (percentiles) or CSS-type zones can be used for assessing the high-end.

Furthermore, the tail behaviour of bibliometric distributions can be specified using tail

indices based on even the same distribution model as used for other statistics. Unfortu-

nately, estimators of tail indices and extreme-value statistics are often not unbiased

although there are methods to build asymptotically unbiased or at least bias-reduced

estimators in some cases (cf. Peng 1998). This is the price for dealing with extreme values.

A key theoretical issue is why citation distributions are skewed, Moed (2005) claims

that the development of a theoretical-conceptual framework reaches beyond the view of

research output as a collection of individual papers, and proposes to conceive research

articles as elements from coherent publication ensembles of research groups carrying out a

research programme. Citing authors acknowledging a research group’s works do not dis-

tribute their citations evenly among all papers emerging from its programme, but rather

cite particular papers that have become symbols or ‘flags’ of such a programme. Citations

to these flag papers can be conceived as citations to the entire oeuvre and to the programme

embodied in it (cf. Moed 2005, pp 216–218). A stochastic model of citation should take

these processes into account (see ‘Conclusions and perspectives’).

Time perspective and bibliometric indicators

In this section we will discuss further important opportunities but also caveats that result

from the time perspective. Even reference standards for bibliometric measures are by no

means physical constants. They are, among others, subject to changes in time. This time
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perspective is twofold: on the one hand, identically built and structured indicators provide

different results if they are calculated in different instants of time and, on the other hand,

indicators calculated in the same instant of time will change as time elapse. The first

perspective is called time series. The perhaps most popular time series in bibliometrics is

the Impact Factor Trend provided by Thomson Reuters’ Journal Citation Reports (JCR) for

decades.

Time-dependence of bibliometric measures

The second perspective refers to processes. Prominent examples are the changing publi-

cation behaviour in a scientist’s career or the changing citation impact of a paper in

different citation windows. While quite a range of standard tools is available for the

analysis of time series, the second involves risks and pitfalls that might result in severe

distortion of indicators built for measurement and assessment.

The first pitfall refers to the choice of citation windows and to the so-called ‘‘age

normalization’’ as, for instance, proposed in the context of the h-index. Neither is the

growth of citation impact linear (the annual increments are not constant), nor can the time

window simply shifted along the time axis. The latter property is a result of the inho-

mogeneity of the underlying processes. Both effects can be easily observed for the pub-

lication activity of authors or citation rates of paper sets using the ‘‘analysis tools’’ of

Elsevier’s SCOPUS and Thomson Reuters’ Web of Science. Also the diagram in Fig. 2

visualises both effects using the example of four selected journals (Annals of Mathematics

[AMATH], Physics Letters B [PYSLB], Cell and JACS) representing four different fields

of the sciences. The diagram shows the annual change of citations received by papers

published in 1980 during 21 years beginning with the publication year. One of the most

important and obvious consequences of the non-linearity of bibliometrics growth processes

is the invalidity of normalization by age or the length of the citation window.

Diachronous versus synchronous indicators

A second consequence of the above-mentioned two properties is the incompatibility or

complementarity of diachronous (prospective) indicators with synchronous (retrospective)

indicators. Since citation impact of recent publications based on sufficiently large citation

Fig. 2 Annual change of
citations for four selected
journals (Publication year 1980)
(data sourced from the CD
edition of Thomson Reuters
Science Citation Index)
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windows point to the future, and is therefore unknown, the superposition of shifted pub-

lication years with fixed citation year and thus variable citation windows is often used as

substitute. This means instead of the diachronous 5-year citation impact with fixed pub-

lication year, say, 2011 and citation window 2011–2015, for instance, the citation year

(2011) is fixed and the publication year moves over several years (e.g., 2006–2010 as in the

case of the JCR 5-year impact factor, or 2007–2010 in SCImago’s 4-year based ‘cites per

doc’ journal indicator). This approach has become popular as it provides kind of long-term

citation impact. Yet, these indicators are synchronous measures and they point to the past.

In principle, this approach is certainly useful but involves the risk of wrong interpretation

and application. But valid synchronous indicators of citation impact are feasible if one

properly takes into account the age distribution of cited articles of the unit under assess-

ment. The use of the 2-year impact factor issued for citation year x as kind of reference

standard for the publication year x is one of the most common improper practices. But even

if properly used, synchronous indicators tend to cause distortions notably in the case of

small units. This might be illustrated by the following example. The annual publication

output of dynamically growing or a declining small research unit might distinctly deviate

from the general trend of the reference standard. The above-mentioned nonlinearity and

non-homogeneity of the superposing citation processes might then result in a bias. Dia-

chronous indicators should therefore be favoured in the evaluation of research perfor-

mance. On the other hand, it must be noted that diachronous approaches can be easily

distorted by changes in coverage of the database in which the citation analysis is carried

out. Properties of diachronous and synchronous indicators have been analysed and dis-

cussed further, e.g., by Ingwersen et al. (2001), Glänzel (2004), Frandsen and Rousseau

(2005).

Normalization issues

A further commonly known issue is the necessity of normalization, notably in a multidis-

ciplinary environment. Communication behaviour differs considerably among and even

within the various subject fields. This applies to both publication activity and citation impact.

The diagram on the right-hand side of Fig. 2 shows the large deviation of impact among top

journals of four different science areas. Subject normalization aims at improving the validity

of indicators and one of its main field of application is at present (journal) citation indicators.

Recently two paradigms emerged, namely normalization before and after citations are

counted. The second approach, which is already in use since the early 1980s, does not require

any recalculation of the original citation rates, and has therefore gained popularity. This

popularity is contrasted by severe flaws. We mention subject normalization just as an

example in this context. In bibliographic databases most journals or individual documents

are assigned to more than one discipline or subject. This implies that subject normalization of

documents or journals has to adjusted to the thematic environment in which the indicator is to

be used. In extreme cases, interdisciplinarity might thus make this type of normalization

meaningless since it is done at the cited side. This type of normalization is consequently

called cited-side (Zitt and Small 2008), target (Moed 2010) or a posteriori normalization. An

interesting property of an a posteriori solution is nevertheless worth mentioning: it trans-

forms the distribution of journal impact measures within each discipline to a lognormal

distribution (Beirlant et al. 2007) and thus facilitates the use of standard percentiles.

Zitt and Small (2008), Zitt (2010), Moed (2010, 2011), Leydesdorff and Opthof (2010),

and Glänzel et al. (2011) have run another path towards citation normalization. Citations
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are immediately normalized from the citing side before indicators are built and this type is

also referred to as ‘‘citing side’’(Zitt and Small 2008), ‘‘source’’ (Moed 2010) or ‘‘a priori’’

normalization. Unlike a posteriori (cited-side) normalization, the latter type is expected to

result in citation-based indicators that are largely insensitive to subject-specific

peculiarities.

In fact, a strong feature of citing side or source normalized citation impact indicators is

that they do account for disparities in citation potential among subject fields, but their

calculation does not depend upon an a priori subject field classification, such as the journal

subject field classifications currently available in Web of Science or Scopus. A subject field

is defined as the collection of articles (Moed 2010) or journals (Zitt and Small 2008) citing

a particular journal. Zitt and Small (2008) and Moed (2010) apply their methods to the

analysis of journals, although these methods can be easily extended to other units of

analysis. Zhou and Leydesdorff (2011) apply their approach to citing side normalization to

the assessment of university departments.

SNIP constitutes a bridge between the ‘classical’ journal metric—of which the

Thomson-Reuters journal impact factor is the exemplar- and the citing side normalization

methodologies. SNIP is a ratio of a journal’s classical metric in the numerator, and in the

denominator a normalized measure of the citation potential in the subject field covered by

that journal. Citation potential reflects the frequency at which papers in a subject field cite

one another, but also takes into account the degree to which a subject field is covered by

the citation database in which it is calculated. The normalization of the citation potential

ensures that the subject field covered by the median journal in the database (in terms of

citation potential) has a normalized citation potential of one. Consequently, compared to

the classical metric, 50 percent of journals has a SNIP value that is lower than that of the

classical metric (e.g., molecular-biological journals), while for another 50 percent it is

higher (for many journals in mathematics, humanities and parts of social sciences and

engineering).

An important issue is the extent to which such a delimitation can lead to bias, and how

such a bias can be accounted for (e.g., Zitt 2010; Moed 2011; Leydesdorff and Opthof

2010; Waltman 2011). One possible source of bias is the fact that articles in the subject

field covered by a unit of analysis but not citing that unit, are not taken into account.

Moreover, as pointed out by Zitt (2011), citing side field normalization does not account

for the growth of the literature in a subject field.

Size dependence

When the first citation measures were introduced, one argument in favour of using

arithmetic means was the possibility of comparing journals regardless of their size (Gar-

field and Sher 1963). But mean values have their limitations too. Calculated at the level of

research groups they may be affected by publication strategies: groups selectively pub-

lishing only their best work tend to obtain a higher mean than groups distributing their

findings among a large number of articles. That mean values are in fact not always size

independent may also have to do with closeness of small communities and self-citations,

but does not affect the validity of the original idea. The idea of using ‘‘size dependent’’

indices to measure research performance already arose since bibliometrics found that a

combination of research output with impact would better reflect performance. Alvarez and

Pulgarin (1996) proposed an improvement of the journal impact factor using the psy-

chometric Rasch model. Their model has not found much response in the bibliometric
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community. More success was accorded to the h-index suggested by the physicist J.E.

Hirsch (2005). This indicator provides a simple combination of a scientist’s publication

activity and citation impact. Thanks to its simplicity it has immediately found interest in

the public, and received positive reception both in the physics community and the

scientometrics literature. Despite its popularity, the h-index challenged criticism too. The

fact that a scientist with more citations (in total and on an average) than a colleague might

have a lower h-index although both have published the same amount of papers, the

‘‘defiance’’ of the small-is-beautiful principle (i.e., that the small elite might score worse

than the large mediocre, cf. Glänzel 2006) and other apparently counterintuitive properties

of this measure have soon fostered scepticism. Nevertheless, several scientometricians with

mathematical background have studies the otherwise interesting statistical properties of

this indicator. Beirlant and Einmahl (2007) have proven the statistical consistency and the

asymptotic normality of the empirical h-index and Barcza and Telcs (2009) have found the

formula of the probability distribution of the h-index. Despite its apparent simplicity, the

h-index proved to be a complex indicator with non-trivial properties that implicate a

careful use of this measure.

A similar combination of publication output and citation impact has recently been

presented by Leydesdorff and Bornmann (2011). Their Integrated Impact Indicator (I3) is

defined as the sum over the rank scores of the unit under study obtained from the rank

percentages of the reference distribution (cf. ‘Deterministic versus probabilistic approach’

above). I3 has been suggested as alternative measure of journal impact. This indicator has

similar properties concerning small sets and citations as described above in the context of

the h-index.

Network indicators

In the classical, linear model, publications are considered as separate entities, and citations

as separate events. But both citing and cited articles or authors may have all kinds of

relationships that need to be taken into account when assessing citation impact of a unit of

assessment. At the cited side, a research group’s publications can be viewed as elements of

a coherent research program, and individual publications may be symbols of the program

as a whole. At the citing side, one particular article or author may cite a group’s oeuvre

more than once; such citations are not independent.

The following example may clarify the relevance of taking into account the relation-

ships between cited and between citing papers. If one target paper is cited by one source

article, its cites-per-paper ratio obviously amounts to one. But if the target’s content is

distributed among two papers both published by the same author(s), and if the same is true

for the citing article, while each of these cites both target papers, the absolute number of

received citations of the target oeuvre amounts to 4, and the cites-per-paper ratio to 2. In

this way, authors debating a specific subject and formally publishing each single step in a

sequence of arguments in a separate journal paper, may easily obtain not only higher

absolute numbers of citations but also higher ‘raw’ cites-per-paper values than authors who

carry out their debate mainly via informal channels and who publish in the end one single

paper summarizing the debate and presenting its conclusions.

Some bibliometric indicators can be derived from network representation. Typical

examples are co-authorship and citation links providing the measures of co-publication

activity and citation impact. The degree distributions of the vertices in co-authorship and

citation graphs directly lead to those indicators that have been discussed in the previous
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section. Algebraic manipulations of matrices representing these networks can then be used

to analyse structural aspects of the networks and to build ‘‘higher-level’’ indicators. So-

called ‘scientometric transaction matrices’ have been introduced and analysed by de Solla

Price (1981) based on the citation flow among units. From the historic viewpoint we would

also like to mention the ‘citation influence’ methodology suggested by Pinski and Narin

(1976) and the Markov-chain approach by Geller (1978). These models have been applied

to citation transactions among scientific journals. This model assumes that journals have

different weights on the basis of the number of their citations or references. A citation has a

larger weight if it is received from a journal with higher impact. Since this impact also

depends on citations received by other journals, the solution can only be found by iteration.

Proceeding from similar considerations, more recently Brin and Page (1998) developed the

he ‘Google PageRank’, an algorithm for scoring websites and page ranking, that is based

on the analysis of web links. The Sciago Journal Rank indicator (SJR) (cf. Gonzalez-

Pereira et al. 2010) and Thomson Reuters’ Eigenfactor/Article Influence Score (see

Bergstrom et al. 2008) are based on similar algorithms.

Network based indicators, such as indicators derived from ‘citation influence’ and

PageRank-type algorithms have one important property that might be essential for their

application to bibliometrics. Units (e.g., journals) entering the network might influence

indicator values of those units with which they are not directly linked. Validity

requirement concerning network indicators should therefore be considered from a

completely different perspective as is usually adopted in the case of traditional statistical

functions. Network indicators still need further research to understand their power and

limitations.

Conclusions and perspectives

Following the model by Dieks and Chang (1976) introduced in ‘The stochastic nature of

bibliometric indicators’ one approach could be to pick up the notions embodied in their

paper, and further develop these into a model that would be able to deal with aggregations

of papers. A first major challenge would be to take into account at the cited side the

relationships that exist between the articles published by a particular unit under assessment,

in terms of whether they are from the oeuvre of the same research, since Dieks and Chang

focused on the level of individual articles. A second task would be to operationalize the

concept of independent citations. Chang and Dieks found that the number of first authors

citing a paper in a particular year more neatly follows a Poisson distribution than the

number of ‘‘crude’’ citations. During the past decades, co-authorship has increased so

strongly, and scientific collaboration networks have become so dense, that it is question-

able whether counting the number of citing first authors in a year is still the most

appropriate method today.

Furthermore, instead of searching for new indicators, a possible approach in the

assessment of a set of n publications made by a particular unit of assessment is to draw

random samples each of size n from the population in which the analysis is made, char-

acterise the distribution of sample means, localise the unit’s average citation impact in the

distribution of sample means, and determine the probability what the unit’s impact deviates

from a random sample. In this way one is able to assess whether the citation-per-paper ratio

of a particular unit of assessment deviates from that of a random sample drawn from the

sub-population of documents being similar in terms of age, subject and type published by

the unit.
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In the past ISI’s Science Citation Index (SCI) was the standard in citation analysis. Its

content coverage was selective, and contained only the most import journals with a citation

impact exceeding a certain minimum threshold. SCOPUS has a broader coverage and

indexes also journals with a lower citation impact and a more local or national relevance.

Thomson Reuters’ Web of Science also expands its content coverage towards national or

regional journals. At the same time, both indexes increased their coverage of conference

proceedings and books. Bibliometricians must analyse the consequences for their citation

based methods and indicators of these significant changes in content coverage. Indicators

should be developed reflecting the effect of changes in the degree of content selectiveness

or changes in content coverage over time. One approach is the extension of the notions of

Pinski and Narin (1976) of weighting citations by prestige of the citing articles (see

‘Network indicators’), and applying these to the assessment of research groups or

departments rather than scientific journals.
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