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ABSTRACT
The impact of scientific research has traditionally been quan-
tified using productivity indices such as the well-known h-
index. On the other hand, different research fields—in fact,
even different research areas within a single field—may have
very different publishing patterns, which may not be well
described by a single, global index. In this paper, we argue
that productivity indices should account for the singulari-
ties of the publication patterns of different research areas,
in order to produce an unbiased assessment of the impact
of scientific research. Inspired by ranking aggregation ap-
proaches in distributed information retrieval, we propose a
novel approach for ranking researchers across multiple re-
search areas. Our approach is generic and produces cross-
area versions of any global productivity index, such as the
volume of publications, citation count and even the h-index.
Our thorough evaluation considering multiple areas within
the broad field of Computer Science shows that our cross-
area indices outperform their global counterparts when as-
sessed against the official ranking produced by CNPq, the
Brazilian National Research Council for Scientific and Tech-
nological Development. As a result, this paper contributes
a valuable mechanism to support the decisions of funding
bodies and research agencies, for example, in any research
assessment effort.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Research performance; Bibliometric indicators; Ranking ag-
gregation; Cross-disciplinarity

1. INTRODUCTION
Evaluating a group of researchers is a permanent prob-

lem within research and academic institutions, laboratories
and funding agencies. Usually, this process involves forming
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Figure 1: Distribution of Brazilian CS researchers
per number of active areas. A researcher is deemed
active in an area if at least 10% of the researcher’s
publications have been classified in the area.

highly qualified committees that must meet, define evalu-
ation criteria and perform the evaluation. Moreover, it is
very costly in terms of time, because evaluating numerous
researchers (their curricula and publications) is not a simple
process.

The decision of which researchers should be at the top (for
hiring, promoting, funding, or distributing grants, scholar-
ships, awards and so on) is typically based on criteria such
as number of publications, impact of publications, number
of undergraduate and graduate students under supervision,
number of advised MSc and PhD theses, and participation in
committees (conferences, journal editorial boards, technical
committees, etc). Clearly, the effectiveness of the resulting
ranking depends on how each criterion is assessed and the
period of time covered in the assessment [1, 23]. Although a
researcher’s performance cannot be measured solely by bib-
liometric indices, such indices have become widely used to
measure the productivity of researchers. Examples include
the number of citations, h-index [16], g-index [11] and cita-
tion z-score [22]. Likewise, most academic search platforms
(such as ArnetMiner,1 Google Scholar2 and Microsoft Aca-
demic Search3) use some of such indices to rank researchers.
However, a common limitation of global bibliometric indices

1http://arnetminer.org/
2http://scholar.google.com/
3http://academic.research.microsoft.com/
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is that they do not account for the dynamics of different
areas when assessing a researcher’s performance.

Ranking researchers without regarding the specificity of
different areas is arguably unfair and potentially error-prone.
For instance, consider the area of Human-Computer Inter-
action within the broad field of Computer Science (CS) [2].
Experimental evaluation in this area usually takes more time
than in other CS areas when arranging and assessing users’
feedback is necessary. On the other hand, CS areas such
as Databases and Computer Graphics do not usually face
the same problem because their experimental evaluations
depend on assessing the outcome of an automatic process,
such as a query evaluation or a graphics rendering engine.
Likewise, researchers from some areas may have fewer pub-
lications than others, but with a potentially higher impact
in their community. To aggravate the problem, many re-
searchers publish in more than one area. To illustrate this
observation, Figure 1 shows the distribution of Brazilian CS
researchers per number of areas where they have at least
10% of their publications.4 The figure shows a normal dis-
tribution with an average of 5 active areas per researcher.
Most notably, almost all researchers are active in more than
one area, with a few being active in up to 13 areas.

In order to improve the assessment of academic research,
we introduce a novel approach for ranking researchers across
multiple—and potentially distinct—research areas within an
academic field. In particular, our approach estimates the
performance of a researcher in each area relatively to the
performance of other researchers in the same area, so as to
ensure that the specificity of each area is accounted for ac-
cordingly. The researcher’s relative performance in multiple
areas is then aggregated into a unified ranking, by projecting
the performance in each individual area to the correspond-
ing performance in the researcher’s base area, i.e., the area
in which the researcher has most of her academic produc-
tion. Our approach is generic and can be used to leverage
different criteria for ranking researchers across areas. In
particular, to demonstrate the feasibility of our approach,
we devise cross-area rankings based on three different cri-
teria: publication volume, number of citations and h-index.
Our thorough evaluation considering multiple areas of re-
searchers shows that our cross-area indices outperform their
global counterparts when assessed against an official rank-
ing produced by CNPq5, the Brazilian National Research
Council for Scientific and Technological Development.

The contributions of this paper are three-fold:

1. We demonstrate the limitation of a one-size-fits-all ap-
proach for ranking researchers across multiple areas,
using the Brazilian CS community as a case study;

2. We introduce a novel ranking aggregation approach to
rank researchers across multiple areas, which respects
the idiosyncrasies of different areas;

3. We thoroughly evaluate the proposed approach applied
to three well-known productivity indices: publication
volume, citation count and h-index.

In the remainder of this paper, Section 2 provides back-
ground on related approaches to assess academic research.

4More details about the dataset used to generate the statis-
tics in Figure 1 will be given later in Section 4.
5http://www.cnpq.br

Section 3 introduces our novel approach for ranking research-
ers across multiple areas. In turn, Sections 4 and 5 describe
the experimental methodology and the results of the evalua-
tion of our approach, respectively. Lastly, Section 6 discusses
our conclusions and directions for future research.

2. RELATED WORK
A classic problem in science consists in ranking scientists

from distinct academic fields, such as mathematics, physics,
and CS [5, 23, 24]. For instance, Podlubny [24] proposed an
equivalence table for citations in different academic fields
based upon the continued observation of the citation rates
in these fields. After normalization, this table established,
for instance, that one citation in mathematics corresponded
roughly to 5 citations in engineering, 19 in physics, and 78
in the biomedical field, among others. However, the ad hoc
nature of this study requires a periodical correction of the
equivalence table over time, which is further aggravated by
the unstable evolution of individual fields. Likewise, Radic-
chi et al. [25] performed an empirical analysis of the dis-
tribution of citations for publication among research fields.
They proposed a relative indicator cf = c/co, where c is the
publication citation number and co is the average number
of citations per article for the scientific field, which rescaled
the distributions of citation for publication in different sci-
entific fields upon the same curve when cf is applied. Later,
Bornmann and Daniel [4] explored the advantages of such
indicator for the area of chemistry.

Claro and Costa [9] proposed the x-index as a cross-field
bibliometric indicator in order to compare researchers from
distinct scientific fields. The proposed index considers the
top authors in each field (based upon the publication vol-
ume) as a reference set for the field. The productivity of the
remaining authors in each field is then computed relatively
to the field’s reference set, so as to enable a cross-field com-
parison. A limitation of this approach is that the reference
authors may be actually outliers, since publication volume
is not necessarily an indicator of publication quality.

Another bibliometric indicator that tries to reduce the
possible discrepancies between scientific fields is the crown
index [28]. In particular, this index builds upon the obser-
vation that the average number of citations per publication
varies across fields [21, 24]. To exploit this observation, the
crown index normalizes a researcher’s citation count by the
expected number of citations in each field. Lundberg [22]
extended this idea by normalizing the citation count at the
publication (as opposed to the researcher) level. An addi-
tional extension used a logarithm-based normalization and
assigned a weight to each publication according to a skewed
distribution of citations over publications.

Freire and Figueiredo [14] proposed a productivity index
to rank individuals within a target group (as opposed to
ranking all individuals) in a collaboration network using
solely the relationships among these individuals. In par-
ticular, the importance assigned to a specific individual by
this index was proportional to the intensity of his or her col-
laboration with other individuals outside the target group.
In the same work, the authors also considered a variation of
their index to rank entire groups of individuals and applied
it to rank graduate programs in the CS field.

In online rankings, such as the ones provided by Microsoft
Academic Search and ArnetMiner, the top authors are clas-
sified according to their h-index by default. The h-index of a
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researcher is defined as the largest number h for which the re-
searcher has h publications with at least h citations each [16].
The main disadvantage of solely applying the h-index is that
it favors researchers with long academic careers [6]. This in-
dex is also insensitive to authors with many papers with few
or no citations, and those with few papers but many cita-
tions. In order to overcome these limitations, the h-index
has also been adapted and combined with other indices to
produce improved researcher rankings [11, 13, 16, 23]. In
this vein, Bollen et al. [3] conducted an evaluation of differ-
ent rankings by using 39 impact indicators and concluded
that the concept of scientific impact is multi-dimensional
and cannot be measured by using only one indicator.

Regarding cross-area ranking, according to Glänzel and
Schubert [15] and Oliveira et al. [23], the performance of a
researcher may significantly vary depending on his or her ar-
eas of activity. Furthermore, the impact factor of a journal6

in basic and fundamental areas usually receive higher val-
ues than in specialized or applied areas [2]. In other words,
bibliometric indicators provide a relative comparison that
needs to be adapted or combined with other indicators as
well as with additional information to cover the singulari-
ties of the desired classification. Despite some recent efforts
to provide indices to enable the comparison of researchers
across distinct fields [9, 15, 28], to best of our knowledge, our
proposed approach is the first attempt to produce an aggre-
gated ranking of researchers based upon their performance
across distinct areas within the same field.

3. RANKING RESEARCHERS ACROSS
MULTIPLE RESEARCH AREAS

Assessing the impact of scientific research is a challeng-
ing task, which has led to several productivity indices in the
past, as discussed in the previous section. Nonetheless, the
majority of these indices disregards the specificity of differ-
ent research areas and assesses researchers based on global
statistics, such as each researcher’s publication volume and
citation count. As these statistics may vary substantially
across different areas, such indices may be unsuitable in a
cross-area research evaluation effort. To illustrate this obser-
vation, Table 1 summarizes the distribution of publication
volume and citations for researchers in the 23 CS areas rep-
resented in the dataset used in our evaluation, as described
later in Section 4.1.

As observed from Table 1, different research areas have
different publishing targets, with some focusing on confer-
ences more than journals, and others doing the other way
around. More importantly, researchers in different areas
show clearly distinct publishing patterns, with the aver-
age volume and number of citations per researcher vary-
ing greatly within each area and across multiple areas. In
order to provide an unbiased assessment of a researcher’s
productivity across multiple research areas, we argue that a
productivity index should possess the following properties:

• Plurality. The productivity of a researcher should be
assessed in all areas in which the researcher has pub-
lished.

• Diversity. The profile of each research area should be
considered when assessing a researcher’s productivity.

6http://thomsonreuters.com/products_services/
science/free/essays/impact_factor/

• Equality. All research areas should be regarded as
equally important and deserving of scientific merit.

To overcome the limitation of existing productivity indices
and address the above requirements, we introduce a novel
approach for ranking researchers across multiple research
areas, by aggregating evidence of each researcher’s produc-
tivity in each individual area. Inspired by ranking aggre-
gation approaches in distributed information retrieval [7],
our approach is generic and can be used to leverage any
existing productivity index (e.g., publication volume and ci-
tation count, and even the well-known h-index) as evidence
for ranking researchers across areas. In particular, our ap-
proach aims to produce a global ranking of researchers in
a given field by tracking the position of each researcher in
the rankings produced for the various research areas within
that field. By doing so, we recognize the plurality of a re-
searcher’s publishing pattern, as previously demonstrated in
Figure 1.

To formalize our approach, let sai be the score assigned to
researcher i with respect to a given research area a. This
score is calculated adding up the contribution of each of
the researcher’s publications to the area a. To this end, we
assume that each publication can be classified into multiple
areas, based upon, e.g., the areas of interest of the venue
where the publication appeared. Under this assumption,
score sai is defined as:

sai =

ni∑
j=1

1a
j
si,j
mi,j

, (1)

where ni is researcher i’s total number of publications, 1a
j

is an indicator function (which is 1 if the researcher’s j-
th publication covers the area a and 0 otherwise), si,j is the
score conferred by this publication to researcher i,7 and mi,j

is the total number of areas covered by this publication. The
latter quantity acts as a normalization factor, so as to ensure
that the score si,j is not accounted for more than once when
aggregating the researcher’s scores across multiple areas.

Given the aforementioned discrepancies between areas, as
illustrated in Table 1, the area scores produced for a re-
searcher may not be comparable across areas. In order to
ensure that the diversity of areas is respected, we propose
to use the percentile rank pai of researcher i in each area
a instead of the researcher’s raw area score sai . As a re-
sult, we consider the position of the researcher relatively to
other researchers in the area. To formalize this intuition, we
estimate the percentile rank pai as:

pai =
lai + 0.5eai

Na
, (2)

where Na is the total number of active researchers in area
a, lai and eai are the number of such researchers with a score
lower than or equal to that of researcher i, respectively. The
latter quantity ensures that tied researcher scores are ac-
counted for appropriately [17].

Lastly, we must ensure that the equality between areas
is respected. To this end, we introduce a novel ranking
aggregation approach, which enforces an equal treatment
between areas. In particular, our approach equates the per-
centile rank attained by a researcher in a particular area to

7For a volume-based score, we have si,j = 1, ∀j ∈ [1, ni]; for
a citation-based score, si,j is the total number of citations
of researcher i’s j-th publication.
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the same percentile rank in other areas. Formally, let bi de-
note the base area of researcher i, i.e., the area in which the
researcher has the highest percentile rank pai , according to:

bi = arg max
a∈A

pai , (3)

where A represents the set of all areas under consideration
within a field. In order to aggregate the scores attained by
a researcher across multiple areas, we first project the per-
centile rank attained by the researcher in each of her areas
of activity onto her base area. As a result, we can further
reward the researcher with the base area score correspond-
ing to her percentile ranks in multiple areas. For example,
a researcher with a percentile rank 90 in Databases and 30
in Computer Graphics should be rewarded with the scores
corresponding to the 90 and 30 percentiles in Databases, as-
suming that this is the researcher’s base area. Formally, the
aggregated, cross-area score si of researcher i in light of all
areas a ∈ A in a field of interest is given by:

si =
∑
a∈A

fb(pi,a)

fb(1.0)
, (4)

where the projection function fb(pi,a) maps the percentile
rank pi,a attained by researcher i in area a to the score cor-
responding to this percentile in the researcher’s base area
b, and fb(1.0) returns the maximum score in b among all
researchers in this area. This normalization step eliminates
any bias towards researchers with a prolific base area (e.g.,
an area with a profile of high publication volume and cita-
tions), further enforcing the equality between areas.

4. EXPERIMENTAL METHODOLOGY
This section discusses the methodology underlying the ex-

periments described in Section 5 for the evaluation of our
proposed approach to rank researchers across areas. In par-
ticular, we aim to answer the following research questions:

Q1. Can we improve existing productivity indices with our
cross-area ranking approach?

Q2. Can we effectively combine global and cross-area in-
dices for an improved ranking?

Q3. Which other factors may impact our cross-area ranking
approach?

In the remainder of this section, Section 4.1 describes the
dataset used to support our investigation.The baseline in-
dices derived from this dataset are discussed in Section 4.2.
Lastly, Section 4.3 discusses the procedure for evaluating
these baselines as well as our proposed ranking approach.

4.1 Publication Dataset
High-quality bibliometric indices typically depend on a

high-quality dataset of publications. Digital libraries, such
as DBLP and IEEE Xplore provide information about the
authors, title, venue, and year of a publication. However,
they do not provide the citation count of each publication or
the h-index of each author. Then, online research-oriented
search engines (such as Google Scholar, ArnetMiner and Mi-
crosoft Academic Search) do provide h-index and other bib-
liometric indices but their organization by author is cum-
bersome. Specifically, the publications of each author are

not properly grouped due to name ambiguity: the same au-
thor may appear with distinct names (synonyms), or dis-
tinct authors may have similar names (polysems) [12], thus
causing split and mixed citations [20]. Furthermore, the
collection indexed by such search engines may comprise ev-
erything that a person has ever authored, including non-
scientific pieces, technical reports and web pages.

Therefore, we need to build a dataset with the following
features: it includes only qualified publications which ap-
peared in conference proceedings and journals; it correctly
groups publications and its authors; it provides citation fig-
ures (which allows to calculate the h-index for each author);
it allows to identify the area (or areas) of each publication.
To do so, the next sections explain: the original data source
used as base for this complex dataset (Section 4.1.1), its
expansion to include journal articles (Section 4.1.2), how it
was disambiguated (Section 4.1.3), and how its publications
were classified into areas (Section 4.1.4).

4.1.1 Data Source for Conference Publications
We got an initial dataset from the SHINE (Simple H-

INdex Estimator) project8, which collected conference pub-
lications based on a list of venues provided by the Brazilian
Computer Society’s (SBC) Special Interest Groups. Each
SBC SIG provided the list of conferences that cover its top-
ics of interest. The dataset then aggregates one set of con-
ferences for each CS area. Specifically, the SHINE dataset
contains more than 800,000 publications from approximately
1,800 conferences, covering 23 CS areas, and 7.5 millions of
citations, as collected in the beginning of 2011. We notice
that each conference may have been suggested by more than
one SIG.Table 1 shows the coverage for each of the 23 CS
areas, in which the average for all areas is 88%. For 19 of
those areas, SHINE covers more than 80% of the conferences
from the reference list (suggested by SBC SIGs). For 13 ar-
eas, the coverage is above 90%, and for only one area the
coverage is smaller than 70%.

4.1.2 Adding Journal Publications
The SHINE dataset covers only publications from con-

ferences. In order to get publications from journals, we
first obtained the list of all CS journals ranked by Qualis9.
Specifically, Qualis is an initiative of CAPES (the Brazil-
ian Ministry of Education agency in charge of evaluating
all graduate programs in Brazil, among other goals) for rat-
ing publication venues. In order to get the complete arti-
cle references, we merged the list of journal titles with the
DBLP XML dataset by using the International Standard
Serial Number (ISSN) or, in the absence of ISSN, the jour-
nal title. With this effort, the original SHINE dataset was
expanded with 271,000 articles from 188 journals.

4.1.3 Author Name Disambiguation
Having all bibliographic data of conference papers and

journal articles into one dataset, the next step is to identify
the researchers and group their publications accordingly. In
this step, we had to deal with the ambiguity among the
author names existing in the dataset. Hence, we have ap-
plied a state-of-art Heuristic-Based Hierarchical Method for
name disambiguation [10]. This method works based on the

8http://shine.icomp.ufam.edu.br
9http://qualis.capes.gov.br
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Table 1: Number of covered conferences and journals and summary statistics (average, standard deviation,
and median) of the distributions of publication volume and citations for researchers in 23 CS areas.

Volume Citations
Research Area #Conf. #Jour. Avg. SD. Med. Avg. SD. Med.
Algorithms and Theory 354 188 10.65 9.97 8 95.98 151.95 41
Artificial Intelligence 264 163 9.82 13.24 5 72.56 119.90 26
Collaboration Systems 10 14 8.25 16.02 2 49.00 101.16 6
Computational Biology 25 28 2.55 2.53 2 14.73 19.17 7
Computer Graphics and Image Processing 108 105 9.95 10.97 5 58.34 115.63 13
Computer Networks and Distributed Systems 297 161 13.46 18.77 6 84.95 177.22 29
Computer Science Education 35 37 3.25 5.04 1 10.49 23.45 1
Databases 184 127 8.55 13.99 4 73.30 182.51 12
Fault Tolerant Systems 32 7 2.45 3.02 1 23.35 54.80 5
Formalism 49 68 2.67 4.13 1 17.51 32.93 4
Game and Entertainment 17 6 2.37 3.06 1 13.97 56.92 0
Geoinformatics 14 11 4.59 7.92 2 20.95 42.42 2
Hardware, Architecture and Embedded Systems 124 112 5.61 12.36 2 34.93 122.71 5
Health Informatics 25 67 3.56 5.83 2 13.70 34.21 3
Human-Computer Interaction 21 31 2.71 3.19 1 17.48 26.15 6
Information Systems 487 188 22.02 19.15 17 160.01 230.76 75.5
Music Computing 15 6 2.59 3.28 2 4.21 8.21 0
Natural Language Processing 59 43 4.26 4.41 2 37.80 95.34 7
Neural Networks 84 82 7.83 12.10 4 40.52 77.37 14
Programming Languages 56 23 3.81 4.46 2 47.23 104.88 8
Robotics 56 63 3.24 3.80 2 29.71 70.27 4
Security 100 98 10.05 12.81 4 31.61 142.57 3
Software Engineering 95 42 7.72 12.71 3 57.98 144.89 13

similarity of the usual citation information such as work and
venue titles, and considers the coauthorship network as well.

4.1.4 Classification into Areas
The final step is to classify each publication according

to one (or more) CS area. Given that the conference pa-
pers were already classified (as given by the SBC SIGs),
all journal articles had also to be classified into the same 23
areas. To do so, we applied the LAC (Lazy Associative Clas-
sifier) algorithm [27], which uses associative rules to classify
items. As one journal article could potentially be associated
to more than one area, we have employed the multi-label
classification version of the LAC algorithm [26].

Specifically, we used the already classified conference pa-
pers as the training set. Then, we used the journal articles
as the test set. The classification explored title and venue
as main features. LAC estimates the probability of each
instance being classified in each class. Therefore, we have
specified a minimum threshold to select the areas of each
article. This threshold was tuned so that the distribution in
the test set matched that of the training set. As a result: the
average number of articles in each area is 24,424; the max-
imum number of articles is in Algorithms and Theory with
172,799; and the minimum in Music Computing with only 7
articles. This number also follows the ratio from Table 1.

4.2 Ranking Baselines
Having the dataset, our next step is to define which in-

dexes (or metrics) we will compare our approach against.
We have chosen the same ones from academic social plat-
forms (such as ArnetMiner, Microsoft Academic Search and
Google Scholar): volume of publications, citation count and
h-index. In volume of publications, the researchers are sorted
in descending order of the total of their publications. In ci-
tation count, the researchers are sorted in descending order
of the sum of all citations received by its publications. In

h-index, the researchers are sorted in descending order of
their h-Index [16].

4.3 Evaluation Procedure
In the following, Section 4.3.1 defines the ground-truth

used in our evaluation, whereas Section 4.3.2 describes the
evaluation metric used to report our experimental results.

4.3.1 Evaluation Ground-Truth
The first step in this experimental setup is defining the

ground truth to which our result will be compared. Since
there is no world wide ranking for computer scientists, we
have decided to use a real ranking for Brazilians only. Specif-
ically, each year, CNPq distributes research fellowships for
researchers from all fields. To do so, CNPq bases its deci-
sions on reports from special committees created for each
field, where each committee is responsible for evaluating all
researchers who have applied for such a fellowship in that
field. The fellowships are awarded in two categories. The
first category comprises 4 subcategories (1A, 1B, 1C, 1D)
and each of those includes a research grant. The second
category (2) is the entrance one and does not include a
grant. Currently 14,713 researchers from 48 different fields
have such scholarships. For Computer Science, there are
406 researchers distributed over the categories as illustrated
in Figure 2. Note that 32% out of the 406 researchers are
attributed to category 1, and 68% to category 2.

Even though CNPq considers much more than publica-
tions in its evaluation (e.g., a research project proposal and
international insertion), the CS committee emphasizes that
a qualified set of publications is a fundamental requirement
for success10. Also, given that such a rank is produced by
specialized committees, it seems reasonable to consider their
resulting rank as a ground truth in our experimental evalu-
ation. To do so, we evaluated all publications of researchers

10http://memoria.cnpq.br/cas/ca-cc.htm
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Figure 2: Distribution of CS researchers according
to the ground-truth assessment provided by CNPq.

classified by CNPq in categories 1 or 2 in 2011, and disre-
garded all further publications from our base dataset.

4.3.2 Evaluation Metric
In order to evaluate our ranking approach as well as the

baselines described in Section 4.2 in light of the ground-truth
defined in Section 4.3.1, we use the discounted cumulative
gain (DCG) metric [19]. This metric has been widely used
to evaluate ranking approaches in several information re-
trieval tasks, most notably web search [8]. In particular,
DCG adopts a non-binary notion of relevance, by assessing
a given ranking based upon a graded scale, from less relevant
to more relevant. In addition, this metric applies a log-based
discount factor to model the fact that relevant items ranked
high are preferred over the lower ranked ones [18]. Formally,
the DCG at a rank position k can be defined as:

DCG@k =

k∑
i=1

2gi − 1

log2(i + 1)
, (5)

where gi denotes the non-binary relevance grade associated
with the item ranked at the i-th position. For our particular
case, we define a graded relevance scale based upon each
researcher’s classification according to CNPq, as defined in
Section 4.3.1. Specifically, we map the CNPq categories 1A,
1B, 1C, 1D and 2 to the relevance labels 5, 4, 3, 2 and
1, respectively. Finally, to bind the reported effectiveness
within the interval [0,1], we use the normalized version of
DCG, denoted nDCG, which is obtained by dividing the
DCG@k value given by Equation (5) by the best obtainable
value at the same rank cutoff k. In our experiments, we
report the effectiveness of the different approaches across
multiple k values, from 5 to 100, with steps of 5.

5. EXPERIMENTAL EVALUATION
In this section, we address the research questions stated

in Section 4 in order to validate our proposed approach for
ranking researchers across multiple scientific areas. In par-
ticular, Section 5.1 addresses research question Q1, by in-
stantiating our ranking approach to produce cross-area ver-
sions of popular productivity indices. Section 5.2 addresses
Q2, by assessing the impact of publication volume and ci-
tations as features for producing an effective ranking of re-
searchers. Lastly, Section 5.3 addresses Q3, by performing
a failure analysis of our produced rankings.

5.1 Single-Index Ranking
In order to address research question Q1, on the effec-

tiveness of our proposed cross-area ranking approach, we
contrast it to one of the most widely used productivity in-
dices nowadays, namely, the h-index [16]. As discussed in
Section 2, the h-index can be seen as a combination of the
publication volume and the number of citations attained by
a researcher. To obtain a cross-area version of the h-index,
here called the ca-index (“ca” for cross-area), we propagate
the global h-index from a researcher to each of his or her
publications, and from each publication to the areas cov-
ered by the publication, according to Equation (1).

Figure 3: Comparison between researcher rankings
based on the standard h-index and our ca-index.

Figure 3 compares the ranking produced by our ca-index
against that produced by the original h-index, in terms of
their attained nDCG@k, for a rank cutoff k varying from
5 to 100. From the figure, we first observe that our ca-
index consistently outperforms the standard h-index for al-
most the entire range of k. The exception is for k ≤ 20,
in which case the standard h-index is the best performing.
Upon further analysis, we noted that the observed differ-
ence in these top ranks is due to the presence of relevant
researchers with a high specialization in only a few areas. In-
deed, as shown in Figure 4, the cross-area normalization per-
formed by ca-index reduces the dispersion of scores among
the researchers classified by CNPq in each of the five consid-
ered relevance levels. Such a normalization may smooth out
the performance of individual researchers, eventually miss-
ing over-specialized outliers. On the other hand, it allows
for a clearer characterization of the researchers within each
level, and for a better distinction between researchers across
different levels, as denoted by the strictly descending median
score from level 1A towards level 2 in Figure 4(b).

To further investigate the reasons behind the improve-
ments observed in Figures 3 and 4, we analyze the im-
pact of our cross-area ranking approach separately on the
two sources of evidence underlying the h-index: publica-
tion volume and citations. Figures 5 and 6 show the results
of these analyses, contrasting publication volume and cita-
tions against their counterpart cross-area indices, ca-volume
and ca-citation, respectively. From Figure 5, we first ob-
serve that the estimation of publication volume is massively
improved by our cross-area ranking approach. Indeed, ca-
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(a) h-index score distribution (b) ca-index score distribution

Figure 4: Distribution of (a) h-index and (b) ca-index scores across the five considered relevance levels.

Figure 5: Comparison between researcher rankings
based on publication volume and our ca-volume.

volume outperforms the standard publication volume index
by a large margin from the ranking cutoff 10 onward. A
similar trend is observed for ca-citation compared to the
standard citation count in Figure 6, albeit with slightly less
pronounced improvements compared to those observed in
Figure 5.

Lastly, to further demonstrate the improvements brought
by our approach for better estimating both publication vol-
ume and citation count, Figure 7 shows the dispersion of
the scores produced using these two indices, prior to and
after the application of our cross-area normalization. From
the figure, we can observe that our approach acts as a cor-
rection for the distortion caused by simply counting volume
and citations without regards to the specificity of different
areas. Indeed, both ca-volume (Figure 7(b)) and ca-citation
(Figure 7(d)) show a strictly descending median score from
the highest rank (1A) to the lowest (2), while their global
counterparts (i.e., volume in Figure 7(a) and citation in Fig-

Figure 6: Comparison between researcher rankings
based on citation count volume and our ca-citation.

ure 7(c)) fail to correctly align the two most distinguished
categories, namely, 1A and 1B.

Overall, the results in this section answer research ques-
tion Q1, by demonstrating the effectiveness of our approach
for ranking researchers across multiple areas of a scientific
field. Indeed, as shown in this section, our approach im-
proves upon standard productivity indices based on pub-
lication volume and citation count, as well as upon their
combination, as embodied by the well-known h-index.

5.2 Multi-Index Ranking
The results in the previous section attest the effective-

ness of our cross-area ranking approach in contrast to stan-
dard productivity indices. On the other hand, the relatively
higher performance attained by these global indices at early
ranks suggests that they provide complementary evidence
to that exploited by our approach. To investigate whether
this is the case, in this section, we address research question
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(a) volume score distribution (b) ca-volume score distribution

(c) citation score distribution (d) ca-citation score distribution

Figure 7: Distribution of (a) volume, (b) ca-volume, (c) citation, and (d) ca-citation scores across the five
considered relevance levels.

Q2, by assessing the potential for combining the standard
h-index with our novel ca-index. To this end, we linearly
combine these two indices, giving equal weights to both in
the final combination. We leave the automatic identification
of optimal weights from the available data as future work.

Figure 8 shows the results of this experiment. In partic-
ular, the figure shows curves corresponding to h-index, ca-
index, and their combination. From the figure, we observe
that the combination h-index+ca-index performs at least as
effectively as ca-index (the top performing of the two indi-
vidual indices) in terms of nDCG for almost all considered
ranking cutoffs. This observation answers research question
Q2, by demonstrating that there is scope for further improv-
ing our ca-index, particularly at higher ranks, by combining
it with other indices, such as the global h-index.

5.3 Failure Analysis
This section further analyses our ca-index ranking results

in light of the ground-truth classification of Brazilian CS
researchers provided by CNPq. It specifically addresses re-
search question Q3, on which other factors may impact our
index results. It also discusses how our ranking may be used
for spotting researchers that may be shortlisted for promo-
tion or demotion (of course, subject to further analysis).

In order to aid this comparison, Table 2 presents a con-
fusion matrix, organizing the universe of researchers under
consideration according to their classification by CNPq and
by our ca-index approach.11 In particular, each cell cij in

11The classification by ca-index is performed by splitting the
score distribution produced by ca-index into five categories
with the same sizes as the corresponding categories in the
ground-truth produced by CNPq, as depicted in Figure 2.
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Figure 8: Comparison between researcher rankings
based on the standard h-index, our ca-index, and
their linear combination.

Table 2 presents the percentage of researchers classified by
CNPq in the i-th category and by our ca-index in the j-
th category. Note that percent figures are computed with
respect to all considered researchers, as opposed to only
those in a particular category. In other words, row 1A shows
how ca-index has ranked the researchers that are currently
on CNPq category 1A. For example, ca-index has classified
0.75% of CNPq researchers 1A as 1B (as shown by the first
row, second column), and so on.

ca-index

1A 1B 1C 1D 2

C
N

P
q

1A 1.01 0.75 0.75 0.5 1.01

1B 0.75 0.75 0.5 1.51 0.25

1C 0.75 0.75 1.76 3.02 2.76

1D 1.01 1.01 1.76 3.52 8.54

2 0.5 0.5 4.27 7.04 55.03

Table 2: Confusion matrix for the rankings induced
by ca-index (columns) and the CNPq classification
(rows). The highlighted cells show informative dis-
crepancies between the classification of category 1
and category 2 researchers. Percent figures are com-
puted with respect to all considered researchers.

The percentage of researchers correctly classified (accord-
ing to CNPq) is presented in the main diagonal (for a total
or 62%). If all researchers were perfectly ranked, the main
diagonal would add up to 100%, whereas the remaining cells
would be 0. Overall, the values in the main diagonal are rel-
atively high, particularly for the classification of researchers
in category 2. The observed discrepancies can be explained
mainly because CNPq uses other sources of evidence to rank
researchers, such as their number of graduate students, con-
tribution to innovation, research group leadership, and par-
ticipation in international committees.

A similar analysis can be conducted by grouping together
all researchers in the subcategories 1A-1D into a broad cat-
egory 1. The major difference between CNPq categories 1
and 2 is that researchers in the former get an extra grant
(besides a regular scholarship stipend). Therefore, a classifi-

cation of researchers in either of these two categories can be
useful for CNPq for two main reasons: to decide which re-
searchers should receive a scholarship and which should also
receive a grant. Note that the distinction between category
1 and category 2 researchers is also the most time consuming
one, as most researchers fall into the latter category. In this
binary classification scenario, our approach produces a cor-
rect classification for 75% of all considered researchers (20%
in category 1 and 55% in category 2).

Another interesting way of interpreting the results in Ta-
ble 2 is by considering that this table summarizes the dis-
tribution of scholarships related to the researchers’ produc-
tion. Therefore, these results may aid the decision making
process by pointing out researchers that could be potentially
promoted or demoted. Specifically, all researchers above the
main diagonal could be further considered for a demotion,
whereas those below the main diagonal could be further con-
sidered for a promotion. For example, the highlighted row
at the bottom of the table represents researchers ranked by
ca-index in category 1 that currently have a category 2 schol-
arship. Those could be further analyzed and face a “promo-
tion” to category 1. Likewise, the highlighted column on the
right represents researchers ranked in category 2 that are
currently in CNPq category 1. These researchers could also
be further analyzed and face a “demotion” to category 2.

Normally, such decisions should not be automatically made,
because it is also important to understand why such discrep-
ancies (for more or less) appear in Table 2. For example,
the researchers at row 1A column 2 (CNPq 1A ranked by
ca-index as 2) may be those who have stronger contributions
other than publications. On the other hand, the researchers
at row 2 column 1A (CNPq 2 ranked by ca-index as 1A)
may be those who have many publications but weaker over-
all profiles (for example, they may not have formed PhD
students yet).

6. CONCLUDING REMARKS
In this work, we have addressed the problem of ranking re-

searchers by their scientific production. Motivated by defin-
ing a fair ranking process, our ranking is tuned to work
across different research areas, a feature that distinguishes
it from other previous work. To do so, our ca-index focuses
on the principles of plurality, diversity, and equality of re-
search areas. Then, it builds upon individual ranks for each
area by aggregating them into one cross-area ranking.

Moreover, each year, specialized committees must evalu-
ate hundreds of researchers for dozens of scholarships, job
positions, grants, and so on. Applying ca-index quickly pro-
vides an insight on the overall production of the researchers,
with the extra benefit of being tailored to work across ar-
eas. Furthermore, as illustrated by the CNPq case study,
ca-index does indeed point out outliers that are worth fur-
ther analysis for demotions and promotions.

Our approach was also further evaluated and compared
to widely used indices such as the h-index. Our experi-
mental evaluation has shown that ca-index outperforms the
h-index when considering a comparison against our ground
truth. The results for a multi-index ranking have also shown
the potential for combining ca-index to other commonly
used indices. As future work, we plan to expand even fur-
ther our approach by considering other indicators from the
researchers’ profiles (including years since they have been
awarded their PhD and their number of supervised students,
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for example). Finally, we aim to apply the ca-index to other
fields, with different characteristics.
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