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Accurate  measurement  of  research  productivity  should  take  account  of both  the  number  of
co-authors  of every  scientific  work  and  of the  different  contributions  of  the  individuals.  For
researchers  in  the  life sciences,  common  practice  is  to  indicate  such  contributions  through
position  in  the  authors  list.  In  this  work,  we  measure  the  distortion  introduced  to  bib-
liometric  ranking  lists  for scientific  productivity  when  the  number  of  co-authors  or  their
position  in  the  list is  ignored.  The  field  of  observation  consists  of  all Italian  university  pro-
fessors  working  in  the  life  sciences,  with  scientific  production  examined  over  the  period
2004–2008.  The  outcomes  of  the  study  lead  to  a  recommendation  against  using  indica-
tors or  evaluation  methods  that  ignore  the different  authors’  contributions  to the research
results.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Evaluating the productive efficiency of research organizations and individual scientists is an exercise that is as important
as it is delicate. The principle indicator of efficiency for almost any activity is the labor productivity, or in very simple terms,
the relationship between output produced in a defined period and the hours of labor expended to produce it. As for any
measurement system, that for research productivity is subject to limits and approximations, which must be duly taken into
account considering the field and the intended use of the results. In particular, research activity has certain characteristics
that make it notably complicated to carry out accurate and robust measurement of labor productivity. We  first observe the
intangible nature of the output, and also consider that such outputs are generally obtained through collaboration of various
individuals, who may  or may  not be from the same organization or nation, and who  may  cooperate by contributing resources,
experience and competencies that are both similar and complementary. In evaluating the scientific activity of a researcher
or organization it is thus fundamental to identify the true contribution that the individual or institution has provided to
the various research results in which they have from time to time participated. In the scientific fields where codification

of results is primarily through publication in scientific journals, indexed in such databases as Web  of Science (WoS) or
Scopus, bibliometrics can be conveniently applied for large-scale evaluation of productivity. In this case, the contribution of
scientists and organizations to the individual publications can be recognized through the analysis of co-authorships.1 In the
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ife sciences, in particular, widespread practice is for the authors to indicate the various contributions to the results of the
ublished research by the positioning of the names in the authors list.

In this work, we propose to measure the distortions encountered in the evaluation of research productivity for single
ndividuals in Biology and Medicine when no consideration is given to the co-authors of a research work or to their order in
he list.

As much as taking account of both of these factors in comparative measurement of research productivity would seem
ogical, and even mandatory under the theory of production, it is not at all rare that they are partially or completely ignored.
n national research evaluation exercises with peer-review techniques, this is standard practice: for example in the UK
esearch Assessment Exercises (RAE) and in the Italian Triennial Evaluation Exercise (VTR), the peer evaluators are only
alled to judge the level of excellence of the products that the researchers submit, independent of true entity of the author’s
ontribution to their accomplishment. The same is true of the national exercises that, while conducted with bibliometric
echniques, examine only a share of the entire output (see the current Research Quality Evaluation Exercise, VQR, in Italy).
ven famous and widely used bibliometric performance indicators, such as the h-index (Hirsch, 2005) and the g-index (Egghe,
006), totally ignore any consideration of the contributions of the individual authors to the scientific product. Little attention
as been paid to advice from the inventors themselves, such as that from Hirsch (2005),  who warned that “subfields with
ypically large collaborations (e.g., high-energy experiment) will exhibit larger h values”, and further recommended that “in
ases of large differences in the number of co-authors, it may  be useful in comparing different individuals to normalize h
y a factor that reflects the average number of co-authors”. Little attention has also been paid to the specific corrections
roposed, such as the simple division of the h-index by the average number of co-authors included in the Hirsch core (Batista,
ampiteli, Kinouchi, & Martinez, 2006; Egghe, 2008; Schreiber, 2009, 2010), or consideration of the actual number of co-
uthors and the scientists’ relative position in the byline (Wan, Hua, & Rousseau, 2008). In spite of the above intrinsic limits,
e still see major bibliometric databases such as WoS  and Scopus provide the h-index of every author, and it is this that

cientists widely use to compare their personal performance against that of their peers, to the point that this index has now
ecome the regulated reference threshold for access to a professorial career in Italy, both for candidates and for members
f the national competition commissions (Ministerial decree 344, 4 August 2011).

In the literature, various scholars have addressed the theme of the analysis of co-authorship in evaluating scientists’
esearch performance. Van Hooydonk (1997) pointed out that the impact of a research unit can dramatically be affected
y the counting procedures. Carbone (2011) holds that “in general fractional counting is preferred because this does not

ncrease the total weight of a single paper”, and suggests that “the best way  to define a fractional counting of authorship
s to divide the number of citations received by each paper by the square root of the number of co-authors”. As early as
968, Zuckerman studied the patterns of name ordering in cases of multiple authorship involving Nobel laureates, and
oncluded that “ordering of author’s names is an adaptive device which symbolizes their relative contributions to research”.
ased on a random selection of 5686 chemistry papers from Current Contents volumes, Vinkler (2000) observed “only

 slight preference for the alphabetical listing of authors over other rankings”. In a previous work, Lukovits and Vinkler
1995) suggested that co-authors should declare their individual contributions to the research as percentages, and also
ntroduced a simple equation for calculating individual contribution scores for coauthors of multi-authored papers. More
ecently Verhagen, Wallace, Collins, and Thomas (2003) proposed a Quantitative Uniform Authorship Declaration (QUAD)
ystem that permits the reader to rapidly identify who contributed what. According to Bhandari, Einhorn, Swiontkowski,
nd Heckman (2003) “the answer, in the tradition of scientific transparency, is for authors to decide together their individual
ontributions and disclose these to their readers”. The author order “can reveal subtle patterns of scientific collaboration
nd provide insights on the nature of credit assignment among co-authors” (He, Ding, & Yan, 2012). Trueba and Guerrero
2004) proposed a formula that assigns relative values to each co-author according to their position in the list. Laurance
2006) suggests that “the individual making the greatest intellectual contribution is the lead author, followed sequentially
y those making progressively lesser contributions. In addition, the final-author slot is sometimes reserved for a lab head or
roject initiator, who may  have made little direct contribution to the paper but deserves some vague honor nonetheless”.

n practice, different patterns are followed in ordering the authors list, from simple alphabetical order to sequences that
ignal the varying importance of the contributions from individual authors, a pattern which is particularly common in the
ife sciences.

There is increasing agreement among bibliometricians on the desirability of taking account of co-authorship through
ractional counting, though there are still differences over the most appropriate fraction to assign to each co-author.

This work is not precisely concerned with establishing the most appropriate value to assign to contributions from co-
uthors in the life sciences. Rather after choosing fixed, but potentially “fine-tunable”, criteria to assign different weight
o the various positions in the list, the objective we set is to measure the extent of the distortion in performance ranking
hen the number of co-authors and their order are totally ignored. In Italy, there are no fixed guide-lines establishing the
rder of names in the authors list for the life sciences, even though some important academic lobbying bodies have officially
ronounced themselves in favor.2 The Italian National University Council states that the medical sciences are characterized
y “scientific works that are prevailingly by multiple authors, in which the first and last authors are generally the leader of

2 http://www.cun.it/media/100033/area6.pdf, last access Oct. 17, 2012.
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the specific research and the leader of the entire research group, and where in certain fields the second name indicates the
co-leader of the specific research”. In effect, widespread practice is that the position of first author falls to the “idea generator”
and person who executes the bulk of the work, while the last position is assigned to the overall working-group leader. In the
case of multiple authors from more than one institution, with similar contributions to the research, the indication of second
and second-last authors also becomes significant. In general, if the position of the first author is assigned to one organization,
the last name listed will be that of the group leader from the other institution, and the positions of second and second-last
authors are then assigned in the opposite manner.

In the current work we will calculate the research performance of individual professors and draw up a total of six ranking
lists, three for each of two types of bibliometric indicators, based on number of publications and number of citations: i) a
list that takes account of both number of co-authors of each publication and their position in the list; ii) a list that does
not consider position; iii) one that does not consider co-authorship in any way. The field of observation is the 2004–2008
research production by professors in Biology and Medicine from all Italian universities.

The next section of our paper illustrates the methodology and dataset used for the analyses. Section 3 presents the results
concerning the correlations between the ranking lists, the analysis of shifts in position in the classifications, and a deeper
examination concerning the “above-median” and top 10% of scientists. The work concludes with a summary of the results
and the authors’ considerations.

2. Methodology

2.1. Measuring research productivity

Research activity is a production process in which the inputs consist of human, tangible (scientific instruments, materials,
etc.) and intangible (accumulated knowledge, social networks, etc.) resources, and where outputs have a complex character
of both tangible nature (publications, patents, conference presentations, databases, protocols, etc.) and intangible nature
(tacit knowledge, consulting activity, etc.). The new-knowledge production function therefore has a multi-input and multi-
output character. The principal efficiency indicator of any production system is labor productivity. To calculate it we need to
adopt a few simplifications and assumptions. In the hard sciences, including life sciences, the prevalent form of codification
of research output is publication in scientific journals. As a proxy of total output in this work we consider only publications
(articles, article reviews and proceeding papers) indexed in the WoS. The other forms of output which we neglect are often
followed by publications that describe their content in the scientific arena, so the analysis of publications alone actually
avoids a potential double counting.

When measuring labor productivity, if there are differences in the production factors available to each scientist then one
should normalize by them. Unfortunately, relevant data are not available at individual level in Italy. The first assumption
then is that resources available to professors within the same field of observation are the same. The second assumption is
that the hours devoted to research are more or less the same for all professors. In Italy the above assumptions are acceptable
because in the period of observation, core government funding was input oriented and distributed to satisfy the resource
needs of each and every university in function of their size and activities. Furthermore, the hours that each professor has
to devote to teaching are established by national regulations and are the same for all. As noted above, research projects
frequently involve a team of researchers, which shows in co-authorship of publications. Productivity measures then need to
account for the fractional contributions of scientists to their outputs. In the life sciences, the position of co-authors in the list
reflects the relative contribution to the project and needs to be weighted accordingly. Furthermore, because the intensity of
publications varies across fields (Abramo, D’Angelo, & Di Costa, 2008), in order to avoid distortions in productivity rankings,
one must compare researchers within the same field. A prerequisite of any distortion-free research performance assessment
is thus a classification of each researcher in one and only one field. In fact, in the Italian university system all professors
are classified in one field. This feature of the Italian higher education system is unique in the world. In the hard sciences,
there are 205 such fields (named scientific disciplinary sectors, SDSs3), grouped into nine disciplines (named university
disciplinary areas, UDAs4). Since it has been demonstrated that productivity of full, associate and assistant professors is
different (Abramo, D’Angelo, & Di Costa, 2011), and academic rank determines differentiation in salaries, comparisons of
research performance should be differentiated by academic rank.

2.2. Indicators
A very gross way to calculate the average yearly labor research productivity is to simply measure the weighted fractional
count of publications per researcher in the period of observation and divide it by the full-time equivalent of work in
the period. A more sophisticated way to calculate productivity recognizes the fact that publications, embedding the new

3 The complete list is accessible on http://attiministeriali.miur.it/UserFiles/115.htm, last accessed Oct. 17, 2012.
4 Mathematics and computer sciences; physics; chemistry; earth sciences; biology; medicine; agricultural and veterinary sciences; civil engineering;

industrial and information engineering.

http://attiministeriali.miur.it/UserFiles/115.htm
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nowledge produced, have different values. Their value depends on their impact on scientific advancements. As proxy of
mpact, bibliometricians adopt the number of citations for the researchers’ publications.

However, comparing researchers’ performance by field and academic rank is not enough to avoid distortions in rankings.
n fact citation behavior also varies across fields, and it has been shown (Abramo & D’Angelo, 2011) that it is not unlikely that
esearchers belonging to a particular scientific field may  also publish outside that field (a typical example is statisticians,
ho may  apply their theory to medicine, physics, social sciences, etc.). For this reason we  standardize the citations for each
ublication5 accumulated at June 30, 2009 with respect to the median6 for the distribution of citations for all the Italian
ublications of the same year and the same subject category7.

We consider two types of average yearly productivity measures at the individual level: a gross one based on publication
ounts, named weighted fractional output, WFO; and a more sophisticated one based on field-normalized citations, named
eighted fractional impact, WFI. In formulae:

WFO  = 1
t

·
N∑

i=1

wi (1)

here wi is the weight as co-author of publication i. Different weights are given to each co-author according to their position
n the list and the character of the co-authorship (intra-mural or extra-mural). If first and last authors belong to the same
niversity, 40% of the publication is attributed to each of them; the remaining 20% are divided among all other authors. If the
rst two and last two authors belong to different universities, 30% of the publication is attributed to first and last authors;
5% of the publication is attributed to second and second-last author; the remaining 10% is divided among all others.8 N is
he number of publications of the researcher in the period of observation. t is the number of years of work of the researcher
n the period of observation.

WFI  = 1
t

·
N∑

i=1

Ci

Mei
∗ wi (2)

here ci is the citations received by publication i; Me  is the median of the distribution of citations received for all Italian
ited-only publications of the same year and subject category of publication i; N is the same as above and wi is the same as
bove; t is the same as above.

Based on the above indicators, we measure a further 4:2, FO and FI, eliminating the weighting that takes account of the
osition in the list of co-authors; and two, O and I, eliminating the fractional count that takes account of co-authors. For each

ndicator, we then elaborate professor-ranking lists for each SDS and academic rank. To compare productivity of professors
elonging to different SDSs and academic ranks, we express their productivity on a percentile scale of 0–100 (worst to best)
or comparison with the performance of all Italian colleagues of the same academic rank and SDS.

.3. Dataset

Data on research staff of each university and their SDS classification are extracted from the database on Italian university
ersonnel, maintained by the Ministry for Universities and Research.9 The bibliometric dataset used to measure productivity

s extracted from the Italian Observatory of Public Research (ORP),10 a database developed and maintained by the authors
nd derived under license from the Thomson Reuters WoS. Beginning from the raw data of the WoS, and applying a complex
lgorithm for reconciliation of the author’s affiliation and disambiguation of the true identity of the authors, each publication
s attributed to the university scientist or scientists that produced it (D’Angelo, Giuffrida, & Abramo, 2011).

We use two datasets for our analysis, both built by beginning with all professors that meet the following two  conditions:
i) they belong to the SDSs in the Biology and Medicine UDAs (Appendix A), where bibliometric techniques provide a robust

alculation of productivity11 and where the number of professors per academic rank is equal to or greater than 10; and
ii) they held their position for at least three years during the period 2004–2008. The datasets then differentiate for a third
ondition. For the analysis of WFO, the condition is that the professors had at least one publication during the period; while

5 While Vinkler (2012) supports the “ratio of the sums” method, we have always preferred the “new crown indicator”, even before it was corrected by
he  CWTS bibliometricians after criticism from Opthof and Leydesdorff (2010) concerning the statistical normalization of the “old” indicator.

6 We standardize citations by the median, because as frequently observed in literature (Lundberg, 2007), standardization of citations with respect to
edian value rather than to the average is justified by the fact that distribution of citations is highly skewed in almost all disciplines. However, there is not

et  agreement among bibliometrician on the most efficient scaling factor.
7 The subject category of a publication corresponds to that of the journal where it is published. For publications in multidisciplinary journals the scaling

actor  is calculated as a weighted average of the standardized values for each subject category.
8 The weighting values for both this indicator and the WFI  indicator below were assigned based on the results of interviews with top Italian professors

n  the life sciences. The values could be changed to suit different practices in other national contexts.
9 http://cercauniversita.cineca.it/php5/docenti/cerca.php. Last accessed on Oct. 17, 2012.

10 www.orp.researchvalue.it. Last accessed on Oct. 17, 2012.
11 To ensure the representativity of publications as proxy of the research output, the field of observation was  limited to those SDSs where at least 50% of
esearchers produced at least one WoS-indexed publication in the period 2004–2008.

http://cercauniversita.cineca.it/php5/docenti/cerca.php
http://www.orp.researchvalue.it/
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Table  1
Datasets for the analysis.

UDA SDSs Publicationsa Citations WFO  WFI

Professors Universities Professors Universities

Biology 19 27,600 218,105 4718 62 4652 61
Medicine 43 50,331 407,311 8940 53 8740 53

Total  62 70,740b 563,201b 13,658 63 13,392 62

a Number of publications authored by at least one academic professor of the UDA.
b
 The value differs from the sum of the two previous lines as a result of multiple counts related to publications coauthored by both biology and medicine

professors.

for the analysis of WFI  it is that their overall publications achieved at least one citation. In fact, for the purposes of our
project it would not make sense to consider professors with nil output or citations, given that this means nil productivity,
independent of the choice of indicator. Overall, the first dataset includes 13,658 professors belonging to 63 universities, and
the second counts 13,392 professors belonging to 62 universities. The SDSs analyzed are 19 in Biology and 43 in Medicine
(Table 1).

3. Results

In this section we will present the results from the comparisons between the different productivity ranking lists. Compar-
isons are between the ranking lists derived from the same type of productivity indicator: those based on simple publication
count (WFO, FO, O) and those based on standardized citations (WFI, FI, I). The ranking lists are prepared for each SDS and
academic rank. We  begin with the correlation analyses between the ranking lists; continue with the analyses of shifts in
position when changing from ranking under one indicator to rankings under another, and conclude with a deeper analysis
of the shifts in position for the above median and top 10% of scientists.

3.1. Correlation analysis

The correlation analyses between the ranking lists for each of the three impact-based productivity indicators show
significant and strong correlation for all three comparisons (Table 2). The highest overall correlation is between indicators
FI and I (0.956 for general correlation, 0.949 for Biology and 0.960 for Medicine), followed by the correlation between WFI
and FI (0.922 for general correlation, 0.931 for Biology and 0.917 for Medicine) and WFI  and I (0.872 for general correlation,
0.884 for Biology and 0.869 for Medicine).

The ranking lists for productivity indicators based on publication count again show significant and strong correlations
(Table 3). The highest average correlation is for indicators FO and O (0.937 for general correlation, 0.920 for Biology and
0.946 for Medicine), followed by the correlation between WFO  and FO (0.923 for general correlation, 0.925 for Biology and
0.922 for Medicine) and WFO  and O (0.866 for general correlation, 0.856 for Biology and 0.871 for Medicine).

We observe that in both cases, the weakest correlation is between the “complete” indicator and the one that ignores both

the co-authors and their position in the list.

Table 2
Correlation analyses between ranking lists for productivity indicators based on impact, per UDA and SDS.

WFI-I WFI-FI FI-I

Biology
Observations 4652 4652 4652
General correlation 0.879 0.932 0.949
Max  correlation 0.950 (BIO/15) 0.977 (BIO/05) 0.979 (BIO/15)
Min  correlation 0.764 (BIO/18) 0.886 (BIO/18) 0.884 (BIO/18)

Medicine
Observations 8740 8740 8740
General correlation 0.869 0.917 0.960
Max  correlation 0.914 (MED/14) 0.953 (MED/39) 0.977 (MED/24)
Min  correlation 0.721 (MED/22) 0.762 (MED/22) 0.923 (MED/32)

Total
Observations 13,392 13,392 13,392
General correlation 0.872 0.922 0.956
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Table 3
Correlation analyses between ranking lists for productivity indicators based on publication count, per UDA and SSD.

WFO-O WFO-FO FO-O

Biology
Observations 4718 4718 4718
General correlation 0.856 0.925 0.920
Max  correlation 0.928 (BIO/07) 0.976 (BIO/07) 0.972 (BIO/15)
Min  correlation 0.705 (BIO/08) 0.873 (BIO/12) 0.745 (BIO/08)

Medicine
Observations 8940 8940 8940
General correlation 0.871 0.922 0.946
Max  correlation 0.943 (MED/16) 0.962 (MED/16) 0.972 (MED/24)
Min  correlation 0.670 (MED/46) 0.765 (MED/46) 0.905 (MED/37)

Total
Observations 13,658 13,658 13,658
General correlation 0.866 0.923 0.937

3
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Fig. 1. Distributions of changes in position for Biology professors under FI and I ranking lists, under WFI  and FI lists, and WFI–I lists.

.2. Analysis of changes in position under ranking lists for different indicators of impact

In this section we compare the ranking lists for each of the three impact indicators, observing the changes in position of
he scientists in each UDA. In Biology (Fig. 1), 54.8% of changes in position between the FI and I ranking lists are distributed
ithin the interval [0;5].

For the same interval, the changes in position between WFI  and FI lists descend to 44.9%, and for WFI-I to 34.3%. We  also
bserve that the FI-I changes in list position feature a very high peak corresponding to the lowest shifts and a quite short
ight tail corresponding to increasing values of shifts. The highest shifts in position appear with greatest frequency in the
omparison between WFI  and I ranking lists.
In Medicine (Fig. 2), 59.4% of the shifts in position between FI and I fall within the interval [0:5]; the shifts in the same
nterval for the WFI-FI comparison drop to 42.5%, and for WFI-I to 33.9%. We  also observe that the distribution of shifts
etween FI and I features a still higher peak than Biology, in correspondence with the lowest values of shift, with a quite

Fig. 2. Distributions of changes in position for Medicine professors under FI and I ranking lists, under WFI  and FI lists, and WFI-I lists.
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Table  4
Percentage of scientists who  change quartile (1 to 4, best to worst) when changing from WFI  to I ranking list.

Biology Medicine

I I

1 2 3 4 1 2 3 4

WFI 1 19.8 5.4 0.2 0.0 1 19.7 5.7 0.4 0.0
2  4.5 13.2 6.7 0.4 2 4.4 12.6 7.3 0.6

3  0.7 4.9 13.3 6.4 3 1.1 5.1 12.0 7.3
4  0.2 1.0 4.6 18.6 4 0.0 1.1 5.1 17.7

short right tail corresponding to increasing values of shift. Again as in Biology, the larger shifts in position occur with greatest
frequency in the comparison between WFI  and I ranking lists.

We next compare only the ranking lists for WFI  and I, in both Biology and Medicine (Table 4), measuring the percentage of
scientists who classify in a different quartile (1–4 scale, best to worst quartile). We  observe that in Biology, 35.0% of scientists
would change quartile: 4.5% would drop from first under the WFI  ranking list to second quartile under the I list; 6.7% would
drop from second to third quartile, and 6.4% from third to fourth. Shifts of two  quartiles are very rare, with the most frequent
(1.0%) being from the fourth to second quartile.

Medicine registers still more relevant shifts, with 38.0% of scientists shifting a quartile: 5.7% would drop from first to
second, 7.3% from second to third, and 7.3 from third to fourth quartile. A two-quartile shift occurs for a maximum of 1.1%
of scientists.

We next conduct a finer analysis of the shifts in position between the percentile ranking lists for all the impact indicators,
in each SDS of the two disciplines. Table 5 presents the descriptive statistics for the SDSs that register the maximum values.
In Biology, the highest average value of percentile shift (10.6) occurs in the comparison between the ranking lists for WFI  and
I, and the SDS with the highest average shift value (14.3) is BIO/02 (Systematic botany). The highest single shifts are in BIO/18
(Genetics), with a shift of 81.5 between WFI  and I, and 53.8 between WFI  and FI, meaning that high performers under one
ranking list would be low in the other list. In Medicine, the shifts in position between WFI  and I are more accentuated than
in Biology. The highest overall average percentile shift (11.2) occurs in the comparison between these lists, and the highest
average shift for an individual SDS (17.2, for MED/22 – Vascular Surgery) also occurs between WFI  and I. Still comparing the
WFI  and I lists, the maximum shift (57.5) occurs in MED/30 (Eye diseases), while in the comparison between WFI  and FI lists
the maximum shift (56.7) is in MED/06 (Medical oncology).

3.3. Analysis of changes in position under ranking lists for different indicators of output

In this section we repeat the same analyses as above, but now for the indicators of output. In Biology (Fig. 3), 42.3% of the
shifts in position between the ranking lists for FO and O fall within interval [0;5], the shifts in the same interval for the WFO
to FO comparison drop to 46.5%, and for WFO-O to 32.7%. We  also observe that the distribution of shifts between FO and O
features a peak corresponding to the lowest values of shift and a quite short right tail corresponding to increasing values of
shift. The highest shifts in position occur with greater frequency in the comparison between the WFO  and O ranking lists.

In Medicine (Fig. 4), 48.0% of the shifts in position between FO and O ranking lists fall within interval [0;5]; the shifts in
the same interval for the WFI-FI comparison drop to 44.8%, and for WFO-O to 33.7%. We  also observe that the distribution

of shifts between FO and O features a peak in correspondence with the lowest values of shift, with a quite short right tail in
correspondence with increasing values of shift. The greatest shifts in position occur with more frequency in the comparison
between the WFO  and O ranking lists.

Table 5
Descriptive statistics for distributions of percentile differences of professors’ productivity rankings, per impact indicator.

WFI-I WFI-FI FI-I

Biology
Avg. shift in rank 10.6 7.8 6.5
Max  avg. shift in rank 14.3 (BIO/02) 10.1 (BIO/19) 9.2 (BIO/18)
Max  shift in rank 81.5 (BIO/18) 53.8 (BIO/18) 67.7 (BIO/18)
Min  stand. dev. of shifts in rank 6.1 (BIO/15) 4.2 (BIO/05) 4.4 (BIO15)
Max  stand. dev. of shifts in rank 14.5 (BIO/18) 9.8 (BIO/18) 11.0 (BIO/08)

Medicine
Avg  shift in rank 11.2 8.8 5.6
Max  avg shift in rank 17.2 (MED/22) 15.7 (MED/22) 8.1 (MED/32)
Max  shift in rank 57.5 (MED/30) 56.7 (MED/06) 65.0 (MED/36)
Min  stand. dev. of shifts in rank 8.0 (MED/14) 6.2 (MED/17) 4.4 (MED/40)
Max  stand. dev. of shifts in rank 14.1 (MED/22) 13.3 (MED/22) 8.9 (MED/32)
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Fig. 3. Distributions of changes in position for Biology professors under FO and O, WFO-FO and WFO-O ranking lists.
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Fig. 4. Distributions of changes in position for Medicine professors under FO and O, WFO-FO and WFO-O ranking lists.

We  next compare the ranking lists for WFO  and O in Biology and Medicine, measuring the percentage of scientists that
lassify in a different quartile (Table 6). We  see that in Biology, 37.8% of scientists would change quartile: 4.4% would drop
rom first quartile under the WFI  ranking list to second under I; 5.8% would drop from second to third, and 4.9% from third
o fourth quartile. Shifts of two quartiles are very rare, with the most frequent (1.6%) being between fourth and second.

In Medicine, 35.6% of scientists would change quartile: 4.3% drop from first to second, 5.6% from second to third, and 4.9%
rom third to fourth quartile. A two quartile shift occurs for a maximum of 1.4% of scientists, with the jump from fourth to
econd quartile.

We next conduct a finer analysis of the shifts in position between the percentile ranking lists for all the indicators of
utput, in each SDS of the two disciplines. Table 7 presents the descriptive statistics for the SDSs that register the maximum
alues. In Biology, the highest average value of shift in percentile (11.6) occurs in the comparison between ranking lists
or WFO  and O, and the SDS with the highest average value of shift (17.7%) is BIO/18 (Anthropology). Still comparing the

FO  and O lists, the maximum shift (73.8) occurs in BIO/18 (Genetics), while in the comparison between WFO  and FO
he maximum shift (60.0) occurs in BIO/12 (Clinical biochemistry and molecular biology). In Medicine, the highest overall

verage shift in percentile (11.0) is seen in the comparison of lists for WFO  and O, and the SDS with the highest average
alue of shift (19.7) is MED/46 (Medical laboratory technique). In the comparison between ranking lists for WFO  and O, the
aximum shift (68.0) occurs in MED/22 (Vascular Surgery), while in the WFO  to FO comparison the maximum shift (55.6)

s in MED/23 (Cardiac surgery).

able 6
ercentage of scientists who change quartile when changing from WFO  to O ranking list.

Biology Medicine

O O

1 2 3 4 1 2 3 4

WFO 1 20.3 4.4 0.4 0.1 1 20.6 4.3 0.3 0.0
2  5.0 13.2 5.8 0.5 2 4.9 13.4 5.6 0.4
3 1.0  7.1 12.0 4.9 3 0.7 6.2 13.0 4.9
4 0.2  1.6 6.9 16.7 4 0.0 1.4 6.8 17.2
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Table  7
Descriptive statistics for distributions of percentile differences of professors’ productivity rankings, per output indicators.

WFO-O WFO-FO FO-O

Biology
Avg. shift in rank 11.6 8.0 8.6
Max  avg. shift in rank 17.7 (BIO/08) 10.4 (BIO/04) 15.7 (BIO/08)
Max  shift in rank 73.8 (BIO/18) 60.0 (BIO/12) 72.3 (BIO/18)
Min  stand. dev. of shifts in rank 7.6 (BIO/07) 4.4 (BIO/07) 5.6 (BIO/15)
Max  stand. dev. of shifts in rank 13.5 (BIO/08) 10.7 (BIO/12) 13.5 (BIO/08)

Medicine
Avg.  shift in rank 11.0 8.3 7.1
Max  avg. shift in rank 19.7 (MED/46) 16.5 (MED/46) 9.4 (MED/37)
Max  shift in rank 68.0 (MED/22) 55.6 (MED/23) 64.3 (MED/04)

Min  stand. dev. of shifts in rank 6.8 (MED/16) 5.6 (MED/16) 5.0 (MED/35)
Max  stand. dev. of shifts in rank 14.6 (MED/46) 12.6 (MED/46) 9.7 (MED/37)

3.4. Analysis of changes in position for above-median and top 10% of scientists

In this section we focus on the changes in position for two  particularly important subgroups of scientists: those that place
above the median or in the top 10% of the ranking list. We  see which percentage of scientists in each subgroup would change
position in a ranking list when switching from one indicator to another. For the indicators of impact (Table 8), switching from
the ranking list for WFI  to the one for simple I, 31.8% of the top 10% of scientists in biology and 31.3% of those in Medicine
would no longer be “top”, while 14.6% of those above median in Biology and 16.4% of those in Medicine would drop below.
The like percentages are reduced in the comparison based on the other indicators.

For the indicators of output (Table 9), the highest percentages of scientists who would no longer be top 10% or above
median are again registered in the switch from the ranking list for WFO  to that for O. A full 31.0% of top 10% researchers in
Biology and 26.7% of those in Medicine would no longer be “top”, while 13.6% of the above median in Biology and 12.8% of
those in Medicine would drop below median.

3.5. Conclusions

There is a rapidly increasing tendency to evaluate the research activity of individual scientists, research groups, and entire
organizations, as a support instrument for improving efficiency in national research systems. Evaluation at the individual
level informs recruitment, incentive systems and selective resource allocation. Bibliometrists are thus called on to refine
techniques and indicators that can render the evaluation tools every more accurate and robust. The different contributions of
the specific authors in realizing scientific advancement through co-authorship must certainly be taken account in individual
evaluation. In the life sciences, there are widespread and consolidated practices to signal the different contributions of
the individual authors to the research results. Many bibliometric indicators and national evaluation exercises ignore this
important specificity of the life sciences, failing to consider the order of the co-authors and even their number. In this work
we have indicated an order of magnitude for the distortion in performance ranking that occurs under such circumstances.
The benchmark indicators we used to measure labor productivity are the less refined weighted fractional output, WFO,
and the more sophisticated weighted fractional impact, WFI. Beginning from each of the main indicators, we  measured
another four: two, FO and FI, eliminate the weighting that takes account of position in the co-authors list; a further two,

Table 8
Percentages of above-median and top 10% scientists who  do not remain such with change in the impact indicator.

From-to Biology Medicine

No longer top 10% scientists (%) No longer above median (%) No longer top 10% scientists (%) No longer above median (%)

WFI-I 31.8 14.6 31.3 16.4
WFI-FI 19.8 10.7 21.3 13.1
FI-I  24.9 8.7 20.6 7.8

Table 9
Percentages of above-median and top 10% scientists who  do not remain such with change in the output indicator.

From-to Biology Medicine

No longer top 10% scientists (%) No longer above median (%) No longer top 10% scientists (%) No longer above median (%)

WFO-O 31.0 13.6 26.7 12.8
WFO-FO 17.8 11.7 19.9 11.2
FO-O 27.3 9.0 20.6 7.3
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 and I, eliminate the fractional count that provides for the number of co-authors. Comparison to the ranking list for each
ndictor, for each field of research and academic rank, permitted us to reveal the shift from the respective benchmarks.

The extent of distortion is considerable, even for the indicators that retain consideration of co-authors but do not take
ccount of their different contributions: in the case of the measures based on impact indicators (comparison WFI-FI), the
verage shift in percentile rank is 7.8 for Biology and 8.8 for Medicine, with peaks of maximum shift in rank of up to 53.8 (in
IO/01) for Biology and 56.7 (in MED/06), for Medicine.

The distortions are still more evident when the indicators do not take account of the number of co-authors (comparison
FI-I): the average shift in percentile rank is 10.6 for Biology and 11.2 for Medicine, with peaks of maximum rank shift equal

o 81.5 in BIO/18 and 57.5 in MED/30. Not taking account of the number of co-authors would result in a full 31.8% of the top
0% scientists in Biology and 31.3% of those in Medicine no longer being recognized as such, while 14.6% of above-median
esearchers in Biology and 16.4% of those in Medicine would then be classified as below the median. Similar values are seen
n the comparison based on indicators of output.

In a context where collaboration in research is ever more the norm (98.2% of Italian university articles in Biology and
edicine are in co-authorship and 93.6% show more than two authors), it is evident that using bibliometric indicators that

gnore the contribution of each individual author leads to the introduction of distortions that can: (a) notably reduce the
ccuracy and reliability of the measure; (b) undermine the effectiveness of the entire evaluation process; and, according to
he uses made and (c) compromise the results at the micro- and macro-economic level.

The evidence from this study should inspire caution concerning the use of widely-diffused indicators in the scientific
orld (such as the h-index and others) that do not take account, among other considerations, of the number of co-authors.

he same can be said for peer-review methodologies applied to the evaluation of individuals and organizations that, in the
nalysis of the quality of a share of scientific production (such as in the UK RAE and others), then ignore the order and
umber of co-authors in the products evaluated.

ppendix A.

UDA SDS code SDS title UDA SDS code SDS title

Medicine MED/01 Medical Statistics Biology BIO/01 General Botany
MED/02 History of Medicinea BIO/02 Systematic Botany
MED/03 Medical Genetics BIO/03 Environmental and Applied Botany
MED/04 General Pathology BIO/04 Vegetal Physiology
MED/05 Clinical Pathology BIO/05 Zoology
MED/06 Medical Oncology BIO/06 Comparative Anatomy and Cytology
MED/07 Microbiology and Clinical Microbiology BIO/07 Ecology
MED/08 Pathological Anatomy BIO/08 Anthropology
MED/09 Internal Medicine BIO/09 Physiology
MED/10 Respiratory Diseases BIO/10 Biochemistry
MED/11 Cardiovascular Diseases BIO/11 Molecular Biology
MED/12 Gastroenterology BIO/12 Clinical biochemistry and molecular biology
MED/13 Endocrinology BIO/13 Applied Biology
MED/14 Nephrology BIO/14 Pharmacology
MED/15 Blood Diseases BIO/15 Pharmaceutical Biology
MED/16 Rheumatology BIO/16 Human Anatomy
MED/17 Infectious Diseases BIO/17 Histology
MED/18 General Surgery BIO/18 Genetics
MED/19 Plastic Surgery BIO/19 General Microbiology
MED/20 Pediatric and Infant Surgery
MED/21 Thoracic Surgery
MED/22 Vascular Surgery
MED/23 Cardiac Surgery
MED/24 Urology
MED/25 Psychiatry
MED/26 Neurology
MED/27 Neurosurgery
MED/28 Odonto-Stomalogical Diseases
MED/29 Maxillofacial Surgery
MED/30 Eye Diseases
MED/31 Otorhinolaryngology
MED/32 Audiology
MED/33 Locomotory Diseases
MED/34 Physical and Rehabilitation Medicineb
MED/35 Skin and Venereal Diseases
MED/36 Diagnostic Imaging and Radiotherapy
MED/37 Neuroradiology
MED/38 General and Specialized Pediatrics
MED/39 Child Neuropsychiatry
MED/40 Gynecology and Obstetrics
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UDA SDS code SDS title UDA SDS code SDS title

MED/41 Anesthesiology
MED/42 General and Applied Hygiene
MED/43 Legal Medicinea

MED/44 Occupational Medicine
MED/45 General, Clinical and Pediatric Nursingb

MED/46 Laboratory Medicine Techniques
MED/47 Nursing and Midwiferya

MED/48 Neuropsychiatric and Rehabilitation Nursingb

MED/49 Applied Dietary Sciencesb

MED/50 Applied Medical Sciences
a SDSs excluded from the database because bibliometric techniques are not sufficiently robust to calculate productivity
b SDSs excluded because they have less than 10 professors for each academic rank
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