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Abstract The structure and evolution of co-authorship networks have been extensively

studied in literature. However, the studies on the co-authorship network in a specific inter-

disciplinary field may be complementary to the mainstream of existing works. In this paper,

the interdisciplinary field of ‘‘evolution of cooperation’’, which has been prevalent in the last

decades as a promising scientific frontier, is analyzed by extracting its co-authorship network

mainly from Web of Science. The results show that the development of this field is charac-

terized by the growth of a giant component of its collaboration network. Originally formed by

assembling a few local clusters, the giant component has gradually evolved from a small

cluster to a structure of ‘‘chained-communities’’, and then to a small-world structure. Through

examining the degree distributions and analyzing the vulnerability, we uncover that the giant

component is comprised of the ‘‘elite’’, the ‘‘middle-class’’ and the ‘‘grassroots’’, with respect

to the nodes’ degrees and their functions in structuring the giant component. Furthermore, the

elite and the middle-class constitute a robust cohesive-core, which underpins the modular

network of the giant component. The overall results of this work may illuminate more

endeavors on the collaboration network in other interdisciplinary fields.

Keywords Evolution of cooperation � Co-authorship network � Giant component � Small

world � Cohesive core

Introduction

In the last century, collaboration has gradually become the dominant mode for producing

scientific knowledge in many disciplines (Wuchty et al. 2007). The study of scientific

P. Liu � H. Xia (&)
School of Management Science and Engineering, Dalian University of Technology,
Dalian 116024, Liaoning Province, China
e-mail: hxxia@dlut.edu.cn

P. Liu
e-mail: liupeng19821017@126.com

123

Scientometrics (2015) 103:101–134
DOI 10.1007/s11192-014-1525-y



collaborations has consequently attracted great attention in scientometrics, as well as in

various other disciplines such as computer science, sociology and management science

(Cronin 2005; Gazni et al. 2012; Wagner et al. 2002; Kouzes et al. 1996; Moody 2004).

More recently, scientific collaboration has also become a hotspot in the field of complexity

science, especially from the aspect of complex networks (Barabási et al. 2002; Newman

2001a, b, 2004; Guimerà et al. 2005; Hou et al. 2008).

From the perspective of complex networks, the inquiries on the co-authorship networks

may be critical to unravel the structural and evolutionary patterns of scientific collabora-

tions. With the boom of complex-network studies since the late 1990s (Watts and Strogatz

1998; Barabási and Albert 1999), the co-authorship networks have been extensively

investigated. Two series of pioneering contributions in this direction are respectively given

by Barabási et al. (2002) and Newman (2001a, b, 2004). By using the datasets in the

disciplines of mathematics, neuro-science, physics, biolomedical studies and computer

science, they examined the ‘‘small-world’’ and ‘‘scale-free’’ features in the co-authorship

networks. Subsequently, there has been an enormous growth in literature in the last decade

to uncover the structure and evolution of the co-authorship networks, especially in their

‘‘scale-free’’ and ‘‘small-world’’ characteristics (e.g., Liu et al. 2005; Tomassini and Luthi

2007; Perc 2010; Yan et al. 2010; Franceschet 2011). The underlying mechanisms for the

evolution of the co-authorship networks and patterns of their evolutionary dynamics have

also been extensively explored (e.g., Powell et al. 2005; Fenner et al. 2007; Chandra et al.

2007; Evans et al. 2011).

Different from the overwhelming view on the ‘‘scale-free’’ feature of the scientific co-

authorship networks, some researches have paid much attention to the property of ‘‘social

cohesion’’ (White and Harary 2001) in various disciplines. By analyzing the ‘‘Sociological

Abstract’’ database from 1963 to 1999, Moody (2004) claimed that the co-authorship

network in sociology is characterized by a steadily-growing ‘‘cohesive-core’’. The exis-

tence of disciplinary ‘‘cohesive-core’’ is partly supported by Powell et al. (2005) in terms

of the life-science data. Lee et al.’s (2010) work also reveals the increase of disciplinary

cohesion during the growth of collaboration networks. By tracking the development of the

complex-network-research field, they identified three major processes in the network

evolution, i.e., small isolated components, the tree-like giant component with a robust core,

and the large-scale loops.

According to the previous brief overview, the co-authorship networks in different

disciplines have been intensively pursued, to enrich our knowledge of the social dynamics

of scientific collaborations. However, further work is still needed to explore scientific

collaborations from a network point of view. Owing to today’s prominent trend of the

scientific collaborations that cross disciplinary boundaries, the co-authorship networks in

interdisciplinary fields may deserve further research attention. In particular, it is worth-

while to examine what are the structural properties of an interdisciplinary collaboration

network. Whether are they with ‘‘scale-free’’ and ‘‘small-world’’ structures? Whether are

they structurally cohesive? What’s more, how do the structural properties emerge through

their endogenous evolution? The answers of these questions would be valuable to deepen

our knowledge on the underlying mechanisms for the growth of the co-authorship network,

as well as the development of the corresponding interdisciplinary research field itself.

Accordingly, we in this paper attempt to examine the structural properties and evolu-

tionary patterns of interdisciplinary co-authorship networks by studying an actual case. We

choose a typical interdisciplinary research field, i.e. the ‘‘evolution of cooperation’’

(Axelrod and Hamilton 1981), and examine the structure and evolution of the corre-

sponding collaboration network by analyzing the co-authorship data that are mainly
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extracted from the Web of Science database. With interesting results being obtained in our

examination, we expect this case study may bring insightful implications on the collabo-

ration networks on other interdisciplinary research fields.

Data and methods

Data preparation

In this work we choose the interdisciplinary field of ‘‘evolution of cooperation’’ (EOC) as

the subject of inquiry and examine the structure and evolution of the co-authorship network

of this specific research field. Since Charles Darwin’s inquiry on cooperation in animals

(Darwin, 1871), many scholars have pointed out that cooperative behaviors are ubiquitous

in many social species (Bernasconi and Strassmann 1999; Bshary and Grutter 2006; Partiot

et al. 1996). Cooperation has hence become a persistent research issue in theoretical

biology. Meanwhile, cooperation is also a fundamental mechanism for the functioning of

human society and the formation of social institutions. With the progressive maturity of the

game-theoretical tools (Maynard Smith 1982), the studies on the emergence and evolution

of cooperation have attracted increasing attention in the context of social science and

economics since the 1980s, triggered by the pioneering works such as (Axelrod and

Hamilton 1981). More recently, this research field has also flourished in complexity sci-

ence and the literature has rapidly expanded since the late 1990s. In a special issue of

Science magazine to celebrate its 125th anniversary, the evolution of cooperation was

selected as one of the top 25 big questions facing science over the next quarter-century

(Pennisi 2005). In all, ‘‘evolution of cooperation’’ is a promising research topic that is fast-

growing in the last decades. It is also an interdisciplinary topic that crosses the boundaries

of biology, economics, sociology, computer science and complexity science (Nowak 2006;

Binmore and Samuelson 1992; Boyd and Richerson 1992; Axelrod and Hamilton 1981;

Fehr and Gächter 1999; Frank et al. 1993; Bó and Fréchette 2011). This research topic is

on one hand focused on a specific subject of inquiry, i.e. the cooperation in humans and

animals; and on the other hand, it also incubates a research field that is inherently diverse in

its disciplinary origins. The co-authorship network on this focused-and-diverse field may

then be regarded as a good case to study the interdisciplinary collaboration networks.

In order to construct the co-authorship network on the ‘‘evolution of cooperation’’ (the

‘‘EOC network’’ for short), we use Thompson Reuter’s Web of Science (WoS) as the primary

source to extract information on authors and their collaborations. We retrieve the core col-

lection of WoS during 1945–2013 by using a few key topical terms, as shown in Eq. 1.

TS ¼ ‘‘evolution of cooperation’’ð ÞOR TS ¼ ‘‘indirect reciprocity’’ð ÞOR

TS ¼ ‘‘direct reciprocity’’ð ÞOR TS ¼ ‘‘reciprocal altruism’’ð ÞOR

TS ¼ ‘‘complexity of cooperation’’ð ÞOR TS ¼ ‘‘emergence of cooperation}ð ÞOR

TS ¼ ‘‘evolution of altruism}ð Þ OR TS ¼ ‘‘altruistic punishment}ð Þ
ð1Þ

Here we choose very specific topical terms in order to precisely obtain academic papers

on this particular field. On the other hand, the topical terms cover the key research themes

of ‘‘cooperation’’, ‘‘reciprocity’’ and ‘‘altruism’’ to get an acceptable recall or coverage for

the query results. In order to improve the precision of the query results, we retrieve the
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Core Collection of WoS, instead of ‘‘All Databases’’. Through this query, we obtain 2,496

papers, which can be categorized into multiple disciplines and specialties in terms of the

categorization system used in WoS. The basic categorization information of the query

results is illustrated in Table 1.

Table 1 reveals the interdisciplinary nature of the examined field, as the papers can

categorized into very divergent disciplines such as Biology, Mathematics, Physics, Social

Sciences, Computer Science, Medicine, and Management and Business. This characteristic

may be critical for the structure and evolution of the corresponding co-authorship network.

Besides Web of Science, we also use Google Scholar as a supplementary source to

collect relevant papers, so as to incorporate more key publications in this field. The search

on Google Scholar via the keywords ‘‘evolution of cooperation’’ can return about 38,500

fits; this result set contains great amount of irrelevant items. Thus, for the precision of the

data set, we just extract the papers that are cited more than 100 times and we obtain 42

papers that are non-redundant from the previous WoS query results.

Furthermore, we extract all the references from a recent review paper (Rand and Nowak

2013), which is co-authored by Martin Nowak, a leading scholar in the examined research

subject. We add 39 papers that are not included in the result set. In addition, we access the

publication list of the homepage of Robert Axelrod at University of Michigan (http://www-

personal.umich.edu/*axe/), who is another leading scholar in this field. We add six of his

EOC papers that are not included in previous dataset.

Thus we altogether obtain 2,583 papers, including 2,496 from the Core collection of

WoS, 42 from Google Scholar, 39 from Nowak’s review paper, and 6 from Axelrod’s

homepage. This paper-list does not cover the full range of the research topic under

examination. But our prioritized criterion in this work is on the precision rather than the

recall of the retrieved results. On the other hand, by extracting papers from multiple

sources, we expect our dataset may have a reasonable coverage for the key contributions in

this specific research field.

The number of published papers in the obtained dataset over the calendar year is

illustrated in Fig. 1. The earliest work is Charles Darwin’s original contribution firstly

published in 1871 (Darwin 1871); and the second earliest work occurred in 1961. Since

1961, the number of published papers non-uniformly grows year by year. During the period

Table 1 Disciplinary categorization of the returned records from WoS Query

Disciplinary
category

# of
records

Percentage to
all records

Disciplinary category # of
records

Percentage to
all records

Biology 1,192 46.36 Basic Disciplines of Engineering
and Technological Science

60 2.33

Mathematics 301 11.71 Electrics, Communication and
Automatic Control

58 2.26

Physics 275 10.70 Environmental Science and
Technology

20 0.78

Social science 269 10.46 Mechanics 10 0.39

Computer Science
and Technology

191 7.43 Agriculture 3 0.12

Medicine 120 4.67 Fisheries 3 0.12

Management and
Business

69 2.68

The overall number of records is 2,571 instead of 2,496 because some papers are redundantly categorized
into multiple disciplines or specialties.
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from 1961 to 1999, the scholarly attention on this subject was steadily growing but the

overall publications were limited. In comparison, the publications on this topic increase

rapidly from 2000 till now and a peak is reached in 2012. These results indicate that this

research field is currently at a stage of fast-growth after long incubation.

To study the co-authorship network from the previously-obtained dataset, one important

problem is author ambiguity. In order to mitigate this problem, we create an author-name

dictionary in two steps. First, we identify authors in terms of their family and first names.

For the authors whose full names are same, we check their affiliations, assuming that two

authors of the same name but with different affiliations in the same year are two different

authors; otherwise they are just treated as one same author. Second, for the identified

authors in the first step, we collect all the possible name variants of first names, middle

names, and the initials. For example, for author Martin Nowak, we got three forms of

‘‘Nowak, M.’’, ‘‘Nowak, M.A.’’ and ‘‘Nowak, Martin A.’’. By adding the variants into the

author dictionary, we can basically disambiguate the case of multiple name forms for the

same author. Nonetheless, we admit that our treatment does not ensure the elimination of

the ambiguity of multiple authors of the same name. Fortunately, by random examination

of records, we may assert that this problem seems not severe in our author-list.

Methods

The main method used in this paper is social network analysis. Through checking the key

metrics of the co-authorship network of the EOC field, we analyze its structure properties

and evolutionary pattern.

Before analysis, we construct the co-authorship network. As shown in Fig. 1, the

number of papers before 2000 is generally small. In particular, we do not obtain any single

paper between 1871 and 1961. Hence, we exclude the literature in 1871 and aggregate all

the obtained papers during the period from 1961 to 1999, regarding all the years before

Fig. 1 The number of publications over calendar years
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1999 as the incubating stage of the examined EOC field. Thus, we study the structure and

evolution of the co-authorship network since the year of 1999, by tracking the change of

the cumulative network structure in one-year intervals (i.e., the network from 1961 to

1999, that from 1961 to 2000, and so on). In each period, the authors are the vertexes and

the co-authorships between authors are the edges.

Thus, in the constructed network, the network size refers to the number of nodes in the

network. The average degree denotes the average number of neighbors of each node, i.e.,

the average number of collaborators of each author. The size of largest connected-subgraph

actually represents the scale of the central cluster of the entire network, as to be elaborately

investigated in the later part of this paper. This largest connected-subgraph can be called

the ‘‘giant component’’ of the entire network (Guimerà et al. 2005).

Besides the above elementary metrics, we also measure the clustering coefficient, the

average shortest-path-length and the modularity, in order to test the ‘‘small-world’’

property and the community structure of the examined network. Furthermore, we measure

the distribution of node degrees to examine the ‘‘scale-free’’ property of the network; and

the method suggested by Jeong et al. (2003) is used to examine the mechanism of pref-

erential attachment to form the scale-free degree-distribution.

In the previous metrics, the properties of clustering coefficient and modularity may need

further explanation. The clustering coefficient is a local property to measure the average

cliquishness in the network, reflecting the extent to which the two collaborators of an

author also collaborate with each other. In this work, we adopt Watts and Strogatz’s (1998)

definition, as formulated in Eq. 2. Where D denotes the number of triangles in the network;

and K is the number of connected triples of vertices. The clustering coefficient is important

as it is often used, in conjunction with the characteristic path-length, to measure whether

the network is a small-world or not (Watts and Strogatz 1998).

cc ¼ 3� D
K

ð2Þ

Comparing with the local measure of clustering coefficient, modularity is to measure

whether the network is modular at the global level. High value of modularity means that

the network has a clear community structure; and the network is comprised of multiple

modules or communities with dense intra-communal links but less-dense inter-communal

links (Girvan and Newman 2002). In this paper, the well-noted fast community-detection

algorithm proposed by Blondel et al. (2008), which is a heuristic method based on mod-

ularity optimization, is adopted to detect the communities and meanwhile to obtain the

(optimal) modularity.

In addition to examining the network properties, we also give textual analysis on the

authors’ research topics. To do so, we use the keywords of the papers as the main source of

analysis. The terms in paper titles are also extracted and filtered to compensate the absence

of author-providing keywords in many papers, e.g., those published in Science, Nature and

Proceedings of the National Academy of Sciences of USA. A few terms that are very

frequently occurred in almost all the communities are removed from the extracted term-

list, including ‘‘evolution of cooperation’’, ‘‘cooperation’’, ‘‘game’’, and ‘‘evolution’’.

Based on the obtained terms we build a dictionary of topical terms; and the frequencies of

these topical terms are also counted and stored. Then, for the identified communities, we

are to count the terms occurring in the keywords and/or titles of the papers in each

community during the period under examination; and the top-ten frequent terms are used to

characterize the topics of the community. With the analysis of the topical terms, we

examine whether the communities are clustered by authors with similar research topics and
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whether the inter-communal links are also correlated with the topical similarities between

the communities, in order to correlating the network evolution with the field growth.

With the previous metrics, subsequently we analyze the structure and evolution of the

EOC co-authorship network and its giant component.

Analysis of the structure and evolution of the co-authorship network

The basic characteristics of the entire network

Table 2 lists the basic statistical properties of the previously-constructed cumulative co-

authorship networks in different periods, namely the size of the overall network, the

average degree, the clustering coefficient, the modularity, and the size of largest con-

nected-subgraph.

Table 2 shows that the EOC network is rapidly expanding in the last decade. Besides,

we can also observe a rapid expansion of its largest connected-subgraph. During this

process, the proportion of the giant component in the whole network is increasing,

revealing the gradual emergence of a core-periphery structure of the co-authorship net-

work. From another aspect, we can find in Table 2 that the network is highly modular in all

the years (Modul[0.93). This indicates that the whole network is comprised of a number

of structurally-cohesive clusters or communities, while the inter-communal links are

extremely sparse. The structural characteristics of the whole co-authorship network are

further illustrated in Fig. 2.

Figure 2 tracks the yearly changes in the sizes of the entire co-authorship network and

its main components. In Fig. 2a, we compare the size of the giant component with the

whole network. The curve with hollow-square denotes the growth of the entire co-

Table 2 The basic information of co-authorship network from 1961 to 2013

Period Network size
(number of nodes)

Average degree Clustering
coefficient (cc)

Modularity
(Modul)

Size of largest
connected-subgraph

1961-1999 531 1.597 0.393 0.968 20

1961-2000 635 1.723 0.422 0.974 21

1961-2001 695 1.827 0.427 0.976 21

1961-2002 782 1.985 0.446 0.979 21

1961-2003 877 2.169 0.460 0.962 69

1961-2004 996 2.215 0.462 0.959 115

1961-2005 1111 2.457 0.475 0.932 147

1961-2006 1,312 2.802 0.519 0.937 176

1961-2007 1,583 2.892 0.549 0.948 212

1961-2008 1,838 3.004 0.563 0.953 288

1961-2009 2,216 3.029 0.576 0.954 361

1961-2010 2,539 3.108 0.590 0.956 511

1961-2011 2,901 3.206 0.602 0.955 705

1961-2012 3,269 3.309 0.612 0.949 856

1961-2013 3,670 3.409 0.632 0.950 1,127
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authorship network, while the curve with solid-triangle denotes the growth of its giant

component. These two curves exhibit different growth modes. During the period from 1999

to 2006, the size of the entire co-authorship network steadily expands, while the increasing

rate has become sharper since 2006. In comparison, the inflection point occurs in 2009 for

the giant component. Another phenomenon shown in Fig. 2a is that the fraction of the giant

component to the overall co-authorship network gradually increases in the last decade; and

this trend becomes more apparent in the last few years. Up to 2010, the fraction of the size

of the giant component to that of the co-authorship network is about 20 %; but up to the

year of 2013 this value reaches around 33 %. Such increasing fraction of the giant

Fig. 2 Sizes of the whole network, the giant component, the second and third largest connected-subgraphs.
a The sizes of entire network and of its giant component or largest connected-subgraph. b The sizes of the
giant component, and of the second and third largest connected-subgraphs
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component implies the formation and expansion of the ‘‘core’’ of the whole network. The

formation of the ‘‘core’’ can also be examined by comparing the size of the giant com-

ponent with those of the second and third connected-subgraphs. As shown in Fig. 2b, the

size of the giant component was not significantly larger than those of the second and third

largest connected-subgraphs before the year of 2003. However, the giant component has

been rapidly expanding since 2003, while the second and third largest connected-subgraphs

remain small-sized. This reveals that a core-periphery structure has gradually formed in the

last decade. In this structure, the ‘‘giant component’’ is the ‘‘core’’, while the rest of the

entire network is the periphery. The formation of this core-periphery structure can further

be illustrated in Fig. 3 by visualizing the network structures in representative years.

Figure 3 exemplifies the structures of the co-authorship network at different develop-

ment stages of this research field. Up to 1999, the co-authorship network was composed of

small clusters and isolated nodes, with the largest cluster containing only 20 authors as

illustrated in the lower-left part of Fig. 3. Then, till 2006, as shown in the middle part of

Fig. 3, a core-periphery structure had emerged. The entire network contained a giant

component that was surrounded by small communities and isolated nodes (i.e., authors).

What’s more, as shown in the lower-middle part of Fig. 3, the giant component contained a

structure of chained-communities, which was actually comprised of three communities

interlinked one by one so that the distances between two random nodes could be large.

Fig. 3 Topological structures of the cumulative co-authorship network (upper part) and the corresponding
giant component (lower part) in typical years
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With the further development of the network, the giant component had remarkably

expanded till 2013, as shown in the right part of Fig. 3. At this stage, a small world had

emerged within the giant component, as all the local communities were connected through

short-cut links. Generally, Fig. 3 depicts a process in which the EOC network evolves from

segregation to a core-periphery structure; and the core or giant-component is rapidly

expanding in the last decade.

Furthermore, we examine the degree distribution in the EOC network, as shown in

Fig. 4.

Figure 4 reveals that the degrees of nodes in the co-authorship network accord with

some skewed distribution that resembles the power-law distribution for the nodes whose

degrees are greater than 2. It would, then, be interesting to test whether the network grows

through preferential attachment (Barabási and Albert 1999). The measure of the prefer-

ential attachment mechanism has widely discussed in the last decade (Perc 2014). Here we

just adopt the method suggested by Jeong et al. (2003). With this method, we use the

network evolution from 2011 to 2012 as an example to measure the preferential attachment

mechanism, as shown in Fig. 5.

Figure 5 illustrates the correlation between the node degree (k) and the probability of

co-authorship establishment with a k-degree node j(k) in the period between 2011 and

2012. The black solid-line depicts the correlations from the actual network data, while the

gray dash-line is the power-law fit generated from the preferential-attachment mechanism.

Figure 5 shows that the attachment probability of a node is basically proportional to the

degree of this node, indicating the existence of strong preferential attachment in the

evolution of the examined network.

The prior analysis of the whole co-authorship network shows two characteristics of the

networks. First, the cumulative distribution of node-degrees obeys a skewed distribution.

And further analysis indicates that a mechanism of preferential attachment may probably

take effect during the growth of the network, i.e. a few ‘‘academic stars’’ or the ‘‘attach-

ment kernel’’ (Perc 2014) play an important role in the development of the examined

research field. Second, the network gradually evolves from a set of scattered small clusters

to a core-periphery structure which is comprised of a giant component (i.e. the ‘‘core’’) and

Fig. 4 Degree distribution of co-authorship network (k stands for degree)
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a series of smaller clusters (i.e. the periphery). Further examination on the ‘‘giant com-

ponent’’ of the network is then deserved, in order to better clarify the key features of this

network and the corresponding research field.

Analysis of the giant component

Intuitive illustration of the evolution of giant component

To analyze the giant component, we first examine the overall schemes for its growth by

illustrating the year-to-year changes in a few typical years, as shown in Fig. 6.

Figure 6a shows the topological structure of the whole co-authorship network from

1961 to 2002, which is basically comprised of segregated small clusters and isolated nodes.

Up to the end of 2002, there was no single prevailing cluster or giant-component. However,

further examination shows that a giant component would begin to occur in the succeeding

calendar year. The clusters highlighted by circles in Fig. 6a would be interconnected in the

year of 2003, to constitute the initial giant-component. Thus, Fig. 6a illustrates the for-

mation of giant component or ‘‘core’’ of the co-authorship network in around 2002 and

2003, by assembling a few previously-separate clusters.

Figure 6b depicts the change of the giant component from 2003 to 2004. We can see

that the giant component grew by adsorbing newly-generated small clusters. This is the

dominating mode for the expansion of the giant component in the early-stage since its

formation. This mode can basically explain the formation of the previously-stated ‘‘chain

structure

’’ structure. Analogous to a crystal-growth process, the adsorption of new clusters would

commonly generate a long chain of small clusters, which characterizes the early-stage

structure of the giant component. In parallel to the expansion of the giant component, some

other communities also grew by adsorbing small clusters during the same period.

Fig. 5 Examination of preferential attachment for the network from 1961 to 2012
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With the further growth of multiple components, the merging of major components

would turn to be the prevailing mode for the expansion of giant component. This trend is

exemplified by Fig. 6c, which illustrates the network growth of the giant component from

2012 to 2013. In this period, in addition to the persistent adsorption of small clusters, a few

relatively-large clusters were also merged into the giant component. The merging of

multiple components speeded up the expansion of giant component. This merging process

also helps the giant component to form the small-world structure.

The prior examination shows an overall process for the growth of the giant component.

Through this process, the giant component evolves from a small cluster or clique to the

structure of ‘‘chained-communities’’, and then to the small-world structure. The recently

generated ‘‘small-world’’ is analogous to the structure of ‘‘permeable boundaries’’ as

identified in the sociological collaboration network (Moody 2004).

Based on the previous intuitive illustration on the evolution of giant component, we give

a more thorough analysis on it, in terms of its degree distribution, modularity, clustering

coefficient, and average shortest-path-length. Especially, the ‘‘scale-free’’ and ‘‘small-

world’’ properties are accounted for in this analysis.

Degree distribution

The degree distribution of the giant component (1961–2013) is illustrated in Fig. 7. In

Fig. 7, the node degree (k) is plotted along the horizontal axis, while the vertical axis

displays the fraction or ‘‘probability’’ of the nodes that has a particular degree, denoted by

P(k). The black solid line plots the actual degree-distribution, while the gray line with

square is the lognormal fit and the gray line with triangle is the power-law fit. The

parameters for the two fitting distributions are shown inset.

The degree distribution of the giant component is morphologically similar with that of

the whole co-authorship network shown in Fig. 4, both not fully fitting the power-law

distribution. Instead, a combination of the lognormal and power-law distributions can fit

the actual data well. The majority of authors are in the range of k \ 10. In this range, the

degree distribution basically obeys the lognormal distribution. In comparison, in the range

of k C 10, the power-law distribution roughly fits the actual degree distribution, indicating

that a small proportion of authors have significantly larger number of coauthors than the

average authors do.

Modularity, clustering coefficient and average shortest-path-length

Figure 8 depicts the changes of modularity (denoted as Modul) and clustering-coefficient

(denoted as Cc) of the giant component from 1999 to 2013. According to Fig. 8, the

evolution of the giant component can be divided into three stages. The first stage is from

1999 to 2002. In this stage, the modularity is stable at a low level around 0.4, while the

clustering coefficient remains at a high level around 0.8. Correspondingly, the giant

component was just a small cluster in which the nodes are densely interconnected with one

another. Thus the clustering coefficient is high due to the dense internal connections, but

the modularity is low because the giant component can hardly be divided into sub-com-

munities at that stage.

Then, the second stage is from 2002 to 2004, in which we can observe both a rapid

ascending of modularity and steep descending of clustering coefficient. Correspondingly,

the giant component rapidly expands in this stage and the ‘‘core’’ of the whole co-

authorship network begins to occur, as previously-described (Fig. 2). With the expansion
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of giant component by merging external clusters, the local transitivity of links decreases,

resulting in the steep dropping of clustering coefficient. Meanwhile, the incorporation of

clusters into the giant component remarkably increases the modularity.

The period from 2004 to 2013 constitutes the third stage, in which both the modularity

and the clustering coefficient steadily increase. The change mode of modularity and

Fig. 7 Fitting of the degree distribution of the giant component

Fig. 8 Clustering coefficient and modularity of the giant component
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clustering coefficient in this stage reflects the steady expansion of giant component. On one

hand, the giant component becomes increasingly modular with the continuous merging of

new clusters. On the other hand, nodes become more densely connected within local

clusters, leading to the steady increase of the clustering coefficient during this period.

From the previous examination we can see that the giant component evolves into a

highly-modular structure of multiple communities that are densely clustered. It would be

interesting to examine whether this network (i.e., the core of the whole co-authorship

network) can be regarded as a small-world. Thus, we further measure the average shortest-

path-length of the giant component.

Fig. 9 Clustering coefficient and average shortest-path-length of the giant component. a Illustration of
clustering coefficient and average shortest-path-length of the giant component. b Comparison of the average
shortest-path-length with the logarithm of the giant component size
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Figure 9a illustrates the clustering coefficient and the average shortest-path-length of

the giant component. The horizontal axis displays the calendar year. On the vertical axis,

the clustering coefficient and the average shortest-path-length are respectively displayed,

dividing by the corresponding values of the random network of same scale. The clustering

coefficient of the giant component is denoted as Cc, while that of the corresponding

random network is denoted as Crc. The average shortest-path-length of the giant com-

ponent is denoted as Lc, while that of the corresponding random network is denoted as Lrc.

As shown in Fig. 9a, the value of Cc/Crc has remarkably been increasing since 2004, while

the increase of the corresponding average shortest-path-length is insignificant in the same

period (e.g., Lc/Lrc \ 1.7 in 2008 and Lc/Lrc \ 1.6 thereafter). The remarkable increase of

Cc/Crc and the relatively stable value of Lc/Lrc indicate the giant component evolves into

a small-world.

What’s more, we compare the average shortest-path-length with the logarithm of the

size of giant component (denoted as Ng), with respect to Boccaletti et al.’s (2006) measure

of the small-world property. The result is shown in Fig. 9b. We observe that Lc is

approximately proportional to lg(Ng) during the period from 2005 to 2013 and the pro-

portional value is between 2.00 and 2.25. Hence, the giant component can be regarded as a

small-world during the period from 2005 to 2013.

Identifying the ‘‘cohesive core’’ within the giant component

The previous examination shows that the giant component exhibits a small-world structure,

which is comprised of multiple communities that are with dense internal edges and

meanwhile linked with one another by sparser inter-communal connections. From another

aspect, as shown in Fig. 7, this network of giant-component (i.e., the sub-graph of the

entire co-authorship network) has a skewed degree distribution, in which a small pro-

portion of nodes hold large numbers of edges while the majority of nodes have arbitrarily

1*10 co-authors. It would then be worthwhile to examine whether it is those high-degree

nodes that play a critical role to bridge different communities.

In order to identify the key nodes that bridge different communities, a vulnerability

analysis is given by continuously removing nodes from the giant component and exam-

ining the connectivity of the remaining network. Here a simple measure of the connectivity

is used, in which the connectivity of a network is equal to the proportion of the largest

connected-subgraph in the whole network.

First we remove the nodes in an ascending mode. In other words, we begin the node-

removal process by removing the one-degree nodes and consequently obtaining the

remaining network as the more-than-1-degree sub-graph of the original giant component

(1961–2013). We denote this remaining network as ‘‘k [ 1 sub-graph’’. Then the k [ 2

sub-graph is obtained by removing the nodes whose degrees are equal to 2 (i.e., k = 2);

and the remaining nodes are step-by-step removed from low to high degrees. This node-

removal process continues until the k = 52 nodes have been removed and the giant

component has been completely broken. The decrease of the network size and the change

of connectivity in the remaining network are illustrated in Fig. 10a, while Fig. 10b illus-

trates the topological structures of a few typical remaining networks.

We measure the decrease of the network size by plotting the ratio of the remaining

network to the original giant component. A steep decrease of the size of the remaining

network is observed when removing the nodes whose degrees are less than 10. Compa-

rably, the descending slope is remarkably flattened after degree 10. This result indicates
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Fig. 10 Connectivity of the remaining network through node removal and the illustrations of network
topologies with typical connectivity value when removing nodes ranging from degree 1 to 52. a The
decrease of the network size and the change of connectivity in the remaining network. b The topological
structures of typical remaining networks
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Fig. 11 Connectivity of sub-graphs and illustration of sub-graph topologies with typical connectivity value
when removing nodes ranging from degree 54 to 3. a The decrease of the network size and the change of
connectivity in the remaining network. b The topological structures of typical remaining networks
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that the majority of nodes are with less than 10 neighbors, providing a good support for the

previous divide of the lognormal and power-law distributions at degree 10.

Nevertheless, the connectivity of the remaining network changes in a tremendously

different mode. As shown in Fig. 10a, the connectivity gently decreases when removing

the nodes whose degrees are less than 10. The connectivity of the remaining network is

greater than 0.8 during the removal of the k \ 10 nodes. This indicates that the giant

component basically remains connected through the removal of the low-degree nodes. As

exemplified in Fig. 10b, the structural difference between the remaining networks of

‘‘k [ 7’’ nodes and ‘‘k [ 9’’ nodes is indistinct. The communal structure of the original

giant component is largely retained.

During the further removal of the nodes whose degrees range from 10 to 27, a slight

increase of the connectivity can be observed. In this stage of node removal, the local

clusters gradually diminish but the connectivity of the remaining network remains high. As

illustrated in the ‘‘k [ 19’’ sub-graph in Fig. 10b, a connected ‘‘stem’’ or ‘‘backbone’’ of

the original giant-component is retained although many ‘‘leaves and branches’’ (i.e., local

clusters) that appear in ‘‘k [ 7’’ and ‘‘k [ 9’’ networks are cut off. This result reveals that

the ‘‘middle-class’’ nodes play an important role for gluing the local clusters but they might

not be the critical ‘‘bridge’’ nodes to establish global connectivity.

The removal of the nodes of 27 B k B 29 constitutes the third stage of the node-

removal process. In this stage, there is a steep descending of the connectivity from 0.9 to

0.45. As further illustrated by the remaining network of ‘‘k [ 29’’ nodes in Fig. 10b, the

giant component is split into two tiny-sized groups. These two groups are basically retained

during the further removal of the k [ 29 nodes; simultaneously the connectivity of the

remaining network keeps stable too, largely ranging from 0.44 to 0.67. This implies the

existence of a ‘‘rich club’’, which is roughly comprised of the ‘‘k [ 26 nodes’’. This rich

club furthermore contains two local cliques of high degree nodes (k [ 29), which are

redundantly interlinked by the 27 B k B 29 nodes.

In order to further examine the structural characteristics identified in the prior node-

removal process, we execute a reverse process to remove nodes in a descending mode (i.e.,

from high to low degrees). In other words, the k = 54 nodes are firstly removed to obtain

the remaining network of ‘‘k \ 54 nodes’’. The k = 53 nodes are then removed, followed

by the removal of the k = 52 nodes. Such process proceeds until the removal of k = 3

nodes and the remaining network of ‘‘k \ 3 nodes’’ becomes completely separated. Under

this node removal strategy, the decrease of the network size and the change of connectivity

in the remaining network are illustrated in Fig. 11a, while Fig. 11b displays topological

structures in typical remaining networks.

The curve for the ratio of the size of the remaining network to the original giant

component in Fig. 11a does not provide much additional information other than what we

can get from Figs. 7 and 10a, as this result is basically consistent with the identified

skewed-distribution of node-degrees as shown in Fig. 7. In comparison, the change of the

connectivity of the remaining network may be more informative to enrich the under-

standing of the structural characteristics of the giant component.

From the curve of connectivity change in Fig. 11a, we can find that the downward

removal of high-degree nodes does not significantly decrease the connectivity of the

remaining network. For example, in the illustration of the remaining network of ‘‘k \ 32

nodes’’ shown in Fig. 11b, the remaining network is largely connected. In the remaining

network of ‘‘k \ 24 nodes’’, the detachment of the local clusters from the giant component

can be observed; but the overall connectivity is still reasonably high. In fact, during the

downward removal from 39- to 20-degree nodes, the connectivity of the remaining
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network steadily decreases. The connectivity of the remaining network of k B 20 nodes is

about 0.7. In the prior upward removal-process, we observe the existence of self-connected

‘‘main stem’’ of the k [ 19 network. The reverse removal reveals an interesting phe-

nomenon that the remaining network of giant-component would still keep high connec-

tivity even if this ‘‘main stem’’ were near-completely removed. This phenomenon depicts

that the majority nodes of the giant component do not solely rely on the ‘‘main stem’’ to

retain its overall connectivity.

However, the continuing removal of the ‘‘10 B k \ 20 nodes’’ would remarkably

decrease the connectivity of the remaining network. In particular, the decrease of con-

nectivity is extremely steep during the removal of the ‘‘15 \ k \ 20 nodes’’. As shown in

the illustrations of Fig. 11b, in the remaining network of k \ 18 nodes, a number of local

clusters have been detached from the major community. This phenomenon indicates that

the ‘‘10 B k \ 20 nodes’’ are critical to glue the ‘‘grassroots’’ participants (i.e., the k \ 10

nodes) onto the ‘‘main stem’’ of the giant-component.

The removal of the k \ 10 nodes is the third stage of downward removal-process. In this

stage, the decrease of the connectivity becomes flattened but simultaneously the network

size dramatically drops down. As consistent with the prior ascending process of node

removal, this result reveals that the low-degree nodes may not be critical for the global

connectivity of the giant components. For example, although the ratio of the network size

to the giant component is around 90 % at k = 10, the remaining network of k \ 10 nodes

Fig. 12 Illustration of the structure of the giant component (In part (a), the k C 20 nodes are shrunk into a
single clustered node). a The overall picture for the structure of the giant component. b The ‘‘elite’’ nodes
(k C 20) constitute the ‘‘main stem’’ which accounts for about 3 % of the size of giant component. c The
‘‘middle-class’’ nodes (10 B k \ 20) who account for about 8 % of the size of giant component play an
important role to glue the local cliques of the lower-degree nodes
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has been separated into small clusters and isolated nodes, as shown in the ‘‘remaining

network of k \ 10 nodes’’ illustration of Fig. 11b.

By combining the upward and downward node-removal processes, we observe an

intriguing overall picture for the structure of the giant component, as illustrated in Fig. 12.

The nodes in the giant component can roughly be classified into three categories, in terms

of their degrees and functions in establishing connectivity. The k \ 10 nodes are basically

the ‘‘grassroots’’ nodes; the 10 B k \ 20 nodes roughly constitute the ‘‘middle-class

nodes’’; and the k C 20 nodes can be regarded as ‘‘elite’’ nodes. These three types of nodes

generally construct a hierarchical structure of the giant component.

Fig. 13 Illustration of the distribution of research topics within the giant component

Scientometrics (2015) 103:101–134 121

123



Essentially, the ‘‘grassroots’’ nodes are the subsidiary participants, which constitute the

bottom layer in the hierarchy shown in Fig. 12a. These nodes are not the critical ‘‘bridges’’

or ‘‘hubs’’ for the global connectivity of the giant-component. In other words, they are

close to the periphery of the whole co-authorship network. Although around 90 % of the

nodes in the giant component belong to the ‘‘grassroots’’, removing these nodes does not

have severe effect on the connectivity of the remaining network.

To the opposite side, the ‘‘elite’’ nodes are interlinked to form the ‘‘main stem’’ of the

giant component, i.e. the top layer of the hierarchy. From the perspective of degree dis-

tribution, these ‘‘elite’’ nodes may also serve as the ‘‘attachment kernel’’ (Perc 2014). This

‘‘main stem’’ is self-sustaining as it keeps connected in the removal of all the lower-degree

nodes, as shown in Fig. 12b. However, a somehow counterintuitive observation from the

prior node-removal processes is that the global connectivity of the giant component is not

fully dependent on this ‘‘main stem’’ of elite nodes. This reveals that the elite nodes do not

necessarily serve as the ‘‘bridges’’ or ‘‘hubs’’ to establish the global connectivity. Instead,

as shown in Fig. 12a, c, the ‘‘middle-class’’ nodes (i.e., the ‘‘10 B k \ 20 nodes’’) play an

important role to glue the abundant local cliques of the low-degree nodes (i.e. k \ 10

nodes). Thus, we can see that the ‘‘elite’’ nodes, together with the ‘‘middle-class’’ nodes,

form the ‘‘cohesive core’’ of the giant component. Within this ‘‘cohesive core’’, nodes are

redundantly linked with one another so that this ‘‘cohesive core’’ is robust to partial

removal of its members. This ‘‘cohesive core’’ accounts only for about 11 % of the size of

giant component; but it is this ‘‘cohesive core’’, as a whole, that serves as the hub to

interconnect a bunch of local cliques that are otherwise dispersed.

Correlating network evolution with field growth

The previous analyses show the structural properties and evolutionary patterns of the co-

authorship network, particularly those of its giant component. In this subsection we give a

primitive examination on how the structure and evolution of the co-authorship network is

related to the growth of the EOC academic field, in order to deepen the insights on the

evolutionary mechanisms of the examined network. Text analytics is focused on the

keywords and titles of the extracted papers. The major results are illustrated in Fig. 13,

which represents the primary communities and their key topical terms in the years of 2002,

2003, 2004 and 2010, respectively.

In Fig. 13, each circle represents a key community or cluster, labeled by an integer

number. The community labels are auto-generated by the software we use to process the

data, i.e. Gephi, which is freely-available at http://gephi.github.io/. The diameter of each

circle denotes the relative amount of authors. In the same sub-figure, more authors are

clustered in the community, the corresponding circle becomes larger. Then, the count of

papers and the primary topical terms of the communities are listed. For example, com-

munity No. 190 contains 20 papers; and its primary topical-terms are ‘‘group selection’’,

‘‘strategy’’, and ‘‘tit-for-tat’’. For the sake of simplicity, in Fig. 13 we just list the most

frequently occurring topical-terms and leave the more information of each community in

‘‘Appendix’’.

Figure 13a shows the key communities in the year of 2002. Up to the end of this year,

there had been no giant component to form. However, the communities No. 12, 35, 137,

239, 261, 270, 313, and 342 were to be interconnected to form the initial giant component

in the subsequent year, as shown in Fig. 13b.

In the year of 2002, the identified communities are topic-focused and they can largely be

grouped into three categories in terms of the topics of the papers. The first category is
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comprised of communities No. 190 and No. 12; and a focal topic shared by the two

communities is gaming strategies. However, these two communities are different from one

another in more detailed research topics. Community No. 190 is largely on the ‘‘strategy’’

for the prisoner’s dilemma game, especially on the Tit-For-Tat strategy, which is a key

research subject of the EOC field since Axelrod and Hamilton’s (1981) groundbreaking

work. Community No. 12 is more focused on the topics around the mechanisms of direct

and indirect reciprocity and the spatial game. Nowak and May’s (1992) work plays a

critical role in the formation and growth of this community. The second category, which is

comprised of communities No. 261, 270 and 342, is basically bounded in the social and

behavioral sciences. The third category, which is comprised of communities No. 239,

313,137, and 35, is with a strong background of the biological discipline. These com-

munities were separate from one another in 2002 due to the immaturity of this research

field. The collaborations, particularly interdisciplinary collaborations, had not been

widespread till 2002. However, some of these communities share common topics such as

‘‘reciprocity’’; and some of them are disciplinarily proximal. Such intersection of research

topics and the disciplinary proximity between communities propels the establishment of

the inter-communal links and the formation of the initial giant component in 2003.

As shown in Fig. 13b, the communities No. 270, 137, 26, 239 and 35 were merged into

community No. 375, and the communities No. 342, 12 and 313 were merged to form

community No. 376. Community No. 375 shares the topical terms ‘‘indirect reciprocity’’

and ‘‘human’’ with community No. 376. But the other most-frequent terms in the two

communities are quite different, revealing the differences in subject areas and research

methods of the two communities. As previously-described, community No. 375 is more

focused on the social and behavior aspect of cooperation in human society, while com-

munity No. 376 is more focused on the game-theoretic and biological aspects. What’s

more, Fig. 13b also reveals the rudimental ‘‘chained-communities’’ structure of the giant

component. As shown in the lower graph in Fig. 13b, the sub-community No. 261 in

community No. 375 is the key community to bridge to community No. 376, while the other

sub-communities are not directly connected to community No. 376. The distance of co-

authorship is correlated with the separation of the topical areas of the different cluster. For

example, to examine two sub-communities with no direct connection (No. 270 and 12), the

topical distance between them is relatively far, with the former focusing on ‘‘social

exchange’’ and the latter focusing on ‘‘spatial game’’. In the stage of 2003, the social and

behavioral research circle and the game-theoretic and theoretic-biological research circle

were basically interconnected by the researchers who studied the cooperative collective

actions in human society from the game-theoretic perspective.

Figure 13c illustrates the further growth of the ‘‘chained-communities’’ structure in

2004. In this period, community No. 422 was adsorbed into community No. 375 to form a

new community No. 365; community No. 249 was adsorbed into community No. 376 to

form a new community No. 366; and community No. 93 was attached to community No.

366. In this process, the proximity in research topics still plays a vital role for community

adsorption and attachment. Community No. 93 is clustered by game-theory and evolu-

tionary-dynamics researchers who are mostly from Japan. The research topics of this

community are proximal to those of community No. 366. At the end of 2004, these two

communities were just loosely-connected via the collaboration between M.A. Nowak and

A. Sasaki (Nowak et al. 2004). But these two communities were to be merged later on. For

example, as listed in ‘‘Appendix’’, one key contributor of community No. 93, H. Ohtsuki,

has co-authored a number of papers with M. A. Nowak in community No. 366, since

around 2006, e.g. (Ohtsuki et al. 2006). As shown in Fig. 13d, communities No. 366 and 93
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were to be merged into community No. 387. Community No. 365, by contrast, still has a

strong disciplinary background in social and behavioral sciences, especially in economics

and social psychology. The disciplinary boundaries might play some role in the formation

and maintenance of the ‘‘chained-communities’’ in this period, along with other factors

such as nationality and affiliation that are not examined in this paper. On the other side, by

examining the top topical-terms, we can find that the trend of topic convergence in dif-

ferent communities had become apparent in 2004.

Figure 13d shows the community structure of the giant component in 2010. The giant

component in this year is selected in illustration because the small-world structure had

been clear till the end of 2010. In this stage, the giant component was comprised of two

large communities (i.e. No. 387 and 620) and a set of smaller communities attaching to the

two largest. Community No. 387 grew from community No. 366 in Fig. 13c. The devel-

opment of this community reflects the growth of the researches in spatial games, especially

the combination of EOC and complex networks. Correspondingly, community No. 387 is

the largest community in Fig. 13d, with 162 authors and 216 papers. Community No. 620

is another major community of the giant component, containing 137 authors and 143

papers. As the successor of community No. 365 in Fig. 13c, this community’s primary

topical terms contain ‘‘reputation’’ and ‘‘social norm’’, revealing its background in the

social and behavioral sciences. These two major communities, as well as various other

communities, share quite some common topical-terms in this stage. This on one hand

indicates the growing convergence of the research topics in the EOC field and the blurring

of disciplinary edges to some extent; on the other hand, this also explains the structuring of

the small-world of the giant component. Besides the still-increasingly-dense intra-com-

munal collaborative ties, the collaborations that span the community boundaries became

more common in this stage; and the previously ‘‘distant’’ communities become more likely

to be connected through ‘‘short-cut’’ paths, as a result of research topic convergence.

Combining the previous description together, Fig. 13 illustrates the overall process of

the co-evolution of the co-authorship network and the corresponding research field.

Viewing from the research field, the general trend is from disciplinary diversity to topic

convergence and fusion. This trend is inherently correlated with the evolution of the co-

authorship network from isolated clusters to chained-communities and then to a small-

world with cohesive core. More specifically, from Fig. 13a–c we can correlate the early-

stage growth of the giant component and the development of the EOC field. At this stage,

the researches and collaborations were basically disciplinarily bounded; but some common

topics had emerged. Through the merging and adsorption of the communities with similar

research topics and disciplinary backgrounds, the giant component emerged from the

previous isolated-clusters and a ‘‘chained-communities’’ structure was gradually formed.

Simultaneously, the EOC field largely developed within the disciplinary boundaries; but

the interdisciplinary collaborations had begun to appear around some shared interests.

Reflecting to the network structure, this stage is characterized by the rapid scaling-up of the

giant component. The steep descending of the clustering coefficient during the period from

2002 to 2004 in Fig. 7 is owing to the attenuation of triadic-closures during the expansion

of the giant component, while the interconnection of multiple communities into the giant

component significant increases the modularity. Figure 13d illustrates the stage for the

convergence of common topics from multiple disciplines in the examined research field. In

the same period, the network evolved from the chained-communities to the small-world,

with the steadily increasing of the modularity and clustering coefficient and the relative

stability of the average shortest-path-length.
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Discussion

Overall view on topological and temporal properties

Based on the previous examination, we can figure out the topological and temporal

properties of the co-authorship network in the interdisciplinary field of ‘‘evolution of

cooperation’’. The key findings can be summarized as follows.

First, after a long incubation period, this co-authorship network has explosively grown

in the new millennium. Meanwhile, the proportion of the giant-component in the whole

network increases in the last decade. Consequently, the co-authorship network gradually

evolves into a core-periphery structure, in which the giant component is the core and the

rest of the network is the periphery.

Second, focusing on the giant-component, three stages can be identified in the evolution

of the co-authorship network, namely ‘‘segregation’’, ‘‘chained-communities’’, and ‘‘small-

world’’. In other words, the giant component has gradually grown from a small cluster

towards a modular structure. In the early period for the modular structure to shape, the

modules or communities were linked one by one to form a ‘‘chain’’. Lately, with the

increase of the ‘‘short-cut’’ links between the theretofore remote communities, the giant

component has evolved into a ‘‘small-world’’.

Third, in the ‘‘small-world’’ stage, the giant component is not just a small-world; richer

topological structures can also be clarified. Generally, the node degrees obey a skewed

distribution that combines lognormal and power-law distributions. This reveals that the

giant component inherently contains a hierarchical structure in which the upper level is

comprised of a small-proportion of highly-connected authors and the lower level is

comprised of the majority of contributors, who are just with a small number of co-authors.

To some extent, the giant component has the characteristic of the ‘‘star-production’’ model

of scientific collaboration. But the ‘‘permeable boundary’’ or ‘‘structural cohesion’’ model,

as discussed in Moody’s (2004) work for the sociological collaboration network, can better

fit the structure of the giant component (1961–2013) of the examined network.

Furthermore we give a short explanation on the previously-observed growth of the co-

authorship network, especially the successive emergence of the ‘‘chained-communities’’ and

the ‘‘cohesive-core’’ in its giant component. As the examined field is rooted in diverse

disciplines ranging from biological science, social science, and complexity science, the

collaborations crossing disciplinary boundaries would be rare at the initial ‘‘segregation’’

stage. Hence, the initial merging of the local collaborative clusters is largely limited within

the disciplinary boundaries. At this stage, the collaboration network is characterized by small

clusters that are basically separated with one another. However, at this stage some small

clusters may become ‘‘nuclei’’ for the further growth of the network, which gives rise to the

formation of the structure of ‘‘chained-communities’’. This stage is basically characterized by

the growth of multiple communities from the previously-generated ‘‘nuclei’’ and the for-

mation of a chain to link the communities. At this stage, one community would be likely to

connect with another community which is disciplinarily-proximal to the first one, while the

links between two disciplinarily-remote communities are rare. The multiple communities

would then be better interconnected through the further rise of interdisciplinary collabora-

tions and convergence of research themes in later periods, leading to the emergence of the

modular and cohesive structure of the giant-component, in which the multiple ‘‘nuclei’’ are

redundantly interconnected with one another to form the cohesive core.

The above-described evolutionary mode of the co-authorship network has close con-

nection to the interdisciplinary nature of the examined research field. On one hand, the field
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of ‘‘evolution of cooperation’’ grows almost-simultaneously in multiple disciplines and

specialties. The diversity in disciplinary origins leads to the multiple ‘‘nuclei’’. On the

other hand, the trend of inter-disciplinary permeation and convergence propel the suc-

cessive emergence of the ‘‘chained-communities’’ and ‘‘cohesive-core’’ structures in the

giant component. The convergence of research subjects leads to the increase of trans-

disciplinary collaborations so that the disciplinary boundaries become ‘‘permeable’’. The

successive emergence of ‘‘chained’’ and ‘‘cohesive’’ structures is essentially the result of

joint function of the disciplinary diversity and the topic convergence. This evolutionary

mode has partially been examined in the previous correlation analysis on the network

evolution and the field growth.

Comparison with related work

As noted in the introduction section, the structure and evolution of scientific collaboration

networks have been extensively investigated in the last decade. Among them, Moody’s

(2004) and Lee et al.’s (2010) respective examinations on the collaboration networks in

Sociology and the ‘‘complex network research’’ field are particularly similar with this work,

as both contributions are focused on the structural cohesion in collaboration networks.

However, substantial differences exist between our work and these two contributions.

Moody’s work is on the collaboration network in ‘‘Sociology’’, which is a broad dis-

cipline that covers many specialty areas. Thus, containing 197,976 unique collaborators,

the network studied by Moody is much larger-scaled than the EOC network studied in this

paper. Despite the differences in disciplinary coverage and network size, it is noticeable

that both networks exhibit a steadily growing cohesive core. For the underlying mecha-

nisms, Moody speculatively ascribes the formation and growth of the cohesive core to

Abbott’s (2001) ‘‘competitive mixing’’ model. In contrast, we in this work examine the

asymptotic trail of the examined network. By tracking the structural evolution of the co-

authorship network from ‘‘separation’’ to ‘‘chained-communities’’ and then to ‘‘cohesive-

core’’, we hypothesize that the formation of cohesive structure is essentially driven by the

trans-disciplinary permeation and merging of research subjects. The dynamic view pre-

sented in this work may deepen the understanding on the formation of ‘‘permeable

boundaries’’ in interdisciplinary research fields.

For the network size and the scope of subject area, our work is more comparable to Lee

et al.’s (2010) work, which is on the co-authorship network in the field of ‘‘complex

network research’’(CNR). In the evolution of the CNR network, three stages are identified,

namely, ‘‘small isolated components’’, ‘‘tree-like giant component’’, and ‘‘large-scale

loops’’. The stage of ‘‘small isolated components’’ in the CNR network is quite similar with

the early ‘‘segregation’’ stage in the EOC network of our work. Nevertheless, in the second

stage of network evolution, we find a structure of ‘‘chained-communities’’ in the giant

component, rather than the ‘‘tree-like giant component’’ as exhibited in the CNR network.

In the third stage, the giant component of the EOC network evolves into a modular and

structurally-cohesive network, in which we do not find clear large-scale loops. It is,

therefore, evidential that the two networks evolve in different modes. The CNR network

studied by Lee et al. is basically constructed in terms of the papers that cite two pioneering

papers and three early review papers. In this sense, the constructed CNR network are more

focused, while the EOC network studied in this paper is more disciplinarily-diversed. Thus,

the represented differences provide partial evidence that an interdisciplinary co-authorship

network may evolve in different mode from a more disciplinarily-homogenous co-

authorship network. Essentially, the interdisciplinary network is more-likely to form a
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multi-centered structure; in comparison, the disciplinarily-homogenous field may tend to

have fewer ‘‘neclei’’ upon which a ‘‘tree-like’’ structure emerges.

Conclusion

In this paper, we study the structure and evolution of the co-authorship network in the

interdisciplinary field of ‘‘evolution of cooperation’’. Through structural and longitudinal

analysis, we find that this examined network gradually evolves into a ‘‘core-periphery’’

structure and that the ‘‘core’’ evolves from a small cluster (corresponding to the ‘‘segre-

gation’’ state of the whole network) to a structure of ‘‘chained-communities’’, and then to a

modular structure that contains a growing cohesive-core. When the giant-component

evolves into the structure of ‘‘cohesive core’’, it is generally a small-world which is

simultaneously modular, hierarchical, and cohesive, as summarized below.

First, the giant component can be considered as a small-world network, as it is highly modular

(i.e., with a clear community structure), highly transitive (i.e., with high clustering coefficient),

and small average shortest-path-length (i.e., logarithmic to the size of the giant component).

Second, the giant component inherently contains a hierarchical structure, owing to the

skewed distribution of the node degrees; and the preferential attachment mechanism plays

a vital for the formation of the skewed distribution.

Third, the hierarchy of the giant component can roughly be classified into two layers;

and the upper-layer form the ‘‘cohesive core’’, which is structurally comprised of redun-

dantly-interlinked clusters.

The previous structure may reflect the overall collaboration pattern in a typical inter-

disciplinary field. It is common that an interdisciplinary research field is both diverse and

focused. The disciplinary diversity often causes the formation of multiple collaboration

clusters, whereas the focused research topics may give rise to the permeation and inter-

connection of the different clusters. The interdisciplinary nature of the examined EOC field

may provide partial explanation for the observed structural properties and evolutionary

patterns. The results in this work may, therefore, provide revealing implications for the

structure and evolution of other interdisciplinary co-authorship networks, as well as the

corresponding collaboration modes of the fields themselves.

In all, in this paper we present a primitive attempt to deepen our understandings on the

collaboration modes in interdisciplinary research fields. Through the analysis of the

structural and temporal properties of the EOC co-authorship network, we have obtained a

few interesting and perhaps revealing points. But the present work, which is limited to the

data-analysis of a single case, is still far from a solid theory for explaining the social

dynamics of interdisciplinary co-authorships and the growth of the interdisciplinary fields.

A few ongoing endeavors to extend the present work are listed below. Firstly, in order to

extend the examination of the co-authorship network in the present work, we are to

examine the multiplex network that combines the co-authorship network with the corre-

sponding paper-citation network and keyword co-occurrence network. We expect such

extensive study may provide a more comprehensive view on the developments of the

examined interdisciplinary research field. Secondly, to complement the data-driven study

conducted in this work, we are to develop agent-based simulative models to further

investigate the social mechanisms that underlie the evolutionary schemes examined in this

paper. Finally, it can be conjectured that the phenomena shown in this work may reveal

some generic properties that can also be identified in some other interdisciplinary fields.

Further scholarly inquiries are deserved to examine other interdisciplinary fields, so as to
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test the generality of the structural characteristics and evolutionary trails observed in the

examined EOC field.
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Appendix

The basic information of communities in the giant component during typical periods.

In the following table, we list the communities and their major topical and belonging

authors for the communities identified in the years of 2002, 2003, 2004, and 2010, as

discussed in the subsection ‘‘correlating network evolution with field growth’’. To avoid

the table to be verbosely long, we just select the top 10 for the topical terms in each

community and the top 30 for the authors, given that the community is with more topical-

terms and more authors.

Period Community Major topical terms (top 10 in
terms of the occurrence
frequency)

Authors with (top 30 in terms of
author degree)

ID Size Number
of
papers

1961–2002 12 12 22 Public goods game; iterated
prisoner’s dilemma (ipd);
strategy; spatial game; indirect
reciprocity; heterogeneous
population; agent-based
simulation; tit for tat; social
insect; reactive strategies

Nowak, M.; Sigmund, K.;
Hauert, C.; May, R.M.; De
monte, S.; Hofbauer, J.;
Bohoeffer, S.; Page, K.M.;
Krebs, J.; Schuster, H.G.;
Wahl, L.M.; Stenull, O.

190 21 20 Group selection; strategy; tit for
tat; game theory (theory);
altruism; reciprocal altruism;
unrelated individual;
population structure; iterated
prisoner’s dilemma (ipd);
genetic kinship

Dugatkin, L.A.; Crowley, P.H.;
Wilson, D.S.; Alfieri, M.;
Sargent, R.C.; Provencher, L.;
Sloane, S.; Spohn, B.; Rogers,
L.; Cottrell, T.; Garcia, T.;
Hatch, M.; Stokes, B.J.; White,
J.M.; Farrand, L.; Wilkens,
R.T.; Mestertongibbons, M.;
Pollock, G.B.; Houston, A.I.;
Sober, E.; Mitteldorf, J.

239 7 1 Selfish; finite population; Clutton-brock, T.H.; O’riain,
M.J.; Brotherton, P.N.M.;
Gaynor, D.; Kansky, R.;
Griffin, A.S.; Manser, M.

270 7 4 Social exchange theory;
evolutionary psychology;
cognition; task; social
contracts; selection; role;
relevance; reciprocation; game
theory (theory)

Cosmides, L.; Tooby, J.; Stone,
V.E.; Kroll, N.; Knight, R.T.;
Fiddick, L.; Sugiyama, L.S.

342 7 10 Indirect reciprocity; reputation;
human; image scoring;
prisoner’s dilemma; tit for tat;
direct reciprocity; strategy;
public goods game; human
cooperation

Milinski, M.; Semmann, D.;
Bakker, T.C.M.; Krambeck,
H.J.; Wedekind, C.; Kulling,
D.; Braithwaite, V.A.
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Period Community Major topical terms (top 10 in
terms of the occurrence
frequency)

Authors with (top 30 in terms of
author degree)

ID Size Number
of
papers

313 5 2 Costly signaling; human;
strategy; signaling theory;
strong reciprocity; social
interaction; hunting; human
behavioral ecology; handicap
models; finite population

Smith, E.A.; Gintis, H.; Bowles,
S.; Bird, R.B.; Bird, D.W.

35 3 3 Kin-selection; social
relationship; reciprocal
altruism; grooming; vervet
monkey; social organization;
reciprocity; primate group;
papio cynocephalus ursinus;
genetic kinship

Seyfarth, R.M.; Cheney, D.L.;
Silk, J.B.

261 3 2 Social norm; human; strong
reciprocity; punishment;
human cooperation; altruistic
punishment; game theory
(theory); finite population;
enforcement

Fehr, E.; Gachter, S.;
Fischbacher, U.

137 3 2 Indirect reciprocity; image
scoring; good standing; finite
population; direct reciprocity

Leimar, O.; Enquist, M.;
Hammerstein, P.

1961–2003 375 39 38 Human; indirect reciprocity;
reputation; tit for tat; image
scoring; social exchange
theory; punishment; social
norm; coalition; reciprocal
altruism

Fehr, E.; Tooby, J.; Clutton-
brock, T.H.; Milinski, M.; Silk,
J.B.; Hammerstein, P.; Hagen,
E.H.; Mcelreath, R.; Fessler,
D.M.T.; Kosfeld, M.; Wilson,
M.I.; Cosmides, L.; O’riain,
M.J.; Brotherton, P.N.M.;
Gaynor, D.; Kansky, R.;
Griffin, A.S.; Manser, M.;
Stone, V.E.; Kroll, N.; Knight,
R.T.; Leimar, O.; Semmann,
D.; Bakker, T.C.M.;
Krambeck, H.J.; Seyfarth,
R.M.; Cheney, D.L.; Connor,
R.C.; Wedekind, C.; Gachter,
S.

376 30 38 Human; public goods game;
punishment; prisoner’s
dilemma; indirect reciprocity;
costly signaling; strategy;
spatial game; iterated
prisoner’s dilemma (ipd);
reputation

Sigmund, K.; Bowles, S.; Smith,
E.A.; Richerson, P.J.; Young,
H.P.; Hopfensitz, A.; Henrich,
J.; Boyd, R.T.; Weissing, F.J.;
Boyd, R.; Hauert, C.; Nowak,
M.; Gintis, H.; May, R.M.; De
monte, S.; Hofbauer, J.;
Bohoeffer, S.; Schuster, H.G.;
Page, K.M.; Bird, R.B.; Bird,
D.W.; Choi, J.K.; Brandt, H.;
Krebs, J.; Richerson, P.; Foster,
D.; Wahl, L.M.; Stenull, O.;
Traulsen, A.; Panchanathan, K.
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Period Community Major topical terms (top 10 in
terms of the occurrence
frequency)

Authors with (top 30 in terms of
author degree)

ID Size Number
of
papers

1961–2004 365 52 49 Human; reputation; social norm;
indirect reciprocity;
punishment; tit for tat;
reciprocity; kin-selection;
image scoring; human
cooperation

Fehr, E.; Silk, J.B.; Tooby, J.;
Clutton-brock, T.H.; Milinski,
M.; Hammerstein, P.; Hagen,
E.H.; Mcelreath, R.; Fessler,
D.M.T.; Kosfeld, M.; Wilson,
M.I.; Griffin, A.S.;
Fischbacher, U.; Cosmides, L.;
O’riain, M.J.; Brotherton,
P.N.M.; Gaynor, D.; Kansky,
R.; Manser, M.; De quervain,
D.J.F.; Treyer, V.;
Schelthammer, M.; Schnyder,
U.; Buck, A.; Stone, V.E.;
Kroll, N.; Knight, R.T.;
Leimar, O.; Semmann, D.;
Bakker, T.C.M.

366 46 56 Human; evolutionarily stable
strategy; prisoner’s dilemma;
indirect reciprocity; public
goods game; punishment;
continuous prisoner’s
dilemma; spatial game;
heterogeneous population;
direct reciprocity

Sigmund, K.; Bowles, S.; Smith,
E.A.; Richerson, P.J.; Young,
H.P.; Hauert, C.; Hopfensitz,
A.; Henrich, J.; Boyd, R.T.;
Weissing, F.J.; Nowak, M.;
Boyd, R.; Killingback, T.;
Mueller, U.G.; Bull, J.J.;
Doebeli, M.; Knowlton, N.; De
monte, S.; Hofbauer, J.; Herre,
E.A.; Rehner, S.A.; Sachs, J.L.;
Wilcox, T.P.; May, R.M.;
Schuster, H.G.; Bird, R.B.;
Bird, D.W.; Traulsen, A.; Choi,
J.K.

93 17 31 Indirect reciprocity; prisoner’s
dilemma; finite population;
reputation; strategy; repeated
game; learning theory; group
selection; evolution of
altruism; defector

Matsuda, H.; Yamamura, N.;
Sasaki, A.; Ogita, N.;
Fudenberg, D.; Nakamaru, M.;
Iwasa, Y.; Tamachi, N.; Sato,
K.; Taylor, C.; Nogami, H.;
Maskin, E.; Higashi, M.;
Kawata, M.; Wakano, J.Y.;
Kobayashi, Y.; Ohtsuki, H.

1961–2010 172 36 41 Tit for tat; altruism; group
selection; game theory
(theory); strategy; reciprocal
altruism; evolutionarily stable
strategy; mutualism;
punishment; prisoner’s
dilemma

Crowley, P.H.; Dugatkin, L.A.;
Wilson, D.S.; Houston, A.I.;
Mcnamara, J.M.; Alfieri, M.;
Sargent, R.C.; Provencher, L.;
Sloane, S.; Spohn, B.; Rogers,
L.; Cottrell, T.; Garcia, T.;
Hatch, M.; Stokes, B.J.; White,
J.M.; Leimar, O.; Farrand, L.;
Wilkens, R.T.; Dall, S.R.X.;
Barta, Z.; Fromhage, L.;
Stephens, P.A.;
Mestertongibbons, M.; Pollock,
G.B.; Connor, R.C.; O’gorman,
R.; Miller, R.R.; Eldakar, O.T.;
Farrell, D.L.

130 Scientometrics (2015) 103:101–134

123



Period Community Major topical terms (top 10 in
terms of the occurrence
frequency)

Authors with (top 30 in terms of
author degree)

ID Size Number of
papers

387 162 216 Evolutionary game theory;
prisoner’s dilemma; public
goods game; network;
evolutionarily stable strategy;
indirect reciprocity; direct
reciprocity; punishment; finite
population; spatial game

Nowak, M.; Wang, Long;
Traulsen, A.; Sigmund, K.;
Hauert, C.; Ohtsuki, H.; Fu,
Feng; Pacheco, J.M.; Iwasa,
Y.; Chen, Xiaojie; Santos,
F.C.; Killingback, T.;
Taborsky, M.; Rand, D.G.;
Fudenberg, D.; Nakamaru, M.;
Doebeli, M.; Pfeiffer, T.; Chu,
Tianguang; Dreber, A.;
Matsuda, H.; Hauser, M.;
Taylor, P.D.; Xie, Guangming;
Wu, Bin; Yamamura, N.; Bull,
J.J.; Sasaki, A.; Mueller, U.G.;
Brandt, H.

441 16 31 Prisoner’s dilemma; public
goods game; punishment;
network; evolutionarily stable
strategy; noise; graph theory;
social dilemma; scale free
network; impact

Szolnoki, A.; Szabo, G.; Perc,
M.; Helbing, D.; Wang, Zhen;
Xu, Zhaojin; Zhang,
Lianzhong; Stark, H.U.;
Huang Jianhua; Song,
Hongpeng; Vukov, J.; Danku,
Z.; Fath, G.; Yu, Wenjian;
Chadefaux, T.; Johansson, A.

453 11 11 Punishment; social network;
human; public goods game;
network; dictator game;
cooperative behavior;
experimental economics;
collective action; game theory
(theory)

Fowler, J.H.; Dawes, C.T.;
Johannesson, M.; Wallace, B.;
Cesarini, D.; Lichtenstein, P.;
Johnson, T.; Smirnov, O.;
Christakis, N.A.; Persson, B.;
Kam, C.D.

533 32 24 Punishment; altruism; strong
reciprocity; population
structure; kin-selection;
human; group selection;
genetic and cultural evolution
of cooperation; evolution of
altruism; biofilm

Thompson, C.R.L.; Feldman,
M.W.; Foster, K.R.; Santorelli,
L.A.; Villegas, E.; Svetz, J.;
Dinh, C.; Parikh, A.; Sucgang,
R.; Kuspa, A.; Strassmann,
J.E.; Queller, D.C.; Shaulsky,
G.; Lehmann, L.; Rousset, F.;
Roze, D.; Borenstein, E.;
Aoki, K.; Cavallisforza, L.L.;
Peck, J.R.; Kerr, B.; Godfrey-
smith, P.; Ratnieks, F.L.W.;
Kendal, J.; Wenseleers, T.;
Parkinson, K.; Ravigne, V.;
Nadell, C.D.; Xavier, J.B.;
Thomas, E.A.C.

556 6 4 Punishment; human; social
norm; human cooperation;
strong reciprocity; gene-
culture coevolution;
experiment; antisocial
punishment; societies;
reciprocity

Gachter, S.; Herrmann, B.;
Renner, E.; Sefton, M.;
Thoeni, C.; Gaechter, S.

Scientometrics (2015) 103:101–134 131

123



Period Community Major topical terms (top 10 in
terms of the occurrence
frequency)

Authors with (top 30 in terms of
author degree)

ID Size Number of
papers

572 39 31 Human; public goods game; kin-
selection; altruism;
punishment; siderophore;
inclusive fitness; strong
reciprocity; hamilton’s rule;
competition

Griffin, A.S.; West, S.A.;
Gardner, A.; Keller, L.;
Kuemmerli, R.; Buckling, A.;
Harrison, F.; Shuker, D.M.;
Reynolds, T.; Burton-chellow,
M.; Sykes, E.M.; Guinnee,
M.A.; Brockhurst, M.A.;
O’riain, M.J.; Brotherton,
P.N.M.; Gaynor, D.; Kansky,
R.; Manser, M.; Vos, M.;
Racey, D.; Colliard, C.;
Fiechter, N.; Petitpierre, B.;
Russier, F.; Floreano, D.;
Langer, P.; Van den berg, P.;
Inglis, R.F.; Oliver, A.; Perez-
uribe, A.

620 137 143 Human; punishment; reputation;
public goods game;
evolutionary stable strategy;
indirect reciprocity; altruistic
punishment; social norm;
altruism; strong reciprocity

Fehr, E.; Mcelreath, R.;
Henrich, J.; Gurven, M.;
Bowles, S.; Hill, K.; Silk, J.B.;
Marlowe, F.W.; Barr, A.;
Ensminger, J.; Henrich, N.S.;
Tracer, D.; Milinski, M.;
Boyd, R.; Tooby, J.; Gintis,
H.; Clutton-brock, T.H.;
Alvard, M.S.; Camerer, C.;
Gil-white, F.; Patton, J.Q.;
Richerson, P.J.; Ziker, J.;
Barrett, C.; Bolyanatz, A.;
Cardenas, J.C.; Gwako, E.;
Lesorogol, C.; Hammerstein,
P.; Fischbacher, U.

633 32 21 Chimpanzee; punishment;
public goods game; prisoner’s
dilemma; image scoring;
ultimatum game; social
network; smiling; network;
laughter

Dunbar, R.I.M.; Johnson,
D.D.P.; Melis, A.P.; Hare, B.;
Madsen, E.A.; Tunney, R.J.;
Fieldman, G.; Plotkin, H.C.;
Richardson, J.M.; Mcfarland,
D.; Tomasello, M.; Call, J.;
Woods, V.; Hastings, S.;
Wrangham, R.; Mcdermott,
R.; Tingley, D.; Cowden, J.;
Frazzetto, G.; Jensen, H.J.;
Marriott, A.; Duncan, N.D.C.;
Stopka, P.; Bell, J.; Stopka, P.;
Macdonald, D.W.; Burnham,
T.C.; Russell, Y.I.; Fedurek,
P.; Kudo, H.

764 4 2 Social preference; neural; finite
population; evidence

Camerer, C.F.; Tricomi, E.;
Rangel, A.; O’doherty, J.P.
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Period Community Major topical terms (top 10 in
terms of the occurrence
frequency)

Authors with (top 30 in terms of
author degree)

ID Size Number of
papers

773 27 36 Mutualism; indirect reciprocity;
altruism; punishment;
evolutionary stable strategy;
interaction; cleaner fish;
partner control; kin-selection;
image scoring

Bshary, R.; Noe, R.; Wright, J.;
Hamilton, I.M.; Palmer, C.T.;
Wright, S.A.; Cassidy, C.;
Vanpool, T.L.; Coe, K.;
Bergmueller, R.; Johnstone,
R.A.; Russell, A.F.; Voelkl,
B.; Heg, D.; Fruteau, C.; Van
damme, E.; Jutzeler, E.;
Mitchell, J.S.; Schuerch, R.;
Vanschaik, C.P.; Vanhooff, J.;
Grutter, A.S.; Raihani, N.J.;
Bronstein, J.L.; Cant, M.A.;
Kasper, C.; Bshary, A.

774 5 2 Social relationship; reciprocal
altruism; grooming; baboon;
vervet monkey; social
organization; papio
cynocephalus ursinus; kin-
selection; finite population;
female social relationships

Seyfarth, R.M.; Cheney, D.L.;
Moscovice, L.R.; Heesen, M.;
Mundry, R.
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