
11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 1/8

Mission Editorial Committee Process and Structure Code4Lib

Issue 31, 2016-01-28

Video Playback Modifications for a DSpace Repository
This paper focuses on modifications to an institutional repository system using the open source DSpace software to support playback of digital videos
embedded within item pages. The changes were made in response to the formation and quick startup of an event capture group within the library that was
charged with creating and editing video recordings of library events and speakers.

This paper specifically discusses the selection of video formats, changes to the visual theme of the repository to allow embedded playback and captioning
support, and modifications and bug fixes to the file downloading subsystem to enable skip-ahead playback of videos via byte-range requests.

This paper also describes workflows for transcoding videos in the required formats, creating captions, and depositing videos into the repository.

by Keith Gilbertson and Liz McVoy

Motivation

VTechWorks is the institutional repository of the University Libraries of Virginia Tech, which launched in late 2011 using the DSpace software. At launch, the
plan for VTechWorks was for it to act as a general-purpose repository for digital collections at the library, including theses and dissertations, scholarly articles,
historical images and digital scans of cookbooks from the special collections department, and digitized materials from the archives. During the mass import of
legacy content, it was noticed that several digital video files had entered into the collection, including promotional videos for the cooperative extension office
and tribute videos that were sent to Virginia Tech after the campus mass shooting tragedy of April 16, 2007.

We had interesting video content in the repository, but the initial use cases for DSpace institutional repositories focused primarily on textual content: for
example, collections of journal article pre-prints in PDF format. DSpace has been described as largely format agnostic, in that it allows users to deposit any
type of file and to make these various file types available for download, if not in-browser display. However, the repository group at Virginia Tech thought that it
would be fun to allow playback of videos from within the item page. Also, popular video streaming sites such as YouTube have conditioned users to expect
embedded video playback in the web browser, instead of clicking on a video filename to download it first. Thus, video playback in DSpace was quickly hacked
together, and the initial release of the video playback project in VTechWorks happened in August of 2012. Closed caption and subtitle support was added in
November of 2012, in anticipation of future needs. The service was advertised in internal (but public) blog postings (Video playback …, 2012; VTechWorks
Closed Caption …, 2012), with a few sample videos converted to the required formats.

By advertising the capability on a blog posting and listing the format requirements, the hope was that others would continue to submit video content to
VTechWorks. There was collaboration with computer science students for a class project to record computer science seminars, but outside of this successful
project, few new videos were submitted to VTechWorks.

Then, in 2013, the library event capture group was formed. The event capture group provides, free of charge, video recording services for scholarly events up
to two hours in length (Event Capture, 2015). From the time of its formation, this group has deposited videos of over one hundred events to VTechWorks, with
more pending.

Functionality

The project allows for playback of digital videos within a viewer embedded in the item pages of VTechWorks. The customized software detects whether an
item has videos encoded in the necessary formats, and if so, renders an HTML5 video player within the web browser. If the web browser does not support
HTML5 video, then a fallback option using the Adobe Flash player is presented.

Our implementation of this project uses the video.js (Video.js Player, 2015) player to customize the embedded HTML5 video player and to present the Flash
fallback option in the theme. With theme changes, the project is also compatible with alternative players, such as Flowplayer, or can be made to rely entirely
on the built-in controls for video playback in HTML5 capable web browsers. The system supports the use of a “Movie Poster”, an image file that is displayed
in the embedded viewer before playback is requested. This can be a still from an interesting frame of the video, or a title frame for the video, and is meant to
avoid display of a blank canvas in the video playback area.

Playback support is intended to work on popular browsers on popular operating systems, including Firefox, Internet Explorer, Chrome, and Opera on OS X,
Windows, and Linux, and on mobile devices based on Android and iOS operating systems. Some basic requirements of video playback are supported; for
example, the video playback can begin even as just the beginning of the file has been downloaded, and the viewer can skip ahead to view parts of the video
that have not yet been downloaded. These features are especially important for mobile devices, which may have limited storage space.

If a WebVTT file is present in the item, the file is used to provide text indexing of the video for the search discovery system, and to present subtitles on screen.

 Search

https://journal.code4lib.org/mission
https://journal.code4lib.org/editorial-committee
https://journal.code4lib.org/process-and-structure
http://code4lib.org/
https://journal.code4lib.org/issues/issues/issue-31
http://dspace.org/
https://blogs.lt.vt.edu/dlablog/2012/09/07/video-playback-in-vtechworks/
https://blogs.lt.vt.edu/dlablog/2012/11/07/vtechworks-closed-caption-support/
http://www.cdrs.lib.vt.edu/services/event-capture.html
http://videojs.com/
http://dev.w3.org/html5/webvtt/
https://journal.code4lib.org/

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 2/8

Selection of Video Formats

After the event capture group became involved and began producing videos frequently, more thought was put into standardizing the video formats for ease of
processing. In this project, the video formats can be conceived of as three types.

1. The original format, as captured by the camera

2. The preservation format, an archival copy that can used to create other formats

3. Presentation formats, used for display in the web browser

The preservation format was selected after research by the video event capture group at the time of the initial implementation. Members were Liz McVoy,
Scott Pennington, and Therese Walters. The event capture group produces the preservation copy after the video has been edited. The specification is as
follows:

Preservation Format:
 Multimedia container file: .mov

 Video Codec: ProRes 422
 Resolution: 1920×1080

The presentation formats were selected based on the capability of web browsers at the time of the original implementation, and based on experimentation.
Browser support for HTML5 video has improved greatly, but there are still differences between browsers and platforms. An updated chart of HTML5
compatible multimedia formats on both mobile and desktop is on the Mozilla Developer Network. Some web browsers, such as Safari on OS X and iOS,
natively supported mp4 files with h264 encoding, while other browsers, such as Chrome, supported webm files with VP8 encoding. Therefore, each video has
two presentation files stored in VTechWorks, an mp4 file and a webm file.

Presentation Format, .mp4:
 Multimedia container file: .mp4

Video Codec: h264 video, two-pass encoding
 Resolution: 854×480 target (do not scale up if the original is smaller)

 Audio: AAC
 Pixel format: yuv420p

 Moov atom: Located at front of file
 Bitrate: 1200 kbps variable

Presentation Format, .webm:
 Multimedia container file: .webm

 Video Codec: vp8
 Resolution: 854×480 target (do not scale up if the original is smaller)

 Audio: Ogg Vorbis
 Pixel format: yuv420p

 Bitrate: 1200 kbps variable

There are some peculiarities to these specifications. The pixel format of “yuv420p” was selected for compatibility with Google Chrome for Windows. When the
videos were encoded with other pixel formats, they did not play back on Chrome in Windows. Our specification for the .mp4 file states that the moov atom
should be located at the beginning of the file. The moov atom serves as a time-based index to the rest of the file. If the moov atom is not located at the
beginning of the file, then skip-ahead functionality is not enabled, and in some cases the video will not play at all. (Placing moov atom … , 2010)

 If an mp4 file and a webm file are both present in an item, the video playback features will be enabled in the theme. In addition to the video files, it is possible
to include other files to support optional features in the playback functionality. Image files support thumbnails and movie posters; webvtt files support subtitles.

Thumbnail:
 File format: .jpg

 File naming convention: video_filename.mp4.jpg, video_filename.webm.jpg
 Size: 100 pixels, maximum width

 Location: THUMBNAIL bundle in VTechWorks

Movie Poster:
 File format: .jpg

 File naming convention: video_filename.jpg
 Size: Same dimensions as 1 video frame (target 854×480)

 Location: MOVIEPOSTER bundle in VTechWorks

DSpace organizes bitstreams, or files, into logical groups called bundles. Typical bundles in a DSpace repository include ORIGINAL, THUMBNAIL, and
LICENSE. The MOVIEPOSTER bundle is a special bundle that was added for this project.

Subtitles:
 File format: .webvtt, specification at http://dev.w3.org/html5/webvtt/

 Location: ORIGINAL bundle in VTechWorks

With the current implementation, the video playback functionality will only detect and use one webvtt file for each item. Due to this limitation, it is not currently
possible to display subtitles in an alternate language, for example.

Code Changes

Overview

The code changes that were necessary to support this feature modified several subsystems of DSpace, including the file download system, web theming, and
configuration of indexing and file types. Code additions are stored in the VTUL (Virginia Tech University Libraries) group GitHub repository.

https://developer.mozilla.org/en-US/docs/Web/HTML/Supported_media_formats#Browser_compatibility
http://cutfromthenorth.com/placing-moov-atom-at-the-beginning-of-an-mpeg-4-video-with-ffmpeg/
https://github.com/VTUL

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 3/8

File type Registry

DSpace utilizes a file format registry that lists file types known to DSpace. Registry entries for the mp4, webm, and WebVTT file formats were added to the
registry, bitstream-formats.xml.

These entries in the file type registry allow the theme to detect the presence of these files and to customize its view accordingly. The xml file shown here will
configure file entries for new DSpace installations. For previously installed repositories, there is a web interface to add new format entries.

Theming

VTechWorks uses the XMLUI user interface for DSpace 5.4. This interface uses XSLT to transform XML representations of DSpace objects and metadata into
HTML for display in a web browser. The XMLUI allows themes to customize views for the entire repository, or for individual collections. The current theme for
VTechWorks is a lightly customized version of a theme created with responsive design principles, called “Mirage2”, from the @mire company. The main
customization to the Mirage2 theme for this project is a modification to the item view page that displays an embedded video playback area when the user is
looking at video items. There are also changes to include and style the video.js plugin.

First, the page-structure.xsl file was modified to include the necessary css and Javascript files for the video.js tool.

The page links to the files on the video.js project server, instead of linking to copies that could be stored on the VTechWorks server. This potentially introduces
performance issues, or instability when the files are modified. However, it also allows VTechWorks to automatically and effortlessly benefit from the latest
improvements to the video.js project.

The item-view.xsl file checks for the existence of an mp4 and a webm file, and if and only if both exist, displays the video playback area in the item view page.
If a webvtt file is provided for subtitles, or an image file for use as a movie poster, these are also detected and handled. The code uses the standard HTML5
video, source, and track elements. Video.js detects these elements and customizes them accordingly.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

 <bitstream-type>
 <mimetype>video/mp4</mimetype>
 <short_description>MP4 Container</short_description>
 <description>MP4 Container format for video files</description>
 <support_level>0</support_level>
 <internal>false</internal>
 <extension>m4v</extension>
 <extension>mp4</extension>
</bitstream-type>

<bitstream-type>
 <mimetype>video/webm</mimetype>
 <short_description>webm video</short_description>
 <description>The webm video container format</description>
 <support_level>0</support_level>
 <internal>false</internal>
 <extension>webm</extension>
</bitstream-type>

<bitstream-type>
 <mimetype>text/vtt</mimetype>
 <short_description>WebVTT caption file</short_description>
 <description>Closed caption or subtitle file for HTML5 video</description>
 <support_level>1</support_level>
 <internal>false</internal>
 <extension>vtt</extension>
</bitstream-type>

1
2
3
4
5

<!-- include css and javascript for video playback -->
<link type="text/css" rel="stylesheet">
 <xsl:attribute name="href">http://vjs.zencdn.net/c/video-js.css</xsl:attribute>
</link>
<script src="http://vjs.zencdn.net/c/video.js"> </script>

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

 <!-- V.T. Add HTML for the video in a videojs frame -->

 <xsl:if test="(./mets:fileSec/mets:fileGrp[@USE='CONTENT']/mets:file[@MIMETYPE='video/mp4']) and (./mets:fileSec/me

 <!-- V.T. Best guess at aspect ratio of most of our videos -->
 <video controls="controls" preload="none" width="853" height="480" class="video-js vjs-default-skin" data-setu

 <xsl:if test="./mets:fileSec/mets:fileGrp[@USE='MOVIEPOSTER']">
 <xsl:attribute name="poster">
 <xsl:value-of select="./mets:fileSec/mets:fileGrp[@USE='MOVIEPOSTER']/mets:file/mets:FLocat[@LOCTY
 </xsl:attribute>
 </xsl:if>

 <source type="video/webm" >
 <xsl:attribute name="src">
 <xsl:value-of select="./mets:fileSec/mets:fileGrp[@USE='CONTENT']/mets:file[@MIMETYPE='video/webm']/me
 </xsl:attribute>
 </source>

 <source type="video/mp4">
 <xsl:attribute name="src">
 <xsl:value-of select="./mets:fileSec/mets:fileGrp[@USE='CONTENT']/mets:file[@MIMETYPE='video/mp4']/mets
 </xsl:attribute>

https://github.com/VTUL/vtechworks/blob/vt_5_x_dev/dspace/config/registries/bitstream-formats.xml
https://goo.gl/Gds0F6
https://goo.gl/Nzz5kw
http://vjs.zencdn.net/c/video-js.css
http://vjs.zencdn.net/c/video.js

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 4/8

The theme is not able to detect if the moov atom is located at the front of the mp4 file, as is required per proper operation. The site superuser.com has
suggestions about how to detect the location of the moov atom from scripts. Also, all videos are given a viewport of the same dimensions, regardless of their
aspect ratio. In our current revision, this size is set to 854×480, which matches the dimensions of our current presentation formats in VTechWorks, and is a
16/9 aspect ratio.

BitstreamReader

In DSpace repositories using the XMLUI interface, there is a Java class called the BitstreamReader that is responsible for reading deposited files from
storage and sending the files back to the requesting web browser. The BitstreamReader class at one time contained byte range support that enabled
downloading of arbitrary portions of files. In the stock DSpace distribution, this code had been commented out because it was reported to cause problems
with some downloads, in particular with some external PDF viewers.

 Changes to the BitstreamReader.java file include enabling these byte range downloads again, and fixing bugs related to arithmetic and HTTP headers.

HTTP byte range offsets start with 0; this led to an off-by-one error that was corrected:

It was also discovered that the Content-Length HTTP header was missing, and that the word “bytes” was absent from the Content-Range header.

Properly functioning byte range downloads are necessary to enable viewers to skip ahead to a portion of the video that has not yet been downloaded, and for
allowing playback on mobile devices, which typically have little storage space. After these problems were corrected, mobile device playback and the skip-
ahead feature functioned properly.

At the time of publication of this article, another problem was discovered with byte range downloads. See the “Problems” section for more details.

Transcoding scripts

During the earliest stages of experimentation, videos were encoded on an individual basis as the embedded playback feature was tested on different file
types. After the event capture group was started, videos were added to the repository more often. The preservation video format had been standardized, and
it was an appropriate time to attempt automation for transcoding to the presentation formats.

The event capture group was created at a time when system administrator availability was difficult to come by in the library. A Mac mini and several external
drives were purchased to act as a makeshift file server. A perl script was hacked together (Garbage Scripts, 2015) to create the mp4 and webm presentation
files from the preservation copy, along with the thumbnails and movie poster file. The “-movflags faststart” option is used to make sure that the moov atom is
placed at the beginning of the file.

This script was retired at the same time as the makeshift file server was retired and moved to a production appropriate system, and video transcoding is now
handled with iffmpeg, a closed-source, commercial GUI front-end for the ffmpeg encoder that runs on OS X.

The iffmpeg program meets all of our technical needs and is more flexible, but due to a shortage of available staff time, there is now a demand for the script to
be returned to service. This is more challenging than expected because of the need to find an available server node with large storage capabilities and high
compute capability.

Configuration

The DSpace configuration file, dspace.cfg, has an entry that lists bundle names that appear in the web interface for item uploads.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 </source>

 <!-- V.T. display captions -->
 <xsl:if test="./mets:fileSec/mets:fileGrp[@USE='CONTENT']/mets:file[@MIMETYPE='text/vtt']">

 <track kind="captions" srclang="en" label="English" default="default">
 <xsl:attribute name="src">
 <xsl:value-of select="./mets:fileSec/mets:fileGrp[@USE='CONTENT']/mets:file[@MIMETYPE='text/vtt']/mets:FLoca
 </xsl:attribute>
 </track>
 </xsl:if>

 </video>

<hr />

 </xsl:if>

1
2
3
4
5
6
7

/* entityRange = byteRange.intersection(
 new ByteRange(0, this.bitstreamSize)).toString(); */

// this code fixes off by 1 error in commented line above
requestedRange = byteRange.intersection(
 new ByteRange(0, this.bitstreamSize - 1));
 entityRange = requestedRange.toString();

1
2
3
4
5
6

//response.setHeader("Content-Range", entityRange + "/" + entityLength);
// V.T. fix for headers
response.setHeader("Content-Length",""
 + requestedRange.length());
response.setHeader("Content-Range",
 ”bytes " + entityRange + "/" + entityLength);

http://superuser.com/questions/559372/using-ffmpeg-to-locate-moov-atom
https://github.com/VTUL/vtechworks/blob/vt_5_x_dev/dspace/modules/xmlui/src/main/java/org/dspace/app/xmlui/cocoon/BitstreamReader.java
https://github.com/keithgee/garbage_scripts/blob/master/event_capture/1process_mov_for_ir.pl
https://www.ffmpeg.org/ffmpeg-formats.html#Options-6
http://www.iffmpeg.com/

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 5/8

xmlui.bundle.upload = ORIGINAL, METADATA, THUMBNAIL, MOVIEPOSTER, LICENSE

The modified line shown here adds the MOVIEPOSTER bundle so that the Movie Poster files can be uploaded from the web interface.

DSpace has a set of media filters that process common file types such as images, to build thumbnails, and PDF files, for full text indexing. Even though
WebVTT is not an HTML file, we can configure the HTMLFilter to provide full text indexing of the subtitles:

filter.org.dspace.app.mediafilter.HTMLFilter.inputFormats = HTML, Text, t

Testing

The very first item to serve as a test for video in VTechWorks is a tribute video that was presented to Virginia Tech.

Figure 1. Screenshot of Embedded Tribute Video

The video playback functionality was tested on the most popular platforms, including Android and iOS, and Safari, Chrome, Firefox, and Opera on OS X, and
Firefox, Chrome, and Internet Explorer 6, 8, and 9 on Windows.

Multiple versions of Internet Explorer were tested, because the HTML5 <video> tag was not supported until Internet Explorer 9, but Internet Explorer 6 was
still in wide use, even in computers within the library. For browsers that do not support HTML5, such as IE6, video.js provides a fallback mode that uses
Adobe Flash. HTML5 video is now widely supported among commonly used browsers, and Flash appears to be on the decline.

During debugging, curl, as well as the Live HTTP Headers plugin for Firefox were both used extensively.

Deposit Workflow

After editing and exporting the preservation copies of the videos and saving them on a file share with nightly backups, the event capture group places a copy
of the preservation file into a special file share folder (ir_prepare/incoming_mov) for transcoding into presentation formats, as described into the “transcoding
scripts” section.

The outputs from the transcoding section, a webm file, an mp4 file, and jpeg thumbnails and movie posters, are placed into a different folder
(ir_prepare/ready_for_deposit) on the file share. Previously, perl scripts were used to run the ffmpeg tools. Currently, iFFmpeg, an OS X GUI front-end for
ffmpeg is utilized by the event capture group.

All videos are deposited to the repository by either members of the event capture group or members of the VTechWorks group, using the web upload interface
built into DSpace.

http://vtechworks.lib.vt.edu/handle/10919/18426
http://vtechworks.lib.vt.edu/handle/10919/18426
http://curl.haxx.se/docs/manpage.html
https://addons.mozilla.org/en-US/firefox/addon/live-http-headers/

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 6/8

Figure 1. Video Workflow.

Subtitle workflow

At present, only three videos produced by the library have been captioned. Captions are created in the WebVTT format. WebVTT is a text-based format with
time codes and corresponding words to be displayed on the screen (WebVTT, 2015) during each of these time segments.

01:49.025 --> 01:55.039
WE WILL PREVAIL
WE ARE VIRGINIA TECH!

The WebVTT file for the initial captioning experiment was created with the Microsoft Caption Maker web tool. In this tool, the user provides a link to a video
file. The user can see the video in the web browser while typing in captions, and can pause, rewind, and play the video. After the video has been viewed and
captioned, the user can download a WebVTT file containing the time codes and titles. Captioning is a time-consuming process, and could easily take half of a
working day or more to caption a one hour video.

When the second and third videos were captioned, the Microsoft Caption Maker tool was temporarily unavailable. Instead, a similar tool called Amara was
used. The Amara tool is operated much like Microsoft Caption Maker, and also has the very useful feature to save work still in progress to a user account.
 There’s also an additional step in the Amara process that allows the user to adjust the synchronization of the titles on screen by dragging bars in the web
interface.

After the WebVTT file is created, it is uploaded to the DSpace item via the web interface. The theme detects the existence of the WebVTT file and displays
captions, which can be disabled via a button in the playback interface.

Problems

Before this project was implemented, some videos had already been deposited into VTechWorks. The embedded playback feature doesn’t work with these
videos, because the theme customization requires that both an mp4 and a webm file are present to display the embedded player. The video files are still
available for download, even though they can’t be played back directly on the item page. There is currently no plan to correct these pre-existing files.
Automating the process is not a very easy matter because the files are not in standard, identical formats – and preservation or original copies often are not
locatable. Pre-existing video items are instead occasionally encoded on an item-by-item basis into the required formats as desired.

Some of the problems that we have experienced are related to the byte range request feature which had been disabled in DSpace, that we had enabled
specifically for this project.

Recently, after our video encoding and deposit workflows had changed, and we experimented with encoding at a higher resolution, two larger video files were
deposited into VTechWorks where playback was broken. If videos aren’t encoded into the specific formats, with the moov atom at the front of the h264 file,
this can cause problems with embedded playback. These particular files, though, not only had problems with embedded playback, they were also unable to
be downloaded to client machines. The files were both larger than two gigabytes. The byte range request feature that was enabled in the BitstreamReader
class of the XMLUI in DSpace depends on byte range code in the Cocoon project, which uses a Java int to store byte offsets (DSpace Chokes … 2015)

Another problem related to byte range requests involves the DSpace statistics features. As part of the statistics subsystem of DSpace, file downloads of each
bitstream (content file) are recorded and tallied. With byte range requests enabled, each request – even if it is only for part of the file – is counted as a
request. Thus, streaming a large video file on a mobile device can result in many, many file visits, even if the particular file was viewed only once. This has not
been a major issue for us, because at this time we aren’t concerned with the specific number of views on each file. We use the statistics for viewing general
trends, such as the total change in repository-wide usage on a month-to-month basis.

https://en.wikipedia.org/wiki/WebVTT
https://dev.windows.com/en-us/microsoft-edge/testdrive/demos/captionmaker/
http://amara.org/
https://github.com/VTUL/vtechworks/issues/91

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 7/8

Next Steps

A first priority is integrating video playback capability into the main DSpace codebase. Video playback from DSpace is a desired feature, but the functionality
that we have built has thus far been limited to Virginia Tech’s customized version of DSpace. This has two unwanted consequences. First, organizations that
wish to stream video from their DSpace repositories, but can’t dedicate resources to developing a solution are unable to try this method. Second, each time a
major upgrade of DSpace is released, Virginia Tech must spend time integrating the solution and testing it again to make sure that it works as expected,
which tends to take at least one or two days of development time. Things may break, because testing isn’t as thorough as it was during initial development.
We are using maven WAR overlays in DSpace to lessen the problem during upgrades. With the maven WAR overlay, our custom code is stored in a separate
directory path and used in place of the standard DSpace code for customization. This makes it easier to incorporate our code without breakage during
upgrades; however, we may miss new features or bug fixes that have been added to the standard DSpace code.

One possible complication of contributing this code to the DSpace project is that the BitstreamReader component of this experiment is part of a specific
DSpace interface, the XMLUI, aka Manakin, which is based on Cocoon, while a substantial number of organizations use an interface that is based upon the
JSPUI, and other interface technologies are currently under evaluation. However, the VTechWorks group has been restructured to follow agile planning
processes, and is now committed to giving back to open source communities.

Our process for encoding the videos has gone from ad-hoc, automated scripts on an unofficial file server set up by the event capture group, to a people-
driven process utilizing iFFmpeg. It may be desirable for us to reach some sort of compromise between automation and control. DSpace curation tasks may
be one way of accomplishing this goal. A DSpace curation task is a module of code that can be run upon request by staff on a specific item or collection to
accomplish a well-defined goal. Curation tasks often make use of external software services. Examples of current curation tasks are virus scan, using Clam
AV, and a metadata translator, using Microsoft Translate. A DSpace curation task for video encoding could make use of ffmpeg and reasonable defaults to
allow other institutions to encode videos in the proper format. FFmpeg, which is CPU intensive, would be required on the DSpace server.

Subtitles for the deaf and hard-of-hearing are currently supported using WebVTT files, but at the present moment, only two of the videos in the institutional
repository have had subtitles created. Library staff are currently working on a project to add closed captions to all library produced videos as part of a campus-
wide effort.

Figure 2. Caption Initiative.

Additionally, an exploratory app for the Apple TV, known as VTechWorks Videos, or VT TV, has been released (VTechWorks Video …, 2015). The app
presents a selection of videos from the VTechWorks institutional repository in a simple menu. The videos are streamed directly from VTechWorks, using the
BitstreamReader portion of the project described in this paper. The videos in the repository were encoded with settings considered appropriate a few years
ago for display in a web browser or in mobile devices. Seeing these videos on a large screen with 1920×1080 resolution, which has become relatively
common, has spurred a desire to re-encode the archival videos into a higher resolution, higher quality setting. For the present time, DSpace will serve as the
main video presentation system for academic works created at Virginia Tech, with the exception of some video exhibits put together by the special collections
department that are stored in Omeka, while library marketing videos are placed on YouTube and Vimeo. The experimental VT TV app may evolve as an
aggregation point to make all of these videos accessible from a single location. Preservation copies of videos are currently on a large storage system awaiting
deposit into an upcoming dark archive that is likely to be based on Archivematica.

While nearly all of these videos in the VT TV app are streamed from the repository, one title is currently being streamed from Amazon S3 to the Apple TV.
This was done to allow fast experimentation with playlists and content delivery networks without placing additional experimental code into the institutional
repository codebase. There are a few items in the repository that have multiple videos; in the current implementation, only the first video is played back in the
embedded window. Therefore it makes sense to also add playlist support to the repository implementation. In addition to playlist support, the VT TV
application utilizes adaptive bitrate streaming, so that an appropriate video is selected according to user bandwidth. If the bandwidth is not available for quality
playback of the 1920×1080 video, the Apple TV selects a video at a lower resolution. This feature is also implemented through m3u8 playlists, and is a likely
candidate for future inclusion in the VTechWorks institutional repository video playback features.

Links

https://wiki.duraspace.org/display/DSPACE/End+User+-+Streaming+Video+Content
https://wiki.duraspace.org/display/DSDOC5x/Advanced+Customisation#AdvancedCustomisation-MavenWAROverlays
https://maroonedlibrarian.wordpress.com/2015/11/02/vtechworks-video-an-apple-tv-app-for-our-institutional-repository/
https://www.archivematica.org/
https://en.wikipedia.org/wiki/M3U

11/17/22, 6:21 PM The Code4Lib Journal – Video Playback Modifications for a DSpace Repository

https://journal.code4lib.org/articles/11215 8/8

DSpace [Internet]. [Retrieved 2015 Dec 02]. DuraSpace. Available from: http://www.dspace.org

DSpace chokes on large uploads (over 2GB) [Internet]. [Retrieved 2015 Dec 02]. Mello99(GitHub username), Virginia Tech University Libraries. Available
from: https://github.com/VTUL/vtechworks/issues/91

Event Capture [Internet]. [Retrieved 2015 Dec 02]. Center for Digital Research and Scholarship, Virginia Tech University Libraries. Available from:
http://www.cdrs.lib.vt.edu/services/event-capture.html

Garbage scripts [Internet]. [Retrieved 2015 Dec 02]. Available from:
https://github.com/keithgee/garbage_scripts/blob/master/event_capture/1process_mov_for_ir.pl

Placing “moov atom” at the beginning of an MPEG-4 video with FFMPeg [Internet]. [Updated 2011 April 28]. Cut from the North. Available from:
http://cutfromthenorth.com/placing-moov-atom-at-the-beginning-of-an-mpeg-4-video-with-ffmpeg/

Video.js Player [Internet]. [Retrieved 2015 Dec 02]. Available from: http://videojs.com

Video Playback in VTechWorks [Internet]. [Updated 2012 Sep 07]. Digital Library and Archives, Virginia Tech University Libraries. Available from:
https://blogs.lt.vt.edu/dlablog/2012/09/07/video-playback-in-vtechworks/

VTechWorks – Closed Caption Support [Internet]. [Updated 2012 Nov 07]. Digital Library and Archives, Virginia Tech University Libraries. Available from:
https://blogs.lt.vt.edu/dlablog/2012/11/07/vtechworks-closed-caption-support/

VTechWorks Video: an Apple TV App for our institutional repository [Internet]. [Updated 2015 Nov 02]. Marooned Librarian. Available from:
https://maroonedlibrarian.wordpress.com/2015/11/02/vtechworks-video-an-apple-tv-app-for-our-institutional-repository/

WebVTT [Internet]. [Retrieved 2015 Dec 02]. Wikipedia. Available from: https://en.wikipedia.org/wiki/WebVTT

About the Authors

Keith Gilbertson (keith.gilbertson@vt.edu) is a Digital Technologies Development Librarian at Virginia Tech.
 Liz McVoy (lizmcvoy@vt.edu) is the Digital Media Specialist on the Creative Services Team at Virginia Tech’s University Libraries. A combination of education,

internships, and previous work endeavors shaped her love of video production, specifically video editing and graphic design. She uses her videography and
design skills to promote the Libraries’ spaces, services, and resources. a Digital Media Specialist in the Public Relations and Marketing Department of the
University Libraries at Virginia Tech.

Subscribe to comments: For this article | For all articles

This work is licensed under a Creative Commons Attribution 3.0 United States License.

http://www.dspace.org/
https://github.com/VTUL/vtechworks/issues/91
http://www.cdrs.lib.vt.edu/services/event-capture.html
https://github.com/keithgee/garbage_scripts/blob/master/event_capture/1process_mov_for_ir.pl
http://cutfromthenorth.com/placing-moov-atom-at-the-beginning-of-an-mpeg-4-video-with-ffmpeg/
http://videojs.com/
https://blogs.lt.vt.edu/dlablog/2012/09/07/video-playback-in-vtechworks/
https://blogs.lt.vt.edu/dlablog/2012/11/07/vtechworks-closed-caption-support/
https://maroonedlibrarian.wordpress.com/2015/11/02/vtechworks-video-an-apple-tv-app-for-our-institutional-repository/
https://en.wikipedia.org/wiki/WebVTT
https://journal.code4lib.org/articles/11215/feed
http://feeds.feedburner.com/c4lj/comments
http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/

